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ABSTRACT

Studies have shown that feedback linearization can provide an effective controller for

many types of nonlinear systems. It is known, however, that these controllers are not

robust, in particular to model uncertainties as the feedback linearization process involves

canceling of nonlinearities in the dynamics using an exact model which is seldom avail-

able. Although there are several strategies to add robustness, recent work on sensitivity

theory has shown that it can provide the least conservative design for robust feedback

linearization. This is achieved by adjusting the control input to minimize the sensitivity.

The work in this thesis develops the robust feedback linearization (RFL) methodology

further by extending it to a new class of non-linear systems. This research presents a

methodology for designing a RFL controller in conjunction with previous work on inte-

grated robust optimal design (IROD) for hydraulically controlled multibody systems.

With growing world populations the total output of the agricultural industry will

need to increase with it. It has been shown that a significant portion of yield losses oc-

cur during harvest, and specifically at the header of the combine harvester. One way to

improve this is by improved header height tracking. Promising research has shown that

integrated mechanical plant and controller design can provide a better optimal controller

than previously possible, but those techniques focus on the mechanical system only and

do not account for hydraulic actuator dynamics. However, in practice, hydraulic systems

pose control challenges because they are highly nonlinear and the system parameters can

vary significantly. The proposed RFL methodology offers an ideal solution to this prob-

lem and the work in this thesis is dedicated to developing this methodology. Details are

given about the mechanical and hydraulic plants as well as the development of a nominal
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feedback linearization controller. Then the controller is rendered robust to uncertainties

in the bulk modulus by deriving the sensitivity dynamics and control adjustment. Fi-

nally, the controller performance is tested over a variety of simulated conditions and is

compared to the current industry standard, the PID controller. The results show that

the RFL controller greatly improves header height tracking with reduced input power

and is robust to bulk modulus uncertainties.
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CHAPTER 1. OVERVIEW AND BACKGROUND

The research presented in this thesis provides a new development and application of a

newly developed control design methodology for a class of nonlinear systems. The under-

lying control design methodology is called Robust Feedback Linearization (RFL), which

was developed in [1] as a part of doctoral research work. A sensitivity-based feedback

linearization technique was proposed that can account for parametric uncertainties and

the theory was demonstrated using a system consisting of a linear plant model actuated

with a double acting cylinder and a 4-way spool valve. The results showed good tracking

performance and that RFL can improve the robustness of the system, but due to the

computationally intensive nature and assumptions made, the applicability to complex

systems would be difficult. Recent graduate work presented in [2], attempted to utilize

MATLAB for the symbolic derivations and Simulink for the complex physical system

simulation. The methodology was demonstrated on the excavator bucket leveling con-

trol problem. Although the results showed good tracking and reduced robustness, it

was not compared to another controller, so there was no measurable performance ref-

erence. Additionally, the required knowledge of valve dynamics and chosen parameters

would make industry adoption doubtful. This thesis further develops the control design

methodology, improves its applicability, and expands its scope to incorporate a new class

of nonlinear systems. The methodology is demonstrated on a simulation of the combine

harvester header height control example and its effectiveness is shown by comparing it

to current industry standard classical controller.
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The structure of this thesis is as follows: this chapter presents relevant background in-

formation on feedback linearization, sensitivity theory, hydraulic system control, and the

combine harvester header height problem. Chapter 2 provides detailed development of

the RFL methodology including control non-affine feedback linearization and sensitivity

dynamics. Chapter 3 gives a generalized design strategy for designing a controller for a

hydraulically controlled multibody system. Chapter 4 will demonstrate the RFL control

theory and the general design strategy on the combine harvester header height example

and compare the results with the PID controller. Finally, Chapter 5 will summarize the

conclusions and suggestions for future research.

1.1 Robust Feedback Linearization

Feedback linearization is a control design strategy for control of nonlinear systems.

The feedback linearization strategy has been effectively used for control of nonlinear

systems when the system model is fairly accurate. Depending on the zero dynamics,

feedback linearization may not be able to guarantee internal stability [3], but it can

be used to design a controller for many difficult nonlinear systems and most types of

nonlinearities. [4, 5]. A benefit over many other nonlinear methods is that it does not

require determining a practical operating point. In some systems, such as with hydraulic

actuators, determining an operating point outside of the dead band is not possible, so

feedback linearization is an ideal choice. The basic idea behind feedback linearization

is to cancel the nonlinear part of the dynamics by transforming the system through

the use of a change of coordinates and a suitable control input. From here, a simple

linear controller can be designed for the system, which can be tuned using standard

techniques. This is another benefit over many other nonlinear control strategies, which

may have control parameters that are not directly related to the performance output in

an obvious way.
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Even though feedback linearization has good tracking performance [6, 7] the main

limitation is that it lacks robustness. Because the methodology involves canceling out

the nonlinear dynamics, a detailed knowledge of the system is required. The effective-

ness of the feedback linearization becomes model dependent. Early research attempted

to add robustness to feedback linearization using a Lyapunov approach to account for

parametric uncertainties such as in [8,9]. The Lyapnov approach has also been used more

recently in [10]. The drawback of this approach is that it requires an estimate of the

uncertainty bounds, which may not always be known, and could create an overly con-

servative controller. Another approach for robust feedback linearization is sliding mode

control [11, 12]. Even though sliding mode control is robust to uncertainties, because

it is based on fast switching inputs it may provide a discontinuous control input and

chattering. Developments in [13] attempt to overcome this by varying boundary layers.

Essentially, it is not forcing the error to zero, so even though chattering is lower, it is at

the expense of tracking performance. More recent research has focused on fuzzy logic for

robustification of feedback linearization. Examples of this are in [14,15] and a literature

review of other examples is given in [16].

The methodology presented in [1] proposed to use sensitivity theory to add robustness

to feedback linearization. The basic concept is to minimize the sensitivity, which is

defined as the change in performance as a result of perturbations in design variables.

Sensitivity theory has been around for over 70 years and was first discussed in [17]. Since

then it has been used in a variety of applications including sensitivity and performance

optimization and robustness analysis [18]. Early research focused on LQR problems

[19, 20] and proposed augmenting the sensitivity dynamics with the system equations.

