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ABSTRACT 

Metallic nanostructures are of great interest due to their applicability in various 

modern technologies, such as catalysis, sensing, and optoelectronics. In this work, we 

employed three solution-based methods, including colloidal suspension synthesis, 

modified galvanic displacement, and electrodeposition, to synthesize nanostructured 

metals and transition metals, including gold (Au), copper (Cu), platinum (Pt), palladium 

(Pd), nickel (Ni), and cobalt (Co). Our focus was to establish process-structure-property 

relationship and explore their applicability in the field of sensing and clean energy 

generation. More precisely we established relationships between experimental 

parameters, such as temperature, applied potential, electrolyte pH, reactant concentration, 

additive, and the number of deposition cycles, and the characteristics of the 

nanostructures, such as morphology, density, size, and size distribution. Our results 

indicated that the nanostructures were tunable by adjusting the process parameters. This 

provided insight into the growth mechanisms of the metallic nanostructures. Since 

properties of the nanostructures are tunable by controlling the structure, our results 

provided researchers with additional tools to obtain nanomaterials with desired properties 

for specific applications. The materials synthesized by our methods were utilized to as 

substrates for surface enhanced Raman spectroscopy (SERS) and as photocathodes for 

photoelectrochemical production of hydrogen. The results showed that the performances 

of our materials were either promising or compatible with those reported in the literature, 

thus bringing new opportunities to the development of low-cost, high-performance, and 

flexible nanomaterials for the current and future technologies. 

 



1 

CHAPTER 1.    INTRODUCTION 

Metallic nanostructures have been the subjects of intense scientific research due to 

their novel optical, chemical, catalytic, and electronic properties, which can be utilized for 

numerous applications. This work relied on the fundamental understanding that there is a 

strong correlation between the process and structure of the synthesized materials. 

Additionally, a strong correlation exists between the structure and property of the materials. 

In this work, various metals, including gold (Au), copper (Cu), platinum (Pt), palladium (Pd), 

nickel (Ni), and cobalt (Co) nanostructures, were investigated. These metallic nanostructures 

were synthesized by three different routes, including (1) colloidal suspension synthesis by 

citrate reduction, (2) electroless deposition by galvanic displacement on silicon (Si) substrate 

with limited hydrofluoric acid exposure, and (3) electrodeposition on rigid and flexible 

substrates. In each of these methods, our focus was to systematically draw the relationship 

between key experimental parameters, including temperature, applied potential, electrolyte 

pH, reactant concentration, additives, and the number of depostion cycles, and the 

morphology, density, size, and size distribution of the resulting metallic nanostructures. 

Thus, this work not only furthers our understanding of metallic nanostructural growth but 

also contributes to our capability to obtain nanomaterials with desired structural 

characteristics and properties by simply adjusting the process parameters. Since the outcome 

is tunable and reproducible, the synthesized materials with controlled nanostructures can be 

used for certain target applications.  

After the important material synthesis stage, the resulting metallic nanostructures 

were investigated for their applications in surface-enhanced Raman spectroscopy (SERS) and 

clean energy generation. With the advent of portable Raman technique, the demand of SERS 
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substrates has increased. This portable technique has made sensing accessible to remote 

locations, large populations, and sensing a variety of trace analytes. The conventional SERS 

substrates are prepared by lithographic techniques, which are costly and complicated. In the 

present work, SERS substrates were fabricated by modified galvanic displacement and 

electrodeposition methods. These methods required inexpensive or no instrumentation. In 

addition, the experimental procedures were simple, thus saving training cost. Furthermore, 

nanostructures of the SERS substrates fabricated by these methods can be tuned and are 

uniform and reproducible. In addition to Au and Cu nanostructures whose SERS applications 

have been widely used, this work also described our experiments on non-SERS materials, 

including Pd and Pt. Since these noble metals have excellent catalytic properties, one 

potential application of SERS from Pt and Pd is the probing of catalytic mechanisms 

occurring on the surface of Pt and Pd catalysts. The present work also demonstrates the effort 

toward fabricating flexible substrates for SERS. These substrates were carbon cloth and 

carbon paper whose surfaces were electrodeposited with Au. Another application in which 

these materials showed promises was the production of clean energy. Thus, the present work 

demonstrates the ability to fabricate inexpensive, reproducible, effective, and tunable 

nanomaterials by simple and easy routes, which advances the realization of the large-scale 

use of nanostructured materials for current and future technologies. 
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Abstract 

Gold nanoparticles (Au NPs) were synthesized by the citrate reduction method. The 

evolution of NP size and morphology was closely studied by varying temperature and citrate 

to gold precursor (Na3Ct/HAuCl4) ratios. The reaction temperatures below 100 °C were 

mainly studied. A Na3Ct/HAuCl4 ratio range of 1.25:1 to 4.33:1 was the focus of our 

investigation. The NP size and morphology was strongly influenced by the Na3Ct/HAuCl4 

ratio, while the temperature played a subtle role. The reaction times were also monitored. 

The higher concentration samples required almost an order of magnitude longer reaction time 

compared to the low concentration samples.  

Introduction 

In recent decade significant progress has been made in the field of nanoscience and 

nanotechnology. The area of metallic nanostructure fabrication has explored many synthesis 

and deposition routes leading to the formation of a range of nanostructure morphologies and 

sizes. Gold nanoparticle (Au NP) synthesis has gained much attention due to their unique 

optoelectronic properties. These Au NPs can  be used in a variety of potential applications 

like solar cells [1], catalysts [2], biosensors [3] and biomarkers in early disease detection [4]. 
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Due to the high demand of Au NPs, many synthesis approaches have been studied. Au NPs 

have been prepared by using gas phase precursors [5, 6] and also by sintering of Au thin 

films [7]. The use of proteins and biopolymer templates for the synthesis of Au NPs has 

yielded promising results [8, 9]. Further, the utilization of plant extracts has demonstrated the 

successful synthesis of Au NPs [10]. There are a large number of solution based routes used 

primarily due to the ability to control NP size and morphology. These routes offer advantages 

like simplicity, scalability and low-cost production [11, 12]. Among the solution based 

synthesis sodium citrate (Na3Ct) reduction method pioneered by Turkevich, in which the 

gold precursor (HAuCl4) is reduced by Na3Ct, is widely used due to advantages mentioned 

above [12-15]. Further, the citrate method can obtain a wide range of Au NP sizes and shapes 

that can be used for a variety of potential applications [16]. Since the first report on the 

citrate reduction there have been many publications focusing on several different aspects of 

this synthesis method [16-19]. Frens demonstrated a variation in Au NP size by changing the 

Na3Ct/HAuCl4 ratio from 0.4:1 to 2.6:1 [16]. It was noticed that the least citrate 

concentration led to the largest Au NP size [16, 20]. Modeling studies on the formation of Au 

NPs by the citrate reduction method was performed by Kumar and co-workers, which 

described the formation mechanism of the Au NPs with varying Na3Ct/HAuCl4 ratios. From 

their model, the Au NP size decreases exponentially from 130 nm to 30 nm for a 

Na3Ct/HAuCl4 ratio of 0.4: 1 to 2.0:1. The model established a relationship between the Au 

NP size and Na3Ct/HAuCl4 ratios, which agreed with the findings of Frens and Turkevich 

[12, 13, 16, 21]. Peng and co-workers studied a range of the Na3Ct/HAuCl4 ratio from 0.7:1 

to 30:1. The report demonstrated that with increasing Na3Ct/HAuCl4 ratios from 0.7:1 to 

3.5:1, the number of nuclei increased and the final Au NP size decreased. Beyond the 
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Na3Ct/HAuCl4 ratio of 3.5:1 there was an increase in the Au NP size, attaining a constant 

size of ~30 nm [21].  

To provide explanation for the dependence of Au NP size and reaction kinetics on 

citrate concentration several theoretical and complimentary experimental work has been 

done. For example, Zukoski and co-workers described the Au NP synthesis, in the 

Na3Ct/HAuCl4 ratio range of 1:1 to 7:1, as an initial formation of unstable large aggregates. 

These large aggregates have a fluffy morphology and are composed of several spherical Au 

clusters that later form monodispersed stable Au NPs [21, 22]. In contrast, Peng’s work 

described the aggregates as having a wire like morphology composed of Au crystals for 

Na3Ct/HAuCl4 ratio below 3.5:1. For Na3Ct/HAuCl4 ratio greater than 3.5:1, Peng et al 

demonstrated that the traditional nucleation-growth model was applicable [21]. Peng et al 

also emphasized that the pH value of citrate solution played an important role in influencing 

the structure and reactivity of reactants. This led to variations in NP size, size distribution, 

shape, and nucleation rate. Other reports on pH variation indicated a strong influence on NP 

size and size distribution [23, 24].  

Another experimental parameter, the temperature was also explored. Rohiman et al. 

explored the effects of increasing temperatures above 100 °C and observed decreasing NP 

size with increasing temperatures [15].  Recently, a report on the effects of latent heat in 

boiling water on the synthesis of Au NPs was studied. It was shown that there is a small but 

noticeable decrease in the NP size due to the latent heat of boiling water. It was concluded 

that this latent heat could be responsible for the variation of Au NP sizes synthesized by 

various researchers in this field [25]. Other parameters like stirring speeds and sonication 
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effects on Au NP synthesis were also studied and demonstrated little or no effect on the Au 

NP size and shape [26, 27].  

From several reports in the literature, it is clear that the Na3Ct/HAuCl4 ratio and 

temperature are defining parameters in the synthesis of Au NPs. Further there is also a 

general consensus in the scientific community regarding the influence of Na3Ct/HAuCl4 ratio 

and temperature on the Au NP size, size distribution and morphology. However, a systematic 

study on the variation of the two parameters has not be explored. Moreover, among the two 

parameters which one is more influential on the evolution of Au NP size, size distribution 

and morphology has also not been studied.  

Hence, the primary objective of this work was to systematically study the influence of 

Na3Ct/HAuCl4 ratio and temperature variations on the Au NP size, size distribution, 

morphology, and reaction kinetics. We performed Au NP synthesis at Na3Ct/HAuCl4 ratios 

ranging from 0.25:1 to 15:1, thus covering a large range of ratios. The NP synthesis was 

conducted in the temperature range of 50°C to 100°C, since this temperature range will help 

elucidate the influence of temperature on the Au NP synthesis.  

Experimental Details 

The chemicals used for the Au NP synthesis were gold (III) chloride trihydrate 

(HAuCl4 ∙ 3H2O, ≥ 99.9%), and sodium citrate dihydrate (Na3C6H5O7 ∙ 2H2O, ≥ 99.0%).  

These chemicals were purchased from Sigma-Aldrich (Milwaukee, WI, USA) and used as 

received. All solutions were prepared using deionized water. The Au NPs were synthesized 

using the citrate reduction method [16]. Briefly, to a 50 mL Erlenmeyer flask, 2.5 mg 

HAuCl4 ∙ 3H2O powder was dissolved in 25 mL deionized water to obtain 10-2 % (w/w) 

HAuCl4 solution. The Na3C6H5O7 ∙ 2H2O was dissolved in deionized water to obtain a citrate 

solution of concentrations ranging from 0.44% - 1.53% (w/w).  
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The Au NP synthesis was performed by heating HAuCl4 solution to the desired 

temperature on a hot plate with continuous stirring, followed by the addition of the citrate 

solution. The stirring speed was kept at  500 rpm, which was optimal for producing 

monodispersed Au NPs [28]. Upon the addition of citrate solution, the final solution mixture 

undergoes a color change from colorless, gray, purple and then red. To ensure the reaction 

has reached completion, the solution mixture was maintained on the hot plate at the desired 

temperature for 30 minutes after the solution had turned red. The reaction flask was then 

removed from the hot plate and the final solution mixture was air cooled to room 

temperature. Some amount of the final solution mixture was used for characterization while 

the remaining was stored at 4oC.  

A pH value of the reaction mixtures was measured after the addition of citrate 

solution to the HAuCl4 solution by utilizing a pH 700 benchtop meter. UV-Vis absorption 

spectroscopy of Au NPs was recorded by a Perkin Elmer Lambda 25 spectrophotometer. 

During the Au NP synthesis, the UV-Vis absorption as a function of time was recorded by 

extracting aliquots from the reaction mixture. The morphology and crystal structure of Au 

NPs were studied by transmission electron microscopy (TEM) and selected area electron 

diffraction (SAED), respectively. A JEOL 2100 electron microscope with 200 kV 

accelerating voltage was used for this purpose. The TEM samples were prepared by drop 

casting 3 μL of the as-prepared Au NP suspension on a carbon-coated copper grid. The TEM 

grid was air dried before characterization.   

Results and Discussions 

The Au NPs were synthesized using Na3Ct/HAuCl4 ratios ranging from 0.25:1 to 15:1 

as mentioned above. UV-Vis measurements of the Au NPs showed a wavelength trend 

similar to that observed by Turkevick, Kumar and Ferns [12, 13, 16]. An exponential curve 
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was fitted to the experimental data as shown in Figure 2.1. It was evident from our 

experimental data that the wavelength or NP size begin to stabilize at the Na3Ct/HAuCl4 ratio 

of 2.25:1. This ratio was taken into consideration during our investigation. Thus the 

remainder of our experiments were focused on a range of Na3Ct/HAuCl4 ratios between 

1.25:1 and 4.33:1 including the above ratio, which indicates the onset of NP size 

stabilization. Further, the ratios were separated into low and high citrate concentration 

regimes. The low regime consisted of 1.25:1, 1.5:1 and 1.75:1 Na3Ct/HAuCl4 ratios. The 

high regime included 2.25:1, 2.66:1, 3.50:1 and 4.33:1 Na3Ct/HAuCl4 ratios. The distinction 

between low and high regimes was made on the basis of noticeable difference in the size and 

morphology of the synthesized Au NPs. Additionally, literature reports indicate a narrow size 

distribution for Au NPs with size between 10 and 40 nm, for the Na3Ct/HAuCl4 ratios 

between 1.25:1 and 4.33:1 respectively [12, 13, 16, 20-22, 29].  

 

Figure 2.1  Absorption wavelength as a function of the Na3Ct/HAuCl4 ratios. 

Along with the study of Na3Ct/HAuCl4 ratio variation, the temperature for the 

synthesis was also varied. Since temperature is an important parameter in the citrate 

reduction method and is generally kept at 100 °C, our study focused on studying the 
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influence of temperature variations on NP size, morphology and reaction kinetics. The 

temperature range of interest was between 50 °C and 100 °C. It was noted that Au NP 

synthesized below 50 °C had a very high degree of polydispersity. Further, the long reaction 

times at low temperature made the synthesis method unrealistic. Thus the lowest temperature 

reported in this investigation is 50 °C.  

As mentioned above, the reaction mixture undergoes a series of color changes 

following citrate solution addition (Figure 2.2). The duration of these color changes were 

recorded, which were related to the reaction kinetics of the Au NP synthesis. These durations 

were labeled as time t1 and t2, corresponding to nucleation and growth times respectively. 

During time t1 the reaction mixture changes from colorless to gray and exhibits no absorption 

peak.  In time t2 the reaction mixture undergoes color change from gray to red and an 

absorption peak is observed, which was attributed to the formation of Au NPs [22, 30, 31].  

 

Figure 2.2  Images of the reaction mixture changing color, due to the addition of citrate 

solution, from (a) colorless, (b) gray, (c) purple to (d) red.  

For Na3Ct/HAuCl4 ratios under consideration, the pH of the reaction mixture was also 

recorded. The pH varied from 4.15 to 5.81, with increasing Na3Ct/HAuCl4 ratio (See 
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supporting information, Table A 2.1). It is demonstrated in literature that citrate is alkaline in 

nature, thus increase in solution pH with increasing Na3Ct/HAuCl4 ratio was expected [22].  

The UV-Vis absorption measurements were performed as a function of synthesis 

temperature for the Na3Ct/HAuCl4 ratios under consideration. Figure 2.3 shows the 

absorption peak as a function of synthesis temperature for Na3Ct/HAuCl4 ratios belonging to 

the low and high concentration regimes. The remaining data is presented in the supporting 

information Figure A 2.1). From the UV-Vis data, there is a very small decrease in the 

absorption peak with increase in the synthesis temperature for all Na3Ct/HAuCl4 ratios. This 

small decrease in absorption maxima indicates a limited change in the NP size, for a 

particular Na3Ct/HAuCl4 ratio. However, there is significant difference in the absorption 

maxima, at a particular temperature, between the low and high concentration regime samples, 

which suggests NP size variation occurred for different citrate concentrations. The NP size 

was calculated by using the absorption maxima and an approximate size of 40 nm and 20 nm 

was obtained for the low and high regime samples respectively [3, 13, 21, 22, 24, 28, 32-35].   

Figure 2.3  Absorption peak as a function of temperature for four Na3Ct / HAuCl4 ratios 
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Further, the size distribution was studied by measuring the full width at half 

maximum (FWHM) of the UV-Vis spectra. From the measurements it was clear that there is 

a very small decrease in the FWHM with increasing synthesis temperature for each 

Na3Ct/HAuCl4 ratio. However, there was a substantial decrease in the FWHM between 

Na3Ct/HAuCl4 ratios of low and high regimes. Thus it was inferred that the polydispersity of 

the Au NPs is not strongly affected by the temperature, but the Na3Ct/HAuCl4 ratios greatly 

influenced the polydispersity. The remaining data on FWHM is presented in the supporting 

information (Figure A 2.2). These results highlight the strong influence of Na3Ct/HAuCl4 

ratios on the NP size and size distribution, while indicating that the synthesis temperature has 

a subtle influence.  

 

Figure 2.4  Full width at half maximum (FWHM) as a function of temperature for four 

Na3Ct / HAuCl4 ratios 

In order to support the UV-Vis data, TEM imaging was performed on the Au NPs to 

study the size, shape and size distribution variation with temperature and Na3Ct/HAuCl4 

ratios. For this study Na3Ct/HAuCl4 ratios of 1.50:1 and 4.33:1 were chosen as they 

represented the low and high concentration regimes respectively. The temperatures of 60 °C, 
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80 °C and 100 °C were selected. The 100 °C sample was used as a reference and all 

comparisons were made to this sample. For the Na3Ct/HAuCl4 ratio of 1.50:1, there is a 

slight decrease in particle size with increase in temperature. The particle size varies 

approximately from 40 nm to 34 nm with increase in temperature. The NPs were primarily 

elliptical in shape with some irregular shaped NPs. Some NPs appear to be aggregating as 

highlighted in blue arrows. The size distribution does not vary greatly for the 60 °C and 80 

°C samples when compared to the 100 °C sample. Similarly, for Na3Ct/HAuCl4 ratio of 

4.33:1 there was a slight decrease in the NP size with increase in temperature. The NP size 

varied approximately from 16 nm to 13 nm with increase in temperature. The NPs were 

either facetted or quasi-spherical in shape. The facetted NPs are highlighted with red arrows 

in the TEM images (Figure 2.5). The size distribution does not show any apparent change.  

