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ABSTRACT 

 

It is an essential task of battery management system (BMS) to online estimate the 

State of Charge (SoC) of a Lithium-ion (Li-ion) battery, an important indicator of the 

remaining charge in the battery. Accurate modeling of the electrical behavior of a Li-ion 

battery can provide an accurate approximation of the battery dynamic characteristics during 

charging/discharging and relaxation phases. This is essential to accurate online estimation of 

the battery SoC. Equivalent circuit models (ECMs) are widely used to assist with online SoC 

estimation because of their simplicity and high computational efficiency. This thesis 

proposes an ensemble bias-correction (BC) method with adaptive weights to improve the 

accuracy of an equivalent circuit model (ECM) in dynamic modeling of Li-ion batteries. The 

contribution of this thesis is threefold: (i) the introduction of the concept of time period; (ii) 

the development of a novel ensemble method based on BC learning to model the dynamic 

characteristics of Li-ion batteries; and (iii) the creation of an adaptive-weighting scheme to 

learn online the weights of offline member BC models for building an online ensemble BC 

model. Repeated pulsing discharge tests with single and multiple C-rates were conducted on 

seven Li-ion battery cells to evaluate the effectiveness of the proposed ensemble BC method. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation and State of Art 

The idea of powering the world with greener and smarter energy resources has 

attracted engineers and scientists for decades. Development in field of battery technology 

helps to move the steps faster. Battery, as a kind of energy storage system which enables the 

utilization of energy in form of electricity in a time delayed manner, has made its way 

through the market. With the rapid prevalence of the consumer electronics in the last several 

decades, battery has demonstrated its applicability as a stable and adaptive power source, 

from digital cameras to hybrid and electric vehicles. As the size and maximum energy of 

batteries increase with the ever increasing demand, new control and management approaches 

to monitoring and provide information about the performance, status and reliability of the 

batteries are in demand. The State of Charge (SoC) of a battery is one of the most important 

states in battery management [1]. SoC indicates how much energy is left to use in a battery 

and accurate knowledge of its value is of great importance. SoC is used by battery 

management system (BMS) to control the operation of batteries and accurate SoC estimation 

can help to improve the battery useful life [2]. However, unlike gasoline in the tank of 

vehicles, the remaining charge in a battery cannot be measured directly as, put it in a simple 

way, the remaining transferrable charges are ions stored in the electrode material [3-6]. 

Therefore, a large number of model-based estimators have been proposed to give estimates of 

this state using readily measurable quantities (e.g., voltage, current, and temperature) [5-12]. 

The resistor-capacitor (RC) network-based equivalent circuit models (ECMs) are the most 
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widely used in these SoC estimators owing to the low complexity and adequate accuracy of 

the ECMs [13-15]. In practical applications, one set of ECM parameters (e.g., resistances and 

capacitances) with constant values are often adopted for simplicity. However, the uncertainty 

in material properties and manufacturing tolerances lead to varying degrees of cell-to-cell 

variation. Therefore, the “best-fit” ECM parameters may differ significantly from one cell to 

another [13]. The SoC estimation accuracy on a cell may drop significantly if the adopted 

ECM parameters deviate largely from the “best-fit” parameters of the cell [6]. Furthermore, 

the electrical behavior of a battery cell is highly dependent on the operating conditions (e.g., 

SoC, temperature, C-rate) [16], and as a result, the “best-fit” ECM parameters of the cell may 

vary substantially with the operating conditions. Consequently, the “best-fit” ECM 

parameters are both cell- and condition-dependent, and it is obviously inappropriate to use 

one common set of ECM parameters to model different cells under different operating 

conditions. One way to address the above mentioned problem is to adopt an ECM with 

online-adjustable parameters [11, 12]. However, it can be difficult to achieve accurate 

estimation of the ECM parameters in cases where cells are operating in dynamic and 

unpredictable conditions, and the parameter-estimation process can be time-consuming when 

a large number of parameters need to be online calibrated. Alternatively, a bias-correction 

(BC) model can be introduced to compensate the modeling error of an ECM resulting from 

the cell- and condition-dependencies of the ECM parameters [6, 13, 17]. 

The assumptions underlying the BC method are that 1) the BC model can represent 

the systematic discrepancies of an ECM (i.e., the systematic differences between the ECM 

simulations and actual measurements from cells with varying dynamic characteristics); and 2) 

these discrepancies can be learned offline from extensive testing on a number of training 
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cells and adopted online to bias-correct the ECM for individual testing cells. Xi et al. [17] 

presented a systematic BC framework to characterize both the parameter uncertainty and the 

model uncertainty for an initially calibrated ECM of a battery cell. The cell-dependency of 

the ECM parameters (i.e., due to the cell-to-cell variability) was accounted for via statistical 

calibration of the ECM, and the condition-dependency of the model bias was characterized, 

in conjunction with statistical calibration, via design of experiments and response surface 

modeling. Sun et al. [6] developed a reference ECM of a battery pack, applied the reference 

model to the individual cells in the pack, and characterized and corrected the biases of the 

model for the individual cells. The radial basis function neural network technique was 

employed to construct response surfaces that constituted the BC models for the individual 

cells. Gong et al. [13] proposed a data-driven BC model to bias-correct a reference ECM. 

Features extracted from incremental capacity analysis were used in the BC model to account 

for the cell-dependency of the model bias. Although the concept of BC has been shown to be 

capable of improving the accuracy of voltage simulation in these previous studies, most of 

the existing BC methods mainly focus on the offline development of one or multiple BC 

models but lack the ability to consider cell-to-cell and condition-to-condition variabilities in 

the online adoption of the BC models. Thus, there is an important need to develop a generic 

BC method that accounts for the cell- and condition-dependencies in the offline development 

of BC models and facilitates online adoption of the cell- and condition-dependent BC models. 