With the introduction of the H∞ control theory by Zames in 1981 [21], which uses

bounded uncertainty, sensitivity theory became less popular. The drawback of using

bounded uncertainty is that it requires an estimate of the minimum and maximum

values and as mentioned earlier can add unnecessary conservatism to the controller.
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With advancements in technology, symbolic computation has become easier and as a

result, recent research has revisited sensitivity theory for robust control applications

[22]. The method proposed in [1] and developed further in this thesis provides the least

conservative design by using the sensitivity dynamics to add robustness to the feedback

linearization controller. This is achieved by adjusting the nominal feedback linearization

calculated input slightly to minimize the sensitivity with respect to uncertain parameters.

The needed adjustment is small enough such that the overall effect on the feedback

linearization performance is negligible [2].

1.2 Application to Hydraulic Systems

The robust feedback linearization control design process is ideally suited for a class of

nonlinear systems which cannot be linearized at an operating point. Hydraulic systems,

and specifically hydraulic actuators, fall into this class and are the focus application

of this research. Use of hydraulic actuators is common in industrial applications for

their high load stiffness, fast response, relative low cost, and ability to operate under

a variety of conditions [23, 24]. The mobile off-highway equipment industry uses fluid

power extensively for the benefits mentioned above, but even more importantly for the

high power density and flexible power transfer it can offer [25].

Despite the substantial use in practice, precision control of hydraulic systems has

proved challenging. Hydraulics by nature are highly nonlinear with the presence of

dead bands, discontinuities, square root terms in its dynamics, and other complexities

[26, 27]. Even with all these nonlinearities most industry control problems are solved

by linear control methods. Linearization techniques can allow for pole placement [28]

and pseudo derivative feedback control [29] in electro-hydraulic servo systems. These

systems may work well locally, but because it requires linearization at an operating

point, the performance deteriorates as the position deviates from the operating point.
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An additional challenge of hydraulic control is caused by model uncertainties. Examples

of these uncertainties are: supply pressure, density, bulk modulus, and friction [30, 31].

The bulk modulus in particular is difficult and expensive to measure in practice [32] and

can vary widely. The biggest factor that affects bulk modulus is entrained air. It has

been shown that even 1 percent entrained air can correspond to a 75 percent decrease

in bulk modulus [33]. Attempts have been made to regulate and measure bulk modulus

online using an onboard vacuum degassing system in [34], but there are a number of

other factors that can affect bulk modulus as well. These include temperature, pressure,

and pipe compliance [35]. Hydraulic engineers often use a much lower bulk modulus than

stated by the fluid supplier when designing a hydraulic system in an attempt to account

for these variations.

The general design methodology presented in chapter 3 proposes a controller ideally

developed for these complex hydraulic systems. The focus is on actuator functions of

off-highway equipment, but could easily be expanded to other hydraulic applications.

The methodology uses two separate control strategies, one for the multibody mechanical

system and one for the hydraulic system. The former is fulfilled by Integrated Robust

Optimal Design (IROD) proposed in [1, 22] with the latter being the Robust Feedback

Linearization (RFL) controller presented in this thesis. The RFL controller is made

robust with respect to bulk modulus uncertainties.

1.3 Combine Harvester Header Height Control

The demand for increased productivity in agricultural continues to grow with world

population growth. The projected world population in 2050 is over 9 billion people [36],

an increase in 30 percent from today, but the number of people working in agriculture

continues to drop. In 1900, 41 percent of the workforce was employed in agriculture,

by 2000 it was down to only 1.9 percent [37]. One of the most important technological
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advances that has made this possible is agricultural equipment. Even though agricultural

equipment has allowed new levels of productivity never seen before, it must continue to

get more efficient as population grows and labor declines. To become more efficient, yield

losses must be minimized, because it is estimated that up to 12 percent of a soybean

crop is lost during harvest alone [38] and can be even higher for other types of crops.

One important piece of equipment in the harvesting process is the combine harvester,

see Fig. 1.1. There are a number of causes for harvest losses, but an estimated 75

percent of the losses occur at the header [39]. One contributing factor to this is missed

crop by the header, especially for low lying plants such as soybeans. Automatic header

height control attempts to decrease harvest losses, reduce operator fatigue, and protect

equipment from damage [40], but has proven to be a challenging control problem. Harvest

is a critical time where there is a very small window to achieve maximum yields. For

example, soybeans should be harvested once dried to 13 percent, but once below 10

percent damage can occur which increases losses [41]. Weather can make it impossible

to get in the field and harvest during a portion of this ideal window, so it becomes even

more critical to get crop out as quickly as possible when conditions are right. In terms

of the combine harvester, this means speed and productivity can play an important

role in decreasing losses. Increased speed makes header height tracking more difficult,

so operators instinctively run the header higher off the ground to prevent equipment

damage [40]. Thus, the goal becomes increasing speed while also maintaining accurate

header height tracking.

Automatic header height control was first seen in the 1950s and 1960s with a number

of patents coming out during that time [42–44] and authors recognizing it as a desirable

feature [45–47]. Early development involved on-off control [46], and even by the turn of

the century on-off control was still considered the standard on state-of-the-art combines

[48]. Proportional control was later introduced using PID [49] and LQR [48] control

methods. Around the same time, a focus was on the sensors used to track the ground
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Figure 1.1: Schematic diagram of a typical combine harvester.

profile such as ultrasonic [50] and tactile feedback sensors [51]. More recently, a study

was completed analyzing the fundamental limitations of the combine harvester header

height control due to the mechanical plant [52]. It suggested that even the best optimal

controller still may not be sufficient due to structural limitations. To overcome this,

integrated plant and controller design was proposed in [22] and [53]. In doing this,

certain mechanical plant parameters are designed concurrently with the controller to

achieve a more optimal design than originally possible. In [53], a H∞ controller is used,

while in [22] a new methodology, IROD, is introduced which is shown to achieve better

tracking performance than H∞. In both works, the focus is on the mechanical system

and the hydraulic dynamics are idealized, such that the hydraulic actuator can provide

perfect force. This, of course, is not the case, because a control valve must regulate flow

into and out of the cylinder to increase or decrease the pressure, which is directly related

to the force output. For this reason, a separate hydraulic controller needs to be designed.