 

Figure 2.5  TEM images of Au NPs synthesized using Na3Ct/HAuCl4 ratio of 1.50:1 (a-c) 

and 4.33:1 (d-f) at temperatures of 60 °C (a, d), 80 °C (b, e) and 100 °C (c, f). The 

highlighted NPs are facetted. The scale bar for all TEM images is 50 nm. 
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When the Au NP size in the low and high concentration regimes were compared, it 

was very clear that the NP size of the low regime (~40 nm) was greater than the high regime 

(~16 nm). The shape of the NPs in the low regime was elliptical while those in the high 

regime were more spherical. Further, the Au NPs were polycrystalline in nature, which was 

evident from the presence of twinning planes seen in the TEM images. The selected area 

electron diffraction (SAED) patterns also suggests polycrystalline nature of the Au NPs. The 

indexed SAED pattern indicates the formation of a face-centered cubic structure of Au 

(Figure 2.6). It was also observed that the degree of polycrystallinity increased with 

decreasing temperatures. Thus, from the TEM studies and the UV-Vis data, it was confirmed 

that temperature plays a subtle role while the Na3Ct/HAuCl4 ratios play a dominant role in 

determining the size and morphology of the Au NPs.    

 

Figure 2.6  Indexed SAED pattern, of Au NPs synthesized at 80°C and a Na3Ct/HAuCl4 

ratio of 4.33, indicates face-centered cubic structure of Au. 

Thus in the next phase of our work, the investigation focused on monitoring the size 

and morphological evolution of the Au NPs during synthesis at different Na3Ct/HAuCl4 
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ratios in the low and high regime. A series of UV-Vis absorption measurements were 

performed during the synthesis at precise time intervals. The color changes of the reaction 

mixture were closely monitored and were related to nucleation (t1) and growth (t2) times. 

Figure 2.7 shows two absorption spectra for low and high regime samples with the 

Na3Ct/HAuCl4 ratios of 1.5:1 and 4.33:1 at 80 °C respectively. The synthesis temperature of 

80 °C was selected so that a precise recording of color change can be done. For the low 

regime measurement (Figure 2.7a), the absorption spectra were recorded at 1 min, 1.5 min, 3 

min and 40 min. The time of color change was recorded as t1 = 1 min, t2 = 3 min, which 

corresponded to nucleation and growth times respectively. The UV-Vis spectra show an 

evolution of absorption maxima with reaction time. 

 

Figure 2.7  Evolution of UV-Vis absorption maxima as a function of reaction time (a) for 

Na3Ct/HAuCl4 ratio of 1.5 and (b) 4.33. 

For the time t1 = 1 min, there was no absorption maxima in the UV-Vis spectrum. As 

the reaction proceeded, a broad peak centered at 550 nm appeared in the UV-Vis spectrum. 

This broad peak was recorded at reaction time of 1.5 min. At time t2 = 3.0 min the absorption 

maxima was recorded at 530 nm. After completion of the reaction, at time 40 min, the 

absorption maxima was at 526 nm. From the UV-Vis data it is evident that there is a blue 
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shift in the absorption maxima from 550 nm to 526 nm along with a decrease in the spectral 

width as the reaction proceeded. The UV-Vis spectra for the high regime sample (Figure 

2.7b), shows similar trend. For the time t1 = 2.5 min, a large hump was observed between 

500 nm and 650 nm, centered approximately at 580 nm (Figure 2.7b). As the reaction 

progressed the absorption maxima underwent a blue shift from 540 nm to 519 nm. The final 

absorption maxima for the high regime sample was smaller than the low regime sample by 7 

nm. Moreover, the FWHM of the high regime sample was smaller than the low regime 

sample. This reduction in absorption maxima and smaller FWHM for high regime sample 

indicates that the final NP size is smaller and has a narrow size distribution than the low 

regime sample. Further, the evolution of the absorption spectrum suggests that during the 

initial stages of synthesis the Au particles could be present in an aggregated form, which 

transform to stable Au NPs as the reaction progresses [12, 21].  

With the help of our absorption data (Figure 2.7) and from the reports in literature it 

is clear that in the initial stage of synthesis the very small Au clusters have a tendency to 

aggregate. This occurs due to the high surface area to volume ratio making the small Au 

clusters thermodynamically unstable thus leading to aggregation. The broad absorption 

maxima obtained, in the UV-Vis data, during the initial stages of the reaction is attributed to 

the cumulative effect of the surface plasmon resonances, due to the presence of small Au 

particles of varying sizes within this aggregated form [21, 22]. Other factors contributing to 

aggregation are van der Waals attraction and the tendency of Au (III) complexes to attract 

metallic Au surfaces [12, 21, 23]. The small Au particles within the aggregates do not fuse 

but are kept in close proximity to each other via steric repulsion of the adsorbed citrate. As 

the reaction proceeds the absorption maxima undergoes a blue shift to 526 nm. During this 
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reaction the small Au particles disengage from the aggregate to form stable Au NPs, as these 

particles continue to get coated with citrate ions and the adsorbed Au (III) complexes reduce 

to metallic Au. The completion of the reaction is indicated by a red color of the final reaction 

mixture, as shown in Figure 2.2d.  

Further, in the low concentration regime the unstable small Au clusters have a high 

tendency to aggregate as mentioned above. In this regime there are less citrate ions available 

to coat the Au nanoparticles and thus the aggregation is favored. Further, since the density of 

these small nanoparticles is large the probability of aggregation is high, which occurs via the 

van der Waals attraction [36]. The aggregation of Au clusters ceases when a critical size is 

achieved. The electrostatic repulsion due to the citrate ions stabilizes the Au clusters by 

coating the surface of the Au clusters. Further NP growth and surface energy minimization 

occurs via diffusion and Ostwald ripening respectively. This leads to the formation of large 

and elliptical Au nanoparticles in the low concentration regime (Figure 2.5a-c, Figure 2.5a 

highlighted with blue arrows). The elliptical shape of Au NPs is due to a combination of 

nanoparticle fusion [37], surface energy minimization, aggregative growth [38] and possibly 

Ostwald ripening [24, 39] of NPs (Figure A 2.3). The NPs seen in Figure 2.5a indicate that 

the formation of elliptical NPs could be mainly due to fusion and aggregative growth. Wang 

et al have provided a very clear distinction between aggregative growth and Ostwald ripening 

[38]. In Figure 2.5a, the occurrence of Ostwald ripening cannot be completely eliminated but 

may play a subtle role [39]. For the high concentration regime, the presence of large amount 

of citrate ions inhibits aggregation and random attachment of Au clusters, as these citrate 

ions create a coating on all available Au nanoparticle surfaces. A traditional nucleation and 

growth model is used to explain the facetted or quasi-spherical nanoparticle formation for 
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high citrate concentrations (Figure 2.5d-f) (See supporting information, Figure A 2.3) [37, 

38]. 

Along with the study of size and morphological evolution, reaction time for various 

Na3Ct/HAuCl4 ratios was also investigated. As mentioned above, the time at which color 

changes occurred were meticulously recorded. Figure 2.8 below shows the reaction time, on 

a logarithmic scale, as a function of synthesis temperature for low and high concentration 

regimes.  

 

Figure 2.8  A logarithmic plot of reaction time as a function of synthesis temperature for 

low and high concentration regimes 

There is a similar trend for both nucleation (t1) and growth (t2) times in the low and 

high regimes. An exponential decrease in the nucleation and growth time is recorded with 

increasing synthesis temperature for both regimes. This trend of increased reaction kinetics 

with temperature can be explained with the help of chemical reactions occurring during the 

Au NP formation.  

Dissolution of HAuCl4 in water:  
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HAuCl4 + H2O ↔ H3O
+ + AuCl4

−……………………. (1) 

Hydrolysis of AuCl4
−:  

 AuCl4
− + H2O ↔ [AuCl3(OH)]

− + H+ + Cl−……………… (2) 

AuCl4
− + 2H2O ↔ [AuCl2(OH)2]

− + 2H+ + 2Cl−………… (3) 

AuCl4
− + 3H2O ↔ [AuCl(OH)3]

− + 3H+ + 3Cl−………….. (4) 

Oxidation of citrate to dicarboxy acetone: 

C6H5O7
3−  

[O]
↔  C5H4O5

2− +  CO2 + H
+ + 2e−………………. (5) 

Reduction of Au (III) to Au (I): 

AuCl4
− + 2e− ↔  AuCl2

− + 2Cl−………………….. (6) 

[AuCl3(OH)]
− + 2e− ↔  AuCl2

− + Cl− + OH−………………… (7)  

[AuCl2(OH)2]
− + 2e− ↔  AuCl2

− + 2OH−…………………........ (8) 

[AuCl(OH)3]
− + 2e− ↔  AuCl + 3OH−…………………………. (9) 

AuCl3 + 2e
− ↔  AuCl + 2Cl−…………………………………… (10) 

Disproportionation of Au (I) to metallic Au:  

3AuCl2
− ↔  2Au0 + AuCl4

−  +  2Cl− ………………………… (11) 

 3AuCl ↔  2Au0 +  AuCl3 + 2Cl
−………………………. (12)  

Overall reaction:  

2AuCl4
− +  3C6H5O7

3−  ↔  2Au +  3C5H4O5
2− + 3CO2 + 3H

+ + 8Cl−…………. (13) 

HAuCl4 undergoes hydrolysis to form a yellowish solution (Equations 1-4). After 

completion of hydrolysis, a redox reaction occurs, where citrate and Au (III) complex form 

dicarboxy acetone and Au (I) complex respectively (Equations 5-10). The dicarboxy acetone 

facilitates the grouping Au (I) complexes to form metallic Au nuclei through the 

disproportionation reaction (Equations 11and 12). Gammons et al [30] have demonstrated 
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that Au (I) complex is more stable at higher temperatures. Thus as the reaction is carried out 

at higher temperatures the formation of Au (I) complex is favored. Consequently, there will 

be a higher concentration of Au (I) complex, which will also lead to the increase in the rate 

of disproportionation reaction.  This relationship between the concentration of Au (I) 

complex and the rate of disproportionation reaction has been experimentally supported by 

Gammons et al [30]. Thus with increase in temperature, the rate of Au NP formation 

increases.  

From the data, it is also evident that in the low concentration regime the nucleation 

(t1) and growth (t2) times for the Au NPs was less compared to the high regime samples. This 

is a clear indication that the Au NP formation rate is much slower at the high regime than at 

the low regime. At the high concentration regime, the pH of the reaction mixture is higher 

than the low concentration regime. This pH change affects the reactivity of the Au (III) 

complexes. Based on Huang’s work [23] on the speciation of aqueous HAuCl4 at various pH 

values, the AuCl4
-
 complexes can include combinations of AuCl4

-
, [AuCl3(OH)]

-
, and 

[AuCl2(OH)2]
-
. As the pH values increase, the Au (III) complexes become more stable and 

thus the citrate ions find it difficult to reduce the Au (III) complexes. Thus the time of 

reaction is lengthened when the pH of the reaction mixture is increased, which occurs in 

samples in the high concentration regime.   

Conclusion 

In summary, Au NPs were synthesized by the citrate reduction method. The 

variations in temperature, Na3Ct/HAuCl4 ratios and reaction times were closely studied. 

From this study it was evident that the Au NP size and morphology was strongly dependent 

on the Na3Ct/HAuCl4 ratios and the temperature played a subtle role. At low concentration 
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regime, the Au NPs were more elongated. The elongation occurred due to Oswald ripening. 

At high concentration regime, the Au NPs were more spherical or facetted. The reaction 

times varied approximately by an order of magnitude between the low and high 

concentration regime samples. The high regime samples required longer reaction times to 

reach completion, due to the presence of more stable Au (III) complexes in the solution. 
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Appendix 

Table A 2.1  The pH value of the reaction mixture with varying Na3Ct/HAuCl4 ratios. 

Sr. No. Na3Ct/HAuCl4 pH of reaction mixture 

1 0.00 3.28 

2 1.25 4.15 

3 1.50 4.28 

4 1.75 4.53 

5 2.25 4.90 

6 2.66 5.08 

7 3.50 5.66 

8 4.33 5.81 

 

It was observed that the pH value increased with increasing Na3Ct/HAuCl4 ratios. 

 

Figure A 2.1 Absorption peak as a function of temperature for three Na3Ct/HAuCl4 ratios, 

showing a small decrease in absorption maxima with increasing temperature 
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Figure A 2.2 Full width at half maxima (FWHM) as a function of temperature for three 

Na3Ct/HAuCl4 ratios, show a slight decrease in FWHM with increasing temperature 

 

Figure A 2.3 Mechanism of NP shape evolution in high and low concentration regime 
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Abstract 

Gold (Au) and copper (Cu)-based nanostructures are of great interest due to their 

applicability in various areas including catalysis, sensing and optoelectronics. Nanostructures 

synthesized by the galvanic displacement method often lead to non-uniform density and poor 

size distribution. Here, density and size controlled synthesis of Au and Cu-based 

nanostructures was made possible by galvanic displacement with limited exposure to 

hydrofluoric (HF) acid and the use of surfactants like L-cysteine (L-Cys) and 

cetyltrimethylammonium bromide (CTAB). An approach involving cyclic exposure to HF 

acid regulated the nanostructure density.  Further, the use of surfactants generated 

monodispersed quantum sized nanoparticles in the initial stage of the deposition with 

increased density. The characterization of Au and Cu-based nanostructures was performed by 

scanning electron microscopy, UV-Visible spectroscopy, X-ray photoelectron spectroscopy, 

Raman spectroscopy and X-ray diffraction. SERS measurements indicated that Si substrates 

deposited with Au nanostructures enhanced Raman signals of Rhodamine 6G dye up to three 

orders of magnitude 
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Introduction 

Galvanic displacement is an electroless deposition technique utilized for the 

deposition of metals on semiconducting substrates1-2. This synthesis method has gained much 

attention in the past decade since it is a simple and inexpensive way of preparing zero and 

two dimensional metal nanostructures. Moreover, it does not require complicated chemical 

apparatus, electrical source, electrodes and can be performed under ambient conditions in a 

short duration of time. The synthesis is also applicable for substrates with complex 

geometries including patterned planar substrates and nanowires. Due to these advantages of 

galvanic displacement method there has been a surge in scientific reporting that explore the 

deposition of metallic nanostructures on semiconductor surfaces1-5. These deposited metallic 

nanostructures are either randomly distributed or specifically patterned on the substrate. 

There are also other literature reports that utilize this synthesis method to study fundamental 

aspects like growth behavior of metals on the underlying substrates and the characteristic of 

their interface4, 6-8. The galvanic displacement technique has been utilized for the deposition 

of several metals and base metals including Au6-7, 9-10, silver (Ag)6, 8, 11, platinum (Pt)6, 12-13, 

palladium (Pd)6, nickel (Ni)14, and Cu5, 14-17 on Si, germanium (Ge)6, 18 and III-V 

semiconductor substrates1.   

In this deposition method, the semiconducting substrate provides electrons via surface 

oxidation. These available electrons are used to reduce the metal cations in solution to their 

metallic state, resulting in deposition of the metal on the substrate. The following chemical 

equations describe the galvanic displacement reactions on silicon (Si) substrate, where M 

denotes any metal with a standard redox potential more positive than that of the substrate. 

Here HF acid is used to maintain the supply of electrons by the dissolution of surface oxides 

on the substrate1, 9.  



31 

Anodic:  Si (s)  +   6F− (aq)   →   SiF6
2− (aq)  +   4e−……..................................... (1) 

Cathodic:  Mn+ (aq)  +   ne−   →   M (s)…………………….…............................. (2) 

Overall:  Mn+ (aq)  +   Si (s)  +   6F− (aq)   →   M (s)  +   SiF6
2− (aq)…............... (3)    

Many studies on galvanic displacement have been carried out with the objective of 

synthesizing Au nanoparticles or films. These Au nanostructures serve as a good model 

system for other metals.  Also the redox potential of Au is greater than other desirable metals. 

Thus the Au precursor can be readily reduced to metallic Au, making easy synthesis of Au 

nanostructures6, 9. Moreover, there are several potential applications for Au nanostructures in 

a variety of areas. Further, the plasmonic properties of Au nanostructures can be tuned by 

varying the size and shape of the nanostructures. These plasmonic properties can be exploited 

for surface enhanced Raman spectroscopy19-20, solar cells21, detection of bioanalytes22, 

optoelectronics and also for photocatalysis12, 23. Additionally, the knowledge acquired by 

thoroughly studying the galvanic displacement method for the deposition of Au 

nanostructures is valuable and can be applied to other metallic systems like Ag, Pt, Cu etc. 

Lately, Cu nanostructures have been gaining importance since there are potential applications 

that can benefit from the plasmonic properties of Cu nanostructures. Also, Cu is a favorable 

material of choice due to its inherent advantages like high electrical and thermal 

conductivity, high electromigration resistance and easy functionality15, 24-25. Moreover, Cu is 

an inexpensive and abundantly available metal. Thus due to these benefits, Cu nanostructures 

have been synthesized by various routes including the above mentioned galvanic 

displacement method. 

The metallic nanostructures synthesized by galvanic displacement are often found to 

be of random size and distribution26-27. It has been difficult to precisely control the 
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nanostructure size and density and thus has been the limiting factor for this synthesis 

technique. In this work we successfully demonstrate a modification of the galvanic 

displacement method, in which surfactants like L-Cys and CTAB have been incorporated, to 

obtain controlled density, size and distribution of the deposited nanostructures. Additionally, 

the nanostructures can be easily removed from the substrate, making the substrate available 

for the deposition of nanostructures. Thus the substrate becomes reusable and the removed 

nanostructures do not agglomerate due to the presence of the surfactants. Further, 

morphological evolution of the nanostructures was controlled as the synthesis process 

proceeded. We have synthesized Au and Cu-based nanostructures on Si substrate. The 

nanoparticle size as small as 7 nm has be deposited in both material systems. Our findings 

indicate that the surfactants, like L-cysteine and CTAB, play an important role in obtaining 

very dense, monodispersed nanoparticles. Scanning electron microscopy was used to study 

the size, size distribution and morphological evolution. The compositional analysis was 

carried out by X-ray diffractometer, X-ray photoelectron spectroscopy and Auger electron 

spectroscopy. The absorption properties were studied using UV-Visible spectroscopy. The 

scattering property of Au nanostructures was evaluated by Raman spectroscopy for 

application in surface-enhanced Raman spectroscopy (SERS) 

Experimental Details 

The chemicals used for metal deposition included gold (III) chloride trihydrate 

(HAuCl4·3H2O, ≥ 99.9%) and cetyltrimethylammonium bromide (CTAB) (C19H42BrN, ≥ 

99.9%) purchased from Sigma Aldrich (Milwaukee, WI, USA), cupric sulfate pentahydrate 

(CuSO4·5H2O, ≥ 98%) from Fisher Scientific (Hanover Park, IL, USA), and L-cysteine 

(C3H7NO2S, ≥ 98%) from EMD Millipore (Billerica, MA, USA). These chemical were used 

as received. The HF acid (48%) was purchased from Macron Fine Chemicals (Center Valley, 
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PA, USA). All solutions were prepared using deionized water. The HF acid was always 

contained in a polypropylene beaker for experimental purposes. The Si (100) substrate (4" 

wafer, single-crystalline, n-type, ρ = 3-9 Ω cm) was purchased from El-Cat Inc. (Ridgefield 

Park, NJ, USA). For SERS measurements, Rhodamine 6G dye (R6G, 99%) and paraoxon-

ethyl (C10H14NO6P, ≥ 90%) were purchased from Sigma Aldrich (Milwaukee, WI, USA) 

Prior to the deposition, the Si wafer was cleaved into 1.5 x 1.5 cm2 pieces and 

thoroughly cleaned using acetone followed by ethanol (100%, 200 proof) and deionized 

water. Each cleaning step was carried out for 10 minutes, in an ultrasonic bath, in order to 

degrease and decontaminate the Si substrate. The clean Si substrate was dried on a kimwipe. 