1.2 Scope and Contribution of this Thesis 

Motivated by the aforementioned challenges, the objective of this thesis is to propose 

a novel generic framework that uses the model bias of a set of selected cells to form an 

ensemble BC term online for an individual cell. The ensemble BC term can be used to reduce 
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the battery dynamic behavior modeling error and help to improve battery SoC estimation 

accuracy. The contribution of this thesis consists three main aspects: (1) the introduction of 

the concept of ‘time period’ which facilitates the modeling of battery dynamic behavior when 

the battery is at rest, (2) the development of a novel ensemble method based on BC learning 

to model the dynamic characteristics of Lithium-ion (Li-ion) batteries, and (3) the creation of 

an adaptive-weighting scheme to learn online the weights of offline member BC models for 

building an online ensemble BC model. This thesis carries out experimental testing to verify 

the validity and effectiveness of the proposed ensemble BC method in battery modeling 

using commercial NCR18650 cells. 

1.3 Thesis Outline 

The thesis is organized as follows: Chapter 2 first introduces the basic operating 

principles of Li-ion battery and BMS and then presents a summary of existing SoC 

estimation methods. Chapter 3 contains a detailed description of the proposed ensemble BC 

method. Chapter 4 introduces the process of experimental data acquisition and the result of 

ECM parameter determination. The voltage simulation and SoC estimation results are 

presented in Chapter 5 and an analysis and discussion of the results are given in Chapter 6. 

Chapter 7 concludes the thesis and points out directions for future work. 
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CHAPTER 2 LITHIUM-ION BATTERY BASICS 

2.1 Lithium-Ion Cell Basics 

Since Sony’s successful commercialization in the early 1990s, rechargeable Li-ion 

batteries have grown to be the major power source in many applications from handheld 

electronic devices to hybrid and electric vehicles [2]. With its competitive high energy 

density and relatively high electrochemical potential among rechargeable commercial cells, 

Li-ion batteries have become the most promising and fastest growing cell type on the market.  

Similar to the widely used lead-acid battery, commonly-used Li-ion batteries 

consists of four basic components (see Fig. 1): a cathode (positive electrode), an anode 

(negative electrode), a separator, and the electrolyte as the medium for Li-ion transfer. The 

cathode typically consists of a type of metal oxide and the anode is often formed with porous 

carbon [1].  During discharge, the lithium ions de-intercalate from the anode, flow to the 

cathode through the electrolyte and separator, and intercalate into the cathode material.  

 
Figure 1. Li-ion battery operating principle [23] 
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Numerous publications have discussed the operating principle of Li-ion batteries and 

interesting readers can find more detailed descriptions of Li-ion batteries in Ref. [23]. As 

inappropriate battery operations such as overcharging/over-discharging can expedite battery 

degradation by causing phenomena such as lithium plating, knowing accurately how much 

charge remains in a battery is of critical importance in rechargeable battery applications [1].  

2.2 Battery Management System 

In applications where battery cells serve as the major power source, accurate 

monitoring of battery states in real time and controlling of battery operation is critical to 

provide necessary knowledge of the status of battery cells and reducing the risk of 

unprecedented battery failure. BMS, typically a chip embedded in battery system, serves to 

control the battery operation and monitor the important battery states, such as SoC, state-of-

health (SoH). Most BMS applications focus on monitoring the states of a single battery cell. 

The BMS in battery pack applications, where a battery pack consists of multiple cells, should 

be able to estimate the SoC of each individual cell in the battery system. Though small SoC 

estimation errors of the individual cells in a battery pack can be within tolerance on their 

own, for applications where a battery pack consists a large amount of cells, the small 

estimation errors in the cell level can add up to a large overall estimation error in the pack 

level which could lead to inappropriate control order. Thus, the task of further improving the 

states estimation accuracy becomes important in battery pack applications where the BC 

method which can capture the systematic discrepancies can be adopted to improve the SoC 

estimation accuracy. 
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2.3 State of Charge Estimation Methods 

Existing SoC estimation methods include straightforward methods, such as coulomb 

counting and OCV mapping, and methods with more complexity, such as model-based 

estimators with sequential probabilistic inference and ECMs. In general, according to 

whether there is a feedback mechanism that corrects the SoC estimate directly derived from 

measureable quantities, the SoC estimation methods can be classified into two categories: the 

open-loop methods and the closed-loop methods.  

2.3.1 Open-loop versus Closed-loop 

The open-loop methods, such as coulomb counting and direct mapping from open-

circuit voltage (OCV) are computational efficient and easy to implement. However, those 

methods typically lose accuracy in the presence of large noise in the measurements. The 

closed-loop methods, on the other hand, are often the combination of a sequential 

probabilistic inference technique (e.g., Kalman filter (KF) and extended Kalman filter (EKF)) 

and a battery model (e.g., the Thevenin ECM and an electrochemical model). Owing to the 

feedback mechanism, these closed-loop SoC estimators can often provide more accurate and 

robust estimation results. Fig. 2 shows some commonly used SoC estimation methods. 

SoC Estimation 

Methods

Open-Loop 

Methods

Closed-Loop 

Methods

OCV Mapping

Coulomb Counting

ECM Model with KF, EKF

Electrochemical Model with KF, EKF

Data-Driven Methods
 

Figure 2. Categorization of SoC Estimation Methods 
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Throughout the years, researchers have proposed many SoC estimators. The SoC 

estimators can generally be classified as, the equivalent circuit model based estimator, the 

electrochemical model based estimator. Electrochemical models use partial differential 

equations to describe the behavior of the battery cells from the electrochemistry prospective. 

