
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

Characterization of multiphase flows integrating X-
ray imaging and virtual reality
Timothy Burkgren Morgan
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Morgan, Timothy Burkgren, "Characterization of multiphase flows integrating X-ray imaging and virtual reality" (2017). Graduate
Theses and Dissertations. 15582.
http://lib.dr.iastate.edu/etd/15582

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F15582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/15582?utm_source=lib.dr.iastate.edu%2Fetd%2F15582&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Characterization of multiphase flows integrating

X-ray imaging and virtual reality

by

Timothy Burkgren Morgan

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Co-majors: Human Computer Interaction; Mechanical Engineering

Program of Study Committee:

Theodore J. Heindel, Co-major Professor

Judy M. Vance, Co-major Professor

Hui Hu

Gene S. Takle

Eliot H. Winer

Iowa State University

Ames, Iowa

2017

Copyright © Timothy Burkgren Morgan, 2017. All rights reserved.

ii

DEDICATION

To my grandparents, Calvin and Marjorie Burkgren and Leo and Darlene Morgan, thank

you for your endless love and support. You instilled in me the value of education, the value

of hard work, and the value of having a little fun along the way!

iii

TABLE OF CONTENTS

Page

DEDICATION .. ii

LIST OF FIGURES .. vii

LIST OF TABLES .. xii

NOMENCLATURE .. xiii

Abbreviations ... xiii
Roman Symbols .. xv

Greek Symbols .. xx

ACKNOWLEDGEMENTS .. xxii

ABSTRACT ... xxiv

CHAPTER 1: INTRODUCTION ... 1

1.1 Motivation ... 1
1.2 Objectives ... 3

1.3 Outline .. 4

CHAPTER 2: LITERATURE REVIEW .. 6

2.1 Noninvasive Multiphase Flow Measurement ... 6
2.1.1 Optical Techniques .. 7
2.1.2 Electrical Impedance Tomography (EIT) .. 9

2.1.3 Magnetic Resonance Imaging (MRI) ... 9
2.1.4 X-ray Imaging .. 13

2.1.4.1 Tube X-ray Sources .. 14
2.1.4.2 Synchrotron Sources ... 15
2.1.4.3 Radiography .. 16

2.1.4.4 Radiography Enhancements.. 19
2.1.4.5 Computed Tomography (CT) ... 19

2.2 Computed Tomography (CT) Reconstruction .. 22

2.2.1 Fourier Projection-Slice Theorem .. 23
2.2.2 Filtered Backprojection (FBP) ... 24
2.2.3 Algebraic Reconstruction Techniques (ART).. 26

2.3 Volume Visualization ... 27
2.3.1 Introduction to Computer Graphics ... 29

2.3.1.1 Programmable Pipeline ... 31
2.3.2 Indirect Volume Rendering (IVR) ... 49

2.3.2.1 Slice Rendering ... 49
2.3.2.2 Isosurface Rendering .. 51

2.3.3 Direct Volume Rendering (DVR) .. 55
2.3.3.1 Texture-Based Rendering ... 56

iv

2.3.3.2 Splatting .. 57
2.3.3.3 Shear-Warping .. 58
2.3.3.4 Ray Casting ... 59
2.3.3.5 Fourier Rendering ... 61

2.4 User Interaction in Virtual Reality (VR) .. 62
2.4.1 Display Devices ... 62
2.4.2 Input Devices ... 65
2.4.3 Interaction Tasks .. 71

2.4.3.1 Selection and Manipulation .. 71

2.4.3.2 Travel and Wayfinding ... 72
2.4.3.3 System Control.. 73

2.4.3.4 Symbolic Input .. 74
2.4.4 Data Visualization in Virtual Reality ... 75

2.5 Summary ... 75

CHAPTER 3: METHODS .. 77

3.1 X-ray Flow Measurement ... 77
3.1.1 Imaging Parameters and Their Effects ... 80

3.1.2 X-ray Image Processing ... 83
3.1.2.1 Image Unwarping.. 84
3.1.2.2 Image Normalization .. 88

3.2 Immersive Visualization ... 92

3.2.1 VR JuggLua ... 97
3.2.2 Kinect Sensor ... 101

CHAPTER 4: A HIGH-SPEED X-RAY DETECTOR SYSTEM FOR NONINVASIVE

FLUID FLOW MEASUREMENTS ... 104
4.1 Abstract ... 104

4.2 Introduction ... 105
4.3 Experimental Setup ... 107
4.4 Results and Discussion ... 110

4.5 Summary ... 113

CHAPTER 5: SENSITIVITY OF X-RAY COMPUTED TOMOGRAPHY

MEASUREMENTS OF A GAS-SOLID FLOW TO VARIATIONS IN ACQUISITION

PARAMETERS .. 115
5.1 Abstract ... 115
5.2 Introduction ... 116

5.3 Experimental Setup and Methods ... 118
5.3.1 Test System .. 119
5.3.2 Determination of Baseline Parameters ... 121
5.3.3 Analysis Methods ... 125

5.4 Results and Discussion ... 130

5.4.1 Effects on Whole ROI Averages .. 131
5.4.2 Effects of Tube Current, Voltage, and Detector Exposure 133

5.4.3 Effects of Center of Rotation Variation ... 142
5.5 Conclusions ... 145

v

CHAPTER 6: APPROXIMATE 3D RECONSTRUCTION TECHNIQUES FOR

CHARACTERIZING MULTIPHASE FLOWS FROM X-RAY STEREOGRAPHIC

IMAGING ... 146
6.1 Abstract ... 146

6.2 Introduction ... 147
6.3 Experimental Setup ... 149
6.4 Reconstruction Methods ... 151

6.4.1 Locally Axisymmetric Filtered Backprojection ... 151
6.4.2 Simultaneous Algebraic Reconstruction Technique with A Priori Information .. 154

6.5 Experimental Results .. 157
6.5.1 Phantom Imaging ... 157

6.5.2 Multiphase Flow Imaging .. 159
6.6 Conclusions ... 162

CHAPTER 7: DEVELOPMENT OF A NONCONTACT USER INTERACTION

SYSTEM FOR SURROUND-SCREEN VIRTUAL ENVIRONMENTS 164

7.1 Abstract ... 164
7.2 Introduction ... 165

7.3 Background ... 166
7.4 Implementation ... 170

7.4.1 System Architecture ... 171

7.4.2 Features .. 174

7.4.3 Skeleton Merging and Filtering ... 176
7.4.4 Joint Orientation Algorithm ... 181
7.4.5 Gesture Recognition ... 189

7.5 Validation .. 193
7.5.1 Skeleton Filtering ... 193

7.5.2 Joint Orientation Algorithm ... 198
7.5.3 Gesture Recognition ... 201

7.6 Conclusions ... 202

CHAPTER 8: A PROPOSED SYSTEM FOR INTERACTIVE VISUALIZATION OF

VOLUMETRIC MULTIPHASE FLOW DATA IN VIRTUAL REALITY 204

8.1 Abstract ... 204
8.2 Introduction ... 205
8.3 Proposed System ... 206

8.3.1 Viewpoint Manipulation .. 208

8.3.2 Region of Interest Selection ... 210
8.3.3 Transfer Function Specification ... 211
8.3.4 Viewpoint Sharing ... 212
8.3.5 System Control ... 213

8.4 Conclusions ... 214

vi

CHAPTER 9: CONCLUSIONS AND FUTURE WORK .. 216
9.1 Conclusions ... 216
9.2 Future Work .. 219

REFERENCES ... 223

vii

LIST OF FIGURES

Figure 2.1: The DirectX (left) and OpenGL (right) programmable graphics pipelines.

The stages in ellipses are programmable and the stages with dashed

outlines are optional (adapted from Khronos Group, 2012; Microsoft, n.d.-

f; “Rendering Pipeline Overview,” 2012). .. 32

Figure 2.2: The sequence of geometric transformations used in traditional computer

graphics. .. 34

Figure 2.3: A volumetric version of the Utah teapot displayed as both external slices

(a) and internal slices (b). Note, the two renderings use different regions of

interest to show the teapot clearly. .. 50

Figure 2.4: The cube (blue) used for the marching cubes algorithm, inside a field of

voxels (red and green spheres) representing two slices of the volume

(adapted from Lorensen and Cline, 1987). .. 52

Figure 2.5: The 15 unique triangulation cases in the marching cubes algorithm. The

green spheres denote a voxel intensity above the threshold, while the

vertices without spheres denote a voxel below the threshold (adapted from

Hansen and Johnson, 2005; Lorensen and Cline, 1987). 53

Figure 2.6: The process of shear-warping as viewed from above for the case of

orthographic projection (adapted from Hansen and Johnson, 2005). 59

Figure 2.7: The cube texture used to generate rays in ray tracing. Each vertex has the

same color as its position, allowing the interpolated color value to represent

the start or end position of the ray (adapted from Krüger and Westermann,

2003). ... 60

Figure 2.8: One type of wand (the Intersense IS-900) used to interact with virtual

reality. .. 68

Figure 3.1: Schematic of the X-ray Flow Visualization facility’s imaging equipment. 78

Figure 3.2: The effect of the unwarping calibration on an image. The original

unwarped image of the calibration grid is shown on the left. On the right is

the same image with the unwarping calibration applied. 88

Figure 3.3: The flat (a), and dark (b) images are the inputs to the normalization

algorithm. The result of a linear normalization (c) is the removal of any

location dependent pixel intensity variation. Note, a flat frame has been

normalized to show the result without any interference from an imaged

object and the normalized image (c) has been contrast enhanced to better

show the remaining noise. ... 89

viii

Figure 3.4: A comparison of the four available normalization methods. The data is

from row 255 of a flat image, normalized using a different flat image and a

dark image for the same settings. The horizontal axis is scaled to the

percent of the distance a given pixel is located across the image, and the

vertical axis is scaled to the percentage the intensity value is of the

maximum representable intensity. ... 92

Figure 3.5: Schematic of METaL. Note the screen of the left wall is removed for

clarity. .. 93

Figure 3.6: The XPAND X101 tracked glasses used in the METaL virtual

environment. .. 94

Figure 3.7: The tracked WiiMote for the METaL virtual environment. 96

Figure 3.8: The graphical user interface of VR JuggLua, shown in simulation mode.

The navigation testbed (left) allows for the input of Lua code while the

program is running. The simulation window (right) provides a preview of

what the user will see in virtual reality.. 97

Figure 3.9: VR JuggLua code to load a teapot model and render it with GPU-based

Phong shading. Note, this example contains two separate programming

languages: Lua (black) and GLSL (blue) .. 99

Figure 3.10: The Utah teapot rendering using GPU-based Phong shading via

VR JuggLua using the code in Figure 3.9. .. 100

Figure 3.11: The Microsoft Kinect sensor, version 1. ... 101

Figure 3.12: The Microsoft Kinect sensor, version 2. ... 102

Figure 4.1: The imaging setup for the high speed camera. Note that the image

intensifier has an internal mirror to allow the camera to be mounted out of

the primary X-ray beam. Lead shielding is omitted from the schematic for

clarity. .. 108

Figure 4.2: A comparison of a radiograph of the X-ray intensifier calibration grid

before and after image processing. The unmodified frame, left, shows a

pincushion distortion. The corrected frame, right, has the rectilinear

structure of the calibration grid restored. .. 109

Figure 4.3: A gas-liquid system with gas bubbles (lighter gray regions) rising from a

central injector. Images shown from time t=0.40 s to t=0.44 s. Every tenth

frame is shown to illustrate the bubble movement more clearly. 111

Figure 4.4: A gas-solid system with gas bubbles (lighter gray regions) rising from a

uniform distributor on the bottom. This image was acquired at t = 1.050 s. . 112

ix

Figure 4.5: The path of the tracer particle in a fluidized bed, as tracked by the

normalized cross-correlation method for a 10 s period. From one source-

detector pair the x-position vs. time (a), z-position vs. time (b), and x-

position vs. z-position (c) can be determined. Another source-detector pair

would be required to determine the y-position. ... 114

Figure 5.1: An image of the X-ray Flow Visualization facility used in this study. Note

that, although two X-ray source-detector pairs are available, only one pair

was used to acquire the CT scans in this study ... 120

Figure 5.2: Four views of the baseline CT volume and void fraction volume. The

planes in the 3D view are rendered at the same position the 2D slices are

taken from. Note that numerous slices have been omitted for clarity. 125

Figure 5.3: The average CT and average void fraction for the entire ROI. 132

Figure 5.4: The average CT intensity for the flow condition and average void fraction

value for the entire ROI with varied CORs. .. 133

Figure 5.5: The average annular CT intensity of the flow CT for varied X-ray tube

currents. ... 134

Figure 5.6: The annular average void fraction for varied X-ray tube currents. Note,

only 10% of the full range (0 to 1) of the average void fraction is shown in

order to show differences more clearly. .. 135

Figure 5.7: The slice average CT intensity of the flow CT for varied X-ray detector

exposure times. .. 136

Figure 5.8: The slice average void fraction for varied X-ray detector exposure times. 137

Figure 5.9: The annular average CT intensity for flow CTs with varied X-ray tube

voltages. ... 139

Figure 5.10: The annular average percent difference of the void fraction values for

varied X-ray tube voltages. Recall that 150 kV is the reference condition. ... 139

Figure 5.11: The average CT intensity of the flow CT by slice for varied X-ray tube

voltages. ... 141

Figure 5.12: The flow CT slice contour maps at h/D=0.64 for X-ray tube voltages A)

100 kV, B) 150 kV, and C) 200 kV, where h is the height above the

aeration plate and D is the fluidized bed diameter. The contours are at

intervals of 25 CT values from I = 400 to I = 1000 .. 141

Figure 5.13: The average void fraction by slice for varied X-ray tube voltages. 142

x

Figure 5.14: The baseline flow CT sliced at height h/D=1.30, reconstructed at the

baseline COR A) +0.0 pixels B) +2.0 pixels C) +5.0 pixels and

D) +10.0 pixels. Note how the fluidized bed walls start to appear as two

concentric columns as the COR increases from the baseline. Similar

artifacts are seen as the COR is decreased from the baseline (not shown). 143

Figure 5.15: The annular average void fraction percent difference from baseline with

changes in COR. Note that several CORs have been excluded from the

figure for clarity. ... 144

Figure 6.1: An image of the X-ray Flow Visualization facility used in this study. Note

that only one source and the scintillator was used to acquire the CT scans

in this study. The stereography scans were acquired with both X-ray

sources and two intensified detectors. ... 150

Figure 6.2: The geometry of shifting a projection to create a missing projection from a

known projection, assuming a parallel X-ray beam. 154

Figure 6.3: The ABS sphere phantom positioned off-center and reconstructed with a)

the full 360 projections, b) only the 0 degree and 90 degree projections, and

c) 360 projections generated by shifting the 0 degree and 90 degree

projections. .. 158

Figure 6.4: The ABS sphere phantom positioned in the center of the imaging region

and reconstructed with a) the full 360 projections using the FBP algorithm,

b) only the 0 degree and 90 degree projections using the SART algorithm,

and c) only the 0 degree and 90 degree projections, with the intensity

limited by a priori CT slices of the bulk and gas conditions. 159

Figure 6.5: The original projections of the fluidized bed used to test the reconstruction

algorithms on limited data of a real multiphase flow. The dashed red line

indicates the height at which the slices were reconstructed. 160

Figure 6.6: The locally axisymmetric FBP reconstructions of the fluidized bed

assuming a) the bed is the feature of interest and b) the bubble crossing the

slice is the object of interest. Note that the brightness and contrast of these

slices have been adjusted to enhance the visibility of the features in the

reconstruction. ... 161

Figure 6.7: The fluidized bed reconstructed with the SART algorithm using a priori

information to limit the intensity range. .. 162

Figure 7.1: The architecture of the KVR system. Each box represents a single

assembly. The dark blue boxes, collectively, make up the KVR system,

while the medium and light blue are libraries KVR is dependent on. The

medium blue are open source libraries that had to be written or modified,

the light blue libraries were used unmodified. .. 173

xi

Figure 7.2: The joint hierarchy used for calculating joint orientations in the KVR

system. Adapted from the Kinect v1 joint orientation hierarchy (Microsoft,

2012a). ... 184

Figure 7.3: A seven state, left-to-right hidden Markov model. In this model, a state

can transition to itself, or to any of the states ahead of it, but it can never

transition to a previous state. ... 190

Figure 7.4: The effect of varied signal to noise ratios on the Kalman filter. Note that

the 50 dB curve and the 36 dB curve lie underneath the reference curve in

most places. ... 195

Figure 7.5: The raw z-position (black) and filtered z-position (gray) of the right hand

of person 1, random motion sequence, from the CAD 60 dataset. 196

Figure 7.6: The raw y-position (black) and filtered y-position (gray) of the head of

person 1, random motion sequence, from the CAD 60 dataset. 197

xii

LIST OF TABLES

Table 5.1: X-ray computed tomography acquisition and reconstruction parameters

varied to test scan sensitivity. ... 124

Table 7.1: Mapping of joints from the Kinect v1 and Kinect v2 to the KVR system

and the corresponding VRPN sensor number. Note that the VRPN sensor

numbers were selected to maintain compatibility with the FAAST system

(Suma et al., 2013), resulting in sensor numbers four and ten not being

used. ... 183

Table 7.2: The filter performance data for the 0.5 Hz, 1 m peak amplitude sine wave

with a 50 dB SNR. ... 194

Table 7.3: The filter performance data for the 0.5 Hz, 1 m peak amplitude square

wave with a 50 dB SNR. ... 194

Table 7.4: Comparison of the Kinect v1 SDK’s joint orientation algorithm with the

KVR system joint orientation algorithm using pseudo-random skeletons. 199

Table 7.5: Comparison of the Kinect v1 SDK’s joint orientation algorithm with the

KVR system joint orientation algorithm using the CAD 60 dataset. 200

xiii

NOMENCLATURE

Abbreviations

ABS Acrylonitrile Butadiene Styrene (plastic)

API Application Programming Interface

ART Algebraic Reconstruction Technique

ASME American Society of Mechanical Engineers

CAVE CAVE Automatic Virtual Environment

CAD Computer Aided Design

CCD Charge-Coupled Device

CMOS Complimentary Metal-Oxide-Semiconductor

COR Center of Rotation

CPU Central Processing Unit

CT Computed Tomography

DTW Dynamic Time Warping

DVR Direct Volume Rendering

EBT Electron Beam Tomography

ECT Electrical Capacitance Tomography

EIT Electrical Impedance Tomography

EDT Engineering Design Team

FAAST Flexible Action and Articulated Skeleton Toolkit (computer program)

FBP Filtered Backprojection

FDK Feldkamp, Davis, Kress (algorithm for cone beam CT reconstruction)

FEDSM Fluids Engineering Division Summer Meeting (ASME conference)

xiv

FPS Frames Per Second

GLSL OpenGL Shading Language

GPU Graphics Processing Unit

HAL Hardware Abstraction Layer

HMD Head-Mounted Display

HU Hounsfield Unit

IVR Indirect Volume Rendering

KVR Kinect with Virtual Reality (computer program)

LCD Liquid Crystal Display

LPM Liters per Minute

METaL Multimodal Experience Testbed and Laboratory

MRI Magnetic Resonance Imaging

NMR Nuclear Magnetic Resonance

NURBS Non-Uniform Rational Basis Spline

PIV Particle Image Velocimetry

Pixel Picture Element

PTV Particle Tracking Velocimetry

RF Radio Frequency

SART Simultaneous Algebraic Reconstruction Technique

SDK Software Development Kit

SIMD Single Instruction, Multiple Data

SNR Signal to Noise Ratio

ROI Region of Interest

xv

USB Universal Serial Bus

Voxel Volume Element

VRPN Virtual Reality Peripheral Network

XFloViz X-ray Flow Visualization Facility

X-Rip X-ray Image Processor (computer program)

XPTV X-ray Particle Tracking Velocimetry

Roman Symbols

a Scaled distance to sampled position in the x-direction (mm)

 Total error estimate of a Kalman filter (-)

 Subscript indicating a specific Kinect skeleton joint, per Table 7.1 (-)

A Peak amplitude (m)

A Weighting matrix for algebraic reconstruction (-)

Ax x-direction polynomial coefficient matrix for image unwarping (-)

Ay y-direction polynomial coefficient matrix for image unwarping (-)

b Scaled sampling distance in the z-direction (mm)

B0 External magnetic field strength (T)

B Bulk CT slice (-)

C Gas CT slice (-)

d Source to center distance (mm)

D(i, j, k) Voxel intensity at (i, j, k) (-)

e Error vector in algebraic reconstruction (-)

E Photon energy (eV)

Emax Maximum photon energy (eV)

xvi

f Far plane z-coordinate of viewing volume (-)

 Frequency (Hz)

f(x, y) Reconstructed tomographic slice (-)

f(r, ϕ) Reconstructed tomographic slice in polar coordinates (-)

f(x, y, z) Reconstructed tomographic volume (-)

F Kalman filter state transition matrix (-)

g(t) Filter kernel for FBP (-)

G(i, j, k) Gradient at voxel (i, j, k) (-)

G Algebraically reconstructed slice (-)

Ĝ(q) Estimated slice reconstruction at iteration q (-)

i Voxel position in the x-direction (-)

I X-ray intensity (W
m2

)

 Voxel intensity (-)

 Width of a tomographic slice (-)

I0 Initial X-ray intensity (W
m2

)

Iave Average pixel intensity (-)

Ib Voxel intensity, bulk CT (-)

Idark Dark field pixel intensity (-)

If Voxel intensity, flow CT (-)

Ig Voxel intensity, gas CT (-)

Iim Uncorrected pixel intensity (-)

Im Measured voxel intensity (-)

Inew Normalized pixel intensity (-)

xvii

Iref Baseline voxel intensity (-)

j Voxel position in the y-direction (-)

J Height of a tomographic slice (-)

k Voxel position in the z-direction (-)

 Kalman filter time index (-)

l X-ray path length (cm)

 Left plane x-coordinate of viewing volume (-)

m Second statistical moment (-)

M Number of projections (-)

Max Maximum possible pixel value (-)

Min Minimum possible pixel value (-)

n Number of voxels (-)

 Near plane z-coordinate of viewing volume (-)

 Bit depth of an individual channel of an image (-)

ncolumns Number of columns in the unwarping grid (-)

nrows Number of rows in the unwarping grid (-)

N Number of voxels in one direction (-)

 Number of pixels in one row of a projection (-)

 Number of triangles in a triangle strip (-)

p Number of voxel chunks (-)

p(t, θ) X-ray projection at angle θ, detector position t (-)

p X-ray projection vector for algebraic reconstruction (-)

 Three space position (m)

xviii

pa Position of Kinect skeleton joint a (m)

pcamera Virtual camera position (-)

pcurrent Position of the current Kinect skeleton joint in hierarchy (m)

pprevious Position of the previous Kinect skeleton joint in hierarchy (m)

ptarget Virtual camera target position (-)

P Kalman filter estimate covariance matrix (-)

r Radius from the volume center (mm)

 Right plane x-coordinate of viewing volume (-)

 Viewing volume aspect ratio (-)

r0 Radius from the center of the slice to the feature center (-)

r Rotation axis vector (-)

R Kinect skeleton joint orientation matrix (-)

s Scaling vector (-)

t Time (s)

 X-ray detector position (-)

 Top plane y-coordinate of viewing volume (-)

Δt Time between steps k and k-1 (s)

T1 Spin-lattice relaxation time constant (s)

T2 Spin-spin relaxation time constant (s)

T2
* Observed spin-spin relaxation time constant (s)

T Transformation matrix (-)

u Original point or vector in homogeneous coordinates (-)

v Three-space vector (-)

xix

vup Up direction vector (-)

w Transformed point or vector in homogeneous coordinates (-)

wk Kalman filter process noise at time step k (-)

x x-position in a computed tomography reconstruction (-)

 x-position of a Kinect skeleton joint (m)

Δx Distance between sampled points in the x-direction (-)

ẋ x-direction velocity of a Kinect skeleton joint (m
s
)

ẍ x-direction acceleration of a Kinect skeleton joint (m
s2

)

xc Corrected x-position (-)

xcen Center x-position (-)

xd Distorted x-position (-)

xmax Maximum x-position (-)

xmin Minimum x-position (-)

xscale Viewing volume x-axis scaling factor (-)

xspace On center distance between clusters in the x-direction (-)

x x-axis vector (-)

xa x-axis vector of Kinect skeleton joint a (-)

x' x-axis vector in the Kinect coordinate space (-)

xa
' x-axis vector in the Kinect coordinate space of skeleton joint a (-)

xk Kalman filter state estimate vector at time step k (-)

y y-position in a computed tomography reconstruction (-)

 y-position of a Kinect skeleton joint (m)

Δy Distance between sampled points in the y-direction (-)

xx

ẏ y-direction velocity of a Kinect skeleton joint (m
s
)

ÿ y-direction acceleration of a Kinect skeleton joint (m
s2

)

yc Corrected y-position (-)

ycen Center y-position (-)

yd Distorted y-position (-)

ymax Maximum y-position (-)

ymin Minimum y-position (-)

yscale Viewing volume y-axis scaling factor (-)

yspace On center distance between clusters in the y-direction (-)

y y-axis vector (-)

ya y-axis vector of Kinect skeleton joint a (-)

z z-position in a computed tomography reconstruction (-)

 z-position of a Kinect skeleton joint (m)

Δz Distance between sampled points in the z-direction (-)

ż z-direction velocity of a Kinect skeleton joint (m
s
)

z̈ z-direction acceleration of a Kinect skeleton joint (m
s2

)

z z-axis vector (-)

za z-axis vector of Kinect skeleton joint a (-)

Z Atomic number (-)

Greek Symbols

α Virtual camera field of view (degrees)

αi Distance from the center of the i
th

 unknown projection to the feature center (-)

xxi

αp Distance from the center of the known projection p to the feature center (-)

Δα Shift from a known projection to a calculated projection in the x-direction (-)

γ Gyromagnetic ratio (radians
s*T

)

ε Void fraction (-)

εb Bulk void fraction (-)

θ Projection angle (degrees)

 Angle of rotation transform (degrees)

θa Angle of Kinect skeleton joint a (degrees)

θi Angle of the i
th

 unknown projection (degrees)

θp Angle of the known projection p (degrees)

λ(q) Relaxation factor at iteration q (-)

μ Arithmetic mean (-)

μ' Arithmetic mean of a portion of a data set (-)

μ

ρ
 X-ray mass attenuation coefficient (cm

2

g
)

ρ Density (g

cm3
)

ρb Bulk density (g

cm3
)

ρp True particle density (g

cm3
)

σ Sample standard deviation (-)

σob Kalman filter observation standard deviation (m)

σpr Kalman filter process standard deviation (m
s3

)

ϕ Angle from the x-axis within the slice (degrees)

ω0 Larmor angular frequency (radians
s

)

xxii

ACKNOWLEDGEMENTS

The completion of this dissertation would not have been possible without a huge number

of people who provided their assistance, support, and friendship along the way. While I

would like to thank each one individually, space will not permit it. So, to all my family,

friends, peers, and coworkers, to all the members of my committee, and to all the faculty and

staff of the Mechanical Engineering and Human Computer Interaction Departments at Iowa

State University, THANK YOU!

Specifically, I would like to thank my co-major professors, Dr. Theodore Heindel and

Dr. Judy Vance. Without all your advice, wisdom, support, and patience, I would never have

been able to make it through the Ph.D. program. I would also like to thank the members of

my program of study committee, Dr. Hui Hu, Dr. Gene Takle, and Dr. Eliot Winer. Your

feedback, support, and advice has been invaluable.

I would also like to thank my parents, Ron Morgan and Marta Burkgren, for their love

and support at every turn. And my sister, Meridith Burkgren Morgan, for her love and

support, and for making sure my ego never got too big.

Additionally, the following people provided assistance with portions of this dissertation,

and deserve specific recognition.

 CHAPTER 4: I would like to thank Ben Halls for his collaboration on testing out the

high-speed camera in the X-ray system. Also, I would like to thank Dr. Terrence Meyer,

for letting us put his high-speed camera in a high radiation area, not knowing what effects

it might have on the camera.

xxiii

 CHAPTER 5: I would like to thank Laurel Barnet, Ben Engebrecht, Anne Gustafson, and

Emily Whitemarsh for their assistance in collecting and processing the data used in this

study.

 CHAPTER 6: I would like to thank Laurel Barnet, Thomas Burtnett, Xi Chen, and Anna

Riesen for their assistance in design and building the X-ray phantoms used in this study,

as well as their assistance with collecting the data used in this study.

 CHAPTER 7: I would like to thank Diana Jarrell, Patrick Carlson and Ryan Pavlik for

their many fruitful discussions about the implementation of this project and their work

recompiling VRJuggler to support the VRPN text device.

 CHAPTER 8: I would like to thank Leif Berg and Patrick Carlson for their many

discussions about how to implement this system and the usability of different interaction

methods. I would also like to thank Thomas Burtnett for his assistance implementing the

system.

Finally, I would like to thank the many groups that provided support for this research.

Portions of this work and my Ph.D. studies were supported by the Bergles Professorship in

Thermal Science, the Joseph C. and Elizabeth A. Anderlik Professorship in Engineering, the

Office of Naval Research (Dr. Knox Millsap, Program Manager), the Army Research Office

(Dr. Ralph Anthenien, Program Manager), the State of Iowa Power Fund, and Iowa State

University. The X-ray facility used in this research was funded by the National Science

Foundation under award number CTS-0216367 and Iowa State University.

xxiv

ABSTRACT

Multiphase flows are used in a wide variety of industries, from energy production to

pharmaceutical manufacturing. However, because of the complexity of the flows and

difficulty measuring them, it is challenging to characterize the phenomena inside a

multiphase flow. To help overcome this challenge, researchers have used numerous types of

noninvasive measurement techniques to record the phenomena that occur inside the flow.

One technique that has shown much success is X-ray imaging. While capable of high spatial

resolutions, X-ray imaging generally has poor temporal resolution.

This research improves the characterization of multiphase flows in three ways. First, an

X-ray image intensifier is modified to use a high-speed camera to push the temporal limits of

what is possible with current tube source X-ray imaging technology. Using this system,

sample flows were imaged at 1000 frames per second without a reduction in spatial

resolution. Next, the sensitivity of X-ray computed tomography (CT) measurements to

changes in acquisition parameters is analyzed. While in theory CT measurements should be

stable over a range of acquisition parameters, previous research has indicated otherwise. The

analysis of this sensitivity shows that, while raw CT values are strongly affected by changes

to acquisition parameters, if proper calibration techniques are used, acquisition parameters do

not significantly influence the results for multiphase flow imaging. Finally, two algorithms

are analyzed for their suitability to reconstruct an approximate tomographic slice from only

two X-ray projections. These algorithms increase the spatial error in the measurement, as

compared to traditional CT; however, they allow for very high temporal resolutions for 3D

imaging. The only limit on the speed of this measurement technique is the image intensifier-

camera setup, which was shown to be capable of imaging at a rate of at least 1000 FPS.

xxv

While advances in measurement techniques for multiphase flows are one part of

improving multiphase flow characterization, the challenge extends beyond measurement

techniques. For improved measurement techniques to be useful, the data must be accessible

to scientists in a way that maximizes the comprehension of the phenomena. To this end, this

work also presents a system for using the Microsoft Kinect sensor to provide natural, non-

contact interaction with multiphase flow data. Furthermore, this system is constructed so that

it is trivial to add natural, non-contact interaction to immersive visualization applications.

Therefore, multiple visualization applications can be built that are optimized to specific types

of data, but all leverage the same natural interaction. Finally, the research is concluded by

proposing a system that integrates the improved X-ray measurements, with the Kinect

interaction system, and a CAVE automatic virtual environment (CAVE) to present scientists

with the multiphase flow measurements in an intuitive and inherently three-dimensional

manner.

1

CHAPTER 1:

INTRODUCTION

Multiphase flows are used in a wide variety of industries; however, because of the

complexity of the flows, difficulty measuring them, and limitations in the visualization of the

measurements, it is challenging to characterize the phenomena inside a multiphase flow. To

aid in overcoming this challenge, this research combines improvements in noninvasive X-ray

measurements with virtual reality to provide a system that scientists can use to naturally and

intuitively characterize multiphase flows.

1.1 Motivation

The understanding of multiphase flows is a necessity in a broad range of modern

industries. From energy production to pharmaceutical manufacturing, a thorough

understanding of the hydrodynamics of the system is required to improve the efficiency and

effectiveness of various processes. However, increasing the understanding of fluid flows is a

challenging multi-faceted problem involving not only raw data, but also how the data are

presented to scientists for interpretation.

Unfortunately, many of the multiphase flows of industrial importance are extremely

difficult to measure experimentally. One example of this is the flow that occurs in fluidized

beds, which are used to burn biomass in some power plants. In such a system, crushed

biomass is added to a bed of hot sand, and air is injected from the bottom causing the

granular material to behave as a fluid. However, due to the opaque nature of the sand and

biomass, it is impossible to observe the hydrodynamics occurring inside the reactor visually.

Point measurements can be taken with probes, but the presence of the probe in the flow can

2

change the hydrodynamics of the system. In order to obtain better measurements of opaque

systems, many noninvasive flow measurement methods have been developed, as summarized

in Section 2.1. However, each system has specific limitations. Magnetic resonance imaging

and computed tomography, for example, have excellent three-dimensional spatial resolution,

but the time required to acquire a data set limits their usage to time-averaged measurements.

Other measurement techniques, such as electrical impedance tomography, have excellent

temporal resolution, but are severely limited in spatial resolution. A final group of

measurement techniques, including visible light particle tracking velocimetry and X-ray

particle tracking velocimetry, has good spatial and temporal resolution, but only for a small

number of particles, specifically introduced into the flow to aid in measurement. A

measurement system that enables the direct measurement of a multiphase flow with high

spatial and temporal resolution does not exist yet.

However, obtaining better raw data about a multiphase flow is only part of the problem.

A single computed tomography scan can easily generate over 100,000,000 individual data

points. For a scientist to effectively characterize the multiphase flow phenomena, this data

must be presented in a way that is intuitive and easy to interact with. Currently, many

scientists are forced to view flow data in ways that make data rendering easy, instead of ways

that make understanding easy. For example, X-ray computed tomography (CT) scans are

often viewed as individual slices instead of a full three-dimensional dataset. When looking at

individual tomographic slices, it is difficult, even for trained scientists, to understand where

phenomena occur in the flow, and what the three-dimensional flow structures look like. With

advances in computation and rendering, the technology now exists to render scientific data

sets in three-dimensions. Using these advances to display data in a manner that is intuitive to

3

users will allow the user to focus on understanding the flow instead of the mechanics of

visualization.

Finally, while three-dimensional rendering greatly assists in understanding, interaction

with the data representation provides scientists with the ability to fully explore the data. In

the physical world, it is common to manipulate objects to see how they react to varying

conditions, and having the ability to interact with data in the virtual world is equally

important. For example, the use of head tracking to update a computer rendering for a user’s

physical movement has been shown to be more important than stereo displays for user

immersion. Rendering data in virtual reality, coupled with the best natural interaction

methods available, will allow scientists to interact with the data as if it were a physical

object. Because the data are provided to the users in a manner that closely mimics the real

world, the users can leverage their previous experiences in the real world to form a mental

model of the flow’s structure more quickly and more accurately than they could by viewing a

static, abstract representation.

1.2 Objectives

This dissertation uses a novel combination of improved noninvasive multiphase flow

measurement techniques with natural user interaction in virtual reality to aid in the

characterization of multiphase flows. In order to achieve this goal, the research has the

following objectives:

1) Increase the frame rate of X-ray stereographic data collection to allow for the

accurate three-dimensional, time-varying measurement of high velocity multiphase

flow phenomena.

4

2) Determine the sensitivity of X-ray computed tomography measurements to changes

in acquisition parameters and in turn, provide multiphase flow researchers guidance

on how to select appropriate acquisition parameters.

3) Improve tomographic reconstruction to allow the generation of time-varying three-

dimensional data sets from stereographic X-ray measurements of multiphase flows.

4) Advance user interaction through the development of a natural, intuitive method of

interacting with virtual reality, while minimizing user encumbrances that could limit

user adoption.

5) Propose a system to combine noninvasive multiphase flow imaging with virtual

reality to aid in the characterization of multiphase flows.

1.3 Outline

First, a review of current state of the field and background for this research is presented

in Chapter 2. Note this chapter is intended to cover topics that have broad applicability

across this research. Topics that are more specific to a single chapter of research will be

reviewed in the chapter of relevance. Next, Chapter 3 will cover methods used in this

research. Again, this is intended to cover topics with broad applicability, specific methods

will be covered in the pertinent chapter. Chapter 4 presents research to test the temporal

limits of a tube based X-ray system of measurement and prove that high-speed cameras can

be coupled effectively with X-ray image intensifiers. In Chapter 5, a detailed analysis of

how X-ray computed tomography measurements respond to changes in acquisition

parameters is presented. In Chapter 6, two approximate computed tomography

reconstructions are presented that allow for the generation of three-dimensional data from

5

only two X-ray projections. Because two synchronized X-ray projections can be obtained at

very high speeds, this algorithm allows approximate four-dimensional data to be generated.

Chapter 7 shifts focus from the measurement of multiphase flows to the visualization,

specifically how to interact with the data. In this chapter, a system for using multiple

Microsoft Kinect sensors as an input device for a CAVE automatic virtual environment

(CAVE) is presented. Chapter 8 brings the X-rays and the virtual reality together to propose

a system for visualizing three-dimensional multiphase flow data in virtual reality. Finally,

Chapter 9 closes with overall conclusions and comments on the future opportunities in this

research area.

6

CHAPTER 2:

LITERATURE REVIEW

Improving the characterization of multiphase flow experiments is an inherently

multidisciplinary task, which requires a background in fluid mechanics, data processing,

computer graphics, and human computer interaction. This section will summarize the current

research available in these areas, with a focus on how that research advances multiphase flow

understanding. First, the state of the art in noninvasive multiphase flow measurement is

reviewed in Section 2.1. Next, Section 2.2 covers the reconstruction algorithms that have

been developed for noninvasive imaging using computed tomography. An overview of the

techniques available to render the volumetric datasets produced by computed tomography

reconstruct are provided in Section 2.3. Finally, Section 2.4 discusses the current techniques

for interacting with scientific data in virtual reality. A brief summary of the review is

provided in Section 2.5.

2.1 Noninvasive Multiphase Flow Measurement

The accurate measurement of multiphase flows has long posed a great challenge for

scientists. Most flows of scientific interest are dynamic, requiring measurement systems to

have a high temporal resolution. They also contain features on a number of length scales,

requiring measurement systems to image relatively large areas at high spatial resolutions.

Perhaps most challenging is that many multiphase flows are opaque to visible light, rendering

imaging methods developed for transparent systems useless. Furthermore, any

instrumentation that sits inside the flow has the potential to change the flow characteristics.

Therefore, the ideal tool to measure multiphase flows must have high temporal and spatial

7

resolution, work with visibly opaque systems, and be noninvasive to the flow. While there

are no measurement techniques available that can meet all these criteria, there are a number

of techniques available that meet some of the criteria. Some of the most common are optical

techniques, electrical impedance tomography, magnetic resonance imaging, and X-ray

imaging, which includes X-ray radiography and X-ray computed tomography. Each of these

techniques will be described in the subsequent sections.

2.1.1 Optical Techniques

The most basic methods of measuring multiphase flows are optical techniques. All of

the optical techniques use cameras to record the interaction of visible light with the

multiphase flow. However, the different optical techniques vary how the light is generated

(i.e., the flow may be externally illuminated or the flow may luminesce) and how the raw

data are processed. Due to the use of visible light, all optical techniques operate best on

optically transparent flows as the transparency of the flow permits the measurement of

phenomena inside the flow. Optical techniques may also be used on optically opaque flows;

however, they will be limited to measuring only the outer surface of the flow.

The simplest optical technique for multiphase flow measurement is direct imaging. In

direct imaging, a flow is illuminated by an external light source and the light the flow reflects

is recorded as an image using one or more cameras. Direct imaging is particularly useful in

measuring flow structures when the different phases have different optical properties, for

example the shape of bubbles in an air-water flow. Another example of direct imaging in

multiphase flow research is in binary particle flows. By using four video cameras and

controlled lighting, Kingston and Heindel (2014) measured the mixing of two materials at the

surface of a binary granular flow with high spatial and temporal resolution. However, in

8

cases such as this, where the flow is opaque, direct imaging provides no information about

what occurs beneath the surface of the flow.

A more advanced technique is particle tracking velocimetry (PTV). In PTV, a flow is

seeded with several neutrally-buoyant tracer particles, which have a high visual contrast with

the background. One or more cameras are placed around the system to image the flow. By

measuring a particle’s displacement between consecutive frames and knowing the time

between frames, the pathline and velocity of the tracer particle can be determined. With

enough particles and enough images, a velocity field for the flow can be generated (Jain et

al., 2002; Nishino et al., 1989). However, particle tracking requires an optically transparent

system and neutrally buoyant tracer particles. Furthermore, if there are too many tracer

particles in the flow, the likelihood of particles occluding each other increases, reducing the

ability of individual particles to be tracked from frame to frame.

If the number of tracer particles is increased to the point that it becomes infeasible or

impossible to track them each individually, the flow can be measured using particle image

velocimetry (PIV). In traditional PIV, a single plane within the system is illuminated with a

sheet of laser light. The laser light reflects off the tracer particles into the camera, located

perpendicular to the illuminated plane. The movement of the particles can then be measured

by taking two consecutive image frames or by using two pulses of the laser to image both

positions on one recorded frame. By calculating the correlation between the first and second

images, the 2D velocity field for the imaged plane can be found (Adrian, 1991). This system

can also be extended to 3D to measure the velocity field within a measured volume (Elsinga

et al., 2006). However, like PTV, PIV can only measure a transparent flow.

9

2.1.2 Electrical Impedance Tomography (EIT)

Another method of multiphase flow imaging is electrical impedance tomography (EIT).

Unlike optical techniques, EIT works on flows that are visually opaque. In a typical EIT

setup, a series of probes are arranged around the edge of the containment vessel. These

probes can be flush with the walls of the vessel, making the system noninvasive. To take a

measurement, an electric potential is applied to one probe, and the other probes measure the

field they receive. Then the probe is turned off, and the one next to it is excited, and so on

until all probes have been energized. From these measurements, the electrical impedance of

the flow, in the plane of the probes, can be reconstructed. Typically, the capacitance of the

flow is measured (referred to as electrical capacitance tomography, ECT), as most flows of

interest are electrical insulators; however, inductance or resistance can also be measured

(Chaouki et al., 1997). Because the measurement system contains no moving parts, EIT is

capable of measuring flows at high temporal resolutions, over 1000 Hz for each plane (van

Ommen and Mudde, 2008). However, the reconstruction of the slices is a very difficult

problem because EIT is a soft field measurement technique, meaning that a change in the

impedance at one location effects the measurement at every other location. Because of these

limitations, EIT has a poor spatial resolution, on the order of 5% of the containment vessel

diameter (Dickin et al., 1993).

2.1.3 Magnetic Resonance Imaging (MRI)

Another technique that has been used to image multiphase flows is magnetic resonance

imaging (MRI). MRI measures a multiphase flow by detecting the spatial and temporal

variations in the quantum spin of atomic nuclei. These spatial variations can be correlated to

the concentration of specific isotopes in a flow, for example the distribution of water in an

10

air-water flow. Advances in MRI systems have also made it possible to directly measure the

velocity or acceleration field of a flow.

At an atomic level, an MRI measures the net spin of atomic nuclei. In any atom in

which the nucleus contains an odd number of protons and/or neutrons, the atomic nucleus has

a net spin (½ in the case of an odd number of protons or neutrons and 1 in the case of both an

odd number of protons and an odd number of neutrons). This net spin causes the nucleus to

have a very small magnetic field. Without the presence of an external magnetic field, all the

nuclei will be aligned at random, and the nuclei’s magnetic fields will, on average, cancel

each other out. When a flow containing atomic nuclei of net spin is placed in an external

magnetic field, the magnetic torque from the net spin will tend to align the atomic nuclei with

the magnetic field (Gore et al., 1981). However, due to thermal effects, not all nuclei will

align with the field. In the case of
1
H, at room temperature, roughly one in a million more

nuclei will align with the external field than would be expected without the external magnetic

field. The exact number of nuclei that align with the external magnetic field is dependent on

the strength of the magnetic field and the temperature of the flow (Bottomley, 1983).

Since so few nuclei align with the external magnetic field, the net magnetic field

introduced into the object is extremely small, and thus difficult to measure (Gore et al.,

1981). However, as the nuclei align with the external magnetic field they oscillate around

the magnetic field. This oscillation is the phenomenon of nuclear magnetic resonance, or

NMR (Bottomley, 1983). Due to this oscillation, the nuclei also emit electromagnetic energy

at very specific frequencies. The angular frequency of the oscillation, 𝜔0, is known as the

Larmor frequency, and is given by:

 𝜔0 = 𝛾𝐵0 (2.1)

11

where γ is the gyromagnetic ratio, which is dependent on the nuclei type, and B0 is the

strength of the magnetic field (Fukushima, 1999). As an example, in a 1 T magnet,
1
H has a

Larmor frequency of 42.57 MHz, which is within the radio frequency (RF) band of the

electromagnet spectrum (Bottomley, 1983).

The existence of the NMR phenomenon by itself is not enough to produce

measurements. The individual nuclei have random phases, making it impossible to measure

the RF signal. To enable measurements, an MRI machine uses a weaker secondary

electromagnet to perturb the primary electric field. The secondary magnet generates

different pulses to produce different measurements. The most important are the so-called 90°

and the 180° pulses, which cause the bulk magnetization of the nuclei to turn 90° or 180°

from the primary magnetic field, respectively. Using combinations of these pulses, two

properties of the material can be measured: the spin-lattice relaxation time constant (also

called the longitudinal or T1 relaxation time constant) and the spin-spin relaxation time

constant (also called the transverse or T2 relaxation time constant) (Bottomley, 1983). In

both cases, the value of the time constant is that of the inverse exponential constant in a first

order exponential function (Gore et al., 1981). In the case of T1, the length of the time

constant is based on the time it takes for the nuclei to return to their equilibrium alignment

with the primary magnetic field. This value can vary from a few milliseconds to months,

depending on the state of matter (in general, fluids have shorter relaxation times due to the

greater freedom of motion at the atomic level). The T2 relaxation time is based on the

coherence of the oscillation phase between the nuclei. After a 90° pulse, significantly more

nuclei oscillate in phase with each other than at equilibrium. As time passes, the nuclei

slowly fall out of phase with each other, canceling out their respective electromagnetic

12

emissions and reducing the net signal strength detected. The value of T2 typically varies

from a few microseconds to a few minutes (Bottomley, 1983).

Finally, there are two complicating factors MRI machines must overcome to image a

material. First, there are always slight variations in the local magnetic field of the primary

magnet. Due to these variations, a single excitation pulse will cause the material to emit a

pulse with a significantly shorter RF signal (called T2
*
) than the true relaxation time. To

cancel out these effects, special sequences of excitation pulses are used (Bottomley, 1983).

Second, if only excitation pulses are used in combination with the primary magnet, there is

no way to discern which part of the material is causing the signal, and thus an average of the

entire volume is measured. To determine the local variation of the response, a magnetic

gradient is applied, causing the Larmor frequency of the nuclei to change with respect to their

position in the object. Using combinations of gradients in different directions, 2D and 3D

datasets can be obtained (Bottomley, 1983)

MRI has several properties that make it useful in the measurement of multiphase flows.

First, like electrical impedance tomography, MRI has the capability to image opaque flows.

Second, MRI is capable of achieving excellent spatial resolution (sub-millimeter) (Chaouki et

al., 1997). Finally, MRI is an extremely flexible imaging modality. By varying the

excitation pulses and gradients, it is possible to tag portions of the flow magnetically to

monitor its evolution, measure chemical reactions within the flow, or directly measure the

velocity or acceleration of the flow (Ehrichs et al., 1995; Fukushima, 1999; Markl et al.,

2012).

While MRI is one of the most flexible noninvasive imaging modalities available, it also

suffers from several drawbacks. First, the signal to noise ratio in MRI data is approximately

13

proportional to 𝐵0
7
4, thus extremely powerful primary magnets are required for MRI

(Fukushima, 1999). Due to these powerful magnetic fields, any ferromagnetic material, such

as steel valves, must be kept away from the MRI machine. Second, the time required to

image in three dimensions is significant. A typical 3D acquisition can take 20 minutes or

more (Bottomley, 1983; Markl et al., 2012). Despite this, time-resolved MRI has been

achieved in a periodic flow with sub-second resolution, although this is not generalizable to a

generic flow (Markl et al., 2012). Additionally, there is ongoing work in methods to

accelerate MRI by using special excitation pulse sequences and through the use of

multichannel receiver coils (Blaimer et al., 2004; Mansfield, 1977).

2.1.4 X-ray Imaging

Another important tool for making noninvasive measurements of multiphase flows is

X-ray imaging. X-rays were originally discovered by Wilhelm Röntgen in 1895 while

studying cathode ray tubes (Röntgen, 1896). For this discovery, Röntgen was awarded the

first Nobel Prize in Physics in 1901. Since their discovery, X-rays have become an important

tool in the imaging of multiphase flows (Heindel, 2011; Rowe and Partridge, 1965; van

Ommen and Mudde, 2008). There are two primary forms of X-ray imaging that have been

used in multiphase flow research: radiography (Section 2.1.4.3) and computed tomography

(Section 2.1.4.5). Radiography is capable of higher temporal resolution than computed

tomography; however, computed tomography is capable of making 3D measurements.

Furthermore, both methods can be used with two different types of X-ray sources: tube

sources (Section 2.1.4.1) and synchrotron sources (Section 2.1.4.2).

14

2.1.4.1 Tube X-ray Sources

The tube source is the simplest type of X-ray source. Inside an X-ray tube is a vacuum

chamber containing an anode and a cathode. When a high voltage (on the order of kilovolts)

is applied between the anode and the cathode, electrons are emitted from the cathode and

impact the anode. When the electrons impact the anode, the anode emits X-ray photons with

energies less than or equal to the electrical potential across the tube.

There are two physical phenomena involved in the production of X-rays in a tube

source: bremsstrahlung radiation and characteristic radiation. Bremsstrahlung radiation

occurs when the electron (in fact any charged particle, although electrons are by far the most

commonly used) travels near an atomic nucleus. Because the electron and the nucleus have

opposite electric charges, they will be attracted to each other, causing a deceleration of the

electron and bending its path. This deceleration causes the electron to lose kinetic energy

and emit a photon with energy proportional to the kinetic energy lost by the electron. Since

the electron can lose any amount of energy up to its total kinetic energy, bremsstrahlung

radiation produces a wide distribution of X-ray energies (Hsieh, 2009). The closer the

electron passes to the nucleus, the stronger the electric field it encounters, and the higher the

energy of the photon produced. In the extreme case, the electron directly impacts the nucleus

and yields all its energy to the emitted photon.