In the next step of the synthesis the clean Si substrate was immersed in to 10% (w/w) 

aqueous HF solution for 2 minutes. The HF acid dissolves the surface oxide on the substrate 

and forms hydrogen terminated surface. Following HF immersion step, the Si substrate was 

immediately immersed in 0.3 mM HAuCl4 or CuSO4 for 5 minutes to obtain Au or Cu-based 

nanostructures respectively on the Si substrate. Finally, the Si substrate was thoroughly 

rinsed by deionized water and dried on a kimwipe. To increase the density of the deposited 

nanostructures, the above procedure, called as one cycle (1X), was repeated up to ten times 

(10X). To further increase the nanostructure density and control the nanostructure size, 0.1 

mM surfactants like L-cysteine or CTAB were mixed independently with 0.3 mM metal 

precursor solutions and utilized in the deposition process. Figure 3.1 describes the entire 

deposition process called as one cycle (1X). To prepare the dye solution, 0.8 mg of R6G was 

dissolved in 5 mL of deionized water, and used as stock solution. Similarly, paraoxon stock 

solution was prepared by mixing 30 μL of oily concentrated paraoxon with 0.98 mL 

deionized water. To prepare sample for SERS measurement, a small volume of the stock 
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solution was diluted to the desired concentration. Then, 300 μL of the diluted solution was 

drop cast onto the sample, and was dried under ambient condition. To improve wetting, prior 

to drop casting, the sample was treated with ambient air plasma for 1 minute under medium 

radio frequency power level (11 W) by a plasma cleaner (PDC-001, Harrick Plasma, Ithaca, 

NY) 

 

Figure 3.1  Experimental steps of the synthesis process. (a) Cleaved and cleaned Si 

substrate. (b) Immersion in 10% HF for 2 min, to dissolve the surface oxide. (c) Immersion in 

0.3 mM metal precursor solution for 5 min. (d) Rinse sample with deionized water. 

The size, size distribution and morphology of the nanostructures were studied by 

scanning electron microscopy (SEM) using a FEI Quanta-250 SEM instrument at 10 kV 

accelerating voltage. Topography of the generated surfaces was obtained by atomic force 

microscopy (AFM) using a Veeco Dimension 3100 AFM instrument in intermittent contact 

mode with a commercial Si probe (nominal radius~8nm, nominal frequency~320 kHz) at a 

scan size of 2μm × 2μm. To investigate the composition and crystallinity of the 

nanostructures, X-ray diffraction (XRD) was performed using the Siemens D500 instrument. 

The absorption properties were analyzed by obtaining UV-Visible (UV-Vis) absorption 

spectra. For the UV-Vis absorption measurement the samples were prepared by sonicating 

the Au nanoparticles off the Si substrate using 1.5 mL of deionized water. The sonication 

was carried out for 3 min. The Au nanoparticles suspended in deionized water was used for 

UV-Vis measurements. The oxidation states of the synthesized nanostructures were studied 

using an X-ray photoelectron spectroscopy (XPS), a Kratos Amicus/ESCA 3400 instrument. 
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For the XPS data acquisition, the sample was irradiated with a 240 W Mg Kα X-ray and the 

photoelectrons normal to the substrate were analyzed. Auger electron spectroscopy (AES) 

was also utilized for sample characterization.  Raman measurements were performed at room 

temperature on a Renishaw Dispersive Raman Spectrometer with Ar-ion laser of 488 nm. A 

50X objective lens with incident power density of 8.2 mW/cm2 and a total accumulation time 

of 2 min was used to acquire Raman data. The Raman spectra were collected from several 

random locations on each sample to confirm reproducibility. 

Results and Discussion 

The SEM images in Figure 3.2 represent Au nanostructures synthesized during 

successive deposition cycles from the first to the tenth cycle and show the corresponding 

morphological evolution of the Au nanoparticles. After the completion of the first deposition 

cycle the Au nanostructures appeared to be quasi-spherical in shape with an average diameter 

of 14 nm (Figure 3.2a). The nanoparticles were not deposited uniformly over the entire Si 

substrate. With the second deposition cycle the Au nanostructures were a combination of 

quasi-spherical nanoparticles and elongated branched nanostructures. The additional 

deposition cycles produced more nanostructures on the substrate and the morphological 

evolution of the deposited Au nanostructures was evident. Up to five deposition cycles, Au 

nanostructures appeared as chains of nanoparticles having a continuous network, and the 

average width of the Au nanostructures increased from 18 nm to 32 nm. Then, after six 

deposition cycles, the chains of nanoparticles coalesced further to form a sub-monolayer. 

Upon increasing to eight and ten deposition cycles, Au nanostructures grew more vertically, 

and their coverage shrank slightly. The observed shrinking of Au coverage was a general 

behavior of metals when deposited on semiconductor substrates,28 possibly due to further 

coalescence and intra-nanostructure ripening. With increase in the deposition cycle, the Au 
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nanostructures appeared as chains of nanoparticles having a continuous network. The average 

width of the Au nanostructure increased from 18 nm to 32 nm with increase in the deposition 

cycles.  

Along with the deposition of Au nanostructures, Cu-based nanostructures were also 

deposited using the galvanic displacement technique (Figure 3.3). Unlike Au nanostructures, 

the deposited Cu-based nanostructures were sparse during the initial deposition cycles. This 

sparse deposition could be due to the lower redox potential of Cu compared to Au. With 

increase in the deposition cycles the Cu-based nanostructure’s number density increased. The 

nanostructures exhibited additional polydispersity, since nucleation and growth occurred 

during every deposition cycle. Moreover, the morphological evolution did not follow similar 

trend established by the Au nanostructures. There was no evidence of nanoparticle chain 

formation since each nanoparticle appeared as an individual entity. The average size of the 

Cu-based nanostructure increased from 23 nm to 42 nm with increasing deposition cycles. 

The difference in the morphological evolution between Au and Cu-based nanostructures 

Figure 3.2  SEM images of Au nanostructures deposited on Si substrate after (a) first, (b) 

second, (c) third, (d) fourth and (e) fifth, (f) sixth, (g) eighth, and (h) tenth deposition cycle. The 

scale bar is 500 nm. 
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could be governed by the difference in their surface energies. The Au nanostructures 

appeared like a network of nanoparticle chains, while the Cu-based nanostructures appeared 

more spherical with limited agglomeration. It has been demonstrated in literature that the 

surface energies of low index planes for Au are much lower than that of Cu. Thus surface 

energies of low index planes could influence the resulting morphologies6, 9, 29.  

 

Figure 3.3  SEM images of Cu-based nanostructures deposited on Si substrate after (a) 

first, (b) second, (c) third, (d) fourth and (e) fifth deposition cycle. The scale bar is 500 nm. 

From the SEM images, it was clear that the deposition of Au and Cu-based 

nanostructures on the Si substrate occurred via the Volmer-Weber growth mode. The number 

density of the deposited nanostructures in the first cycle appeared to be higher than the 

immediate successive cycle. This initial decrease in the number density could be attributed to 

weak adhesion between the deposited nanostructures and the underlying Si substrate9. Also 

in the Volmer-Weber growth mode the binding energy between atoms within the deposited 

nanostructures is higher than that with the substrate. However, with increase in the deposition 

cycles the number density increases, which perhaps occurs after the stabilization of the initial 

nanoparticle size. Further, availability of the Si substrate is important since additional 

deposition is possible if regions on the Si substrate are accessible for reaction with HF acid. 

Alongside due to the nature of this deposition process there is nucleation and growth 

occurring at every deposition cycle, which leads to additional polydispersed nanostructures.    



38 

In order to decrease the polydispersity, the use of surfactants has been a common 

practice. Surfactants like L-cysteine (L-Cys) and cetyl trimethylammonium bromide (CTAB) 

are often used for the stabilization of nanoparticles in solutions30-31 and also on templates32-33. 

The ability of surfactants to selectively adsorb on crystal facets facilitates the control of size 

and morphology of the synthesized nanostructures. Thus the surfactants, L-Cys and CTAB 

were used during the deposition process. The surfactants were added independently into the 

Au and Cu precursor solutions and the final solution was used for the deposition of Au and 

Cu-based nanostructures. Figures 3.4-3.7 show SEM images of Au and Cu-based 

nanostructures deposited in the presence of L-Cys and CTAB. The presence of surfactants 

drastically reduced the nanostructure size and produced highly dense monodispersed 

nanoparticles during the initial deposition cycle. The reduction in size indicated that 

surfactants adsorbed on the deposited nanostructures and impeded their growth and also 

minimized their surface energy. It is known from the literature that L-Cys promotes the 

growth of Au nanostructures in the <111> direction by adsorbing on high surface energy 

planes34-35. It is also known that CTAB has a tendency to adsorb on to the (100) and (110) 

planes of fcc crystal structure36-37.  

Consequently, the highly reduced nanoparticle size, facilitated the availability of 

larger Si substrate area for further reaction. Thus, there was an increase in the overall 

nanostructure density when compared with their non-surfactant counterparts. Figure A 3.1, in 

the supplementary information provides number density for Au and Cu-based nanoparticles 

after the completion of the first deposition cycle. It was noted that the number density 

increased by several times for both Au and Cu-based nanoparticles compared to their non-

surfactant counterparts. During all the deposition cycles, the Au nanostructures underwent 
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morphological evolution. The overall evolution demonstrated quite similar trends to their 

non-surfactant counterparts with the distinction of obtaining consistently lower nanostructure 

sizes and narrow size distribution at low numbers of deposition cycles, typically 1X – 5X. 

Noticeably, Au nanostructures with L-Cys as additive appeared to have the slowest growth 

rate. Based on our results with 1X – 5X, Cu nanostructures with either additive would be 

expected to grow in the same manner as Au nanostructures. 

The average nanoparticle size of Au and Cu-based samples is given, for comparison, 

in Table 3.1. From the table is it clear that the Cu-based nanoparticles are larger in size 

compared to the Au nanoparticles after the completion of the first deposition cycle. 

Additionally, the size of Au and Cu nanoparticles deposited in the presence of surfactants 

was consistently smaller than their non-surfactant counterparts. It was also noted that the 

number density of Cu-based nanoparticles was lower than that of Au nanoparticles (Figure A 

3.1). The lower number density of Cu-based nanoparticles, compared to Au nanoparticles, 

could be attributed to the lower redox potential of Cu compared to Au6, 9. Furthermore, the 

Figure 3.4  SEM images of Au nanostructures deposited on Si substrate after (a) first, (b) 

second, (c) third, (d) fourth and (e) fifth, (f) sixth, (g) eighth, and (h) tenth deposition cycle with 

L-Cys added as surfactant. The scale bar is 500 nm. 
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surface energy of low index planes of Au is lower than Cu, leading to the formation of larger 

nanoparticles with small number density29. The nanoparticle size distribution for all the Au 

and Cu-based samples was also obtained by analyzing 300 – 5000 nanoparticles. The size 

distribution data is presented in the supplementary information Figure A 3.2).  

As mentioned above the number density of Au and Cu-based nanostructures 

increased in the presence of surfactants. Thus the formation of high density nanostructures 

can be promoted by the presence of surfactants. The two surfactants, L-Cys and CTAB are 

reported to act as mild reductants31, 34, 38-40. There are literature reports indicating that  

Figure 3.5  SEM images of Au nanostructures deposited on Si substrate after (a) first, (b) 

second, (c) third, (d) fourth and (e) fifth, (f) sixth, (g) eighth, and (h) tenth deposition cycle with 

CTAB added as surfactant. The scale bar is 500 nm. 

Figure 3.6  SEM images of Cu-based nanostructures deposited on Si substrate after (a) 

first, (b) second, (c) third, (d) fourth and (e) fifth deposition cycle with L-Cys added as 

surfactant. The scale bar is 500 nm 
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Table 3.1  Average nanoparticle size for Au and Cu-based nanoparticles after first 

deposition cycle 

 

each thiol group of L-Cys is capable of donating one electron to reduce metal ions. The metal 

ions bind to the remaining L-Cys to form a complex. Thus several of the metal ion – cysteine 

complexes can undergo polymerization forming macromolecular structures, which can be 

degraded by the electrons from the Si substrate. Consequently, the metal ions were reduced 

to metallic Au (0) or Cu (0). Thus, the additional reduction function of L-Cys surfactant and 

the ability to concentrate metal (I) ions within the macromolecular structure facilitated the 

galvanic displacement process to form highly dense nanostructures with reduced size.41  

Similarly, CTAB has also been reported as a mild reductant. The negatively charged 

Au precursor (AuCl4
-) binds to the cationic CTAB surfactant via electrostatic interactions. 

The degradation of the long carbon chains in CTAB facilitates the reduction of the metal 

ions42-43. For Cu-based nanostructures, the Cu2+ cation will not electrostatically interact with 

CTAB head group. However, the Cu2+ ions could bind with CTAB via intermediate Br- 

Type of nanoparticles Nanoparticle size (nm) after first deposition cycle 

 Without surfactant With L-Cys With CTAB 

Au samples 11 ± 4 8 ± 3 9 ± 3 

Cu-based samples 23 ± 5 18 ± 7 19 ± 5 

Figure 3.7  SEM images of Cu-based nanostructures deposited on Si substrate after (a) 

first, (b) second, (c) third, (d) fourth and (e) fifth deposition cycle with CTAB added as 

surfactant. The scale bar is 500 nm 
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counterions and thus participate in the reduction process. More detailed study will be carried 

out in the future to clearly elucidate the reduction mechanism of metal ions to metallic Au (0) 

or Cu (0) in the presence of surfactants like L-Cys and CTAB.   

          To investigate whether surfactant adsorption to Si substrate would affect the 

overall density and size distribution of the nanostructures, we conducted the following 

additional experiments. In one set of experiments, Si substrate was first immersed in 10% HF 

solution for 2 minutes, followed by 0.1 mM L-Cys solution for 5 minutes, then 0.3 mM 

HAuCl4 solution for 5 minutes. Next, the same experimental sequence was performed, except 

that the final solution contained a mixture of 0.3 mM HAuCl4 and 0.1 mM L-Cys. In another 

set of experiments, CTAB was used in place of L-Cys while other conditions and reagents 

were maintained. Figure 3.8 shows SEM images of resulting Au nanostructures obtained 

from the above treatments. When L-Cys was used separately prior to HAuCl4 (Figure 3.8a), 

the resulting Au nanostructures appeared to be similar in size and density to those obtained 

without L-cys additive (Figure 3.2a). On the other hand, when L-Cys was used separately, 

followed by mixture of HAuCl4 and L-Cys, we observed larger and elongated Au 

nanostructures Figure 3.8b). When CTAB was used separately prior to HAuCl4 (Figure 3.8c), 

we observed significant reduction in density and increase in size of Au nanostructures, which 

were opposite to those observed when only mixture of HAuCl4 and CTAB was used (Figure 

3.5a). When mixture of HAuCl4 and CTAB was used, following a separate CTAB treatment 

step, we observed a noticeable increase in Au nanostructure density and a slight increase in 

size (Figure 3.8d). Nevertheless, even in this case, the density was still considerably lower 

than what was observed in Figure 3.5a.  
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          Based on the preceding results, we proposed the following explanation. When 

L-Cys, a zwitterionic surfactant, was used, adsorption to Si substrate was very weak. When 

Si substrate was directly transferred from L-Cys solution to the deposition solution, some 

small amount of L-Cys remained adsorbed on the surface. Since the adsorption was very 

weak, L-Cys would quickly enter the deposition solution rather than remain adsorbed to the 

Si surface. That explained the similar outcomes observed in Figure 3.8a and Figure 3.2a. The 

situation in Figure 3.8b was slightly different because the deposition solution contained metal 

ion-cysteine complexes that were readily reduced to Au (0). Aided by additional L-Cys from 

the preceding L-Cys solution, Au nanostructures in this case would eventually grow larger 

and denser. In contrast, CTAB was able to bind more strongly to Si substrate due to 

electrostatic attraction between protonated hydroxylated Si surface and the bromide 

counterion.25,26 Thus, upon exposed to CTAB solution prior to deposition, a significant 

portion of Si surface was adsorbed by CTAB, hindering metallic deposition. That explained 

the low density observed in Figure 3.8c and Figure 3.8d. When fewer sites were available for 

deposition, the size of the resulting Au nanostructures would be larger. The blocking of 

deposition sites did not occur when CTAB was mixed with HAuCl4 prior to deposition, due 

to the binding between them (Figure 3.5a). Hence, depending on the kind of surfactant used, 

Figure 3.8  SEM images of Au nanostructures deposited on Si substrate after sequential 

exposure to (a) L-Cys then HAuCl4, (b) L-Cys then mixture of HAuCl4 and L-Cys, (c) CTAB then 

HAuCl4, and (d) CTAB then mixture of HAuCl4 and CTAB. The scale bar is 500 nm 
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the effect of surfactant adsorption to Si substrate on overall Au nanostructure deposition 

would vary. 

Figure 3.9 shows topographical images of Au samples after one, three, and five 

deposition cycles as measured using the AFM. It can be observed that increasing the number 

of deposition cycles resulted in Au nanostructures with increasing height and lateral size, 

thus, supporting the SEM results. When surfactants were added, they alleviated aggregation 

and agglomeration, as indicated by smoother surfaces. Figure 3.11 shows the root mean 

square (RMS) roughness values for the prepared samples. It can be observed that increasing 

the number of deposition cycles (from 1X to 5X) increased the surface roughness of the 

samples due to the increasing size of the Au nanostructures. The data confirms the visual 

observations from the SEM images regarding the role of surfactants in reducing aggregation 

and agglomeration, thereby leading to a more homogeneous surface by L-Cysteine, followed 

by CTAB.  