Carefully built electrochemical models can produce estimation results with very good 

accuracy and those models can serve as good SoC estimators. However, as solving high-

order partial differential equations remains computational expensive task, implementing such 

models in computing power limited application like BMS is not appropriate. On the contrary, 

the ECM-based SoC estimators which uses a series of electrical circuit component to 

simulate the dynamic behavior of the battery, is computational efficient. As the ECM can 

produce voltage simulation result with good accuracy when with carefully tuned ECM 

parameters, ECM based SoC estimator is adopted in the research. 

2.3.2 Equivalent Circuit Model Based SoC Estimator 

Normally, a simple ECM includes: (1) an OCV term describes the cells 

characteristics when there is no charge/discharge; (2) a series resistance representing the 

ohmic resistance; (3) and a resistance-capacitance (RC) pair describes the dynamic behavior 

of a cell when the load changes. An example of such an ECM is shown in Fig. 3(a). The 

current variation in the RC pair and can be formulated as: 

  , 1 , 1RC k RC RC k RC ki F i F i        (1) 

 
1 1

expRC

dt
F

R C

 
  

 
  (2) 
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where 
,RC ki  is the current through 1R  at the k th measurement time step, ki  is the total current 

through the cell, dt  is the measurement time interval, Q  is the battery capacity and 1R  and 

1C  are the resistance and capacitance values in the ECM, respectively. 

In order to consider the hysteresis effect of the battery and improve the modeling 

accuracy, the ECM can be expanded to include a hysteresis voltage term. The enhanced self-

correcting (ESC) model is a widely used model that considers the hysteresis effect. The 

hysteresis effect is represented by two states in the ESC model: 

OCV C1

R1

R0 +

-

Vsim(t)

 
(a) 

OCV

Hyst R0

R1

C1

+

–

Vsim(t)

 
(b) 

Figure 3. Schematic of ECMs: (a) Simple ECM; (b) the Enhanced self-correcting model 
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    1 1k k k k kh h sign i         (3) 

 exp k
k

i dt

Q

 


   
  

 
  (4) 

 
1

, 0

( ), 0

k k

k

k k

s i
s

sign i i



 


  (5) 

where kh  the SoC-varying hysteresis voltage, η the coulombic efficiency and ks  the 

instantaneous hysteresis voltage. A schematic of the ESC model is shown in Fig. 3(b). 

The ECM-simulated cell terminal voltage of the simple ECM (SECM) and the ESC 

model are formulated as in Eq. (6) and Eq. (7), respectively:   

 
0 , 1out k RC kV OCV i R i R       (6) 

 
0 , 1 0out k RC k k kV OCV i R i R M h M s           (7) 

where M  and 0M  are hysteresis factors.  

2.3.3 Extended Kalman Filter and State Space Model 

The Kalman filter, as a special case of sequential probabilistic inference, gives the 

statistically optimal least mean-squared-error state estimator for linear time-invariant systems 

when all noises are assumed white and Gaussian. Extended Kalman filter (EKF) is an 

approximation solution for the non-linear time-varying systems such that the nonlinear 

behavior of the system is linearized at the current filter estimation trajectory. Since ECMs 

adopted in the experimental study of this thesis are nonlinear systems, the EKF is adopted 

during the implementation of SoC estimation. 

As the EKF technique is widely used in many fields and has been discussed 

thoroughly in many research articles, interesting readers can refer to Ref. [8] for more detail. 
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Fig. 4 is a schematic of the essential EKF algorithm updating process. Consider a non-linear 

system with its filter designed as, 

  1 ,k k k kx f x u w     (8) 

  ,k k k ky h x u v    (9) 

where kx  is a vector containing the system’s hidden states, ku  is the system input, ky  is the 

system output, and kw  and kV  are the process noise and measurement noise, respectively. In 

each time step, the EKF algorithm starts with predicting the prior state estimate at the present 

time step with the state estimate at the last time step and predict state covariance matrix is the 

same manner. After the measurement of the system output becomes available, the 

measurement error of output state prediction is first calculated. Then the Kalman gain is 

computed and used to generate the posterior state estimate and update the state covariance 

matrix. As shown in Fig. 4, the EKF uses the first-order derivative of the state transition 

equation 
 

| 1ˆ

,

k k

k

x x

f x u
F

x






 and that of the measurement equation 

 

1| 1ˆ

,

k k

k

x x

h x u
H

x
 





 to 

update state estimates, replacing the original nonlinear model. 
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Time Update:  

State Estimate

                       

Predicted Covariance Estimate

                       
      

Measurement Update:  

Measurement Residual

              

Kalman Gain

           
           

    

  

Update State Estimate

                  

Update Covariance Estimate

                 

Get      and     

Define  and  

 

Figure 4. Extended Kalman Filter Algorithm 
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CHAPTER 3 THE ENSEMBLE BIAS-CORRECTION BASED BATTERY 

DYNAMIC BEHAVIOR MODELING 

3.1 The Ensemble BC with Adaptive Weights for Lithium-ion Battery Modeling 

The general procedure of the ensemble BC method is shown in Fig. 5. The objective 

of this method is to perform an online bias-correction of the ECM-simulated voltage profile 

for a testing cell with the knowledge of several representative cells of the same type. For the 

set of cells being involved in this research, a training set is formed with the representative 

cells (cell 1 to n-1) and the cell of interest is denoted as the testing cell (cell n). Before the 

bias-correction method can operate online, individual ECMs for both the training cells and 

the testing cells have to be established offline. The ECMs are built with data of each cell 

from a standard test which is designed to highly excite the battery cells. Provided the offline 

fitted ECMs, the online phase of the ensemble BC method works in a stepwise manner. As 

the testing cell operates, the current profile of it is first linearized and divided into discrete 

time periods. Here, a time period is defined as a segment of time in which the cell current 

holds steady. Knowing the current profile of the current time period s, the method searches 

for the most recent time period that shares the same current profile with the time period s and 

such a time period is denoted as s' (see a current profile example at the bottom of Fig. 5). The 

BC term for the testing cell at time period s is then generated as the weighted sum of the 

member BC models. The member BC models are defined as the difference between the 

measured and the simulated voltage profiles of the training cells over time period s. 