The second type of radiation emitted from a tube source is characteristic radiation.

Characteristic radiation occurs when the free electron collides with one of the inner shell

electrons in the target material. When this collision occurs with enough energy, the target

electron will be ejected from its orbit, and an electron from an outer shell will move inwards

to fill the hole. When this electron moves inward, it emits a photon with the difference in

15

binding energy between its original shell and its new shell. This means there are a limited

number of energies at which photons can be emitted for any given target material, and those

energies are characteristic to the material used for the anode. When the X-ray spectrum

emitted by a source is graphed, spikes in intensity occur at the energies of the characteristic

X-rays (Hsieh, 2009).

A special type of tube source is the flash X-ray source. The primary difference between

a standard tube source and a flash X-ray tube is the flash sources typically run at much high

power, but for very short periods (on the order of nanoseconds) (Boyer et al., 2005). In any

X-ray tube, a large portion of the energy of the electrons is converted to heat in the anode. If

too much power is run through the tube, the anode can melt, destroying the source. In flash

sources, the power is very high, but they are used only for a short pulse to keep the total

energy the anode has to absorb low. However, this typically limits flash sources to a small

number of flashes before the source requires a long cooling period.

2.1.4.2 Synchrotron Sources

A synchrotron source is fundamentally different from a tube X-ray source. Synchrotron

sources use particle accelerators to generate X-rays from the magnetic bending of relativistic

electrons. In a synchrotron source, narrow bunches of electrons are generated in a booster

ring and then injected into a large storage ring. Both rings are constructed of large hollow

tubes that are maintained at a very hard vacuum to reduce the probability of the electrons

impacting matter. The electrons are contained inside the rings using powerful magnetic

fields, and radiofrequency generators are used to accelerate the electrons to the desired speed

(Smith, 1995). When the electrons’ path is bent using the synchrotrons bending magnets, an

acceleration is imparted on them, causing the electrons to lose energy in the form of

16

synchrotron radiation. This is the magnetic equivalent of bremsstrahlung radiation

(Bilderback et al., 2005). Because the electrons used in synchrotron sources are moving at

near the speed of light, the electrons follow very closely behind the photons they create. As

the bending electrons generate more photons, those photons will also follow closely behind

the earlier emitted photons. This creates a time-squeezing effect, which greatly amplifies the

intensity of the X-rays emitted, but only when the observer is looking nearly straight at the

incoming photons (Kim, 1989).

The radiation resulting from synchrotron sources has two important properties. First, it

is extremely bright relative to tube sources. This allows for the imaging of fast moving

phenomena, such as shockwaves (MacPhee et al., 2002). Second, the radiation from

synchrotron source is coherent, allowing for the imaging of objects using the phase of the

X-ray radiation instead of the magnitude (Hwu et al., 2002; Lee and Kim, 2005). Finally, it

should be noted that, while synchrotron radiation produces a wide spectrum of X-ray

energies, its spectrum is often narrowed to nearly a single energy by using a monochromator.

2.1.4.3 Radiography

Irrespective of which type of X-ray source is used, the simplest usage of X-rays for

multiphase flow measurement is X-ray radiography. Radiography is the process of taking a

traditional X-ray image, the type doctors perform to detect broken bones. This can be

thought of as an image of the shadow cast by a semi-transparent object. The opacity of a

material measured with X-rays is known as its X-ray attenuation, which is correlated to the

materials density and the energy of the incoming X-ray photons. A more rigorous

explanation is that a radiograph is an image where the X-ray intensity, I, at each pixel is the

17

line integral of the object’s X-ray attenuation along the path of the X-ray. The attenuation

follows the Beer-Lambert law:

𝐼 = 𝐼0𝑒

−(𝜇
𝜌
)𝜌𝑙

 (2.2)

where 𝐼0 is the initial X-ray intensity,
𝜇

𝜌
 is the mass attenuation coefficient of the material, ρ

is the density of the material, and l is the X-ray path length through the object (Heindel,

2011). This equation assumes a monochromatic X-ray source and a single, homogeneous

material. When a heterogeneous object is imaged with a monochromatic source, the final

X-ray intensity at the X-ray detector becomes:

𝐼 = 𝐼0𝑒

−∫ (
𝜇(𝑧)
𝜌(𝑧)

)

𝐿 𝜌(𝑧)𝑑𝑧

 (2.3)

where, ∫ 𝑑𝑧

𝐿
 is the line integral along the X-ray path, with

𝜇

𝜌
 and ρ being the same as before,

except now they are functions of the location in the X-ray path, instead of constants (Epstein,

2003). When a polychromatic source is used to image a heterogeneous object, the final

X-ray intensity is:

 𝐼 = ∫ 𝐼0(𝐸)𝑒
−∫ (

𝜇(𝑧,𝐸)
𝜌(𝑧)

)𝜌(𝑧)𝑑𝑧𝐿

𝐸𝑚𝑎𝑥

0

𝑑𝐸 (2.4)

where E is the photon energy, and 𝐸𝑚𝑎𝑥 is the maximum photon energy emitted by the

source (Macovski, 1983). All other variables are the same as before, although the initial

intensity and the mass attenuation coefficient are now both functions of photon energy.

The X-ray attenuation of a flow is produced by three physical phenomena: the

photoelectric effect, Compton scattering, and pair production. Pair production only occurs at

extremely high photon energies, which are beyond what most X-ray sources can produce,

and thus the phenomenon will not be covered. At lower X-ray energies (less than 100 keV),

the photoelectric effect is the predominant mode of attenuation (Ketcham and Carlson, 2001).

18

The photoelectric effect was first explained in 1905 by Albert Einstein, and for this work he

was awarded the Nobel Prize in Physics in 1921 (Arons and Peppard, 1965; Einstein, 1905;

Hsieh, 2009). When a photon is attenuated via the photoelectric effect, the incoming photon

has more energy than the binding energy of an inner electron in an atom of the material and

in the resulting interaction, the entire energy of the X-ray photon is transferred to the

electron. This interaction destroys the X-ray photon and ejects the electron (now referred to

as a free electron or photoelectron) from the atom. When an electron from an outer shell

moves inward to fill the hole left by the ejected electron, the atom emits a new photon of

lower energy than the original photon. However, these emitted photons are typically of such

low energy that they are totally attenuated inside the material (Hsieh, 2009). Attenuation due

to the photoelectric effect can be particularly useful in identifying different materials as the

attenuation it produces is proportional to Z
3
, where Z is the atomic number of the element

(Hsieh, 2009).

The second mode of X-ray attenuation within a material is Compton scattering, which is

the predominate mode of attenuation from roughly 100 keV to 5 MeV. Compton scattering

was first explained by Arthur Compton in 1923, work for which he received the 1927 Novel

Prize in Physics (Compton, 1923; Hsieh, 2009). Compton scattering occurs when the energy

of the incoming photon is significantly higher than the binding energy of the impacted

electron. Unlike the photoelectric effect, only some of the photon’s energy is lost to the

electron in Compton scattering (albeit enough to free the electron from the atom), and the

photon is deflected away from its original trajectory. The energy of the photon after the

collision is dependent on the angle at which the photon is scattered, with the highest energies

at the smallest scattering angles.

19

2.1.4.4 Radiography Enhancements

While radiography has found common usage in noninvasive multiphase flow imaging,

its usefulness is limited because it is ultimately a 2D projection of a 3D object. This loss of

information has led to some enhancements to try to improve radiography’s usefulness. The

first enhancement is stereography. Stereography acquires two or more radiographs from

different viewpoints. Just as with visible light, by using two viewpoints to measure the flow,

much of the 3D information about the flow can be recovered (Kingston et al., 2014; Morgan

and Heindel, 2010).

X-ray imaging can be further enhanced by borrowing velocimetry techniques from

visible light imaging. For example, Lee and Kim (2005) have applied PIV techniques to

synchrotron images to measure the 2D velocities of blood flows. Combining stereography

and velocimetry techniques has shown great promise in the measurement of multiphase

flows. Seeger et al. (2001) developed the use of X-ray particle tracking velocimetry (XPTV)

with stereoscopic images and applied it to gas-liquid flows. Based on that work, Shimada et

al. (2007) have also experimented with XPTV in slurry flows.

2.1.4.5 Computed Tomography (CT)

Another mode of X-ray imaging is X-ray computed tomography (CT). Computed

tomography extends the concept of stereography to many viewpoints and adds a

reconstruction step to generate a 3D volume in which each point (called a voxel, which

stands for volume element) represents the X-ray attenuation of that point in space. The

reconstruction step is important to the accuracy of CT scans, and is discussed in Section 2.2.

In concept, CT is not limited solely to objects illuminated by X-rays; however, in practice the

term computed tomography typically refers to X-ray CT unless otherwise noted.

20

The concept of CT was first conceived independently by Allen Cormack in the early

1960s, although the mathematical foundation (i.e., the Radon transform) on which CT is

based was first described by Johann Radon in 1917 (Cormack, 1963, 1964, Radon, 1917,

1986). In 1967, Godfrey Hounsfield, working independently of Cormack, built the first CT

scanner intended to scan humans for signs of disease (Hounsfield, 1976; Hsieh, 2009). After

scanners became available for medical use, they soon moved into other scientific endeavors,

such as flow imaging. In 1979, Cormack and Hounsfield shared the Nobel Prize in

Physiology and Medicine for their work on CT scanners (Hsieh, 2009).

Traditionally, CT scanners are classified into four generations based on the mechanics of

how the scanner acquires each projection. It is important to note that all four generations of

scanners acquire one slice at a time. If multiple slices are needed to measure the flow of

interest, either the flow or the scanner has to be translated and the slice scanning process

repeated. In first generation scanners, a single narrow “pencil” beam of X-rays is projected

onto a single point detector. The source and detector are then translated together to collect

multiple measurements, which together make one projection. The source and detector are

then rotated around a common origin and the process of acquiring a projection is repeated.

While this provides a parallel X-ray beam, which is advantageous for reconstruction, the

process to acquire one scan is very time consuming. Second generation scanners are very

similar to first generation scanners, except a very narrow fan shaped X-ray beam is used

instead of a “pencil” beam and multiple detectors are used simultaneously. This allows the

CT scan to be completed with fewer translations between the rotations. Furthermore,

because of the narrow angular spread of the fan beam, second generation scanners still

21

maintain an X-ray beam that is sufficiently parallel to use a parallel beam reconstruction

algorithm (Ketcham and Carlson, 2001).

Third and fourth generation scanners eliminate the translations between rotations by

using a wide fan beam. In a third generation scanner (which is the most common style in use

today), a single wide X-ray beam is projected onto a wide array of point detectors, which are

capable of imaging the entire projection in one shot. The source-detector pair is then rotated

around a common center to take the next projection. In modern scanners this rotation can

happen quickly, allowing a single slice to be imaged in 0.5 s or less (Hsieh, 2009). Fourth

generation scanners have a continuous, 360° array of detectors, which remain stationary

while the source rotates to project onto different parts of the array. While fourth generation

scanners are capable of self-calibration and higher resolutions than third generation scanners,

they are more costly. Both third and fourth generation scanners require a fan beam

reconstruction to account for the wide spread angle of the X-ray beam, which is more

computationally complex than the parallel beam method used in first and second generation

scanners.

First through fourth generation scanners all scan a single slice at a time. Therefore, at

0.5 s per slice, a scanner would still take over four minutes to scan 512 slices, an average

scan size. This speed is insufficient for most time varying flows, although time averaged

values may be acquired. Several methods have been proposed to reduce the required scan

time. One method is to scan many slices at once, known as volume CT scanning. To

achieve volume CT scanning, a wide X-ray beam spread is required in two directions,

resulting in a cone beam. This again results in a more complex reconstruction step, and

causes some reduction in spatial resolution (Ketcham and Carlson, 2001).

22

Other methods to reduce scan time focus on eliminating the rotating mass of the system.

One way this can be done by using multiple stationary source-detector pairs (Mudde, 2011;

Wu et al., 2007). Having stationary sources and detectors eliminates all moving parts and

creates a system that is capable of extremely high temporal resolutions (2500 Hz). However,

the number of projections is limited to the number of source-detector pairs, which

significantly reduces the spatial resolution. Furthermore, these systems also typically

measure a small number of slices so they can use a fan beam reconstruction, thus a

translation of either the source or the flow is required to measure a large number of slices. A

second method to eliminate the rotation mass of the system is to use a custom X-ray source,

known as an electron beam source. An electron beam source differs from a normal tube

source in that it contains high voltage electric fields to deflect the electron beam within the

source so it impacts at different locations on a large anode. Thus, a moving X-ray source can

be achieved without any physical moving parts (Budoff and Gul, 2006; Fischer et al., 2008).

These so called electron beam tomography (EBT) systems are capable of scan rates up to

10,000 Hz, while maintaining sub-millimeter resolution (Bieberle et al., 2010; Mudde, 2011).

However, up to this point, they are limited to scanning a small number of slices at one time.

2.2 Computed Tomography (CT) Reconstruction

In computed tomography, the most difficult and most critical step is the reconstruction.

The reconstruction transforms the set of projections the scanner measured into a 3D

representation of the measured flow. This process is sensitive to noise in the projections and

the number of views measured. However, by understanding the reconstruction process, a

balance can be found between the quality of the reconstruction and the quantity and quality

of views required, which in turn correlates to the time required to acquire a CT.

23

 Mathematically, a CT is simply a Radon transform of the object being scanned. That is

to say, it is a set of line integrals, which represent the function being measured. In order to

determine the values of the function, all that is needed is to invert the Radon transform.

However, calculating the inverse of a Radon transform is not a trivial problem, which is

exacerbated by the discrete sampling and complex scanning geometries used in real CT

scanners. The most computationally efficient method of solving this problem is via the

Fourier projection-slice theorem. While computationally efficient, the Fourier projection-

slice theorem cannot handle advanced scanning geometries. Therefore, two other classes of

algorithms are typically used to calculate the inverse Radon transform: filtered

backprojection (FBP) and algebraic reconstruction techniques (ART). It should also be

noted, that while this section specifically discusses reconstruction techniques for X-ray CT,

the same basic principles can be applied to any form of tomography.

2.2.1 Fourier Projection-Slice Theorem

In the 2D case, the concept of the Fourier projection-slice theorem (also called the

central slice theorem) is as follows. First, the Fourier transform of the projection is

determined. The result of this transform is translated so it is along the line parallel to the

projection, but centered on the origin of the 2D Fourier space. This is repeated for all

projections and therefore fills the 2D Fourier. Once all the projections have been added, the

2D inverse Fourier transform is computed, and that result is the spatial domain slice (Epstein,

2003; Hsieh, 2009). The Fourier projection-slice theorem also holds in three-dimensions,

with the projections being planes instead of lines. While this calculation is computationally

efficient, it has some drawbacks. First, since aligning the projections in the Fourier space

requires a resampling from Cartesian coordinates to polar coordinates, an interpolation is

24

required. However, interpolations in the frequency domain create much greater errors than

interpolations in the spatial domain (Hsieh, 2009). Furthermore, the Fourier projection-slice

theorem is only valid for parallel beam projections.

2.2.2 Filtered Backprojection (FBP)

To overcome the limitations associated with reconstruction via the Fourier projection-

slice theorem, filtered backprojection was developed. The concept behind the filtered

backprojection algorithm is relatively simple. First, consider a simple backprojection. In this

case, the ray from the X-ray source to each projected point at one angle is computed, and the

projection value is added to each point the ray passes through. This is repeated for all the

projected angles, averaging the values at each point. This returns a reconstruction of the

slice, but it will be blurred (Shepp and Kruskal, 1978). To correct for this blur, a filtering

step is added prior to the backprojection. In this filtering step, the projected intensities are

convolved with a filtering kernel. The most basic kernel is a ramp filter; however, numerous

other kernels have been proposed (Hsieh, 2009; Shepp and Kruskal, 1978; Shepp and Logan,

1974).

While the concept of the FBP algorithm is applicable to any scanning configuration, the

details of the mathematics vary by configuration. The simplest configuration is the parallel

beam case. In this case the FBP is:

𝑓(𝑥, 𝑦) = ∫ 𝑝(𝑡, 𝜃) ∗ 𝑔(𝑡)𝑑𝜃

𝜋

0

 (2.5)

where p(t,θ) is the projection at angle θ and detector position t, g(t) is the filter kernel, f(x,y)

is the reconstructed slice, and ∗ is the convolution operator (Hsieh, 2009). There are two

interesting features of note with the parallel FBP algorithm. First, in the parallel case, only

180° of projections are required to reconstruct the object. Second, because X-rays are

25

attenuated in an exponential fashion (see the Beer- Lambert law in Eq. (2.3)), the natural

logarithm of the raw data from the detector must be computed to generate p(t,θ). While the

second observation holds true for all geometries and reconstruction methods, the first is only

true for a parallel beam CT scanning geometry.

A more common and more complicated geometry is the fan beam geometry. A fan

beam CT scanner can be designed in two different ways. One way is with a curved detector,

such that the angle between each measured point on the detector (relative to the source) is the

same. The second method is with a flat detector and evenly spaced measured points. The

second method is the more common, and will be considered here. In a fan beam CT system,

the divergence of the beam causes the portion of the object near the detector to be sampled at

a higher rate than the portion of the object near the X-ray source. When computing the FBP,

this is accounted for with scaling terms. This gives the equation:

𝑓(𝑟, 𝜙) =

1

4𝜋2
∫

𝑑2

(𝑑 + 𝑟 cos(𝜙 − 𝜃))2
(

𝑑

√𝑑2 + 𝑎2
𝑝(𝑟, 𝜃)) ∗ 𝑔(𝑡)𝑑𝜃

2𝜋

0

 (2.6)

where d is the source to center distance, r is the radius in the slice from the center, 𝜙 is the

angle from the x-axis within the slice, and a is the scaled distance to the sampled position in

the source (Feldkamp et al., 1984; Hsieh, 2009).

While fan and parallel beam backprojections are sufficient for earlier forms of computed

tomography, where only one slice is scanned at a time, they will produce significant artifacts

in more recent volume CT systems, which use conical beams. Furthermore, because the

beam diverges in the z-direction, the plane of the projection for a given point varies from

projection to projection. The solution to this problem is an approximate filtered

backprojection algorithm, which was developed by Feldkamp, et al. (1984), and has gained

26

widespread adoption since. This algorithm is often called the FDK algorithm, in honor of its

authors (Yan et al., 2008). The FDK algorithm is given by:

𝑓(𝑥, 𝑦, 𝑧) =

1

4𝜋2
∫

𝑑2

(𝑑 + 𝑥 cos 𝜃 + 𝑦 sin 𝜃)2
(

𝑑

√𝑑2 + 𝑎2 + 𝑏2
𝑝(𝑟, 𝜃)) ∗ 𝑔(𝑡)𝑑𝜃

2𝜋

0

 (2.7)

where a and b are the scaled sampling distances in the x- and z-directions, with respect to the

detector (Feldkamp et al., 1984; Yan et al., 2008).

From a close examination of the FBP algorithms, it can be seen that for all cases the

computational complexity is O(MN
3
), where M is the number of projections, and N is the

number of voxels in one direction of the volume, assuming the volume is a cube. While this

is more complicated than the Fourier projection-slice theorem, it is less complicated than

ART algorithms. Due to this complexity, it is advantageous to compute the algorithm on a

highly parallel processor, such as a GPU (Wang et al., 2010; Yan et al., 2008). Thankfully,

both the convolution operation and the backprojection operation map well to highly parallel

processors.

2.2.3 Algebraic Reconstruction Techniques (ART)

The final class of algorithms used in CT reconstruction is the algebraic reconstruction

techniques, also called iterative reconstruction. In ART, the CT is modeled as a large system

of equations:

 𝒑 = 𝑨 ∙ 𝑮 + 𝒆 (2.8)

where p is the projections, G is the reconstructed object, A is a weighting matrix, and e is the

error of the system. While this system is relatively trivial to solve for very small volumes, it

is difficult to calculate for large volumes as the system is nearly always under or over

constrained, depending on the number and size of the projections, and the size of the volume.

Thus, iterative techniques are required to solve the equation and minimize the error, e.

27

It is interesting to note that the original CT scanner built by Hounsfield computed the

reconstruction using an algebraic technique. However, ART was soon abandoned in favor of

the more computationally efficient, and at the time, more accurate FBP methods (Shepp and

Kruskal, 1978). With recent increases in computing power, ART is starting to return to

usage. This is due in large part to the ability of ART to model the physics of X-ray CT while

doing the reconstruction. This allows the reconstruction to compensate for inaccuracies in

the assumptions made by other reconstructions. For example, ART reconstruction can use

polyenergetic X-rays and finite source size instead of assuming a monoenergetic,

infinitesimal source. Additionally, ART has been shown to handle the reconstruction of CTs

from a limited number of projections better than FBP (Hsieh, 2009).

2.3 Volume Visualization

Regardless of which algorithm is used to reconstruct a CT scan, the final output is a

volumetric dataset, or volume. A volume generally consists of a 3D rectilinear grid of

regularly spaced voxels, with each voxel having a scalar value. Advanced types of volumes

exist, which use other forms of grids (e.g., tetrahedral grids), irregularly spaced voxels, or

vector-valued voxels (Engel et al., 2006). However, only the algorithms for rendering

rectilinear grids are discussed in this section. Furthermore, while this review focuses on the

rendering of CT data, it should be noted that the same volume rendering techniques could be

applied to any volume dataset, irrespective of how it was generated.

Due to the difference in input data between traditional computer graphics (which rely on

a large number of triangles to represent an object’s surface) and volume rendering (which

aims to render a large, dense set of points in 3D space) a fundamentally different approach to

rendering is required for volumetric data. There are two categories of volume rendering

28

defined in the literature: indirect volume rendering (IVR) and direct volume rendering (DVR)

(Meissner et al., 2000). Indirect volume rendering is not a true rendering of the volume.

Instead, an intermediate geometry is created from the volume to represent a given property of

the data. The simplest approach to IVR is to view individual slices aligned with one of the

volume’s grid axes (Section 2.3.2.1). While simple, such a rendering technique requires a

great deal of imagination on the part of the viewer to understand 3D structures in the data. A

more advanced IVR method is isosurfacing (Section 2.3.2.2), which provides a rendering of

one 3D surface within the volume. However, isosurfacing provides one surface, not a true

rendering of the entirety of the volume.

When a single surface within the volume is insufficient to visualize the data of interest,

one of the DVR methods may be employed. In order to obtain a DVR, the rendering engine

needs to evaluate the volume rendering integral, which is a mathematical model of how light

travels through the volume. The volume rendering integral is mathematically derived from

the Radon transform. As it is extremely difficult to evaluate the volume rendering integral

analytically, several different methods of approximating it have been developed. Five of

these DVR methods will be reviewed here: texture-based volume rendering (Section 2.3.3.1),

volume splatting (Section 2.3.3.2), shear-warp rendering (Section 2.3.3.3), volume ray

casting (Section 2.3.3.4), and frequency domain rendering (Section 2.3.3.5). All of these

methods were initially developed using a central processing unit (CPU) as the computation

engine, and then modified to run on a graphical processing unit (GPU) as the capabilities of

GPUs became more generalized. Due to this development, it is critical to understand the

basics of traditional computer graphics and GPU computing. Thus, a brief overview has

been provided in Section 2.3.1.

29

2.3.1 Introduction to Computer Graphics

Traditional computer graphics use 3D surfaces to model objects and then projects them

onto the computer screen to render the scene. This is achieved by approximating the surfaces

as a collection of triangles and then projecting those triangles onto the screen space using a

virtual camera. Once the triangles are projected, they are converted to pixels by the GPU’s

rasterizer. While this style of rendering is incompatible with volumetric data, it is important

to understand it, as many of the mathematical foundations are the same. Furthermore, there

are many creative ways in which the traditional rendering pipeline has been utilized to

achieve direct volume rendering on the GPU.

In graphics programming there are two basic paradigms of processing the data: fixed-

function pipeline and programmable pipeline. Both methods use the pipeline analogy, in

which input data are passed to the GPU, and then it is processed in a sequential series of

stages, with each stage taking input data, transforming it in some manner, and passing it to

the next stage. When the final stage in the series is reached, the fully transformed data is

passed to the output, which in the case of computer graphics is typically an image rendered

on the computer screen (Möller and Haines, 1999). It is important to note that while the

stages of the pipeline run sequentially, the data may be (and in practice usually are)

processed in parallel within an individual stage and multiple stages can run simultaneously

on different input data.

The difference between the fixed-function pipeline and the programmable pipeline lies

in the flexibility of the stages (Zink et al., 2011). In the fixed-function pipeline, the function

of each stage is pre-determined by the GPU designers and application programming interface

(API) writers. The application programmer may have the ability to change parameters

30

controlling how a stage operates, but is not free to implement the stage in an entirely

different manner. The programmable pipeline allows the application programmer to change

how a stage operates by using a shader, which is a small program that runs on a GPU and

implements one stage of the pipeline. While this greatly increases the flexibility of graphics

cards, there are still some stages within the programmable pipeline that remain fixed-function

because the performance benefits of a fixed-function stage outweigh the value of flexibility

for those stages. Furthermore, the order in which the stages operate is still fixed, although

some stages may be omitted if the programmer chooses. More information on the

programmable pipeline can be found in Section 2.3.1.1. Finally, it should be noted that the

fixed-function pipeline is now deprecated and has been removed from the latest versions of

most graphics libraries, as the programmable pipeline is significantly more flexible and

retains the ability to implement functionality identical to the fixed-function pipeline.

There are two main APIs used to produce computer graphics: DirectX (specifically, the

Direct3D portion of DirectX) and OpenGL. Both APIs provide cross-vendor hardware

support via a hardware abstraction layer (HAL). However, OpenGL also supports cross-

platform graphics programming, whereas DirectX is Microsoft Windows specific. While

there are some differences in features between the two APIs, the major concepts are the

same, as both use the same mathematical foundations and both currently use the

programmable pipeline paradigm. At the time of writing, the latest version of DirectX is

v11.1 and the latest version of OpenGL is v4.4. For the purpose of clarity, DirectX

terminology will be used herein when there is a difference between DirectX and OpenGL;

however, the terminology differences will be noted as concepts are introduced.

31

2.3.1.1 Programmable Pipeline

Support for the programmable pipeline was introduced in DirectX v8.0 and

OpenGL v2.0 and has expanded ever since (“History of OpenGL,” 2013; Microsoft, 2000).

As the abilities of the fixed-function pipeline can also be achieved using the programmable

pipeline, support for the fixed-function pipeline was removed in DirectX v10.0 and

OpenGL v3.1 (“Fixed Function Pipeline,” 2012; Microsoft, n.d.-d). Therefore, to understand

modern graphics rendering, a detailed understanding of the programmable pipeline is

important, whereas a detailed understanding of the fixed-function pipeline is not necessary.

Thus, only the programmable pipeline will be detailed. It should be noted that the

programmable pipeline described herein is that of the most recent version of the respective

APIs (DirectX 11.1 and OpenGL 4.4), older versions of the APIs are still in use and may

contain only a subset of the stages and features described. The complete programmable

rendering pipeline for the latest versions of both DirectX and OpenGL are shown

schematically in Figure 2.1.

32

At its most basic level, the programmable pipeline is a set of small programs, where each

program describes one of the steps required to transform the triangle descriptions into a

rendered on-screen image. The first step in this process is a fixed function stage called the

“Input-Assembler Stage” (or “Vertex Puller” in OpenGL parlance). The input-assembler

stage is responsible for copying all the data about the input primitives from CPU memory to

Input-Assembler
Stage

Hull Shader
Stage

Vertex Shader
Stage

Tessellator
Stage

Tessellation

Domain Shader
Stage

Geometry
Shader Stage

Rasterizer
Stage

Pixel Shader
Stage

Output-Merger
Stage

Stream Output
Stage

Memory
Resources

Framebuffer

Vertex Puller

Tessellation
Control Shader

Vertex Shader

Tessellator

Tessellation

Geometry
Shader

Rasterizer

Fragment
Shader

Per-Fragment
Operations

Transform
Feedback

Memory
Resources

Framebuffer

Tessellation
Eval. Shader

DirectX Pipeline OpenGL Pipeline

Figure 2.1: The DirectX (left) and OpenGL (right) programmable graphics pipelines. The stages in ellipses

are programmable and the stages with dashed outlines are optional (adapted from Khronos Group, 2012;

Microsoft, n.d.-f; “Rendering Pipeline Overview,” 2012).

33

GPU memory. While triangles (referred to as a mesh when all the triangles involved define a

single object) are the most commonly used primitives, primitives could also be points, lines,

or mathematical curve descriptions, such as for Bézier curves or Non-Uniform Rational

Basis-Splines (NURBS). The common feature shared by all these primitives is that the

geometry is defined by a finite number of points, and that their mathematical formulations

are a function of the primitive, not of the geometry the primitive represents. Taking a

triangular mesh as an example, the entire object is defined by an array, which contains the

vertices of all the triangles necessary to create the shape. While this mesh is often an

approximation of the true object shape, any finite object can be approximately represented by

a finite number of vertices with the only geometry dependent variables being the position of

the vertices and number of vertices. However, in almost all triangular meshes, a single

vertex is used by two or more triangles. The simplest way to implement triangle rendering is

to replicate the vertex for each triangle; however, this leads to inefficient processing due to

redundancies in data storage and processing.

The input-assembler provides two methods of mitigating this inefficiency. The first

method is indexing. With an indexed primitive, each unique vertex is stored in an array (the

vertex array) and passed to the input-assembler. Additionally, a second array (the index

array), containing the locations of vertices within the vertex array, is also passed to the input-

assembler. Each set of three sequential indices within the index array represent three vertices

in the vertex array, which together represent one triangle in the mesh. While the index array

adds some overhead, it typically requires less overhead than what would be required if all the

repeated vertices were stored and processed. The second method of improving efficiency is a

triangle strip. In a basic triangular mesh (also called a triangle list), each set of three vertices

34

forms a triangle, requiring 3N vertices (where N is the number of triangles). In a triangle

strip, it is assumed that the last two vertices of the last triangle are the first two vertices of the

next triangle. Thus the vertex array (A, B, C, D) would have two triangles, one with vertices

at points A, B, and C, and the second with vertices at points B, C, and D. This method only

requires 2 + N vertices for N triangles (Luna, 2008). It should also be noted that indexing

and triangle strips can be used together, if the programmer desires. These efficiency gains

become more important as more information is used to describe each vertex. Such additional

information often includes a surface normal and a texture coordinate, both of which can be

used for shading. In addition to the obvious memory usage reduction, there is also a

reduction in GPU processor usage, as the input-assembler can instruct the GPU to process

each vertex only once, and sort out which vertex belongs to which triangle later.

The data processing starts in the next stage of the pipeline, the vertex shader. The vertex

shader’s purpose is to run a mapping process, which calculates a geometric transformation on

each vertex to produce exactly one output vertex for each input vertex. Due to the mapping

nature of the vertex shader, each vertex can be processed independently, without any

knowledge of any other vertex. The vertex shader typically does a series of transformations,

shown in Figure 2.2, on vertices, model (or local) space to world space, world space to view

(or camera) space, and view space to homogeneous clip space. A final transformation from

homogeneous clip space to normalized device coordinates is done in the rasterizer stage.

Model

Space

World

Space

View

Space

Homogeneous

Clip Space

Normalized

Device

Coordinates

World

Transform

View

Transform

Projection

Transform

Perspective

Divide

Figure 2.2: The sequence of geometric transformations used in traditional computer graphics.

35

The first geometric transformation done by the vertex shader is to transform the

primitives from model space to world space. This transformation is necessary because mesh

objects are created in their own coordinate space, about an origin that makes sense for the

model. This has the advantages of making object modeling easier, and allowing the same

model to be used multiple times in the same rendering scene. However, in order to place the

model in the correct position in the scene, the model’s vertices must be transformed into the

world coordinate system. This is achieved through geometric transforms (most commonly

translation and rotation transforms), which are implemented as matrix calculations. Before

discussing the mathematics, it is important to note that DirectX traditionally uses a left-

handed coordinate system, while OpenGL traditionally uses a right-handed coordinate

system (Möller and Haines, 1999). However, with the advent of the programmable pipeline,

it has become possible for both DirectX and OpenGL to use either right-handed or left-

handed coordinate systems; therefore, all formulas herein will assume a right-handed

coordinate system.

In computer graphics, a 3D point is represented by a four-tuple, where: p = (x, y, z, 1).

Similarly, a 3D vector is represented by a four-tuple, where: v = (x, y, z, 0). The difference in

the fourth term of the four-tuple allows the same 4 × 4 transformation matrices to be used for

both points and vectors—a practice is known as “homogeneous coordinates” (Luna, 2008).

There is an exception to this involving non-uniform scaling transforms of normal vectors

(Möller and Haines, 1999); however, this case is rare in practice, and will not be covered.

Using homogeneous coordinates and four-tuple row vectors to store points and vectors, any

transform can be represented by the equation:

 𝒘 = 𝒖 ∗ 𝑻 (2.9)

36

where u is the original point or vector, T is the transformation matrix, and w is the

transformed point or vector. This convention assumes that the four-tuple is stored as a row

vector, which is a commonly used convention in DirectX (Zink et al., 2011); however, other

computer graphics references (Möller and Haines, 1999) use a column-vector format to store

the four-tuples, e.g., 𝒑 = [

𝑥
𝑦
𝑧
1

]. In this case the transformation becomes:

 𝒘 = 𝑻T ∗ 𝒖 (2.10)

where T
T
 is the transpose of the matrix T.

The most basic type of transformation used in computer graphics is the translation

transform, which displaces a point by a given vector b. The translation transform is defined

by the matrix:

𝑻 = [

1 0 0 0
0 1 0 0
0 0 1 0
𝑏𝑥 𝑏𝑦 𝑏𝑧 1

] (2.11)

Note that when the translation matrix is used to transform a vector, it results in the original

vector. The use of homogenous coordinates maintains the properties of the vector—it has a

magnitude and a direction, but no position. The next common transformation is the rotation

transformation. The most general form of this transformation is rotating a given angle, θ,

around an axis, given by the normalized vector r (Möller and Haines, 1999). In this case, the

rotation matrix is:

𝑻 =

[

cos 𝜃 + (1 − cos 𝜃)𝑟𝑥

2 (1 − cos 𝜃)𝑟𝑥𝑟𝑦 + 𝑟𝑧 sin 𝜃 (1 − cos 𝜃)𝑟𝑥𝑟𝑧 − 𝑟𝑦 sin 𝜃 0

(1 − cos 𝜃)𝑟𝑥𝑟𝑦 − 𝑟𝑧 sin 𝜃 cos 𝜃 + (1 − cos 𝜃)𝑟𝑦
2 (1 − cos 𝜃)𝑟𝑦𝑟𝑧 + 𝑟𝑥 sin 𝜃 0

(1 − cos 𝜃)𝑟𝑥𝑟𝑧 + 𝑟𝑦 sin 𝜃 (1 − cos 𝜃)𝑟𝑦𝑟𝑧 − 𝑟𝑥 sin 𝜃 cos 𝜃 + (1 − cos 𝜃)𝑟𝑧
2 0

0 0 0 1]

 (2.12)

37

However, for the common cases of rotation around the x, y, or z-axis, this matrix can be

simplified (Zink et al., 2011). Substituting in r = (1, 0, 0) for the rotation axis, equation

(2.12) simplifies to the rotation matrix for a rotation about the x-axis:

𝑻 = [

1 0 0 0
0 cos 𝜃 sin 𝜃 0
0 − sin 𝜃 cos 𝜃 0
0 0 0 1

] (2.13)

Similarly, the rotation matrix for a rotation about the y-axis is:

𝑻 = [

cos 𝜃 0 − sin 𝜃 0
0 1 0 0

sin 0 0 cos 𝜃 0
0 0 0 1

] (2.14)

and the rotation matrix for the rotation about the z-axis is:

𝑻 = [

cos 𝜃 sin 𝜃 0 0
− sin 𝜃 cos 𝜃 0 0
0 0 1 0
0 0 0 1

] (2.15)

The final common transformation is the scaling transformation. It is most commonly

used when an object is modeled using one type of unit, but rendered in another. This

conversion is particularly important in virtual reality, as objects must be rendered at their real

size in order to achieve proper binocular disparity. The scaling transformation is:

𝑻 = [

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

] (2.16)

where s is a vector representing the percentage of scaling in each direction. As previously

noted, if the scaling is non-uniform (i.e., 𝑠𝑥 ≠ 𝑠𝑦 ≠ 𝑠𝑧), special consideration must be taken

when transforming surface normal vectors.

In most computer graphics, the use of a single transformation on its own is uncommon.

In most cases, multiple transformations need to be combined to achieve the desired result.

38

This is achieved by simply multiplying the two (or more) transformation matrices together.

However, it is important to note that matrix multiplications are not commutative, that is to

say, the order of the multiplication matters. For example, when an object is rotated and

translated, if the translation occurs first, the object will rotate about the new coordinate

system origin. Conversely, if the rotation occurs first, the rotation will occur about the

original origin and then the object will be translated to its new position. This is of particular

importance when an arbitrarily positioned object needs to be rotated about the object’s

center. To achieve this, the object’s coordinate system must be translated to move the

coordinate system origin to the object’s center, then the object is rotated, and finally the

coordinate system is translated again to return the origin to the proper location. In a case

such as this, where a sequence of transformations needs to be done on multiple vertices, the

matrices may be multiplied once, and the resulting transformation matrix can be used to

transform all the vertices. This pre-multiplication reduces the computational load on the

GPU. Finally, while all of the listed transformation matrices can be created manually, there

are functions available in both DirectX and OpenGL to simplify the creation of

transformation matrices.

The second transformation that the vertex shader can perform is the conversion from

world space to view space. View space is defined with respect to a virtual camera, and aligns

the coordinate system so the virtual camera is positioned at the origin. This transformation

can be created by calculating the translation and rotation matrices necessary to convert

between the two coordinate spaces. However, in practice it is easier to create the view matrix

based on where the camera is located in the world coordinates, where the camera is looking,

and which direction is up for the camera. The creation of this transformation is a two-step

39

process. First, the x-, y-, and z-axes must be computed from the camera position (pcamera), the

position the camera is looking at (ptarget), and the normalized up direction vector (vup). This is

done using the equations:

𝒛 =

𝒑𝑐𝑎𝑚𝑒𝑟𝑎 − 𝒑𝑡𝑎𝑟𝑔𝑒𝑡

‖𝒑𝑐𝑎𝑚𝑒𝑟𝑎 − 𝒑𝑡𝑎𝑟𝑔𝑒𝑡‖
 (2.17)

𝒙 =

𝒗𝑢𝑝 × 𝒛

‖𝒗𝑢𝑝 × 𝒛‖
 (2.18)

 𝒚 = 𝒛 × 𝒙 (2.19)

where x, y, and z are the x-, y-, and z-axes, respectively, ‖𝒗‖ denotes the magnitude of the

vector v, and × denotes the vector cross product. Once the axes are calculated, the

transformation matrix to move from world space to view space is created using:

𝑻 = [

𝑥𝑥 𝑦𝑥 𝑧𝑥 0
𝑥𝑦 𝑦𝑦 𝑧𝑦 0

𝑥𝑧 𝑦𝑧 𝑧𝑧 0
𝒙 ∙ 𝒑𝑐𝑎𝑚𝑒𝑟𝑎 𝒚 ∙ 𝒑𝑐𝑎𝑚𝑒𝑟𝑎 𝒛 ∙ 𝒑𝑐𝑎𝑚𝑒𝑟𝑎 1

] (2.20)

where xx denotes the x value of the vector x, yx denotes the x value of the vector y, etc., and

𝒊 ∙ 𝒋 denotes the dot product of vectors 𝒊 and 𝒋 (Luna, 2008; Microsoft, n.d.-a).

The final transformation the vertex shader can perform is the projection of vertices from

the view space to homogeneous clip space. Homogeneous clip space is a normalized

coordinate space used by the graphics card to calculate what geometry should be clipped out

of the rendered image and what geometry occludes other geometry. This space has x and y

values from -1 to 1, with z-values varying based on the handedness of the coordinate system

and the API used. Left-handed coordinates, with z-values from 0 to 1 (near to far) are most

common in DirectX. OpenGL also typically uses left-handed coordinates in homogeneous

clip space, despite its use of right-handed coordinates elsewhere in the API; however, it

typically scales the z-value from -1 to 1 (near to far) (Möller and Haines, 1999).

40

There are two types of projections used in computer graphics to achieve the view space

to homogeneous clip space transformation: orthographic projection and perspective

projection. In an orthographic projection, parallel lines in the view space will remain parallel

after the projection (Möller and Haines, 1999). This is commonly used in computer aided

design (CAD) applications. For a right-handed coordinate system with a viewing volume of

(1, 1, 0) to (-1, -1, -1), the orthographic projection matrix is:

[

2

𝑟 − 𝑙
0 0 0

0
2

𝑡 − 𝑏
0 0

0 0
1

𝑛 − 𝑓
0

−
𝑟 + 𝑙

𝑟 − 𝑙
−
𝑡 + 𝑏

𝑡 − 𝑏
−

𝑛

𝑛 − 𝑓
1
]

 (2.21)

where r and l are the x-coordinates of the right and left planes, respectively, t and b are the y-

coordinates of the top and bottom planes, respectively, and n and f are the z-coordinates of

the near and far plane respectively. In this coordinate system, the z-value will decrease as an

object gets further away; however, it is often preferable to have the z-value increase as an

object’s distance from the camera increases. Due to this preference, it is common for

computer graphics to use a left-handed coordinate system in the projection space, even if

right-handed coordinates are used in other places. The orthographic projection matrices for

other handedness and view volumes are available in other sources (Khronos Group, 2012;

Luna, 2008).

In contrast, perspective projection causes lines that are parallel in the view space to

converge toward a single point after the projection. This simulates the apparent size decrease

of objects with increased distance that humans observe in everyday life. The additional

distance cues of the perspective projection make it common in video games, and almost

41

mandatory in virtual reality (Sherman and Craig, 2003). While more common, the

perspective projection is more complex and has to be computed in two parts. The first part

scales the view space into homogeneous clip space and sets a scaling factor, based on the

vertex’s depth in the scene, to the w-value. This step is accomplished using the projection

matrix (for a right-handed DirectX viewing volume):

[

𝑥𝑠𝑐𝑎𝑙𝑒 0 0 0
0 𝑦𝑠𝑐𝑎𝑙𝑒 0 0

0 0
𝑓

𝑛 − 𝑓
−1

0 0
𝑛 ∗ 𝑓

𝑛 − 𝑓
0
]

 (2.22)

where n and f define the z-location of the near and far planes, respectively, and xscale and yscale

are defined by:

𝑥𝑠𝑐𝑎𝑙𝑒 =

1

𝑟 tan(𝛼
2
)
 (2.23)

𝑦𝑠𝑐𝑎𝑙𝑒 =

1

tan(𝛼
2
)
 (2.24)

where r is the aspect ratio of the rendered image (width/height) and α is the field of view of

the virtual camera (Luna, 2008; Microsoft, n.d.-b). However, this projection makes the

assumption that the view frustum (the truncated, square pyramid that represents the volume

the camera can see) is symmetric. In most video game applications this is true; however, in

virtual reality the frustum is usually asymmetric because it is defined based on the user’s

location relative to the viewing screen (Cruz-Neira et al., 1993b). In this case, the frustum is

defined by the left, right, top and bottom locations at the near plane, as well as the near plane

and far plane positions, using the projection matrix:

42

[

2𝑛

𝑟 − 𝑙
0 0 0

0
2𝑛

𝑡 − 𝑏
0 0

𝑙 + 𝑟

𝑟 − 𝑙

𝑡 + 𝑏

𝑡 − 𝑏

𝑓

𝑛 − 𝑓
−1

0 0
𝑛 ∗ 𝑓

𝑛 − 𝑓
0
]

 (2.25)

where the locations are denoted as l, r, t, b, n, and f, respectively (Microsoft, n.d.-c; Möller

and Haines, 1999). The second step, which is the same whether the perspective projection

uses a symmetric or asymmetric projection, divides the x-, y-, and z-values by the w-value to

scale the vertex position and create the illusion of distance. This step is known as the

perspective divide, and is computed in the rasterizer stage. Finally, it should be noted that

while the projection transformation, as well as the view space to homogeneous clip space

transformation, are typically performed in the vertex shader, they do not have to be. The

only requirement is that these transformations are applied prior to reaching the rasterizer

stage of the pipeline.

After the vertex shader, the pipeline can, optionally, go through a tessellation process.

The tessellation process is comprised of three stages, the hull shader stage (tessellation

control shader in OpenGL), the tessellator stage, and the domain shader stage (tessellation

evaluation shader in OpenGL). If the tessellation process is used, all three stages are

required in DirectX. OpenGL only requires the tessellator stage and the tessellation

evaluation shader, leaving the tessellation control shader fully optional. Unlike the rest of the

stages in the rendering pipeline, the stages in the tessellation process are not intended to work

with traditional triangular meshes. The tessellation process is designed to generate triangular

meshes from mathematically represented surfaces, such as Bézier curves or NURBS (Piegl

and Tiller, 1997; Zink et al., 2011).

43

The first tessellation stage is the hull shader. The hull shader is a setup step that controls

the position of control points to use in the tessellation process and the operating parameters

of the tessellator stage. In DirectX, this is performed with two separate shader functions,

which together make up the hull shader stage. In OpenGL, this setup can be done either with

a single shader function, or the stage may be omitted and fixed parameters can be sent to the

tessellator from the CPU. When setting up the control points (or patch vertices in OpenGL

parlance), the hull shader can create and destroy control points; however, a more common

use is to apply geometric transformations that were not applied in the vertex shader. This is

particularly efficient because most object representations used in tessellation are invariant to

affine transformations, meaning the rendered object will be the same whether the geometric

transformations are done on the control points or the generated vertices. Since there are

typically significantly more generated vertices than control points, it is much more efficient

to transform the control points than the vertices. Note however, that any transformations

performed in the vertex shader stage are passed on to the hull shader, so it is common for the

hull shader to pass control points through without any manipulation.

The second part of the hull shader, setting up the tessellator operation, simply provides

instructions to the fixed-function tessellator stage on what type of domain (isoline, triangle,

or quad) to use, and how finely to break up each side of the domain, as well as how finely to

partition the interior of the domain. Note that a domain is different from a geometric object,

such as a triangular mesh. A domain is a space over which a parametric equation—that

mathematically represents the object—is calculated. The divisions in the domain are the

points at which the parametric equation is calculated. Thus, the more finely partitioned the

domain, the more accurate the rendered approximation of the mathematical object. By using

44

the hull shader to vary how finely objects are partitioned, based on parameters such as the

depth of the object in a scene, the hull shader can achieve a high-quality level-of-detail effect

using the same input (the control points) for both very finely and very coarsely detailed

cases.

Once the hull shader calculates how finely to partition a domain, that information is sent

to the tessellator stage. The tessellator stage is a fixed-function stage, whose sole purpose is

to calculate the division of the domain based on the information passed to it from the hull

shader. The calculated positions in the domain, along with the control points from the hull

shader, are then passed to the domain shader.

The domain shader’s purpose is to evaluate the parametric equation that represents the

object, converting the domain position and control points into a vertex. The different

parametric equations that could be used to represent the object are too numerous to be

covered here; however, Shreiner et al. (2013) provide an example of a Bézier patch in

OpenGL, and Piegl and Tiller (1997) provide an excellent overview of NURBS, albeit

without information on GPU implementation. In addition to the vertex calculation, the

domain shader can also compute geometric transformations, although, as previously noted,

this is more efficient to do on the control points for any affine transformations. The domain

shader can also compute other information about the vertex, such as the surface normal or

texture coordinates.

The next stage in the rendering pipeline is the geometry shader stage. The geometry

shader is an optional, programmable stage that processes whole primitives, which it receives

from either the vertex shader or the domain shader, depending on whether tessellation is in

use. The advantage of the geometry shader is that it has the capability to create and destroy

45

primitives. Due to this capability, a common usage of the geometry shader is to render

particle systems. A particle system is a collection of small objects, such as a collection of

triangles, that are used to represent dynamic, diffuse phenomena, e.g., dust and fire, in

computer graphics. Each small object (or particle) moves independently to represent the

dynamic nature of the phenomenon. The geometry shader is beneficial for rendering particle

systems because each particle can be represented by a single point in space, and then used to

create one or more larger objects (for example a triangle) in the geometry shader. This

processing method allows more large particles to be rendered for the same computational

cost than what could be achieved if each large particle was fully generated at the beginning

of the pipeline. The geometry shader can also implement the same geometric

transformations as the vertex shader; however, it is not recommended, as it computes the

transformations less efficiently (Zink et al., 2011). Finally, the geometry shader is also

capable of outputting transformed geometry to the stream output stage (transform feedback

stage in OpenGL). This stream output is available to the CPU and can be used for a

multitude of tasks, including physics calculations, CPU-based rendering effects, and saving

geometry to the hard disk drive. However, the most common use of the stream output is

debugging shader programs.

The next step after the geometry shader stage is the rasterizer stage. The rasterizer stage

is a mandatory fixed-function pipeline stage. The purpose of the rasterizer is to convert the

geometric data the pipeline has processed up to this point into fragments. In most cases,

fragments will be further processed by the pixel shader, and then rendered on screen as

pixels. To get the fragments to the pixel shader, the rasterizer goes through a series of steps

(Luna, 2008; Zink et al., 2011). First, the rasterizer culls primitives that are not visible in the

46

scene. This includes culling primitives that are entirely outside the viewing volume of the

camera, as well as culling surfaces that are facing away from the camera (known as back-face

culling). Since most objects are intended to represent real, 3D objects, the side of the triangle

facing the inside of the object can never be seen, and thus when the inside (or back-face) of a

triangle is facing the camera, it is typically safe to assume it is occluded by the front-face of

another triangle, and thus the back-face is culled. If this is not a safe assumption, back-face

culling can be turned off. Once non-visible primitives are culled, geometry that crosses the

boundary of visibility is clipped. When the rasterizer encounters an object that is partially

inside the viewable area and partially outside, it calculates where the primitive crosses the

boundary, inserts new vertices at these points, and eliminates the vertices outside the

viewable area. Once this is complete, the rasterizer has a complete set of geometry,

including only what will be visible in the final scene. At this point, it performs the

perspective divide (as explained with the perspective transformation). Finally, the rasterizer

samples the geometry to create one (or more in the case of multi-sample anti-aliasing)

fragment for each pixel in the final viewport. Any additional information included with the

vertices of the primitives, such as texture coordinates or color, will also be interpolated and

the results of the interpolation are associated with the respective fragment.