Along with the measurement of number density, size and size distribution, the 

absorption properties of Au nanoparticle deposited during the first deposition cycle were 

analyzed in detail. Figure 3.10 shows the UV-Vis absorption spectra for Au nanoparticles 

deposited in the absence and presence of either L-Cys or CTAB. The surface plasmon 

resonance (SPR) for gold appears in the range of 500 – 600 nm and is attributed to the 

transverse plasmon mode46. The UV-Vis for Au nanoparticles in the absence of surfactants 

shows a broad spectrum with two maxima. The two maxima are centered approximately at 

532 nm and 610 nm, confirming the formation of Au and indicating the presence of at least 
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two nanoparticle sizes in the Au sample. The UV-Vis spectra for other Au nanoparticles 

deposited in the presence of surfactants like L-Cys and CTAB indicate a narrower line width 

with a single maximum at 532 nm. The comparison of UV-Vis absorption spectra indicates 

that the Au nanoparticles deposited in the absence of surfactants are polydispersed, whereas 

the Au nanoparticles deposited in the presence of surfactants are monodispersed. The 

Figure 3.9  Representative AFM topography maps of the Au samples after one (1X), three 

(3X), and five (5X) deposition cycles. Scan size of 2 μm x 2 μm. Height scale is in nm. 
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nanoparticle dispersity is confirmed from the SEM images of these Au samples shown in 

Figure 3.2a, Figure 3.4a and Figure 3.5a. 

Figure 3.11  RMS roughness of Au samples after one (1X), three (3X), and five (5X) deposition 

cycles. Mean values from five different locations on each sample are shown. Error bars 

represent 95% confidence intervals. 

Figure 3.10  Absorption spectra of Au nanoparticles are the first deposition cycle in the 

absence and presence of surfactants. 
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Further, UV-Vis absorption spectra were recorded for all Au samples prepared in the 

absence and presence of surfactants, from one deposition cycle to five deposition cycles. 

With increase in deposition cycles, the absorption maximum essentially red-shifted, and the 

line width of the absorption spectrum increased. The red-shift of the absorption maximum 

and the peak broadening have been described in the literature as a result of the increase in Au 

nanostructure size, due to increasing aggregation, and the decrease in distance between these 

nanostructures, resulting in increased interparticle plasmon coupling. In addition, the overall 

trend of increasing absorption line width indicates that the nanoparticle dispersity increased 

with increase in the number of deposition cycles. This inference is supported by the virtue of 

the deposition process. At every deposition cycle, nucleation and growth of new 

nanoparticles occurred and thus there was a high possibility of polydispersity with increase in 

deposition cycles. Figure A 3.3 and Table A 3.1, in supporting information, shows the UV-

Vis spectra and the corresponding absorption maxima, respectively, of Au samples in the 

absence and presence of surfactants. 

The Cu-based nanostructures were characterized by XPS. Figure 3.12 shows XPS 

spectra and an AES spectrum of Cu-based nanostructures. The broad peak of Cu 2p3/2 in 

Figure 3.12a was composed of two peaks with maxima at 932.9 and 934.9 eV. Two Gaussian 

curves were fitted to this broad peak of Cu 2p3/2 as shown in Figure 3.12a. Similarly, a broad 

peak of Cu 2p1/2 was composed of two peaks at 952.2 and 954.7 eV. Additionally, two strong 

Cu2+ satellite peaks were observed in the XPS spectrum. The presence of Cu 2p3/2 (934.9 eV), 

Cu 2p1/2 (954.7 eV) and satellite peaks indicate the presence of Cu(OH)2 on the surface of the 

Cu-based sample.49,50 Furthermore, while Cu 2p1/2 and Cu 2p3/2 peaks at 952.2 and 932.9 eV, 

respectively, can confirm the presence of metallic Cu, they may imply the presence of Cu2O 
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as well, because Cu 2p peaks of Cu and Cu2O are indistinguishable.49,50 An AES spectrum 

(Figure 3.12d) was obtained for the Cu-based sample to further elucidate the chemical 

composition of Cu-based sample.50-52 A broad Cu LMM peak centered at 916.4 eV was 

observed in the AES spectrum. This broad peak can be attributed to an overlap of two peaks 

with maxima at 916.3 and 916.7 eV, which correspond to the presence of Cu(OH)2 and Cu2O 

respectively.51,52  

Figure 3.12  XPS spectra showing (a) Cu 2p peaks corresponding to different oxidation 

states of Cu, (b) O 1s peaks corresponding to different oxide species, and (c) C 1s peaks 

corresponding to various carbon bonds (d) AES spectrum showing Cu LMM peak 

resembling that of Cu(OH)2 and Cu2O. The dashed curves in (a) and (b) represent fitted 

Gaussian curves 
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Further, the location of the O 1s peak was analyzed to study the nature of the oxide 

species. Figure 3.12b shows a broad peak that is composed of three peaks at 530.3, 531.9, 

and 533.8 eV, which represent characteristic oxides of Cu2O, Cu(OH)2, and SiO2, 

respectively.53 Figure 3.12c provides information on surface adsorbed species. The strong 

peak at 285.1 eV can be matched with C-C and C-H bonds and peak at 288.6 eV can be 

assigned to C-O bond, which arise from surface contaminants.53,54 It is also important to note 

that XPS and AES are surface characterization techniques and thus divulge surface 

information of samples with good precision. Thus from the XRD (Supplementary 

information Figure A 3.4), XPS and AES characterization of Cu-based nanostructures, it can 

be inferred that the Cu-based sample was composed of a metallic Cu core with a Cu2O and 

Cu(OH)2 outer layer. Similar systems of copper core and very thin copper oxide shell have 

also been described in the literature55-56.  

Finally, to evaluate scattering properties of the deposited Au and Cu nanostructures, 

Raman spectroscopy measurements were performed to determine their applicability for 

SERS. Au has been the material of choice for SERS due to its stability, biocompatibility, and 

easy surface treatment.57 While charge transfer between adsorbed molecules and the metal 

substrate also contributes to the enhancement, the effect of localized surface plasmon 

resonance by the presence of Au nanostructures is an exclusively dominating mechanism.58,59 

Figure 3.13 shows Raman spectra of R6G dye upon drop casting onto Au nanostructure 

substrates with 5, 8, and 10 deposition cycles. For comparison, the same amount of R6G was 

also drop cast onto bare Si substrate without Au deposition. When only bare Si was used as 

the substrate, no Raman signal was detected. On the other hand, several strong Raman peaks 

were observed when the substrate was deposited with Au nanostructures after ten deposition 
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cycles (Au/Si 10X). These peaks can be identified as those resulting from different molecular 

vibrational modes of R6G. Table 3.2 provides detailed assignment for every peak in Figure 

3.13 according to published data. As the number of deposition cycles decreased to 8X and 

5X, those Raman peaks of R6G were still clearly seen. However, their intensities decreased 

respectively. Since under similar experimental conditions, Raman signals from R6G were 

only observed for substrates with Au nanostructures, it was reasonable to conclude that Au 

nanostructures enhanced Raman scattering of the dye molecules adsorbed on them. Raman 

peaks from R6G were also observed for Cu nanostructures although their intensities were 

much weaker at higher R6G concentration (Figure 3.14). Figure 3.15 shows Raman spectra 

of R6G at two different concentrations. At as low concentration as 10-6 M, although some 

peaks were missing, it was still possible to detect R6G because the most prominent Raman 

peaks were still clearly visible, indicating that our substrates can  still be useful in 

applications that require detection of very low analyte concentrations. In the next set of 

SERS experiments, paraoxon was used as probe molecule. Paraoxon is an 

organophosphorous compound and one of the most hazardous pesticides. Thus, only a trace 

amount of this compound in the environment can cause serious health problem.60 SERS is a 

simple and fast method with excellent sensitivity for paraoxon detection. Figure 3.16 shows 

Raman spectrum of 10-2 M paraoxon adsorbing on Au nanostructures. The four strongest 

fingerprint peaks representing different vibrational modes of paraoxon molecules were 

clearly seen in these spectra.61,62 Raman scattering was certainly enhanced by the metallic 

nanostructures because none of these peaks was observed when bare Si was used as SERS 

substrate. 



51 

          One way to quantitatively determine the effectiveness of SERS substrate is to 

calculate the enhancement factor (EF). The most widely used definition of the EF is 

described as 

 

EF = 
ISERS/cSERS

IRS/cRS
     

where ISERS and IRS are Raman intensities of SERS and non-SERS substrates, respectively, 

while cSERS and cRS are analyte concentrations used for SERS and non- SERS substrates, 

respectively.63 In our case, we used the same R6G concentrations for both Au/Si and bare Si 

substrates. Thus, EF was simply a ratio of ISERS and IRS. However, since Raman signal 

obtained from bare Si substrate (IRS) was too weak to be detected by our instrument, it was 

not possible to obtain absolute values for EF. Instead, we only roughly estimated EFs in a 

manner similar to those reported by Yamamoto et al.59 Thus, EF values for SERS substrates  

Figure 3.13  Raman spectra of R6G adsorbed on bare Si, and Si deposited with Au 

nanostructures after five, eight, and ten deposition cycles. The R6G concentration was 10-5 

M. 
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Figure 3.14  Raman spectra of R6G adsorbed on bare Si, and Si deposited with Au and Cu 

nanostructures after ten deposition cycles. The R6G concentrations were 10-4 M for bare Si 

and Cu/Si, and 10-5 M for Au/Si. 

Figure 3.15  Raman spectra of R6G at two different concentrations drop cast onto Si deposited 

with Au nanostructures after five deposition cycles. 
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Table 3.2  Raman peak assignments for R6G dye and paraoxon 

 

Peak position (cm-1) 

 

Assignment for R6G 

 

Reference 

 

612 In-plane bending of C-C-C ring 64, 65, 66 

774 C-H out-of-plane bending 59, 64, 65, 66 

1181 

In-plane xanthene ring deformation, C-H bending, 

N-H bending 

59, 64, 65, 66 

1315 Aromatic C-C stretching 64, 65 

1361 Aromatic C-C stretching, in-plane C-H bending 59, 64, 65, 66 

1450  65 

1506 

Aromatic C-C stretching, C-N stretching, C-H 

bending, N-H bending 

59, 64, 65 

1532  65 

1573 Aromatic C-C stretching, in-plane N-H bending 59, 64, 65 

1600  59, 64, 65 

1650 Aromatic C-C stretching, in-plane C-H bending 59, 64, 65, 66 

Peak position (cm-1) 

 

Assignment for paraoxon 

 

Reference 

857 NO2 scissor (Aromatic –NO2) 61, 62 

1110 C-H band (in plane)/NO2 asymmetric stretching 61, 62 

1348 Symmetry stretching NO2 61, 62 

1592 Phenyl ring vibration 61, 62 

Figure 3.16  Raman spectrum of 10-2 M paraoxon adsorbed on Au nanostructures deposited on 

Si substrate after ten deposition cycles. Raman spectrum of paraoxon adsorbed on bare Si 

substrate is shown for comparison. 
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with Au nanostructures deposited for five, eight, and ten cycles were ~0.8 x 103, ~1.5 x 103, 

and ~2 x 103, respectively, when 10-5 M R6G was used. Similarly, EF value for SERS 

substrate with Cu nanostructures deposited for ten cycles was ~0.5 x 103 when 10-4 M R6G 

was used. For paraoxon, we estimated that the EF value would reach ~1.5 x 103 when 10-2 M 

paraoxon was used. The important factor that led to the SERS properties of our substrates 

was the dense coverage of Au nanostructures as observed in Figure 3.2, and the SERS effect 

was proportional to the density as shown in Figure 3.13. In addition, the chains of 

nanoparticles, which formed a continuous network, created numerous crevices to concentrate  

light. Likewise, denser coverage narrowed the gaps between nanostructures, therefore created 

several additional “hot spots” for light amplification.58 

Conclusion 

In summary, this report presents a modification of the electroless deposition method. 

Here the Au and Cu-based nanostructures were deposited on n-type Si (100) substrate using 

limited HF exposure. The density of the nanostructures was controlled by varying the 

deposition cycles. The density and size of the nanostructures was controlled by the 

incorporation of surfactants like L-Cys and CTAB in the deposition process. The presence of 

surfactants produced monodispersed, highly dense quantum sized nanoparticles in the first 

deposition cycle. As the number of deposition cycles increased there was morphological 

evolution in Au and Cu-based samples to form a more connected network of nanostructures. 

The UV-Vis absorption indicated the presence of monodispersed Au nanostructures. The 

XPS and XRD data indicated the presence of a Cu core and Cu2O or Cu(OH)2 shell. The 

Raman measurements demonstrated enhancement for both Au and Cu-based samples 

compared to the Si substrate.  
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Appendix 

 

Figure A 3.1 The number densities of Au and Cu-based nanoparticles with and without 

surfactant after one deposition cycle. 

 

Figure A 3.2 Size distribution with Gaussian curve fitting of Au nanoparticles (a) without 

surfactant, (b) with L-cysteine, and (c) with CTAB, and Cu-based nanoparticles (d) without 

surfactant, (e) with L-cysteine, and (f) with CTAB after one deposition cycle. The distribution 

was constructed based on (a) 2941, (b) 2174, (c) 1968, (d) 742, (e) 1823, and (f) 563 

particles.  
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Figure A 3.3 UV-Vis spectra of Au samples without surfactants (a), with L-Cys (b) and with 

CTAB (c). The first deposition cycle is 1X and the fifth deposition cycle is 5X. 

Table A 3.1  SPR peak positions of Au samples in the absence and presence of surfactants, 

recorded corresponding to each deposition cycle. 

 SPR peak position (nm) 

# of deposition cycles Au only Au with L-Cys Au with CTAB 

1X 534 532 534 

2X 534 535 546 

3X 539 544 543 

4X 541 544 546 

5X 554 542 546 

The XRD patterns of Au and Cu-based nanostructures on Si substrate after five 

deposition cycles are given in Figure A 3.4 (a) and (b) respectively. The sharp peaks seen in 

the XRD pattern of Au nanostructures indicate that their crystalline structure is of face-

centered cubic (fcc) Au.67 The peak with the highest intensity is centered at 2θ = 38.3o and 

can be indexed to Au (111) crystal plane, indicating that a majority of crystal facets in Au 

nanostructures was (111).  

For the Cu-based nanostructures, we observed two weak peaks located at 2θ = 43.45o 

and 50.55o, which corresponded to Cu (111) and Cu (200) crystal planes of fcc Cu, 

respectively.56,68,69 Thus, based on the XRD data, the composition of Cu-based 

nanostructures consists of fcc Cu. It should be noticed that, in both Au and Cu-based XRD 

patterns, Si (111) and (100) peaks were clearly seen.70  
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Figure A 3.4 XRD pattern of Au (a) and Cu (b) nanostructures on Si substrate. The patterns 

suggest an FCC structure of Au and Cu. 
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Abstract 

Noble transition metals, like palladium (Pd) and platinum (Pt), have been well-known 

for their excellent catalytic and electrochemical properties. However, they have been 

considered non-active for surface enhanced Raman spectroscopy (SERS). In this work, we 

explore the scattering contributions of Pd and Pt for the detection of organic molecules. The 

Pd and Pt nanostructures were synthesized on silicon substrate using a modified galvanic 

displacement method. The results show Pt nanoparticles and dendritic Pd nanostructures with 

controlled density and size. The influence of surfactants, including sodium dodecyl sulfate 

and cetyltrimethylammonium bromide, on the size and morphology of the nanostructures was 

investigated. The Pd and Pt nanostructures with a combination of large size and high density 

were then used to explore their applicability for the detection of 10-5 M Rhodamine 6G and 

10-2 M paraoxon 
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Introduction 

Galvanic displacement is one of the electrochemical methods used to fabricate metals 

on semiconductor surfaces. In this method, metallic precursors are reduced by semiconductor 

substrates in place of reductants or external current source.1,2 As a result, galvanic 

displacement is simple, inexpensive and self-limiting. Galvanic displacement is also substrate 

selective since metals can only be deposited on substrates, where electron exchange can 

occur. This selectivity also leads to conformity of the coating regardless of the geometric 

complexity of the substrates.3,4 Metallic deposition via galvanic displacement is a self-

limiting process, which is hindered by the complete metal coverage of the substrate thereby 

blocking the access to electron for further reduction of the metallic precursors1. With these 

advantages, there has been an increase in the use of galvanic displacement for 

nanofabrication in which metals, having distinct morphologies, are distributed randomly or 

with defined patterns on Si substrates5-11. Likewise, galvanic displacement was also used to 

deposit metals on 1D Si nanostructures12-14. Further, the growth and interface characteristics 

of metals on underlying semiconductor substrates by galvanic displacement have served as 

important topics for fundamental studies14-18. So far, a variety of metals has been deposited 

by galvanic displacement on Si and Ge substrates, including noble metals Au/Si,3,6,7,10,12,14-21 

Au/Ge,3,8 Ag/Si;9,13,15,16,20,22 platinum-group metals such as Pt/Si,7,11,15,23 Pt/Ge,8 Pd/Ge,8,15 

Pd/Si,15 Rh/Si;15 base metals such as Cu/Si,5,15,24-31 Ni/Si,26 and several metals on III-V 

semiconductor substrates.1 

In galvanic displacement, the semiconductor substrate acts as an electron source via 

its surface oxidation. Likewise, metal ions in solution, taking up electrons supplied by the 

substrate, are reduced to metal atoms. Thus, the overall displacement process occurs when 
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metals are deposited on the semiconductor substrate and the surface oxide is dissolved, as 

described by the following chemical equations:1,3 

Anodic:  Si (s)  +   6F− (aq)   →   SiF6
2− (aq)  +   4e−……..................................... (1) 

Cathodic:  Mn+ (aq)  +   ne−   →   M (s)………..……………………………….... (2) 

Overall:  Mn+ (aq)  +   Si (s)  +   6F− (aq)   →   M (s)  +   SiF6
2− (aq)…............... (3)      

where M denotes any metal whose standard redox potential is higher than that of 

hydrogen. The role of hydrofluoric acid (HF) is to maintain electron supply by dissolving the 

surface oxide. 