This is the control problem that will be addressed in this thesis by designing a robust

feedback linearization (RFL) controller for the combine harvester header height hydraulic

control system. This controller will be paired with the IROD controller designed in [22]
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and tested in simulation over a variety of conditions. The IROD/RFL controller will

be compared to the current industry standard, the PID controller, in terms of tracking

performance and required control input to the system.
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CHAPTER 2. ROBUST FEEDBACK LINEARIZATION

2.1 Non-Affine Feedback Linearization

Standard input-output feedback linearization is limited to nonlinear systems of the

form:

ẋ = f(x) + g(x)u

y = h(x) (2.1)

where, x ∈ <n is the state vector, u ∈ <p is the vector of inputs, and y ∈ <m is the vector

of outputs. The process involves finding a coordinate transformation of the nonlinear

system such that it is transformed into an equivalent linear system through a change of

variables and suitable control input. If the system in Eq. (2.1) is feedback linearizable, a

control input can be applied according to the control mapping given in Eq. (2.2), which

will render a linear input-output map from a new input ν to the output.

u = α(x) + β(x)ν (2.2)

Many systems, especially hydraulic systems are not always control affine and rather

take the more general form of Eq. (2.3)
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ẋ = f(x, u)

y = h(x) (2.3)

Traditional feedback linearization techniques do not work for these systems, though

several design strategies exist. The technique presented in [54, 55] and shown below

attempts to turn the original system into an extended control affine system by redefining

the states and state equations. To do this, we let a new manipulated input to the system,

w be defined as w = u̇, and let u be an additional state variable such that the new states,

x̄ are defined as: x̄ = [xT uT ]T . Now the system can be represented as a control affine

system:

˙̄x = f̄(x̄) + ḡ(x̄)w

y = h(x̄) (2.4)

where:

x̄ =

 x

u

 , f̄(x̄) =

 f(x, u)

0

 , ḡ(x̄) =

 0

1

 , (2.5)

From here the standard input-output linearization design procedure can be used with

the extended system. Differentiating the output, y, with respect to time to yields:

ẏ =
dh(x̄)

dt
=
dh(x̄)

dx̄

dx̄

dt
=
dh(x̄)

dx̄
[f̄(x̄) + ḡ(x̄)w] = Lf̄h(x̄) + Lḡh(x̄)w (2.6)

where, Lf̄h(x̄) = dh(x̄)

dx̄
f̄(x̄), is called the Lie Derivative of h with respect to f̄ , and likewise,

Lḡh(x̄) = dh(x̄)

dx̄
ḡ(x̄) is called the Lie Derivative of h with respect to ḡ. If Lḡh(x̄) = 0, then



11

the output rate of change, ẏ, is not dependent on input, w, and cannot be controlled.

Taking time derivative again:

ÿ =
d(Lf̄h(x̄))

dx̄
[f̄(x̄) + ḡ(x̄)w] = L2

f̄h(x̄) + LḡLf̄h(x̄)w (2.7)

If LḡLf̄h(x̄) is still zero, higher derivatives are taken such that:

y(r) = Lr
f̄h(x̄) + LḡL

r−1
f̄

h(x̄)w (2.8)

until LḡL
r−1
f̄

h(x̄) 6= 0. Note that because of the integrator acting on the input, the

relative degree of the extended system is r = ρ+ 1, where ρ is the relative degree of the

original non-affine system. The coordinate transformation comes from the first (r − 1)

derivatives, which transforms the system from the original x̄ coordinate system into a

new z coordinate system.

z =



z1(x̄)

z2(x̄)

...

zr(x̄)


=



y

ẏ

...

y(r−1)


=



h(x̄)

Lf̄h(x̄)

...

Lr−1
f̄

h(x̄)


(2.9)

The resulting linearized system, shown in Eq. (2.10) is a cascade of r integrators and the

transformed input, ν, which we define according to Eq. (2.11).



ż1(x̄)

ż2(x̄)

...

żr(x̄)


=



z2(x̄)

z3(x̄)

...

ν


(2.10)
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ν = y(r) = Lr
f̄h(x̄) + LḡL

r−1
f̄

h(x̄)w (2.11)

If we solve for w in Eq. (2.11), then the linearizing feedback control mapping can be

calculated as:

w =
ν − Lf̄

rh(x̄)

LḡLf̄
r−1h(x̄)

(2.12)

or putting it in terms of the original input:

u̇ =
ν − Lf̄

rh(x̄)

LḡLf̄
r−1h(x̄)

(2.13)

where ν can be chosen according to Eq. (2.14) with reference signal R.

ν = K(R− z) = K1(R− y) +K2

d(R− y)

dt
+ · · ·+Kr

dr−1(R− y)

dtr−1
(2.14)

The gains K1,K2, ...Kr are chosen to stabilize the system. Theoretically higher gains

will result in better tracking performance, but too high of gains can result in high fre-

quency oscillations or chattering, especially with the higher derivative terms and could

lead to instability. The block diagram for the feedback linearization control structure is

shown in Fig. 2.1.

2.2 Robust Control Design

Feedback linearization controllers by nature lack robustness, because the calculated

control input from Eq. (2.13), is highly dependent on accurate knowledge of the system.
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Figure 2.1: Feedback linearization control structure for a general control non-affine sys-
tem.

This can become problematic if there are parameters in the system equations which are

uncertain. This could be due to difficult to measure parameters, constantly changing pa-

rameters, or deterioration due to normal wear and tear. To account for this, the nominal

feedback linearization controller will be made more robust to a select uncertain parame-

ter. This is done by augmenting the system with sensitivity dynamics and adjusting the

control input to minimize this sensitivity.

2.2.1 Introduction to Sensitivity Dynamics

Parametric sensitivity describes how a system changes due to variations in a given

parameter. For a continuous plant model, the parametric sensitivity is calculated by

differentiating the dynamical state equations with respect to the uncertain parameter or

parameters that are subject to change. Ideally, a system will have a very small change

in performance for a given change in an uncertain parameter.