Once all the fragments are generated, the result is passed to the pixel shader (fragment

shader in OpenGL terminology). The pixel shader is the final programmable stage in the

pipeline and is the second of the two mandatory programmable stages. The primary purpose

of the pixel shader is to apply a color to the pixel fragment based on the simulated lighting

conditions. This is typically done using an algorithm, such as the Blinn-Phong model, that

breaks the light down into an ambient color, diffuse color, and specular color and combines

47

them together using the position of the simulated light source and the interpolated surface

normal of the fragment (Blinn, 1977). In addition to setting the color of the fragment, the

pixel shader can also set its depth or cull the fragment. These allow the programmer

significant control over the rendering of the fragment.

The final stage in the pipeline is the output merger stage (per-fragment operations stage

in OpenGL). The output merger is a fixed function stage that combines all the fragments

together. The output merger does this via depth testing and blending. Depth testing is the

most common processing for the output merger, and it simply tests if a fragment is occluded

by another fragment, and if it is, it omits the occluded fragment from the rendering. This is

necessary because the processing pipeline, up to this point, has operated on a per object basis.

This allows for different types of objects, for example triangle meshes and NURBS surfaces,

to be rendered in the same scene with different rendering algorithms, but it means most depth

testing has to be done at the output merger. Finally, the output merger can also do blending,

which is the combining of two fragments together to simulate a semi-transparent object. This

is not commonly used in traditional computer graphics, but can be very important in volume

rendering.

Once the output merger is done processing, the rendered scene is written to the

framebuffer. The framebuffer is not a true stage in the pipeline, as it is simply a storage

location and no data processing occurs; however, it is important to the final rendering of the

data. The simplest version of the framebuffer uses a single buffer both to write the rendered

scene to and to read the data from when it is time for display on screen. While simple and

memory efficient, single buffering causes reduced rendering quality because there is no way

to synchronize the rendering of the graphics with the display of the graphics. This causes a

48

tearing effect, where a visual discontinuity occurs on screen because the rendered image is

partially the new frame, and partially the old frame. To solve this, double buffering is

typically used. In double buffering a back buffer is used to write the latest update to, while a

separate front buffer is read to display the scene on screen. When the back buffer is fully

written, the GPU will wait until the monitor is done rendering the image on screen, and then

swap the front and back buffers. This puts the latest image (that was on the back buffer) on

the front buffer to be rendered, and puts the old image (that was on the front buffer) on the

back buffer to be redrawn with the latest update. This solves the tearing issue, but can

significantly slow down the imagery refresh rate if the GPU is only capable of rendering the

images just slightly slower than the monitor is capable of rendering images (Möller and

Haines, 1999).

While double buffering is by far the most common framebuffer technique, there are two

other important techniques. The first is triple buffering. Triple buffering adds a third buffer

called the pending buffer. In double buffering, once the draw on the back buffer is

completed, no rendering can be done until the buffers are swapped, otherwise the system

risks not having a full scene available when it is time to swap buffers. To avoid this, triple

buffering uses the pending buffer to draw continually to, while the back buffer holds the

latest full update. When it comes time to swap buffers, the back buffer moves to the front

buffer. Any unfinished rendering on the pending buffer is finished and it moves to the back

buffer, and the front buffer becomes the pending buffer. This allows the rendering engine to

run as fast as possible, but also introduces up to one frame of latency. In theory, this system

could be extended to any number of buffers, at the cost of more latency.

49

The final buffering method is quad buffering. Despite its name, it is not an extension of

triple buffering. Quad buffering is double buffering for stereoscopic images. In systems

with active stereo, the left and right eye imagery are displayed in alternating fashion on

screen, and then filtered with shuttered glasses. Due to the difference between the left-eye

image and the right-eye image, a separate swap chain must be maintained for each eye.

2.3.2 Indirect Volume Rendering (IVR)

Due to the fundamental difference in data structure between traditional surface data and

volume data, direct volume rendering is a challenging task. Therefore, one of the ways

researchers have tried to visualize volume data is to convert it into a derived surface that fits

into the traditional rendering pipeline. These indirect volume rendering methods have

traditionally taken two forms. One form is to select a surface within the volume, and apply a

texture to it, representing the value of the voxel at that point on the surface. The simplest

form of this is rendering a single slice of the volume. The second form of IVR is to extract a

surface at which all points have the same voxel value, known as an isosurface. This is

similar to the isobars on a weather map—every point on the isobar line represents a location

with the same barometric pressure.

2.3.2.1 Slice Rendering

Slice rendering (often referred to as multiplanar reconstruction or multiplanar

reformation in the medical field) is the simplest way to render volumetric information. In

slice rendering, a single plane, or slice, is cut through the volume, the voxels are mapped to

pixels on the slice, and the resulting textured slice is rendered as a 2D picture. When the

slice plane is aligned with one of the planes in the volume, this mapping is trivial. In cases

where the plane is askew to the volume (often called an oblique plane) an interpolation is

50

required to map the volume data to the slice pixels (Ney et al., 1989). Alternatively, the

mapping can be done in the Fourier domain, which eliminates the spatial domain

interpolation (Kramer et al., 1990).

A more advanced version of slice rendering is used to approximate a 3D view. In this

case, multiple slices of information are generated and applied as textures to rendered 3D

planes. While there are a huge number of possible arrangements of the planes, the most

common represents the volume by showing its primary planes (referred to as the xy-plane,

yz-plane, and xz-plane in scientific work, or transverse plane, sagittal plane, and coronal

plane in medicine). Figure 2.3 shows two possible combinations of this. In Figure 2.3a, the

exterior surface of the region of interest is represented by six textured planes (only three are

visible as rendered). In Figure 2.3b the interior of the volume is represented by three

orthogonal planes. Slice renderings such as these are often used to make selections in a

volume, as selection in a directly rendered volume is difficult (Ney and Fishman, 1991).

Figure 2.3: A volumetric version of the Utah teapot displayed as both external slices (a) and internal

slices (b). Note, the two renderings use different regions of interest to show the teapot clearly.

a) External Slices b) Internal Slices

xz-plane

(coronal)

yz-plane

(sagittal)

xz-plane

(transverse)

51

While slice rendering is an extremely simple form of displaying a volume, it shows an

extremely limited portion of the data, and provides very little information about the three-

dimensional structure of the data. In spite of these limitations, it is still commonly used,

particularly in the medical field (Maher et al., 2004). In limited cases, slice rendering has

even been shown to be more effective than DVR (Liu et al., 2011). However, in most cases

the additional information DVR provides makes it more effective (Addis et al., 2001;

Zuiderveld et al., 1996).

2.3.2.2 Isosurface Rendering

In contrast to slice rendering, where a surface is selected and the voxel values are

mapped onto the surface, isosurfacing uses a voxel value and a surface is generated to

represent all voxels of the same value. The voxel value can be set by the user or determined

by an automatic segmentation algorithm. By generating a surface from the volume data, the

geometry can be represented with a polygon mesh, which is easy to render with the

traditional graphics rendering pipeline. However, while the rendering of the final surface is

relatively simple, the extraction of the surface from the volume data is computationally

intensive.

The most common method for the generation of the surface is the marching cubes

algorithm (Lorensen and Cline, 1987). In the marching cubes algorithm, the generation of

the surface is done on a per cube basis, where each cube’s vertices are represented by eight

voxels of the volume (shown in Figure 2.4). To determine how the cube should be

triangulated, each vertex of the cube is assigned a value of either one or zero, depending on if

its value is above or below the predetermined threshold value. Because each cube has eight

vertices, each with two possible states (inside or outside the surface), there are 2
8
, or 256,

52

possible geometries for any given cube. Conveniently, this is the exact size of a byte,

allowing one bit in each byte to represent the state of one vertex, and the whole byte to act as

an index to the appropriate form of triangulation.

Holding 256 different triangulation forms in memory is not space efficient. By

analyzing the possibilities, Lorensen and Cline realized that if the values of the vertices are

opposite, the triangulation is the same. For example, a cube with all eight vertices inside the

threshold creates the same triangulation (no triangles) as a cube with all eight vertices outside

the threshold. This reduces the unique possibilities to 128 possible triangulations. By

accounting for rotational symmetry, they were able to reduce the triangulations to 15 unique

possibilities, shown in Figure 2.5.

Figure 2.4: The cube (blue) used for the marching cubes algorithm, inside a field of voxels (red and green

spheres) representing two slices of the volume (adapted from Lorensen and Cline, 1987).

53

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

Figure 2.5: The 15 unique triangulation cases in the marching cubes algorithm. The

green spheres denote a voxel intensity above the threshold, while the vertices without

spheres denote a voxel below the threshold (adapted from Hansen and Johnson, 2005;

Lorensen and Cline, 1987).

54

It is important to note that the mapping between the index and the 15 possible

triangulations (typically implemented in code as a lookup table) only provides information on

which edges of the triangle vertices occur. The location of the vertex on the edge is not

known at this point. To calculate where the vertex lies on the edge, a linear interpolation is

used. A different interpolation algorithm can be used, but Lorensen and Cline (1987) found

no significant improvement in visual quality using higher order interpolations.

Finally, the marching cubes algorithm calculates the normal vector of each vertex, which

is required for traditional shading algorithms. To find the vertex normal, the gradient of each

voxel is calculated using the central difference method:

𝐺𝑥(𝑖, 𝑗, 𝑘) =

𝐷(𝑖 + 1, 𝑗, 𝑘) − 𝐷(𝑖 − 1, 𝑗, 𝑘)

∆𝑥
 (2.26)

𝐺𝑦(𝑖, 𝑗, 𝑘) =

𝐷(𝑖, 𝑗 + 1, 𝑘) − 𝐷(𝑖, 𝑗 − 1, 𝑘)

∆𝑦
 (2.27)

𝐺𝑧(𝑖, 𝑗, 𝑘) =

𝐷(𝑖, 𝑗, 𝑘 + 1) − 𝐷(𝑖, 𝑗, 𝑘 − 1)

∆𝑧
 (2.28)

where G(i,j,k) is the gradient and D(i,j,k) is the intensity of the voxel located at the position i,

j, k and Δx, Δy, Δz are the x, y- and z-distances between the sampled points, respectively.

As can be seen from the algorithm, the computation of the isosurface can be extremely

computationally expensive for large volumes. Additionally, the generated isosurface can

contain a large number of polygons when extracted from large volumetric data sets. To

address these problems, several methods have been developed to accelerate the calculation of

the surface by using less computationally expensive algorithms and by splitting work across

multiple processing units. Algorithms have also been developed to reduce the number of

polygons in the surface mesh, thus improving rendering performance at the possible cost of

55

rendering quality. A review of these methods can be found in The Visualization Handbook

(Hansen and Johnson, 2005).

While the use of optimized isosurfaces can increase the performance of the volume

rendering, there are several problems with isosurfacing. First, only a limited number of

objects can be rendering due to the need to define and precompute the surface of each object.

Secondly, if the user desires to change the surface definition, a computationally expensive

recalculation is necessary, which reduces the interactivity of the application. Finally,

isosurfaces do a poor job of describing surfaces which vary smoothly (Meissner et al., 2000).

2.3.3 Direct Volume Rendering (DVR)

Unlike indirect volume rendering, direct volume rendering produces a view of the

volume without using any intermediate geometry. This allows the entire volume to be

rendered, with internal features made visible by applying a transfer function to make parts of

the volume transparent. Even though DVR does not create intermediate geometry, it is still

possible to render surfaces extracted from the volume. Furthermore, there is evidence that

DVR can display higher quality surfaces than with an isosurface algorithm because DVR

allows for a range of intensities to be included in the surface, instead of a single value

(Hopper et al., 2000; Levoy, 1988). However, due to the amount of data DVR algorithms

have to process, they come at a very high computational cost. To mitigate the computational

cost, DVR algorithms have been increasingly designed to run on GPUs, which have more

raw computational power than CPUs, albeit at the cost of a more restricted programming

model.

56

2.3.3.1 Texture-Based Rendering

The first method to accelerate direct volume rendering on dedicated graphics hardware

was texture-based volume rendering. Texture-based rendering works by rendering a plane

for each slice in the volume and applying a texture to it, which is the extracted slice for that

plane (Engel et al., 2006). Once the planes are extracted and textured, they can be rendered

using the traditional computer graphics rendering pipeline, described in Section 2.3.1. The

details of how the planes are set up can vary, but there are two basic methods. The first

method is the object-aligned method. In this method, the planes are aligned with the axes of

the volume, thus reducing the need to interpolate data. The problem with this approach is

that when the volume is turned past 45 degrees along an axis, the user can begin to see

between the planes, causing unwanted artifacts. To remedy this, the rendering engine must

change the orientation of the planes to align with a different axis. To complete this

reorientation step, the new planes either need to be precomputed and stored in memory

(which results in the entire volume being stored in memory three times) or the new planes

can be computed on the fly when the switch occurs, which has the potential to create a

noticeable delay in the rendering.

The second method is the image-aligned method. In this method, multiple planes are

stacked parallel to the image being rendered and the textures are interpolated from the

volume data onto the planes. While this approach produces a higher quality rendering, the

need to recompute the slice planes every time the view is changed can degrade performance.

Furthermore, both image-aligned and axis-aligned texture rendering suffer from the problem

that they must render every voxel, whether it is important or not. In most volumetric data

57

sets, a large number of voxels are removed by setting them to transparent, and thus do not

need to be rendered.

2.3.3.2 Splatting

Splatting is one of the oldest methods of direct volume rendering (Westover, 1990).

While most other volume rendering methods consider what happens to a ray coming from the

screen through the volume, splatting takes the opposite approach. In splatting, every voxel in

the volume is projected from the volume onto the screen. If the voxels are projected as an

infinitesimal point, inevitably, most of the projected voxels will fall between pixels on the

screen. Therefore, each voxel is considered to occupy a finite volume in space with the value

of the voxel decreasing as the distance from the center of the voxel increases. This

estimation of a voxel is known as a 3D basis function kernel, and can take the form of any

statistical distribution, but the most commonly used is a 3D Gaussian kernel (Hansen and

Johnson, 2005). Because splatting is projecting 3D information onto the 2D image plane,

this kernel can be preintegrated in one direction, resulting in a footprint that mathematically

describes how the voxels value will be distributed across the pixels of the image plane. Due

to the radial symmetry of the 3D Gaussian kernel, this footprint is the same irrespective of

volume orientation when an orthographic projection is used (Westover, 1990). To implement

a perspective projection, the kernel has to be integrated at each distance from the camera.

However, the change in sampling frequency from front to back in perspective projection can

cause aliasing in the image. To prevent this, Zwicker et al. (2001) proposed using an

elliptical weighted average basis function, which widens the basis function (along an axis

perpendicular to the ray to the camera) to maintain a consistent sampling rate.

58

Splatting is capable of producing very high quality renderings. Furthermore, because it

evaluates the volume on a voxel-by-voxel basis, it is easy to implement an algorithm that

runs no calculations on voxels that the user has selected not to render (based on their value or

spatial position). Such an algorithm is known as empty space leaping, and while it is not

unique to splatting, it is easiest to implement in splatting algorithms. Due to this

acceleration, splatting works best when there are a relatively few number of voxels of interest

compared to the number of pixels in the rendered image (Meissner et al., 2000). The

downside to this approach is that some modern acceleration approaches, such as early ray

termination (which ends the computation of the volume rendering integral for a given pixel in

the projection after it has exceeded a preset level of opacity), do not fit into the splatting

framework. Thus, when highly opaque renderings are desired, splatting often requires

significantly more calculations than other algorithms.

2.3.3.3 Shear-Warping

Shear-warping is related to texture based rendering, and is recognized as one of the

fastest rendering methods available (Meissner et al., 2000). Shear-warping was originally

proposed by Lacroute and Levoy (1994) and operates on the theory that the 3D view

transform can be broken into a 1D shear operation and a 2D warping operation (Hansen and

Johnson, 2005). To achieve this rendering, the volume is represented as a stack of slices,

with the slices perpendicular to the closest axis to the viewing ray. The slices are then

sheared by translating them, individually, in progressively greater amounts going back

through the volume. Next, this stack of sheared-slices is composited onto an intermediate

image plane at the front of the volume. Finally, the composite image is warped to create the

final, view correct image. This process is shown in Figure 2.6. Note, this procedure is

59

specifically for an orthographic projection. If a perspective projection is desired, the slices

need to be scaled so they get smaller as the slices get further away from the screen.

While shear-warp rendering is extremely fast, it suffers from the same slice realignment

problem as texture based rendering. Additionally, while empty space skipping can be

efficiently implemented in shear-warping by using run-length encoding (a compression

algorithm that stores the number of times a value, in this case an empty voxel, repeats instead

of each data point), early ray termination is not available. Finally, while the quality of shear-

warp rendering is good, it is difficult to implement advanced rendering techniques, such as

specular reflection, within the shear-warp framework.

2.3.3.4 Ray Casting

Generally considered the highest quality, as well as the slowest, volume rendering

method, volume ray casting is the area of most current research (Gobbetti et al., 2008; Knoll

et al., 2009; Lux and Fröhlich, 2009). Volume ray casting works by generating a cube,

Shear

P
ro

ject

Figure 2.6: The process of shear-warping as viewed from above for the case of

orthographic projection (adapted from Hansen and Johnson, 2005).

60

which bounds the volume. A special texture (shown in Figure 2.7) is mapped onto the front

and back surfaces of the box, from which it is simple to calculate the vector of the direction a

ray travels through the volume (Krüger and Westermann, 2003). From this vector, a ray is

produced which accumulates the color of the volume along that line by incrementally

stepping through the volume. At each step in the volume, the voxel value is interpolated for

that point (along with the gradient, if necessary for rendering reflections). The interpolated

value is then colored per the transfer function and composited. Ray casting may use either a

front to back or a back to front compositing method; however, front to back is the most

common as it permits the implementation of early ray termination (Hansen and Johnson,

2005).

One of the key problems with volume ray casting is that in order to get a quality

projection, very small step sizes should be used (at least the inter-voxel spacing, per the

Nyquist criteria). In practice, larger step sizes can produce satisfactory results, depending on

how densely the volume was originally sampled. Furthermore, a small amount of noise may

be introduced into the starting position of the rays (a process known as jittering) to reduce

(0, 1, 0)

(1, 1, 0)(0, 1, 1)

(1, 1, 1)

(0, 0, 1)

(1, 0, 1)

(1, 0, 0)

(0, 1, 0)

(1, 1, 0)(0, 1, 1)

(0, 0, 0)

(0, 0, 1)

(1, 0, 1)

(1, 0, 0)

Figure 2.7: The cube texture used to generate rays in ray tracing. Each vertex has the same color as its

position, allowing the interpolated color value to represent the start or end position of the ray (adapted

from Krüger and Westermann, 2003).

61

artifacts from low sampling frequencies (Engel et al., 2006). Finally, ray casting has the

advantage that empty spaces in the volume can be detected and skipped, as well as the ability

to terminate rays early if the opacity of the ray is sufficiently high. However, the

implementation of empty space leaping in ray casting is more difficult than it is in splatting.

2.3.3.5 Fourier Rendering

Fourier (or frequency domain) volume rendering is one of the least used but quickest

forms of volume rendering. All other forms of volume rendering have a computational cost

on the order of O(M
3
), whereas Fourier volume rendering has a cost on the order of

O(M
2
logM) (Hansen and Johnson, 2005). This efficiency is achieved through the use of the

Fourier projection-slice theorem. The Fourier projection-slice theorem states that, for an X-

ray projection of an object, the inverse two-dimensional Fourier transform of a plane, parallel

to the viewing plane, which passes through the origin of the three-dimensional Fourier

transform of the object, is the same as the projected slice if it had been calculated in the

spatial domain, such as by volume ray casting. Through the use of fast Fourier transforms,

this inverse Fourier transform calculation becomes computationally efficient. However, the

Fourier transform requires a complex input. Therefore, given that the result of a CT scan will

always be a real valued data set, the algorithm may substitute the fast Hartley transform in

place of the fast Fourier transform (Totsuka & Levoy, 1993).

Despite its computational efficiency, Fourier volume rendering has several problems,

which has limited its adoption. First, it is difficult to apply transfer functions and clipping

planes to the volume, generally requiring the initial three-dimensional domain transformation

to be recalculated, a very expensive operation. Second, the Fourier projection-slice theorem

only holds true for parallel rays, meaning it only produces orthographic projections, not

62

perspective projections, which can cause perceptual issues when rendered in a stereoscopic,

virtual reality environment. Finally, Fourier volume rendering only works for an X-ray

projection, meaning that all voxels will be summed into the final image, eliminating the

ability to use opacity to selectively show and hide voxels.

2.4 User Interaction in Virtual Reality (VR)

While volume rendering is the most visible piece of visualizing experimental data in

virtual reality, it cannot provide greater insight into the data without methods for efficient,

intuitive user interaction. To achieve effective 3D interaction, three components need to

work together: the display, the input device(s), and the interaction task design. These will be

reviewed in this section, with special consideration given to their relevance to volumetric

data visualization.

2.4.1 Display Devices

The most important display devices for data visualization are visual display devices.

However, in VR it is common to find a wide range of display devices used to provide

information to the user, such as haptic devices to display forces and tactile sensations or

speaker arrays to provide a 3D aural display (Sherman and Craig, 2003).

The simplest type of visual display used in VR is called a fishtank VR system. In a

fishtank VR system, a computer monitor or small projection screen is used to provide visuals

to the user (Bowman et al., 2004). These monitors typically support rendering stereoscopic

visuals to provide the user with the illusion of 3D. The key difference between a standard

computer and a fishtank VR system is that a tracking system is used to determine the user’s

head position relative to the display. The head position is then used to recompute the visual

display image to provide first person visual interaction. Fishtank displays are advantageous

63

because of their relative simplicity and low cost. However, their low field of regard (the

amount of angular space around the user, regardless of where the user happens to be looking,

that is filled with visuals) causes fishtank VR systems to be less immersive than other VR

systems (Sherman and Craig, 2003). Despite this limitation, fishtank VR systems have been

found to be useful for tasks where the user is outside the data looking in (Demiralp et al.,

2006).

One display type that solves the limited field of regard problem is the head-mounted

display (HMD). In a HMD, the visuals are displayed on small screens in front of each eye—

like the lenses on a pair of glasses. Since the screens are so close to the eye, optics placed

between the eye and the screen allow the eye to focus on the visuals properly. Because the

displays are affixed to the head, they move with the head and provide visuals in whatever

direction the user happens to be looking (a 360 degree field of regard). This requires that the

HMD also include head tracking so the visual may be updated in accordance with the users

head movement. For this reason, generally, only HMDs with head tracking are considered to

provide virtual reality. Additionally, in most HMDs only computer generated imagery can

be seen (see-through HMDs used for augmented reality are the exception to this), allowing a

virtual environment to be displayed without any occlusion from real objects, such as the

users body (Bowman et al., 2004). However, the inability to see real objects can result in a

feeling of disembodiment. Furthermore, this complete occlusion of the real world also

precludes collaborators from interacting with the HMD user in an immersive manner unless

each collaborator had their own HMD and the movements of all the collaborators are tracked

and rendered in the virtual environment. Additionally, HMDs typically have a limited field

of view (the angular area the users can see without moving his head) which can lead to a

64

feeling of “tunnel vision” in users. HMDs are also more sensitive to lag in the tracking

system, as the user’s view is entirely dependent on what the HMD renders. Latency in the

tracker can cause conflicts between the user’s vestibular system and visual system and lead to

motion sickness (Sherman and Craig, 2003).

The final common class of visual displays are surround screen projection VR systems,

also known by the brand name CAVE, which is a recursive acronym for CAVE automatic

virtual environment (Bowman et al., 2004). In a surround screen VR system, the graphics

are displayed on projected walls (and optionally a floor and/or ceiling) and the user is free to

walk around in the space enclosed by the walls (Cruz-Neira et al., 1993b). This design

allows a wide field of regard (up to 360 degrees, depending on the specific design) while

reducing the sensitivity of the user to lag. In an HMD, when the user’s head rotates, the

HMD needs to draw a new image for the new view. In surround screen VR systems, the

imagery for all rotational views is displayed on the walls already, assuming the availability of

a wall on which to display it, so the user simply has to rotate his head to look at it. However,

this is only true for rotations; any translations in the user’s position will still be susceptible to

lag in the system. Furthermore, surround screen VR systems are good for collaboration

because multiple users can see what the head-tracked user is looking at and any nonverbal

communication (such as pointing) that the other users are making. However, because most

surround screen VR systems only support rendering one viewpoint, only the user who is

tracked will see the correct viewpoint. Non-tracked users are able to see imagery, but it will

be increasingly distorted the further they get from the head-tracked user. However, the

biggest drawback of CAVEs is their size. The interior of a typical CAVE is the size of a

65

small room and the space (including vertical space if a floor or ceiling is used) required

around it for the projection system is significant.

2.4.2 Input Devices

Irrespective of how the visuals are displayed, one or more input devices are necessary to

achieve useful, immersive virtual reality. Unlike desktop computing, where interaction is

achieved primarily with a keyboard and mouse, the variety of input devices for VR is

enormous and often task specific. Furthermore, it is common for a user in VR to interact

from a standing position and to be mobile in the space. Due to this, it is important that the

device be ergonomic to use and not present any encumbrances (limitations to the freedom of

movement) to the user.

One input device commonly found in VR systems is a tracker. The tracker provides the

computer with the current position and orientation of one or more tracking targets. Nearly all

virtual reality systems track the position and orientation of the user’s head and use this

information to update the graphics accordingly. Trackers can also be used to track the

position of another input device, such as a glove or a wand, so the system can also locate the

input device in space. There are a multitude of different physical principles on which

trackers can operate, all with their unique positives and negatives.

The simplest type of tracking system is mechanical trackers. Mechanical trackers

physically attach the tracked object to a fixed position through a series of linkages. At the

joints of these linkages are encoders that detect their motion and use that information to

calculate the position of the tracked object. While mechanical tracking systems are high

precision and low latency, they are cumbersome to use and limit the tracked object’s range of

66

motion. Due to this, mechanical trackers have mostly fallen out of use, with the exception of

haptics devices that require mechanical linkages to provide force feedback anyway.

Another common type of tracking is optical tracking. Optical tracking uses one or more

cameras (typically infrared cameras to avoid interference from changes in the ambient light

conditions) and tracking markers to determine an object’s position. As each camera is only

capable of measuring positions in two spatial dimensions, at least two cameras are required

to achieve 3D position tracking and at least three cameras are required for 3D position and

orientation tracking. Optical trackers also require tracking markers. Tracking markers can

either be optically reflective to return light to the camera or they can be active markers that

emit their own light using small light emitting diodes. There are also inside-out and outside-

in versions of optical tracking. In the inside-out variants, cameras are attached to the point to

be tracked, and the tracking markers are fixed in space. By determining which tracking

markers the cameras can see, and the markers position in the image, the position of the

tracked point can be determined (Welch et al., 1999). Outside-in systems use fixed cameras

and attach the tracking markers to the tracked point. In general, optical trackers are high

precision, but require line of sight between the tracking markers and the cameras.

A similar system to optical tracking is ultrasonic tracking. Ultrasonic tracking uses a

series of ultrasonic emitters and microphones. By mounting emitters around the space and

emitting an ultrasonic signal at intervals the microphones can triangulate where they are

located in space. Similar to optical tracking, ultrasonic tracking requires at least three

microphones and three receivers to achieve full 3D position and orientation tracking.

Ultrasonic trackers are accurate and not affected by the line-of-sight issue that optical

67

trackers have. However, there is a minimum required distance between microphones,

making the receiver units larger than other forms of tracking.

A fourth type of tracking is electromagnetic tracking. Electromagnetic tracking uses

electromagnetic coils to generate magnetic fields. By aligning the coils in different

directions, fields of different orientations can be generated, and in turn measured by a second

set of electromagnetic coils in the receiver unit. Using three coils in the emitter and three in

the receiver, electromagnetic trackers are capable of measuring 3D position and orientation.

However, due to the rapid reduction in electromagnetic field strength with distance from the

emitter, electromagnetic trackers have a limited useful range. Furthermore, any metal in the

tracked volume can distort the electromagnetic fields and reduce the accuracy of the tracker.

The final common form of tracker in VR is the inertial tracker. Inertial trackers use

accelerometers and gyroscopes to measure the relative movement of an object. Unlike other

trackers, the entire tracking system can be affixed to the tracked object. This allows inertial

trackers to track a much larger area than other trackers. However, because inertial trackers

are only capable of measuring relative movements, any error in the measurements

accumulates and can eventually result in significant errors in the absolute position of the

tracked point. To combat this, inertial trackers are sometimes combined with an absolute

position tracker (such as an ultrasonic tracker) to compensate for error accumulation in the

inertial tracker.

Another common input device in virtual reality is the wand. Like many input devices in

VR, a wand supports different input modes in one device. Most wands, like the Intersense

IS-900 wand shown in Figure 2.8, combine buttons, a joystick, and a tracking target. This

allows the user to complete multiple tasks using a single device. For example, a wand

68

equipped with tracking allows a user to intersect a virtual object and then select the

intersected object for manipulation using a button. A different button could then be used to

allow the user to draw a 3D line along the path the wand travels. However, remembering the

mappings of the buttons can be challenging if too many functions are used and if there are no

affordances indicating what button operates what function (Bowman et al., 2004).

Another tool commonly used in VR is the data glove. There are two types of

information that can be provided by a data glove, and depending on the design of a specific

glove, it may provide either or both. The first type of information a data glove can provide is

an analog value indicating the degree of bend of the user’s fingers. Other gloves are

designed to provide discrete events indicating if a user’s fingers are touching each other, and

if so, which fingers are touching. When combined with a tracker, data gloves can provide a

natural method of interacting with VR. If a user wants to pick up an object, the user moves

the data glove (presumable affixed to the user’s hand) so it intersects the virtual object and

then closes his hand to indicate to the computer that the object is to be selected. While this

interaction is not completely realistic, as most data gloves are not capable of providing any

tactile feedback to the user about the selected object, it is still an intuitive method of

interacting with the virtual world. Data gloves can also be used to achieve more abstract

Buttons
Ultrasonic

Tracking Targets

Joystick

Figure 2.8: One type of wand (the Intersense IS-900) used to interact with virtual reality.

69

interaction. For example, pressing two fingers together could be used to start an animation,

and a different pair of fingers could be pressed together to pause the animation. The primary

drawback to data gloves is the time to set up the glove for each user. In addition to the time

it takes to put the glove on (which on its own may not be substantial, but if combined with

multiple other devices could become tedious), the bend sensors in the glove typically need to

be calibrated for each user’s hand (Bowman et al., 2004).

From an encumbrance standpoint, one of the most promising input devices is the

microphone, which supports voice recognition input. By using a wide area microphone, the

computer can monitor the user’s speech without the user wearing a local microphone

(although a local microphone for the user has some advantages). Using speech recognition,

the user is able to tell the computer what to do, instead of trying to remember a button

mapping (Otaduy et al., 2009). However, due to the limitations in speech recognition

software, the computer may or may not know how to interpret what the user is telling it.

Furthermore, the processing required for speech recognition causes a delay between the

command and the result, making speech recognition unsuitable for interactions where precise

timing is required. Finally, speech recognition can generate false recognitions due to

unrelated conversation within earshot of the microphone (Mrvaljevic and Sun, 2009). To

reduce the likelihood of a false recognition, methods, such as using a push-to-talk button or

speaking a specific initiation command, have been developed (Sherman and Craig, 2003).

Another input device that has been gaining popularity recently is the camera. Like voice

recognition, cameras do not require the user to wear the input device. Furthermore, when

cameras are combined with pattern recognition software, the system is able to identify

gestural events occurring in the frame (Rigoll et al., 1997). In addition to gesture

70

recognition, recent advances in cameras have led to cameras than can sense an object’s depth

from the camera, such as the Microsoft Kinect. These systems can be further enhanced with

software that can estimate the pose of a user’s body from the depth image (Shotton et al.,

2011). This allows the camera to act as a low-accuracy, markerless tracking system. Similar

to voice recognition, cameras have a substantial latency due to the image processing

necessary to turn the raw data into useable information, and thus are not suitable for tasks

that require precise timing. Furthermore, they can be easily fooled if the user becomes

occluded by another object in the physical space.

A final input device of increasing popularity is the mobile device, often a smartphone or

tablet running custom software (Kim et al., 2009). Mobile devices collect multiple sensors

(typically at least a microphone, touchscreen, and accelerometer) into one pre-engineered,

handheld, ergonomic package. The touchscreen on a mobile device is also coupled with a

display screen that can provide feedback specifically about the interaction task. Furthermore,

the existence of a physical surface reduces the degrees of freedom of the interaction, which

can make some tasks easier to accomplish. However, holding and interacting with a mobile

device for a long period of time can be tiresome and there is evidence to show that secondary

display screens may reduce immersion (Fu et al., 2010).

When choosing an input device for a specific VR environment it is important to consider

a few factors. First, the type of data the device provides and how that maps to the desired

task. For example, in selecting an object, a button could be used to cycle through all objects

or a wand could be used to intersect the desired object. Depending on the number and size of

objects in the virtual environment, and the degree of realism required, either solution could

prove to be the best available. Second, the ergonomics of the system are important. For

71

example, if text input is required, a traditional keyboard could be used on a fishtank VR

system where the user is sitting down. However, in a CAVE the user is traditionally standing

up, making the use of a keyboard difficult without a freestanding support for the keyboard

(which could limit the user’s mobility). It is because of these challenges that specialized

input devices are often designed and built for specific tasks in VR (Bowman et al., 2004).

2.4.3 Interaction Tasks

Interaction tasks can be grouped into four areas: 1) selection and manipulation, 2) travel

and wayfinding, 3) system control, and 4) symbolic input (Bowman et al., 2004). Using

current volumetric data visualization tools, the user is typically looking at a dataset from the

outside, looking in. In order to understand the dataset, the user will view it from different

angles, and change the parameters of how it is rendered to show different information. These

tasks fall under manipulation and system control, respectively.

2.4.3.1 Selection and Manipulation

The ability to manipulate the viewpoint of a volumetric data set interactively may be the

most important user interaction in data visualization. The depth cues provided to the viewer

are extremely important for their understanding of the three-dimensional structures they are

viewing (Zhang et al., 2001). Because volumetric data is traditionally viewed from the

outside in, the simplest method of changing the viewpoint is for the user to physically move

around the volume (He et al., 2007). This is a natural interaction and helps increase both

immersion and understanding (Haubner et al., 1997). However, because of the fatigue

involved in doing this repetitively, users often prefer to have a secondary method to

manipulate the data. Previously proposed methods for manipulation include using a wand or

72

tracked glove to intersect, pick up, and manipulate the object, or using a joystick to change

the object’s positioning (Bowman et al., 2004)

2.4.3.2 Travel and Wayfinding

Travel and wayfinding are two interrelated tasks. Travel consists of the mechanics of

moving from place to place, while wayfinding is the task of understanding where one is in

the environment and how to get to a designed location. In general, the most natural method

of travel is the physical motion of the user (Bowman et al., 2004). However, time, space, and

fatigue constraints often prevent the user from performing all travel using physical motion,

thus other methods must be considered. One common method is walking in place. By

tracking the movement of the user’s feet, the system can estimate how far and in what

direction the user is moving in the virtual world. However, this is less realistic than physical

movement, and is just as tiring to the user. Another method of travel is pointing. In this

method the user indicates where the user would like to go by pointing a tracked object in the

desired direction of motion. To move, the user then presses a button, and moves in a

constant velocity in the pointed direction. This method is not fatiguing, however, if both

large and small adjustments to the user’s position are required, the use of a fixed velocity can

be problematic. A final method of travel is the world in miniature technique (Stoakley et al.,

1995). In the world in miniature technique, a small map or 3D representation of the virtual

world is displayed to the user. The user can then move to a new position by selecting the

position on the miniature map. The user is then transported to the new position. While the

use of a miniature world helps the user understand the surrounds, the virtual transportation

can be a somewhat jarring experience that reduces the immersion of the system.

73

2.4.3.3 System Control

While system control is a very broad category that can include everything from opening a

file to changing the color of a pointer, there are two system control tasks of particular

importance in volumetric data visualization: volume slicing and transfer function

manipulation. Both of these tasks are ways of selectively removing extraneous data from the

rendered volume so the user can focus on a selected point or points of interest.

One method that has been proposed for applying clipping planes is to track the user’s

hands. When the user wants to add a clipping plane, the user can simply draw the clipping

planes needed to eliminate unwanted geometry (He et al., 2007). While this method is

intuitive, it requires the location of the desired clipping plane to be within the physical reach

of the user. Furthermore, having one’s arms extended for a long period of time is tiresome

(Bowman et al., 2004). One solution to this is to us a miniature representation of the data as

a physical prop, and a second tracked prop to represent the clipping plane (Sherman and

Craig, 2003). This is especially useful when there is a known geometric bounding to the

data, such as the visualization of a MRI of the human brain, because the prop can show the

bounding in miniature and help keep the user oriented in the data.

The second system control task of particular importance in volumetric data visualization

is the manipulation of transfer functions. The transfer function maps the properties of a

voxel (typically intensity, but intensity gradients can also be used) to a specific color and

opacity. This allows the user to control the appearance of a volume and selectively hide

irrelevant information. However, transfer functions are extremely challenging to implement

in VR because they require precise values to be set and, despite decades of research into

image processing, the most prevalent way of defining a transfer function remains trial and

74

error (Pfister et al., 2001). In previous work, transfer functions have been adjusted using

onscreen menus (He et al., 2007). While this is effective when a limited number of

predefined transfer functions are available, if a new transfer function is desired, it would be a

tedious task to create one using just a 3D menu. Because the setting of a transfer function is

not an inherently 3D task, it is a good candidate for reducing the degrees of freedom

available to the user while setting it. While this could be achieved in many ways, the

simplest is to provide a physical object for the user to interact on. This method has never, to

the author’s knowledge, been tried with transfer functions; however, small touch screen

devices have been found to be successful at providing limited degree of freedom system

control in VR (Bowman et al., 2004).

2.4.3.4 Symbolic Input

Symbolic input tasks are those that convert some input into a set of symbols to be stored

in the computer. The most common symbolic input task is typing on a keyboard to generate

text. However, keyboards work best when placed on a desk, an option typically not available

in VR. In some cases, the intent of symbolic input can be achieved without actually

generating the symbols. For example, if a user wants to annotate an interesting feature in a

volume, the user could mark the position and then record an audio annotation or write the

annotation in digital ink on a touchscreen. While there are algorithms available to convert

both audio and digital ink to text, it is typically more efficient to leave the annotation in its

raw form for a human to decipher later. When precise symbols need to be input, there are

several modified forms of keyboards designed to be handheld, such as chord keyboards and

soft thumb keyboards on mobile devices (Bowman et al., 2004). However, as the number of

75

symbols increase, so does the difficulty in remembering key functions and the challenges in

creating an ergonomic device.

2.4.4 Data Visualization in Virtual Reality

The use of virtual reality to visualize scientific data not only has a long history, the

visualization of scientific data is one of the driving forces in advancing the science of virtual

reality (Brooks, 1999). In fact, the first surround screen projection VR system was designed

specifically for scientific data visualization (Cruz-Neira et al., 1993b). Virtual reality has the

advantage of being able to display data in a way that is natural to the users, while not being

constrained by the laws of physics (Cruz-Neira et al., 1993a; van Dam et al., 2000).

In the field of fluid flows, this has often involved the rendering of simulated flows. For

example, a famous early virtual reality application was the virtual wind tunnel. The virtual

wind tunnel allowed users to look at simulated flow data over a model of the space shuttle

using streamlines, pressure maps, and other classic flow visualization tools, except in an

immersive 3D environment (Bryson, 1996).

While volumetric data is used in flow visualization, it has more often been coupled with

virtual reality in the context of medical visualizations. For example, volumetric MRI data

has been examined in virtual reality to assist in the understanding of brain function (Chen et

al., 2011). Volume rendering in VR has also found use in surgical training and planning

(Robb, 2008).

2.5 Summary

A review of the literature shows that noninvasive measurement is an important tool for

the study of multiphase flow. However, there are no methods currently available that provide

both high spatial and temporal resolution. Furthermore, even if such a method did exist, it

76

would be limited by the currently available volumetric rendering tools, which provide limited

3D information and user immersion. The aim of this research is to enhance the

understanding of multiphase flows by improving the data acquisition, processing, and

visualization. These improvements will ultimately allow researchers greater insight into a

wide range of multiphase flows.

77

CHAPTER 3:

METHODS

The completion of this research is possible because of two key facilities at Iowa State

University. The first is the X-ray Flow Visualization facility. Completed in 2003, this one-

of-a-kind facility was designed specifically for characterizing fluid flows using X-rays. The

details of this facility can be found in Section 3.1. The second crucial facility used in this

work is the Multimodal Experience Testbed and Laboratory (METaL). METaL is a CAVE

automatic virtual environment (CAVE), designed for experimental studies in virtual

assembly, and is conveniently co-located in the same laboratory with the X-ray Flow

Visualization facility. Details on the Multimodal Experience Testbed and Laboratory can be

found in Section 3.2.

3.1 X-ray Flow Measurement

The X-ray measurement portion of this work will be completed using the X-ray Flow

Visualization (XFloViz) facility at Iowa State University. The XFloViz facility is designed

specifically for multiphase flow measurements using X-rays and is capable of three different

types of X-ray measurements: radiography, stereography, and computed tomography

(Heindel et al., 2008; Hubers, 2005; Striegel, 2005). To obtain all these measurements, the

XFloViz facility has at its disposal two Lorad LPX 200 liquid-cooled, tube X-ray sources for

X-ray generation and three X-ray detectors: one scintillator and two image intensifiers. The

detectors are mounted on sliding rails, allowing for easy interchange of detectors. The entire

source-detector setup is mounted on a slew ring to provide 360° rotation around the object of

interest. The object of interest can also be moved vertically using a 910 kg (2000 lbs.)

78

vertical lift with 2.75 m (9 ft.) of travel. Finally, to protect the operators, the entire imaging

chamber is encased with approximately 8164 kg (9 tons.) of lead shielding. A diagram of the

XFloViz, with the lead shielding removed for clarity, is provided in Figure 3.1.

Each LPX 200 X-ray source has a 1.5 mm focal spot with a beryllium output window

providing a 60° horizontal and 40° vertical conical X-ray beam. Each source is capable of

producing tube potentials from 20 to 200 kV and currents from 0.1 to 10.0 mA. Due to the

polychromatic nature of tube X-ray sources, external filters are used (typically aluminum or

copper) to reduce the lower energy radiation. The two sources, and their respective X-ray

detectors, are at 90 degrees from one another to allow the 3D positions to be easily

determined from the X-ray images created by the two source-detector pairs.

The first type of X-ray detector is an X-ray image intensifier, also referred to as an

intensifier. The XFloViz facility has a pair of intensifiers (one for each source), with each

Figure 3.1: Schematic of the X-ray Flow Visualization facility’s imaging equipment.

2

1

3

4

5

1) X-ray sources

2) Image intensifiers

3) X-ray cone beams

4) Imaging region

5) Slew ring

79

intensifier containing a Precise Optics PS164X X-ray intensifier connected to a monochrome

DVC-1412 charge-coupled device (CCD) camera. The detectors can be temporally

synchronized to do X-ray stereography. The image intensifiers feature a 40.6 cm (16.0 in)

diameter input phosphor and a 3.5 cm (1.4 in) diameter output phosphor. The input phosphor

is backed by a vacuum chamber causing the X-ray photons to be re-emitted in the vacuum

chamber as electrons. These electrons are accelerated and focused onto the output phosphor

using high voltage electric fields. While the conversion to electrons allows the image to be

intensified significantly, it also introduces a warping artifact due to external magnetic fields

altering the path of the electrons. This artifact must be digitally corrected for, as explained in

Section 3.1.2.1. The DVC-1412 cameras on the intensifiers are capable of a native frame

size up to 1392 × 1040 active pixels, at a maximum frame rate of 10.2 frames per second

(FPS), and 12-bits of resolution depth. These cameras are also capable of binning. When

binning is applied, adjacent pixels on the detector are treated as one large pixel. This causes

the camera to be more sensitive to light and enables higher frames rates, at the expense of

spatial resolution. For example, when a 2 × 2 binning is applied, four pixels are treated as

one, reducing the resolution to 696 × 520 active pixels, but increasing the frame rate to

20 FPS. The DVC-1412 cameras are capable of binning sizes of 1 × 1 (native), 1 × 2, 2 × 2,

4 × 4, and 8 × 8. When the cameras are temporally synchronized, there is a slight loss of

frame rate due to the synchronization overhead. In the 2 × 2 case, this typically reduces the

theoretical maximum frame rate of 20 FPS to an actual frame rate of 18 FPS. Each camera is

linked to the acquisition computer by a CameraLink connection to an Engineering Design

Team (EDT) PCI DV C-Link card, running in the CameraLink base mode.

80

The second detector available in the XFloViz facility is a single Hamamatsu Photonics

cesium-iodide scintillator screen, paired with an Apogee Imaging Systems Alta U9 CCD

camera via a mirror and a Nikon Nikkor 50 mm lens. This camera is capable of resolutions

up to 3072 × 2048 at 16-bits of resolution depth; however, it requires several seconds

between images to download data via its universal serial bus (USB) 2.0 connection with the

acquisition computer. The Alta U9 is also capable of operating at numerous binning modes.

The most commonly used binning modes are 1 × 1, 2 × 2, and 4 × 4. The Alta U9 camera is

also equipped with a thermoelectric cooler, allowing the camera sensor to be cooled up to

50° C (90° F) below the ambient temperature. Cooling the camera sensor reduces the noise

in the image. The scintillator detector is used primarily for high-resolution computed

tomography where spatial resolution is more important than temporal resolution.

3.1.1 Imaging Parameters and Their Effects

To acquire a radiograph, either type of detector available at the XFloViz facility may be

used, with each detector having its own distinct strengths and weaknesses. The intensifier

detectors’ primary advantage is the significant intensification of the X-ray image. Due to this

intensification, the detector is capable of much higher frame rates than the scintillator,

making it suitable for dynamic radiography. This intensification comes at the cost of noise

and distortion. The distortion, in the form of a warped image, can be corrected digitally

using the algorithm in Section 3.1.2.1. In contrast to the intensifier, the scintillator is an

extremely low noise, distortion free detector. However, it does so at the cost of imaging

time. Since the scintillator contains no method of intensifying the relatively weak X-ray

image (it is converted directly from the X-ray spectrum to the visible spectrum so it can be

measured with a standard camera), relatively long exposures are necessary to achieve quality

81

images. This renders the scintillator useful only for time-averaged measurements of dynamic

flows, and for the measurement of extremely slow phenomena.

Regardless of which detector is used, several parameters need to be adjusted for optimal

imaging: source voltage, source current, camera exposure time, camera binning, camera gain,

detector location, and object location. The source voltage, source current, and camera shutter

speed all impact the amount of light the camera receives, with various tradeoffs for each.

Increasing the source voltage yields a strong increase in the amount of light received by the

detector. Not only is the total energy of the X-ray beam increased with an increase in

voltage, most materials have lower X-ray attenuation coefficients at higher photon energies,

yielding a strong increase in light received by the detector. The total power of the beam can

also be increased by increasing the current of the X-ray source. This causes more X-ray

photons to be emitted, but without changing the energy spectrum of the emitted photons.

This is particularly useful in cases where the imaged object is thin and weakly X-ray

attenuating. By using a low source voltage, but high source current, the higher attenuation

coefficients for low energy photons can be used to increase the contrast from the background,

while the high current provides sufficient X-ray energy on the detector to obtain a

radiograph.

The other methods of increasing the quantity of light the camera receives have more

negative costs associated with them and require careful consideration of the measurement

goals to use. The exposure time of the camera increases the light on the detector by

increasing the duration of light collection. In time-averaged measurements, this can be

beneficial, as it optically averages the flow over a period of time. However, when numerous

radiographs need to be collected (such as in the case of CT scans) increasing the exposure of

82

a frame also reduces the throughput of the system. In the case of high-velocity flows,

exposure time often needs to be minimized to reduce motion blur, requiring the user to find a

balance between the brightness of the image and the blur introduced into the image. The blur

can also be reduced digitally using a deconvolution; however, such processing is beyond the

scope of this work and improving the quality of the original image is always preferable, when

possible (Lucy, 1974).

The next two parameters, camera binning and camera gain, adjust the brightness of the

image, without changing the amount of light the image sensor receives. First, adjusting the

binning of the camera adjusts the brightness of the image by increasing the light incident on

each effective pixel instead of increasing the light incident on the entire sensor. It achieves

this by combining multiple adjacent pixels into a single, larger pixel. This increases the

brightness of the image, at the cost of image resolution. Depending on the size of the

features to be imaged, this may or may not be a worthwhile tradeoff. Camera gain on the

other hand is simply an analog intensification of the electrical signal on the camera’s imaging

sensor. While this can improve the brightness of an image, it does so at the cost of noise.

Therefore, it is rarely used, and only as a method of last resort.

Finally, the last two parameters, object location and detector location, affect the

magnification of the image and the penumbral blur. Since the X-ray sources in the XFloViz

facility are cone-beam sources, the placement of the object in the beam, relative to the

location of the detector, will change the magnification of the image on the detector. That is

to say, the closer the object is to the source, the more magnified its projection on the detector.

Similarly, the closer the object is to the detector, the closer to actual size the object appears

on the screen. This magnification effect can be useful in the imaging of small objects;

83

however, it also introduces a blur due to the penumbra of the object. The assumption in the

magnification is that all X-rays are emitted from a single point in space, and thus there is no

penumbra. However, the actual source has a focal spot of 1.5 mm (0.06 in), meaning that the

actual emission location of a single photon may have been anywhere in a 1.5 mm (0.06 in)

diameter circle. This causes a blur at the edge of the image, called the penumbra. The

magnitude of this effect though is also correlated to the locations of the object and the

detector. The closer the object is to the detector, the lower the effect of the penumbra and

vice versa.

3.1.2 X-ray Image Processing

Independent of whether the XFloViz facility is used to acquire radiography,

stereography, or computed tomography images, there is always post-processing of the images

to improve their utility. While the exact details of which processes are used and how they are

configured varies based on the requirements of an experiment, they generally follow a

consistent pattern based on the measurement type. Radiographs are typically converted to

16-bit, normalized, and then unwarped. Stereographs typically follow the same steps and,

additionally, generally combine each frame from the two cameras into one image for easier

visualization. In the case of computed tomography, the processing steps are typically

normalization, center of rotation (COR) determination, and volume reconstruction. The bit

conversion and unwarping steps are generally unnecessary because CTs are usually obtained

using the Alta U9 camera, which already has a native bit-depth of 16-bits and does not suffer

from the unwarping artifacts introduced by the image intensifiers on the other cameras.