Platinum (Pt) and palladium (Pd) are noble transition metals whose excellent catalytic 

and electrochemical properties have been widely used in modern technologies, including 

chemical and biosensing,32-34 photocatalysis,35,36 electrocatalysis,37-40 and Si nanowire 

growth4,41. Although they are promising candidates for a variety of applications, they are not 

favorably suited for detection via Raman spectroscopy, also called as Surface Enhanced 

Raman Spectroscopy (SERS). These transition metals have interband excitation occurring in 

the visible light region and thus quenching the effect of surface plasmon resonance (SPR),42-

44 which has been considered the major mechanism behind the Raman signal enhancement 

observed in SERS-active materials like Au and Ag. One method to improve the SERS 

efficiency of Pt and Pd is called borrowing SERS activity in which the SERS substrate is 

constituted of a SERS-active core (Au or Ag) and a transition metal shell.45 However, to 

avoid blocking the SPR effect of the rough core underneath, the transition metal shell are 

required to be atomically thin. Further, the shell must be pinhole free to avoid the core from 

adsorbing the analytes. Both requirements can be challenging to fabricate.42,43 Alternatively, 

Pt or Pd alone can be used as substrate material, whose surface nanostructure can be 
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engineered to generate SERS signal. Electrochemically roughened Pd and Pt surfaces were 

used to detect 0.01 M pyridine46,47 and 10-5 M thiocyanate48  with an enhancement factor 

(EF) up to three orders of magnitude for Pd, via SERS47. While the authors showed that 

SERS activities were dependent on surface roughness, the surface morphologies were often 

inhomogeneous across the surface and between substrates, leading to deviations in SERS 

measurements. Bartlett et al. reported that close packed hexagonal arrays of uniform and 

well-defined Pd and Pt nanovoids exhibited SERS spectra for 10-2 M benzenethiol with 

significant EFs for Pd and Pt44. Monodisperse Pt and Pd nanostructures of several different 

morphologies have also been synthesized for SERS, including Pd 

urchins/flowers/hemispheres and Pt pinecones/microspheres/flowers by galvanic 

displacement for the detection of rhodamine 6G (R6G),37,49 Pd flowers/pinecones and Pt 

nanothorns by electrodeposition for 4-mercaptopyridine and pyridine,50,51 and Pd 

nanodendrites/polyhedra by solution-based chemical reduction for R6G and 4-

mercaptobenzoic acid40,52. So far, analyte concentration as low as 10-6 M R6G and EF up to 

105 for 4-mercaptopyridine have been achieved with Pd urchins49 and Pd flowers,50 

respectively, which are comparable to those of Ag or Au.  

Several Au and Ag-based SERS substrates have been fabricated by galvanic 

displacement due to its simplicity and rapid formation of the nanostructures53. On the other 

hand, there has been limited number of papers describing galvanic displacement as the 

fabrication method for Pt and Pd-based SERS substrates. Likewise, when HF is used in the 

plating solution, it may create some limitations. To achieve high deposition rate, many 

authors described the use of high HF concentrations, up to a few molars. Concentrated HF 

may reduce the deposition density by replacing Si-H bonds with Si-F bonds, thus slowing 



73 

down new nucleation.4,36 Further, HF is highly corrosive and poisonous. The use of excessive 

HF will require extra caution and expensive waste treatment.  

To overcome these limitations, few authors reported successful fabrication of metallic 

nanostructures on Si without HF.7,19 As demonstrated in the present work, a very short 

reaction time, the fluoride-free method, is likely to result in controlled density, size, and 

growth. Here, we report on the deposition of Pt and Pd on n-Si (100) substrate by 

modification of the galvanic displacement process. Only small amount of HF would be added 

to the plating solution, and HF would be concentrated at the solid-liquid interface, making 

metallic deposition more efficient. By using cyclic deposition, the size and morphology 

evolution was observed. Further, high density nanostructures were successfully achieved in 

the absence of concentrated reagents. Additionally, the influence of surfactants, including 

sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), on the size 

and morphology of the nanostructures was investigated. The deposited Pd and Pt 

nanostructures were then used for SERS detection of R6G and paraoxon with detection limits 

of 10-5 M and 10-2 M, as well as EFs up to 102 and 10, respectively.  

A range of characterization methods was employed to assist the investigation. 

Scanning electron microscopy (SEM) was used to determine morphology, size, and density 

of the nanostructures. Chemical information of the nanostructures was obtained by energy 

dispersive x-ray spectroscopy (EDX). Finally, surface plasmon resonance (SPR) absorption 

and SERS properties of the nanostructures were recorded by UV-Vis spectroscopy and 

Raman spectroscopy, respectively. 

Experimental Details 

The chemicals used for metallic deposition included potassium 

tetrachloroplatinate(II) (K2PtCl4, ≥ 99.9%), sodium tetrachloropalladate(II) (Na2PdCl4, 98%), 
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and cetyltrimethylammonium bromide (C19H42BrN, ≥ 99.9%) purchased from Sigma Aldrich 

(Milwaukee, WI, USA), sodium dodecyl sulfate (C12H25NaO4S, ≥ 99%) from Fisher 

Scientific, which were used as received. Hydrofluoric acid (HF, 48-51%) was purchased 

from Thermo Fisher Scientific (Waltham, MA, USA). For SERS experiments, Rhodamine 

6G dye (R6G, 99%) and paraoxon-ethyl (C10H14NO6P, ≥ 90%) were purchased from Sigma 

Aldrich (Milwaukee, WI, USA). All solutions were prepared using deionized (DI) water. HF 

was contained in a polypropylene beaker for experimental use. The substrate was Si (100) 

wafer (4”, single-crystalline, n-type, ρ = 3-9 Ωcm) purchased from El-Cat Inc. (Ridgefield 

Park, NJ, USA). Prior to deposition, Si wafer was cleaved into 1.5 cm x 1.5 cm2 pieces. The 

chemicals used for cleaning Si substrate were acetone and ethanol (100%, 200 proof). 

The Pd and Pt nanostructures were synthesized by the galvanic displacement method 

as illustrated in Figure 4.1. The synthesis procedure includes, cleaning the Si substrate with 

acetone, followed by ethanol and DI water. Each cleaning step was performed for 10 min., in 

an ultrasonic bath to degrease and de-contaminate the substrate. For the deposition, the Si 

substrate was immersed in 10% (w/w) HF solution for 2 minutes to eliminate surface oxide 

and activate the surface. The substrate was then instantly immersed for 5 min. in 0.3 mM 

K2PtCl4 or Na2PdCl4 for Pt or Pd deposition, respectively followed by rinsing with deionized 

water. This deposition procedure will be denoted as 1 deposition cycle. Multiple deposition 

cycles were also used in the present investigation. For experiments with surfactants, the 

metallic precursor solution was composed of 0.1 mM SDS or CTAB with 0.3 mM K2PtCl4 or 

Na2PdCl4. Finally, the Pt and Pd nanostructures were air dried and stored for further 

characterization.    
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Figure 4.1  (a) Cleaved Si substrate. (b) Clean Si substrate with acetone, ethanol, and DI 

water in an ultrasonic bath. (c) Immersion in 10% (w/w) HF solution. (d) Immersion of Si 

substrate in 0.3 mM metallic precursor solution. (e) Rinse sample with DI water (f) Store dry 

sample. 

The R6G dye solution was prepared by dissolving 0.8 mg of R6G in 5 mL of DI 

water and used as stock solution. Similarly, paraoxon stock solution was prepared by mixing 

30 μL paraoxon with 0.98 mL deionized water. The SERS substrates were prepared by using 

Si substrates with Pt or Pd nanostructures, on which a small volume (300 μL) of the stock 

solution was drop casted and dried under ambient conditions. Prior to drop casting the 

analyte, the sample was treated with ambient air plasma for 1 minute under medium radio 

frequency power level (11 W) by a plasma cleaner (PDC-001, Harrick Plasma, Ithaca, NY).  

The size and morphology of the nanostructures were studied by scanning electron 

microscopy (SEM) using a FEI Quanta-250 SEM instrument at 10 kV accelerating voltage. 

The SEM instrument was equipped with an Oxford Aztec energy dispersive x-ray (EDX) 

analysis system, which was used to conduct elemental analyses of the deposited 

nanostructures. UV-Vis absorption spectroscopy was recorded by a Perkin Elmer Lambda 25 

spectrophotometer. To prepare samples for UV-Vis measurements, each sample was 

immersed in 1 mL DI water and sonicated at the highest power for 1-3 minutes to detach the 

metallic nanostructures from Si substrate and disperse them in DI water. SERS 

measurements were performed at room temperature on a Renishaw Dispersive Raman 

Spectrometer with Ar-ion laser running at 488 nm, using 50x objective lens, with incident 
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power of 5 mW for 4 accumulations, each of 30 s duration. SERS spectra were collected 

from several random regions on each sample to confirm reproducibility.  

Results and Discussions 

Figure 4.2 correlates the number of deposition cycles with the density, morphology 

evolution, and size of Pd nanostructures on Si substrate (additional lower-magnification SEM 

images as well as size distribution and density charts can be seen in the Supporting 

Information).  

 

Figure 4.2  SEM images of Pd nanostructures deposited on Si substrate after (a) first, (b) 

third, (c) fifth, (d) eighth, and (e) tenth deposition cycle. The scale bar is 500 nm. 

Upon the first deposition cycle, Pd nanostructures appeared to be quasi-spherical 

(Figure 4.2a). The large size distribution indicated that nucleation and growth occurred 

simultaneously, following the progressive nucleation mode. When the number of deposition 

cycles increased, Pd nanostructures also increased in size (Figure 4.2 b, c). The growth was 

anisotropic due to new Pd atoms preferably deposited on high-energy facets in the radial 

direction. Pd nanostructures, thus, had very rough surfaces. In several cases, the anisotropic 

growth led to the formation of flower like structures or clusters of small Pd nanostructures. 

With the increase in the deposition cycles, the dendritic Pd nanostructures appeared more 

compact, minimizing the surface area to achieve a stable configuration (Figure 4.2 d, e) 54. 

Likewise, when the number of deposition cycles increased, the size distribution was reduced. 

After repeated deposition cycles, the native oxide on the Si substrate was continuously 

dissolved by HF, creating a very rough and porous Si layer on the substrate. This layer had 
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high electrical resistance enough to hinder electron transfer between Pd and the substrate, and 

suppresses nucleation. In addition, more Pd nanostructures acted as nucleation centers to 

compete with Si substrate for new Pd atoms. New Pd atoms would preferably adsorb on the 

existing Pd nanostructures since they had higher electronegativity than Si.41  

 

Figure 4.3  SEM images of Pt nanostructures deposited on Si substrate after (a) first, (b) 

third, (c) fifth, (d) eighth, and (e) tenth deposition cycle. The scale bar is 500 nm. 

In contrast, Pt nanostructures showed a steady increase in density with respect to 

increasing number of deposition cycles (Figure 4.3 and Figure A 4.3b). This increase in 

density was a result of the continuous formation of new nuclei at every deposition cycle as 

the growth and nucleation followed the progressive mode. However, it is also noteworthy 

that Pt nanostructures were more uniform in size after repeated deposition cycles (Figure A 

4.2), likely due to Ostwald ripening and the faster growth of smaller, high-energy 

nanostructures. In addition, while Pt nanostructures grew larger in size, their growth was 

isotropic and they maintained a spherical shape. When Pt nanostructures were sufficiently 

close to each other, they diffused and aggregated. At high densities, fusion between Pt 

nanostructures occurred, resulting in large regions of continuous Pt up to a micron in size. In 

Figure 4.2 and Figure 4.3, considerable number of deep pits of different sizes were noticed 

on the substrate surface. On n-type Si substrate, these pits were the locations of surface 

defects, and electrons/holes exchange occurred locally at these pits during the very early 

stages of deposition55,56.  



78 

 

Figure 4.4  SEM images of Pd nanostructures deposited on Si substrate after (a) first, (b) 

tenth deposition cycle with SDS surfactant added, and (c) first, (d) tenth deposition cycle with 

CTAB surfactant added. The scale bar is 500 nm. 

Sodium dodecyl sulfate (SDS), an anionic surfactant, and cetyltrimethylammonium 

bromide (CTAB), a cationic surfactant, have been widely used as stabilizers57,58 and 

morphology-directing reagents49,59,60 for the growth of various metallic nanostructures. As 

shown in Figure 4.4, upon the addition of SDS and CTAB, dendritic Pd nanostructures were 

observed after just one deposition cycle (Figure 4.4 a, c). Clearly, the presence of surfactants 

promoted anisotropic growth by selectively adsorbing on certain crystal facets of the growing 

Pd nanostructures and slowing down the diffusion of Pd atoms to those facets. The dendritic 

Pd nanostructures with SDS also had longer and sharper branches, indicating that SDS 

induced anisotropic growth more strongly. Furthermore, adding either SDS or CTAB 

appeared to accelerate the growth of Pd nanostructures. In the case of SDS, the adsorption of 

free anionic surfactant molecules to the surfaces would give Pd nanostructures additional 

negative charges, which electrostatically attracted Pd atoms toward them. On the other hand, 

at the concentration of 0.1 mM, CTAB would adsorb on the surfaces of the Pd nanostructures 

as both sub-micelle aggregates and free surfactant molecules.61 Their positively charged head 

groups, electrostatically binding PdCl4
2-, thus attract and concentrate Pd precursors toward 

the Pd nanostructures. Figure 4.4b and Figure 4.4d show Pd nanostructures with SDS and 

CTAB after ten deposition cycles, respectively. The Pd nanostructures with SDS were 
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smaller when compared with Pd nanostructures without surfactant. Their branches were also 

shorter and blunt after ten deposition cycles. The observed shrinking of Pd nanostructures 

after multiple deposition cycles could be a combination of the increasing impeded growth 

caused by a denser and thicker surfactant layer, and the rearrangement of the high-energy and 

unstable Pd atoms at the sharp tips of the branches. On the other hand, Pd nanostructures 

with CTAB after ten deposition cycles transformed into 2D fragmented networks of much 

smaller Pd nanoparticles. The mechanism behind the formation of such structures is unclear 

and subject to further investigation.  

Figure 4.5 shows SEM images of Pt nanostructures obtained by the addition of 

surfactants like SDS and CTAB. Unlike the Pd nanostructures, there was no noticeable 

difference between Pt nanostructures with and without SDS, indicating that SDS had limited 

influence toward the growth of Pt nanostructures (Figure 4.5 a, b). In Figure 4.5b there were 

large number of pits on the Si surface, which could be due to Pt nanostructure detachment. 

The addition of CTAB considerably increased the density of Pt nanostructures. The 

formation of sub-micelle aggregates facilitated the galvanic displacement process by 

confining metal ions close to the surface of the sub-micelles, thus increasing reaction rate by 

bringing the reactants closer together at the micellar interface.61 The morphology, however, 

slightly deviated from the spherical shape and this can be attributed to the slight anisotropic 

growth induced by selective adsorption of CTAB (Figure 4.5c). With further deposition 

cycles (Figure 4.5d), high density of Pt nanostructures was observed. The densely packed 

nanostructures combined with anisotropic growth led to coalescence of nearby nanostructures 

and a sub-monolayer coverage. 
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Figure 4.5  SEM images of Pt nanostructures deposited on Si substrate after (a) first, (b) 

tenth deposition cycle with SDS surfactant added, and (c) first, (d) tenth deposition cycle with 

CTAB surfactant added. The scale bar is 500 nm. 

Chemical compositions of the as-synthesized samples were determined by EDX 

(Figure 4.6). The Pd or Pt peaks were observed for each respective metal-deposited sample. 

In addition, different Pd or Pt peak intensities were observed at different spots, reflecting 

different sizes of the nanostructures. A very strong Si peak was obtained from the substrate. 

C peak was detected due to possible organic contaminants adsorbing on the sample surface 

prior to its introduction to the SEM vacuum chamber, while O peak could be a result of the 

slight oxidation of the Si surface.  

 

Figure 4.6  EDX patterns of (a) Pd and (b) Pt nanostructures deposited on Si substrates 

after five deposition cycles showing the presence of Pd and Pt, respectively. EDX patterns 

recorded from individual nanostructures are presented as spots 1, 2, and 3. 

In addition to EDX, UV-Vis data was also obtained. Figure 4.7 shows UV-Vis spectra 

of Pt and Pd nanostructures deposited on Si substrates. Both spectra showed no noticeable 
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absorption peak in the visible region, and both showed increasing absorption toward the 

ultraviolet region. This result, thus, provided evidence that Pt and Pd did not have SPR 

property in the visible region as mentioned above. In addition, both the spectra show two 

small and broad absorption bands centered at 210 nm and 325 nm for Pd, as well as at 194 

nm and 313 nm for Pt. The UV-Vis absorption data were also in agreement with those 

reported in the literature.62,63 

 

Figure 4.7  Normalized UV-Vis spectra of Pt and Pd nanostructures deposited on Si 

substrates after five deposition cycles, showing characteristic peaks and increasing 

absorption toward shorter wavelengths. The spectrum of Pt nanostructures was shifted 

downward for clarity 

To evaluate the Pt and Pd nanostructures as possible platforms for SERS application, 

R6G was chosen as a probe molecule. R6G has been widely used for SERS due to their well-

defined vibrational features. To obtain the best performance of SERS substrates, samples 

with a combination of high-density and large metallic nanostructures were used. These 

samples were achieved after ten deposition cycles (see Figure A 4.3 and Table A 4.1). Figure 

4.8a shows Raman spectra of 10-5 M R6G dye, drop casted onto Pt and Pd nanostructures. 
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For comparison, the same amount of R6G was also drop cast onto bare Si substrate without 

metallic deposition. No noticeable Raman signal was detected using this bare Si substrate. 

On the other hand, several strong Raman modes were observed for the Pd nanostructure 

sample. Nearly all of these Raman modes were also visible for the Pt nanostructure sample. 

However, their intensities were significantly reduced.  

In addition to R6G detection, paraoxon was used as a probe molecule. It is also 

important to note that paraoxon is a smaller molecule compared to R6G and thus is more 

challenging to detect via SERS. Here, Pt and Pd nanostructure platform was used to 

demonstrate their ability to detect small molecules as paraoxon. Paraoxon is an 

organophosphorus compound and is used to regulate pests in crops and plants. It is highly 

toxic, causing detrimental health problems if exposed to food and drinking water 64. SERS 

can be used for rapid detection of such pesticides. Figure 4.8b shows Raman spectra of 10-2 

M paraoxon drop casted on Pt and Pd nanostructures. The three strongest fingerprint peaks 

representing different vibrational modes of paraoxon molecule were clearly seen in these 

spectra 65. Raman scattering was certainly enhanced by the metallic nanostructures because 

no other peaks, except that of Si, were observed when bare Si was used as SERS substrate. 

Table 4.1 provides detailed assignment for all the peaks in Figure 4.8 according to published 

data.  
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Figure 4.8  Raman spectra of (a) 10-5 M R6G and (b) 10-2 M paraoxon adsorbed on Pd 

and Pt nanostructures deposited on Si substrates after ten deposition cycles. Raman spectra 

of R6G and paraoxon adsorbed on bare Si substrates are shown for comparison. The (*) 

indicates Raman mode of Si 

Table 4.1  Raman mode assignments for R6G and paraoxon, corresponding to Figure 

4.8 

 

Raman (cm
-1

) Assignment for R6G Reference 

612 In-plane bending of C-C-C ring 66-68 

774 C-H out-of-plane bending 66-69 

1181 

In-plane xanthene ring deformation, C-H bending, N-H 

bending 

66-69 

1315 Aromatic C-C stretching 66,67 

1361, 1450 Aromatic C-C stretching, in-plane C-H bending 66-69 

1506, 1532 Aromatic C-C  and C-N stretching, C-H and N-H bending 66,67,69 

1573, 1600 Aromatic C-C stretching, in-plane N-H bending 66,67,69 

1650 Aromatic C-C stretching, in-plane C-H bending 66-69 

Raman (cm
-1

) Assignment for paraoxon  

1110 C-H band (in plane)/NO
2
 asymmetric stretching 65,70 

1348 Symmetry stretching NO
2
 65,70 

1592 Phenyl ring vibration 65,70 
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The enhancement factor (EF) was determined to quantitatively evaluate the 

effectiveness of SERS substrate. The most widely used definition of the EF is described as  

EF = 
ISERS/cSERS

IRS/cRS
     

where ISERS and IRS are Raman intensities of SERS and non-SERS substrates, respectively, 

while cSERS and cRS are analyte concentrations used for SERS and non-SERS substrates, 

respectively 71. In the present study, same analyte concentrations were used for both 

substrates. Thus, EF was simply a ratio of ISERS and IRS. However, since Raman signal 

obtained from bare Si substrate (IRS) was too weak to be detected by our instrument, it was 

not possible to obtain absolute values for EF. Instead, we only roughly estimated EFs in a 

manner similar to those reported by Yamamoto et al.69 Thus, EF value for R6G on Pd was 

~102, which was ~3 times higher than that for Pt. Similarly, EF values for paraoxon on Pd 

and Pt both were ~10.  