Experimental findings suggest that the similarities between cells in their electrical behavior 

are often consistent across different SoC levels. It thus follows that the observed similarities 
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between the testing cell and the training cells at a previous time period can be used to 

approximate the similarities at the current time period providing that the two time periods 

share the same current profile. The weights corresponding to the member BC models are then 

approximated by the difference between the measured voltage profile of the training cells and 

that of the testing cell in time period s'. An ensemble BC model that compensates the ECM 

simulation error for the testing cell can thus be calculated. 

 

Figure 5. A flowchart of the proposed ensemble bias-correction method 
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The main procedure of the ensemble BC method is summarized as follows:   

Step 1: Individual ECMs are established offline for all the training cells and the 

testing cell with measurements from a standard test;  

Step 2: During online operation, the current profile of the testing cell is divided into 

discrete time periods and a time period s' most similar to the current time period s is found; 

Step 3: During the current time period s, the measured and ECM-simulated voltage 

profiles of the n-1 training cells are utilized to generate the member BC models;  

Step 4: Difference between the voltage measurements of the testing cell and that of 

the training cells in time period s' are utilized to approximate the weights of each member BC 

model in time period s. 

Step 5: Predicted BC profile is generated as a weighted sum and used to correct the 

ECM-simulated voltage profile of the testing cell in time period s. 

3.1.1 Building Individual ECMs (Offline Phase) 

In the offline phase, ECMs individual to each cell needs to be established based on 

voltage and current measurements for all cells being involved. In this study, two ECMs are 

investigated: the SECM (as shown in Fig. 3(a)) and the ESC model (as shown in Fig. 3(b)).  

In order to obtain the ‘best-fit’ ECM parameters, a cost function has to be defined to 

quantify the modeling error.  The root-mean-square error of voltage simulation result is a 

widely used cost function in ECM parameter calibration for Li-ion batteries. The simplest 

cost function in this manner can be defined as, 

  
2

, ,

1 N

error mea k sim k

k

V V V
N

    (10) 
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with meaV  and simV  being the measured and simulated voltage of the battery cell, respectively. 

While as sometimes the importance of part of a test may be above the other parts, weighted 

integration can be defined to enhance the ability of the ECM for simulation the behavior of a 

cell under certain condition,  

  
2

, ,

1 N

error k mea k sim k

k

V V V
N

    (11) 

After determining a cost function, model parameter calibration can be carried out. 

Since no analytical solution can be obtained in the task of finding the ‘best-fit’ ECM 

parameters, stochastic algorithms which search in parameter vector space is widely used to 

obtain an approximation of the ‘best-fit’ parameters. In the scope of this study, the particle 

swarm optimization is adopted as the stochastic algorithm to find the ‘best-fit’ ECM 

parameters. 

3.1.2 Formulating Ensemble BC Model (Online Phase)  

During the time period s, the member BC model for each cell in the training set can 

be expressed as 

              , ,
,  

TR i TR i mea TR i sim TR i
MBC t V t V t c     (12) 

where 
 ,TR i mea

V  and 
 ,TR i sim

V  are respectively the measured and simulated voltages of the i th 

training cell, 
 TR i

c ,  denotes the set of all cells including training (denoted with subscript 

TR  ) and testing cells (denoted with subscript TS ). Denoting the testing cell as TSc  , the 

ensemble BC model EBC  of the testing cell can be formulated as a weighted-sum of the 

member BC models of the training cells as  

         TS TR i TR i
i

EBC t MBC t    (13) 
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where 
 TR i

  is the weight of the i th training cell which quantifies the similarity between 

training cell 
 TR i

c  and testing cell TSc . This study proposes a new optimization-based method 

for obtaining the BC weights (see Section 3.1.3). After obtaining the weights for all training 

cells and the corresponding  TSEBC t , the bias-corrected ECM-simulated voltage of the 

testing cell can be determined as:  

    , ,TS CORR TS TS simV EBC t V t    (14) 

3.1.3 Optimizing BC Weights (Online Phase) 

As discussed in the previous part, the objective here is to optimize the BC weights 

which based on the observed similarity between the testing cell and the training cells. To this 

end, the difference between the ensemble bias-corrected ECM-simulated voltage profile 

(
,TS CORRV ) for the testing cell TSc  and the measured voltage profile (

,TS meaV ) is minimized. The 

difference (Ψ) between these two voltage profiles can be defined as:  

 
, , , ,TS mea TS CORR TS mea TS simV V V EBC V          (15) 

Using Eq. (13), Eq. (15) can be rewritten as: 

 
    , , , ,TS mea TR mea TR sim TS simTR i

i

V V V V        (16) 

Let  
1

TR i
i

   , and Eq. (17) can be simplified as: 

 
          , , , ,TS mea TR mea TS mea TR meaTR i TR i TR i

i i i

V V V V              (17) 

The similarity between the testing cell and a training cell can be quantified as a 

parameter,  TR i
v , that is defined as the mean absolute difference between the measured 

voltages of the training and testing cells over the entire time period s.   
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        ,,

0,

1

s

TS meaTR i TR i meas

t T

v V t V t dt
T

  
 

  
    (18) 

where sT  is the duration of the time period s. Training cells which share more similarity 

with the testing cell in their electrical behavior should be assigned with higher weights. A 

squared exponential kernel is employed to define the weights of member BC models.  