Consider a generic linear system in Eq. (2.15) where x ∈ <n is the state vector,

u ∈ <p is the vector of inputs, y ∈ <m is the vector of outputs, and b ∈ < is an unknown

parameter. This technique can also be extended to a system where b ∈ <k is a vector of

multiple unknown parameters, but it will be assumed to be a scalar in this study.
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ẋ = f(x, b) + g(x, b)u

y = h(x, b) (2.15)

The sensitivity dynamics of Eq. (2.15) can be calculated as:

dẋ

db
=
df

db
+
dg

db
u =

∂f

∂b
+
∂f

∂x

∂x

∂b
+
∂g

∂b
+
∂g

∂x

∂x

∂b
u

dy

db
=
dh

db
=
∂h

∂b
+
∂h

∂x

∂x

∂b
(2.16)

which, can be written more simply as:

ẋb(x, xb, u, b) = fb(x, xb, b) + gb(x, xb, b)u

yb(x, xb, b) = hb(x,xb, b) (2.17)

where xb ∈ <n is the sensitivity state vector, yb is the output sensitivity, and elsewhere

the subscript b represents a full derivative with respect to the unknown parameter b,

mathematically written as:

(.)b =
∂(.)

∂b
+
∂(.)

∂x
xb (2.18)

It is implied that the control input, u, is independent of the unknown parameter, b.

In the case of feedback control, this does not hold true, because the output is used for

the control input calculation, so u is indirectly parameter dependent. Because of this,

the derivative of u with respect to b must also be considered. Due to the chain rule, the

sensitivity dynamics become:
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ẋb(x, xb, u, ub, b) = fb(x, xb, b) + gb(x, xb, b)u+ g(x, b)ub

yb(x, xb, b) = hb(x,xb, b) (2.19)

where ub = du
db

is the variation in control input to be designed in the next section.

2.2.2 Control design

Returning to the feedback linearization design of the system in Eq. (2.4), the sen-

sitivity dynamics can be augmented with the system equations as shown in Eq. (2.20).

Here, the (̄·) notation has been left out for simplicity in this section, but it can be applied

to the extended affine system in Eq. (2.4) with x = x̄, f = f̄ , and g = ḡ.

ẋ = f(x, b) + g(x, b)w

ẋb = fb(x, xb, b) + gb(x, xb, b)w + g(x, b)wb

y = h(x, b) (2.20)

yb = hb(x,xb, b)

The augmented state vector becomes X = [xT , xT
b ]T , and the system has two inputs, w

and wb, and two outputs, y and yb. The input w, is calculated from the nominal feedback

linearization control law in Eq. (2.12) and the input wb, is the variation in the control

input to be designed. The objective of robust feedback control input, wb is to minimize

the sensitivity and thus, make the system more robust. The stability and feedback

linearization for the sensitivity augmented system was first presented in [1] by way of

proving three theorems. It is shown that for the system in Eq. (2.20) the sensitivity of

the transformed input, ν can be calculated as:
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νb =
d

db
Lr

fh+
d

db
(LgL

r−1
f h · w) (2.21)

Applying the chain rule to the second term in Eq. (2.21), it becomes:

νb = Lr
fhb(x, xb) + LgL

r−1
f hb(x, xb)w + LgL

r−1
f h(x)wb (2.22)

where the subscript b follows the same convention as shown in Eq. (2.18). Solving for wb

in Eq. (2.22) the adjustment to the feedback linearizing control becomes:

wb = u̇b =
νb − Lr

fhb(x, xb)− LgL
r−1
f hb(x, xb)w

LgLf
r−1h(x)

(2.23)

where νb can be chosen according to Eq. (2.24) with reference signal Rb.

νb = Kb1
(Rb − yb) +Kb2

d(Rb − yb)
dt

+ · · ·+Kbr

dr−1(Rb − yb)
dtr−1

(2.24)

Because the desired sensitivity is 0, the sensitivity reference signal is Rb = 0. Applying

this to Eq. (2.24), it becomes:

νb = −Kb1
yb −Kb2

dyb
dt
− · · · −Kbr

dr−1yb
dtr−1

(2.25)

The gains Kb1
,Kb2

, ...Kbr are chosen to stabilize the sensitivity dynamics. As with the

nominal system, theoretically higher gains will result in better tracking performance, but

too high of gains can result in high frequency oscillations or chattering, especially with

the higher derivatives. The block diagram for the robust feedback linearization control

system is shown in Fig 2.2.
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Figure 2.2: Robust feedback linearization control structure for a general control non-
affine system.
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CHAPTER 3. DESIGN PROCESS OF A GENERAL

HYDRAULIC SYSTEM

The robust feedback linearization control design process is ideally suited for hydraulic

systems, specifically the control of hydraulic actuators. Fluid power (hydraulics) is used

extensively in the mobile equipment industry and is often used in conjunction with

electronics and software for control of the vehicle. This requires detailed knowledge of

both the hydraulic system and the multi-body dynamics of the mechanical system. In this

study two separate controllers are used to control the machine function. Robust feedback

linearization is used to design the hydraulic system controller, and the integrated robust

optimal design methodology is used to design the mechanical system controller, which

will be introduced in the next section. This chapter will explain the general design

methodology for a hydraulically controlled, multi-body machine.

3.1 Integrated Robust Optimal Design (IROD) Controller

This section provides a brief introduction to the methodology for integrated robust

optimal design (IROD), originally presented in [1, 22]. This methodology combines tra-

ditional sensitivity theory with relatively new advancements in Bilinear Matrix Inequal-

ity (BMI) constrained optimization problems, which provides the least conservative ap-

proach for robust control synthesis. By expressing the robustness in the form of sen-

sitivity, the synthesis process can be automated and allows the extension to integrated

design, where structural parameters can be designed concurrently with a controller.
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Figure 3.1: Closed loop system with IROD controller for a multi-body mechanical system.

The IROD methodology has been demonstrated in two application examples with

the general control structure as shown in Fig. 3.1. Here, there was no hydraulic system

involved, so the optimal control forces calculated from the IROD controller were added

to the operating point and fed directly to the mechanical plant. It was is compared to

the current state of the art sequential design methodology, H∞, which was set up in the

same control structure. The results showed that IROD provides a viable alternative for

robust controller synthesis and can offer better tracking, robustness, and control power

than the H∞ design method.

3.2 Overall Design Procedure

The overall design process for a general hydraulically controlled mechanical system

is given in Fig. 3.2. The first row involves the mechanical system, while the second

row involves the hydraulic system. The design process of each of these is completely

independent of the other. For example, the IROD controller design is only dependent on

the mechanical system plant parameters and likewise for the robust feedback linearization

controller and the hydraulic system. The final step links the mechanical and hydraulic

system plants, along with the IROD and robust feedback linearization controller, which

includes sensitivity dynamics, into a closed loop system for simulation.
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Figure 3.2: Process Flowchart for the design process of a general hydraulically controlled
mechanical system.