All of the image processing methods for the XFloViz facility, except for the COR

determination and CT reconstruction, are implemented in a custom software package known

84

as the X-ray Image Processor, or X-Rip. The functions of the unwarping and normalization

algorithms are detailed in the following sections due to their complexity and importance to

this research. Bit conversion and frame combination are not covered in this dissertation, as

they are trivial operations (a multiplication by 16 and an array concatenation, respectively).

Similarly, CT reconstruction is not covered due to the numerous algorithms and

implementations available (covered in Section 2.2); although, it is worth noting that the fan-

beam filtered backprojection algorithm is used most commonly in the XFloViz facility.

Finally, COR determination is not covered in detail, as it is simply a trial and error variation

of a CT reconstruction parameter, from which the user selects the best result.

3.1.2.1 Image Unwarping

Due to the nature of the intensifiers, the image is susceptible to distortion by both

internal and external electromagnetic fields. To correct for this, an unwarping algorithm is

applied. The unwarping algorithm was originally developed by NASA for correcting

distorted images taken with vidicon tube cameras on the Mariner 6, 7, and 9 missions

(O’Handley and Green, 1972). It was later updated by Haaker, et al. (1988) for use with

X-ray image intensifiers and has been extended since (Doering, 1992; Striegel, 2005). The

conceptual function of the algorithm is that an object with a known structure is imaged, and

that distorted image is mapped to the known structure of the object using a polynomial

equation. Once this equation is known, it can be applied to any image that is acquired with

the same settings. For the unwarping algorithm, the equation is broken into two parts, one

for the x-direction and one for the y-direction. The mapping equations are:

𝑥𝑐 =∑∑𝐴𝑥(𝑖, 𝑗)𝑥𝑑
𝑗
𝑦𝑑
𝑖

3

𝑗=0

3

𝑖=0

 (3.1)

85

𝑦𝑐 =∑∑𝐴𝑦(𝑖, 𝑗)𝑥𝑑
𝑗
𝑦𝑑
𝑖

3

𝑗=0

3

𝑖=0

 (3.2)

where xc and yc are the corrected coordinates of a given pixel, Ax and Ay are the 4 × 4

polynomial coefficient matrices, and xd and yd are the original, distorted position of the pixel.

Note that because the warping is (in part) dependent on external electromagnetic fields, the

polynomial equation for unwarping is specific to the intensifier’s physical position in space

and needs to be recomputed if the intensifier is moved. It should also be recomputed if a

long period of time passes between when the calibration is calculated and when

radiographies are taken, as the external electromagnetic fields can be transient. With this

method of unwarping calibration, accuracy of ±0.5 pixels is obtainable (Doering, 1992).

For the XFloViz facility, the known structure used to generate unwarping parameters is a

1.59 mm (0.06 inch) thick stainless steel plate with 2 mm (0.08 inch) holes located in a 12.7

mm (0.50 inch) on center rectilinear grid. To obtain the unwarping parameters, the plate is

attached to the front of the image intensifier. A single radiograph is then acquired using the

same settings that will be used for acquiring the data later. It is recommended that the flow

system be removed from the imaging before acquiring the unwarping image. However, if the

flow system contains magnetic components, it must be left in place for the acquisition of the

calibration parameters, as the presence of the object will influence the unwarping parameters.

Once the unwarping calibration image is acquired, the user must choose a threshold

value. All pixels with an intensity above this value will be set to white and considered part

of a hole in the calibration plate. All pixels with an intensity below the threshold will be set

to black and be ignored. Once the threshold is applied, the white pixels are grouped into

clusters using a Von Neumann neighborhood (four-connected neighborhood). After the

pixels are clustered, the centroid of each cluster is computed. With the centroids computed,

86

every cluster is iterated through and the nearest eight clusters to it are found. Any of those

eight nearest clusters that are within ±10 degrees of horizontal from the original cluster are

considered to be in the same row as the original cluster. Similarly, any clusters that are

within ±10 degrees of vertical from the original cluster are considered to be in the same

column as the original cluster. Once all clusters have been analyzed, the algorithm has a

unique row index and column index for each point.

The calculation of the row and column indices in X-Rip is a deviation from the

algorithm used by Striegel (2005). In Striegel’s algorithm, the user was required to select a

region of interest containing a full grid of clusters, where every row had the same number of

clusters as every other row and every column had the same number of clusters as every other

column. This meant Streigel did not need to know which row or column a cluster was in.

However, with some severely warped images, it can be difficult to achieve a region of

interest with a full grid. Furthermore, because the image from the intensifier is a circular

imaging region inscribed in the rectangular image array of the camera, clusters near the edge

of the image had to be omitted from the region of interest to ensure that all the rows and

columns were the same length and height when using Striegel’s approach. Clipping the

edges off resulted in poor quality unwarping outside the region of interested used to generate

the parameters. In contrast, because the method used in this research knows the row index

and column index of each point, no region of interest selection is required for calibration,

resulting in a simpler calibration process for the user and a more accurate result.

Once the clusters are found and indexed, a second, theoretical cluster grid is created to

represent where the clusters would be if there were no distortion. To do this the center of the

grid is found using:

87

𝑥𝑐𝑒𝑛 =

(𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑖𝑛)

2
 (3.3)

𝑦𝑐𝑒𝑛 =

(𝑦𝑚𝑎𝑥 + 𝑦𝑚𝑖𝑛)

2
 (3.4)

where xcen and ycen are the center coordinates of the grid, xmin and ymin are the minimum

coordinates as measured on the distorted grid, and xmax and ymax are the maximum coordinates

as measured on the distorted grid. The spacing between clusters on the theoretical grid

clusters is calculated by:

𝑥𝑠𝑝𝑎𝑐𝑒 = 𝑦𝑠𝑝𝑎𝑐𝑒 =

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
𝑛𝑟𝑜𝑤𝑠

+
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
𝑛𝑐𝑜𝑙𝑢𝑚𝑛𝑠

2

(3.5)

where xspace and yspace are the on center distance between the clusters in the x and y directions,

respectively, and nrows and ncolumns are the total number of rows and columns, respectively.

Note that the spacing in the x-direction is the same as the spacing in the y-direction because

the physical grid has spacing that is the same in the x and y directions. All the coordinate

positions are measured in pixels. Because the pixel indices were previously found for the

distorted grid, the algorithm is able to omit clusters for which there is no data (i.e., the

clusters are outside the viewable area of the camera), instead of assuming a full rectangular

grid.

In order to determine the Ax and Ay of Eqs. (3.1) and (3.2), respectively, the calibration

routine sets xd and yd to the theoretical grid points and xc and yc to the measured grid

centroids, and solves for Ax and Ay using a curve fitting algorithm. Note that, as Eqs. (3.1)

and (3.2) are written, one would expect the theoretical grid points to map to xc and yc instead

of xd and yd; however, this reversed mapping makes the interpolation step simpler when an

image is unwarped. When an image is unwarped, Eqs. (3.1) and (3.2) are run for every pixel

in the image, using the previously calculated Ax and Ay matrices and the x and y-positions of

88

each pixel used for xd and yd. This, combined with how the calibration step was set up,

causes the calculation to return the position in the distorted image (xc and yc) where the

intensity for the corrected position (xd and yd) will be found. The result of this unwarping

process is shown in Figure 3.2. Note that the variable assignment used is counterintuitive to

how Eqs. (3.1) and (3.2) are written (indeed, the calculation could be run in the intuitive

order), but because the corrected value often lies in between the integer pixel values the

computer can represent, an interpolation step is required. If the unwarping algorithm is run

in the intuitive order, the intensities will have to be splatted onto the representable pixels. By

running the algorithm in reverse, a simple bilinear interpolation can be computed on the

original image to return the appropriate value for the corrected pixel location. Finally, note

that while a bilinear interpolation is commonly used, any interpolation algorithm could be

used.

3.1.2.2 Image Normalization

The purpose of image normalization is to compensate for any non-uniformities in the

pixel response of the detector. To achieve this, two calibration images are taken, with no

Figure 3.2: The effect of the unwarping calibration on an image. The original unwarped image
of the calibration grid is shown on the left. On the right is the same image with the

unwarping calibration applied.

89

object in the imaging region. These images are known as the flat and dark images. The flat

image (Figure 3.3a) is taken with the X-ray source on and all X-ray parameters set as they

will be during the actual test. The dark image (Figure 3.3b) is taken with the X-ray source

turned off, but all other parameters the same. This provides a minimum and maximum value

for each pixel, which can, in turn, be used to compensate for non-uniformities between the

pixels (Figure 3.3c). Note that the flat and dark images are often an average of multiple

frames to reduce random noise.

X-Rip supports three algorithms for image normalization. The basic form of image

normalization is a version of linear interpolation. The intensity of each pixel the image, Iim,

is converted to a normalized intensity, Inew, by calculating where the original intensity lies in

the original range, and then rescaling it to the new minimum and maximum values. This is

achieved by the equation:

𝐼𝑛𝑒𝑤 = 𝑀𝑖𝑛 + (𝐼𝑖𝑚 − 𝐼𝑑𝑎𝑟𝑘)
𝑀𝑎𝑥 −𝑀𝑖𝑛

𝐼𝑓𝑙𝑎𝑡 − 𝐼𝑑𝑎𝑟𝑘
(3.6)

where Iflat and Idark are the intensities of the flat and dark image, respectively, and Max and

Min are the new maximum and minimum values for the image. This equation, as with all the

normalization algorithms described herein, is applied to each individual pixel, taking the

intensity in the image, flat frame, and dark frame from the same location in each respective

(a) (b) (c)

Figure 3.3: The flat (a), and dark (b) images are the inputs to the normalization algorithm. The result of

a linear normalization (c) is the removal of any location dependent pixel intensity variation. Note, a flat

frame has been normalized to show the result without any interference from an imaged object and the

normalized image (c) has been contrast enhanced to better show the remaining noise.

90

image. In practice, Min is almost always 0 and Max is typically the maximum number that

can be represented given the bit depth of the image (2
n
 – 1, where n represents the bit depth

of an individual channel of the image). With this in mind, Eq (3.6) simplifies to:

𝐼𝑛𝑒𝑤 = (𝐼𝑖𝑚 − 𝐼𝑑𝑎𝑟𝑘)
2𝑛 − 1

𝐼𝑓𝑙𝑎𝑡 − 𝐼𝑑𝑎𝑟𝑘
(3.7)

The one drawback to this normalization is that because it scales to the maximum

representable value of the image format, random noise in the flat and dark image sometimes

causes the new intensity value to exceed the maximum representable value. This causes a

small loss of data when the new intensity value is clipped to maintain its value within the

representable range. Therefore, in practice it is often preferable to reduce Max to a value

below the maximum representable value and thereby prevent clipping.

The other two forms of normalization that X-Rip supports are modified forms of a linear

normalization with slight variations in the assumptions made. The first of these methods is

from Striegel’s (2005), and was implemented in his FX Visual software. This normalization

algorithm is:

𝐼𝑛𝑒𝑤 = (𝐼𝑖𝑚 − 𝐼𝑑𝑎𝑟𝑘) (
𝐼𝑎𝑣𝑒
𝐼𝑓𝑙𝑎𝑡

) (3.8)

where Iave is the average intensity value in the flat image, excluding those intensities where

the difference between the flat frame and dark frame intensity is less than 650 (assuming a

12-bit grayscale image). These pixels are excluded because the algorithm was designed

specifically for use with X-ray image intensifiers, which leave a region in each corner of the

image without X-ray illumination, and thus without any usable data. The inclusion of these

inactive areas would artificially reduce the image average, and render the normalized image

too dark to be useful. The specific pixel intensity used for exclusion was determined by

91

Striegel to be optimal for the XFloViz facility; however, in facilities using different

detectors, a different value may be appropriate. This version of the normalization algorithm

also assumes that the dark intensity is always zero. While this is typically a reasonable

approximation, there are gain effects at some acquisition settings which do not match this

assumption. Therefore, the user should be careful to ensure this assumption is valid when

using this algorithm.

The final version of normalization available in X-Rip comes from the software package

PS CT. This software package originated at the Center for Nondestructive Evaluation

(CNDE) at Iowa State University, and is designed to acquire and process CT scans. It uses

the normalization equation:

𝐼𝑛𝑒𝑤 = (𝐼𝑖𝑚 − 𝐼𝑑𝑎𝑟𝑘) (

𝐼𝑎𝑣𝑒
𝐼𝑓𝑙𝑎𝑡 − 𝐼𝑑𝑎𝑟𝑘

) (3.9)

Like the FX Visual normalizations, Iave is the average intensity value in the flat image;

however, unlike the FX Visual normalizations, the PS CT average does not exclude any

intensity values. By comparing Eqs. (3.7) and (3.9), it is easy to see that the only difference

is that Eq. (3.7) uses the maximum representable intensity for the maximum value, while

Eq. (3.9) uses the average intensity in the flat image. This means the PS CT normalization is

significantly less likely to lose data due to clipping, but it also means that it uses less of the

image’s resolution depth, and thus the image has less contrast.

A comparison of all three normalization methods can be found in Figure 3.4, which

shows the line intensity at row 255 of a flat field image that has been normalized with each of

the three methods.. Both the linear and PS CT normalization show a good normalization of

pixel nonuniformity, but it is clear that the PS CT normalization only uses about 70% of the

available resolution depth, while the linear normalization occasionally surpasses the

92

maximum representable pixel intensity. Striegel’s FX Visual normalization shows areas

where the assumption of a dark value of zero is not valid around pixel position 0.5%.

However, for the majority of the image width, all three methods provide acceptable results.

3.2 Immersive Visualization

The second portion of this work is to visualize multiphase flow measurements in an

immersive manner. Immersive visualization is advantageous because it allows a user to

explore spatial relationships in a manner that closely matches their experiences in the real

world. Furthermore, the multiphase flow measurements in this work capture all three spatial

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

P
ix

el
 I

n
te

n
si

ty
 (

P
er

ce
n

t
o

f
M

a
x
im

u
m

)

Pixel Position (Percent Across Image)

Unnormalized Linear PS CT Striegel (FX Visual)

Figure 3.4: A comparison of the four available normalization methods. The data is from row 255 of a flat

image, normalized using a different flat image and a dark image for the same settings. The horizontal

axis is scaled to the percent of the distance a given pixel is located across the image, and the vertical axis

is scaled to the percentage the intensity value is of the maximum representable intensity.

93

dimensions, thus being able to visualize those measurements in a 3D, immersive system is

beneficial.

The visualization portion of this work will be completed at the Multimodal Experience

Testbed and Laboratory (METaL). METaL is a CAVE automatic virtual environment

facility built by Mechdyne Corporation. In CAVE and CAVE-style virtual reality systems,

stereoscopy is achieved by projecting field sequential active stereoscopic images onto

projection screens, which act as the physical boundaries of the interaction space. To further

enhance the illusion of 3D, and in turn the user’s immersion, the location of the user in the

physical space is tracked with sensors and the computer-generated imagery is updated in

accordance with the user’s movements.

In the METaL implementation of a CAVE (shown in Figure 3.5), there are two walls and

a floor, all of which display projected imagery. The left wall is a 2.7 m × 3.7 m (9 ft. ×

12 ft.) rear-projected screen. The right wall is also a rear-projected screen, but it measures

Left Wall

Projector

Left Wall

Mirror

Floor Projector
Floor Mirror

Right Wall

Screen

Figure 3.5: Schematic of METaL. Note the screen of the left wall is removed for clarity.

94

2.7 m × 2.7 m (9 ft. × 9 ft.). In contrast, the floor is a 3.7 m × 2.7 m (12 ft. × 9 ft.) front

projected screen, made from fiberboard with a plastic laminate overlay. All the display

surfaces are projected with Digital Projection International TITAN WUXGA-3D projectors

(one per surface). These projectors are capable of rendering field sequential stereo images at

120 Hz (60 Hz per eye), with a maximum resolution of 1920 × 1200 pixels. In order to

match the aspect ratio of the screens, the left wall and floor projectors display 1600 × 1200

pixels, with the right wall projector displaying at 1200 × 1200. To display the images to the

user properly, XPAND X101 active shutter glasses are used (Figure 3.6). These glasses

contain an LCD (liquid crystal display) shutter in each lens to ensure that the left eye only

views the left frame and the right eye only views the right frame. The X101 glasses use an

infrared signal (broadcast from emitters located behind the screens) to synchronize the LCD

shutters on the glasses with the left eye and right eye images displayed by the projectors.

All of the graphics for the projectors are rendered on a dedicated graphics computer

which consists of dual Intel Xeon X5677 quad-core processors, 24 GB of random access

memory (RAM), and dual NVIDIA Quadro Plex 2200-D2 visual computing systems. Each

projector has its own, dedicated NVIDIA Quadro FX 5800 within the Quadro Plex 2200-D2,

with one extra GPU available for other calculation tasks. There is also a head node, which is

Figure 3.6: The XPAND X101 tracked glasses used in the METaL virtual environment.

IR Sync

Receiver

LCD Lens

Retroreflective

Marker

Tracking Tree

95

identical to the render node except it contains only a single NVIDIA Quadro FX 5800 instead

of dual Quadro Plex units. The head node is used primarily for controlling the tracking

system.

The position tracking system in METaL is an ART TrackPack 4. This system uses four

infrared cameras to measure the position of retroreflective tracking markers. The markers are

illuminated by an infrared flash attached to the camera, and return a bright signal on the

corresponding camera. By knowing the location of the cameras, and the location of the

markers in the camera image, the TrackPack controller calculates the position of the marker

and transmits it via Ethernet to the other computers in the system. With a single marker, the

TrackPack system is only capable of calculating the position of an object, but not the

orientation. However, by using a “tree” that contains four or more markers rigidly located at

predetermined positions relative to each other, the TrackPack is capable of calculating the

position and orientation of the tree. For most work in METaL, there are two tree-style

markers used, one is attached to a pair of 3D glasses to determine the position and orientation

of the users head (Figure 3.6) and the other is attached to a Nintendo Wii controller (or

WiiMote), which is used as a wand for user input into the virtual environment.

The WiiMote wand, shown in Figure 3.7, is the primary input device for most VR

applications in METaL. As previously noted, a tracking tree is attached to the WiiMote to

provide position and orientation information. The buttons on the WiiMote are made usable

in VR through the use of the virtual reality peripheral network (VRPN). The WiiMote is

setup to use VRPN through a dedicated Linux server, which connects to the WiiMote via

Bluetooth and then transmits information about the button states across METaL’s local

network. While the WiiMote also has an onboard camera and accelerometer, these sensors

96

are not configured for use in this application. The camera is blocked by the mount for the

tracking tree, rending it useless, and the accelerometer data is largely redundant with the data

provided by the tracker. However, support for the optional “nunchuck” add-on controller has

been retained.

Finally, METaL also includes support for rendering spatial sound. The sound is

generated using a Creative Sound Blaster Xi-Fi Titanium sound card on both the head and

render nodes (only one source may be used at a time). These cards are linked via a

TOSLINK optical audio cable to a Yamaha RX-V367 receiver. The receiver is setup with

five full range speakers and a subwoofer. The full range speakers are located above the user

on the cantilever structure that supports the floor projector mirror, while the subwoofer is

situated on the ground behind the left wall screen.

Retroreflective

Marker

“A” Button

Directional

Button Pad

Status Lights

Tracking Tree

Figure 3.7: The tracked WiiMote for the METaL virtual environment.

97

3.2.1 VR JuggLua

While there are multiple toolkits available to create software for virtual reality (such as

VR Juggler, CAVELib, and MiddleVR), the one used most commonly in METaL is

VR JuggLua (Pavlik and Vance, 2012). VR JuggLua is a VR framework built on top of the

VR Juggler platform and allows applications to be built interactively using the Lua scripting

language and the Navigation Testbed interactive scripting console (shown in Figure 3.8). In

contrast, pure VR Juggler applications are written in C++ and must be compiled prior to use.

The use of VR JuggLua in METaL provides several advantages. First, the Lua scripting

language is simpler than C++ making it easier for a novice programmer to learn. Second,

because VR JuggLua implements a read-evaluate-print loop, a programmer can add code and

immediately see its impact on the application. This is extremely useful in VR because it

allows for the fine-tuning of object positions and lighting though a trial-and-error process

without the long compile time associated with a compiled language. Third, because

VR JuggLua is built on top of VR Juggler, any code written in VR JuggLua can run on any

Figure 3.8: The graphical user interface of VR JuggLua, shown in simulation mode. The navigation

testbed (left) allows for the input of Lua code while the program is running. The simulation window

(right) provides a preview of what the user will see in virtual reality.

Debugging

Console

Code Input

Region

Simulated

Head Position

Simulated

Wand

Rendered

Object

98

of the wide variety of systems that support VR Juggler, using the same configuration files.

For example, a visualization program can be built in VR JuggLua on the desktop using

simulator mode, and then by changing only the configuration file, it can be run on METaL

for testing an immersive environment. When the code is ready for active use, the

configuration file can be changed once more, and the program can be experienced in a six-

sided VR system, such as the C6. This allows programming full applications using desktop

hardware and seamlessly moving to higher end systems to gain an immersive experience.

As an example of how VR JuggLua code operates, a shader implementation of Phong

shading is provided in Figure 3.9 (Phong, 1975). The first thing to note about this example is

that it contains two separate programming languages. Lua provides the interaction with

OSG, but OpenGL Shading Language (GLSL) is used for the shader program that runs on the

GPU. Technically, Lua interprets the GLSL code as a generic string, but when the string is

passed to the appropriate OSG function, it will parse and compile it for execution on the

GPU.

The code in Figure 3.9 operates as follows. First, a model is loaded from the hard drive

and saved to a variable. In the example, a relative path is used to load the model; however,

Lua supports both relative and absolute paths. Next, the model is added to the rendered

scene by attaching it to the scene graph node that positions objects relative to the world

space. Because there are no transformations applied to the teapot model, its origin is placed

at the world origin, but a transformation to position it elsewhere could easily be applied.

99

1 --Adapted from:
2 --https://github.com/vancegroup/vr-jugglua/blob/master/examples/advanced/phong-shading.lua
3
4 --Load a model of a teapot using a relative path
5 teapot = Model([[assets/models/teapot.osg]])
6
7 --Create a transform to move the teapot to x=1, y=0, z=-1
8 --And rotate it -90° about the X-axis
9 teapotTransform = Transform{position = {1, 0, -1}, orientation = AngleAxis(Degrees(-90), Axis{1, 0, 0})}
10
11 --Add the teapot to the transform
12 teapotTransform:addChild(teapot)
13
14 --Add the transform to the scene
15 RelativeTo.World:addChild(teapotTransform)
16
17 --Function to apply a shader to a model
18 applyShaderToStateSet = function(stateset)
19 --Define the vertex shader
20 local vertexShader = osg.Shader(osg.Shader.Type.VERTEX,
21 [[
22 //GLSL code for the vertex shader
23 varying vec3 normalVector;
24 varying vec3 viewVector;
25
26 void main(void)
27 {
28 viewVector = vec3(gl_ModelViewMatrix * gl_Vertex);
29 normalVector = normalize(gl_NormalMatrix * gl_Normal);
30 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
31 }
32]])
33
34 --Define the fragment (pixel) shader
35 local fragmentShader = osg.Shader(osg.Shader.Type.FRAGMENT,
36 [[
37 //GLSL code for the fragment shader
38 varying vec3 normalVector;
39 varying vec3 viewVector;
40
41 void main(void)
42 {
43 vec3 lightVector = normalize(gl_LightSource[0].position.xyz - viewVector);
44 vec3 eyeVector = normalize(-viewVector);
45 vec3 reflectionVector = normalize(-reflect(lightVector, normalVector));
46
47 //Calculate the ambient light term
48 vec4 ambient = gl_FrontLightProduct[0].ambient;
49
50 //Calculate the diffuse light term
51 vec4 diffuse = gl_FrontLightProduct[0].diffuse
52 * max(dot(normalVector, lightVector), 0.0);
53 diffuse = clamp(diffuse, 0.0, 1.0);
54
55 //Calculate the specular light term
56 vec4 specular = gl_FrontLightProduct[0].specular
57 * pow(max(dot(reflectionVector, eyeVector), 0.0), 0.3
58 * gl_FrontMaterial.shininess);
59 specular = clamp(specular, 0.0, 1.0);
60
61 //Write the final color to the fragment
62 gl_FragColor = gl_FrontLightModelProduct.sceneColor + ambient + diffuse + specular;
63 }
64]])
65
66 --Set the shaders to run on the GPU
67 local program = osg.Program()
68 program:addShader(vertexShader)
69 program:addShader(fragmentShader)
70 stateset:setAttributeAndModes(program, osg.StateAttribute.Values.ON)
71 end
72
73 --Apply the shader to the teapot model
74 applyShaderToStateSet(teapot:getOrCreateStateSet())

Figure 3.9: VR JuggLua code to load a teapot model and render it with GPU-based Phong shading. Note,

this example contains two separate programming languages: Lua (black) and GLSL (blue).

100

Next, a Lua function is defined to apply the shader (in this case a Phong shader) to the

rendering state of an object. In this example, this function is only used on the teapot, but it

could be used on multiple models if more were loaded. Inside this Lua function are two

GLSL functions, the vertex shader and the fragment shader (called a pixel shader in

DirectX). The syntax of the GLSL language is very similar to C; however, there are a few

unique features. First, vectors are native variable types in GLSL. For example, “vec3” is

used multiple times and indicates that the variable is a three-component floating point vector.

Second, GLSL implicitly assumes that the code is run for each vertex or fragment (depending

on the shader type).

Once the GLSL functions are defined, the final step in this Lua function is to package

them together as a complete shader program, and load the complete shader program to the

GPU. The final step in the example is to apply the Lua function to the teapot. The results of

this code produce the image shown in Figure 3.10.

Figure 3.10: The Utah teapot rendering using GPU-based Phong shading via VR JuggLua

using the code in Figure 3.9.

101

3.2.2 Kinect Sensor

To augment the optical tracking system in METaL, it is equipped with multiple Kinect

for Windows sensors. There are two versions of the sensor available. The original Kinect

for Windows sensors, which will be referred to as the Kinect v1, is a version of the Kinect for

the Xbox 360 gaming system with an enhanced firmware. The second version of the Kinect

for Windows is the Kinect sensor for the Xbox One system, paired with a converter box that

permits it to be used on a Windows computer. This is referred to as the Kinect v2.

The Kinect v1 sensor is a structured light sensor consisting of an infrared projector and

an infrared camera to determine the depth of objects in its view. It does this by projecting a

pattern of infrared dots and using the distortions in this pattern to calculate the depth.

Together, the infrared project and infrared camera are often referred to as the depth camera.

The Kinect v1also contains a color camera to provide a 2D visible light image, a microphone

array for doing voice recognition, and an accelerometer (Zhang, 2012). The arrangement of

the cameras on the Kinect is shown in Figure 3.11; the microphone array and accelerometer

are internal components, and are not visible. Both the color and depth cameras are capable of

frame rates up to 30 FPS with a resolution of 640 × 480 and a field of view of 57°

Infrared

Projector
Color

Camera
Infrared

Camera

Tilt Motor

Figure 3.11: The Microsoft Kinect sensor, version 1.

102

horizontally and 43° vertically (Microsoft, 2014b). The color camera is also capable of

operating at a higher resolution (1280 × 960 pixels) by lowering the frame rate to 12 FPS.

The microphone array captures monaural audio at 16 kHz with 24-bit depth (Microsoft,

2014b). Additionally, it is able to estimate the angle of the audio source relative to the

Kinect in 10° increments from −50° to 50° (Microsoft, 2012b).

The Kinect v2 sensor also uses infrared light to determine the depth of objects in its

view. However, its depth sensing is based off an infrared time-of-flight sensor instead of

structured light (Lun and Zhao, 2015). The depth sensor is capable of a resolution of

512 × 424 at 30 FPS and a field of view of 70° horizontally and 60° vertically. It also

contains a high definition color camera with a resolution of 1920 × 1080 at 30 FPS

(Microsoft, n.d.-f). Like the Kinect v1, the Kinect v2 also contains a microphone array for

voice recognition and audio source angle estimation. However, the Kinect v2 does not

contain an accelerometer or tilt motor.

Color Camera

Infrared

Camera Infrared

Emitters

Microphone

Array

Figure 3.12: The Microsoft Kinect sensor, version 2.

103

One of the key advantages of the Kinect is that it supports markerless tracking. Most

tracking systems, like the ART TrackPack 4 used in METaL, require a tracking target to be

affixed to each point that is to be tracked. The Kinect uses its depth camera and image

recognition software to identify humans in the image and estimate how the bodies are

positioned relative to the Kinect (Shotton et al., 2011). To leverage this ability in METaL,

multiple Kinects are positioned around the interaction area. The data from the Kinects

supports encumbrance free gesture recognition, voice recognition, speaker position

determination, and skeletal tracking. While the quality of the tracking data from the Kinect

sensors is much lower than what METaL’s optical tracking system provides, it is still a useful

complementary tracking system. For example, the optical tracking system is ideal for

providing head tracking within METaL, as it provides a low-latency, high-precision position

and orientation. While the user is somewhat encumbered due to the tracking marker, the user

must wear glasses anyway for the stereoscopy to function, thus the extra encumbrance from

the tracking marker on the glasses is minimal. Conversely, the Kinect sensor’s data are high-

latency and prone to noise, which would likely make the user ill if used for head tracking.

However, because the optical tracking requires a marker for each tracked position, the

markerless tracking of the Kinect provides significantly lower encumbrances. This is

particularly useful for tasks such as 3D object manipulation, where high latency in movement

is unlikely to significantly reduce a user’s immersion, but encumbering objects may affect

immersion.

104

CHAPTER 4:

A HIGH-SPEED X-RAY DETECTOR SYSTEM FOR NONINVASIVE

FLUID FLOW MEASUREMENTS

One of the main challenges with the X-ray imaging of fluid flows, as discussed in

Chapter 1, is that the acquisition speed of most systems is too slow to image the high-speed

dynamics of many common multiphase flows. Working towards objective one from

Section 1.2, this chapter examines the feasibility of increasing the acquisition speed of X-ray

radiography by coupling a high-speed camera with an X-ray image intensifier. This chapter

is based off a paper presented at the 2013 American Society of Mechanical Engineers

(ASME) Fluids Engineering Division Summer Meeting (FEDSM).
1

4.1 Abstract

The opaque nature of many multiphase flows has long posed a significant challenge to

the visualization and measurement of flow phenomena. To overcome this difficulty, X-ray

imaging, both in the form of radiography and computed tomography, has been used

successfully to quantify various multiphase flow phenomena. However, the relatively low

temporal resolution of typical X-ray systems limit their use to moderately slow flows and

time-average values. This paper discusses the development of an X-ray detection system

capable of high-speed radiographic imaging that can be used to visualize multiphase flows.

Details of the hardware will be given and then applied to sample multiphase flows in which

1
 Based on Morgan, T. B., Halls, B. R., Meyer, T. R., and Heindel, T. J. (2013). A High-Speed X-ray

Detector System for Noninvasive Fluid Flow Measurements. In ASME 2013 Fluids Engineering Division

Summer Meeting (FEDSM2013) (p. FEDSM2013-16427). Incline Village, NV, USA: ASME.

doi:10.1115/FEDSM2013-16427

105

X-ray radiographic images of up to 1,000 frames per second were realized. The sample

flows address two different multiphase flow arrangements. The first is a gas-liquid system

representative of a small bubble column. The second is a gas-solid system typically found in

a fluidized bed operation. Sample images are presented and potential challenges and

solutions are discussed.

4.2 Introduction

The use of dynamic X-ray imaging started with the development of fluoroscopic X-ray

systems, which used a phosphor screen to convert X-rays into visible light that an observer

would view directly (Cartz, 1995). While these systems allowed scientists to view flows in

real time, they could not record data for later analysis or slow down events that were too fast

to be observed by the human eye. The use of X-ray sensitive film allowed for the direct

recording of data, but due to the relative insensitivity of X-ray film, this process required

long exposures or high X-ray intensity, and time consuming development processes (Boyer

et al., 2005; Chotas et al., 1999). Therefore, it was not until the development of digital X-ray

detection systems that time-sequenced radiography became the powerful tool for fluid flow

research it is today (Heindel, 2011).

However, the current state of X-ray imaging still generally limits time sequences to

standard video frame rates. Most direct X-ray detectors are only capable of 30 frames per

second (FPS), and indirect detectors are limited by the decay rate of the phosphor screen

(Gruner et al., 2002; Seibert, 2006). Flash X-ray systems use high-power, short duration X-

ray pulses to take images at higher speeds, but are generally limited to generating a small

number of frames because of energy storage bank recharge times and anode deterioration

(Boyer et al., 2005; Heindel, 2011). For example, Romero and Smith (1965) used flash X-

106

ray radiography to examine fluidized beds, but were limited to two radiographs, at different

spatial locations, per experiment. Heindel and Monefeldt (1997, 1998) later used flash X-ray

to examine pulp suspensions in bubble columns, and although they achieved 30 nanosecond

exposure time, they were limited to single X-ray frames. Finally, Grady and Kipp (1994) and

Boyer et al. (2005) used flash radiography to image projectiles, with Boyer et al. achieving

up to 50 consecutive frames before significant anode deterioration.

Synchrotron X-ray sources have also been used to image fluids at high speed (MacPhee

et al., 2002; Royer et al., 2005; Wang et al., 2008). For example, Royer et al. (2005)

observed impact-induced granular jets at frame rates up to 5000 FPS using the Advanced

Photon Source at Argonne National Laboratory. MacPhee et al. (2002) was able to image

shock wave generation in high-pressure sprays at over 100,000 FPS, also using the Advanced

Photon Source. However, synchrotron sources are cost prohibitive for most fluid flow

research.

Finally, there have been a few studies using continuous X-ray sources to examine

systems at high speed. One early, moderately high speed fluid study was completed by

Rowe and Partridge (1965), who used an X-ray intensifier and cinematographic film camera

to achieve frame rates of 50 FPS. A more recent study by Zolfaghari et al. (2002) used a

digital CCD camera and X-ray intensifier to observe current interruption in a circuit breaker

at 4000 FPS. However, the high material density and well-defined material boundaries

inside a circuit breaker require a less sensitive system than one typically needed for fluid

flow visualization.

107

This paper will summarize current efforts to produce high-speed radiographic images of

highly dynamic, opaque multiphase flows using an X-ray image intensifier and high-speed

camera.

4.3 Experimental Setup

This study used the X-ray Flow Visualization Facility at Iowa State University (Heindel

et al., 2008). However, the image acquisition system was modified from its standard

arrangement to significantly increase the imaging speed. The standard LORAD LPX 200

X-ray source was used to provide the radiation. This source provides a conical

polychromatic X-ray beam with a maximum tube potential of 200 kV and maximum tube

current of 10 mA with a maximum power output of 900 W. This source was paired with a

Precise Optics PS164X image intensifier to convert the X-ray photons into viable light. This

particular intensifier is designed to use a remotely controlled C-mount lens paired with a

CCD camera, such as the DVC-1412 used in previous studies (Heindel et al., 2008). To

increase the speed of the system, the CCD camera was removed and replaced with a

complementary metal-oxide-semiconductor (CMOS) based Photron FASTCAM SA5 high-

speed camera. The SA5 is well suited for this application due to both its resolution

(1024 × 1024 pixels) and speed (7000 FPS at full resolution, up to 1,000,000 FPS at reduced

resolution). It is also extremely sensitive (ISO 10,000 equivalent), enabling it to image at

high frame rates despite the low light intensity inherent in X-ray detectors. The use of this

camera also required replacing the stock intensifier lens with a Nikon Nikkor 50 mm

F-mount lens. Furthermore, a custom lens mount was required on the camera to shorten the

flange focal length by 3.13 mm (0.13 in), and allow the lens to achieve the true infinite focus

distance, as required by the intensifier optics. Finally, the camera was shielded all the way

108

around by a 6.35 mm (0.25 in) thick lead shield to prevent damage to the camera from the

high intensity radiation. The X-ray setup is schematically represented in Figure 4.1.

All images were acquired using the standard acquisition software provided with the SA5

camera system. This produced a sequence of 12-bit tiff images. These images were then

digitally processed to normalize the images and remove the pincushion artifact caused by the

image intensifier. The result of this processing can be seen in Figure 4.2, which shows the

raw and corrected image of a calibration grid. This calibration grid is a sheet of 1.9 mm

(0.074 in) thick stainless steel with an array of 2 mm (0.078 in) holes drilled at 12.7 mm

(0.5 in) on center intervals, both vertically and horizontally. More details on the correction

algorithm can be found in Section 3.1.2. The corrections cause some artifacts at the edges of

the image; however, this is outside the area of interest, so their effect is negligible.

To test the effectiveness of the camera system, two flow systems were used in this study.

The first is an 8.0 cm (3.15 in) diameter bubble column. It was filled to a height of two bed

diameters with water, and air was injected from the bottom through a central 1.0 cm (0.39 in)

diameter by 1.5 cm high (0.59 in) porous injector. For the imaging of this system, the flow

rate was held constant at 50 LPM (13.2 GPM) by a computerized flow controller, producing

High Speed

Camera

Lens Mount

Lens

Image

Intensifier

X-ray

Source

X-ray Beam

Imaged

Object

Figure 4.1: The imaging setup for the high speed camera. Note that the image intensifier has an internal

mirror to allow the camera to be mounted out of the primary X-ray beam. Lead shielding is omitted from

the schematic for clarity.

109

a superficial gas velocity of 17 cm/s (6.7 in/s), in which the flow regime was clearly churn

turbulent. Once the flow was operating at a steady flow rate, the camera was triggered to

take a 1000 frame sequence. Each image in this sequence was acquired at full resolution

(1024 × 1024 pixels), with an exposure of 16.3 μs and each image was taken 1 ms apart (for

a frame rate of 1000 FPS). The short exposure reduced the effects of motion blur, while the

1000 FPS frame rate was selected to maximize the length of time the flow was imaged, while

still keeping the inter-frame flow movement small. To achieve such a short exposure time

the X-ray power was set at 100 kV and 9.0 mA.

The second flow system consisted of a 15.24 cm (6 in) internal diameter fluidized bed

that was filled to a height of one bed diameter with crushed walnut shell, sieved to a particle

size range of 500–600 μm (0.020–0.024 in). Air was injected from the bottom through a

distributor plate (Drake and Heindel, 2011). The air flow through this system was

maintained at 280 LPM (74.0 GPM)—approximately two times minimum fluidization—by

Figure 4.2: A comparison of a radiograph of the X-ray intensifier calibration grid before and after image

processing. The unmodified frame, left, shows a pincushion distortion. The corrected frame, right, has

the rectilinear structure of the calibration grid restored.

110

the computerized flow controller resulting in a superficial gas velocity of 26 cm/s (10.2 in/s).

For this system, 10,000 frames were acquired at 1000 FPS using full resolution. However,

for this test a longer exposure was required to provide enough intensity to image the system

due to its larger diameter and dense material. In this case, an exposure of 50.2 μs was used

and the X-ray power was set at 80 kV and 7 mA.

The fluidized bed flow was also seeded with a tracer particle to allow the analysis of the

particle movement from the image sequence. This particle was a 2.03 mm (0.08 in) diameter

lead sphere, inside an 8 mm (0.32 in) diameter foam sphere (Drake et al., 2011). In order to

track this particle, a normalized cross-correlation method was used. This method computes

the similarity between a template image (in this case a radiograph of just the particle) and

each point in the image. The particle tracking then finds the point of highest correlation, and

marks that as the particle location (Drake et al., 2009; Morgan and Heindel, 2010).

4.4 Results and Discussion

An analysis of the bubble column sequence shows that the air tends to rise in the center

of the column, with recirculation currents along the edges of the column. Once the air

reaches approximately 1.5 column diameters above the bottom of the column, a foam-like

region of high gas fraction begins, which matches closely with visual observations of the

column’s operation. By tracking the leading edge of bubbles as they rise, the velocity of the

bubble can be ascertained. For the bubble in Figure 4.3, this measurement yields a bubble

rise velocity of 55.4 cm/s ± 0.1 cm/s (21.8 in/s ± 0.04 in/s).

111

An examination of the fluidized bed in Figure 4.4 shows that the distributor plate

maintains a relatively even distribution of bubbles across the bed. This is consistent with the

findings of Drake and Heindel (Drake and Heindel, 2011) obtained through X-ray computed

tomography scans. The addition of a tracer particle to the flow, shown Figure 4.4, allowed

for the evaluation of granular movement within the flow, shown in Figure 4.5.

The tracking of the particle revealed downward flow zones at both sides of the bed, as

projected onto the X-ray detector. However, these zones do not appear to be large enough to

trap the particle fully, as it never reaches the bottom of the bed throughout the entire test.

While this is just a small example of particle motion inside a fluidized bed, it shows the

clarity with which particle tracking data may be obtained using high-speed radiography.

Previous research using the same normalized cross-correlation algorithm was only able to

identify the particle correctly 70–95% of the time, depending on the particle shape and flow

t = 0.40 t = 0.41 t = 0.42 t = 0.43 t = 0.44

Figure 4.3: A gas-liquid system with gas bubbles (lighter gray regions) rising from a central injector.

Images shown from time t=0.40 s to t=0.44 s. Every tenth frame is shown to illustrate the bubble

movement more clearly.

112

conditions (Drake et al., 2009; Morgan and Heindel, 2010). Using the high-speed

radiographs, the particle was correctly identified 99.98% of the time. This increase can be

attributed to the extremely short exposure time, as compared to earlier studies.

Both flows show the ability of the X-ray system to image at high speeds. The primary

limitations of high-speed X-ray imaging with a tube source—output image intensity and

phosphor decay—were non-issues in this case. The full output power of the source was

sufficient to provide a bright enough output image from the intensifier to support exposures

down to 16.3 μs while still using more than 75% of the camera’s intensity range. If some

loss of intensity range is acceptable, the exposure times could be further reduced. As for the

phosphor decay, no effects from the time response were found at 1000 FPS. This provides

enough speed to examine many flows of industrial interest in depth. Furthermore, the

exposure times are short enough that the frame rates could be increased significantly if the

phosphor decay rate is fast enough.

Tracer Particle

Figure 4.4: A gas-solid system with gas bubbles (lighter gray regions) rising from a uniform distributor on

the bottom. This image was acquired at t = 1.050 s.

113

4.5 Summary

This work demonstrates that the pairing of a high-speed camera with an X-ray image

intensifier is capable of imaging fluid flows at high speed. The system has been proven to

image at 1000 FPS, with exposures as low as 16.3 μs. The system is capable of revealing the

dynamic details of a fluid flow that cannot be observed with other methods, such as

computed tomography. Furthermore, the high quality particle tracking results will provide a

powerful quantitative tool to determine experimental flow velocities inside opaque systems.

114

(a) Figure 4.5: The path of the tracer

particle in a fluidized bed, as

tracked by the normalized cross-

correlation method for a 10 s

period. From one source-

detector pair the x-position vs.

time (a), z-position vs. time (b),

and x-position vs. z-position (c)

can be determined. Another

source-detector pair would be

required to determine the

y-position.

(b)

(c)

0

5

10

15

20

25

0 2 4 6 8 10

V
er

ti
ca

l
P

o
si

ti
o

n
,
z

(c
m

)

Time, t (s)

-8

-6

-4

-2

0

2

4

6

8

0 2 4 6 8 10

H
o

ri
zo

n
ta

l
P

o
si

ti
o

n
,

x
 (

cm
)

Time, t (s)

0

5

10

15

20

25

-10 -5 0 5 10

V
er

ti
ca

l
L

o
ca

ti
o

n
,
z

(c
m

)

Horizontal Location, x (cm)

115

CHAPTER 5:

SENSITIVITY OF X-RAY COMPUTED TOMOGRAPHY

MEASUREMENTS OF A GAS-SOLID FLOW TO VARIATIONS IN

ACQUISITION PARAMETERS

Continuing towards the goal of improving X-ray imaging as a tool for noninvasive

characterization of fluid flows, this chapter contributes to object two from Section 1.2 by

demonstrating that the results of X-ray computed tomography flow measurements are not

dependent on the choices the researcher makes in imaging parameters. Specifically, it

presents an examination of the effects of changing X-ray acquisition parameters on the

resulting fluid flow measurements. This chapter is based on a paper that was published in

Flow Measurement and Instrumentation in June 2017.
2

5.1 Abstract

Due to its high spatial resolution and non-invasive nature, X-ray computed tomography

has become a popular method for determining the flow characteristics of multiphase flows.

However, because many of the X-ray computed tomography systems used for non-

destructive imaging of multiphase flows provide the operator wide leeway in the selection of

imaging parameters, the potential exists for errors to be introduced into the measurements if

the algorithms are sensitive to these changes. In this paper, a representative multiphase flow

(specifically, a fluidized bed) is imaged with a wide range of X-ray tube electrical potentials,

currents, and detector exposure times and reconstructed with a wide range of centers of

2
 Based on Morgan, T. B., and Heindel, T. J. (2017). Sensitivity of X-ray Computed Tomography

Measurements of a Gas-Solid Flow to Variations in Acquisition Parameters. Flow Measurement and

Instrumentation, 55(June), 82–90. doi:10.1016/j.flowmeasinst.2016.10.011

116

rotation. The results of these tests show that while the raw computed tomography (CT)

intensities are sensitive to these parameter variations, once the measurements are calibrated

to reference images (in this case through a void fraction calculation), the final results are

insensitive to most changes. In the extreme cases where there is some sensitivity to the

parameter changes, the causes and practical implications are discussed.

5.2 Introduction

One of the primary challenges in the measurement of multiphase flows has been

determining the flow characteristics inside the flow because many of the flows of interest are

opaque or contained within an opaque vessel. This opaque nature limits any optical

measurements to the surface of the flow (van Ommen and Mudde, 2008). Furthermore,

many common flow sensors, such as pitot tubes and hot wire anemometers, intrude into the

flow creating the potential for the sensor to change the flow characteristics (Boyer et al.,

2002; Whitemarsh et al., 2016). The way around these limitations is to use noninvasive

measurement methods. While many methods for noninvasive imaging have been proposed

and tested, one of the best solutions for achieving high spatial resolution in three dimensions

is X-ray CT. However, X-ray CT requires the acquisition of numerous projections from

different angles around the flow of interest. This results in long scan times (on the order of

15 minutes for the scanner in this study) and limits the use of X-ray CT measurement of

time-averaged values for most flows. Due to this limitation, one of the most common

applications of X-ray CT in multiphase flows is to determine the local time-average void

fraction of a flow (Heindel, 2011; Ikeda et al., 1983), which is also called the local gas

fraction or local gas holdup.

117

When acquiring an X-ray CT scan, there are a large number of parameters the operator

needs to set, such as tube voltage, tube current, exposure time, and number of projections. In

medical CT imaging, X-ray dosage is strictly prescribed to minimize a patient’s exposure to

radiation which limits the range of available settings radiologists can use (Fazel et al., 2009).

However, in CT imaging of multiphase flows, the radiation dose the flow receives is

typically not a concern, giving the operator wide leeway in the selection of acquisition

parameters. While nonlinearities in the X-ray mass attenuation coefficient can lead to certain

X-ray energies yielding better contrast between materials, it is not always considered when

selecting X-ray parameters (Ketcham and Carlson, 2001). Furthermore, even when

nonlinearities in the mass attenuation coefficient are considered, there remains a range of

parameters that can be selected. Thus, the choice of parameters is typically as much art as

science, with the operator selecting parameters based on what looks “best.” This research

will analyze how variations in the operator’s selection of tube voltage, tube current, exposure

time, and center of rotation impact the results of multiphase flow scans.

To understand how a change in image acquisition parameters can impact the results of a

CT scan, this study looks at both uncalibrated CT reconstructions and local phase fraction

results. A change in tube voltage, and in turn the average X-ray photon energy, will increase

or decrease the brightness of a projection. Additionally, when the tube voltage is changed,

nonlinearities in the X-ray mass attenuation coefficient can cause the ratio of intensities

between the flow phases to change, leading to an over or underestimation of the phase

fraction. Like tube voltage changes, tube current and exposure changes will also result in a

change in the brightness of the projections. However, these changes should not impact the

local X-ray mass attenuation because they are only dependent on the material and incident

118

X-ray photon energy. Even without the effects of mass attenuation coefficient nonlinearities,

changes in projection brightness will impact how much of the detector’s dynamic range is

used, and could lead to changes in signal-to-noise ratio. Additionally, under all parameter

variations there are physical phenomena that are not modeled in the reconstruction algorithm,

such as beam hardening and partial volume effects, that can lead to artifacts in the

reconstruction (Baxter and Sorenson, 1981; Goodsitt et al., 2006). Finally, medical radiology

research has shown that, even in medical settings where the parameters and calibration are

strictly prescribed, variations in acquisition parameters and variations between CT scanners

can lead to differences in the raw CT number (Groell et al., 2000; Levi et al., 1982). Thus,

before accepting X-ray CT as a quantitative method for measuring multiphase flows,

variations in the image acquisition parameters should be tested to determine if the desired

results are sensitive to these variations.

5.3 Experimental Setup and Methods

Determining the sensitivity of multiphase flow CT scans to the imaging parameters

requires three key components: (i) a test system that includes both a representative CT

scanner and a representative multiphase flow to scan, (ii) a method of determining baseline

imaging parameters to use as a reference, which should reflect the typical process a

researcher would use to select imaging parameters, and (iii) a method of analysis to

determine the influence of the imaging parameters on the final results. Section 5.3.1 will

cover the CT scanner and multiphase flow used in this study to test the sensitivity. The

process used to select the baseline scanning and reconstruction parameters, as well as how

those parameters were varied for testing, is discussed in Section 5.3.2. Finally, Section 5.3.3

discusses the methods used to analyze the impact of the parameters to the scan results.

119

5.3.1 Test System

To represent the conditions of a multiphase flow experiment, the comparison of X-ray

CT parameters was done using a real multiphase flow as a test object instead of an artificial

phantom. The selected flow was a 10.2 cm diameter fluidized bed contained inside an

acrylic column. This flow is representative of previous laboratory scale systems investigated

with X-ray CT (Drake and Heindel, 2012b; Escudero and Heindel, 2011; Franka and

Heindel, 2009). The bed was filled with 500-600 μm glass beads to a static bed height of

10.2 cm. The bed was fluidized to two times the minimum fluidization velocity, which was

determined to be a volumetric flow rate of 144 lpm of air. The air was humidified before

injecting it into the fluidized bed by bubbling it through a tank of water to prevent static

electricity from building up in the fluidized bed. The volumetric flow rate of the air was

measured using a 0-1000 lpm Aalborg GFM771 flow meter with a maximum error of 2% of

full scale. The flow rate was maintained by a computer controlled Aalborg SMV40-SVF2-A

proportional valve.