 


2

2 2

1
exp

TR

TR

v


 





 
  

 
 

  (19) 

where σ and θ are two hyper-parameters that are estimated for each time period by 

minimizing the Ψ function in Eq. (17): 

         minimize 
TR i TR i

i

d v  d   (20) 

    subj. to. 1
TR i

i

d    (21) 

where  
T

, d is a vector of the two hyper-parameters. The weight of each member BC 

model can then be calculated using Eq. (19). With the optimized weights, the ensemble BC 

model for the testing cell in the time period s can be formed using Eq. (13).  
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3.2 Performing Ensemble Prediction of Bias Correction 

Table 1 shows the procedure of the proposed ensemble BC method. The objective of 

the method is to bias-correct the simulated voltage profile of the testing cell during a time 

period s that has a constant current profile. The bias correction uses an ensemble BC model, 

in which the weights of the member BC models are determined based on relevant 

measurements in the past. The relevant measurements are acquired from the training and 

testing cells during the most recent time period s’ that has the same current profile as the 

current period s.  The algorithm starts by defining the testing cell   and the training cells  

 (line 1). In the weight optimization step, the method first identifies the last time period   

which has the same current profile with that of s  (line 3). The parameter that quantifies the 

similarity between each training cell and the testing cell is calculated using Eq. (18) (line 5). 

The hyper-parameters of the squared exponential kernel are then optimized with Eq. (20) 

(line 6). Then the weights assigned to the member BC models are calculated using Eq. (19). 

In the ensemble prediction step, the member BC models of all training cells are first 

determined (line 10). Then, the time period that has the same current profile is identified and 

the corresponding weights are extracted (lines 11 and 12). Finally, the ensemble BC model 

for the testing cell during the current time period s is formed with Eq. (13) and applied to 

correct the simulated voltage profile (lines 13 and 14). 

Fig. 6 shows the flowchart of the proposed ensemble BC method when it is 

incorporated with EKF to estimate SoC online. It is worthy to point out that one of the major 

differences between the implementation of the proposed method in voltage simulation and in 

SoC estimation lies in the simulated voltage output. The simulated output voltage in the  
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Table 1. Procedure of the proposed ensemble bias-correction method 

Algorithm: Ensemble Bias-Correction 

1 Define the testing cell ( TSC  ) and training cells (  \
TR TS

c c  ) 

2 for s = 1: S do 

3 Start weight optimization:  

4  Identify the last time period  in which the same current profile is observed 

                       find    ' '

1: 1:
' |

s s s s

TS N TS N
s I t I t   

5 Calculate the similarity measures for the training cells: 

            
'

' ' '

{ } { }, ,'

1
| ( ) ( ) | \

s

s s s

TR i TR i mea TS mea TR TSs

t T

V t V t dt c c
T




   
  C     

6 Optimize the hyper-parameters in BC weights,  , d . 

     

     

 

' 'minimize |

subj.to

(

.

). |

( ) 1

s s

TR i TR i
i

TR i
i

 



 







d

d

d

 

7 Calculate optimal BC weights: 

     
   

 
' 2

'

2 2

( )1
( , ) exp

s

TR is s s

TR i TR i


 

 

 
  
 
 

d  

8 End weight optimization 

9 Start ensemble model formulation:  

10 Determine the member BC models for all training cell at time period s 
     

       , ,
( ) ( ) ( )s s s

TR i TR i mea TR i sim TR i
MBC t V t V t c  C  

11 Find the time period s’ that has the same current profile as in s. 

12 Load the weights of the member BC models for all training cells from time period s’ 

13 Form the ensemble BC model for the testing cells  

          ( ) . ( ) \s s s

TS TR TSTR i TR i
i

EBC t MBC t c c  C  

14 Correct ECM-simulated voltage profile 
      

, ,( ) ( ) ( )s s s

TS CORR TS TS simV t EBC t V t                    

15 End ensemble model formulation 

16 End for 

voltage simulation implementation is computed based on knowledge of true SoC value. 

However, in SoC estimation, the output voltage prediction is based on the SoC estimate in 

EKF. 
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Figure 6. Flowchart of Ensemble BC Formulation in EKF based SoC Estimation 
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CHAPTER 4 EXPERIMENTAL DESIGN AND DATA ACQUISITION 

Two experimental studies with single and multiple C-rate pulsing tests were 

conducted to demonstrate the effectiveness of the proposed ensemble BC method. This 

chapter presents the experimental design and testing results of two case studies. 

4.1 The NCR18650 and the Novonix HPC System 

Seven Panasonic NCR18650B cells from the same batch were used in the 

experimental studies. The basic parameters of these Panasonic cells are listed in the Table 2. 

The cells were individually tested under self-designed current profiles using the Novonix 

High Precision Charger (HPC) system. The measurement inaccuracy of the current and 

voltage sensors of the HPC system is less than 0.01%. The cells were placed inside the built-

in thermal chamber of the HPC system. The effect of temperature is neglect in this 

experiment and the test temperature was set at 30 oC. Fig. 7 shows the experimental setup. 

Table 2. Basic Electrical Properties of Panasonic NCR18650 Cells 

Nominal voltage 3.7 V 

Maximum operating voltage 4.2 V 

Minimum operating voltage 2.8 V 

Number of cells 7 

Mean of cell capacity 3.348 Ah 

Standard deviation of cell 

capacity 
0.008 Ah 
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Figure 7. Experiment Setup – HPC Test System 

4.2 Experimental Design 

The cells used in this experimental study are first tested to calibrate their 

characteristic. A set of experiments, including static capacity test, OCV-SOC test, were 

conducted for cell properties calibration. After quantifying the basic characteristics of the 

cells, experiments with two self-designed pulsing discharge profiles were conducted and the 

results are presented in this section. 