          The Raman enhancement can be attributed to the local electromagnetic 

enhancement 72,73. For nanostructures of noble metals, the extent of electromagnetic 

enhancement depends not only on their material but also on their morphology, size, and 

density. It has been reported that large electromagnetic enhancement occurs at the sharp 

features or high curvature sites due to the lightning-rod effect 50,72,74. Thus, the Pd 

nanostructures would amplify the electromagnetic field surrounding them, and would be a 

promising SERS substrate. Tian et al. used 3D finite difference time domain method to 

predict that the maximum enhancement would occur at the tip’s apex of the Pd 

nanostructure’s branch 74. In addition, large field enhancement would also occur at the gaps 

between adjacent branches, called as hot spots, due to the coupling effects between the 

branches. This morphological advantage was the key factor that increased the SERS 



85 

performance of Pd nanostructures for R6G over that of Pt nanospheres. Furthermore, overall, 

Pd nanostructures were larger than Pt nanostructures (see the Supporting Information), and 

larger size in the case of transition metals might lead to stronger enhancement 75. Also, larger 

Pd nanostructures would likely adsorb a greater number of the probe molecules, and thus 

were more sensitive and effective than Pt. Further improvement in SERS detection can be 

achieved from the Pd-deposited substrate by increasing the density of Pd nanostructures 

making very small gaps between the nanostructures to generate hot spots 76. Additionally, the 

surface roughness of the underlying Si substrate would also contribute to the enhanced 

Raman signal during the detection event. Further, similar explanation will also hold for Pt 

nanostructures.  

Conclusion 

In summary, we report a modification of the galvanic displacement method in which 

Pt and Pd nanostructures were deposited on n-type Si substrate with limited exposure to HF. 

By performing multiple cycles of the metallic deposition steps, large dendritic Pd and Pt 

nanostructures with high density and small size distribution were obtained. When SDS and 

CTAB surfactants were utilized, an increase in anisotropic growth of the dendritic Pd 

nanostructures was observed. A higher density of Pt nanostructures was observed when 

CTAB was utilized. Further, the Pd and Pt nanostructures were successfully used as SERS 

platforms for detecting low concentrations of organic analytes. 
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Appendix 

 

 

   

 One cycle Three cycles Five cycles Eight cycles Ten cycles 

Pd 40 ± 22 nm 43 ± 27 nm 108 ± 51 nm 101 ± 39 nm 86 ± 29 nm 

Pt 52 ± 29 nm 46 ± 27 nm 62 ± 30 nm 62 ± 22 nm 68 ± 21 nm 

Figure A 4.1 SEM images of Pd nanostructures deposited on Si substrate after (a) first, (b) third, 

(c) fifth, (d) eighth, and (e) tenth deposition cycle. The scale bar is 2 μm. (f-j) Size distributions of 

the corresponding Pd nanostructures. 

Table A 4.1 Average sizes of Pd and Pt nanostructures after multiple deposition cycles 
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Figure A 4.2  SEM images of Pt nanostructures deposited on Si substrate after (a) first, (b) third, 

(c) fifth, (d) eighth, and (e) tenth deposition cycle. The scale bar is 2 μm. (f-j) Size distributions of 

the corresponding Pt nanostructures. 

 

Figure A 4.3  Number densities of (a) Pd and (b) Pt nanostructures after multiple deposition 

cycles. 1x-10x denote one to ten deposition cycles, respectively. 
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Abstract 

This paper describes the deposition of Co and Ni on n-type Si substrate at elevated 

temperature in an aqueous basic solution by galvanic displacement. Our results showed that 

small Co and Ni nanoparticles, with desired sizes and densities, were successfully 

synthesized by simple modification of the conventional method. Heat treatment of the 

samples after deposition and the use of surfactants as additives were also performed to 

investigate their effects on the deposited metallic nanostructures as well as the overall surface 

morphology.  

Introduction 

Galvanic displacement is one of the electrochemical methods used to fabricate metals 

on semiconductor surfaces. In this method, metallic precursors are reduced by semiconductor 

substrates instead of reductants or external current source.1,2 As a result, galvanic 

displacement is simple and inexpensive. Galvanic displacement is also substrate selective 

because metals are only deposited on substrate surfaces, where electron exchange occurs. 

This selectivity also leads to conformity of the coating by galvanic displacement regardless 

of the geometric complexity of the substrates.3,4 Additionally, in galvanic displacement, 
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metallic deposition can stop by itself when coating reaches its full surface coverage because 

electron supply from the substrate is blocked,1 thus making mass production easier. With 

those advantages, there has been an increase in the use of galvanic displacement for 

nanofabrication in which metals, having distinct morphologies, were distributed randomly or 

with defined patterns on Si substrates.5-11 Likewise, galvanic displacement was also used to 

deposit metals on 1D Si nanostructures.12-14 Then, the growth and interface characteristics of 

metals on underlying semiconductor substrates by galvanic displacement have served as 

important topics for fundamental studies.14-18 So far, a variety of metals has been deposited 

by galvanic displacement on Si and Ge substrates, including noble metals such as 

Au/Si,3,6,7,10,12,14-21 Au/Ge,3,8 Ag/Si;9,13,15,16,20,22 platinum-group metals such as Pt/Si,7,11,15,23 

Pt/Ge,8 Pd/Ge,8,15 Pd/Si,15 Rh/Si;15 base metals such as Cu/Si,5,15,24-31 Ni/Si,26 and several 

metals on III-V semiconductor substrates.1 

In galvanic displacement, the semiconductor substrate acts as an electron source via 

its surface oxidation. Likewise, metal ions in solution, taking up electrons supplied by the 

substrate, are reduced to metal atoms. Thus, the overall displacement process occurs when 

metals are deposited on the semiconductor substrate and the surface oxide is dissolved, as 

described by the following chemical equations:1,3 

Anodic:  Si (s)  +   6F− (aq)   →   SiF6
2− (aq)  +   4e−……..................................... (1) 

Cathodic:  Mn+ (aq)  +   ne−   →   M (s)………………………………………...... (2) 

Overall:  Mn+ (aq)  +   Si (s)  +   6F− (aq)   →   M (s)  +   SiF6
2− (aq)…............... (3)      

where M denotes any metal whose standard redox potential is higher than that of hydrogen. 

The role of hydrofluoric acid (HF) is to maintain electron supply by dissolving the surface 

oxide. However, galvanic displacements of Nickel (Ni) and Cobalt (Co) do not occur at room 
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temperature and at the inherent pH of the precursor solutions because of their negative 

standard redox potentials. Thus, hydrogen evolution would dominate instead of the metallic 

deposition.3 In this work, we investigated the morphology and density of Ni and Co 

deposited on Silicon (Si) substrate by galvanic displacement at 80oC and pH 8 with respect to 

multiple deposition cycles. In addition, we also performed Ni and Co depositions with 

sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) as additives to 

observe their effects on the deposited nanostructures. Non-precious metals have been used as 

electrocatalysts for oxygen evolution.27,28 Therefore, our samples were then tested for their 

performance in photoelectrochemical hydrogen generation. A variety of characterization 

methods was employed to assist our investigation. Scanning electron microscopy was used to 

determine morphology and density of the nanostructures. Information on the compositions of 

the deposits was obtained by energy dispersive x-ray spectroscopy. Finally, optical property 

of the nanostructures was recorded by UV-Vis spectroscopy. 

Experimental Details 

The chemicals used for metallic deposition included nickel(II) sulfate hexahydrate 

(NiSO4 
  

6H2O, ≥ 98%), cobalt(II) chloride hexahydrate (CoCl2 
  

6H2O, 98%), and 

cetyltrimethylammonium bromide (C19H42BrN, ≥ 99.9%) purchased from Sigma Aldrich 

(Milwaukee, WI, USA), and sodium dodecyl sulfate (C12H25NaO4S, ≥ 99%) from Fisher 

Scientific (Pittsburgh, PA, USA), which were used as received. Ammonium hydroxide 

(NH4OH, 28-30%), purchased from Fisher Scientific, was used to adjust the pH. 

Hydrofluoric acid (HF, 48-51%) was purchased from Thermal Fisher Scientific (Waltham, 

MA, USA). All solutions were prepared using deionized (DI) water. HF was contained in a 

polypropylene beaker for experimental use. The substrate was Si (100) wafer (4”, single-

crystalline, n-type, ρ = 3-9 Ωcm) purchased from El-Cat Inc. (Ridgefield Park, NJ, USA). 
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Before the deposition, Si wafer was cleaved into squared 1 cm x 1 cm2 pieces. The chemicals 

used for cleaning Si substrate were acetone and ethanol (100%, 200 proof). 

The deposition of Co and Ni on Si substrate followed a modified galvanic 

displacement method. Typically, Si substrate was first cleaned with acetone, followed by 

ethanol, then deionized water, each of which for 10 minutes, in an ultrasonic bath to degrease 

and de-contaminate the substrate. After that, the clean Si substrate was gently dried by 

Kimwipes. The deposition started by immersing Si substrate in a 10% (w/w) HF solution for 

2 minutes to eliminate surface oxide and activate the surface. The Si substrate was instantly 

immersed for 5 minutes in 0.10 M NiSO4 or CoCl2, adjusted to pH 8 by addition of NH4OH, 

for Ni and Co deposition, respectively. Prior to immersing Si substrate, the metallic solution 

was heated to 80oC and maintained at this temperature using an oil bath placed on a hot plate. 

After that, the sample was rinsed thoroughly with deionized water. For multi-cycle 

depositions, each cycle of HF etching, metallic deposition, and rinsing was repeated multiple 

times. For experiments with surfactants, the metallic solution was composed of 0.03 M 

sodium dodecyl sulfate or cetyltrimethylammonium bromide mixed with 0.10 M NiSO4 or 

CoCl2, which was also adjusted to pH 8 by NH4OH. Finally, Co- or Ni-deposited Si sample 

was gently dried by Kimwipes and stored in a square polystyrene box for further 

characterization. 

          The size and morphology of the nanostructures were studied by scanning 

electron microscopy (SEM) using a FEI Quanta-250 SEM instrument at 10 kV accelerating 

voltage. The SEM instrument was equipped with an Oxford Aztec energy dispersive x-ray 

(EDX) analysis system, which was used to conduct elemental analyses of the deposited 

nanostructures. UV-Vis absorption spectroscopy was recorded by a Perkin Elmer Lambda 25 
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spectrophotometer. To prepare samples for UV-Vis measurements, each sample was 

immersed in 1 mL DI water and sonicated at the highest power for 1-3 minutes to detach the 

metallic nanostructures from Si substrate and disperse them in DI water.  

Results and Discussion 

Figure 5.1 and Figure 5.2 show that Ni and Co appeared as small particles with 

increasing density as the number of deposition cycles increased. On the other hand, SDS and 

CTAB hindered particle growth. An exception occurred when CTAB was used as additive in 

the galvanic displacement of Co in which Co appeared as large and elongated nanostructures 

at low density. Chemical compositions of the as-synthesized samples were also determined 

by EDX. The Ni or Co peaks were observed for each respective metal-deposited sample, 

indicating the formation of Ni and CO via galvanic displacement technique purity. A very 

strong Si peak was obtained from the substrate. The C and Cl peaks were detected due to 

Figure 5.1  SEM images showing the morphology and density of Ni nanostructures 

deposited on Si substrate by galvanic displacement after multiple deposition cycles (1x - 

10x), after being annealed at 100oC for 30 minutes, and after the use of additives. The EDX 

spectrum showing the elemental composition of the sample surface. 
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possible organic contaminants due to the SEM vacuum chamber and the ligand from the 

metallic precursor, while O peak could be a result of the oxidation of the surface.  

To obtain data on optical property of Ni and Co nanostructures, UV-Vis absorption 

spectrum was recorded for each metal and shown in Figure 5.3. No noticeable absorption 

band was identified in the visible region for both Co and Ni nanostructures, whereas two 

weak and broad absorption bands were observed for both metals in the ultraviolet region at 

~200 and ~320 nm. These absorption bands indicated the presence of Ni and Co 

nanostructures.29-31      

Figure 5.2  SEM images showing the morphology and density of Co nanostructures 

deposited on Si substrate by galvanic displacement after multiple deposition cycles (1x - 

10x), after being annealed at 100oC for 30 minutes, and after the use of additives. The EDX 

spectrum showing the elemental composition of the sample surface. 
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Figure 5.3  Normalized UV-Vis spectra of Ni and Co showing characteristic peaks and 

increasing absorption toward shorter wavelengths 

Conclusion 

In summary, this work described the deposition of Co and Ni on n-type Si substrate 

using galvanic displacement method at 80oC and pH 8. To gain control of the growth and 

density of the metallic nanostructures, certain numbers of cyclic depositions were performed 

with limited use of HF etchant. Then, the resulting samples were characterized and analyzed. 

An increase in density and size of the metallic nanostructures as well as an increase in 

surface roughness of the Si substrate were observed for both Co and Ni when the number of 

deposition cycles increased. Upon annealing, surface morphology of the samples underwent 

transformation whereas the presence of additives hindered deposition. Some selected Co and 

Ni samples were used to investigate their applicability for photoelectrochemical production 

of hydrogen and results will be published elsewhere. 
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Abstract 

Gold (Au) nanostructures exhibit several unique electronic, optoelectronic and 

plasmonic properties. This makes them potential candidates for applications in areas 

including biosensing, catalysis, optics, and electronics. These unique properties are governed 

by the precise control over their morphologies and size. The present work investigates the 

electrodeposition process of Au nanostructures. Additionally, the influence of applied 

potential, electrolyte pH and presence of L-cysteine on the morphology, size, distribution and 

density of Au nanostructured was studied. The observations elucidated the relationship 

between the process parameters and the formation mechanism of the Au nanostructures. The 

morphology and composition of these Au nanostructures were characterized by scanning 

electron microscopy and X-ray diffraction respectively.  

Introduction 

Gold (Au) nanostructures have attracted much attention in the past decade due to their 

unique physical, chemical, electronic, optoelectronic, catalytic and plasmonic properties 

compared to its bulk counterpart. The Au nanostructures also exhibit excellent conductivity 
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and electrochemical activity. The reduction in the size of the material to the nanometer range 

improves the aforementioned properties. Thus making the Au nanostructures potential 

candidates for diverse applications ranging from biosensing to catalysis [1-11]. 

The unique properties of Au nanostructures are strongly governed by their size and 

morphology. The surface plasmon properties of Au nanoparticles can be easily tuned over the 

entire visible spectrum by varying the size and morphology of the Au nanoparticles. Jain and 

co-workers have calculated absorption and scattering efficiencies and optical resonance 

wavelengths of Au nanoparticles [12]. A large variation in optical properties were 

demonstrated with the changes in the dimensions of the Au nanoparticles. It was concluded 

that the extinction cross-section increased and the ratio of scattering to extinction cross-

section decreased with increase in the Au nanostructures. Further, Sakai and co-workers co-

related the absorption and scattering properties of Au nanostructures to their morphologies 

[13]. These Au nanostructures were electrodeposited on indium doped tin oxide (ITO). 

Various Au nanostructures were analyzed in this study indicating a red shift in the absorption 

wavelength with increase in size. Additionally, with increase in size of the Au nanostructures 

the scattering contribution also increased. In another study, Kozanoglu and co-workers 

utilized Au nanostars to improve power conversion efficiency by 29% [14]. Furthermore, 

Rodríguez-Lorenzo et al demonstrated lowering of the detection limit in biosensors by using 

Au nanostars [15]. In this work a cancer biomarker was detected down to 4 x 10-20 M by the 

use of Au nanostars. Thus various Au nanostructures can find potential applications 

particularly in sensing and solar energy related areas.  

In the last decade there have been a large number of publications based on Au 

nanostructure synthesis. Many of these synthesis techniques have been solution based [16-
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18]. Synthesis methods of Turkevich and Brust-Schiffrin have been the most popular since a 

good control over the final particle size and distribution was possible by varying the 

processing conditions [18]. In the Turkevich method, Au precursor is mixed with citrate, 

which serves as reducing agent and a stabilizer. The reaction is carried out in water at a 

temperature of 100 °C. The citrate to gold precursor ratio plays an important role in 

governing the size of the Au nanoparticles [18]. The Brust-Schiffrin method uses an organic 

solvent. In this method the gold precursor is mixed with sodium borohydride and alkylthiol. 

This method produced Au nanoparticles that are cuboctahedral or icosahedral with size of 2 – 

5 nm. In other solution based synthesis, surfactants including cetyltrimethylammonium 

bromide (CTAB) are often used [19]. Thus shape control synthesis is possible with the use of 

surfactants, which include the formation of nanoparticles, nanorods, nanocubes, nanostars 

etc. However, the solution based synthesis has some drawbacks including the precise control 

of synthesis temperature and long reaction times. These synthesis methods often suffer from 

poor dispersity of Au nanostructures. In some cases, the synthesis needs to be conducted in 

an inert environment. Moreover, the synthesized nanostructures have to be integrated with 

substrates for many application, which adds an extra step to the fabrication process.  

Electrodeposition, in contrast to the solution based method, is a popular technique for 

the deposition of Au nanoparticles without the presence of any capping agents [13, 20-21]. 

The Au nanoparticles are directly deposited on a conducting or semiconducting substrate, 

which is advantageous over the solution based technique. Additionally, this deposition 

method provides easy attachment of the nanoparticles on to the substrate. The morphology 

and size of the depositing nanostructures can be controlled by varying the process 

parameters.  Electrodeposition can also be utilized for the deposition of various materials 
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including metals and their oxides with desired size, morphology and crystallographic 

orientation. Furthermore, electrodeposition is a simple, inexpensive and scalable technique 

for the deposition of various nanostructures.  

In this work, we investigate the changes in size, density and morphology of 

electrodeposited Au nanostructures as a function of applied potential, electrolytic pH and 

presence of chemical additives like L-cysteine in the electrolyte. The Au nanostructures were 

characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). A 

relation between the process parameters and the resulting Au nanostructures was established.  