The X-ray Flow Visualization (XFloViz) facility at Iowa State University was used to

acquire the CT images for this study. This system has been described in detail by Heindel et

al. (2008); therefore, only a brief overview will be provided. The XFloViz facility, shown in

Figure 5.1, has two Lorad LPX 200 X-ray sources that are able to maintain a tube voltage

within ±1 kV and tube current within ±0.1 mA of the user selected setting. The X-ray sources

are mounted at 90° to each other around a slew ring that provides 360° rotation around the

object of interest, allowing X-ray projections to be acquired from numerous angles around

the object. Across from each source is an X-ray detector. There are two types of detectors

available in the XFloViz facility. One type is a Hamamatsu Photonics CsI scintillator screen

120

is a Precise Optics PS164X X-ray image intensifier with a Digital Video Camera Company

DVC-1412 CCD camera. For this study, only one X-ray source was used and it was paired

with the CsI scintillator detector. This provides a higher spatial resolution at the cost of a

longer exposure time.

In order to acquire a CT scan, numerous X-ray projections are required. To accomplish

this, the system takes a radiographic image at one position and transfers it to a computer for

storage and processing. Next, the system rotates the source-detector pair a preset amount (in

this case 1°) around the imaging region using the slew ring. An image is then acquired at the

new position and the entire process repeats until projections have been acquired from all 360°

around the bed. After all the radiographic projections have been acquired, the scan is

complete. However, in order to produce a useful 3D data set, the radiographic projections

must be reconstructed. In the XFloViz facility, this is done using an in-house

implementation of the filtered backprojection (FBP) algorithm (Zhang, 2003). The resulting

2

1

3

4

5

1) X-ray sources

2) Scintillator detector

3) Intensified detector

4) Fluidized bed

5) Slew ring

Figure 5.1: An image of the X-ray Flow Visualization facility used in this study. Note that, although two

X-ray source-detector pairs are available, only one pair was used to acquire the CT scans in this study.

paired with an Apogee Imaging Systems Alta U9 CCD camera. The second type of detector

121

reconstruction creates a 3D volume of information, where each voxel (short for volume

element, which is the 3D equivalent of a pixel) within the volume represents the X-ray

attenuation of the material at that point in space. Because it takes time to acquire the 360

projections, the generated 3D data are necessarily time-averaged. This process has been

shown to be highly repeatable in multiphase flows (Drake and Heindel, 2011).

While most of the inputs to the reconstruction algorithm are well defined, the

implementation of the FBP algorithm requires the determination of the location of the center

of rotation (COR) of the scanner. The COR is dependent on the location of the camera

relative to the source, which is adjustable in the XFloViz facility, and the physical geometry

of the scanner. The current method for determining the COR (described in Section 5.3.2) is

dependent on the user’s judgement of image quality, and thus is subject to error. It is

important to note that, for this study, no digital image processing was done on the projections

prior to the CT reconstruction. This creates a “worst case scenario” for potential intensity

variations from condition to condition, providing a more rigorous test of the sensitivity of the

CT results to acquisition parameter changes. Similarly, a beam hardening correction is also

available as part of the reconstruction process. However, unlike previous studies using this

system (Drake and Heindel, 2012b; Franka and Heindel, 2009), the beam hardening

correction was not used in this study so that any errors introduced by beam hardening would

be visible.

5.3.2 Determination of Baseline Parameters

The fluidized bed was first imaged using qualitatively determined “best” parameters to

provide a baseline for comparison that is representative of the typical parameter selection

process. These X-ray parameters were determined by first increasing the X-ray tube voltage

122

until it provided sufficient penetrating power that the X-rays were not absorbed completely

by the fluidized bed. The camera exposure time was then selected to be long enough that

most of the camera’s intensity range was used, while still minimizing the amount of time

required for a complete scan. Finally, the projection intensity was fine-tuned with the X-ray

tube current to provide a background intensity of approximately 90% of the full intensity

range. The qualitatively “best” settings were determined to be: 150 kV tube potential, 3 mA

tube current, and 1 second exposure.

To select the baseline parameter for the COR used in the reconstruction, the operator

reconstructed a single slice of a CT with an arbitrarily selected COR. In this case the center

of the projection, 384 pixels, was used (the COR value is specified as the number of pixels

from the left edge of the projection). From there, several more versions of the same slice

were reconstructed with different COR values until the qualitatively sharpest slice was found.

The process of reconstructing slices and selecting the sharpest was repeated in an iterative

manner to refine the COR until the changes to the COR became so small they no longer

produced any visually distinguishable changes to the slice. The COR that yielded the

sharpest slice is typically used as the COR for a full volume reconstruction, and thus it was

selected to be the baseline COR. This baseline value was determined to be 384.56 pixels

from the left edge of the projection. Note that, because the COR represents a mapping of

where the projected centerline of the volume is on the projection, fractional pixel values are

acceptable. Furthermore, the mapping from projection to volume in the reconstruction (the

backprojection step), usually requires interpolation between pixels anyway, so a fractional

value for the COR does not introduce any additional interpolation. Finally, it is important to

note that since the COR is dependent on the physical setup of the CT scanner, the COR only

123

needs to be determined once and that value can be used for all scans taken with the same

scanner geometry.

To analyze the sensitivity of the reconstruction to the selection of the COR parameter,

the COR was varied to either side of the baseline value until the reconstruction started

displaying the fluidized bed containment vessel as two concentric columns (a common

artifact of a severely incorrect COR). To select the parameter ranges for the tube voltage,

tube current, and exposure, each parameter was varied individually from the baseline value.

All three variables were increased individually until either the maximum value allowed by

the system was reached, or until the projection intensity exceeded the maximum measureable

intensity on the detector. The parameters were decreased individually from baseline until the

projection contrast was so low it became difficult to discern features in the flow. The X-ray

parameters and CORs used for testing are shown in Table 5.1.

Finally, the CT scanner in this study also has optional filters to reduce beam hardening

effects and variable camera binning to change the resolution of the scan. These parameters

were held constant in all scans, using one 0.6 mm thick copper filter and one 1.6 mm thick

aluminum filter, placed directly in front of the X-ray source, to remove low energy X-rays

(and in turn, reduce beam hardening effects). The camera binning was set to 4 × 4 binning

mode, yielding a projection resolution of 768 × 512 pixels. Also held constant was the

camera sensor temperature (0 °C), the distance between the X-ray source and the detector

(1880 mm), and the distance between the X-ray source and the center of the imaging region

(1295 mm). The resulting baseline flow CT volume and the derived void fraction volume, as

calculated by the method presented in Section 5.3.3, are shown in Figure 5.2.

124

Scan Set
Tube Potential

(kV)

Tube Current

(mA)

Exposure per

Projection (s)

Center of Rotation

(pixels)

Baseline 150 3.0 1.00 384.56

T
u

b
e

P
o

te
n

ti
a

l

V
a

ri
a

ti
o

n

100 3.0 1.00 384.56

120 3.0 1.00 384.56

140 3.0 1.00 384.56

160 3.0 1.00 384.56

180 3.0 1.00 384.56

200 3.0 1.00 384.56

T
u

b
e

C
u

rr
e
n

t

V
a

ri
a

ti
o

n
 150 2.0 1.00 384.56

150 2.5 1.00 384.56

150 3.5 1.00 384.56

150 4.0 1.00 384.56

E
x

p
o

su
re

V
a

ri
a

ti
o

n

150 3.0 0.50 384.56

150 3.0 0.75 384.56

150 3.0 1.25 384.56

C
en

te
r
 o

f
R

o
ta

ti
o

n
 V

a
ri

a
ti

o
n

150 3.0 1.00 374.56

150 3.0 1.00 379.56

150 3.0 1.00 381.56

150 3.0 1.00 382.56

150 3.0 1.00 383.56

150 3.0 1.00 384.06

150 3.0 1.00 384.26

150 3.0 1.00 384.36

150 3.0 1.00 384.46

150 3.0 1.00 384.66

150 3.0 1.00 384.76

150 3.0 1.00 384.86

150 3.0 1.00 385.06

150 3.0 1.00 385.56

150 3.0 1.00 386.56

150 3.0 1.00 387.56

150 3.0 1.00 389.56

150 3.0 1.00 394.56

Table 5.1: X-ray computed tomography acquisition and reconstruction parameters varied to

test scan sensitivity.

125

5.3.3 Analysis Methods

To analyze the data from the varied CT parameter volumes, multiple methods were used.

However, there are two processes that are common to all the methods. The first is to

determine which part of the reconstructed volume contains the fluidized bed, called the

region of interest (ROI). This is done by first inscribing a circle inside the bed on the top

slice of the volume. This determines the diameter, in voxels, of the region of interest. Next,

the location of the bottom of the bed must be determined. This is typically not a sharply

defined location (due to artifacts introduced by the use of a fan beam reconstruction on a

system that technically has cone beam geometry), so the center of the gradient is used.

Finally, the region is extended vertically to include as much of the freeboard as possible. It is

3D Rendering YZ-Slice XZ-Slice XY-Slice

R
a
w

 F
lo

w
 C

T

V
o
lu

m
e

V
o
id

 F
ra

ct
io

n

V
o
lu

m
e

 Figure 5.2: Four views of the baseline CT volume and void fraction volume. The planes in the 3D view

are rendered at the same position the 2D slices are taken from. Note that numerous slices have been

omitted for clarity.

126

important to note that when comparing ROIs between volumes, the ROIs must be exactly the

same size, but they do not need to be in the same position within their respective volumes.

The use of an ROI provides two benefits. First, from scan to scan the fluidized bed may not

be placed in exactly the same position within the imaging region and the use of an ROI

allows for the bed regions to be compared despite this misalignment. Second, the use of an

ROI greatly reduces the amount of data to be processed without the loss of valuable

information, since only the data from within the circulating bed is of scientific interest. For

example, in this study, each ROI contained over 10,000,000 voxels, but the reconstructed

region is generally much larger. Finally, note that if a small portion of the containing vessel

is included within the ROI, the potential exists for errors to be introduced into the

measurements. This is a relatively common artifact that causes measurements near the wall

of the containment vessel to be unreliable.

The second process that is necessary for all scans is the calculation of the void fraction.

While time averaged hydrodynamic structures may be visible in a raw CT scan of a

multiphase flow, the real value of X-ray CT is its ability to uniquely determine the material

density at each voxel. To do this, some form of calibration to a known reference is required,

which is provided in the void fraction calculation in this study. To calculate the void fraction

of a fluidized bed, three CT scans must be acquired using the same parameters, one with the

vessel empty (the gas scan), one with the vessel full of the bed material but not operating (the

bulk scan), and one with the multiphase flow operating at the desired condition (the flow

scan). From these three scans, the time-average void fraction at each voxel is determined by:

ε =

If − Ib + (Ig − If)εb

Ig − Ib
 (5.1)

127

where Ib, Ig, If are the voxel intensities from the bulk, gas, and flow scans respectively

(Heindel, 2011). For a static fluidized bed, the bulk void fraction, εb, is calculated by:

 εb = 1 −
ρb
ρp

 (5.2)

where ρb is the bulk density of the granular material and ρp is the true particle density of the

granular material, which is measured with a pycnometer. To show the impact of this void

fraction calculation, the effects of parameter variation will be analyzed on both the raw flow

CT and on the calculated void fraction volume.

Due to the number of voxels involved in each scan (on the order of 10,000,000 voxels

within the ROI) and the inherent three-dimensional nature of the data, it is challenging to

directly compare one scan to another without reducing the data in some fashion. This

reduction typically relies on traditional descriptive statistics, primarily the arithmetic mean

and standard deviation. However, the traditional algorithms for calculating these statistics do

not handle large data sets well, thus it is imperative to use a version of the arithmetic mean

and standard deviation formula that is both numerically stable and can process data in a

parallel fashion. To meet these requirements, the algorithms presented by Bennett et al.

(2009) were used. For convenience, the formulas are also presented here. The computation

of the average and standard deviation is a two-step process. The first step is to split the data

into smaller chunks. These chunks are processed in parallel, but the local data within each

chunk are processed sequentially using a local update formula. These local formulas are:

μl,i
′ =∑(

Ii − μl,i−1
′

i
)

nl
′

i=1

 (5.3)

ml,i =∑((Ii − μl,i−1
′)(Ii − μl,i

′))

nl
′

i=1

 (5.4)

128

where μl,i
′ is the arithmetic mean of the first i voxel intensity values Ii within the local data

chunk l of size nl
′, and ml,i is the second statistical moment of the same intensity values. The

local means always initialize to zero, that is to say μl,0
′ = 0. Once the mean and second

moment for all the data chunks have been calculated the mean and second moment for the

entire data set can be calculated by:

nj =∑nl
′

j

l=1

 (5.5)

μj = ∑ nl
′ (
μl
′ − μj−1

nj−1 + nl
′)

p

j,l=1

 (5.6)

mj = ∑ (ml + nj−1nl
′
(μl

′ − μj−1)
2

nj−1 + nl
′)

p

j,l=1

 (5.7)

where nj is the number of voxels in the first j data chunks, p is the total number of data

chunks, μj is the mean of the first j data chunks, and mj is the second moment of the first j

data chunks. When j = p, μj is the mean of the entire data set, or simply μ, mj is the second

moment of the entire data set, or simply m, and nj is the total number of voxels in the entire

data set, or simply n. Once again, the mean is initialized to zero (i.e., μ0 = 0). Finally, the

sample standard deviation, σ, is determined from the second statistical moment by:

σ = √

m

n − 1
 (5.8)

While the effects of changing the parameters can be analyzed by simply taking the

average intensity value of the entire CT, such an analysis masks any spatial dependencies

that might indicate the cause of the change. An example of such a change would be

increased beam hardening effects due to a lower X-ray tube potential, which would cause a

greater reduction in intensity in the center of the flow than at the edges. The volumes were

129

analyzed for spatially dependent variations in two ways. First, the annular averages were

calculated and plotted using the method developed by Drake and Heindel (2012a). The

second method calculates the average intensity of each slice moving vertically through the

bed. Both of these methods reduce the dimensionality of the data and use the previously

described method for calculating the mean and standard deviation of the data.

Finally, to better understand spatial differences introduced by changing the X-ray

parameters, a method to calculate the per voxel percent difference from a baseline

measurement is required. Because the normal range of values for a raw CT ranges from -

1000 to +3000 Hounsfield Units (HU) and includes 0 (Heindel, 2011), the percent difference

could be undefined for a voxel; hence, the percent difference for raw CT values will not be

considered. The potential for undefined values also exists in the void fraction results;

however, in void fraction there is a logical way to correct for this. Although the possible

range of values for void fraction is 0 to 1, fluidized beds contain a granular material instead

of a liquid and the lowest theoretical void fraction possible in the bed is the bulk void

fraction, as given by Eq. (5.2). For the glass beads used in this study, the bulk void fraction

is 0.40, thus any value less than this must be erroneous. Such erroneous values are typically

introduced by including a small piece of the containment vessel wall in the ROI. Based on

this, it is safe to assume that any extremely small calculated void fraction values may be

excluded from the percent difference calculation, leading to:

D = {

Undefined, Iref ≤ 0.01
Im − Iref
Iref

, Iref > 0.01
 (5.9)

where Iref is the baseline voxel intensity and Im is the measured voxel intensity in the varied

parameter CT scan. The percent difference calculation is performed on a voxel-by-voxel

130

basis and results in a new volumetric data set that can be analyzed using the previously

presented methods. By setting erroneously low void fraction values to undefined when

calculating the percent difference, those voxels are omitted from the calculation of the

statistics. This results in less than 0.03% of all voxels being excluded from the calculations.

5.4 Results and Discussion

As noted in Section 5.3.2, four different parameters were varied from their baseline

value: X-ray tube potential, X-ray tube current, detector exposure time, and the COR used in

the reconstruction. In the following sections, the effects of each of these variations will be

examined using the methods from Section 5.3.3. First, the error that exists under consistent

conditions must be determined to provide a baseline for comparison. This error was

examined by Drake and Heindel (2011) on a per-plane and per-annulus basis. Based on their

analysis, the error was found to be approximately ±4% of full scale for the calculated average

void fraction values. To verify this error, a series of 20 CT scans were taken for each of the

required scans (gas, bulk, and flow) at the baseline acquisition parameters. From these data,

it was found that the average CT intensity of the flow CT within the ROI was 538.5 HU and

the average void fraction within the ROI was 0.627. The average per voxel percent

difference for the void fraction was 1.8%. While this error analysis is more detailed than that

of Drake and Heindel, it does not account for variations that could occur in the flow from day

to day when scanning, which Drake and Heindel did include. Thus, taking into consideration

Drake and Heindel’s results, a baseline percent error of ±3% of full scale will be used as a

reference in this work. Note that this error is only used for comparison, and does not affect

the results of any of the calculations.

131

The impact of changing the X-ray parameters from the baseline values on the raw CT

and void fraction values, relative to the baseline error, will be presented next. First, a cursory

review of overall results will be given by looking at whole volume averages in Section 5.4.1.

Next, Section 5.4.2 will examine any spatial variations within the cases where the X-ray tube

or detector parameters are changed and discuss possible causes for the spatial discrepancies.

Finally, Section 5.4.3 will treat the effects of changing the COR individually, since changes

to this parameter only effect the final reconstruction, not the raw data collected by the CT

scanner.

5.4.1 Effects on Whole ROI Averages

To get a high level understanding of any variations that may occur in a CT due to the

acquisition parameters, the average CT intensity value within the entire ROI is examined.

The results of this are shown by the closed symbols in Figure 5.3. Similarly, a cursory view

of any variations that exist in the void fraction information can be obtained by averaging all

the void fraction values within the ROI of the void fraction volume. These values are shown

by the open symbols in Figure 5.3. Note that, since the baseline condition is the same for all

tests, the symbols for zero percent deviation from baseline overlay one another.

From this information, it appears that there is not a strong dependence on the average CT

value due to changes in either current or exposure. However, the average CT intensity

strongly decreases as the X-ray tube voltage increases. Similarly, observing the average void

fraction values, changes in X-ray tube current and camera exposure do not affect the void

fraction significantly. Additionally, the average void fraction does not change significantly

with changes in X-ray tube voltage. This provides an initial indication that the void fraction

132

calculation is correcting for systemic changes introduced by changing X-ray acquisition

parameters. The sources of the observed changes will be further examined in Section 5.4.2.

Next, consider the effect of changing the COR on the average flow CT intensity and

void fraction. This information, shown in Figure 5.4, again uses closed symbols for average

flow CT intensity and open symbols for average void fraction. In both cases, there appears to

be very little change from the baseline. The worst case difference (baseline COR minus 10

pixels) is less than 3% difference from baseline average CT intensity and less than 0.5%

difference from the baseline average void fraction. However, this result is somewhat

misleading, as will be discussed in Section 5.4.3.

0.25

0.35

0.45

0.55

0.65

0.75

250

350

450

550

650

750

-75 -50 -25 0 25 50 75

A
v
er

a
g
e

V
o
id

 F
ra

ct
io

n
 [

-]

A
v
er

a
g
e

C
T

 I
n

te
n

si
ty

 [
H

U
]

Percent Variation from Baseline Parameter [%]

Figure 5.3: The average CT and average void fraction for the entire ROI.

 Voltage Varied (CT Intensity) Voltage Varied (Void Fraction)

 Current Varied (CT Intensity) Current Varied (Void Fraction)

 Exposure Varied (CT Intensity) Exposure Varied (Void Fraction)

133

5.4.2 Effects of Tube Current, Voltage, and Detector Exposure

The average analysis of tube current in Section 5.4.1 indicates that changes in the X-ray

tube current do not significantly influence either the raw average flow CT intensity values or

average void fraction values. To further this analysis, consider Figure 5.5 which shows the

average annular flow CT intensity and Figure 5.6 which shows the average annular void

fraction for the various X-ray tube current settings. For the flow CT annuli, currents from

2.0 to 3.0 mA appear to all provide nearly the same results, with the 3.5 and 4.0 mA cases

providing slightly lower average intensity values. Furthermore, any changes that exist in the

average CT values appear to be different by a constant amount across all annuli. This is

consistent with a uniformly brighter image being recorded by the X-ray detector. There are

some slight variations near the edges of the bed; however, this is consistent with occasional

vessel wall inclusions in the ROI as previously discussed.

Figure 5.4: The average CT intensity for the flow condition and average void fraction value for the entire

ROI with varied CORs.

0.50

0.60

0.70

450

550

650

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

A
v
er

a
g
e

V
o
id

 F
ra

ct
io

n
 [

-]

A
v
er

a
g
e

C
T

 I
n

te
n

si
ty

 [
H

U
]

Percent Variation from Baseline COR [%]

Flow CT Intensity

Void Fraction

134

The average annular void fraction for the current varied condition reinforces this result.

As shown in Figure 5.6, there are some variations in void fraction between currents;

however, they are well within the 3.0% expected baseline variation. Furthermore, there does

not appear to be a consistent pattern to the differences with respect to the current variations.

The 4.0 mA and 2.5 mA cases both have a slightly lower average void fraction, while the

3.5 mA case is nearly identical to the baseline. These results indicate that variations in X-ray

tube current do not impact the results of X-ray CT measured void fraction, despite the

variations it introduces to the raw CT intensities.

350

450

550

650

750

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
v
er

a
g
e

C
T

 I
n

te
n

si
ty

 [
H

U
]

Radial Position r/R [-]

2.0 mA

2.5 mA

3.0 mA

3.5 mA

4.0 mA

Figure 5.5: The average annular CT intensity of the flow CT for varied X-ray tube currents.

135

Changes to the X-ray detector exposure would be expected to provide similar results, as

changing the X-ray tube current and detector exposure both change the number of X-ray

photons incident on the detector. Though the method is different (an increase in tube current

generates more photons per second and an increase in exposure allows more total photons to

be collected by holding the shutter open longer), both are directly related to the total

brightness of the recorded image. To verify this, first consider Figure 5.7, which shows the

average slice intensity in the flow CT, where 466 slices compose the measurement domain.

The average slice intensity generally decreases as the exposure increases, the same effect

observed with increasing current. This change is particularly clear in the freeboard region of

the fluidizied bed (heights of h/D > 1.4). It should also be noted that the height where the

flow begins to transition from the bed region to the freeboard region is lower in the 0.75 s

0.55

0.60

0.65

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
v
er

a
g
e

V
o
id

 F
ra

ct
io

n
 [

-]

Radial Position r/R [-]

2.0 mA

2.5 mA

3.0 mA

3.5 mA

4.0 mA

Figure 5.6: The annular average void fraction for varied X-ray tube currents. Note, only 10% of the full

range (0 to 1) of the average void fraction is shown in order to show differences more clearly.

136

and 1.25 s cases than in the 1.00 s and 0.50 s cases. This is suspected to be the result of

slight variations in the fill level of the bed. There is also a distinct increase in CT intensity

between h/D = 0.05 and h/D = 0.10. This is the result of jetting immediately above the

aeration plate (Escudero and Heindel, 2015).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-200 -100 0 100 200 300 400 500 600 700 800 900 1000

H
ei

g
h

t
h

/D
 [

-]

Average CT Intensity [HU]

0.50 s

0.75 s

1.00 s

1.25 s

Figure 5.7: The slice average CT intensity of the flow CT for varied X-ray detector exposure times.

137

Similar to the current varied case, the changes in the flow CT caused by changing the

exposure should be canceled out by calculating the void fraction. This is verified in

Figure 5.8, which shows the slice average void fraction for the varied X-ray detector

exposure times. The anomaly in the transition from the bed region to the freeboard region is

still present in the void fraction, further indicating that it may be an artifact of the flow, not

the measurement. In the freeboard region however, where large changes in CT intensity

were seen, there is almost no difference in the slice average void fraction. Some variations in

void fraction measurement do exist in the bed region, however, they are within the ±3%

difference of expected variation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

H
ei

g
h

t
h

/D
 [

-]

Average Void Fraction [-]

0.50 s

0.75 s

1.00 s

1.25 s

Figure 5.8: The slice average void fraction for varied X-ray detector exposure times.

138

Unlike the effects of current and exposure variation, the average CT intensity decreases

significantly at higher voltages (e.g., Figure 5.3). This effect is shown in Figure 5.9, where

the annular average CT intensity is plotted as a function of radial position for a range of

X-ray tube voltages. The decrease in CT intensity with increasing X-ray tube voltages is to

be expected since the raw CT values are not calibrated to the materials used in the fluidized

bed and a higher X-ray tube voltage will result in a brighter image on the X-ray detector.

However, there is also a sharp increase in the CT intensity within the outer 25% of the vessel

that is more prominent in the lower voltage CTs and flatter in the higher voltage CTs. This

provides a strong indication that the CT values near the center of the scans are artificially

lowered due to beam hardening effects, which was not corrected for in this study, particularly

at lower X-ray tube voltages (Ketcham and Carlson, 2001). This is further evidenced by the

void fraction percent difference annular averages (seen in Figure 5.10) that show greater

differences toward the center of the fluidized bed than at the edges (the large variations at the

extreme edges are likely due to parts of the containment vessel getting erroneously included

in the ROI). This strongly indicates that there are unaccounted effects of beam hardening

that influence the data. However, even so, the void fraction values are within the expected

range of error for the CT scanner. Based on these observations, it is strongly recommended

that X-ray users correct for beam hardening effects whenever possible, as was done in

previous studies by Drake and Heindel (2012b), Franka and Heindel (2009), and others.

However, when such a correction is not possible, it is recommended that the system be

scanned with as high an X-ray tube voltage as possible to minimize the effects of beam

hardening.

139

-15

-10

-5

0

5

10

15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
v
er

a
g
e

V
o
id

 F
ra

ct
io

n
 P

er
ce

n
t

D
if

fe
re

n
ce

[%
]

Radial Position r/R [-]

100 kV
120 kV
140 kV
160 kV
180 kV
200 kV

Figure 5.10: The annular average percent difference of the void fraction values for varied X-ray tube

voltages. Recall that 150 kV is the reference condition.

0

100

200

300

400

500

600

700

800

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
v

er
a

g
e

C
T

 I
n

te
n

si
ty

 [
H

U
]

Radial Position r/R [-]

100 kV

120 kV

140 kV

150 kV

160 kV

180 kV

200 kV

Figure 5.9: The annular average CT intensity for flow CTs with varied X-ray tube voltages.

140

When analyzing the plane averages for the voltage variation, the beam hardening effects

are hidden, as they are averaged out within the plane; however, one anomaly does appear.

As seen in Figure 5.11, the average per plane intensity value increases with decreasing tube

voltage, except in the case of 100 kV, which has a much lower average plane intensity within

the bed region than expected if the trend held. The suspected cause of this anomaly is the

extremely low contrast (roughly 6% of full range on the X-ray detector) within the bed is

masking flow structures. Further evidence for this can be seen by observing contour maps of

the bed slices (Figure 5.12), which show some non-uniform flow structures within the

150 kV and 200 kV CT slices. However, the 100 kV CT slice shows no flow structures

within the bed region. While the anomaly does not appear in the void fraction plane averages

(Figure 5.13), it is proposed that, because the measured void fraction is so close to the void

fraction of the packed bed to begin with, the missing flow structures do not have enough size

to significantly change the average plane ROI in the 100 kV voltage case.

141

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-200 -100 0 100 200 300 400 500 600 700 800 900 1000

H
ei

g
h

t
h

/D
 [

-]

Average CT Intensity [HU]

100 kV
120 kV
140 kV
150 kV
160 kV
180 kV
200 kV

Figure 5.11: The average CT intensity of the flow CT by slice for varied X-ray tube voltages.

A B C

diameter. The contours are at intervals of 25 CT values from I = 400 to I = 1000

Figure 5.11: The flow CT slice contour maps at h/D=0.64 for X-ray tube voltages A) 100 kV, B)

150 kV, and C) 200 kV, where h is the height above the aeration plate and D is the fluidized bed

diameter. The contours are at intervals of 25 CT values from I = 400 to I = 1000.

142

5.4.3 Effects of Center of Rotation Variation

As noted in Section 5.4.1, there is almost no change in the average CT intensities

introduced by changing the COR used in the reconstruction. However, from the standpoint

of visual error, the errors introduced by changes in the COR are more dramatic than those

introduced from changes to other parameters. As shown in Figure 5.14, a change in the COR

changes the resulting CT from accurately representing the geometry of the fluidized bed to

showing it as two concentric columns with a change of only 10 pixels, a mere 2.6% change

in COR. Clearly, from a geometric standpoint, the effect of changing the ROI is significant.

However, from the viewpoint of average void fraction, the effects are less distinct. This

difference can be attributed to the nature of the FBP algorithm. The backprojection step of

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

H
ei

g
h

t
h

/D
 [

-]

Average Void Fraction [-]

100 kV
120 kV
140 kV
150 kV
160 kV
180 kV
200 kV

Figure 5.13: The average void fraction by slice for varied X-ray tube voltages.

143

the FBP algorithm combines every pixel from every projection that contributes to a given

point, and thus does a significant amount of averaging. By changing the COR of the

reconstruction, the exact location within the ROI where data from a projection contribute to

the volume may change, but it is still contained within the ROI in most cases. This results in

almost no change in the average ROI intensity. Thus, looking solely at the average ROI

intensity provides an incomplete indication of what is occurring within the volume in the

case of changing the COR.

A better way to analyze the errors introduced by changing the COR is to look at the

annular data, as the COR introduces changes within a slice instead of across slices.

Figure 5.15 shows the average per voxel void fraction percent difference from the baseline

COR for several variations on the COR. It is clear that, while the average percent difference

introduced into the volume is small, it is strongly dependent on the location within the ROI.

It should also be observed that the change is roughly symmetric, i.e., a change of +10 pixels

to the COR will introduce roughly the same error as a change of -10 pixels. However, the

most important result is that even a change of ±5 pixels to the COR, produces a

distinguishable change from the baseline COR (Figure 5.14), but it introduces on average

less than 0.5% difference in the final results (Figure 5.15).

A B C D

Figure 5.14: The baseline flow CT sliced at height h/D=1.30, reconstructed at the baseline COR

A) +0.0 pixels B) +2.0 pixels C) +5.0 pixels and D) +10.0 pixels. Note how the fluidized bed walls start to

appear as two concentric columns as the COR increases from the baseline. Similar artifacts are seen as

the COR is decreased from the baseline (not shown).

144

It is also of note that the average percent error has a roughly sinusoidal profile in the

radial direction when the COR is varied. This radial variation in error is due to the

phenomenon of jetting, a phenomenon which has been previously studied in this system by

Escudero and Heindel (2015). The holes in the aeration plate are arranged with a single hole

in the middle, surrounded by four concentric rings of holes. The location of these rings

corresponds with the locations of the valleys in the errors. This radially dependent error

occurs because the jets low in the fluidized bed create regions of high void fraction, which

are blurred with the surrounding regions of lower void fraction when the COR is varied from

the true COR of the CT system. This results in a lower average void fraction at the annuli

where the jets occur, and a higher average void fraction in the annuli immediately adjacent

the jets when the COR is varied.

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
er

a
g
e

V
o

id
 F

ra
ct

io
n

 P
er

ce
n

t
D

if
fe

re
n

t
[%

]

Annular Position r/R [-]

COR -1.0 Pixels COR +1.0 Pixels

COR -5.0 Pixels COR +5.0 Pixels

COR -10.0 Pixels COR +10.0 Pixels

Figure 5.15: The annular average void fraction percent difference from baseline with changes in COR. Note

that several CORs have been excluded from the figure for clarity.

145

5.5 Conclusions

A sensitivity analysis of X-ray computed tomography data to changes in the acquisition

and reconstruction parameters has shown some important features for consideration. First,

when changing X-ray tube voltage, operators need to be aware of the potential for beam

hardening effects and use corrective algorithms to compensate for the effects whenever

possible. When correcting for beam hardening effects is not possible, or not practical, this

research has shown that X-ray CT can still provide acceptable quantitative information, but

the user needs to be aware that there will be an increase in error. Furthermore, when beam

hardening is not corrected for, a slightly lower average void fraction in the central region of

the fluidized bed may be the result of beam hardening and not actual flow structures.

Changes to the X-ray tube current and X-ray detector, however, will change the raw intensity

values of a CT, but do not introduce any significant errors in calibrated measurements, such

as void fraction calculations. Second, when selecting a center of rotation for reconstruction,

this research has shown that while the visual geometry changes are large, the impact on the

average void fraction is relatively small. Furthermore, provided the operator selects a center

of rotation that provides a reconstruction free of major geometric distortions, even if the

center of rotation is suboptimal, it will have a negligible effect on the final results. Finally,

while there are a few potential pitfalls when making large variations to the X-ray tube

voltage, overall, any potential changes to the results of a CT scan, when properly accounted

for through calibration or reference images (e.g., by using the scans to calculate void

fraction), are within the expected error of the system. Thus, while different users are likely

to select different operating conditions that appear “best” to them, this human variability will

not significantly impact the results of the CT scan or resulting void fraction calculations.

146

CHAPTER 6:

APPROXIMATE 3D RECONSTRUCTION TECHNIQUES FOR

CHARACTERIZING MULTIPHASE FLOWS FROM X-RAY

STEREOGRAPHIC IMAGING

In the previous two chapters, it has been shown that it is possible to acquire radiographs

at high speed using a tube source, and that properly calibrated computed tomography scans

are insensitive to acquisition parameters. This chapter builds upon that work by merging the

high-speed imaging capability of radiography and the ability of computed tomography to

determine X-ray attenuation coefficients at a 3D point reliably. This is accomplished using

two approximated computed tomography reconstructions to generate tomographic slices

from only two X-ray projections using X-ray stereographic imaging, which can be acquired

at high speed. In so doing, this work contributes to both objectives one and three as outlined

in Section 1.2. This chapter is based on a draft paper to be submitted to Flow Measurement

and Instrumentation.
3

6.1 Abstract

In the three-dimensional imaging of multiphase flows, a tradeoff exists between

temporal resolution and spatial resolution. Techniques such as magnetic resonance imaging

and X-ray computed tomography provide excellent three-dimensional spatial resolution, but

take a long time to acquire (on the order of minutes or hours, depending on the specifics of

the system). Other techniques, such as electrical impedance tomography and X-ray particle

3
 Based on draft Morgan, T. B., Vance, J. M., and Heindel, T. J. (2017) Approximate 3D Reconstruction

Techniques for Characterizing Multiphase Flows from X-ray Stereographic Imaging. To be submitted to Flow

Measurement and Instrumentation

147

tracking velocimetry, are capable of achieving very high temporal resolutions, but have very

low spatial resolution, or are limited to the measurement of a relatively small number of

tagged particles. This research examines the possibility of combining the techniques of

X-ray computed tomography and X-ray stereography to achieve both a high spatial resolution

and a high temporal resolution. This is done by testing the capabilities and limitations of two

methods for approximating a computed tomography reconstruction from only two X-ray

stereographic projections, combined with a priori information from computed tomography

scans of the system in a static state.

6.2 Introduction

One of the limitations of noninvasive multiphase flow imaging is there is always a

significant tradeoff between achieving a high three-dimensional resolution, and the speed of

the imaging. For example, X-ray computed tomography (CT) and magnetic resonance

imaging (MRI) can both achieve high spatial resolutions in three-dimensions, in excess of

100,000,000 voxels. However, because of the long imaging time of these systems (on the

order of minutes or hours, depending on the system and acquisition parameters), they are

only suitable for acquiring time averaged or static data (Chaouki et al., 1997; Fukushima,

1999; Heindel, 2011). Other systems, such as electrical impedance tomography systems, are

capable of achieving high temporal resolutions (in excess of 1000 frames per second), but

have very limited spatial resolution (Chaouki et al., 1997; van Ommen and Mudde, 2008).

Similarly, X-ray particle tracking velocimetry is capable of measuring a particle position

with good accuracy and temporal resolution, but is limited to measuring the position of a

small number of particles within a flow (Kingston et al., 2014; Morgan and Heindel, 2010;

Seeger et al., 2001; Shimada et al., 2007).

148

To overcome the inherent tradeoff between spatial and temporal resolution in

noninvasive multiphase flow imaging, several methods of improving the temporal resolution

of X-ray CT have been proposed. Bieberle et al. (2010) developed an X-ray system that uses

a scanned electron beam to generate X-rays from different points along a linear tungsten

target. This system is capable of acquiring two tomographic slices at temporal speeds of at

least 2500 frames per second (FPS) and spatial resolutions of 1 mm (0.04 in). While this

system was only designed to acquire two tomographic slices, the concept could be extended

to multiple slices.

Another concept that has been proposed for increasing the speed of CT measurement, for

both X-ray CT and γ-ray CT, is the use of multiple radiation sources and detectors. The

limitation of such systems is the traditional filtered backprojection algorithm for CT

reconstruction requires numerous projections around an object to generate an accurate

tomographic reconstruction (Mudde et al., 2008). Therefore, systems based on a small

number of source-detector pairs require more advanced reconstruction techniques. Mudde et

al. (2005, 2008) examined the use of both three and five source-detector pairs using the

simultaneous algebraic reconstruction technique (SART) for reconstruction (Andersen and

Kak, 1984). Mudde et al. found that five source-detector pairs were required to achieve

adequate spatial resolution using this system; however, they were able to achieve a spatial

resolution of 5 mm (0.20 in) and a temporal resolution of 200 FPS. A similar approach was

used by Hu et al. (Hu et al., 2005), who used two X-ray source detector pairs to do

tomographic imaging of three-phase flows. To solve the reconstruction problem from only

two sources, Hu et al. formulated the reconstruction problem as an underdefined system of

equations, and then added smoothing equations to force intensity continuity from voxel to

149

voxel. This results in an overdefined system of equations, which can then be solved using a

matrix pseudoinverse. Using this system, they were able to image three-phase flows at a

speed of five FPS with a spatial resolution of 4 mm (0.16 in). However, this system was not

able to achieve clear reconstructions of coaxial multiphase flows (Hu et al., 2005).

This work will examine how a two X-ray source-detector pair system performs for high-

speed tomography using approximated CT reconstructions. The experimental setup used to

test these algorithms is presented in Section 6.3. Two methods to approximate the CT

reconstruction from only two X-ray projections are presented in Section 6.4, with the

resulting reconstructions of experimental data presented in Section 6.5.

6.3 Experimental Setup

The data for validating the approximate 3D reconstruction algorithms was generated by

taking computed tomography scans of an X-ray phantom (a test object of known size, shape,

and material properties) in the X-ray Flow Visualization (XFloViz) facility at Iowa State

University. This system, seen in Figure 6.1, contains two Lorad LPX 200 X-ray sources,

which are capable of tube potentials up to 200 kV, and a maximum power output of 900 W.

For algorithm development, it was desired to have a full computed tomography scan of the

object for reference. Therefore, one of the sources was paired with a Hamamatsu Photonics

CsI scintillator screen and imaged by an Apogee Instruments Alta U9 CCD (charge-coupled

device) camera. This setup provides a low noise, distortion free image, at the cost of

acquisition speed. Each 768 × 512 frame requires a one second exposure time, and 360

frames, one at each of the 360° around the object, are required to provide a complete CT

scan. However, the X-ray phantoms used in this study were static, therefore, the acquisition

time was not an issue. From this CT scan, a volume was reconstructed to provide a basis for

150

Figure 6.1: An image of the X-ray Flow Visualization facility used in this study. Note that only one

source and the scintillator was used to acquire the CT scans in this study. The stereography scans were

acquired with both X-ray sources and two intensified detectors.

2

1

3

4

5

1) X-ray sources

2) Scintillator detector

3) Intensified detector

4) Fluidized bed

5) Slew ring

comparison using an in house implementation of the filtered backprojection algorithm

(Zhang, 2003). From the raw CT scan data, radiographs can also be extracted at 90° intervals

to represent the data that would be acquired using the X-ray intensifiers.

For the evaluation on a real multiphase flow, the system was used to do X-ray computed

tomography, as described above, and used for X-ray stereography. To acquire X-ray

stereography, each source is paired with a Precise Optics PS164X X-ray image intensifier to

do time-resolved imaging. The X-ray image intensifiers are time-synchronized to provide

two radiographs from different angles (90° apart).

The phantom used in this work was made from acrylonitrile butadiene styrene (ABS)

plastic and were constructed using additive manufacturing (i.e., 3D printing). The object

used for testing in this paper is a solid sphere of diameter 25.4 mm (1 in). However,

numerous other test objects are available. The test object has a threaded hole in the bottom

center to accept a nylon threaded rod. This allows it to be mounted in various locations on an

acrylic test platform.

151

To evaluate the algorithms with a real multiphase flow, a fluidized bed was used. This

fluidized bed consisted of a 15.2 cm (6 in) internal diameter acrylic column filled with

ground walnut shell particles in the size range 500 μm to 600 μm (0.020 in to 0.024 in). This

bed was injected with air at 1.25 times the minimum fluidization velocity. More information

on this fluidized bed system can be found in Drake (2011).

6.4 Reconstruction Methods

Two reconstruction methods were tested to examine their ability to reconstruct

tomographic slices from only two X-ray projections. The first method, discussed in

Section 6.4.1, is a locally axisymmetric filtered backprojection. This method estimates the

unknown projections between the known projections, allowing a standard backprojection

algorithm to be used to reconstruct the slice. The second method, presented in Section 6.4.2,

is based on the SART reconstruction method. To improve the results as compared to a

standard SART algorithm, the reconstruction results are bounded by known information

about the flow.

6.4.1 Locally Axisymmetric Filtered Backprojection

The locally axisymmetric filtered backprojection (FBP) method is based on the

assumption that individual features in the flow are approximately round about a local axis

that is perpendicular to the tomographic slice. However, because these individual features

may not occur at the center of the tomographic slice, the axis of rotation needs to be shifted

so it intersects the center point of the feature. To do this, the centroid of the feature must be

identified in each projection and projected into the volume to identify the feature’s center

position within the tomographic slice. This procedure is identical to the procedure for X-ray

particle tracking and can be done manually or using a computer vision algorithm, such as the

152

normalized cross-correlation algorithm (Drake et al., 2009; Kingston et al., 2014; Morgan

and Heindel, 2010). For this study, all the centroids were found manually.

Once the feature’s center position is found, the missing projections can be found by

shifting the original projections such that they match where the object would have projected

to, had a projection been acquired at that location. The geometry of this shift is shown in

Figure 6.2. For the parallel beam case the amount of the shift required in the image is:

 Δ𝛼 = 𝛼𝑝 − 𝛼𝑖 (6.1)

where Δ𝛼 is the shift in the projection (in pixels), 𝛼𝑝 is the distance from the center of the

projection to the center of the feature in the known projection, and 𝛼𝑖 is the distance from the

center of the projection to the center of the feature in the i
th

 unknown projection. Since the

position of the feature center in the volume is known, 𝛼𝑝 and 𝛼𝑖 can be calculated by:

 𝛼𝑝 = 𝑟0 sin(𝜙 − 𝜃𝑝) (6.2)

 𝛼𝑖 = 𝑟0 sin(𝜙 − 𝜃𝑖) (6.3)

where 𝑟0 is the radius to the feature center in the slice, 𝜙 is the angle to the feature center in

the slice, 𝜃𝑝 is the angle of the known projection, and 𝜃𝑖 is the angle of the i
th

 projection

being generated. Combining Eqs. (6.1) - (6.3), the full equation for the shift becomes:

 Δ𝛼 = 𝑟0(sin(𝜙 − 𝜃𝑝) − sin(𝜙 − 𝜃𝑖)) (6.4)

However, the center position of the feature is known in Cartesian coordinates, and Eq. (6.4)

is in polar coordinates. Therefore, converting to Cartesian coordinates, the final equation

becomes:

 Δ𝛼 = √𝑥2 + 𝑦2(sin(atan2(𝑦, 𝑥) − 𝜃𝑝) − sin(atan2(𝑦, 𝑥) − 𝜃𝑖)) (6.5)

153

where x is the x-position of the feature center, y is the y-position of the feature center, and

atan2(y, x) is the modified arctangent function to prevent divide-by-zero errors and return an

angle in the range [0, 360) degrees:

atan2(𝑦, 𝑥) =

{

 arctan (

𝑦

𝑥
) , if 𝑥 > 0 and 𝑦 ≥ 0

arctan (
𝑦

𝑥
) + 360, if 𝑥 > 0 and 𝑦 < 0

arctan (
𝑦

𝑥
) + 180, if 𝑥 < 0 and 𝑦 ≥ 0

arctan (
𝑦

𝑥
) + 270, if 𝑥 > 0 and 𝑦 ≥ 0

90, if 𝑥 = 0 and 𝑦 > 0
270, if 𝑥 = 0 and 𝑦 < 0
undefined, if 𝑥 = 0 and 𝑦 = 0

 (6.6)

Once all of the missing projections have been created by shifting the known projections

using Eq. (6.5), the reconstruction can be completed normally, using the filtered

backprojection algorithm (Eq. (2.5)). Finally, it should be noted that Eq. (6.5) assumes

parallel beam scanning geometry. If fan beam scanning geometry is assumed, a scaling

factor in the horizontal direction of the projection is required, in addition to the shift. If cone

beam scanning geometry is assumed, scaling factors in both the horizontal and vertical

direction of the projection are required, as well as a shift in the vertical direction, in addition

to the shift in the horizontal direction.

154

6.4.2 Simultaneous Algebraic Reconstruction Technique with A Priori Information

The simultaneous algebraic reconstruction technique (SART) was originally developed

by Andersen and Kak (1984) to improve upon the older algebraic reconstruction technique

(ART), which was subject to salt and pepper noise (Andersen, 1989). While more

computationally intensive that the FBP algorithm, the SART algorithm has the advantage of

being able to incorporate a priori knowledge into the reconstruction (Hsieh, 2009).

SART formulates the reconstruction problem as a system of equations:

 𝒑 = 𝑨 ∙ 𝑮 + 𝒆 (6.7)

where 𝒑 is the projection, 𝑨 is a weighting matrix that defines the contribution of each voxel

in the reconstruction to the projection, 𝑮 is the reconstructed slice (or volume if all the slices

X

y

x
𝜃𝑖

𝜃𝑝

𝜙

𝑟0

𝛼𝑖

𝛼𝑝

X-ray source for

unknown projection

X-ray source for

known projection

Unknown projection

direction through

center of rotation

Known projection

direction through

center of rotation

Unknown projected

image

Known projected

image

Figure 6.2: The geometry of shifting a projection to create a missing projection from a known

projection, assuming a parallel X-ray beam.

155

are reconstructed simultaneously), and 𝒆 is the error of the system. To solve for the

reconstructed slice, the SART algorithm calculates the error between the measured projection

and the projection as it would be based on the current slice estimation (which is typically

initialized to a matrix of all zeros) and then modifies the slice estimation based on the

average error over the entire projection. This iterative update formula (Andersen and Kak,

1984) is:

�̂�𝑖𝑗
(𝑞+1) = �̂�𝑖𝑗

(𝑞) + 𝜆(𝑞)

∑𝑨𝑖𝑗𝑚𝑛

𝑁

𝑛=1

𝒑𝑚𝑛 −∑∑𝑨𝑖𝑗𝑚𝑛�̂�𝑖𝑗
(𝑞)

𝐽

𝑗=1

𝐼

𝑖=1

∑∑𝑨𝑖𝑗𝑚𝑛

𝐽

𝑗=1

𝐼

𝑖=1

∑𝑨𝑖𝑗𝑚𝑛

𝑁

𝑛=1

(6.8)

where �̂�(𝑞) is the estimation of the true slice (G) at iteration q, 𝜆(𝑞) is the relaxation factor at

iteration q, 𝑖 is the x-position within the slice of width 𝐼, 𝑗 is the y-position within the slice of

height 𝐽, 𝑚 is the projection index of the total 𝑀 projections, and 𝑛 is the ray index within

the slice of width 𝑁. This equation is calculated for each projection angle 𝑚, and can be

iterated to reduce the error. In practice, a reasonable reconstruction can be achieved in a

single iteration (Andersen and Kak, 1984).

While in general the weighting matrix 𝑨 is dependent on the system geometry and the

type of interpolation used, in certain cases it can be simplified. For this paper, it will be

assumed that a parallel beam geometry is used, with projections at 0 degrees and 90 degrees,

and the size of the volume is equal to the width of the projection (e.g., 𝐼 = 𝐽 = 𝑁). In this

cased the weighting matrix for the 0 degree projection is:

156

𝑨𝑖𝑗𝑛,0 = {

1

𝐼
, 𝑛 = 𝑗

0, 𝑛 ≠ 𝑗
 (6.9)

and the weighting matrix for the 90 degree is:

𝑨𝑖𝑗𝑛,90 = {

1

𝐽
, 𝑛 = 𝑖

0, 𝑛 ≠ 𝑖

 (6.10)

Under normal circumstances, Eq. (6.8) would be sufficient to provide an accurate

reconstruction of the tomographic slice. However, with only two projections available from

stereography, the reconstruction has a tendency to blur the projection across the entire slice,

resulting in a single, large, cross-shaped object in the reconstruction (see Section 6.5 for an

example). However, in a multiphase flow additional information is available. When

determining the time average gas fraction of a multiphase flow from CT data, it is common

practice to acquire a static CT with the containment vessel full of the denser phase (typically

referred to as the bulk CT), as well as a static CT with the containment vessel empty

(typically referred to as the gas CT) (Heindel, 2011). These same CTs can be used to provide

a lower and upper limit on the possible intensity values of the reconstruction. This is done by

clamping the estimated voxel values in the slice after every iteration of Eq. (6.8). This

clamping equation is:

�̂�𝑖𝑗
(𝑞) =

{

 𝑩𝑖𝑗 , if �̂�𝑖𝑗

(𝑞) < 𝑩𝑖𝑗

𝑪𝑖𝑗, if �̂�𝑖𝑗
(𝑞) > 𝑪𝑖𝑗

�̂�𝑖𝑗
(𝑞), if 𝑩𝑖𝑗 ≤ �̂�𝑖𝑗

(𝑞) ≤ 𝑪𝑖𝑗

 (6.11)

where 𝑩 is the bulk CT slice (denser phase), and 𝑪 is the gas CT slice (less dense phase).

157

6.5 Experimental Results

To examine the usefulness of the approximated CT reconstructions, two different tests

were conducted. First, the sphere phantom was imaged and reconstructed with a full set of

CT projections, using the unmodified reconstruction method with only two projections, and

finally using the modified reconstruction algorithms. These results are shown in

Section 6.5.1. Second, a real multiphase flow was reconstructed using the modified

algorithms and the results were compared to the individual projections. These results are

shown in Section 6.5.2. Finally, it should be noted that, while all the results shown in this

paper are for a single tomographic slice, there are no limitations preventing these methods

from being used on full volumes or with time sequences of projections.