The seven cells were cycled with two self-designed pulsing profiles, namely single 

C-rate pulsing discharge (SCPD) test and multiple C-rate pulsing discharge (MCPD) test, as 

shown in Fig. 8(a) and (c). The SCPD test contained 20 repeated pulses, each consisting of a 

30-minute C/10 discharge and a 6-hour relaxation (see Fig. 8(a)). The MCPD test also 

contained 20 repeated pulses, each consisting a series of discharge pulses with different C-

rates (see Fig. 8(c)) and a 4-hour relaxation. Both pulsing profiles were designed to cycle 

cells on almost their entire SOC range (100-10%), so as to testify the applicability of the 

proposed method under different SOC levels. 
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4.3 Experiment Results 

The partial voltage profile measured from cell #3 under the SCPD test is shown in 

Fig. 8(b), and that measured from cell #5 under the MCPD test in Fig. 8(d). The experimental 

data from both pulsing discharge tests were used to demonstrate the proposed ensemble BC 

method. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8. Current and voltage measurements from SCPD and MCPD tests: (a and b) current and voltage 

profiles of cell #3 in SCPD test; (c and d) current and voltage profiles of cell #5 in MCPD test. 
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4.4 ECM Parameter Optimization 

With the experimental data of SCPD, individual ECMs are built for each cell in the 

experimental study. Two ECM topologies are investigated in the method validation process: 

the SECM, (Fig. 3(a)) which includes an OCV term, one Ohmic resistance and one RC pair; 

the ESC model (Fig. 3(b)) with all components of the SECM and two hysteresis voltage 

terms which quantifies the SoC-varying hysteresis and the instantaneous hysteresis. The 

weighted-sum cost function is adopted and the weights are defined as the inverse-proportion 

of the length of time of each pulsing Crate. The particle swarm optimization is used to 

optimize the model parameters. The ECM parameter optimization results are shown in Fig. 9.  

 
(a) 

 
(b) 

Figure 9. Equivalent Circuit Model Parameters: (a) SECM; (b) ESC  
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CHAPTER 5. VOLTAGE SIMULATION AND SOC ESTIMATION RESULTS 

5.1 Cross Validation for Performance Evaluation 

A 7-fold leave-one-out cross validation (CV) was used in this experimental study to 

evaluate the generalization performance of the proposed ensemble BC method. In each CV 

trial, the seven cells were grouped into two sets: a training set, which comprised six cells 

whose data was used to construct member BC models, and a testing set, using the only other 

cell as the testing cell. Individual ECMs for each cell being tested were built with data from 

the SCPD tests and the parameters of the ESC models were optimized by minimizing the 

average root mean square error (RMSE) of voltage simulation, as in Eq. (11), Section 3.1. 

The member BC models, representing knowledge of the systematic discrepancies of the 

individual ECMs, were then extracted for each cell in the training set by subtracting the 

simulated voltage profile from the measured voltage profile. For each kind of ECM topology 

investigated, the testing cell was first used to evaluate the effectiveness of the ensemble BC 

model in bias-correcting the testing cell’s ECM for more accurate estimation of the voltage 

profile, then the applicability of the method for SoC estimation is studied. When studying the 

voltage estimation accuracy, the effect of adaptive weights is compared to that of equal 

weights. As the leave-one-out CV is adopted and seven cells are involved in the study, the 

CV process was performed seven times, with each of the seven cells left out as the testing 

cell at a time. The CV trials were marked as CV#i (i = 1, 2, …, 7), where i is the index of the 

cell selected to be the testing cell.  
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5.2 Voltage Simulation Results 

The voltage simulation results from the SECM without and with bias correction are 

shown in Fig. 10 (CV#4), Fig. 11 (CV#6), of the SCPD and the MCPD tests, respectively. 

Fig. 12 (CV#3) and Fig. 13 (CV#5) shows that from the ESC model, of the SCPD and the 

MCPD tests, respectively. Simulation results for the entire SOC range are shown in all the 

figures and two zoom-in plots showing details at some discharging pulses are included in 

each figure. For simplicity, the results of voltage simulation by ensemble BC with equal 

weights are not shown in the figures.  

 
Figure 10. Comparison of SECM-simulated voltage profiles without BC/with ensemble BC (optimized weights) 

to measured voltage profile in SCPD test, CV#4 
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Figure 11. Comparison of SECM-simulated voltage profiles without BC/with ensemble BC (optimized weights) 

to measured voltage profile in MCPD test, CV#6 

 
Figure 12. Comparison of ESC-simulated voltage profiles without BC/with ensemble BC (optimized weights) 

to measured voltage profile in SCPD test, CV#3 
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Figure 13. Comparison of ESC-simulated voltage profiles without BC/with ensemble BC (optimized weights) 

to measured voltage profile in MCPD test, CV#5 

Table 3 and Table 4 summarize the voltage simulation errors, namely the root mean 

square error (RMSE), without BC and with ensemble BC of equal weights and of optimized 

weights, of the SECM and the ESC model, respectively.  