Figure 3.3 shows a high-level view of how these systems are connected. The overall

layout is the same as the IROD control structure, with the addition of the hydraulic

system. The desired control force, instead of going directly to the mechanical plant,

is used as the reference signal for the feedback linearization controller. The nominal

feedback linearization output, u, and the states, x, are used to calculate the sensitivity

dynamics and adjust the control input to minimize the sensitivity before being fed into

the hydraulic plant. Physically, this control input is the current to the hydraulic control

valve, which regulates flow to the hydraulic actuator. The actual hydraulic force from the

hydraulic actuator is then fed into the mechanical plant where the performance output

is measured. A more detailed control structure is shown in Fig. 3.4.
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Figure 3.3: High-level control structure of hydraulically controlled mechanical system
using IROD and robust feedback linearization controllers.
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CHAPTER 4. APPLICATION TO COMBINE HARVESTER

The design methodology proposed in the previous chapter is used to design a con-

troller for automatic header height control of the combine harvester. The schematic for

a typical combine harvester is shown in Figure 4.1. The objective is to improve tracking

performance of the header to the terrain as the combine is moving forward, while also

optimizing control inputs and making it robust to uncertain parameters. This would

allow for higher productivity due to fewer harvest losses and increased harvesting speed.

The controller designed for the mechanical system is based on the IROD methodology

presented in [1, 22], while the hydraulic controller is designed using the robust feedback

linearization presented in Chapter 2. The controlled system is then tested over various

travel speeds and terrain conditions to verify the performance and is compared to the

commonly used PID design.

4.1 Plant Modeling

The combine harvester was modeled and simulated using the MATLAB SimScape

environment. The model parameters were based off of a combine harvester produced by

John Deere. The plant was simplified to include only the components relevant to the

header height control while still capturing the critical machine dynamics.
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Figure 4.1: Schematic diagram of a typical combine harvester.

4.1.1 Mechanical plant model

The mechanical system was modeled using the first generation SimMechanics package

in MATLAB. The model includes a 2-dimensional representation of the combine body,

header lift mechanism, and tire dynamics. The complete model is shown in Fig. 4.2.

Figure 4.2: Mechanical plant model of combine harvester in SimMechanics
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The Combine Body block is a general body block that includes the estimated mass

and moment of inertia of all components on the combine harvester, besides the bodies

specified individually in the model. It also assumes the machine is loaded to approxi-

mately half of its grain capacity. All of the body specifications are given in Table 4.1.

The terrain input is modeled as a sine wave with varying amplitude and frequency. Be-

cause the height sensor is in the header, there is a delay between the input signal from

the sensor and the reaction at the front and rear tires. Since these distances are constant,

the delay can be calculated as a function of the combine harvester velocity. This delay is

modeled in MATLAB using the first order Pade approximation to get a transfer function

equivalent to the delays.

Table 4.1: Mechanical plant parameters for the combine harvester SimMechanics model.

Component Mass (kg) Inertia (kg −m2)
Combine Body 20,200 61,310
Feederhouse/Header 3,800 5060
Cylinder Body 15 1
Cylinder Rod 30 2
Front Wheel 440 301
Rear Wheel 176 64

The structural design variable chosen for integrated design is the pin joint location,

where the hydraulic cylinder rod connects to the feederhouse body. The IROD method-

ology is used to synthesize a controller and optimize the structural design variable con-

currently such that sensitivity, tracking error, and control power are minimized. The

nominal distance between the pin joint locations is 1.51m, but the proposed change is to

move it 6.36cm closer as shown in Fig. 4.3. The full IROD synthesis process is detailed

in [1, 22].
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Figure 4.3: Proposed design parameter change in combine harvester feederhouse/header
from the IROD controller synthesis.

4.1.2 Hydraulic plant model

The header height is actuated by two single-acting hydraulic cylinders, which are

controlled by two proportional 2-way poppet valves. One valve controls flow into the

cylinders from a high pressure pump line, while the other controls flow leaving the cylin-

ders, which returns to the tank or reservoir. The header height hydraulic schematic is

shown in Figure 4.4.

Since this study focuses on 2-dimensional planar mechanics, this diagram can be

simplified by using one single-acting cylinder, with twice the piston area. Additionally,

the prime mover and pressure compensated pump can be idealized by using a constant

pressure source. Finally, the check valves were replaced with closed positions in the

poppet valves. This is justified on the high pressure side because there is an external

check valve opposite to the valve, essentially acting as closed position. On the reservoir

side, it is assumed that the reservoir pressure is zero, so there would never be any pressure

to open the check valve. The simplified diagram was modeled using the SimHydraulics

package in MATLAB, which is shown in Fig. 4.5. The poppet valves are modeled as

2-way directional valves using pressure-flow tables. The selection and development of

the valve equations are explained in the next section. The remainder of the hydraulic

parameters used in the plant model are given in Table 4.2.
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Figure 4.4: Hydraulic schematic of header height control in a combine harvester.

Table 4.2: Hydraulic system parameters for the combine harvester SimHydraulics model.

Parameter Symbol Value Unit
Piston Area A 0.0127 m2

Piston Stroke L 0.587 m

Dead Volume V0 5× 10−5 m3

Pump Pressure Ps 2.14× 107 Pa

Tank Pressure Pt 0 Pa

Fluid Density ρ 867 Kg/m3

Fluid Bulk Modulus β 1.45× 109 Pa
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Figure 4.5: Hydraulic plant model of combine harvester’s header lift system in SimHy-
draulics
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4.2 Dynamic Equation Development

4.2.1 Hydraulic equations of motion

The hydraulic equations of motion will be developed for the system given in Fig.

4.6. The effects of leakage, resistance in the connections, and thermal changes will be

neglected.

Figure 4.6: Simplified hydraulic schematic for 2-D planar header motion of the combine
harvester.