6.5.1 Phantom Imaging

To test the locally axisymmetric CT reconstruction, the test sphere was placed off center

in the imaging region, and a CT was acquired. The reconstructed CT using all 360

projections of this phantom is shown in Figure 6.3a as a baseline reference. From the 360

projections, the projections at 0 degrees and 90 degrees were extracted. Figure 6.3b shows

the result of using only these two projections to reconstruct the slice using the filtered

backprojection algorithm. It is clear to see that, while the general position of the sphere is

identifiable, the shape is not reconstructed and there are significant streak artifacts. Finally,

the missing 358 projections were generated using the shifting algorithm presented in

Section 6.4.1, the results of which are in Figure 6.3c. The general shape of the sphere is

reconstructed correctly. In fact, the reconstruction using the shifted projections is nearly

identical to the reconstruction using the full CT dataset. Note, however, that the accurate

shape reconstruction only occurs because the phantom is spherical in shape. If the phantom

158

were not an axisymmetric shape, the shape would not be accurately reconstructed. There is

also some blurring at the outside edge of the phantom. However, as this is present in both the

reference slice and the locally axisymmetric FBP reconstruction, this is believed to be due to

the use of a parallel beam reconstruction with a scanner geometry that is truly cone beam.

The SART reconstruction with a priori information does not use the position of the

object as an input, and therefore it is not important where the object is in the imaging region

when testing the reconstruction. Therefore, to minimize the error due to the parallel beam

assumption, seen in the locally axisymmetric reconstruction, the test sphere was moved to the

center of the platform. There are two parameters in the SART reconstruction that are not

examined in this paper, the relaxation factor (𝜆) and the number of iterations (Q). Neither

factor was observed to have a significant impact on the reconstructed slice during testing.

Therefore, for all SART tests in this paper, the relaxation factor has been set to 𝜆 = 1.0 and

the number of iterations has been set to 𝑄 = 5. For reference, the slice reconstruction using

the filtered backprojection algorithm and all 360 projections is shown in Figure 6.4a. The

reconstruction using the SART algorithm and only the projections at 0 degrees and 90

degrees, with no a priori information, is shown in Figure 6.4b. Note how the unmodified

Figure 6.3: The ABS sphere phantom positioned off-center and reconstructed with a) the full 360

projections, b) only the 0 degree and 90 degree projections, and c) 360 projections generated by shifting the

0 degree and 90 degree projections.

Sphere

Phantom

Streak

Artifacts

Mounting

Hole

a b c

159

SART reconstruction causes significant streak artifacts, similar to the unmodified FBP

algorithm. Finally, the two projection SART reconstruction with a priori information is

shown in Figure 6.4c. Unlike the locally axisymmetric FBP algorithm, there are still

significant streak artifacts present in this reconstruction. However, they are significantly

reduced as compared to the SART slice with no a priori information. Additionally, despite

the streak artifacts, the general shape of the sphere phantom is accurately reconstructed.

However, the a priori SART slice is missing the central void where the hole to mount the

sphere is located. This is an indication that the a priori bulk CT slice (which does not contain

the mounting hole) is forcing the reconstruction towards the correct shape.

6.5.2 Multiphase Flow Imaging

To evaluate the reconstructions on a real flow, a fluidized bed of ground walnut shell

was used. The raw projections at 0 degrees and 90 degrees are shown in Figure 6.5. Note

that, because these images were taken with an X-ray intensifier, the noise level is appreciably

higher than the projections used to reconstruct the CTs in the previous section.

Figure 6.4: The ABS sphere phantom positioned in the center of the imaging region and reconstructed

with a) the full 360 projections using the FBP algorithm, b) only the 0 degree and 90 degree projections

using the SART algorithm, and c) only the 0 degree and 90 degree projections, with the intensity limited

by a priori CT slices of the bulk and gas conditions.

Sphere

Phantom

Streak

Artifacts

a b c

160

The first evaluation with the real multiphase flow data is using the locally axisymmetric

FBP algorithm to reconstruct the flow within the bed by assuming the axisymmetric feature

is the bed itself. The center of the bed was determined manually and used as the axis of

symmetry in the reconstruction. The resulting slice is shown in Figure 6.6a. While most of

the slice appears as a circular blur, there are two features that can be seen clearly. The first is

the wall of the containment vessel. This is expected, as the vessel was used to define

reconstruction axis, and thus must be axisymmetric about the reconstruction axis. However,

the second feature, the darker area to the right of the center of the reconstruction (which

indicates an area of lower gas holdup), was not expected due to its local nature. However, by

examining the projections in Figure 6.5, it can be seen that there are no bubbles to the right of

the central axis at that slice location, and it is likely a spot of low gas holdup. Unfortunately,

since no full CT can be acquired for comparison in a dynamic system such as the bubbling

fluidized bed, it cannot be conclusively confirmed that this is a feature and not an artifact.

The second evaluation is to use the locally axisymmetric FBP algorithm to reconstruct

an individual feature within the flow (Figure 6.6b). The bubble on the left of the projections

Figure 6.5: The original projections of the fluidized bed used to test the reconstruction

algorithms on limited data of a real multiphase flow. The dashed red line indicates the

height at which the slices were reconstructed.

Bubble used as

feature of interest

Reconstruction

Plane

161

in Figure 6.5, intersecting the slice level, was selected as the feature of interest. Again, the

central axis of the feature was found manually, and the locally axisymmetric FBP algorithm

was used to calculate the slice around the feature’s axis. The bubble can clearly be seen as

the higher intensity region in the center of the slice, with the rest of the flow blurred out

around it. While such a reconstruction may be useful for estimating bubble size, the rest of

the slice is useless because of the blur introduced by the axis shift.

The final evaluation of real flow data is to reconstruct the same fluidized bed projections

using the SART algorithm with the a priori information of the bulk bed CT and the gas bed

CT. The result of this reconstruction is shown in Figure 6.7. This reconstruction also shows

the dark region to the right of the center of the bed, further indicating that this is a true flow

feature. However, the bed region has a “plaid” appearance due to a combination of the noise

inherent in the X-ray image intensifiers used to acquire the projections and the SART

algorithm’s tendency to streak the projections across the slice. It should also be noted that

the wall of the containment vessel is clearly visible, but the reconstructed flow does not

Figure 6.6: The locally axisymmetric FBP reconstructions of the fluidized bed assuming a) the bed is the

feature of interest and b) the bubble crossing the slice is the object of interest. Note that the brightness and

contrast of these slices have been adjusted to enhance the visibility of the features in the reconstruction.

a b

High Solids

Concentration

Bed Wall Bubble

Blur from

Projection Shift

162

appear to fit entirely within it. The containment vessel wall is clearly visible because the a

priori CTs have nearly identical intensities in both the bulk and gas CT in the wall region,

thus it strongly forces the SART slice towards that narrow intensity range, resulting in the

clearly defined wall. However, because the a priori CTs and the flow projections were not

imaged using the same camera system, there is some misalignment between the two. This

misalignment results in the appearance of the flow to exceed the boundaries of the

containment vessel.

6.6 Conclusions

It is clear from this research that the algorithms to reconstruct an approximate CT

reconstruction from only two stereographic X-ray projections are not yet ready to be used for

multiphase flow measurement in the same way X-ray CT or X-ray particle tracking

velocimetry are used. However, the algorithms also show areas of promise. In particular, the

locally axisymmetric filtered backprojection reconstruction of a fluidized bed was able to

almost perfectly reconstruct the sphere phantom from only two projections and identify a

Figure 6.7: The fluidized bed reconstructed with the SART algorithm using a

priori information to limit the intensity range.

Bed Wall

High Solids

Concentration

Misalignment

Artifact

163

region of low gas holdup that was not globally axisymmetric. While these results alone are

not sufficient to prove the effectiveness of stereographic X-ray projections for approximating

CT reconstructions, it is reason to continue improving the algorithms and evaluating other

approaches to the problem. The first step in this future work will be to extend all the

algorithms to handle cone beam geometry so the true geometry of the system is replicated in

the reconstructions. From there, methods to reduce the noise in the projections acquired with

the X-ray image intensifier need to be evaluated to improve the continuity of the

reconstructions. Finally, the FBP and SART algorithms are only two of a plethora of

reconstruction algorithms available. While most algorithms are intended for far more

projections than X-ray stereography provides, it is worth evaluating their comparative merit

for such a case.

164

CHAPTER 7:

DEVELOPMENT OF A NONCONTACT USER INTERACTION

SYSTEM FOR SURROUND-SCREEN VIRTUAL ENVIRONMENTS

Shifting focus from X-ray imaging, this chapter presents a system designed to integrate

natural, noncontact user interaction with CAVE-style virtual environments (objective four

from Section 1.2). While this may initially seem unrelated to the characterization of

multiphase flows, one of the major challenges in working with large X-ray computer

tomography datasets is how to visualize the data efficiently and effectively. A key

component of that, particularly in immersive environments, is how to interact with the data.

This chapter is based on a draft being prepared for submission to Presence: Teleoperators

and Virtual Environments.
4

7.1 Abstract

Since the introduction of the Microsoft Kinect sensor in 2010, there has been a

significant amount of research into its use in a wide variety of fields, including virtual reality.

However, the use of Kinect sensors in CAVE-style virtual environments has been slowed by

the large tracked area that requires multiple Kinect sensors, and by the complication in

implementing many of the desired user interactions, such as voice recognition and gesture

recognition, in pre-existing CAVE applications. This paper describes the challenges of using

the Kinect sensor in a CAVE-style virtual environment, and discusses the implementation of

a software system designed to simplify the implementation of Kinect interaction with CAVE-

4
 Based on draft Morgan, T. B., Heindel, T. J., and Vance, J. M. (2017). Development of a Noncontact

User Interaction System for Surround-Screen Virtual Environments. To be submitted to Presence:

Teleoperators and Virtual Environments.

165

style environments by abstracting the Kinect data as a Virtual Reality Peripheral Network

server. In particular, this paper discusses the details of implementing skeleton merging,

skeleton filtering, and gesture recognition. In addition, a method of generating joint

orientations from joint positions that is logically consistent with the Microsoft method is

presented. Finally, the techniques implemented in the system are validated with both

simulated data and publically available human motion datasets.

7.2 Introduction

The use of low cost body based tracking has increased dramatically in recent years

thanks in part to the introduction of the Microsoft Kinect sensor (Zhang, 2012). This

commoditization of body tracking has enabled many more developers to implement non-

contact user interactions in their code; however, the details of implementation still remain

one of the biggest barriers to its usage (Takala et al., 2012). Furthermore, the Kinect was

designed specifically for video game interactions and thus assumes that the user will be

nearly directly facing the sensor and interacting with visuals on a single screen. In many

areas in which the Kinect sensor is being adopted for user interaction, these assumptions are

not valid. In particular, several challenges arise when using a Kinect sensor in a CAVE-style

virtual environment:

1) The large tracked area makes it difficult for one Kinect to cover the entire

CAVE. Optical occlusion from the CAVE walls exacerbates this problem and

forces the Kinect sensor(s) to be placed in sub-optimal positions. Typical

placements can include above the walls looking down, in the corners of the

CAVE, or behind the user.

166

2) The Kinect sensor has inherently high noise and high latency (Livingston et al.,

2012).

3) The high computational cost of using Kinect sensors takes valuable computing

time from the rendering of visuals.

4) Even for programmers with experience in virtual reality, implementing the

algorithms required for using the Kinect for 3D user interaction can be difficult

(Takala et al., 2012).

This paper presents the Kinect with Virtual Reality (KVR) system, which is designed to

address the challenges of using the Microsoft Kinect sensor as an input device for virtual

reality, with a specific focus on CAVE-style virtual environments. The KVR system is

available as free, open-source software from https://github.com/vancegroup/KVR.

7.3 Background

The original Microsoft Kinect sensor for the Microsoft Xbox 360 game console was

released on November 4, 2010 and quickly became the fastest selling consumer electronics

device to date (Zhang, 2012). While much of this success was due to consumers using the

device as intended, a large number of researchers began to use the Kinect as a human-

computer interface across a wide variety of fields, including virtual reality, robotics, medical

image visualization, and rehabilitation (Gallo et al., 2011; Lun and Zhao, 2015; Morato et al.,

2014; Williamson et al., 2012). Subsequent to the release of the original Kinect sensor, a

slightly updated version of the sensor was released with official support for the Microsoft

windows platform and improved control over the camera parameters. However, from a

hardware standpoint, these two sensors are virtual identical and will both be referred to as the

Kinect v1. The Kinect v1 sensor uses infrared structured light to determine the depth of

167

objects in its viewing area, with a resolution of 640 × 480 at 30 frames per second (FPS).

The Kinect v1 sensor contains a color camera with a resolution of 640 × 480 at 30 FPS, with

support for other resolutions and frame rates. Finally, the Kinect v1 sensor contains a motor

to adjust the sensor tilt, a three-axis accelerometer, and a microphone array (Microsoft,

2014b; Zhang, 2012).

A second version of the Kinect sensor was released alongside the Xbox One game

console and official support for Microsoft Windows was released in 2014. This updated

version of the sensor is referred to herein as the Kinect v2 and improves upon the original in

nearly every way. The Kinect v2 senses depth with a resolution of 512 × 424 at 30 FPS

using a time-of-flight sensor (Lun and Zhao, 2015). The Kinect v2 also contains a

1920 × 1080, 30 FPS color camera, along with a microphone array (Microsoft, n.d.-f). The

only features from the Kinect v1 that are absent on the Kinect v2 are the accelerometer and

tilt motor.

The first problem with using the Kinect sensor in virtual reality is the tracking area is

often larger than what a single Kinect can cover. While this problem could be mitigated by

placing the Kinects roughly at eye level in front of the users, this would typically place them

behind the projection screens of the CAVE, rendering them useless. One type of CAVE, the

blue-c, uses liquid crystal projection screens that allow the screens to be selectively

transparent so cameras placed behind the screen can image the users (Gross et al., 2003).

However, most CAVE systems are not equipped with this feature, and to the best of the

author’s knowledge, such a system has never been tried with a Kinect sensor. Thus, CAVE

users are left with the challenge of merging data from multiple Kinects into a single usable

data stream. Multiple researchers have observed this problem and addressed it with different

168

solutions. One solution to this problem is sensor scheduling (Faion et al., 2012). This

strategy will track the object of interest (typically, but not always, the system user) and only

uses the data from the Kinect sensor that has the “best” view of the object of interest. This

method has the benefit of being able to use external shutters on the Kinect sensors to reduce

interference between multiple Kinects (Berger et al., 2011). However, all the information

from the sensors without the “best” view is lost. A second solution to this problem is to use

data fusion to combine all the Kinect skeletons into a single stream. This was done by

Williamson et al. (2012) using a weighted averaging method to track dismounted soldiers in

training simulations. Multiple research groups have also used Kalman filtering to solve the

data fusion problem with multiple Kinects (Li et al., 2014; Masse et al., 2013; Moon et al.,

2016). However, none of these papers address handling of cases where multiple users may

be tracked by the Kinect. Furthermore, Williamson et al. (2012) note that when a user’s back

is facing the Kinect sensor, the Kinect often assumes that the user is facing the sensor,

leading to a left-right reversal. While Williamson et al. propose a method to handle this

based on assumed poses, a more robust method is needed.

The second problem with using the Kinect sensor is its high noise and latency, which is

not unique to the Kinect, but nevertheless important to efficient and effective user interaction

(Casiez et al., 2012). Previous research has shown that noise in the Kinect v1 skeleton data is

depth dependent and has an average noise of 6.9 mm when the user is 3.5 m from the sensor.

The same research also showed an average latency in the skeleton data of 106 ms (Livingston

et al., 2012). Due to this noise, Microsoft has recommended the use of filtering on skeleton

data; however, the filtering has the potential to add additional latency to the system (Azimi,

2012). Therefore, a filtering method that is capable of both noise reduction and prediction to

169

reduce the effects of latency is preferable. The methods of filtering recommended by

Microsoft are all variants of the auto regressive moving average (ARMA) filter (Azimi,

2012). Another popular filter in virtual reality applications is the 1€ filter (Casiez et al.,

2012). The 1€ filter is a first-order low pass filter with a cutoff frequency that is adjusted

based on the speed of the input signal. This leads to a filter that does more jitter reduction

when the user is relatively still, but is more responsive when the user is moving quickly.

This filter has been shown to perform well when compared to other filters (Casiez et al.,

2012); however, it lacks a method to predict ahead to account for inherent system latency. A

final class of filters that has been used extensively in virtual reality is the Kalman filter

(Welch, 2009). As seen previously, the Kalman filter has also seen extensive use to fuse data

from multiple Kinects. It is also effective at filtering the data streams to reduce noise and has

a built-in method for predicting ahead to compensate for latency (Hargrave, 1989).

However, the selection of an appropriate state model can be a significant challenge and cause

the filter to underperform (Brown and Hwang, 1997; Casiez et al., 2012; Welch, 2009).

The third problem with using Kinect sensors in a CAVE-style virtual environment is the

relatively high computational cost of the calculations. While the Kinect algorithm for

deriving skeletons from the depth images was designed for speed (it runs in about 5 ms on

the Xbox 360 hardware), the cost of running multiple Kinects and filtering adds up quickly

for a real-time application such as virtual reality (Shotton et al., 2011). Multiple researchers

have separated the rendering from the Kinect calculations by using one or more computers to

do the Kinect calculations, and then transmit the results to the rendering machine(s) over a

standard network (Moon et al., 2016; Williamson et al., 2012). This is a common strategy in

virtual reality, and one for which the Virtual Reality Peripheral Network (VRPN) was

170

specifically designed to handle (Taylor et al., 2001). VRPN is a device-independent software

that permits input devices to transmit their data to a client computer which handles the image

rendering. This frees the rendering computer from the overhead of the input device

calculations and frees the rendering from needing a device specific code for the input device.

While many input devices support VRPN, there is currently one software package, the

Flexible Action and Articulated Skeleton Toolkit (FAAST) that supports transmitting Kinect

sensor data over VRPN.

The final problem with using Kinect sensors in CAVE-style virtual environments is the

difficulty in implementing useful user interactions on top of the raw Kinect data (Takala et

al., 2012). FAAST is one attempt to solve this issue. It abstracts the details of processing the

Kinect data and allows for simplified implementation of rule-based gestures. However, it

lacks several desirable features for use with CAVE-style virtual environments, notably

support for simultaneous use of multiple Kinect sensors, skeleton filtering and prediction,

and voice recognition. Support for the Kinect sensor has also been integrated into multiple

virtual reality toolkits, including MiddleVR and the Reality-Based User Interface System

(RUIS) (Kuntz, 2015; Takala, 2014). While this support abstracts some of the details, it

leaves more complicated tasks, such as merging and gesture recognition, to the application

programmer. Furthermore, if an application was not built on the platform, designed for a

Kinect sensor from the beginning, it can take significant changes to add it in later.

7.4 Implementation

With the challenges of using a Kinect sensor as an input device for CAVE-style virtual

environments in mind, and considering the limitations of previous systems, the basic design

parameters of the KVR system are that the system should:

171

 support all of the Kinect’s sensing modalities,

 support both the Kinect v1 and Kinect v2,

 allow for the merging of skeletons from several sensors,

 abstract the Kinect data sufficiently that Kinect interaction can be added to pre-

existing virtual reality applications with minimal programming effort.

7.4.1 System Architecture

The best way to abstract the Kinect data to allow it to be used in pre-existing virtual

reality applications is VRPN. VRPN has wide support across many VR toolkits and it is

device and operating system independent. This allows a VR application that was written for

one input device using VRPN to be replaced by a Kinect feature of the same input class by

simply redirecting the application to a different VRPN server. For example, a system that

obtains hand position over VRPN from a marker-based optical tracking system can receive

hand position from a Kinect by simply having the application connect to the KVR VRPN

server instead of the marker-based tracker’s VRPN server. Additionally, VRPN is available

as an open source project, including bindings for the Microsoft .NET Framework through the

VRPN.Net project (Taylor et al., 2001; VanderKnyff, 2008).

Once it was decided to abstract the Kinect information using VRPN server, it was

decided to build the KVR system on top of the Microsoft .NET Framework version 4.5 and

official Microsoft Kinect for Windows SDK (software development kit). The official SDK

was selected over an open source SDK, such as OpenNI, primarily due to its better support

for the microphone array on the Kinect sensor and its better support for the Kinect v2. This

choice does introduce a limitation that the KVR server must run on a Windows operating

172

system. However, this restriction is mitigated by the use of VRPN to communicate over a

standard computer network between the client and the server.

In order to handle both the Kinect v1 and Kinect v2 within the same software, it was

necessary to split the handling of each type of Kinect into its own assembly. Additionally,

the Kinect v2 SDK only supports a single Kinect v2 per computer, and it is likely that in a

CAVE environment, multiple Kinect v2 sensors will be needed for full tracking. Therefore,

a third Kinect type was introduced, the networked Kinect. This is simply a wrapper around a

VRPN client that allows the VRPN output of one KVR skeleton on one computer, to be input

into KVR on another computer as if it were a Kinect sensor. Additionally, since it is

implemented as a VRPN tracker client, any tracking device that outputs VRPN can be input

as if it were a Kinect. For example, if an application requires high-precision tracking of a

user’s hands, but doesn’t require as much precision for the rest of the body, the user’s hands

can be tracked with a marker-based optical tracking system and the rest of the body with

Kinect sensors. KVR can then integrate all the measurements as a single skeleton stream for

the application to use.

The splitting of the handling of each type of Kinect into its own assembly resulted in the

KVR system being built as five separate assemblies, represented by the dark blue boxes in

Figure 7.1. The Kinect with VR server assembly combines all the merging of the Kinect

data, handles transmitting the data over VRPN, and provides a graphic user interface for the

user to control all the settings. The assemblies to handle each type of Kinect feed data to the

server assembly; however, each of these assemblies is loaded at run time, so that if an

assembly is missing (for example, if the system is being run on Windows 7, which does not

support the Kinect v2), the user can still operate the server, albeit with reduced functionality.

173

The final component of the KVR system is the Kinect Base assembly. This provides a

common set of classes and interfaces that allow all three types of Kinect to communicate to

the server using the same data types.

The rest of the assemblies presented in Figure 7.1 are libraries that the KVR system is

dependent on, with unmodified assemblies in light blue, and customized assemblies in

medium blue. VRPN.Net was modified to add support for the VRPN Imager device, and

thereby allow the server to transmit the raw Kinect color and depth streams, if the user so

desires. Eigen.Net is a new library that was created specifically for KVR, but could have

wide applicability beyond KVR. It is a .Net wrapper around the Eigen linear algebra library

(TuxFamily, 2017). This library was required because the Kalman filtering used to merge

and filter the skeleton data uses a large number of linear algebra calculations, and .NET v4.5

does not natively support the single instruction, multiple data (SIMD) processor instructions

required to make these calculations run fast enough to maintain the Kinect’s frame rate.

These customized libraries are both available at https://github.com/vancegroup.

Figure 7.1: The architecture of the KVR system. Each box represents a single assembly. The dark blue

boxes, collectively, make up the KVR system, while the medium and light blue are libraries KVR is

dependent on. The medium blue are open source libraries that had to be written or modified, the light

blue libraries were used unmodified.

174

7.4.2 Features

The KVR system has numerous features to assist users in interfacing Kinect sensors with

virtual reality. While many of these features are simply wrappers around pre-existing Kinect

functionality or fairly straightforward to implement, a few desire special attention. Those

features are skeleton merging and filtering (covered in Section 7.4.3), the calculation of joint

orientations (covered in Section 7.4.4), and gesture recognition (covered in Section 7.4.5).

Of the remaining features, the most significant one for advancing user interaction in

virtual reality is voice recognition. The Kinect sensor (both v1 and v2) contains a

microphone array that allow the Kinect to optimize its audio stream for a specific location

(specified by an angle from the center of the Kinect’s view). This audio stream can then be

sent to the Microsoft Speech Recognition SDK to do voice recognition. In order to interface

voice recognition with VRPN, the recognition events are turned into either VRPN button

presses or VRPN text messages by KVR.

In most CAVE applications, a single user will be in control of the interaction with the

system. In these applications, it is advantageous to have the Kinect optimize its audio stream

for the position where that user is located. This can be done in KVR by instructing the

system which user’s skeleton position to monitor for voice recognition (this does not

guarantee that another user won’t be heard, only that the monitored user has the best chance

of being heard). However, this can also be done by using a feedback sensor. KVR supports

one VRPN tracker sensor for feedback, which allows an external tracker to be used to

optimize functions in KVR relative to that position. In most use cases, this feedback sensor

would be the head tracked position of the user in the CAVE. Because most CAVEs only

support a single head tracked user, this user will likely be the most important user to monitor.

175

By using the feedback sensor in KVR, the voice recognition position can be set so that the

Kinect is always optimizing its voice recognition for the head tracked user. Additionally, this

feedback sensor can also be used to sort the skeletons, so that the ordering of the merged

skeletons will be based off the distance from the head tracked user.

Additionally, the KVR system supports some features that are available for each Kinect

sensor individually. First, all the available Kinect settings on both the Kinect v1 and

Kinect v2 are exposed so the user can adjust them as necessary for an application. Second,

the raw skeleton streams from both the Kinect v1 and the Kinect v2 can, optionally, be

transmitted so that KVR’s merging and filtering algorithms can be bypassed by users, if

desired. This functionality is not available for the networked Kinects, since their raw

skeleton streams are already available over VRPN from another server. Third, the

acceleration measured by the Kinect v1 sensor’s accelerometer and the measured angle to a

sound source, as measured by the Kinect v1 or Kinect v2 sensor’s microphone array, can be

made available over VRPN as a VRPN analog device. Finally, KVR supports the ability to

transmit the raw images from the Kinect v1 and Kinect v2 color and depth streams over a

VRPN Imager server. This allows applications to access the video from the Kinect for

further processing, even if the application is running on a system that does not support the

Kinect sensor. However, it is cautioned that the transmission of color and depth streams

should be used judiciously. The VRPN Imager device does not support any image

compression, and the uncompressed image data can quickly saturate the available network

bandwidth.

176

7.4.3 Skeleton Merging and Filtering

The merging and filtering of skeleton data in KVR are both accomplished using a

Kalman filter. To merge and filter the skeletons, each time a Kinect sensor processes a frame

with one or more skeletons in it, the Kinect forwards those skeletons to the skeleton merger.

This merger converts all the skeletons to a common coordinate system, determines which

skeletons belong to the same user and should be merged together, and then integrates all the

measurements into a set of Kalman filters representing each user’s skeleton. While the

Kalman filtering is the last step in this process, it will be considered first here, as it aids in the

understanding of the other steps.

A Kalman filter is a set of linear equations that allow the recursive estimation of the true

value of a measured quantity. Kalman filters are advantageous for use in virtual reality

because they provide a method to reduce the noise from sensors, the ability to integrate

measurements from multiple sensors, and a method to estimate what the state of the sensor

will be at a future point in time (Welch, 2009). This ability to do predictive tracking is

particularly useful in sensors with high latency, such as the Kinect.

To use a Kalman filter, an appropriate state model must first be determined. This model

is given by:

 𝒙𝑘 = 𝑭𝒙𝑘−1 +𝒘𝑘 (7.1)

where 𝒙𝑘 is the state estimation at time k, 𝒙𝑘−1 is the state estimation at the previous time

step (k – 1), 𝑭 is the state transition model, and 𝒘𝑘 is the process noise (Brown and Hwang,

1997). The state transition model mathematically defines how the state changes from one

time step to the next, and determining the correct model is critical to achieving good filter

performance (Welch, 2009). Since human motion must follow the laws of physics, a

177

position-velocity-acceleration model was selected to be applied on a per joint basis (Brown

and Hwang, 1997). This model is:

𝑭 =

[

 1 ∆𝑡

∆𝑡

2
0 0 0 0 0 0

0 1 ∆𝑡 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 ∆𝑡
∆𝑡

2
0 0 0

0 0 0 0 1 ∆𝑡 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 ∆𝑡
∆𝑡

2

0 0 0 0 0 0 0 1 ∆𝑡
0 0 0 0 0 0 0 0 1]

 (7.2)

where ∆𝑡 is the time, in seconds, between steps k and k – 1. The state (position) of the joint

in this model is given by the column vector:

𝒙 =

[

𝑥
�̇�
�̈�
𝑦
�̇�
�̈�
𝑧
�̇�
�̈�]

 (7.3)

where x, y, and z are the three-space position of the joint, �̇�, �̇�, and �̇� are the three-space

velocity of the joint, and �̈�, �̈�, and �̈� are the three-space acceleration of the joint. While this

Kalman filter integrates all three components of the joint position in a single filter, the filter

could be rewritten so that each component is filtered separately and yields identical results.

While the position-velocity-acceleration model accurately reflects the physics of joint

movement, there is no way to know the input force provided by the user’s muscles.

Therefore, a relatively high process noise must be used in order for the system to respond

without introducing too much lag. The effects of this will be examined in Section 7.5.1.

Finally, it should be noted that this is only one possible state model for the Kalman filter, and

178

it is not claimed to be the optimal one. However, because all the Kalman filtering is

implemented in KVR using matrix math (via the Eigen matrix library), users with knowledge

of Kalman filtering can easily implement other state models as desired.

To accomplish both merging and filtering in a single Kalman filter, the skeleton data

from each Kinect must first be transformed into a common coordinate space, which will be

referred to as the global coordinate system. Since CAVE systems already have a coordinate

space used for head tracking users and the rendering of visuals, it is typically preferable to

have the coordinate system of the Kinects match that of the CAVE. However, this

coordinate system will vary from system to system. Therefore, the determination of

coordinate systems for the Kinect is done by having the user set the position and orientation

of each Kinect inside the user’s desired coordinate system. From there, the required

transformation matrix to convert from Kinect coordinates to global coordinates is simple.

However, precisely measuring the position and orientation of each Kinect is challenging.

One solution to this would be some form of an calibration to a known reference (Berger et

al., 2011; Li et al., 2014). However, this can introduce its own challenges, particularly for

networked Kinect sensors where the color and depth sensor information may not be

available. Due to this, and given that it is unlikely that the Kinects will be moved frequently

after the initial setup, it was decided to use a manually set position and orientation as the only

way to position the Kinect sensor in the global space. While the position and orientation of

each Kinect has to be fully manually defined for the Kinect v2 and networked Kinects, the

accelerometer on the Kinect v1 can be used to help simplify the orientation determination

(Pavlik and Vance, 2010). This is accomplished by assuming that the acceleration due to

gravity should be aligned with the negative y-axis of the Kinect’s coordinate system. An

179

angle-axis rotation between the negative y-axis vector and the direction of gravity as

measured by the accelerometer can then be calculated. Once this is done, the user only needs

to manually define the position and yaw of the sensor. However, the measurement noise of

the accelerometer introduces a significant amount of noise into the global coordinate system

position of the skeleton. To resolve this, the acceleration from the Kinect is filtered with a

simple Kalman filter that estimates the acceleration to be constant, but uses a time varying

process noise covariance to allow new measurements to be integrated slowly, should the

orientation change.

Once all the skeletons are in the global coordinate system, the next step is to determine

which skeletons should be merged together. In a CAVE system, it is likely that there will be

multiple users in the interaction space simultaneously, and ideally, the merging system

should return a single skeleton for each user. To accomplish this, the KVR system keeps a

collection of Kalman filters, which model the state of each joint in each skeleton, that the

system has recently tracked (a skeleton is removed if none of its joints have been updated

within the past five seconds). Each time a frame is received from a Kinect, the skeleton

merging system will get an updated position estimate from each of the skeletons it has been

tracking. Every predicted skeleton is then compared against the received skeleton to

determine the average distance between each joint in the predicted and the received skeleton.

If the smallest average distance found is less than 0.3 m (11.8 in), the skeletons are assumed

to be the same. If no skeleton is found that has an average distance of less than 0.3 m

(11.8 in), KVR will assume it is a previously unseen user and create a new set of Kalman

filters for it. The 0.3 m (11.8 in) threshold was determined by trial and error to balance the

180

possibility of two unique users’ skeletons from being, incorrectly, merged together, against

the possibility of two views of the same skeleton being treated as independent users.

However, as Williamson et al. (2012) note, the Kinect sensor has trouble determining

reliably if a user is facing the Kinect or facing away from the Kinect. In order to handle this

issue, the received skeleton is compared both normally and with the left and right joints

reversed (e.g., the left hand is assumed to really be the right hand). If a shorter average

distance is found using the reversed joints, it will assume the users back is facing the Kinect

and integrate the joint measurements into the Kalman filters accordingly. The only limitation

of this method is that it assumes the user is facing the Kinect the first time the system detects

the user.

Finally, there are two details to be handled in the Kalman filter that were not previously

discussed. First, the system needs a method to determine the tracking state of the joints after

filtering. There are several possibilities, such as using the tracking state of the last

incorporated joint or statistical models like adding an additional Kalman filter for monitoring

the tracking state or using Hidden Markov Models. However, because the Kalman filter of

the joint already includes a statistical estimation of the quality of the joint, in the form of the

estimate covariance, it was decided to use this error estimate instead. This is done by

calculating the natural log of the matrix Frobenius norm:

𝑎 = ln‖𝑷‖ = ln√∑∑|𝑝𝑖𝑗|

𝑛

𝑗=1

𝑚

𝑖=1

 (7.4)

where 𝑎 is the total error estimate, 𝑷 is the estimate covariance matrix, m is the number of

rows of the matrix, and n is the number of columns of the matrix. If 𝑎 < 2.0, and the joint

has been updated in the last second, the joint is considered tracked. If 𝑎 ≥ 2.0 and 𝑎 < 4.0,

181

the joint is considered inferred. If 𝑎 ≥ 4.0 the joint is considered not tracked. Note, these

thresholds were determined experimentally, and can be changed in the code if the user

desires looser or tighter bounding.

The second issue that must be handled is filtering the orientation of the joints. Both the

Kinect and VRPN represent the orientations as quaternions, which could be filtered.

However, because rotation quaternions are non-linear, an extended Kalman filter would be

required, which is more complicated and computationally expensive (Marins et al., 2001;

Yun et al., 2003). Furthermore, these results may be inconsistent with what is provided by

the Kinect SDK. However, there is a different approach to obtaining joint orientations that is

made possible by first realizing that the Kinect does not measure orientations, but instead

calculates the orientations based on the measured joint positions (Microsoft, 2012a).

Unfortunately, this algorithm has not been made publically available; therefore, an algorithm

that is logically consistent with the Kinect SDK orientations will be presented in

Section 7.4.4. The KVR system uses this algorithm to calculate new joint orientations from

the filtered joints.

7.4.4 Joint Orientation Algorithm

Defining a joint orientation algorithm that is logically consistent with the joint

orientations from the Kinect is complicated not only by the lack of documentation from

Microsoft, but also by the fact that the Kinect v1 and Kinect v2 do not calculate the joint

orientations in exactly the same way. What is known from available documentation is that

the calculations are done in a hierarchical fashion, with the hip center joint being the root

joint, and that the y-axis of each joint’s coordinate system should be along the line from the

previous joint to the current joint (Microsoft, 2012a). Based on testing, it appears that the

182

Kinect v2 does not provide any orientation information about the terminal joints (e.g., the

head), but instead uses an identity matrix for those orientations. The Kinect v1 does provide

an orientation for the terminal joints. Therefore, to provide as much information as possible

to the user, it was decided to maintain consistency with Kinect v1 orientations instead of the

Kinect v2. This has the additional advantage that the Kinect v1 SDK allows joint positions

to be moved in code, and will recalculate the orientations, thus allowing for comparisons

based on artificially generated skeletons. Based on this, algorithms were tested by trial and

error until an algorithm that was logically consistent with the Kinect v1 SDK’s method of

calculating joint orientations was found. It should be noted, that this method is not claimed

to be identical to the Kinect v1 SDK’s algorithm, only that it is logically consistent.

However, as will be shown in Section 7.5.2, it is very close.

Before a method can be created, a joint hierarchy must be defined. This hierarchy must

include all the joints from the Kinect v1 and the Kinect v2, which don’t use identical joints.

First, some joint remapping is required, as the Kinect v2 changed the names of some of the

joints, but maintained essentially the same anatomical positions (Microsoft, 2012a, 2014a).

These joint mappings are: the Kinect v2 spine shoulder is mapped to the Kinect v1 shoulder

center, the Kinect v2 spine mid is mapped to the Kinect v1 spine, and the Kinect v2 spine

base is mapped to the Kinect v1 hip center. The Kinect v2 neck, hand tip, and thumb joints

have no corresponding joint in the Kinect v1 and will be treated as unique joints. A complete

list of the joint mappings, as well as what sensor number they map to in VRPN can be found

in Table 7.1. With this joint mapping defined, a hierarchy can be defined. This hierarchy is

shown in Figure 7.2.

183

Table 7.1: Mapping of joints from the Kinect v1 and Kinect v2 to the KVR system and the corresponding

VRPN sensor number. Note that the VRPN sensor numbers were selected to maintain compatibility with

the FAAST system (Suma et al., 2013), resulting in sensor numbers four and ten not being used.

Kinect v1 Joint Kinect v2 Joint KVR Joint Abbreviation VRPN

Sensor

Head Head Head Hd 0

Shoulder Center Spine Shoulder Shoulder Center SC 1

Spine Spine Mid Spine Sp 2

Hip Center Spine Base Hip Center HC 3

Shoulder Left Shoulder Left Shoulder Left SL 5

Elbow Left Elbow Left Elbow Left EL 6

Wrist Left Wrist Left Wrist Left WL 7

Hand Left Hand Left Hand Left HnL 8

 Hand Tip Left Hand Tip Left HTL 9

Shoulder Right Shoulder Right Shoulder Right SR 11

Elbow Right Elbow Right Elbow Right ER 12

Wrist Right Wrist Right Wrist Right WR 13

Hand Right Hand Right Hand Right HnR 14

 Hand Tip Right Hand Tip Right HTR 15

Hip Left Hip Left Hip Left HL 16

Knee Left Knee Left Knee Left KL 17

Ankle Left Ankle Left Ankle Left AL 18

Foot Left Foot Left Foot Left FL 19

Hip Right Hip Right Hip Right HR 20

Knee Right Knee Right Knee Right KR 21

Ankle Right Ankle Right Ankle Right AR 22

Foot Right Foot Right Foot Right FR 23

 Neck Neck Nk 24

 Thumb Left Thumb Left TL 25

 Thumb Right Thumb Right TR 26

184

For all the joint orientations, they can first be constructed in a method that is very similar

to a look-at matrix from computer graphics, as defined in Section 2.3.1.1. First, since it is

known that the y-axis of the orientation will be the vector from the previous joint in the

hierarchy to the current joint, it can be generated by the equation:

𝒚 =

𝒑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝒑𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

‖𝒑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝒑𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠‖
 (7.5)

where 𝒑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the three-space position of the current joint in the hierarchy, 𝒑𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 is

the three-space position of the previous joint in the hierarchy, 𝒚 is the y-axis vector of the

joint orientation space, and ‖𝒗‖ denotes the magnitude of the vector v. Next, either the

z-axis vector or the x-axis vector of the orientation space can be defined; however, in practice

the z-axis vector is typically defined first by:

Hip Center

Hip Left

Knee Left

Ankle Left

Foot Left

Hip Right

Knee Right

Ankle Right

Foot Right

Spine

Shoulder Center

Neck

Head

Shoulder Left

Elbow Left

Wrist Left

Hand Left

Hand Tip
Left

Thumb Left

Shoulder Right

Elbow Right

Wrist Right

Hand Right

Hand Tip
Right

Thumb
Right

Figure 7.2: The joint hierarchy used for calculating joint orientations in the KVR system. Adapted from

the Kinect v1 joint orientation hierarchy (Microsoft, 2012a).

185

𝒛 =

𝒙′ × 𝒚

‖𝒙′ × 𝒚‖
 (7.6)

where 𝒛 is the z-axis vector of the orientation space, 𝒙′ is the x-axis vector in the Kinect

space, and × denotes the vector cross product. The remaining orientation space axis (in this

case the x-axis vector) is defined by:

 𝒙 = 𝒚 × 𝒛 (7.7)

where 𝒙 is the x-axis vector in the orientation space. Finally, the three orientation space axes

can be combined into an orientation rotation matrix (𝑹) by:

𝑹 = [

𝑥𝑥 𝑥𝑦 𝑥𝑧 0

𝑦𝑥 𝑦𝑦 𝑦𝑧 0

𝑧𝑥 𝑧𝑦 𝑧𝑧 0

0 0 0 1

] (7.8)

where xx denotes the x value of the vector x, yx denotes the x value of the vector y, and so on.

Since the hip center (referred to as the “spine base” by the Kinect v2) is the root joint, its

calculation will be considered first. Because the hip center has no parent joint from which to

define the y-axis vector, it is calculated differently from the rest of the joints. Collectively,

the hip center, hip left, and hip right joints define a plane, which can be used to generate the

orientation of the hip center. The z-axis vector of the orientation is the normal of this plane,

as calculated by:

𝒛 =

(𝒑𝐻𝐶 − 𝒑𝐻𝑅) × (𝒑𝐻𝐶 − 𝒑𝐻𝐿)

‖(𝒑𝐻𝐶 − 𝒑𝐻𝑅) × (𝒑𝐻𝐶 − 𝒑𝐻𝐿)‖
 (7.9)

where 𝒑𝑎 is the three-space position of joint a, and a denotes the joint as abbreviated in

Table 7.1. Next the y-axis vector is defined as the upward direction in the plane by:

𝒚 =

𝒛 × (𝒑𝐻𝑅 − 𝒑𝐻𝐿)

‖𝒛 × (𝒑𝐻𝑅 − 𝒑𝐻𝐿)‖
 (7.10)

186

Finally, the orientation can be completed by calculating the x-axis vector and the orientation

matrix using Eq. (7.7) and Eq. (7.8), respectively.

Next, the algorithm moves up the skeleton to the spine. The spine orientation is

calculated using Eq. (7.5) - (7.8), with 𝒙𝑆𝑝
′ defined as:

 𝒙𝑆𝑝
′ = 𝒑𝑆𝐿 − 𝒑𝑆𝑅 (7.11)

The shoulder center is defined similarly with 𝒙𝑆𝐶
′ defined as:

 𝒙𝑆𝐶
′ = 𝒙𝑆𝑝

′ = 𝒑𝑆𝐿 − 𝒑𝑆𝑅 (7.12)

The head and neck both defined using the same 𝒙′ as the shoulder center and spine. That is

to say:

 𝒙𝐻𝑑
′ = 𝒙𝑁𝑘

′ = 𝒙𝑆𝐶
′ = 𝒙𝑆𝑝

′ = 𝒑𝑆𝐿 − 𝒑𝑆𝑅 (7.13)

However, the neck joint will not be tracked in all cases. If the KVR server only has

Kinect v1 sensors as inputs, the neck will not be tracked, but it will be tracked if a Kinect v2

sensor is present. Therefore, the y-axis vector of the head orientation is defined as:

𝒚 = {

𝒑𝐻𝑑 − 𝒑𝑆𝐶
‖𝒑𝐻𝑑 − 𝒑𝑆𝐶‖

, if neck is not tracked

𝒑𝐻𝑑 − 𝒑𝑁𝑘
‖𝒑𝐻𝑑 − 𝒑𝑁𝑘‖

, otherwise
 (7.14)

The x-axis vector and orientation matrix of the head are always calculated using Eq. (7.7)

and Eq. (7.8), respectively.

Moving down the left arm from the shoulder center the first joint is the left shoulder.

The y-axis vector is as defined in Eq. (7.5); however, the z-axis vector and x-axis vector are

calculated in the reverse order of the previous joints. Additionally, the z-axis vector of the

shoulder center is used to calculate the x-axis vector of the left shoulder by:

𝒙 =

𝒚 × 𝒛𝑠𝑐
‖𝒚 × 𝒛𝑠𝑐‖

 (7.15)

187

which leads to the z-axis vector being calculated by:

 𝒛 = 𝒙 × 𝒚 (7.16)

The next joint, the left elbow also presents an interesting calculation because the way it is

calculated changes depending on the angle of the elbow joint. The y-axis vector is always

defined as given by Eq. (7.5). The z-axis vector of the orientation, however, is elbow angle

dependent. This angle is defined by:

 cos 𝜃𝐸𝐿 = (𝒑𝐸𝐿 − 𝒑𝑆𝐶) ∙ (𝒑𝑊𝐿 − 𝒑𝐸𝐿) (7.17)

where 𝒊 ∙ 𝒋 denotes the dot product of vectors 𝒊 and 𝒋. Additionally, the calculation of the

z-axis vector also uses the left shoulder angle, defined by:

 cos 𝜃𝑆𝐿 = (𝒑𝑆𝐶 − 𝒑𝑆𝑝) ∙ (𝒑𝐸𝐿 − 𝒑𝑆𝐿) (7.18)

Based on this, the z-axis vector is defined as:

𝒛 =

{

(𝒚 × (𝒑𝑊𝐿 − 𝒑𝐸𝐿)) × 𝒚

‖(𝒚 × (𝒑𝑊𝐿 − 𝒑𝐸𝐿)) × 𝒚‖
, if |cos 𝜃𝐸𝐿| < 0.94

𝒚 × 𝒙𝑆𝐶
‖𝒚 × 𝒙𝑆𝐶‖

if |cos 𝜃𝐸𝐿| ≥ 0.94
and cos 𝜃𝑆𝐿 ≤ 0

𝒚 × (𝒑𝑆𝐶 − 𝒑𝑆𝑝)

‖𝒚 × (𝒑𝑆𝐶 − 𝒑𝑆𝑝)‖

if |cos 𝜃𝐸𝐿| ≥ 0.94
and cos 𝜃𝑆𝐿 > 0

 (7.19)

The threshold of 0.94 was determined by trial and error to match the Kinect v1 SDK joint

algorithm as closely as possible. From there, the x-axis vector is calculated as defined in

Eq. (7.7) and the orientation matrix can be generated by Eq. (7.8). Moving on down the arm,

the left wrist can be calculated by Eqs. (7.5) - (7.8), with 𝒙𝑊𝐿
′ defined as:

 𝒙𝑊𝐿
′ = 𝒙𝐸𝐿 (7.20)

The hand is similar, except that it has the calculations of the x-axis vector and z-axis vector

reversed, such that:

𝒙 =

𝒚 × 𝒛𝑊𝐿
‖𝒚 × 𝒛𝑊𝐿‖

 (7.21)

188

 𝒛 = 𝒙 × 𝒚 (7.22)

Again, the y-axis vector is calculated by Eq. (7.5) and the final orientation matrix by

Eq. (7.8). The left hand tip and left thumb do not exist as joints in the Kinect v1, and their

rotation matrix is always the identity matrix in the Kinect v2; therefore, the choice of

orientation can be made free of any constraints for these two joints. To maintain consistency

with the left hand joint as defined by the Kinect v1, it was decided to define the orientation of

the left hand tip and left thumb in the same way, except with the x-axis vector defined as:

𝒙 =

𝒚 × 𝒛𝐻𝑛𝐿
‖𝒚 × 𝒛𝐻𝑛𝐿‖

 (7.23)

The y-axis vector is again defined by Eq. (7.5), the z-axis vector by Eq. (7.22), and the final

orientation matrix defined by Eq. (7.8). The right arm joint orientations are defined

identically to the left arm, except with the corresponding right joint being used in place of the

left joint.

Moving back down the skeleton to the hips, the left hip is defined by Eqs. (7.5) - (7.8),

with 𝒙𝐻𝐿
′ defined as:

 𝒙𝐻𝐿
′ = 𝒙𝐻𝐶 (7.24)

Next, the left knee and left ankle are calculated. The y-axis vector calculations are done, as

normal, by Eq. (7.5). The z-axis vector calculations are both dependent on the knee angle, as

defined by:

 cos 𝜃𝐾𝐿 = (𝒑𝐾𝐿 − 𝒑𝐻𝐿) ∙ (𝒑𝐴𝐿 − 𝒑𝐾𝐿) (7.25)

and in practice the z-axes vectors of the knee and ankle must be done together, as in one of

the three cases, the orientation of the knee is dependent on the orientation of the ankle. The

z-axis vector of the left knee is calculated by:

189

𝒛𝑲𝑳 =

{

𝒙𝐴𝐿 × 𝒚𝐾𝐿
‖𝒙𝐴𝐿 × 𝒚𝐾𝐿‖

if left knee is tracked
and cos 𝜃𝐸𝐿 < 0.972

𝒚𝐾𝐿 × 𝒙𝐻𝐶
‖𝒚𝐾𝐿 × 𝒙𝐻𝐶‖

if left knee is tracked
and cos 𝜃𝐸𝐿 ≥ 0.972

𝒚𝐾𝐿 × 𝒙𝐻𝐶
‖𝒚𝐾𝐿 × 𝒙𝐻𝐶‖

if left knee is inferred

 (7.26)

and the z-axis vector of the left ankle is calculated by:

𝒛𝑨𝑳 =

{

𝒚𝐴𝐿 × 𝒙𝐻𝐶
‖𝒚𝐴𝐿 × 𝒙𝐻𝐶‖

if left knee is tracked
and cos 𝜃𝐸𝐿 < 0.972

𝒙𝐾𝐿 × 𝒚𝐴𝐿
‖𝒙𝐾𝐿 × 𝒚𝐴𝐿‖

if left knee is tracked
and cos 𝜃𝐸𝐿 ≥ 0.972

𝒙𝐾𝐿 × 𝒚𝐴𝐿
‖𝒙𝐾𝐿 × 𝒚𝐴𝐿‖

if left knee is inferred

 (7.27)

The threshold of 0.972 in Eq. (7.26) and Eq. (7.27) was determined by trial and error to

match the Kinect v1 SDK algorithm as closely as possible. The z-axes vectors of the left

knee and left ankle can be calculated by Eq. (7.7) and the final orientation matrices by

Eq. (7.8). The left foot is then calculated by Eqs. (7.5) - (7.8), with 𝒙𝐹𝐿
′ defined by:

 𝒙𝐹𝐿
′ = 𝒙𝐴𝐿 (7.28)

Like the arm joints, the right leg joint orientations are calculated in the same manner as

the left leg joint orientations, except with the appropriate right joint used in place of the left

joint. Finally, since VRPN uses quaternions to represent orientations instead of matrices, the

orientation matrices are converted to quaternions using standard matrix to quaternion

conversions (Möller and Haines, 1999).

7.4.5 Gesture Recognition

There are numerous gesture recognition algorithms available for virtual reality, including

the $3 Recognizer, hierarchical gesture recognition, Dynamic Time Warping (DTW), and

Hidden Markov Models (HMM) (Celebi et al., 2013; Kratz and Rohs, 2010; Kristensson et

190

al., 2012; Lee and Kim, 1999; Suma et al., 2013). In selecting an algorithm for gesture

recognition in the KVR system, it was considered necessary for the recognition algorithm to

work online, without a predefined starting point or stopping point, and for the algorithm to

learn by example gestures, instead of requiring manual coding and tuning of gesture

parameters. Based on that criteria, DTW and HMM were the two best options, and a discrete

HMM method of gesture recognition was selected.