Table 3. Voltage simulation errors without/with ensemble BC of SECM 

Voltage Simulation 

RMSE (10
-3

V) 
CV#1 CV#2 CV#3 CV#4 CV#5 CV#6 CV#7 Overall Improvement 

SCPD, no BC 7.113 7.434 7.510 9.794 7.857 7.210 8.584 7.290 
 

SCPD, BC with 

equal weights 
1.572 1.348 1.277 2.722 1.297 1.525 1.811 1.651 79.2% 

SCPD, BC with 

optimized weights 
1.290 1.198 1.226 2.287 1.355 1.280 1.939 1.511 80.9% 

MCPD, no BC 5.752 6.284 5.888 8.073 7.663 7.189 8.235 7.012 
 

MCPD, BC with 

equal weights 
2.195 1.545 1.983 2.165 1.697 1.616 2.374 1.939 72.3% 

MCPD, BC with 

optimized weights 
1.525 1.305 1.441 2.001 1.460 1.541 1.938 1.602 77.2% 
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Table 4. Voltage simulation errors without/with ensemble BC of ESC model 

Voltage 

Simulation 

RMSE (10-3V) 

CV#1 CV#2 CV#3 CV#4 CV#5 CV#6 CV#7 Overall Improvement 

SCPD, no BC 3.270 2.470 2.783 3.577 3.445 2.728 4.348 3.232 
 

SCPD, BC with 

equal weights 
0.770 1.616 0.790 1.107 0.936 0.974 2.158 1.193 63.1% 

SCPD, BC with 

optimized weights 
1.070 1.246 0.609 1.793 1.184 0.643 1.705 1.178 63.5% 

MCPD, no BC 4.772 3.501 4.305 5.288 3.686 2.854 4.397 4.115 
 

MCPD, BC with 

equal weights 
1.476 1.427 0.982 2.045 1.052 2.236 1.903 1.589 61.4% 

MCPD, BC with 

optimized weights 
1.475 1.404 0.929 2.455 0.969 2.120 1.638 1.570 61.8% 

 

Five important observations can be made from the results. Firstly, the ECMs with 

ensemble BC can improve the voltage simulation accuracy. It is observed that the voltage 

simulation errors with ensemble BC are consistently smaller than those without, regardless of 

the topology of the ECM. The ensemble BC (optimized weights) method achieved an overall 

error reduction of more than 60% for both SCPD and MCPD tests. Secondly, the ensemble 

BC term generated using optimized weights slightly outperforms that with equal weights in 

terms of voltage simulation and conclusion can be drawn that the adaptive weights can 

effectively improve the modeling accuracy. Thirdly, the improvement to accuracy of voltage 

simulation is achieved regardless of the SOC level. Zoom-in plots of different cells show that 

the ensemble BC produces improve accuracy of voltage simulation at different SoC levels. 

Fourthly, the efficiency of improvement in voltage simulation is affected by the ‘dynamic 

level’ of the pulsing test profiles. Comparing the improvements in the SCPD test and the 

MCPD test, under same condition other than the current profile, the ensemble BC method 

can better improve the simulation accuracy of a ‘simpler’ current profile (i.e., SCPD). Finally, 

the remaining voltage simulation errors of SECM and those of ESC have the same magnitude. 
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These results suggest that the proposed method is capable of capturing the cell- and 

condition-dependencies of the ECM bias and improving the ECM modeling accuracy 

through ensemble BC. 

5.3 SoC Estimation Results 

As the proposed BC framework is found to be capable of reducing the voltage 

modeling error, it is implemented to estimate SoC with EKF. The ensemble BC with 

optimized weights is adopted. Fig. 14 (CV#1) and Fig. 15 (CV#5) show the SoC estimation 

results with the use of SECM on the SCPD test and the MCPD test, respectively. The 

estimation results with the use of the ESC model are shown in Fig. 16 (CV#2) and Fig. 17 

(CV#7). Each figure has two subplots: the first subplot shows a comparison between the true 

SoC and the estimated SoC, without and with ensemble BC; the second subplot shows the 

SoC estimation error without and with ensemble BC. Similar to the presentation in Section 

5.2, results from one trial is presented for each combination of testing current profile and 

ECM topology for simplicity of illustration. 

Table 5 and Table 6 present the RMSEs of SoC estimation with the use of the SECM 

and the ESC model, respectively. Three important observations can be made from the results. 

Firstly, the ensemble BC can consistently improve the SoC estimation accuracy with EKF 

when the SECM is adopted. Secondly, the SoC estimation accuracy of the proposed 

ensemble BC method with the ESC model is not improved consistently: for the SCPD test, 

the proposed method fails to improve the SoC estimation accuracy. Finally, the remaining 

SoC estimation errors, i.e. the overall RMSE, with the two different ECM topologies are 

close in their values and having the same magnitude for both the SCPD case and the MCPD 
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(a) 

 
(b) 

Figure 14. CV#1, SECM based SoC estimation results in SCPD test: (a) Comparison of SoC estimation results 

without/with ensemble BC; (b) SoC estimation Error without/with ensemble BC 
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(a) 

 
(b) 

Figure 15. CV#5, SECM based SoC estimation results in MCPD test: (a) Comparison of SoC estimation results 

without/with ensemble BC; (b) SoC estimation Error without/with ensemble BC 
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(a) 

 
(b) 

Figure 16. CV#2, ESC based SoC estimation results in SCPD test: (a) Comparison of SoC estimation results 

without/with ensemble BC; (b) SoC estimation Error without/with ensemble BC  
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(a) 

 
(b) 

Figure 17. CV#7, ESC based SoC estimation results in MCPD test: (a) Comparison of SoC estimation results 

without/with ensemble BC; (b) SoC estimation Error without/with ensemble BC  
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case, respectively. A discussion on the inconsistency in the improvement of SoC estimation 

accuracy is given in the next chapter.  