Experimental Details 

Gold (III) chloride trihydrate (HAuCl4·3H2O, ≥ 99.9%) was purchased from Sigma-

Aldrich (Milwaukee, WI, USA). L-Cysteine (C3H7NO2S, ≥ 98%) was purchased from EMD 

Millipore (Billerica, MA, USA). The chemicals were used without further purification. 

Indium doped tin oxide (ITO)-coated glass substrate was purchased from University Wafer. 

The square ITO substrate (25 mm x 25 mm) had a resistivity of 7 ohm/sq.  The 

electrodeposition was carried out using a CH Instruments, CHI601E electrochemical 

analyzer. The Au nanostructure morphologies were studied by scanning electron microscopy 

(SEM) using a FEI Quanta-250 SEM instrument operating at 10 kV accelerating voltage. To 

investigate the composition and crystallinity of the electrodeposited Au nanostructures, X-ray 

diffraction (XRD) technique was used, which was a Siemens D500 instrument.  

A typical electrodeposition setup consists of an electrochemical cell (Figure 6.1a), 

consisting of a working, counter and reference electrode. In the present study, ITO coated 

glass substrate was the working electrode (Figure 6.1b). A 2 mm diameter platinum wire 

served as the counter electrode (Figure 6.1c), and an Ag/AgCl wire was the reference 

electrode (Figure 6.1d). Prior to electrodeposition, the ITO substrate was sonicated in a bath 
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of acetone for 10 minutes using a Branson 3800 ultrasonic cleaner. Further, the ITO substrate 

was cleaned using hydrochloric acid (HCl) and nitric acid (HNO3) sequentially for 2 minutes. 

The ITO substrate was rinsed with pure distilled water between every cleaning step. The 

electrolyte solution was prepared in a 100 mL beaker by dissolving the Au precursor. The pH 

of the electrolyte was adjusted to either 3 or 8 by using HCl and sodium hydroxide (NaOH). 

L-cysteine was added after the final pH was achieved. All experiments were carried out at 

room temperature (25oC). The electrodeposition reaction time of 30 min was utilized for all 

Au nanostructure samples.  

Results and Discussions 

The Au nanostructures were electrodeposited at ambient conditions. The process 

parameters including applied potential, pH of the electrolyte and the L-cysteine concentration 

were varied and the outcomes were recorded. Table 6.1 gives detailed process parameter 

variations. Briefly, the applied potential is varied between -0.4 to -0.8V. The pH of the 

electrolyte was either 3 or 8. The concentration of L-cysteine was varied between 0 to 0.3 

mM. 

 

Figure 6.1  Photographs of an (a) electrodeposition setup, consisting of a (b) working, (c) 

reference, and (d) counter electrode. 
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Table 6.1  The process parameters varied in the present study for the electrodeposition 

Au nanostructures. 

Potential (V) pH L-Cysteine conc. (mM) 

-0.4 3 8 0 0.1 0.3 

-0.6 3 8 0 0.1 0.3 

-0.8 3 8 0 0.1 0.3 

 

Influence of the applied potential on Au nanostructure morphology  

It has been demonstrated, in literature, that electrodeposition of gold occurs by 

nucleation and growth of the deposited nuclei [13]. The applied external potential strongly 

influences the morphology of the deposited Au nanostructures.  Figure 6.2 shows SEM 

images of Au nanostructures electrodeposited at varying applied potential of -0.4, -0.6 and -

0.8 V. These Au nanostructures were deposited by keeping all other process parameters 

identical along with the electrolyte pH of 3. From the SEM images it is clear that the size of 

the deposited gold decreases with increase in the negative potential. The Au nanostructures 

appear elongated and faceted at an applied potential of -0.4 V. With increase in the negative 

potential they appear quasi-spherical, with some facetted nanostructures. Thus with change in 

potential from -0.4 V to -0.8 V, the morphology changed from being rough to smooth. 

Additionally, the number density of the Au nanostructures increased drastically from -0.4 V 

to -0.8 V. The sample with an applied potential of -0.8 V appeared very dense with further 

deposition of gold forming a sub-monolayer overlay. The inset of Figure 6.2 shows 

photographs of samples prepared at varying applied potential. The sample fabricated with an 

applied potential of -0.4 V was dark golden in color with a dull appearance. Whereas the 
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samples fabricated at -0.6 V and -0.8 V appeared bright golden in color and had a lustrous 

appearance. The variations in the appearance of these samples indicates changes in their 

absorption properties. Thus, from Figure 6.2 it is clear that variation in the applied potential 

can influence the size, number density and optical properties of the fabricated Au 

nanostructures.  

 

Figure 6.2  SEM images of Au nanostructures electrodeposited, with a pH of 3, at -0.4 V 

(a), -0.6 V (b) and -0.8 V (c). The scale bar is 1 μm. 

These variations in the deposited Au nanostructures can be explained with the help of 

the formation mechanism that is influenced by the applied potential. As mentioned above, the 

deposition occurs via nucleation and growth [13]. When the applied potential is lowered to a 

more negative value the subsequent current density for electrodeposition increases, leading to 

an increase in the number of nuclei formed in the initial stage of the deposition process [13, 

22]. This initial number of nuclei govern the resulting size and density of the deposited 

nanostructures. The large number of initial nuclei cause the resulting nanostructure size to be 

small and thus denser. Additionally, the size and density changes affect the absorption 

properties. The large and rough Au nanostructures formed at -0.4 V result in a dull 

appearance due to scattering effects of the incident light from the rough Au nanostructures 

[13]. The other Au nanostructures formed at -0.6 V and -0.8 V appear bright and glossy due 

to the occurrence of less light scattering events, as the deposited nanostructures are dense and 
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smooth. Further in this investigation, the pH value of the electrolyte was varied from pH 3 to 

8. The effects of electrolyte pH variation are discussed in the following section. 

Influence of pH variation on the Au nanostructure morphology  

From our investigation, it is observed that the pH value of the electrolyte significantly 

affects the morphology of the deposited Au nanostructures. Figure 6.3 shows the SEM 

images of Au nanostructures deposited at varying potentials of -0.4 V, -0.6 V and -0.8 V at 

an electrolyte pH of 8. These SEM images were compared with the corresponding images, 

having similar applied potentials, in Figure 6.2. From this comparison it is evident that for 

samples fabricated at -0.4 V at acidic and basic electrolyte pH, the nanostructure size, density 

and morphology considerably varied. At basic pH the Au nanostructures appeared more 

spherical in shape and comprised of facets. Additionally, the average particle size and the 

size distribution was large. The deposited nanostructures had sparse density, thus many areas 

of the substrate remained exposed. Furthermore, for Au nanostructures fabricated at -0.6 V 

and -0.8 V under basic conditions, showed similar trends as that of the sample fabricated at -

0.4 V. The inset in Figure 6.2 shows photographs of the fabricated Au nanostructures. The 

sample prepared at -0.4 V with a basic electrolyte, shows a thin deposited layer indicating a 

Figure 6.3  SEM images of Au nanostructures electrodeposited, with a pH of 8, at -0.4 V 

(a), -0.6 V (b) and -0.8 V (c). The scale bar is 1 μm. 
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sparse deposition. Similarly, the samples prepared at -0.6 V and -0.8 V also showed thin 

deposited layers with light golden color.  

These observations can be explained with the help of the gold complex formations, 

followed by their reactivity and stability. The gold precursor (HAuCl4), when dissolved in 

water readily hydrolyzes. When the electrolytic pH was 3 the color of the electrolyte 

appeared yellow, while at basic pH of 8 the electrolyte became colorless. This change in 

electrolyte color was attributed to the varying degree of hydrolysis of AuCl4
-
 complex [23-

24]. It has been noted in literature that the electrolyte at pH 3 may contain different Au 

complexes including AuCl4
-
, [AuCl3OH]

-
, and [AuCl2(OH)2]

-
. The electrolyte at pH 8 may 

contain [AuCl(OH)3]
-
 and [Au(OH)4]

-
 complexes. The following chemical reactions describe 

the hydrolysis process.  

Dissolution of HAuCl4 in water: 

HAuCl4  +   H2O  ↔   H3O
+  +   AuCl4

−……………………………..... (1) 

Hydrolysis of AuCl4-: 

AuCl4
−  +   H2O  ↔   [AuCl3(OH)]

−  +   H+  +   Cl−………………….. (2) 

[AuCl3(OH)]
−  +  H2O  ↔   [AuCl2(OH)2]

−  +   H+  +   Cl−……..…. (3) 

 [AuCl2(OH)2]
− +  H2O  ↔   [AuCl(OH)3]

−  +   H+  +   Cl−……..…. (4) 

[AuCl(OH)3]
− +  H2O  ↔   [Au(OH)4]

−  +   H+  +  Cl−……….…… (5) 

The reactivity of Au(III) complex is strongly influenced by the electronegativity of 

the ligand donor. The lower electronegativity of the ligand donor leads to a less reactive gold 

complex [23]. During hydrolysis, when Cl ligands were replaced by OH ligands, the resulting 

Au complex became less reactive. Thus, upon increasing the electrolytic pH to 8, the rate of 

Au deposition decreased due to the increased stability of Au(III) complexes. This led to the 
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decrease in the nucleation rate of Au, which resulted in a lower number of nuclei and sparse 

density of the Au nanostructures. Unlike the nucleation and growth process that occurred 

when the electrolyte was acidic, the lower deposition rate due to basic conditions led to the 

occurrence of nucleation throughout the deposition process, which resulted in polydispersed 

nanostructures [25-29]. Additionally, the reduction of AuCl4

-
 would preferentially nucleate 

on the existing Au surfaces rather than the bare ITO substrate [13]. Thus a significant 

difference in the size, distribution, density and morphology of the Au nanostructures was 

observed between the acidic and basic electrolytic conditions. Further in this investigation, 

the effects of L-cysteine on Au nanostructure morphology was studied.  

Influence of L-cysteine on the Au nanostructure morphology 

The presence of L-cysteine in the electrolyte during electrodeposition has a 

significant influence on the morphology of the Au nanostructures. L-cysteine is commonly 

used in solution based synthesis of Au nanoparticles, as a stabilizer and a morphology 

modifying agent as it adsorbs on specific metal planes mainly by the thiol (-SH) group [13, 

30-34]. The L-cysteine adsorbs on low index planes, including (110), (100) and (111), of Au 

nanostructures and can be selectively desorbed by the application of appropriate potential 

during electrodeposition [13, 21, 35].  

The Au nanostructures deposited in the presence of 0.1 mM L-cysteine, at varying 

potentials and pH values of the electrolyte are shown in Figure 6.4. The SEM image in 

Figure 6.4 (a) clearly show dendritic structures of Au formed at potential -0.4 and pH of 3. 

The SEM images in 4 (b) and 4 (c) showed a decrease in particle size and increase in density 

of the Au nanostructures. The decrease in size appeared to be greater than the samples 

fabricated in the absence of L-cysteine. Additionally, no dendritic structures were observed 
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in samples fabricated at -0.6 V and -0.8 V with 0.1 mM L-cysteine. However, when the 

electrolytic pH was increased to 8, nanoparticles with random shapes and sizes were formed 

having rough, need like nanostructures covering their entire surfaces as seen in Figure 6.4 

(d), Figure 6.4 (e) and Figure 6.4 (f). The nanostructure size was large at the applied potential 

of -0.4 V. The samples fabricated at -0.6 V and -0.8 V appeared to have smaller average 

particle size and higher density when compared to the sample fabricated at -0.4 V. However, 

samples at pH 8 have lower density than the samples fabricated with an electrolytic pH of 3 

as this is evident from the exposed substrates in all these samples. The insets in Figure 6.4 

(a), Figure 6.4 (b) and Figure 6.4 (c) shows photographs of the fabricated samples. These 

photographs suggest a thick film indicating a high deposition rate. Further, the sample in 

Figure 6.4 (a) had a dull appearance, whereas samples in Figure 6.4 (b) and Figure 6.4 (c) 

Figure 6.4  SEM images of Au nanostructures electrodeposited using 0.1 mM L-cysteine 

at varying potentials of -0.4 V, -0.6 V and -0.8 V at pH 3 (a-c) and at pH 8 (d-f). The scale 

bar is 1 μm. 
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had a lustrous appearance. The photographs of samples deposited at a pH of 8 appeared thin 

and dark golden or even black in color.  

The next step in this investigation was to increase the concentration of the L-cysteine 

to 0.3 mM in the electrolyte and observe any changes in size, density and morphology of the 

fabricated Au nanostructures. The SEM images in the Figure 6.5 shows Au nanostructures 

fabricated at varying applied potentials and pH values. The SEM image in Figure 6.5 (a) 

shows dendritic structures formed at a potential of -0.4 V with a pH of 3 and in the presence 

of 0.3 mM L-cysteine. These dendritic structures appear smaller in size compared to a similar 

sample with lower L-cysteine concentration (Figure 6.4 (a)). The other samples fabricated at 

pH 3 with applied potential of -0.6 V and -0.8 V showed smaller particle size, higher density 

and no dendritic structures. When the electrolytic pH was increased to 8, all samples 

Figure 6.5  SEM images of Au nanostructures electrodeposited using 0.3 mM L-cysteine 

at varying potentials of -0.4 V, -0.6 V and -0.8 V at pH 3 (a-c) and at pH 8 (d-f). The scale 

bar is 1 μm. 
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exhibited large particles size with rough, needlelike structures covering the surfaces. 

Additionally, the particle size increased as the applied potential increased from -0.4 V to -0.8 

V. The insets in Figure 6.5 (a), 5 (b) and 5 (c) shows photographs of the samples prepared at 

pH 3. These photographs show thick film indicating a high deposition rate. Additionally, the 

sample in Figure 6.5 (a) had a dull appearance, while the samples in Figure 6.5 (b) and 

Figure 6.5 (c) had a glossy appearance. The photographs of samples deposited at a pH 8 

appeared thin and dark golden or black in color 

The SEM images in Figure 6.4 and Figure 6.5 indicate a strong interplay between the 

process parameters including applied potential, pH of electrolyte and L-cysteine 

concentration. It is clear that the morphology of the Au nanostructures was significantly 

influenced by the presence of L-cysteine. It is also known from the literature the L-cysteine 

adsorbs on low index planes of gold and is sensitive to desorption at particular applied 

potentials during electrodeposition [13, 21, 35]. The dendritic structures in Figure 6.4 (a) and 

Figure 6.5 (a) are mainly due to the adsorption of L-cysteine on (100) and (110) planes of Au 

nanostructures, leading to the deposition of Au on (111) facets [13, 35]. With the increase in 

the applied potential at pH 3, the morphology appeared to be quasi-spherical and highly 

compact. This can be attributed to the very high deposition rate. When the pH of the 

electrolyte was increased to 8 the morphology of the Au nanostructures had a rough 

appearance with need like structures covering the entire Au surface. The formation of the 

needle like structures is attributed to the adsorption of L-cysteine on Au facets. Additionally, 

the very slow deposition process due to pH 8 has contributed to the needle like morphology 

of Au nanostructures, since the gold ions could reduce on a preferred Au facets in a timely 

manner.  
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Furthermore, the insets showing Au nanostructures fabricated with a pH 3 have dark 

golden color and thick layers. These appearances are due to the high deposition rate with 

very little change in the morphology of the Au nanostructures. On the contrary, the insets 

showing Au nanostructures fabricated at pH 8 have a black appearance with very thin layers. 

This has been attributed to the very low deposition rate that has resulted in significant 

morphology change. The dark color also indicates substantial changes in light absorption 

properties compared to the samples prepared in the acidic electrolyte. The size, density and 

morphology of the Au nanostructures is strongly dependent on the applied potential, 

electrolytic pH and L-cysteine concentration. It is challenging to deconvolve the individual 

effects of these process parameters. However, our future work will systematically study the 

individual effects of the process parameters on size, density and morphology.  

The Au nanostructures were analyzed using X-ray diffraction. The XRD plots, shown 

in Figure 6.6, are typical plots obtained from samples fabricated at an applied potential of - 

Figure 6.6  XRD plots of Au nanostructures fabricated at an applied potential of -0.8 V, 

with varying pH and L-cysteine concentrations 
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0.8 V, with varying electrolytic pH values and in the presence and absence of L-cysteine. The 

XRD plots indicate that the crystalline structures of the Au nanostructures are of face-

centered cubic (fcc) Au [21]. The strong peak centered at 2θ = 38.3
o
 is indexed to be Au 

(111) crystal plane [21]. From the XRD plots it is clear that the Au (111) crystal facet is 

dominant in all the electrodeposited samples.  

Conclusion 

In summary, successful electrodeposition of Au nanostructures was carried out under 

varying process conditions including applied potential, electrolytic pH and the presence of L-

cysteine. From our investigation, it is clear that with increase in the applied potential the 

deposition rate increases leading to the reduction in the particle size and increase in density 

of the deposited Au nanostructures. It was also noticed that electrolytic pH played a 

dominant role in the fabrication of the Au nanostructures. With the increase in pH from 3 to 8 

the deposition rate decreased leading to very thin deposited layers. Additionally, the 

deposited nanostructures were larger and less dense at pH 8. The presence of L-cysteine 

strongly influences the morphology of the deposited Au nanostructures, producing dendritic 

structures especially with an electrolytic pH of 8. An overlayer of Cu2O was successfully 

electrodeposited on the Au nanostructures. The PEC measurements of the Cu2O control 

photocathode and the Au-Cu2O composite photocathodes were performed, which is 

presented in our publication.  
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Abstract 

Gold (Au) has been widely used as substrate material for Surface Enhanced Raman 

Spectroscopy (SERS) due to its stability, biocompatibility, and most importantly, its surface 

plasmon resonance property. Conventionally, Au has been deposited on a rigid substrate, 

such as glass or silicon, for SERS applications. That method, however, limits sample 

collection efficiency as well as portability. In this paper, we introduced carbon cloth and 

carbon paper as flexible substrates, coated with Au layer by electrodeposition. We showed 

that these flexible substrates were applicable for SERS by performing experiments with 

Rhodamine 6G (R6G) and paraoxon as probe molecules. Our results showed that an 

enhancement factor up to 8 x 103 was achieved using these substrates. Furthermore, we 

extended the use of these substrates to the detection of paraoxon on real fruit, which 

confirmed the sensitivity of our materials.  
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Introduction 

Sensitive detection of low-concentration biological analytes and hazardous chemicals 

in the environment,1,2 anti-terrorism,3,4 biomedical diagnostics,5 forensic science,6 food2 are 

important to prevent serious and costly human health problems as well as to provide public 

safety. Several analytical techniques have been utilized for the ultrasensitive detection of 

these analytes, some of which included high-performance liquid chromatography (HPLC) 

and GC/MS,2 capillary electrochromatography (CE),7 enzyme cycling assays,8 

photoluminescence,9 and ion mobility spectrometry.10 However, these techniques are time-

consuming and require expensive equipment. They also require complicated sample pre-

treatments, which may only be handled by trained personnel. On the other hand, surface 

enhanced Raman spectroscopy (SERS), a surface-sensitive Raman spectroscopy method, has 

become increasingly attractive as an alternative technique due to its combined advantages of 

simplicity, rapidity, and low-cost with excellent sensitivity. Since its discovery in 1974,11 

SERS has grown into an active area of research, including both experimental and theoretical 

works,12 and evolving from fundamental understanding to promising applications.13  

          One type of SERS substrate was the use of colloidal metallic nanoparticles or 

their colloidal aggregates in solution.14,15 While the preparation of this type of substrate was 

simple, the colloidal particles or aggregates were not stable. SERS performance from these 

substrates was not reproducible and may not be suitable for non-aqueous applications.16,17 

Another type of SERS substrate was made by the roughening of the substrate surface,18 by 

forming metallic nanoholes19, double-hole indentation structure with concentric rings,20 

nanogaps,21 nanoparticle arrays,22 nanodisk arrays23  or by employing porous membrane,24 

latex microspheres,25 polystyrene colloidal particles,25 These SERS substrates, however, still 

possessed problems with non-reproducibility, complicated fabrication, or costly lithography 
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techniques. An alternative SERS substrate type was the use of a 2D substrate, on which 

metallic nanostructures were deposited. This type of substrate was easy to fabricate, and thus 

had potential for large-scale manufacturing. In addition, the performance of these SERS 

substrates was excellent, able to reach to the single-molecule detection.   