To implement a HM-based gesture recognizer in the KVR system, a discrete, left-to-

right HMM is run for each gesture that is trained, as shown in Figure 7.3. As new skeleton

data becomes available (from the skeleton merging), the latest joint position is added to the

HMM. However, this joint must be processed first. The first step in this processing is to

convert the position into a coordinate system that is relative to the user’s body so that the

gesture can be recognized independent of the user’s orientation relative to the global

coordinate system, and independent of the user’s body size. The coordinate system selected

for this is the coordinate system of the shoulder center joint, with all the joint lengths

normalized to the distance between the users left shoulder and right shoulder. This

coordinate space will be referred to as normalized shoulder coordinates. This coordinate

State 1 State 2 State 3 State 4 State 5 State 6 State 7

Figure 7.3: A seven state, left-to-right hidden Markov model. In this model, a state can transition to

itself, or to any of the states ahead of it, but it can never transition to a previous state.

191

system was selected because there is a high probability that the user’s shoulders will be in

view if the user is tracked, whereas other central joints, such as the hip center, could be

occluded if the user is close to a wall of the CAVE and the Kinect is located above. The

selection of the shoulder width as the normalizing coordinate system was made because the

shoulder tracking is relatively stable. While user height or user arm length would likely

make a more accurate measurement of the body size variability between users, the height and

arm length are both quite noisy due to the faster movements of the terminal joints (i.e., the

hands and feet).

Even given the relative stability of the shoulder measurements, the conversion to a

normalized, body-centric coordinate system contributes additional measurement error to the

already noisy Kinect measurements. To help reduce this effect, two techniques were used.

First, a Kalman filter was used to produce a filtered estimate of the shoulder width. Since the

calculation of the shoulder length is a non-linear operation, it would require an extended

Kalman filter if the raw shoulder positions were used as the measurements. Therefore, the

shoulder width was calculated from the shoulder positions outside the Kalman filter, and the

calculated width was used as the measurement input to the Kalman filter, allowing the

shoulder width to be filtered using a constant scalar model, with a time varying process

covariance. Finally, a relatively small process noise was used in the filter to allow the filter

to generate a fairly stable shoulder estimate, that is insensitive to changes in measured value.

The second technique that was used to cope with the high noise in the positions within

the normalized shoulder coordinates was to use relatively few states in the HMM. By having

fewer states, there is more statistical variation inherent in each state, thus allowing for more

192

tolerance in measurement noise. However, this also increases the chances of the recognizer

creating a false positive recognition.

In order to convert the joint position into a discrete symbol for use in the HMM, the k-

means clustering algorithm was used. When the gesture is trained, the centroids of the

clusters are determined based on all the observed joint positions in the training data. When

the gesture is run, the algorithm can quickly compute which cluster the position is nearest to,

and thus which symbol it should represent in the HMM. The discrete HMM model in KVR

uses a left-to-right model that is defined and trained as described in the Rabiner tutorial

(Rabiner, 1989). The HMM in KVR uses a seven state, fourteen symbol model, although

this can be changed in code by users to generate a more or less strict gesture model.

The final piece that needs to be determined during the training is the threshold for a

gesture to be considered as identified. To do this, all the training data are run through the

HMM to find the natural log of the probability of each sequence. Twice the average log

probability of all the training sequence is used as the threshold (which is slightly over half the

probability). This threshold can be adjusted by the user to make the detection more or less

sensitive by adjusting a scalar on the user interface.

Finally, it should be noted that due to the computation expense of running the HMM, the

KVR system can only support running a single gesture at a time, on a single joint, of a single

skeleton at this point in time. Other ways of running the HMM, such as using a graphics

processing unit, are being explored with the intent to extend this to more gestures and joints

in the future.

193

7.5 Validation

To validate the performance of the KVR system, the key components of the system were

tested against known information, both in the form of simulated data and by feeding skeleton

data from publically available datasets into the system via the networked Kinect interface.

The end-to-end system latency and voice recognition performance were not tested here, as

their performance is primarily dependent on the performance of external libraries, not the

KVR system itself.

7.5.1 Skeleton Filtering

To validate the skeleton filtering, the Kalman filter for the skeleton was first tested using

simulated joint data of a single joint moving in both a sinusoidal wave and a square wave in

the x-direction, and static in the y- and z-directions. The wave forms were sampled at 33 ms

intervals, with noise artificially added to the true value of the wave using a Gaussian pseudo-

random number generator to simulate the measurement noise inherent in the Kinect. Both

the sine wave and the square wave were set to a peak amplitude 𝐴 = 1 m and a frequency of

𝑓 = 0.5 Hz. The filter was tested using both the filtered data immediately after measurement

integration (referred to as the filtered data) and with the measurement predicted ahead

106 ms (the predicted data), which is the average latency of the Kinect v1 sensor as

determined by Livingston et al. (2012). To test the filter performance, the peak amplitude

and the phase shift of the sine wave were measured by curve fitting both the filtered and the

predicted data to a sinewave using Matlab R2016a. The performance of the square wave was

tested by measuring the average overshoot and settling time on the rising side of the square

wave, for both the filtered and the predicted data.

194

As the physics model used in the Kalman filter does not account for the muscular force

inputs into the user’s motions, the performance of the filter is fundamentally related to the

magnitudes of the process noise and the observation noise used in the filtering calculations.

The observation noise is well quantified from tests of the Kinect’s tracking performance, and

for the simulated tests is fixed at 𝜎𝑜𝑏 = 0.005 m, which is representative of the average noise

inherent in the Kinect v1 sensor (Livingston et al., 2012). Note that in the KVR system, the

exact observation noise is dependent upon both on the sensor type and the measured distance

from the sensor. With this value set, the process noise was tested at values of 𝜎𝑝𝑟 = 1
𝑚

𝑠3
,

𝜎𝑝𝑟 = 2
𝑚

𝑠3
 , 𝜎𝑝𝑟 = 3

𝑚

𝑠3
, and 𝜎𝑝𝑟 = 4

𝑚

𝑠3
. A noise level of 50 dB SNR (signal to noise ratio)

was used for these tests. The results are summarized in Table 7.2 and Table 7.3.

Based on the information from these tests, it was decided to use a process noise of

𝜎𝑝𝑟 = 3
𝑚

𝑠3
 to provide the best balance of filtering and minimal lag introduced by the filter.

However, different cases may require different filter parameters. Therefore, an option is

 Filtered Data Predicted Data

Process

Noise (m
s3

)

Amplitude (m) Phase Shift (ms) Amplitude (m) Phase Shift (ms)

1.0 1.012 4.9 1.076 22.5

2.0 1.004 2.5 1.043 16.5

3.0 1.002 1.6 1.031 13.6

4.0 1.002 1.2 1.025 11.9

Table 7.2: The filter performance data for the 0.5 Hz, 1 m peak amplitude sine wave

 with a 50 dB SNR.

 Filtered Data Predicted Data

Process

Noise (m
s3

)

Overshoot (%) Settling Time (s) Overshoot (%) Settling Time (s)

1.0 43.9 0.602 221 0.639

2.0 39.7 0.480 275 0.515

3.0 38.2 0.422 322 0.466

4.0 35.3 0.384 363 0.393

Table 7.3: The filter performance data for the 0.5 Hz, 1 m peak amplitude square wave

with a 50 dB SNR.

195

provided in the user interface to adjust this value and thereby provide more or less data

filtering, with the corresponding tradeoff in lag. Finally, it should be noted that the predicted

data has significant overshoot. This is unsurprising given that it is trying to predict over

three frames ahead of the Kinect sensor. It should be clear from this, that while predictive

tracking may be able to provide some reduction in the apparent latency from the Kinect

sensor, it is not capable of reliably eliminating the entire 106 ms average latency.

To test how the filter handles different noise levels, the 1 m peak amplitude, 0.5 Hz sine

wave was retested at noise levels of 50 dB, 36 db, and 10 dB SNR. The results of these

simulations, for the filtered data only, are shown in Figure 7.4. It is clear that with 50 dB of

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6

P
o
si

ti
o
n

,
x
 (

m
)

Time, t (s)

Reference 50 dB Noise

36 dB Noise 10 dB Noise

Figure 7.4: The effect of varied signal to noise ratios on the Kalman filter. Note that the 50 dB curve

 and the 36 dB curve lie underneath the reference curve in most places.

196

noise and 36 dB of noise, the filtered data almost perfectly follows the reference 0.5 Hz sine

wave. However, at 10 dB of noise, the noise level is sufficient that it is difficult for the filter

to reconstruct the original waveform. This can be seen particularly well around the peaks

and valleys of the sine wave.

Finally, the filter was tested against real human motion data, using the Cornell Activity

Dataset 60 (CAD 60) (Sung et al., 2011). Testing against this dataset generates far too many

data sequences to show here, therefore two selected curves are shown to illustrate what

works well, and what doesn’t. The first data sequence is the z-axis of the right hand of the

random movement sequence of person 1 from the CAD 60 dataset, shown in Figure 7.5.

This sequence has relatively large movement (about a 1 m range), as well as large sections

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60

P
o
si

ti
o
n

,
z,

 (
m

)

Time, t (s)

Filtered

Raw

Figure 7.5: The raw z-position (black) and filtered z-position (gray) of the right hand of person 1,

random motion sequence, from the CAD 60 dataset.

197

where tracking is lost and the filter must estimate the joint position. It can be seen that, in

general, the filtered data follows the raw data well; however, there is some overshoot on

direction changes, as can be seen at 𝑡 = 9 s. In addition, the filter performance after tracking

is lost is mixed. When tracking is lost at 𝑡 = 34 s, the filter quickly starts producing invalid

data. However, when the tracking is lost at 𝑡 = 55 s, the filter maintains a reasonable

estimate for almost a full second.

The second selected data sequence is the y-position of person 1, random motion, from

the CAD 60 dataset. This data is relatively static, with few missing data points. It can be

seen from Figure 7.6 that the filter very closely follows the movement of the raw data. In

fact, for a position this static, it would be preferable for the filter to remove more motion

noise from the raw data; but this filtering power was lost in reducing the filter lag.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

P
o

si
ti

o
n

,
y
,
(m

)

Time, t (s)

Filtered

Raw

Figure 7.6: The raw y-position (black) and filtered y-position (gray) of the head of person 1, random

motion sequence, from the CAD 60 dataset.

198

7.5.2 Joint Orientation Algorithm

To test the consistency of the joint orientation algorithm with the algorithm in the

Kinect v1 SDK, joint orientations were generated with both algorithms using known

skeletons and compared. This comparison was done by calculating the angle between the 𝒙,

𝒚, and 𝒛 vectors of each orientation matrix. The first set of skeletons that was used for the

comparison was a set of 10,000 skeletons generated using a uniform pseudo-random number

generator, where each component of each joint position was pseudo-randomly generated

within a range of -3 to 3 m. From this data set, the average angular difference for each

orientation vector was computed. As most of the angular differences are quite small, the

number of “incorrect” orientations was also counted, with an “incorrect” orientation being

any orientation that had an error greater than 0.5°. Based on this random data, the average 𝒚

vector error for all joints was less than 0.000005°, with no “incorrect” orientations in the y-

direction. This indicates that the joint orientation algorithm is nearly identically replicating

the one known constraint of the joint orientations – that the y-axis of the orientation points

from the previous joint to the current. With it known that there is no error in the y-axis, the

x-axis and z-axis must be constrained to a single plane of possibilities, and thus the angular

difference of the 𝒙 vector and the angular difference of the 𝒛 vector must be the same for a

given joint. Therefore, going forward, the vector of difference will not be specified, as it

could equally refer to the 𝒙 or 𝒛 vector.

The average difference and number of ‘incorrect” orientations are listed in Table 7.4.

Note that only the joints that are available in the Kinect v1 were simulated, as those are the

only ones for which a joint for comparison can be calculated. It can be seen that only the

joints on the arm (elbow, wrist, and hand, both left and right) show any “incorrect” joints and

199

that the average difference on the remaining joints is small enough to be insignificant. Even

with the occasional error in the arm joints, they still are close enough to be considered the

same orientation in greater than 99.8% of cases. Furthermore, it should be noted that the

“incorrect” joints in the wrist and hand only occur due to an incorrect calculation in the wrist

being propagated down the joint hierarchy.

However, the vast majority of the skeletons created by the pseudo-random skeleton

generating process are not possible for a human to create. Therefore, the same tests were

repeated using the entire CAD 60 dataset for the input skeletons, which resulted in 84,299

total tested skeletons (Sung et al., 2011). This requires a slight remapping of joints, however,

as the CAD 60 dataset was acquired using OpenNI instead of the official Kinect v1 SDK.

Joint Average Difference

(degrees)

Number of

“incorrect” out of

10,000 trials (-)

Hip Center 0.000003 0

Spine 0.000002 0

Shoulder Center 0.000002 0

Head 0.000003 0

Shoulder Left 0.000002 0

Elbow Left 0.073947 13

Wrist Left 0.073574 13

Hand Left 0.075711 13

Shoulder Right 0.000003 0

Elbow Right 0.043858 6

Wrist Right 0.043691 6

Hand Right 0.043219 6

Hip Left 0.000003 0

Knee Left 0.000003 0

Ankle Left 0.000003 0

Foot Left 0.000003 0

Hip Right 0.000003 0

Knee Right 0.000004 0

Ankle Right 0.000003 0

Foot Right 0.000003 0

Table 7.4: Comparison of the Kinect v1 SDK’s joint orientation algorithm with

the KVR system joint orientation algorithm using pseudo-random skeletons.

200

First, a hip center joint was artificially created, using the center point between the left hip and

right hip. Second, the hand joints in the CAD 60 data were used as the wrist joints, and the

foot joints were used as the ankle joints. This meant that the hands and feet orientations were

not calculated. The results of this test is summarized in Table 7.5. Like the pseudo-random

data, no significant differences were found between the Kinect v1 SDK algorithm and the

KVR system’s algorithm for the z-axis, thus only the difference on the x-axis is presented

(which is identical to the difference on the z-axis). It can been seen from the data, that the

occasional “incorrect” orientation in the elbow joints again occurs. However, there is also

one “incorrect” orientation that occurs in the left knee which was not seen in the pseudo-

random data. This “incorrect” orientation propagates to the ankle orientation, and would

Joint Average Difference

(degrees)

Number of

“incorrect” out of

84,299 trials (-)

Hip Center 0.000006 0

Spine 0.000001 0

Shoulder Center 0.000001 0

Head 0.000001 0

Shoulder Left 0.000001 0

Elbow Left 0.000447 1

Wrist Left 0.000456 1

Hand Left N/A N/A

Shoulder Right 0.000001 0

Elbow Right 0.027905 44

Wrist Right 0.027177 44

Hand Right N/A N/A

Hip Left 0.000006 0

Knee Left 0.000043 1

Ankle Left 0.000059 1

Foot Left N/A N/A

Hip Right 0.000006 0

Knee Right 0.000001 0

Ankle Right 0.000002 0

Foot Right N/A N/A

Table 7.5: Comparison of the Kinect v1 SDK’s joint orientation algorithm with

the KVR system joint orientation algorithm using the CAD 60 dataset.

201

propagate to the foot, had it been tracked. However, even given that, on the real data, greater

than 99.94% of all skeletons produce correct orientations for all joints. One interesting item

of note, all the “incorrect” orientations occurred on data from person 2 in the CAD 60

dataset. At this point, it is unclear if this was just coincidence, of if there is something about

the movements of person 2 or the way person 2 was tracked that contributed to the

occurrence of the “incorrect” joint orientations.

7.5.3 Gesture Recognition

To validate the gesture recognition in the KVR system, the gestures were tested using

the Microsoft Research Cambridge-12 (MSRC-12) gesture dataset (Fothergill et al., 2012).

The skeleton sequence from this dataset was transmitted to the KVR system via a VRPN

server to the networked Kinect interface that KVR provides. Since the KVR system

currently only supports recognition of a single gesture, monitoring a single joint, and many of

the gestures in the MSRC-12 dataset involve multiple joints, it was decided to test the gesture

recognition on the “Change Weapon” gesture from the MSRC-12 dataset.

To train the gesture, the first two repetitions of the gesture from the first five people

instructed with images and text were used (a total of ten training sets). Only ten training sets

were used to mimic a realistic training size that a KVR user would train when making a

custom CAVE application, and the images and text instructed dataset was selected from

Fothergill et al. (2012), who indicate that this method of training provides the best coverage.

The gesture recognition was then tested against all ten repetitions of each of the five

remaining people for the “Change Weapon” gesture. In this test, the gesture was correctly

recognized 86% of the time. However, there was also an average of 3.4 spurious or duplicate

recognitions per sequence. Most often, the system recognized a single gesture twice due to

202

the probability going above the threshold twice in rapid succession. This indicates that fine-

tuning of the threshold may be able to reduce the spurious detections.

Additionally, the gesture recognizer was tested against all 10 repetitions of the “Start

System” gesture from the MSRC-12 dataset to determine the likelihood of a false detection

during non-gesture movements. From this testing, an average of 3.6 false detections were

detected, per sequence. It is interesting to note, however, that over 66% of all the false

detections occurred during a single sequence, indicating that variability in the way both

gestures, and non-gestures are performed between people may have a significant impact on

the quality of detection. Therefore, it is recommended that when using gesture recognition in

virtual reality, that the gesture training be done, at least in part, on the intended system user

whenever possible.

Finally, it should be noted that, during the testing, it was observed that the quality of the

recognition is heavily dependent on how the training is done. In particular, defining when a

gesture starts and stops on the training data had a significant impact on the quality of the

recognition. Therefore, it is recommended that the user records the training data with an

interactive playback system (such as the Kinect Studio software provided with the official

Kinect SDK) and experiment with training the gesture with multiple different start and stop

positions to determine which ones work best (Microsoft, n.d.-g).

7.6 Conclusions

Using the Kinect sensor in a CAVE-style virtual environment has its challenges – there

are few good places to put the Kinect sensors, multiple Kinects are often required for

tracking, and integrating the Kinect’s user interaction systems with VR applications can be

difficult. However, the potential to provide unencumbered full body tracking has made the

203

Kinect sensor popular in VR anyway. This paper has presented the Kinect with Virtual

Reality system, a VRPN interface to abstract the challenges of using Kinect’s in CAVEs

from the details of implementing a VR application. As has been shown, this system

successfully integrates skeleton filtering, the merging of skeletons from multiple Kinect

sensors, voice recognition, and gesture recognition. Additionally, for what is believed to be

the first time publically, an algorithm to calculate joint orientations from Kinect joint

positions, that is logically consistent with the Kinect v1 method, has been demonstrated.

While this system has room for improvement, the open source nature of the system

means that users can modify it to fit their own needs. Additionally, developers of virtual

reality applications can use the system as it stands, and as improvements to the KVR system

are made, they will be able to see those improvements in their VR applications without

having to change a single line of code. Finally, this software system has been made open

source with the hope that other researchers will build upon the foundations herein. Many of

the pieces this system works to integrate into virtual reality, such as sensor filtering,

predictive tracking, and gesture recognition, are research topics unto themselves. It is hoped

that researchers with specific expertise in those areas will contribute to the continued

improvement of this software, allowing them to provide their achievements to a wider

audience, and also allowing those with expertise in virtual reality to focus on improving user

interaction within VR, instead of building the prerequisite mechanics behind the interaction.

204

CHAPTER 8:

A PROPOSED SYSTEM FOR INTERACTIVE VISUALIZATION OF

VOLUMETRIC MULTIPHASE FLOW DATA IN VIRTUAL REALITY

In this chapter, objective five of this research is addressed by proposing a system to

visualize and interact with multiphase flow data in virtual reality. While the implementation

and evaluation of this system is beyond the scope of this dissertation, this chapter is

important because it provides the overarching vision of what can be achieved using the tools

and techniques developed throughout this research. Note that, while this system has not fully

been implemented, pieces of it have been realized as test cases, and everything that is

proposed here is fully achievable with current technology.

8.1 Abstract

As the amount of three-dimensional multiphase flow data that can be collected grows,

the ability to visualize it effectively becomes increasingly critical (Hansen and Johnson,

2005). While a plethora of tools exist to visualize multiphase flow measurements on

standard computer screens, there are relatively few that leverage the third dimension

provided by virtual reality. Additionally, many previous visualization methods have high

barriers to use in the real world because of challenging user interfaces and the encumbrances

upon the user required to achieve tracking. This paper presents one vision of how to leverage

the benefits of virtual reality, and overcome its challenges, in order to provide researchers

with a better tool for visualizing multiphase flow data.

205

8.2 Introduction

Since the early days of virtual reality (VR), one of the active areas of research has been

the interactive visualization of fluid flow data in virtual environments (Bryson and Levit,

1992). Virtual reality is particularly useful in flow visualization because it allows the three-

dimensional structures of the flow to be visualized without reducing the data to a two-

dimensional rendering. It also has advantages over the visual observation of real flows

because it allows users to see things that are not visible to the naked eye (such as the inside

of opaque flows), and the users presence does not disturb the flow in question. However,

much of the visualization of flows in virtual reality has been done using computationally

generated data from flow simulations (Duncan and Vance, 2007; Hansen and Johnson, 2005).

There is still a need for systems designed for the visualization of experimentally obtained

flow data.

One of the main challenges in designing such a system is the wide variety in

measurements that can be obtained of a flow. Magnetic resonance imaging (MRI), X-ray

computed tomography (CT), ultrasonic tomography, electrical impedance tomography (EIT),

particle image velocimetry, and particle tracking velocimetry, to name a few, all produce

slightly different measurements of a fluid flow and thus all have slightly different

requirements for visualization (Chaouki et al., 1997; van Ommen and Mudde, 2008).

However, the tomographic techniques (MRI, CT, EIT, and ultrasonic tomography) all

produce a three-dimensional scalar volume of an individual property of the flow. For

example, CT produces a volumetric dataset where each volume element (voxel) corresponds

to the time-averaged density of the flow at that location (Heindel, 2011). Leveraging this

data similarity, this paper proposes a virtual reality application dedicated to the visualization

206

of volumetric multiphase fluid flow data. Specifically, it will focus on X-ray computed

tomography data from the X-ray Flow Visualization (XFloViz) facility at Iowa State

University (Heindel et al., 2008); however, the data commonality should provide for

applicability beyond just X-ray CT measurements.

Experimental volumetric data is not unique to the area of flow measurement.

Volumetric measurements are commonly found in medical imaging in the form of MRI and

CT scans. There have been many attempts to visualize these data in virtual reality, which

provides a good foundation for the work herein (Haubner et al., 1997; He et al., 2007; Noon,

2012). However, it should be noted that there is one key difference between medical

volumes and fluid flow volumes. In medical imaging, there are distinct organs with

relatively sharp transitions. In flow data, however, the data are typically time averaged,

resulting in relatively diffuse transitions and few sharp features. The result of this is that

segmentation (the defining of object boundaries), which is critical in medical visualization, is

not of much use in the visualization of fluid flows. Conversely, the use of a region of interest

(ROI) to selectively remove data from the visualization takes on greater importance in flow

visualization.

8.3 Proposed System

He et al. (He et al., 2007) identified four basic interaction tasks required for volume

visualization in virtual reality:

 Volume object transformation (rotation, translation, etc.)

 Volume exploration (virtual tools such as clipping planes and segmentation)

 Transfer function specification

 System control (opening data files, closing the software, etc.)

207

Based on these tasks, five critical tasks for flow visualization in virtual reality have been

defined:

 Viewpoint manipulation

 Viewpoint sharing

 Region of interest selection

 Transfer function specification

 System control

Each of these five tasks will be considering in the following sections.

However, prior to the discussion of per-task implementations, the hardware to be used

must first be specified, as the capabilities of the hardware will inform the trade-offs required

in implementing the tasks. First, the virtual environment selected to be used is the

Multimodal Environment Testbed and Laboratory (METaL) at Iowa State University. This

system was selected because it is a CAVE-style system which provides better collaboration

between users than do head mounted display (HMD) systems. Additionally, while this

system has a higher up-front cost than do HMD systems, the operating costs are low enough

(about $1 per hour) that users can be free to explore data without worrying about minimizing

their time in the environment to limit costs. To provide user interaction, two systems are

available. Head tracking and a tracked wand (a modified Nintendo Wii Remote) are

provided using an Advanced Realtime Tracking (ART) optical marker-based tracking

system. Four Kinect sensors (two Kinect v1 sensor and two Kinect v2 sensors) are also

available to provide full-body markerless tracking of the users via the Kinect with VR server

(Chapter 7). In this study, the ART head tracking will be used to provide high-precision head

tracking to reduce the likelihood of cybersickness. However, the Kinect sensors will be used

208

instead of the wand to provide unencumbered fully body user interaction, at the cost of

reduced precision.

The rendering of the volumetric data in this system will be done using an outside-in

method. That is, the user stands in the virtual environment and looks into the rendered data

from the outside, much as the user would if the user was looking at a real flow inside a

transparent containment vessel. The data will be rendered using standard direct volume

rendering methods. In particular, the volume will be rendered using GPU (graphics

processing unit) volume ray casting. This limits the system to rendering datasets which are

smaller than the amount of memory available on the GPU; however, given the amount of

memory available on modern graphics cards, this is only expected to be a serious limitation

in the largest of the available datasets.

8.3.1 Viewpoint Manipulation

Effective viewpoint manipulation is one of the most important techniques for the

visualization of multiphase flow data, as it assists the user in understanding the complex

spatial relationships within the data (Bowman and McMahan, 2007). The most basic, and

most important, way to achieve this is through the head tracking of the user, and

corresponding changes in viewpoint. Research has shown this method to be efficient,

natural, and leads to a higher spatial knowledge in the user (Bowman et al., 2004). However,

it is not possible for the user to view the data from all angles using head tracking alone.

Therefore, a second method of viewpoint manipulation is necessary. This is provided in the

ability to translate, rotate, and scale the visualization. If all three manipulations are afforded

for, it would require nine degrees of freedom (DOF) in manipulation; however, in the

visualization of multiphase flow data, cases where the user would want to scale the data

209

anisotropically are rare. Therefore, only isotropic scaling is provided to the user, reducing

the manipulation to seven degrees of freedom. Complicating these considerations further is

the fact that, while the Kinect sensor’s joint positions are relatively accurate (albeit noisy),

the joint orientation information is unreliable. Therefore, each of the user’s hands should be

treated as an independent 3-DOF tracked point.

One method that has shown to be efficient for translation and rotation using two 3-DOF

tracked hands is the handle bar technique. In this technique, the virtual object is manipulated

as if it is rigidly attached to a bicycle handlebar, and each end of the bar is grabbed by the

user’s hands (Bossavit et al., 2014). This technique particularly excels at complex rotations.

However, it has been shown to provide poorer results in translation tasks due to the

requirement to use both hands simultaneously. Therefore, for manipulating the multiphase

flow visualization object, a modified handle bar technique was selected. In this technique,

rotation and scale are combined in the handle bar rotation, but there is no translation

provided. To select the object, the user moves both hands inside a virtual bounding box

around the visualization, and then closes both hands. As the user’s hands move, the rotation

of the object is adjusted based off the angle from where the handle bar was when the user’s

hands first closed. The scale is then computed based off the ratio between the distance

between the users hands at a given time and the distance between the hands when they were

first closed.

Since this modified handle bar method does not provide a method for the user to

translate the visualization, a separate method must be provided. The ability to translate the

visualization is provided by a single handed interaction. When only one of the user’s hands

is closed inside the bounding box of the visualization, the visualization becomes virtually

210

attached to the user’s hand until the hand is reopened or the other hand is closed to engage

the handle bar rotation-scale interaction.

Finally, there are a few pit falls in this technique. First, for logical consistency, the

bounding box of the volume must scale with the scaling of the visualization. However, if the

user scales the visualization extremely small, the bounding box may be hard to re-enter with

both hands to scale the visualization larger again. Therefore, there is a minimum size the

bounding box will scale to, even if the visualization is scaled small. The second possible

pitfall occurs if a user manipulates an object very near to one of the walls of the CAVE, and

due to tracker error, it gets stuck behind the wall where the user cannot interact with it. This

could be accounted for by allowing the user to move in virtual space, instead of just moving

in real space. While various flying metaphors exist to do this, users tend to use physical

motion less when virtual motion techniques are available (Bowman et al., 2004; Mine et al.,

1997). This in turn would reduce the spatial understanding advantages provided by head

tracking the user. Considering that this system is intended to primarily work as an outside-in

visualization device, it was decided not to include any method for virtual motion. If a

visualization gets into an unmanipulable position, it can be reset to its original position using

a reset command in the menu (Section 8.3.5).

8.3.2 Region of Interest Selection

To allow the user to selectively remove information from the visualization, a method of

changing the ROI of the volume must be provided. To do this, a widget is provided on

screen for each of the six required clipping planes to define a rectangular prism ROI. This

widget consists of a semi-transparent plane with a large sphere at the end of the normal

vector of the plane. When a user’s hand intersects the sphere, it changes from gray to green

211

to provide a visual indication that it has been intersected. The plane is then selected by the

user’s hand closing while intersecting it. From there, the movement of the hand translates

the clipping plane in or out along its axis until the user’s hand re-opens. The ROI widgets

can be shown or hidden using either voice commands, or by selecting a menu item.

8.3.3 Transfer Function Specification

The specification of transfer functions is one of the most challenging tasks to accomplish

in virtual reality, as it requires a great deal of precision. Studies on the related technique of

windowing have found it to be less efficient to do using non-contact interfaces as with a

traditional keyboard and mouse interface (Juhnke et al., 2013). To provide the required

interaction, two possible methods are made available.

The first method of adjusting the transfer function is using a touchscreen (Duncan and

Vance, 2007; Kim et al., 2009; Krum et al., 2014). The use of a touchscreen helps improve

accuracy by reducing the degrees of freedom of the movement (Bowman et al., 2004).

However, as viewpoint manipulation requires both of the user’s hands, it does not leave the

user with a hand to hold the touchscreen when it is not in use. Therefore, a stand is provided

to the user for the touchscreen. This is not an optimal solution, as it can occlude certain

viewpoints and adds a physical obstacle the user must avoid. However, this solution has the

potential to be improved through the use of a mobile robot to optimally position the

touchscreen wherever the user needs it (Pavlik et al., 2013).

The second method of manipulating the transfer function increases accuracy by scaling

the manipulation to a large size, which is more compatible with the precision of movement of

a user’s arms in VR. To do this, a grayscale bar is presented on the floor of the CAVE, to

correspond to the gray levels in the volume. To manipulate the color and transparency that

212

maps to that point, a large spike (resembling a lawn dart) is used for each color mapping

position. On top of this spike is a colored sphere, representing the color that point should be

mapped to. When the user’s hand intersects this sphere, four large sliders appear (for red,

green, blue, and opacity), which the user can then use to adjust the color and transparency.

To put a new point in the transfer function, a spike is provided off the grayscale bar, which

the user can pick up and place where they desire on the bar. To remove a point from the

transfer function, the spike is simply moved off the bar. This transfer function selection tool

can be selectively shown or hidden from the system menu.

8.3.4 Viewpoint Sharing

Ultimately, the goal of visualizing multiphase flow data in virtual reality is to find

unique and interesting features in the flow, which the user will likely want to share with other

researchers. If there is another researcher with the user while they are interacting with the

data in VR, this can be accommodated in the CAVE by simply having the second researcher

stand near the head tracked user. However, this still doesn’t give the user the exact

perspective, nor does it help communicate with users who are not physically present during

the visualization. To accommodate this, two options are provided, both in the menu system

(Section 8.3.5) and via voice command. The first option is to freeze the head tracking. By

freezing the head tracking temporarily, non-head tracked users can swap places with the head

tracked user and see exactly what they were seeing. While this doesn’t provide the

secondary users with the spatial understanding advantage of head tracking, it does allow

them to see exactly what the head tracked user was seeing.

The second option provided is to save a screenshot of what the user is seeing. This

allows the user to save a visual record of what they were seeing, that can then be used to

213

share with colleagues. To simplify interaction, these screenshots are saved, with sequential

numbering, in a location defined prior to starting the visualization. After completing the

visualization, the user can sort and rename screenshots using the traditional desktop interface.

8.3.5 System Control

The final interaction method for the system is the system control. To provide system

control in virtual reality, flat menus are often provided that can be interacted with either

using direct manipulation or a ray cast from a wand (Bowman et al., 2004; Mine et al., 1997).

However, these interfaces often appear to be a forcing of the traditional windows, icons,

menus, and pointer (WIMP) system on virtual reality. Based on Fitts’ law, the ideal menu

system would place all the menu items in a sphere around the user’s dominant arm, thereby

making the distance to any menu item the same (Fitts, 1954). However, in practice, there is

usually no way for the system to know which of the user’s arms is dominant, and a fully

spherical menu would occlude the rest of the environment.

Based on the drawbacks of previous VR menu systems and Fitts’ law, a menu system is

proposed that both minimizes user effort, and utilizes the three-dimensional capabilities of

virtual reality. This system has been named the “halo menu.” In this system, a ring of three-

dimensional icons floats centered around the use’rs head. This keeps the distance to each

menu item roughly the same distance from the user, and keeps the menu from occluding the

virtual environment. Additionally, the ring can be moved up or down by the user, allowing it

to be more or less in view as desired. Interaction with the menu is achieved by intersecting

the user’s hand with a virtual bounding box around each icon. When this is done, the icon

changes from grayscale to color and, if there is a menu associated with the item, it is

automatically lowered. To select an item from the menu, the user intersects it with a hand

214

and then grabs the item. In addition to the ability for the user to control the menus using

hand grabs, each icon has text underneath it. The system implements voice recognition so

the user can select the item by simply speaking the name of the item to be selected.

8.4 Conclusions

In this paper, a system to interact with experimentally obtained volumetric data of

multiphase flows was proposed. This system is based on principles from medical volume

visualization systems, as well as research into direct interaction with virtual reality.

However, it has some unique features to increase adoption in the multiphase flow research

community. Microsoft Kinect sensors were selected as the primary mode of interaction, as

they provide no encumbrances that may reduce a user’s desire to use the system. The user’s

viewpoint can naturally be changed either using the CAVE’s head tracking, or via a modified

handle bar manipulation method. The ability to control the ROI of the volume has been

made available via clipping plane widgets, and transfer function control is available via both

a touchscreen interface, and a system of large-scale spikes in the virtual environment. To

assist the user in sharing unique flow features, the ability to freeze the head tracking to show

locally present users features of interest is provided. The ability to take screenshots from the

head tracked user’s point of view is also provided so remote users can be provided

visualization easily. Finally, a unique system of menus has been proposed to leverage the

three-dimensionality of VR, minimize occlusion of the virtual environment by the menu, and

allow natural user interaction with the system control functions.

Going forward, user studies of this system will be required to identify what components

work well for multiphase flow researchers, and what components still need work.

Additionally, studies need to be conducted to examine the barriers to use that exist for virtual

215

reality in multiphase flow research. Bowman and McMahan (Bowman and McMahan, 2007)

once stated “if all that these technologies provide for the user are oohs and ahs and a unique

user experience, it would be difficult to justify the expense and development complexity that

immersive VR requires.” It is worth adding to that sentiment: it doesn’t matter how much

better a VR visualization is, if no one is willing to use it.

216

CHAPTER 9:

CONCLUSIONS AND FUTURE WORK

Throughout this dissertation, work has been presented intended to advance the current

state of multiphase flow characterization by integrating the fields of noninvasive X-ray

imaging and virtual reality. Towards this end, five objectives were laid out in Section 1.2 –

increasing the frame rate of X-ray stereography, determining the sensitivity of X-ray

computed tomography to changes in acquisition parameters, improving tomographic

reconstruction from limited data, advancing natural user interaction with virtual reality, and

proposing a system that visualizes the X-ray data in virtual reality in a natural way. The

work done to achieve these goals is summarized in Section 9.1. Finally, every piece of

research inevitably results in as many questions as answers. A number of possible future

paths that have arisen from this research are presented in Section 9.2.

9.1 Conclusions

The first objective of this research was to show that the frame rate of X-ray imaging

could be increased to allow for high-speed X-ray imaging. This was addressed in Chapter 4

of this dissertation, which demonstrated a proof of concept system for high-speed radiograph

acquisition. It was shown to produce 1024 × 1024 radiographs at 1000 FPS, with the

potential to run at even higher speeds. In addition to the increased speed, the faster shutter

speed was able to achieve a high-quality stop motion effect, eliminating the motion blur

found with high velocity flows measured using an older camera system. This imaging clarity

was shown to be extremely beneficial for doing X-ray particle tracking, as the particle

217

recognition rates increase to 99.98%, well beyond the 70–90% of previous studies.

Furthermore, while camera synchronization was not tested due to the lack of a second

camera, the camera synchronization is nearly ubiquitous on high-speed cameras now, and it

would be trivial to implement should a second camera become available.

Towards the second objective of this research, determining the sensitivity of X-ray

computed tomography measurements to changes in acquisition parameters, Chapter 5

presents a study of the sensitivity of acquisition parameters on CTs of a gas-solid flow. This

study found that, in general, raw CT values are an unreliable measurement, and are changed

significantly when detector exposure time, X-ray tube voltage, or X-ray tube current is

changed. However, by calibrating the system using the gas holdup calculation (which is

standard practice in multiphase flow measurement) the results are insensitive to acquisition

parameters – provided sufficient X-ray energy is used so that the image is neither grossly

under or over exposed. Additionally, it has been shown that while large changes to the center

of rotation used in reconstruction can cause significant geometric distortions in the image,

those distortions do not appreciably change the average results.

The third objective of this research was to improve tomography reconstruction to allow

for the generation of time-varying three-dimensional datasets. While this would be a trivial

task if an acquisition system was available that was capable of imaging at 360 different

angles around the object in a fraction of a second, such a system is not available. Therefore,

Chapter 6 of this research focused on using two time-synchronized radiographs to reconstruct

an approximated tomographic slice. Two algorithms were presented to do the approximate

CT reconstruction, a locally axisymmetric filtered backprojection algorithm and a

simultaneous algebraic reconstruction technique using a priori information. The locally

218

axisymmetric filtered backprojection algorithm was able to nearly perfectly match a full CT

reconstruction for scans with a small number of distinct features, that were axisymmetric,

such as the sphere phantom. Additionally, the algorithm had some success at identifying

features within a dynamic fluidized bed. However, the requirement to identify specific

features prior to reconstruction limits this algorithm’s suitability in cases where distinct

features do not exist, or are too numerous to manually identify and reconstruct. Conversely,

the simultaneous algebraic reconstruction technique with a priori information did not require

the identification of individual features; however, it was not as successful at reconstructing

the geometry of the objects. Additionally, it was found that noise in the projections created

significant artifacts in the slice reconstructions. Finally, while neither of these algorithms

was tested on time sequences of data, the extension to them is trivial.

Next, the fourth objective, advancing natural user interaction in virtual reality, was

addressed in Chapter 7. In order to improve user interaction, a flexible Kinect server was

built that provides encumbrance free user interaction with multiphase flow data and

accelerates the development of natural user interaction in other applications. This system

specifically targeted CAVE-style virtual environments, which have more challenges using

Kinect sensors. To handle these challenges, the system integrated voice recognition, a

skeleton filtering and merging algorithm, a method for calculating joint orientations from

joint positions, and basic gesture recognition. All of the information collected from the

multiple Kinects it supports is merged, and then abstracted using VRPN. As a result, virtual

environment designers can achieve the same performance as if the Kinect was hard-coded

into the application, without any of the work required to hard code Kinect support.

219

Finally, objective five, proposing a system to use virtual reality to aid in the

characterization of multiphase flows, was handled in Chapter 8. This chapter proposes using

an outside-in viewing strategy to visualize CT scans of multiphase flows. The most

important component of the interaction, changing viewpoints, can then be handled by the

physical motion of the user around the object, a method that has been shown to improve user

immersion. The ability to manipulate the size, position, and orientation of the dataset is also

provided through one-handed translation and a two-handed combined scale-rotate method,

both using the Kinect sensor and the KVR system presented in Chapter 7 for unencumbered

interaction. Finally, a novel menu system, accessible by both voice and gestures is presented

to maximize the availability of system functions, while minimizing its intrusiveness into the

visualization.

9.2 Future Work

A researcher’s work is never completely finished, and this work is no different. For all

of the work presented herein, there are more questions that remain to be answered. Some of

these are discussed below.

With regards to high-speed X-ray radiography, the future work has already begun. Since

the original testing of high-speed imaging with X-rays, a new Photron AX50 high-speed

camera has been purchased that will be dedicated to high-speed X-ray imaging. However, as

this camera is being broken in, there are still numerous questions that remain. One of the key

questions is what is the decay time of the phosphor in the X-ray image intensifier, can this

effect be compensated for, and how? Additionally, initial testing seems to indicate that the

intensifier noise is a more significant issue with the high-speed camera than it was at lower

220

speeds. This noise needs to be quantified, and methods for handling it need to be

investigated.

When it comes to the sensitivity of X-ray computed tomography scans to changes in

X-ray imaging parameters, most of the questions for the X-ray Flow Visualization facility

have been answered. However, this is only a single system. To really understand the

sensitivity and reliability of X-ray CT, the same tests must be repeated across multiple

systems. Additionally, there is a potential error source that was not examined in this study –

dynamic bias error. Dynamic bias error is a misestimation of the gas-holdup of a multiphase

system due to the movement of the flow during the scan. This error has been shown to be

non-negligible in γ-ray computed tomography (which typically has longer acquisition times

than X-ray CT), but little investigation has been done on X-ray computed tomography

(Andersson et al., 2012).

With regards to the approximate CT reconstruction algorithm, while this initial work has

shown the viability of approximating a CT reconstruction from two time-synchronized

radiographs, more work is still needed to improve the system. First, there are still a variety

of possible reconstruction algorithms to analyze for their suitability. Second, while the

system works on systems with relatively few features, the system still needs more work to

handle systems of numerous features, such as highly turbulent air-water bubbling flows.

Finally, the foundation that has been laid for the parallel-beam geometry needs to be

extended to fan-beam and cone-beam systems to obtain more accurate size measurements.

Shifting focus to virtual reality, the work on the Kinect with VR system will continue.

In particular, the skeleton filtering and gesture recognition need continued attention. With

regards to filtering, while there are other possible state transition models to try, one of the

221

more promising ideas is to extend the concept of velocity dependent filtering from the 1€

Filter to Kalman filtering by increasing the assumed process noise at high velocities, and

decreasing it during times of low process noise (Casiez et al., 2012). Additionally, the

possibility exists to use the assumption that the user’s bone lengths are constant (which

should be a reasonable assumption) to improve the filtering. However, doing so will likely

involve some fairly computationally intensive non-linear Bayesian statistics. Finally, with

regards to gesture recognition, the current recognizer is serviceable for some gestures, but

fails on others. The use of a Hidden Markov Model based recognizer is still believed to be a

good choice. However, it is suspected that a better cluster algorithm than k-means should be

used to discretize the data. Additionally, there exists the potential to improve the HMM by

using a different system model. In voice recognition, time-decaying states have shown

promise, and such a technique could also be applicable to gesture recognition (Rabiner,

1989). Another possibility is to leverage the fact that most gestures in VR use body motion

instead of a set body-pose, and do the recognition on the velocity of the joints instead of the

position.

With regards to the proposed system for visualizing CT data in virtual reality, the most

important next step is to test the system with actual multiphase flow researchers and examine

the usability of the system and the likelihood researchers would actually use it. Additionally,

as the approximate CT reconstruction algorithms slowly push the technology towards time-

sequences of volumetric data, the ability to render 4D information will become more

important. Furthermore, the ability to visualize computational fluid dynamics simulation

results with the experimental results in VR could also be implemented to provide a powerful

tool for comparing simulations to real data. Finally, with the rapid advances being made in

222

head mounted displays, both for virtual reality and augmented reality, bringing this sort of

visualization to large numbers of researchers may soon be possible. Therefore, finding ways

to adapt the interactions from the CAVE, to a seated HMD system will be important.

Finally, this research has inspired the desire to investigate a few broad areas of research

more thoroughly. First, while X-rays (both radiography and CT) are an excellent

noninvasive method of characterizing multiphase flows, the technique is limited in some

areas, particularly, when two of the phases of the flow have similar densities. One of the

emerging tools for noninvasive flow imaging that has the potential to remedy this limitation

is magnetic resonance imaging. The biggest challenge with MRI currently, is that nearly all

the systems available are designed for medical use, and thus have a horizontal bore for

imaging. The majority of multiphase flows of interest would require a machine with a

vertical bore. However, should the funding be available to build a custom, vertical bore MRI

machine for flow imaging, it has the potential to make enormous advances in multiphase

flow characterization.

The second area of future work is in collaboration. As was found throughout this

research, there are numerous research groups with great tools and expertise in flow

measurement, but they tend to have poor tools for data visualization. There are also

numerous research groups who have fantastic tools and expertise in visualization, but are

often working with just a few sample datasets. The most important thing that can be done

moving forward is to bring these groups together. Multiphase flow characterization will only

be able to reach its maximum potential if both the instrumentation and the visualization of

the flows is maximized. To that end, it is hoped that this dissertation is one step in the right

direction.

223

REFERENCES

Addis, K. A., Hopper, K. D., Iyriboz, T. A., Liu, Y., Wise, S. W., Kasales, C. J., Blebea, J.

S., et al. (2001). CT Angiography: In Vitro Comparison of Five Reconstruction

Methods. American Journal of Roentgenology, 177(5), 1171–1176.

doi:10.2214/ajr.177.5.1771171

Adrian, R. J. (1991). Particle-Imaging Techniques for Experimental Fluid Mechanics. Annual

Review of Fluid Mechanics, 23(1), 261–304. doi:10.1146/annurev.fl.23.010191.001401

Andersen, A. H. (1989). Algebraic Reconstruction in CT from Limited Views. IEEE

Transactions on Medical Imaging, 8(1), 50–55. doi:10.1109/42.20361

Andersen, A. H., and Kak, A. C. (1984). Simultaneous Algebraic Reconstruction Technique

(SART): A Superior Implementation of the ART Algorithm. Ultrasonic Imaging, 6(1),

81–94. doi:10.1016/0161-7346(84)90008-7

Andersson, P., Sundén, E. A., Jacobsson Svärd, S., and Sjöstrand, H. (2012). Correction for

Dynamic Bias Error in Transmission Measurements of Void Fraction. Review of

Scientific Instruments, 83(12), 125110. doi:10.1063/1.4772704

Arons, A. B., and Peppard, M. B. (1965). Einstein’s Proposal of the Photon Concept—A

Translation of the Annalen der Physik Paper of 1905. American Journal of Physics,

33(5), 367–374. doi:10.1119/1.1971542

Azimi, M. (2012). Skeletal Joint Smoothing White Paper. Microsoft Developer Network.

Retrieved June 9, 2017, from https://msdn.microsoft.com/en-us/library/jj131429.aspx

Baxter, B. S., and Sorenson, J. A. (1981). Factors Affecting the Measurement of Size and CT

Number in Computed Tomography. Investigative Radiology, 16(4), 337–341.

Bennett, J., Grout, R., Pébay, P., Roe, D., and Thompson, D. (2009). Numerically Stable,

Single-Pass, Parallel Statistics Algorithms. In 2009 IEEE International Conference on

Cluster Computing and Workshops (pp. 1–8). New Orleans, LA, USA: IEEE.

doi:10.1109/CLUSTR.2009.5289161

Berger, K., Ruhl, K., Schroeder, Y., Bruemmer, C., Scholz, A., and Magnor, M. (2011).

Markerless Motion Capture Using Multiple Color-Depth Sensors. In P. Eisert, J.

Hornegger, and K. Polthier (Eds.), Vision, Modeling, and Visualization (VMV 2011) (pp.

317–324). Berlin, Germany: Eurographics. doi:10.2312/PE/VMV/VMV11/317-324

Bieberle, M., Schleicher, E., Fischer, F., Koch, D., Menz, H.-J., Mayer, H.-G., and Hampel,

U. (2010). Dual-Plane Ultrafast Limited-Angle Electron Beam X-ray Tomography.

Flow Measurement and Instrumentation, 21(3), 233–239.

doi:10.1016/j.flowmeasinst.2009.12.001

Bilderback, D. H., Elleaume, P., and Weckert, E. (2005). Review of Third and Next

Generation Synchrotron Light Sources. Journal of Physics B: Atomic, Molecular and

Optical Physics, 38(9), S773–S797. doi:10.1088/0953-4075/38/9/022

224

Blaimer, M., Breuer, F., Mueller, M., Heidemann, R. M., Griswold, M. A., and Jakob, P. M.

(2004). SMASH, SENSE, PILS, GRAPPA: How to Choose the Optimal Method. Topics

in Magnetic Resonance Imaging, 15(4), 223–236.

doi:10.1097/01.rmr.0000136558.09801.dd

Blinn, J. F. (1977). Models of Light Reflection for Computer Synthesized Pictures. ACM

SIGGRAPH Computer Graphics, 11(2), 192–198. doi:10.1145/965141.563893

Bossavit, B., Marzo, A., Ardaiz, O., De Cerio, L. D., and Pina, A. (2014). Design Choices

and Their Implications for 3D Mid-Air Manipulation Techniques. Presence:

Teleoperators and Virtual Environments, 23(4), 377–392. doi:10.1162/PRES_a_00207

Bottomley, P. A. (1983). Nuclear Magnetic Resonance: Beyond Physical Imaging. IEEE

Spectrum, 20(2), 32–38. doi:10.1109/MSPEC.1983.6369002

Bowman, D. A., Kruijff, E., LaViola, J. J., and Poupyrev, I. (2004). 3D User Interfaces:

Theory and Practice. Boston, MA, USA: Addison-Wesley Professional.

Bowman, D. A., and McMahan, R. P. (2007). Virtual Reality: How Much Immersion Is

Enough? Computer, 40(7), 36–43. doi:10.1109/MC.2007.257

Boyer, C., Duquenne, A.-M., and Wild, G. (2002). Measuring Techniques in Gas–Liquid and

Gas–Liquid–Solid Reactors. Chemical Engineering Science, 57(16), 3185–3215.

doi:10.1016/S0009-2509(02)00193-8

Boyer, C. N., Holland, G. E., and Seely, J. F. (2005). Intense Nanosecond Duration Source of

10–250 keV X rays Suitable for Imaging Projectile-Induced Cavitation in Human

Cadaver Tissue. Review of Scientific Instruments, 76(3), 35109. doi:10.1063/1.1864792

Brooks, F. P. (1999). What’s Real About Virtual Reality? IEEE Computer Graphics and

Applications, 19(6), 16–27. doi:10.1109/38.799723

Brown, R. G., and Hwang, P. Y. C. (1997). Introduction to Random Signals and Applied

Kalman Filtering (3rd ed.). New York, NY, USA: John Wiley & Sons, Inc.