Table 5. SoC estimation errors without/with ensemble BC of SECM 

SOC Estimation 

RMSE: (10
-3

%) 
CV#1 CV#2 CV#3 CV#4 CV#5 CV#6 CV#7 Overall Improvement 

SCPD, no BC 11.022 11.626 11.522 15.395 12.101 11.145 15.199 12.573 
 

SCPD, BC with 

optimized weights 
2.668 3.163 3.092 5.797 3.535 2.811 4.379 3.635 71.1% 

MCPD, no BC 6.756 7.716 6.923 9.359 9.415 9.041 12.587 8.828 
 

MCPD, BC with 

optimized weights 
0.906 0.982 0.843 1.263 1.334 1.255 3.932 1.502 83.0% 

 

Table 6. SoC estimation errors without/with ensemble BC of ESC model 

SoC Estimation 

RMSE (10
-3

%) 
CV#1 CV#2 CV#3 CV#4 CV#5 CV#6 CV#7 Overall Improvement 

SCPD, no BC 1.478 2.329 1.853 2.027 1.545 1.894 2.826 1.993 
 

SCPD, BC with 

optimized weights 
1.825 4.160 2.860 4.840 1.896 3.068 4.058 3.244 -62.7% 

MCPD, no BC 3.946 2.227 3.598 4.775 2.332 1.222 2.016 2.874 
 

MCPD, BC with 

optimized weights 
0.762 2.103 0.570 2.024 1.126 3.085 2.791 1.780 38.1% 
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CHAPTER 6 DISCUSSION AND CONCLUSIONS 

6.1 The Effect of Inaccurate SoC 

Although it is observed that the proposed method can consistently improve the 

voltage simulation accuracy, the SoC estimation results are not showing consistent 

improvement. To this end, a case study was conducted to unveil the fundamental reason of 

why the proposed ensemble BC method cannot consistently reduce the SoC estimation error. 

In general, the effectiveness of the proposed method is under the influence of the 

modeling accuracy of the ECM. The two ECM topologies investigated are considered as two 

cases in the case study. To explain why the proposed method can succeed in improving the 

SoC estimation accuracy for the SECM but fail to do so for the ESC model. The two cases 

represent two different scenarios: (1) the overall simulation error, i.e., the difference between 

the ECM-simulated voltage and the measured voltage, is relatively large (SECM) and (2) the 

difference is relatively small. The explanation starts with how the ensemble BC terms were 

formed. The member BC models in the proposed method are defined as the difference 

between the training cells’ measured voltage and the ECM-simulated voltage (see Eq. (12)) 

and the simulated voltage is defined as the voltage simulation result from the adopted ECM 

with the current measurement as input into the ECM. Thus, at every time step in this process, 

the SoC value which is computed by coulomb counting is considered to be the true SoC. The 

member BC model value at each time step is, naturally associate with the true SoC value. 

However, during the process of estimating SoC with EKF, the SoC estimate which would be 

corrected with the knowledge of simulation error is different from the SoC value directly 
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calculated by coulomb counting. This difference in SoC value causes a difference in the 

ECM simulated output voltage (Fig. 18).  

 
Figure 18. Comparison of the difference in SoC and the change in simulated output voltage 

Although this difference is generally small as observed from experimental validation 

data, the direction and magnitude of this difference in the simulated output voltage is 

indefinite. In cases where the difference has the same magnitude and direction as the overall 

voltage simulation error, it can neutralize the effect of ensemble BC term (Fig. 19(b)). The 

overall simulation error is the difference between the ECM simulated voltage and the 

measured voltage. While, if the overall voltage simulation error is significantly larger than 

the difference, as in Fig. 19(a), the ensemble BC can still help to reduce the voltage 

simulation error as it can capture the systematical discrepancy.  
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(b) 

Figure 19. Comparison schematic of the relationship between Ensemble BC Term, the difference in simulated 

output voltage and overall simulation error. (a). SECM; (b). ESC model 

6.2 Summary of Experimental Validation 

This thesis has proposed an ensemble bias-correction (BC) method with adaptive 

weights for improving the accuracy in dynamic modeling of Li-ion batteries. An adaptive-

weighting scheme facilitates a systematic consideration of the cell- and condition-

dependencies of the model bias when forming the ensemble BC model, and thus allows for 

optimally combining the member BC models to maximize the bias-correction capability of 
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the ensemble. Results from an experimental study suggest that (i) the proposed ensemble BC 

method is capable of reducing the modeling error of an ECM under both single and multiple 

C-rate pulsing tests; (ii) the ensemble BC model with online adaptive-weighting can capture 

cell-to-cell variabilities; (iii) the proposed method can achieve satisfactory generalization 

performance, as verified by the CV and (iv) the proposed method can improve the voltage 

modeling accuracy of ECMs with different topologies. 

A EKF based SoC estimation approach is adopted to examine the practicableness of 

the proposed ensemble BC method in improving the SoC estimation accuracy. Two 

observations can be made: (i) the proposed ensemble BC method can improve the SoC 

estimation accuracy when the SECM is used and (ii) the proposed method cannot provide 

consistent SoC estimation improvement when the ESC model is adopted. Moreover, based on 

discussion in Section 6.1, the proposed method can be utilized to reduce the systematic 

modeling discrepancies when the overall modeling error is relatively large. 

6.3 Limitations and Future Work 

  As have been indicated in previous chapters, the proposed ensemble BC method 

has several limitations. Firstly, the practical usefulness of the proposed method is highly 

constrained by its strong assumption that the current profile of each training cell should cover 

exactly that of a testing cell. Thus, constructing a training data set that meets this assumption 

in practical applications would require numerous offline tests on training cells and these tests 

may be too expensive to be tractable or the training data set may be too large to be 

deployable by BMS. Secondly, the addition of the ensemble BC term may have an adverse 

effect on SoC estimation, since the term is not adaptive to the inaccuracy in SoC estimation. 

Further research should be conducted to: (i) loosen the assumption on the current profile to 
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make ensemble BC practically useful and (ii) modify the model to make the ensemble BC 

generating scheme adaptive to the inaccuracy in SoC estimation. 
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