The most popular 2D substrates for the third type of SERS materials mentioned above 

were rigid and smooth, including glass,26-28 silicon,29,30 and glass capillary,31 However, these 

SERS substrates were expensive and brittle, which made them inefficient when used for non-

flat surfaces. To improve the usability of SERS substrates, a new wave of flexible substrate 

materials have been explored, including filter paper,16,17,32-37 adhesive tape,38 cotton,4,39 

carbon cloth,40 polymer nanofibers,41 polymer nanotubes,42 and electrospun poly(vinyl 

alcohol) nanofibers.33,43 Regarding the fabrication techniques that were used to prepare 

flexible SERS substrates, some notable methods included ink-jet printing,32,37 dip 

coating,17,33 templating,16 drop casting,38 and electroless deposition.36,40 Although some of 

these methods were simple, they required long preparation time or dry time (12 – 48 hours), 

large material use, and complicated requirements. 

In this work, we fabricated flexible SERS substrates by electrodeposition of Au 

nanostructures onto carbon paper and carbon cloth. The resulting substrates were then used 

for SERS detection of R6G and paraoxon and achieved an enhancement factor of 10. Our 

fabrication of the SERS substrates was simple, inexpensive, and time-saving, which had 

potential to scale up. Furthermore, thick Au coating film conformed well to the substrate, 

making the substrate reliable and reproducible for SERS. A variety of characterization 

methods was employed to assist our investigation. Scanning electron microscopy was used to 

investigate the morphology of the Au coating and visual quality of the fabrication. 
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Information on the compositions of the deposits was obtained by energy dispersive x-ray 

spectroscopy. UV-Vis spectroscopy was used for determining optical property of the coating. 

Finally, SERS performance of the substrates was measured by Raman spectroscopy. 

Experimental Details 

The chemicals used for the electrodeposition of Au nanostructures were gold (III) 

chloride trihydrate (HAuCl₄. 3H₂O, ≥ 99.9%) and potassium hydroxide (KOH, ≥ 85.8%). 

These chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) and Fisher 

Scientific (Hanover park, IL, USA), respectively. The substrates used for electrodeposition of 

the Au nanostructures were carbon cloth (AvCarb Material Solutions, 1071 HCB) and wet-

proofed carbon paper (Toray, 060) purchased from Fuel Cell Store (College Station, TX, 

USA). The chemicals used for cleaning the substrates were acetone, hydrochloric acid (HCl, 

36.5-38.0%), and nictric acid (HNO3, 68.0-70.0%), purchased from Fisher Scientific. For 

SERS experiments, Rhodamine 6G dye (R6G, 99%) and paraoxon-ethyl (C10H14NO6P, ≥ 

90%) were purchased from Sigma Aldrich. All solutions were prepared using deionized (DI) 

water. 

The electrodeposition was performed in an electrochemical cell of three electrodes 

(Figure 7.1a). For the electrodeposition of Au nanostructures, Ag/AgCl was used as the 

reference electrode (Figure 7.1b). A platinum wire (2 mm diameter) was used as counter 

electrode (Figure 7.1c). Carbon paper and carbon cloth were used as working electrodes 

(Figure 7.1d). The carbon paper substrate was cleaned prior to the deposition, using 

ultrasonic cleaner, in acetone bath for 10 minutes, followed by 2 minutes cleaning with 

hydrochloric acid and nitric acid (1 minute each). The carbon cloth was dipped in acetone for 

1 h, then boiled in deionized water for 10 minutes, followed by cleaning in ultrasonic bath 
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using acetone for 10 minutes.44 Both substrates were rinsed with deionized water after each 

cleaning step. 

          For the electrodeposition of Au nanostructures, the electrolyte solution was 

prepared by dissolving HAuCl4 in deionized water to obtain a concentration of 3 mM. The 

pH of the electrolyte was adjusted to 3 using KOH. The electrodeposition was carried out at 

room temperature for 70 minutes and at an applied potential of -0.8 V.  

           To prepare the dye solution, 0.8 mg of R6G was dissolved in 5 mL of 

deionized water, and used as stock solution. Similarly, paraoxon stock solution was prepared 

by mixing 30 μL of oily concentrated paraoxon with 0.98 mL deionized water. To prepare 

sample for SERS experiments, a small volume of the stock solution was diluted to the desired 

concentration. Then, 300 μL of the diluted solution was drop cast onto the sample, and was 

left to dry under ambient condition. To improve wetting, prior to drop casting, the sample 

was treated with ambient air plasma for 1 minute under medium radio frequency power level 

(11 W) by a plasma cleaner (PDC-001, Harrick Plasma, Ithaca, NY). 

Figure 7.1  Photographs of the experimental setup (a), and individual electrodes, 

including reference (b), counter (c), and working (d) electrodes. 
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          The morphology of the nanostructures was studied by scanning electron 

microscopy (SEM) using a FEI Quanta-250 SEM instrument at 10 kV accelerating voltage. 

The SEM instrument was equipped with an Oxford Aztec energy dispersive x-ray (EDX) 

analysis system, which was used to conduct surface elemental analyses of the samples. SERS 

measurements were performed at room temperature on a Renishaw Dispersive Raman 

Spectrometer with Ar-ion laser running at 488 nm, using 50x objective lens, with incident 

power of 5 mW for 4 accumulations, each of which for 30 s. SERS spectra were collected 

from several random spots on each sample to confirm reproducibility.  

Results and Discussions 

Figure 7.2 shows digital photographs of the as-prepared carbon cloth and carbon 

paper electrodeposited with Au nanostructures. For each sample, a dark yellow layer 

completely covering the area of the substrate that was exposed to the electrolyte (Figure 

7.1a), as compared with the black plain substrate, indicated that Au had been successfully 

deposited onto the substrate. The electrodeposition conditions followed by this paper were 

Figure 7.2  Photographs showing carbon cloth (a) and carbon paper (b) after 

electrodeposition with Au nanostructures. 
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reported elsewhere by our group.45 As shown in both Figure 7.3 and Figure 7.4, a compact 

layer of Au nanostructures was observed, completely covering the surface of the fiber. The 

surface of the layer was rough as a result of the coalescence of Au nanostructures. Above this 

compact layer, a sub-monolayer of Au nanostructures was observed. Also, Au nanostructures 

of the overlay were larger than those underneath (insets of Figure 7.3b and Figure 7.4b). We 

Figure 7.3  SEM images of carbon cloth (a) before and (b) after electrodeposition of Au 

nanostructures. The inset shows Au-electrodeposited carbon cloth at higher magnification. 

Figure 7.4  SEM images of carbon paper (a) before and (b) after electrodeposition of Au 

nanostructures. The inset shows Au-electrodeposited carbon paper at higher magnification. 
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speculated that the overgrown occurred when the reduction rate decreased. Under this 

condition, the new Au atoms would preferably adsorb on existing Au nanostructures rather 

than forming new nuclei. As a result, the overgrown Au nanostructures grew faster and 

became very large. We estimated, by taking the differences in diameters of the fibers before 

and after electrodeposition in several SEM images, that the thicknesses of the Au coatings on 

carbon cloth and carbon paper were ~1 - ~1.3 μm and ~0.2 – 0.3 μm, respectively. Chemical 

compositions of the as-synthesized samples were determined by EDX (Figure 7.5). Au were 

Figure 7.5  EDX patterns and mapping analysis of Au nanostructures electrodeposited on 

(a,b) carbon cloth, and (c,d) carbon paper, respectively. The insets show the different spots 

where EDX patterns were taken. The scale bars on the insets and the EDX mapping are 550 

μm and 100 μm, respectively. 
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the only metal peaks observed, indicating the purity of the samples obtained. The EDX also 

indicated that while the fibers near the surface was completely covered by Au, the fibers 

underneath appeared to be uncoated or showed much less coating (see different spots shown 

in Figure 7.5a and c). Future effort would be devoted to obtain a more complete coating. A 

very strong C peak was observed, obviously from the fiber substrate. O and Cl peaks could 

be the results of the slight oxidation of the surface and the ligand left over from HAuCl4 

precursor, respectively while F peak could be from the adhesive resin.44 Table 7.1 shows 

mass fraction analyses of the chemical elements obtained by EDX. 

Table 7.1  Mass fraction analysis of chemical elements obtained by EDX 

Element C O F Cl Au Total 

Au/carbon cloth 2.86 0.20 N/A 0.03 96.91 100.00 

Au/carbon paper 2.56 0.37 0.37 0.07 96.62 100.00 

 

Figure 7.6 shows UV-Vis spectra of Au electrodeposited on carbon cloth and carbon 

paper. Both spectra show characteristic peaks of Au. These peaks red-shifted beyond 550 nm, 

indicating that the sizes of Au nanostructures were large. In addition, the peak widths were 

also large, indicating that Au nanostructures had large size distributions.46 Thus, the plasmon 

resonance absorption characterization agreed well with Au nanostructures observed in the 

SEM images. 

To evaluate our samples for SERS application, we first chose Rhodamine 6G (R6G) 

as probe molecule. R6G has been widely used for SERS by many researchers due to their 

well-defined vibrational features. Figure 7.7a shows Raman spectra of 10-5 M R6G dye upon 

drop casting onto Au-electrodeposited carbon cloth and carbon paper. For comparison, the 
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same amount of R6G was also drop cast onto carbon cloth and paper without Au deposition. 

No noticeable Raman signal was detected using these blank substrates. On the other hand, 

several strong Raman peaks were observed when Au was electrodeposited on carbon paper. 

All these peaks were also observed with carbon cloth but their intensities were weaker even 

at higher R6G concentration. In the next set of SERS experiments, paraoxon was used as 

probe molecule. Paraoxon is an organophosphorous compound and one of the most 

hazardous pesticides. Thus, only a trace amount of this compound in the environment can 

cause serious health problem.2 Figure 7.7b shows Raman spectra of 10-2 M paraoxon 

adsorbing on Au-electrodeposited carbon cloth and paper substrates. Several fingerprint 

peaks representing different vibrational modes of paraoxon molecules were clearly seen in 

these spectra.47 Raman scattering was certainly enhanced by the Au nanostructures because 

no Raman peak of R6G dye and much weaker peaks of paraoxon were observed when blank 

carbon cloth and paper were used as SERS substrates. Also, it is noteworthy that for both 

probe molecules, Rama signals were obtained with much higher intensities for carbon paper 

Figure 7.6  Normalized UV-Vis spectra of Au electrodeposited carbon cloth and carbon 

paper 
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than for carbon cloth. Table 7.2 provides detailed assignment for all the peaks in Figure 7.6 

according to published data.  

One way to quantitatively determine the effectiveness of SERS substrate is to 

calculate the enhancement factor (EF). The most widely used definition of the EF is 

described as  

EF = 
ISERS/cSERS

IRS/cRS
     

where ISERS and IRS are Raman intensities of SERS and non-SERS substrates, respectively, 

while cSERS and cRS are analyte concentrations used for SERS and non-SERS substrates, 

respectively.53 In our case, we used the same analyte concentrations for both substrates. 

Thus, EF was simply a ratio of ISERS and IRS. For paraoxon, the EF values were ~14 and ~8 x 

103 times. For R6G, since Raman signals obtained from blank substrates (IRS) were too weak 

to be detected by our instrument, it was not possible to obtain absolute values for EF. Instead,  

Figure 7.7  Raman spectra of (a) 10-5 M and 10-6 M R6G, and (b) 10-2 M paraoxon 

adsorbed on Au nanostructures electrodeposited on carbon cloth and carbon paper, 

respectively. Raman spectra of R6G and paraoxon adsorbed on blank carbon cloth and 

paper without Au coating are shown for comparison. The inset shows a close-up view for 

carbon cloth. 
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Table 7.2  Raman peak assignments for R6G dye and paraoxon pesticide corresponding 

to Figure 7.7 

we only roughly estimated EFs in a manner similar to those reported by Yamamoto et al.49 

Thus, EF values for R6G adsorbed on Au-electrodeposited carbon cloth and paper were 0.9 x 

103 (for 10-5 M R6G) and 1.5 x 103 (for 10-5 M R6G), respectively. Currently, there are two 

proposed mechanisms that may explain the Raman scattering enhancement observed above. 

One is the chemical enhancement mechanism that occurred when charges were transferred 

between the adsorbed probe molecules and the Au substrates. However, chemical 

enhancement only accounted for a tiny portion of the total enhancement effect. The rest was 

Raman peak (cm-1) Assignment for R6G Reference 

1361 Aromatic C-C stretching, in-plane C-H bending 48-51 

1506 

Aromatic C-C stretching, C-N stretching, C-H bending, N-H 

bending 48-50 

1532  50 

1573 Aromatic C-C stretching, in-plane N-H bending 48-50 

1600  48-50 

1650 Aromatic C-C stretching, in-plane C-H bending 48-51 

Raman peak (cm-1) Assignment for paraoxon Reference 

732 NO2 scissor, C-C bending 3,52 

859 NO2 scissor (Aromatic-NO2) 3,52 

1110 C-H band (in plane)/NO2 asymmetric stretching 3,52 

1348 Symmetry stretching NO2 3,52 

1592 Phenyl ring vibration 3,52 
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contributed by local electromagnetic enhancement.54,55 It has been well known that 

roughened metallic surface resulted in enhanced Raman signal, compared with polished 

surface.18 Thus, we believed that rough Au surface upon electrodeposition, whose numerous 

crevices concentrated light, was the major factor leading to SERS observed in both 

substrates. In addition, the high surface area resulted from rough surface would adsorb more 

probe molecules, thus increasing efficiency as well as causing SERS. 

          In the last set of experiments, we extended the application of Au 

electrodeposited carbon cloth and paper to SERS detection of paraoxon on real fruit. 

Specifically, 10-1 M paraoxon was dropped onto a small area on the skin of an apple. After 

leaving the area to dry in air, we wet the SERS substrate by immersing it in deionized water. 

Then, we wiped the paraoxon-infected area on the apple with the wet substrate five times 

(Figure 7.8). We also used the substrates to wipe non-infected area for comparison. The 

results are shown in Figure 7.9. Clearly, our substrates were sensitive enough to detect the 

presence of paraoxon on real fruit, thus indicating their potential as quick and economical 

substrates for real-life applications.

Figure 7.8  Wiping the contaminated area on an apple’s skin by carbon cloth 

electrodeposited with Au for SERS detection of paraoxon 
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Conclusion 

In summary, we report the use of carbon cloth and carbon paper as flexible materials 

for SERS applications. Au was chosen as the metallic substrate due to its stability, 

biocompatibility, and surface plasmon resonance property, known to enhance Raman signal. 

We prepared SERS substrates by coating carbon cloth and carbon paper with Au by 

electrodeposition. A variety of characterization methods, including SEM, EDX, and UV-Vis, 

had been employed to confirm the successful deposition of Au. Then, the substrates were 

used to detect R6G and paraoxon and achieved an enhancement factor up to 8 x 103. We 

believed that the rough Au surface, whose crevices concentrated light, after electrodeposition 

would be the reason for the enhancement of Raman signal. We further investigated the 

performance of our substrates for real fruit, and the results confirmed the sensitivity of our 

materials. 

Figure 7.9  SERS detection of paraoxon on apple using carbon cloth and paper 

electrodeposited with Au as substrates. The results show that the substrates were sensitive to 

the presence of paraoxon. 
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CHAPTER 8.    CONCLUSION 

In conclusion, this work has shown that various metallic nanostructures, including 

Au, Cu, Pt, Pd, Ni, and Co, have been successfully synthesized by the modified galvanic 

displacement method, electrodeposition, and as colloidal suspension by citrate reduction. A 

range of characterization methods have been employed to investigate the composition, 

nanostructure, morphology, size, and density of the materials. In the synthesis of Au 

nanoparticles by citrate reduction (Turkevich’s method), we were able to evaluate the effects 

of temperature and Na3Ct/HAuCl4 ratio on the morphology and size of the resulting Au 

nanoparticles. While different temperatures only slightly changed those nanostructural 

characteristics, the Na3Ct/HAuCl4 ratio appeared to dictate the outcome of Au nanoparticles, 

in which monodisperse, small, and spherical particles were observed with high ratios whereas 

polydisperse, large and elongated particles were observed with low ratios. In the modified 

galvanic displacement method, we overcame the lack of control in size, shape, and density of 

the deposited metallic nanostructures in the conventional method by drastically reducing HF 

exposure of the Si substrate, by utilizing additives such as L-cysteine, CTAB, and SDS, and 

by using cyclic deposition technique. The modified galvanic displacement method proved to 

be universal as indicated by successful deposition of different metals and transition metals on 

Si substrate. In addition, the results obtained by the modified method were reproducible. The 

limited use of HF also made waste treatment manageable and reduced environmental risks. In 

the electrodeposition method, we showed that both the applied potential and the electrolyte 

pH had direct influence on the size and density of Au nanostructures. On the other hand, the 

presence of L-cysteine as additive gave Au nanostructures increasingly dendritic 

morphologies. The electrodepostion method was also carried out to fabricate flexible SERS 
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substrates made up of Au-coated carbon cloth and carbon paper. The synthesized materials 

were then tested for their performance in SERS and photoelectrochemical hydrogen 

production. SERS substrates from the materials synthesized by our methods were equally 

effective in detecting trace analytes as other reported SERS substrates as shown in my work 

for detecting R6G and paraoxon. Additionally, transition metal nanostructures like Pt and Pd 

have also shown promise as SERS substrates. Regarding photoelectrochemical hydrogen 

production, we showed that Au nanostructures grown by electrodeposition on ITO can 

increase the performance of Cu2O photocathode by 81% when they were used as an 

underlayer.1 Low-cost and abundant catalysts like Ni and Co deposited on Si substrate by our 

modified galvanic displacement also showed enhanced performance toward hydrogen 

production, which will be presented in an upcoming publication. 
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