Bryson, S. (1996). Virtual Reality in Scientific Visualization. Communications of the ACM,

39(5), 62–71. doi:10.1145/229459.229467

Bryson, S., and Levit, C. (1992). The Virtual Wind Tunnel. IEEE Computer Graphics and

Applications, 12(4), 25–34. doi:10.1109/38.144824

Budoff, M. J., and Gul, K. (2006). Computed Tomographic Cardiovascular Imaging.

Seminars in Ultrasound, CT, and MRI, 27(1), 32–41. doi:10.1053/j.sult.2005.11.004

Cartz, L. (1995). Nondestructive Testing. Materials Park, OH: ASM International.

Casiez, G., Roussel, N., and Vogel, D. (2012). 1€ Filter: A Simple Speed-Based Low-Pass

Filter for Noisy Input in Interactive Systems. In Proceedings of the 2012 ACM Annual

Conference on Human Factors in Computing Systems - CHI ’12 (pp. 2527–2530).

Austin, TX, USA. doi:10.1145/2207676.2208639

Celebi, S., Aydin, A. S., Temiz, T. T., and Arici, T. (2013). Gesture Recognition Using

Skeleton Data with Weighted Dynamic Time Warping. In 8th International Conference

on Computer Vision Theory and Applications (VISAPP 2013) (pp. 620–625). Barcelona,

Spain.

225

Chaouki, J., Larachi, F., and Duduković, M. P. (1997). Noninvasive Tomographic and

Velocimetric Monitoring of Multiphase Flows. Industrial & Engineering Chemistry

Research, 36(11), 4476–4503. doi:10.1021/ie970210t

Chen, B., Moreland, J., and Zhang, J. (2011). Human Brain Functional MRI and DTI

Visualization with Virtual Reality. In Proceedings of the ASME 2011 World Conference

on Innovative Virtual Reality (pp. 343–349). Milan, Italy: ASME.

doi:10.1115/WINVR2011-5565

Chotas, H. G., Dobbins, J. T., and Ravin, C. E. (1999). Principles of Digital Radiography

with Large-Area, Electronically Readable Detectors: A Review of the Basics.

Radiology, 210(3), 595–599.

Compton, A. H. (1923). A Quantum Theory of the Scattering of X-rays by Light Elements.

Physical Review, 21(5), 483–502. doi:10.1103/PhysRev.21.483

Cormack, A. M. (1963). Representation of a Function by Its Line Integrals, with Some

Radiological Applications. Journal of Applied Physics, 34(9), 2722–2727.

doi:10.1063/1.1729798

Cormack, A. M. (1964). Representation of a Function by Its Line Integrals, with Some

Radiological Applications. II. Journal of Applied Physics, 35(10), 2908–2913.

doi:10.1063/1.1713127

Cruz-Neira, C., Leigh, J., Papka, M., Barnes, C., Cohen, S. M., Das, S., Engelmann, R., et al.

(1993a). Scientists in Wonderland: A Report on Visualization Applications in the

CAVE Virtual Reality Environment. In Proceedings of IEEE 1993 Symposium on

Research Frontiers in Virtual Reality (pp. 59–66). San Jose, CA, USA: IEEE.

doi:10.1109/VRAIS.1993.378262

Cruz-Neira, C., Sandin, D. J., and DeFanti, T. A. (1993b). Surround-Screen Projection-Based

Virtual Reality: The Design and Implementation of the CAVE. In Proceedings of the

20th Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH ’93) (pp. 135–142). ACM. doi:10.1145/166117.166134

Demiralp, C., Jackson, C. D., Karelitz, D. B., Zhang, S., and Laidlaw, D. H. (2006). CAVE

and Fishtank Virtual-Reality Displays: A Qualitative and Quantitative Comparison.

IEEE Transactions on Visualization and Computer Graphics, 12(3), 323–330.

doi:10.1109/TVCG.2006.42

Dickin, F. J., Williams, R. A., and Beck, M. S. (1993). Determination of Composition and

Motion of Multicomponent Mixtures in Process Vessels Using Electrical Impedance

Tomography-I. Principles and Process Engineering Applications. Chemical Engineering

Science, 48(10), 1883–1897. doi:10.1016/0009-2509(93)80358-W

Doering, E. R. (1992). Three-Dimensional Flaw Reconstruction Using a Real-Time X-ray

Imaging System. Iowa State University.

Drake, J. B. (2011). Hydrodynamic Characterization of 3D Fluidized Beds using

Noninvasive Techniques. PhD Dissertation, Mechanical Engineering, Iowa State

University, Ames, IA.

Drake, J. B., and Heindel, T. J. (2011). The Repeatability and Uniformity of 3D Fluidized

Beds. Powder Technology, 213(1–3), 148–154. doi:10.1016/j.powtec.2011.07.027

226

Drake, J. B., and Heindel, T. J. (2012a). Comparisons of Annular Hydrodynamic Structures

in 3D Fluidized Beds Using X-ray Computed Tomography Imaging. ASME Journal of

Fluids Engineering, 134(8), 81305. doi:10.1115/1.4007119

Drake, J. B., and Heindel, T. J. (2012b). Local Time-Average Gas Holdup Comparisons in

Cold Flow Fluidized Beds with Side-Air Injection. Chemical Engineering Science,

68(1), 157–165. doi:10.1016/j.ces.2011.09.023

Drake, J. B., Kenney, A. L., Morgan, T. B., and Heindel, T. J. (2011). Developing Tracer

Particles for X-ray Particle Tracking Velocimetry. In Proceedings of the ASME-JSME-

KSME Joint Fluids Engineering Conference (pp. 2685–2692). Hamamatsu, Shizuoka,

Japan. doi:10.1115/AJK2011-11009

Drake, J. B., Tang, L., and Heindel, T. J. (2009). X-ray Particle Tracking Velocimetry in

Fluidized Beds. In ASME 2009 Fluids Engineering Division Summer Meeting

(FEDSM2009) (p. Paper FEDSM2009-78150). Vail, CO, USA: ASME Press.

doi:10.1115/FEDSM2009-78150

Duncan, T. J., and Vance, J. M. (2007). Development of a Virtual Environment for

Interactive Interrogation of Computational Mixing Data. Journal of Mechanical Design,

129(3), 361–367. doi:10.1115/1.2409314

Ehrichs, E. E., Jaeger, H. M., Karczmar, G. S., Knight, J. B., Kuperman, V. Y., and Nagel, S.

R. (1995). Granular Convection Observed by Magnetic Resonance Imaging. Science,

267(5204), 1632–1634. doi:10.1126/science.267.5204.1632

Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden

heuristischen Gesichtspunkt. Annalen Der Physik, 322(6), 132–148.

doi:10.1002/andp.19053220607

Elsinga, G. E., Scarano, F., Wieneke, B., and Oudheusden, B. W. (2006). Tomographic

Particle Image Velocimetry. Experiments in Fluids, 41(6), 933–947.

doi:10.1007/s00348-006-0212-z

Engel, K., Hadwger, M., Kniss, J., Rezk-Salama, C., and Weiskopf, D. (2006). Real-Time

Volume Graphics. Wellesley, MA, USA: AK Peters Ltd.

Epstein, C. L. (2003). Introduction to the Mathematics of Medical Imaging. Upper Saddle

River, NJ, USA: Pearson Education.

Escudero, D. R., and Heindel, T. J. (2011). Bed Height and Material Density Effects on

Fluidized Bed Hydrodynamics. Chemical Engineering Science, 66(16), 3648–3655.

doi:10.1016/j.ces.2011.04.036

Escudero, D. R., and Heindel, T. J. (2015). Characterizing Jetting in an Acoustic Fluidized

Bed Using X-ray Computed Tomography. Journal of Fluids Engineering, 138(4),

41309. doi:10.1115/1.4031681

Faion, F., Friedberger, S., Zea, A., and Hanebeck, U. D. (2012). Intelligent Sensor-

Scheduling for Multi-Kinect-Tracking. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (pp. 3993–3999). Vilamoura, Algarve, Portugal: IEEE.

doi:10.1109/IROS.2012.6386007

227

Fazel, R., Krumholz, H. M., Wang, Y., Ross, J. S., Chen, J., Ting, H. H., Shah, N. D., et al.

(2009). Exposure to Low-Dose Ionizing Radiation from Medical Imaging Procedures.

New England Journal of Medicine, 361(9), 849–857. doi:10.1056/NEJMoa0901249

Feldkamp, L. A., Davis, L. C., and Kress, J. W. (1984). Practical Cone-Beam Algorithm.

Journal of the Optical Society of America A, 1(6), 612. doi:10.1364/JOSAA.1.000612

Fischer, F., Hoppe, D., Schleicher, E., Mattausch, G., Flaske, H., Bartel, R., and Hampel, U.

(2008). An Ultra Fast Electron Beam X-ray Tomography Scanner. Measurement

Science and Technology, 19(9), 94002. doi:10.1088/0957-0233/19/9/094002

Fitts, P. M. (1954). The Information Capacity of the Human Motor System in Controlling the

Amplitude of Movement. Journal of Experimental Psychology, 47(6), 381–391.

doi:10.1037/h0055392

Fixed Function Pipeline. (2012). OpenGL Wiki. Retrieved January 1, 2014, from

http://www.opengl.org/wiki/Fixed_Function_Pipeline

Fothergill, S., Mentis, H. M., Kohli, P., and Nowozin, S. (2012). Instructing People for

Training Gestural Interactive Systems. In Proceedings of the 2012 ACM annual

conference on Human Factors in Computing Systems - CHI ’12 (pp. 1737–1746).

Austin, TX, USA: ACM Press. doi:10.1145/2207676.2208303

Franka, N. P., and Heindel, T. J. (2009). Local Time-Averaged Gas Holdup in a Fluidized

Bed with Side Air Injection using X-ray Computed Tomography. Powder Technology,

193(1), 69–78. doi:10.1016/j.powtec.2009.02.008

Fu, C.-W., Goh, W.-B., and Ng, J. A. (2010). Multi-Touch Techniques for Exploring Large-

Scale 3D Astrophysical Simulations. In Proceedings of the 2010 SIGCHI Conference on

Human Factors in Computing Systems (CHI ’10) (pp. 2213–2222). Atlanta, GA, USA.

doi:10.1145/1753326.1753661

Fukushima, E. (1999). Nuclear Magnetic Resonance as a Tool to Study Flow. Annual Review

of Fluid Mechanics, 31(1), 95–123. doi:10.1146/annurev.fluid.31.1.95

Gallo, L., Placitelli, A. P., and Ciampi, M. (2011). Controller-Free Exploration of Medical

Image Data: Experiencing the Kinect. In M. Olive and T. Solomonides (Eds.), 2011

24th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 1–6).

Bristol, UK: IEEE. doi:10.1109/CBMS.2011.5999138

Gobbetti, E., Marton, F., and Guitián, J. A. I. (2008). A Single-Pass GPU Ray Casting

Framework for Interactive Out-of-Core Rendering of Massive Volumetric Datasets. The

Visual Computer, 24(7–9), 797–806. doi:10.1007/s00371-008-0261-9

Goodsitt, M. M., Chan, H.-P., Way, T. W., Larson, S. C., Christodoulou, E. G., and Kim, J.

(2006). Accuracy of the CT Numbers of Simulated Lung Nodules Imaged with Multi-

Detector CT Scanners. Medical Physics, 33(8), 3006–3017. doi:10.1118/1.2219332

Gore, J. C., Emery, E. W., Orr, J. S., and Doyle, F. H. (1981). Medical Nuclear Magnetic

Resonance Imaging: I. Physical Principles. Investigative Radiology, 16(4), 269–274.

Grady, D. E., and Kipp, M. E. (1994). Experimental and Computational Simulation of the

High Velocity Impact of Copper Spheres on Steel Plates. International Journal of

Impact Engineering, 15(5), 645–660. doi:10.1016/0734-743X(94)90144-A

228

Groell, R., Rienmueller, R., Schaffler, G. J., Portugaller, H. R., Graif, E., and Willfurth, P.

(2000). CT Number Variations Due to Different Image Acquisition and Reconstruction

Parameters: A Thorax Phantom Study. Computerized Medical Imaging and Graphics,

24(2), 53–58. doi:10.1016/S0895-6111(99)00043-9

Gross, M., Würmlin, S., Naef, M., Lamboray, E., Spagno, C., Kunz, A., Koller-Meier, E., et

al. (2003). blue-c: A Spatially Immersive Display and 3D Video Portal for Telepresence.

ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2003, 22(3),

819–827. doi:10.1145/882262.882350

Gruner, S. M., Tate, M. W., and Eikenberry, E. F. (2002). Charge-Coupled Device Area X-

ray Detectors. Review of Scientific Instruments, 73(8), 2815. doi:10.1063/1.1488674

Haaker, P., Klotz, E., Koppe, R., and Linde, R. (1988). Real-Time Distortion Correction Of

Digital X-ray II/TV Systems: An Application Example. In Image Processing II (Vol.

1027, pp. 261–266). Hamburg, Germany: SPIE. doi:10.1117/12.950292

Hansen, C. D., and Johnson, C. R. (Eds.). (2005). The Visualization Handbook. Burlington,

MA, USA: Elsevier Academic Press.

Hargrave, P. J. (1989). A Tutorial Introduction to Kalman Filtering. In IEE Colloquium on

“Kalman Filters: Introduction, Applications and Future Developments” (pp. 1–6).

London, UK: IET.

Haubner, M., Krapichler, C., Losch, A., Englmeier, K.-H., and Van Eimeren, W. (1997).

Virtual Reality in Medicine-Computer Graphics and Interaction Techniques. IEEE

Transactions on Information Technology in Biomedicine, 1(1), 61–72.

doi:10.1109/4233.594047

He, C., Lewis, A., and Jo, J. (2007). A Novel Human Computer Interaction Paradigm for

Volume Visualization in Projection-Based Virtual Environments. In Smart Graphics

(pp. 49–60). Kyoto, Japan: Springer. doi:10.1007/978-3-540-73214-3_5

Heindel, T. J. (2011). A Review of X-ray Flow Visualization with Applications to

Multiphase Flows. ASME Journal of Fluids Engineering, 133(7), 74001.

doi:10.1115/1.4004367

Heindel, T. J., Gray, J. N., and Jensen, T. C. (2008). An X-ray System for Visualizing Fluid

Flows. Flow Measurement and Instrumentation, 19(2), 67–78.

doi:10.1016/j.flowmeasinst.2007.09.003

Heindel, T. J., and Monefeldt, J. L. (1997). Flash X-ray Radiography for Visualizing Gas

Flows in Opaque Liquid/Fiber Suspensions. In 6th International Symposium on Gas-

Liquid Two-Phase Flows. Vancouver, BC, Canada.

Heindel, T. J., and Monefeldt, J. L. (1998). Observations of the Bubble Dynamics in a Pulp

Suspension Using Flash X-ray Radiography. TAPPI Journal, 81(11), 149–158.

History of OpenGL. (2013). OpenGL Wiki. Retrieved June 30, 2014, from

http://www.opengl.org/wiki/History_of_OpenGL

Hopper, K. D., Iyriboz, A. T., Wise, S. W., Neuman, J. D., Mauger, D. T., and Kasales, C. J.

(2000). Mucosal Detail at CT Virtual Reality: Surface versus Volume Rendering.

Radiology, 214(2), 517–522. doi:10.1148/radiology.214.2.r00fe34517

229

Hounsfield, G. N. (1976). Apparatus for Examining a Body by Radiation such as X or

Gamma Radiation. Patent No. 3,944,833. United States of America.

Hsieh, J. (2009). Computed Tomography: Principles, Design, Artifacts, and Recent Advances

(2nd ed.). Bellingham, WA, USA: SPIE. doi:10.1117/3.817303

Hu, B., Stewart, C., Hale, C. P., Lawrence, C. J., Hall, A. R. W., Zwiens, H., and Hewitt, G.

F. (2005). Development of an X-ray Computed Tomography (CT) System with Sparse

Sources: Application to Three-Phase Pipe Flow Visualization. Experiments in Fluids,

39(4), 667–678. doi:10.1007/s00348-005-1008-2

Hubers, J. L. (2005). An X-ray Visualization Facility for Large-Scale Multiphase Flows.

Iowa State University.

Hwu, Y., Tsai, W.-L., Groso, A., Margaritondo, G., and Je, J. H. (2002). Coherence-

Enhanced Synchrotron Radiology: Simple Theory and Practical Applications. Journal of

Physics D: Applied Physics, 35(13), R105–R120. doi:10.1088/0022-3727/35/13/201

Ikeda, T., Kotani, K., Maeda, Y., and Kohno, H. (1983). Preliminary Study on Application of

X-ray CT Scanner to Measurement of Void Fractions in Steady State Two-Phase Flows.

Journal of Nuclear Science and Technology, 20(1), 1–12.

doi:10.1080/18811248.1983.9733354

Jain, N., Ottino, J. M., and Lueptow, R. M. (2002). An Experimental Study of the Flowing

Granular Layer in a Rotating Tumbler. Physics of Fluids, 14(2), 572–582.

doi:10.1063/1.1431244

Juhnke, B., Berron, M., Philip, A., Williams, J., Holub, J., and Winer, E. (2013). Comparing

the Microsoft Kinect to a Traditional Mouse for Adjusting the Viewed Tissue Densities

of Three-Dimensional Anatomical Structures. In C. K. Abbey and C. R. Mello-Thomas

(Eds.), Medical Imaging 2013: Image Perception, Observer Performance, and

Technology Assessment (Vol. 8673, p. 86731M). Lake Buena Vista, FL, USA: SPIE.

doi:10.1117/12.2006994

Ketcham, R. A., and Carlson, W. D. (2001). Acquisition, Optimization and Interpretation of

X-ray Computed Tomographic Imagery: Applications to the Geosciences. Computers &

Geosciences, 27(4), 381–400. doi:10.1016/S0098-3004(00)00116-3

Khronos Group. (2012). OpenGL. In SIGGRAPH 2012 - Birds of a Feather. Los Angeles,

CA, USA.

Kim, J.-S., Gračanin, D., Matković, K., and Quek, F. (2009). iPhone/iPod Touch as Input

Devices for Navigation in Immersive Virtual Environments. In IEEE Virtual Reality

2009 (pp. 261–262). Lafayette, LA, USA. doi:10.1109/VR.2009.4811045

Kim, K.-J. (1989). Characteristics of Synchrotron Radiation. In AIP Conference Proceedings

(Vol. 184, pp. 565–632). Batavia, IL, USA: AIP. doi:10.1063/1.38046

Kingston, T. A., and Heindel, T. J. (2014). Optical Visualization and Composition Analysis

to Quantify Continuous Granular Mixing Processes. Powder Technology, 262, 257–264.

doi:10.1016/j.powtec.2014.04.071

230

Kingston, T. A., Morgan, T. B., Geick, T. A., Robinson, T. R., and Heindel, T. J. (2014). A

Cone-Beam Compensated Back-Projection Algorithm for X-ray Particle Tracking

Velocimetry. Flow Measurement and Instrumentation, 39, 64–75.

doi:10.1016/j.flowmeasinst.2014.06.002

Knoll, A. M., Hijazi, Y., Westerteiger, R., Schott, M., Hansen, C. D., and Hagen, H. (2009).

Volume Ray Casting with Peak Finding and Differential Sampling. IEEE Transactions

on Visualization and Computer Graphics, 15(6), 1571–8. doi:10.1109/TVCG.2009.204

Kramer, D. M., Kaufman, L., Guzman, R. J., and Hawryszko, C. (1990). A General

Algorithm for Oblique Image Reconstruction. IEEE Computer Graphics and

Applications, 10(2), 62–65. doi:10.1109/38.50674

Kratz, S., and Rohs, M. (2010). A $3 Gesture Recognizer - Simple Gesture Recognition for

Devices Equipped with 3D Acceleration Sensors. In Proceedings of the 15th

international conference on Intelligent user interfaces - IUI ’10 (p. 341). Hong Kong,

China: ACM Press. doi:10.1145/1719970.1720026

Kristensson, P. O., Nicholson, T. E. W., and Quigley, A. (2012). Continuous Recognition of

One-Handed and Two-Handed Gestures Using 3D Full-Body Motion Tracking Sensors.

In Proceedings of the 2012 ACM international conference on Intelligent User Interfaces

- IUI ’12 (p. 89). Lisbon, Portugal: ACM Press. doi:10.1145/2166966.2166983

Krüger, J., and Westermann, R. (2003). Acceleration Techniques for GPU-Based Volume

Rendering. In Proceedings of the 14th IEEE Visualization 2003 (VIS’03) (pp. 287–292).

Seattle, Washington, USA: IEEE. doi:10.1109/VISUAL.2003.1250384

Krum, D. M., Phan, T., Dukes, L. C., Wang, P., and Bolas, M. (2014). A Demonstration of

Tablet-Based Interaction Panels for Immersive Environments. In IEEE Virtual Reality

(pp. 175–176). Minneapolis, MN, USA: IEEE. doi:10.1109/VR.2014.6802108

Kuntz, S. (2015). MiddleVR: A Generic VR Toolbox. In 2015 IEEE Virtual Reality

Conference (VR 2015) (pp. 391–392). Arles, France. doi:10.1109/VR.2015.7223460

Lacroute, P., and Levoy, M. (1994). Fast Volume Rendering Using a Shear-Warp

Factorization of the Viewing Transformation. In Proceedings of the 21st Annual

Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’94 (pp.

451–458). Orlando, FL, USA: ACM Press. doi:10.1145/192161.192283

Lee, H.-K., and Kim, J. H. (1999). An HMM-Based Threshold Model Approach for Gesture

Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(10),

961–973. doi:10.1109/34.799904

Lee, S.-J., and Kim, G. B. (2005). Synchrotron Microimaging Technique for Measuring the

Velocity Fields of Real Blood Flows. Journal of Applied Physics, 97(6), 64701.

doi:10.1063/1.1851596

Levi, C., Gray, J. E., McCullough, E. C., and Hattery, R. R. (1982). The Unreliability of CT

Numbers as Absolute Values. American Journal of Roentgenology, 139(3), 443–447.

doi:10.2214/ajr.139.3.443

Levoy, M. (1988). Display of Surfaces from Volume Data. IEEE Computer Graphics and

Applications, 8(3), 29–37. doi:10.1109/38.511

231

Li, S., Pathirana, P. N., and Caelli, T. (2014). Multi-Kinect Skeleton Fusion for Physical

Rehabilitation Monitoring. In 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC) (Vol. 2014, pp. 5060–5063).

Chicago, IL, USA. doi:10.1109/EMBC.2014.6944762

Liu, J. H., Sun, Y., Kang, Z. C., Tian, X. H., Li, X., Yuan, Q. H., and Zhang, Y. (2011). Post-

Processing Techniques for Aortic Computed Tomography Angiography. In Proceedings

of 2011 International Conference on Computer Science and Network Technology (pp.

1186–1189). Harbin, China: IEEE. doi:10.1109/ICCSNT.2011.6182171

Livingston, M. A., Sebastian, J., Ai, Z., and Decker, J. W. (2012). Performance

Measurements for the Microsoft Kinect Skeleton. In 2012 IEEE Virtual Reality (VR)

(pp. 119–120). Costa Mesa, CA: IEEE. doi:10.1109/VR.2012.6180911

Lorensen, W. E., and Cline, H. E. (1987). Marching Cubes: A High Resolution 3D Surface

Construction Algorithm. ACM SIGGRAPH Computer Graphics, 21(4), 163–169.

doi:10.1145/37402.37422

Lucy, L. B. (1974). An Iterative Technique for the Rectification of Observed Distributions.

The Astronomical Journal, 79, 745. doi:10.1086/111605

Lun, R., and Zhao, W. (2015). A Survey of Applications and Human Motion Recognition

with Microsoft Kinect. International Journal of Pattern Recognition and Artificial

Intelligence, 29(January), 49. doi:10.1142/S0218001415550083

Luna, F. D. (2008). Introduction to 3D Game Programming with DirectX 10. Sudbury, MA,

USA: Wordware Publishing, Inc.

Lux, C., and Fröhlich, B. (2009). GPU-Based Ray Casting of Multiple Multi-Resolution

Volume Datasets. In 2009 International Symposium on Visual Computing (IVSC ’09)

(pp. 104–116). Las Vegas, NV, USA: Springer. doi:10.1007/978-3-642-10520-3_10

Macovski, A. (1983). Medical Imaging Systems. Englewood Cliffs, NJ, USA: Prentice-Hall.

MacPhee, A. G., Tate, M. W., Powell, C. F., Yue, Y., Renzi, M. J., Ercan, A., Narayanan, S.,

et al. (2002). X-ray Imaging of Shock Waves Generated by High-Pressure Fuel Sprays.

Science, 295(5558), 1261–1263. doi:10.1126/science.1068149

Maher, M. M., Kalra, M. K., Sahani, D. V., Perumpillichira, J. J., Rizzo, S., Saini, S., and

Mueller, P. R. (2004). Techniques, Clinical Applications and Limitations of 3D

Reconstruction in CT of the Abdomen. Korean Journal of Radiology, 5(1), 55–67.

doi:10.3348/kjr.2004.5.1.55

Mansfield, P. (1977). Multi-Planar Image Formation Using NMR Spin Echoes. Journal of

Physics C: Solid State Physics, 10(3), L55–L58. doi:10.1088/0022-3719/10/3/004

Marins, J. L., Yun, X., Bachmann, E. R., McGhee, R. B., and Zyda, M. J. (2001). An

Extended Kalman Filter for Quaternion-Based Orientation Estimation Using MARG

Sensors. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots

and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat.

No.01CH37180) (Vol. 4, pp. 2003–2011). Maui, HI, USA.

doi:10.1109/IROS.2001.976367

232

Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M., and Wieben, O. (2012). 4D Flow

MRI. Journal of Magnetic Resonance Imaging, 36(5), 1015–1036.

doi:10.1002/jmri.23632

Masse, J.-T., Lerasle, F., Devy, M., Monin, A., Lefebvre, O., and Mas, S. (2013). Human

Motion Capture Using Data Fusion of Multiple Skeleton Data. In International

Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS 2013) (pp.

126–137). Springer. doi:10.1007/978-3-319-02895-8_12

Meissner, M., Huang, J., Bartz, D., Mueller, K., and Crawfis, R. (2000). A Practical

Evaluation of Popular Volume Rendering Algorithms. In 2000 IEEE Symposium on

Volume Visualization (VV 2000) (pp. 81–90). Salt Lake City, UT, USA: IEEE.

doi:10.1109/VV.2000.10009

Microsoft. (n.d.-a). D3DXMatrixLookAtRH Function. Windows Dev Center - Desktop.

Retrieved September 9, 2014, from http://msdn.microsoft.com/en-

us/library/windows/desktop/bb205343(v=vs.85).aspx

Microsoft. (n.d.-b). D3DXMatrixPerspectiveFovRH Function. Windows Dev Center -

Desktop. Retrieved September 9, 2014, from http://msdn.microsoft.com/en-

us/library/windows/desktop/bb205351(v=vs.85).aspx

Microsoft. (n.d.-c). D3DXMatrixPerspectiveOffCenterRH Function. Windows Dev Center -

Desktop. Retrieved September 9, 2014, from http://msdn.microsoft.com/en-

us/library/windows/desktop/bb205354(v=vs.85).aspx

Microsoft. (n.d.-d). Deprecated Features (Direct3D 10). Windows Dev Center - Desktop.

Retrieved January 1, 2014, from http://msdn.microsoft.com/en-

us/library/windows/desktop/cc308047.aspx

Microsoft. (n.d.-e). Graphics Pipeline. Windows Dev Center - Desktop. Retrieved January 1,

2014, from http://msdn.microsoft.com/en-us/library/windows/desktop/ff476882.aspx

Microsoft. (n.d.-f). Kinect Hardware. Windows Dev Center. Retrieved June 10, 2017, from

https://developer.microsoft.com/en-us/windows/kinect/hardware

Microsoft. (n.d.-g). Kinect Studio. Microsoft Developer Network. Retrieved June 20, 2017,

from https://msdn.microsoft.com/en-us/library/dn785306.aspx

Microsoft. (2000). Microsoft Announces Release of DirectX 8.0. Microsoft News Center.

Retrieved January 1, 2014, from http://www.microsoft.com/en-

us/news/press/2000/nov00/directxlaunchpr.aspx

Microsoft. (2012a). Joint Orientation. Microsoft Developer Network. Retrieved August 17,

2016, from https://msdn.microsoft.com/en-us/library/hh973073.aspx

Microsoft. (2012b). Kinect for Windows SDK. Kinect for Windows. Retrieved March 7,

2012, from http://www.microsoft.com/en-us/kinectforwindows/develop/overview.aspx

Microsoft. (2014a). JointType Enumeration. Microsoft Developer Network. Retrieved June

16, 2017, from https://msdn.microsoft.com/en-

us/library/windowspreview.kinect.jointtype.aspx

233

Microsoft. (2014b). Kinect for Windows Sensor Components and Specifications. Microsoft

Developer Network. Retrieved October 7, 2014, from http://msdn.microsoft.com/en-

us/library/jj131033.aspx

Mine, M. R., Brooks, F. P., and Sequin, C. H. (1997). Moving Objects in Space: Exploiting

Proprioception in Virtual-Environment Interaction. In Proceedings of the 24th Annual

Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’97 (pp.

19–26). New York, NY, USA: ACM Press. doi:10.1145/258734.258747

Möller, T., and Haines, E. (1999). Real-Time Rendering. Natick, MA, USA: AK Peters Ltd.

Moon, S., Park, Y., Ko, D. W., and Suh, I. H. (2016). Multiple Kinect Sensor Fusion for

Human Skeleton Tracking Using Kalman Filtering. International Journal of Advanced

Robotic Systems, 13(2), 1–10. doi:10.5772/62415

Morato, C., Kaipa, K. N., Zhao, B., and Gupta, S. K. (2014). Toward Safe Human Robot

Collaboration by Using Multiple Kinects Based Real-time Human Tracking. Journal of

Computing and Information Science in Engineering, 14(1), 11006.

doi:10.1115/1.4025810

Morgan, T. B., and Heindel, T. J. (2010). X-ray Particle Tracking of Dense Particle Motion

in a Vibration-Excited Granular Bed. In Proceedings of the ASME 2010 International

Mechanical Engineering Congress and Exposition (IMECE2010) (pp. 1709–1717).

Vancouver, BC, Canada: ASME. doi:10.1115/IMECE2010-39106

Mrvaljevic, N., and Sun, Y. (2009). Comparison Between Speaker Dependent Mode and

Speaker Independent Mode for Voice Recognition. In 35th Northeast Bioengineering

Conference, 2009 (pp. 1–2). Boston, MA, USA. doi:10.1109/NEBC.2009.4967804

Mudde, R. F. (2011). Bubbles in a Fluidized Bed: A Fast X-ray Scanner. AIChE Journal,

57(10), 2684–2690. doi:10.1002/aic.12469

Mudde, R. F., Alles, J., and van der Hagen, T. H. J. J. (2008). Feasibility Study of a Time-

Resolving X-ray Tomographic System. Measurement Science and Technology, 19(8),

85501. doi:10.1088/0957-0233/19/8/085501

Mudde, R. F., Bruneau, P. R. P., and van der Hagen, T. H. J. J. (2005). Time-Resolved γ-

Densitometry Imaging within Fluidized Beds. Industrial & Engineering Chemistry

Research, 44, 6181–6187.

Ney, D. R., and Fishman, E. K. (1991). Editing Tools for 3D Medical Imaging. IEEE

Computer Graphics and Applications, 11(6), 63–71. doi:10.1109/38.103395

Ney, D. R., Fishman, E. K., Magid, D., and Kuhlman, J. E. (1989). Interactive Real-Time

Multiplanar CT Imaging. Radiology, 170(1), 275–276.

doi:10.1148/radiology.170.1.2909110

Nishino, K., Kasagi, N., and Hirata, M. (1989). Three-Dimensional Particle Tracking

Velocimetry Based on Automated Digital Image Processing. Journal of Fluids

Engineering, 111(4), 384. doi:10.1115/1.3243657

Noon, C. J. (2012). A Volume Rendering Engine for Desktops, Laptops, Mobile Devices and

Immersive Virtual Reality Systems using GPU-Based Volume Raycasting. PhD

Dissertation, Human Computer Interaction, Iowa State University, Ames, IA.

234

O’Handley, D. A., and Green, W. B. (1972). Recent Developments in Digital Image

Processing at the Image Processing Laboratory at the Jet Propulsion Laboratory.

Proceedings of the IEEE, 60(7), 821–828. doi:10.1109/PROC.1972.8781

Otaduy, M. A., Igarashi, T., and LaViola, J. J. (2009). Interaction: Interfaces, Algorithms,

and Applications. In ACM SIGGRAPH 2009 Courses. New Orleans, LA, USA: ACM.

doi:10.1145/1667239.1667253

Pavlik, R. A., and Vance, J. M. (2010). A Modular Implementation of Wii Remote Head

Tracking for Virtual Reality. In ASME 2010 World Conference on Innovative Virtual

Reality (pp. 351–359). Ames, Iowa, USA: ASME. doi:10.1115/WINVR2010-3771

Pavlik, R. A., and Vance, J. M. (2012). VR JuggLua: A Framework for VR Applications

Combining Lua, OpenSceneGraph, and VR Juggler. In 2012 5th Workshop on Software

Engineering and Architectures for Realtime Interactive Systems (SEARIS) (pp. 29–35).

Singapore: IEEE. doi:10.1109/SEARIS.2012.6231166

Pavlik, R. A., Vance, J. M., and Luecke, G. R. (2013). Interacting With a Large Virtual

Environment by Combining a Ground-Based Haptic Device and a Mobile Robot Base.

In Volume 2B: 33rd Computers and Information in Engineering Conference (p.

V02BT02A029). Portland, OR, USA: ASME. doi:10.1115/DETC2013-13441

Pfister, H., Lorensen, W. E., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L. S., Martin,

K., et al. (2001). The Transfer Function Bake-Off. IEEE Computer Graphics and

Applications, 21(1), 16–22. doi:10.1109/38.920623

Phong, B. T. (1975). Illumination for Computer Generated Pictures. Communications of the

ACM, 18(6), 311–317. doi:10.1145/360825.360839

Piegl, L., and Tiller, W. (1997). The NURBS Book (2nd ed.). Berlin, Germany: Springer-

Verlag.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. Proceedings of the IEEE, 77(2), 257–286. doi:10.1109/5.18626

Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs

gewisser Mannigfaltigkeiten. Berichte Der Sächsischen Akadmie Der Wissenschaft, 69,

262–277.

Radon, J. (1986). On the Determination of Functions from Their Integral Values Along

Certain Manifolds. IEEE Transactions on Medical Imaging, 5(4), 170–176.

doi:10.1109/TMI.1986.4307775

Rendering Pipeline Overview. (2012). OpenGL Wiki. Retrieved June 16, 2014, from

http://www.opengl.org/wiki/Rendering_Pipeline_Overview

Rigoll, G., Kosmala, A., and Eickeler, S. (1997). High Performance Real-Time Gesture

Recognition Using Hidden Markov Models. In Proceedings of the International Gesture

Workshop (pp. 69–80). Bielefeld, Germany: Springer. doi:10.1007/BFb0052990

Robb, R. A. (2008). Medical Imaging and Virtual Reality: A Personal Perspective. Virtual

Reality, 12(4), 235–257. doi:10.1007/s10055-008-0104-z

Romero, J. B., and Smith, D. W. (1965). Flash X-ray Analysis of Fluidized Beds. AIChE

Journal, 11(4), 595–600.

235

Röntgen, W. C. (1896). On a New Kind of Rays. Nature, 53(1369), 274–276.

doi:10.1038/053274b0

Rowe, P. N., and Partridge, B. A. (1965). An X-ray Study of Bubbles in Fluidised Beds.

Transactions of the Institute of Chemical Engineers, 43, T157. doi:10.1016/S0263-

8762(97)80009-3

Royer, J. R., Corwin, E. I., Flior, A., Cordero, M.-L., Rivers, M. L., Eng, P. J., and Jaeger, H.

M. (2005). Formation of Granular Jets Observed by High-Speed X-ray Radiography.

Nature Physics, 1(3), 164–167. doi:10.1038/nphys175

Seeger, A., Affeld, K., Goubergrits, L., Wellnhofer, E., and Kertzscher, U. (2001). X-ray-

Based Assessment of the Three-Dimensional Velocity of the Liquid Phase in a Bubble

Column. Experiments in Fluids, 31(2), 193–201. doi:10.1007/s003480100273

Seibert, J. A. (2006). Flat-Panel Detectors: How Much Better Are They? Pediatric

Radiology, 36(Supplement 2), 173–81. doi:10.1007/s00247-006-0208-0

Shepp, L. A., and Kruskal, J. B. (1978). Computerized Tomography: The New Medical X-

ray Technology. The American Mathematical Monthly, 85(6), 420–439.

Shepp, L. A., and Logan, B. F. (1974). Reconstructing Interior Head Tissue from X-ray

Transmissions. IEEE Transactions on Nuclear Science, 21(1), 228–236.

doi:10.1109/TNS.1974.4327466

Sherman, W. R., and Craig, A. B. (2003). Understanding Virtual Reality. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

Shimada, T., Habu, H., Seike, Y., Ooya, S., Miyachi, H., and Ishikawa, M. (2007). X-ray

Visualization Measurement of Slurry Flow in Solid Propellant Casting. Flow

Measurement and Instrumentation, 18(5–6), 235–240.

doi:10.1016/j.flowmeasinst.2007.07.006

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., et al.

(2011). Real-Time Human Pose Recognition in Parts from Single Depth Images. In

2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011) (pp.

1297–1304). Providence, RI, USA: IEEE. doi:10.1109/CVPR.2011.5995316

Shreiner, D., Sellers, G., Kessenich, J., and Licea-Kane, B. (2013). OpenGL Programming

Guide: The Official Guide to Learning OpenGL, Version 4.3 (8th ed.). Upper Saddle

River, NJ, USA: Pearson Education.

Smith, J. V. (1995). Synchrotron X-ray Sources: Instrumental Characteristics. New

Applications in Microanalysis, Tomography, Absorption Spectroscopy and Diffraction.

The Analyst, 120(5), 1231–1245. doi:10.1039/an9952001231

Stoakley, R., Conway, M. J., and Pausch, R. (1995). Virtual Reality on a WIM: Interactive

Worlds in Miniature. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems - CHI ’95 (pp. 265–272). Vancouver, BC, Canada.

doi:10.1145/223904.223938

Striegel, A. C. (2005). Development of Data Acquistion Software for X-ray Radiography,

Computed Tomography, and Stereography of Multiphase Flow. MS Thesis, Mechanical

Engineering, Iowa State University, Ames, IA.

236

Suma, E. A., Krum, D. M., Lange, B., Koenig, S., Rizzo, A., and Bolas, M. (2013). Adapting

User Interfaces for Gestural Interaction with the Flexible Action and Articulated

Skeleton Toolkit. Computers and Graphics, 37(3), 193–201.

doi:10.1016/j.cag.2012.11.004

Sung, J., Ponce, C., Selman, B., and Saxena, A. (2011). Human Activity Detection from

RGBD Images. In AAAI Workshop on Plan, Activity and Intent Recognition (PAIR) (pp.

47–55). San Francisco, CA, USA.

Takala, T. M. (2014). RUIS - A Toolkit for Developing Virtual Reality Applications with

Spatial Interaction. In Proceedings of the 2nd ACM symposium on Spatial user

interaction (SUI ’14) (pp. 94–103). Honolulu, HI, USA. doi:10.1145/2659766.2659774

Takala, T. M., Rauhamaa, P., and Takala, T. (2012). Survey of 3DUI Applications and

Development Challenges. In IEEE Symposium on 3D User Interfaces 2012, 3DUI 2012

- Proceedings (pp. 89–96). Orange County, California, USA: IEEE.

doi:10.1109/3DUI.2012.6184190

Taylor, R. M. I., Hudson, T. C., Seeger, A., Weber, H., Juliano, J., and Helser, A. T. (2001).

VRPN: A Device-Independent, Network-Transparent VR Peripheral System. In VRST

’01: Proceedings of the ACM Symposium on Virtual Reality Software and Technology

(pp. 55–61). Alberta, Canada. doi:10.1145/505008.505019

TuxFamily. (2017). Eigen. Retrieved June 18, 2017, from

http://eigen.tuxfamily.org/index.php?title=Main_Page

van Dam, A., Forsberg, A. S., Laidlaw, D. H., LaViola, J. J., and Simpson, R. M. (2000).

Immersive VR for Scientific Visualization: A Progress Report. IEEE Computer

Graphics and Applications, 20(6), 26–52. doi:10.1109/38.888006

van Ommen, J. R., and Mudde, R. F. (2008). Measuring the Gas-Solids Distribution in

Fluidized Beds - A Review. International Journal of Chemical Reactor Engineering,

6(R3), 1796. doi:10.2202/1542-6580.1796

VanderKnyff, C. (2008). VrpnNet 1.1.1. Retrieved April 20, 2012, from

http://wwwx.cs.unc.edu/~chrisv/vrpnnet

Wang, B., Zhu, L., Jia, K., and Zheng, J. (2010). Accelerated Cone Beam CT Reconstruction

Based on OpenCL. In 2010 International Conference on Image Analysis and Signal

Processing (pp. 291–295). IEEE. doi:10.1109/IASP.2010.5476110

Wang, Y., Liu, X., Im, K.-S., Lee, W.-K., Wang, J., Fezzaa, K., Hung, D. L. S., et al. (2008).

Ultrafast X-ray Study of Dense-Liquid-Jet Flow Dynamics Using Structure-Tracking

Velocimetry. Nature Physics, 4(4), 305–309. doi:10.1038/nphys840

Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K., and Colucci, D. (1999). The

HiBall Tracker: High-Performance Wide-Area Tracking for Virtual and Augmented

Environments. In Proceedings of the ACM symposium on Virtual Reality Software and

Technology (pp. 1–10). London, UK. doi:10.1.1.46.5550

Welch, G. F. (2009). History: The Use of the Kalman Filter for Human Motion Tracking in

Virtual Reality. Presence: Teleoperators and Virtual Environments, 18(1), 72–91.

doi:10.1162/pres.18.1.72

237

Westover, L. (1990). Footprint Evaluation for Volume Rendering. ACM SIGGRAPH

Computer Graphics, 24(4), 367–376. doi:10.1145/97880.97919

Whitemarsh, E. A., Escudero, D. R., and Heindel, T. J. (2016). Probe Effects on the Local

Gas Holdup Conditions in a Fluidized Bed. Powder Technology, 294, 191–201.

doi:10.1016/j.powtec.2016.02.035

Williamson, B. M., LaViola, J. J. J., Roberts, T., and Garrity, P. (2012). Multi-Kinect

Tracking for Dismounted Soldier Training. In Proceedings of the Interservice/Industry

Training, Simulation, and Education Conference (I/ITSEC) 2012 (pp. 1727–1735).

Orlando, FL, USA.

Wu, C., Cheng, Y., Ding, Y., Wei, F., and Jin, Y. (2007). A Novel X-ray Computed

Tomography Method for Fast Measurement of Multiphase Flow. Chemical Engineering

Science, 62(16), 4325–4335. doi:10.1016/j.ces.2007.04.026

Yan, G., Tian, J., Zhu, S., Dai, Y., and Qin, C. (2008). Fast Cone-Beam CT Image

Reconstruction Using GPU Hardware. Journal of X-Ray Science and Technology, 16,

225–234.

Yun, X., Lizarraga, M., Bachmann, E. R., and McGhee, R. B. (2003). An Improved

Quaternion-Based Kalman Filter for Real-Time Tracking of Rigid Body Orientation. In

2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 2, pp.

1074–1079). Las Vegas, NV, USA. doi:10.1109/IROS.2003.1248787

Zhang, J. (2003). Development of a High Resolution 3D Computed Tomography System:

Data Acquisition, Reconstruction, and Visualization. MS Thesis, Electrical and

Computer Engineering, Iowa State University, Ames, IA.

Zhang, S., Demiralp, C., Keefe, D. F., DaSilva, M., Laidlaw, D. H., Greenberg, B. D.,

Basser, P. J., et al. (2001). An Immersive Virtual Environment for DT-MRI Volume

Visualization Applications: A Case Study. In Proceedings of Visualization 2001 (VIS

’01) (pp. 437–584). San Diego, CA, USA: IEEE. doi:10.1109/VISUAL.2001.964545

Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2), 4–10.

doi:10.1109/MMUL.2012.24

Zink, J., Pattineo, M., and Hoxley, J. (2011). Practical Rendering and Computation with

Direct3D 11. Boca Raton, FL: CRC Press.

Zolfaghari, A. M., Kellogg, E., Wendt, S. E., and Gray, J. N. (2002). High Speed X-ray

Radiography Diagnostic of Current Interruption in Circuit Breakers. Review of Scientific

Instruments, 73(4), 1945. doi:10.1063/1.1461878

Zuiderveld, K. J., van Ooijen, P. M. A., Chin-A-Woeng, J. W. C., Buijs, P. C., Olree, M., and

Post, F. H. (1996). Clinical Evaluation of Interactive Volume Visualization. In

Proceedings of Seventh Annual IEEE Visualization (pp. 367–370). San Francisco, CA,

USA: IEEE. doi:10.1109/VISUAL.1996.568134

Zwicker, M., Pfister, H., van Baar, J., and Gross, M. (2001). EWA Volume Splatting. In

Proceedings Visualization, 2001. VIS ’01. (pp. 29–538). San Diego, CA, USA: IEEE.

doi:10.1109/VISUAL.2001.964490

	2017
	Characterization of multiphase flows integrating X-ray imaging and virtual reality
	Timothy Burkgren Morgan
	Recommended Citation

	DEDICATION
	LIST OF FIGURES
	LIST OF TABLES
	NOMENCLATURE
	Abbreviations
	Roman Symbols
	Greek Symbols

	ACKNOWLEDGEMENTS
	ABSTRACT
	CHAPTER 1: INTRODUCTION
	1.1 Motivation
	1.2 Objectives
	1.3 Outline

	CHAPTER 2: LITERATURE REVIEW
	2.1 Noninvasive Multiphase Flow Measurement
	2.1.1 Optical Techniques
	2.1.2 Electrical Impedance Tomography (EIT)
	2.1.3 Magnetic Resonance Imaging (MRI)
	2.1.4 X-ray Imaging
	2.1.4.1 Tube X-ray Sources
	2.1.4.2 Synchrotron Sources
	2.1.4.3 Radiography
	2.1.4.4 Radiography Enhancements
	2.1.4.5 Computed Tomography (CT)

	2.2 Computed Tomography (CT) Reconstruction
	2.2.1 Fourier Projection-Slice Theorem
	2.2.2 Filtered Backprojection (FBP)
	2.2.3 Algebraic Reconstruction Techniques (ART)

	2.3 Volume Visualization
	2.3.1 Introduction to Computer Graphics
	2.3.1.1 Programmable Pipeline

	2.3.2 Indirect Volume Rendering (IVR)
	2.3.2.1 Slice Rendering
	2.3.2.2 Isosurface Rendering

	2.3.3 Direct Volume Rendering (DVR)
	2.3.3.1 Texture-Based Rendering
	2.3.3.2 Splatting
	2.3.3.3 Shear-Warping
	2.3.3.4 Ray Casting
	2.3.3.5 Fourier Rendering

	2.4 User Interaction in Virtual Reality (VR)
	2.4.1 Display Devices
	2.4.2 Input Devices
	2.4.3 Interaction Tasks
	2.4.3.1 Selection and Manipulation
	2.4.3.2 Travel and Wayfinding
	2.4.3.3 System Control
	2.4.3.4 Symbolic Input

	2.4.4 Data Visualization in Virtual Reality

	2.5 Summary

	CHAPTER 3: METHODS
	3.1 X-ray Flow Measurement
	3.1.1 Imaging Parameters and Their Effects
	3.1.2 X-ray Image Processing
	3.1.2.1 Image Unwarping
	3.1.2.2 Image Normalization

	3.2 Immersive Visualization
	3.2.1 VR JuggLua
	3.2.2 Kinect Sensor

	CHAPTER 4: A HIGH-SPEED X-RAY DETECTOR SYSTEM FOR NONINVASIVE FLUID FLOW MEASUREMENTS
	4.1 Abstract
	4.2 Introduction
	4.3 Experimental Setup
	4.4 Results and Discussion
	4.5 Summary

	CHAPTER 5: SENSITIVITY OF X-RAY COMPUTED TOMOGRAPHY MEASUREMENTS OF A GAS-SOLID FLOW TO VARIATIONS IN ACQUISITION PARAMETERS
	5.1 Abstract
	5.2 Introduction
	5.3 Experimental Setup and Methods
	5.3.1 Test System
	5.3.2 Determination of Baseline Parameters
	5.3.3 Analysis Methods

	5.4 Results and Discussion
	5.4.1 Effects on Whole ROI Averages
	5.4.2 Effects of Tube Current, Voltage, and Detector Exposure
	5.4.3 Effects of Center of Rotation Variation

	5.5 Conclusions

	CHAPTER 6: APPROXIMATE 3D RECONSTRUCTION TECHNIQUES FOR CHARACTERIZING MULTIPHASE FLOWS FROM X-RAY STEREOGRAPHIC IMAGING
	6.1 Abstract
	6.2 Introduction
	6.3 Experimental Setup
	6.4 Reconstruction Methods
	6.4.1 Locally Axisymmetric Filtered Backprojection
	6.4.2 Simultaneous Algebraic Reconstruction Technique with A Priori Information

	6.5 Experimental Results
	6.5.1 Phantom Imaging
	6.5.2 Multiphase Flow Imaging

	6.6 Conclusions

	CHAPTER 7: DEVELOPMENT OF A NONCONTACT USER INTERACTION SYSTEM FOR SURROUND-SCREEN VIRTUAL ENVIRONMENTS
	7.1 Abstract
	7.2 Introduction
	7.3 Background
	7.4 Implementation
	7.4.1 System Architecture
	7.4.2 Features
	7.4.3 Skeleton Merging and Filtering
	7.4.4 Joint Orientation Algorithm
	7.4.5 Gesture Recognition

	7.5 Validation
	7.5.1 Skeleton Filtering
	7.5.2 Joint Orientation Algorithm
	7.5.3 Gesture Recognition

	7.6 Conclusions

	CHAPTER 8: A PROPOSED SYSTEM FOR INTERACTIVE VISUALIZATION OF VOLUMETRIC MULTIPHASE FLOW DATA IN VIRTUAL REALITY
	8.1 Abstract
	8.2 Introduction
	8.3 Proposed System
	8.3.1 Viewpoint Manipulation
	8.3.2 Region of Interest Selection
	8.3.3 Transfer Function Specification
	8.3.4 Viewpoint Sharing
	8.3.5 System Control

	8.4 Conclusions
	8.5

	CHAPTER 9: CONCLUSIONS AND FUTURE WORK
	9.1 Conclusions
	9.2 Future Work

	REFERENCES