The poppet valves chosen are the HydraForce SP16-20 and SP12-20 for controlling

flow in and out of the hydraulic cylinder, respectively. These valves are solenoid-operated,

two-way, normally closed cartridge valves. The flow is a function of the current applied

to the coil as well as the pressure drop across the valve. Performance flow curves for

the SP16-20 and SP12-20 are shown in Fig. 4.8 and can be found on the HydraForce

website [56].
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(a) Hydra Force SP16-20

(b) Hydra Force SP12-20

Figure 4.8: Hydra Force poppet valve performance plots showing flow as a function of
input current and differential pressure.
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A multivariable model can be calibrated for each of these valves using MATLAB’s

Curve Fitting Toolbox. The performance curve values were tabulated with an n dimen-

sional array for control current, a m dimensional array for differential pressure, and an

m×n dimensional array for the corresponding flow rates. Hysteresis effects were ignored

by taking an average flow rate for a given current and pressure. Since dead bands are

difficult to model mathematically, only data points above the cracking current were in-

cluded. Below the cracking current, there was assumed to be no flow, or leakage. The

flow-current relationship was modeled using a polynomial function:

q = a1 i+ a2 i∆p+ a3 i
2 + a4 i

2 ∆p (4.1)

where a1 to a4 are constants determined by the Curve Fitting Toolbox for each valve.

Additionally, weights were used to eliminate any negative flow rates at low current and

maintain dq
d∆p

> 0 (i.e higher flow at higher differential pressure). The constants for the

SP16-20 and SP12-20 valve equations are given in Table 4.3 in standard SI units for flow

and pressure . Plotting the equations over the same current and pressure ranges as the

supplier performance curves gives the plots shown in Fig. 4.10. The flow equations track

the tabulated data very will with an R-squared value of 0.981 and 0.971 for the SP16-20

and SP12-20 valves, respectively.

Table 4.3: Poppet valve polynomial equation constants

Constant SP16-20 SP12-20
a1 1.905× 10−3 1.990× 10−5

a2 1.948× 10−11 2.293× 10−12

a3 3.417× 10−3 3.619× 10−3

a4 3.519× 10−10 1.359× 10−10
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These equations hold for pressure ranges of 35-207 bar and 35-241 bar for the SP16-

20 and the SP16-12 valves, respectively. While the fit could be expanded for a larger

pressure range, it comes at the expense of worse tracking. This range was chosen based

on the expected operating range of the header height hydraulic cylinder. Other equation

forms could also be used with additional terms if higher accuracy is desired. Because a

standard valve equation contains a term with the square root of the pressure, using this

in Eq. (4.1) may also improve the fit. The equation used was simply modified from a

standard polynomial equation with only terms containing i included, such that the flow

is zero when control current is zero (cracking current).

Equation (4.2) describes the motion of a single acting hydraulic actuator, where X is

the cylinder position, V is the cylinder velocity, and q is the flow rate into the cylinder.

The remaining variables follow the same notation given in Table 4.2.

Ṗ =
β

AX + V0

(q −AV ) (4.2)

The hydraulic equations of motion can be found by combining the poppet valve

equation, Eq. (4.1), and the single-acting cylinder equation, Eq. (4.2). There will be two

different cases when combing the equations: raising and lowering the header, which is

when fluid is entering the cylinder by means of the SP16-20 valve or when fluid is exiting

by means of the SP12-20 valve, respectively. When raising, the pressure drop across the

poppet valve will be: ∆p = Ps − P . Whereas, when lowering, the pressure drop will be:

∆p = P − Pt or ∆p = P if the hydraulic reservoir pressure is zero. Additionally, for this

case the flow rate will be negative in Eq. (4.2). A single input current i will be used for

both cases; positive values will represent raising the header, while negative values will be

lowering. Because the poppet valve equations in Eq. (4.1) assume a positive input, the

notation, ī will be used in the lowering equations where ī = −i. Additionally, since the

constants for the flow equations differ for the two poppet valves, a1 - a4 will be replaced
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(a) Hydra Force SP16-20

(b) Hydra Force SP12-20

Figure 4.10: Estimated performance plots using a custom equation fit of poppet valve
tabulated data for flow rate as a function of input current and differential pressure.
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with b1 - b4 of the lowering case, where b1 - b4 represent the constants for the SP12-20

valve. The resulting equations are shown in Eq. (4.3) and Eq. (4.4).

i ≥ 0 : (4.3)

Ṗ =
β

AX + V0

(a1 i+ a2 i (Ps − P ) + a3 i
2 + a4 i

2 (Ps − P )−AV )

i < 0 : (4.4)

Ṗ =
−β

(AX + V0)
(b1 ī+ b2 ī P + b3 ī

2 + b4 ī
2 P +AV )

The output of the hydraulic system is the force provided by the hydraulic cylinder,

which is given by the following equation:

F = P A (4.5)

4.2.2 State-space model

From the hydraulic equations of motion, we can form a state space model for the

combine harvester header height hydraulic system according to Eq. (4.6), where x ∈ <n

is the state vector, i ∈ < is the input current, and F ∈ < is the force output.

ẋ = f(x, i)

F = h(x) (4.6)

Let the states be defined as: x = [X V P ]T , namely cylinder position, cylinder velocity,

and cylinder pressure, respectively. Then the state space system is given by:
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Ẋ

V̇

Ṗ

 =


V

1

m
(P A− Fload)

Eq. (4.3) or Eq. (4.4)


[
F

]
=

[
P A

]
(4.7)

Here, V̇ is the acceleration of the cylinder, which can be found from Newton’s second law

of motion: ΣF = ma. This will be a function of the mass, m, and the external load on the

hydraulic cylinder, Fload, which depends on the multi-body dynamics of the mechanical

system.

4.3 Controller Design

4.3.1 Nominal Feedback Linearization

The next step is to design the nominal feedback linearizing controller for the hydraulic

system given in Eq. (4.7). Because the equations are control non-affine, we will apply the

input-output feedback linearization technique presented in Chapter 2. First, the system

will be made control affine by redefining the states and input. Let w =
di

dt
, where w is the

new input to the system, and let i be an additional state variable. That is, x̄ = [xT i]T ,

where x̄ ∈ <n+1 is the extended state vector. Now the system can be represented as a

control affine system given below:
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Ẋ

V̇

Ṗ

i̇


=



V

1

m
(P A− Fload)

Eq. (4.3) or Eq. (4.4)

0


+



0

0

0

1


w

[
F

]
=

[
P A

]
(4.8)

The system in Eq. (4.8) has the same form as:

˙̄x = f̄(x̄) + ḡ(x̄)w

y = h(x̄) (4.9)

Calculating the Lie derivatives:

Lf̄h(x̄) =
dh(x̄)

dx̄
f̄(x̄) =

[
0 0 A 0

]


V

1

m
(P A− Fload)

Eq. (4.3) or Eq. (4.4)

0


i ≥ 0 : (4.10)

=
β A

AX + V0

(a1 i+ a2 i (Ps − P ) + a3 i
2 + a4 i

2 (Ps − P )−AV )

i < 0 : (4.11)

=
−β A

(AX + V0)
(b1 ī+ b2 ī P + b3 ī

2 + b4 ī
2 P +AV )
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Lḡh(x̄) =
dh(x̄)

dx̄
ḡ(x̄) =

[
0 0 A 0

]


0

0

0

1


= 0 (4.12)

The output rate of change, Ḟ , can be calculated as: Ḟ = Lf̄h(x̄) + Lḡh(x̄)w. Since

Lḡh(x̄) = 0, the output is not dependent on input, w, and cannot be controlled. Taking

the Lie derivatives again:

i ≥ 0 :

L2
f̄h(x̄) =

dLf̄h(x̄)

dx̄
f̄(x̄) (4.13)

=
AV − a1 i− a2 i (Ps − P )− a3 i

2 − a4 i
2 (Ps − P )

(AX + V0)2
[Aβ2 (a4 i

2 + a2 i) +A2 β V ]

LḡLf̄h(x̄) =
d(Lf̄h(x̄))

dx̄
ḡ(x̄) =

Aβ (a1 + a2 (Ps − P ) + 2 a3 i+ 2 a4 i (Ps − P ))

AX + V0

(4.14)

i < 0 :

L2
f̄h(x̄) =

AV + b1 ī+ b2 ī P + b3 ī
2 + b4 ī

2 P

(AX + V0)2
[Aβ2 (b4 ī

2 + b2 ī) +A2 β V ] (4.15)

LḡLf̄h(x̄) = −Aβ (b1 + b2 P + 2 b3 ī+ 2 b4 ī P )

AX + V0

(4.16)

Because LḡLf̄h(x̄) is non-zero, no higher derivatives need to be taken and the relative

degree of the extended system is r = 2. The derivatives can be formed into a linearized
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system, which is a cascade of 2 integrators, with the final derivative set equal to ν as

shown in Eq. (4.17) and Eq. (4.18).

ν =F̈ = L2
f̄h(x̄) + LḡLf̄h(x̄)w =

i ≥ 0 :

=
AV − a1 i− a2 i (Ps − P )− a3 i

2 − a4 i
2 (Ps − P )

(AX + V0)2
[Aβ2 (a4 i

2 + a2 i) +A2 β V ] + · · ·

(4.17)

+
Aβ (a1 + a2 (Ps + P ) + 2 a3 i+ 2 a4 i (Ps − P ))

AX + V0

w

i < 0 :

=
AV + b1 ī+ b2 ī P + b3 ī

2 + b4 ī
2 P

(AX + V0)2
[Aβ2 (b4 ī

2 + b2 ī) +A2 β V ]− · · · (4.18)

− Aβ (b1 + b2 P + 2 b3 ī− 2 b4 ī P )

AX + V0

w

Solving for w in Eq. (4.17) and Eq. (4.18), yields the control input of the affine system.

The short-hand way of calculating w is from Eq. (2.13), which is applied to the system

as shown in Eq. (4.19) and Eq. (4.20).
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w =
ν − Lf̄

rh(x̄)

LḡLf̄
r−1h(x̄)

i ≥ 0 :

=

ν −
AV − a1 i− a2 i (Ps − P )− a3 i

2 − a4 i
2 (Ps − P )

(AX + V0)2
[Aβ2 (a4 i

2 + a2 i) +A2 β V ]

Aβ (a1 + a2 (Ps − P ) + 2 a3 i+ 2 a4 i (Ps − P ))

AX + V0

(4.19)

i < 0 :

=

− ν +
AV + b1 ī+ b2 ī P + b3 ī

2 + b4 ī
2 P

(AX + V0)2
[Aβ2 (b4 ī

2 + b2 ī) +A2 β V

Aβ (b1 + b2 P + 2 b3 ī− 2 b4 ī P )

AX + V0

(4.20)

K1 and K2 are designed to minimize the error between the desired force and the

actual force according to Eq. (4.21). The gains selected based on experimental trials

were: K1 = 105 and K2 = 103.

ν = K1 (Fdesired − Factual) +K2

d(Fdesired − Factual)

dt
(4.21)

The equation states are X, V, P, and i. These can be found by solving the original

system in Eq. (4.8). In real time, X, the cylinder position, and P , the cylinder pressure,

can be measured directly from the plant, because an in-cylinder position sensor and

hydraulic pressure sensor would likely already be equipped on a combine harvester. The

cylinder speed, V can be found by taking the time derivative of X with respect to time.

Because the non-affine system was extended by defining a new input, the input current
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is not calculated directly. To calculate the actual input current to the hydraulic valve,

i, we just need to integrate Eq. (4.19) and Eq. (4.20) with respect to time.

To create the feedback linearization controller in Simulink, Eq. (4.19) and Eq. (4.20)

can be put into MATLAB Function blocks along with the known parameters in Table 4.2.

This can be done manually or via the matlabFunctionBlock command if the equations

are already derived in MATLAB. A switch block can be used to control the discontinuity

with the criterion set as i ≥ 0. To get the input current, i the signal is fed through an

integrator block with limits for the maximum current value. The Simulink diagram is

shown in Fig. 4.11.

Figure 4.11: Simulink diagram of the feedback linearization controller.
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4.3.2 Sensitivity dynamics

In order to adjust the input current to uncertainties and make the controller more

robust, we need to first calculate the sensitivity with respect to the uncertain parameter

or parameters. In this study, the uncertain parameter chosen is the hydraulic fluid bulk

modulus. The bulk modulus describes the stiffness of a given volume of fluid. It is

important in hydraulics because it affects the dynamics of the entire system and can

vary widely. Many factors can affect the bulk modulus such as temperature, system

pressure, and entrained air. To calculate the sensitivity dynamics with respect to the

bulk modulus, the system in Eq. (4.8) is differentiated with respect to β, shown in

Eq. (4.22). For simplicity, the subscript b will represent a full derivative with respect to

β according to Eq. (2.18).



Ẋb

V̇b

Ṗb

i̇b


=



Vb

1

m
(PbA− Fload)

Eq. (4.23) or Eq. (4.24)

0


+



0

0

0

1


wb

[
Fb

]
=

[
PbA

]
(4.22)

i ≥ 0 :

Ṗb =
a1 i+ a2 i (Ps − P ) + a3 i

2 + a4 i
2 (Ps − P )−AV

AX + V0

− · · ·

− Aβ (a1 i+ a2 i (Ps − P ) + a3 i
2 + a4 i

2 (Ps − P )−AV )

(AX + V0)2
Xb − · · · (4.23)

− Aβ

AX + V0

Vb −
β (a2 i+ a4 i

2)

AX + V0

Pb +
β (a1 + a2 (Ps − P ) + 2 a3 i+ a4 i (Ps − P )

AX + V0

ib
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i < 0 :

Ṗb =− b1 ī+ b2 ī P + b3 ī
2 + b4 ī

2 P +AV

AX + V0

+ · · ·

+
Aβ (b1 ī+ b2 ī P + b3 ī

2 + b4 ī
2 P +AV )

(AX + V0)2
Xb − · · · (4.24)

− Aβ

AX + V0

Vb −
β (b2 ī+ b4 ī

2)

AX + V0

Pb −
β (b1 + b2 P + 2 b3 ī+ 2 b4 P ī)

AX + V0

īb

The additional states from the sensitivity dynamics are Xb, Vb, Pb, and ib. These can

be found by augmenting the original system in Eq. (4.8) with the sensitivity dynamics in

Eq. (4.22) and solving the entire system. In real time, Pb the pressure sensitivity, can be

calculated by integrating Eq. (4.23) and Eq. (4.24) with respect to time. Because Fload,

the force acting on the hydraulic cylinder, is not dependent on β, the same mechanical

plant shown in Fig. 4.2 can be used to calculate Xb and Vb with input Fb. The easiest way

to implement this is to linearize the mechanical plant about the operating point, which

should be at the expected header height. The linearized system provides an accurate

representation of the true system, because the force sensitivity is much less than the

actual hydraulic forces going into the system and as a result, the system remains close

to the operating point. Finally, calculating ib, the input adjustment for sensitivity, will

be explained in the next section.

The Simulink diagram of the sensitivity dynamics calculation is shown in Fig. 4.12.

The diagram is set up in a similar way to the feedback linearization controller. MATLAB

function blocks are used for Eq. (4.23) and Eq. (4.24) with a switch controlling the

discontinuity. It’s important to note that the criterion of the switch is still dependent on

i and not ib. The integration gives Pb, which when multiplied by A calculates Fb. This

sensitivity force is fed into the linearized mechanical plant, which calculates Xb and Vb.
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Figure 4.12: Simulink diagram of the sensitivity dynamics calculation.

4.3.3 Robust Feedback Linearization

To minimize the sensitivity, feedback linearization is used for the sensitivity aug-

mented system. The simplest way of obtaining νb is by directly differentiating Eq. (4.17)

and Eq. (4.18) with respect to β, according to Eq. (2.22):
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i ≥0

νb =
A2 V (AV − a3 i

2 − a1 i+ a2 i (P − Ps) + a4 i
2 (P − Ps))

(V0 +AX)2

+
Aw (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps))

V0 +AX

+
2Aβ (a4 i

2 + a2 i) (AV − a3 i
2 − a1 i+ a2 i (P − Ps) + a4 i

2 (P − Ps))

(V0 +AX)2

−Xb

(
2A3 β V (AV − a3 i

2 − a1 i+ a2 i (P − Ps) + a4 i
2 (P − Ps))

(V0 +AX)3

+
A2 β w (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps))

(V0 +AX)2

+
2A2 β2 (a4 i

2 + a2 i) (AV − a3 i
2 − a1 i+ a2 i (P − Ps) + a4 i

2 (P − Ps))

(V0 +AX)3

)

+ Vb

(
A3 β V

(V0 +AX)2
+
A2 β2 (a4 i

2 + a2 i)

(V0 +AX)2
(4.25)

+
A2 β (AV − a3 i

2 − a1 i+ a2 i (P − Ps) + a4 i
2 (P − Ps))

(V0 +AX)2

)

+ Pb

(
Aβ2 (a4 i

2 + a2 i)
2

(V0 +AX)2
− Aβ w (a2 + 2 a4 i)

V0 +AX
+
A2 β V (a4 i

2 + a2 i)

(V0 +AX)2

)

− ib
(
Aβ2 (a4 i

2 + a2 i) (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps))

(V0 +AX)2

+
A2 β V (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps)

(V0 +AX)2
− Aβ w (2 a3 − 2 a4 (P − Ps))

(V0 +AX)

− Aβ2 (a2 + 2 a4 i) (AV − a3 i
2 − a1 i+ a2 i (P − Ps) + a4 i

2 (P − Ps))

(V0 +AX)2

)

+ wb

(
Aβ (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps))

V0 +AX

)
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i <0

νb =
A2 V (b1 i+ b3 i

2 +AV + P b2 i+ P b4 i
2)

(V0 +AX)2
− Aw (b1 + P b2 + 2 b3 i+ 2P b4 i)

V0 +AX

+
2Aβ (b4 i

2 + b2 i) (b1 i+ b3 i
2 +AV + P b2 i+ P b4 i

2)

(V0 +AX)2

−Xb

(
2A3 β V (b1 i+ b3 i

2 +AV + P b2 i+ P b4 i
2)

(V0 +AX)3

− A2 β w (b1 + P b2 + 2 b3 i+ 2P b4 i)

(V0 +AX)2

+
2A2 β2 (b4 i

2 + b2 i) (b1 i+ b3 i
2 +AV + P b2 i+ P b4 i

2)

(V0 +AX)3

)

+ Vb

(
A3 β V

(V0 +AX)2
+
A2 β2 (b4 i

2 + b2 i)

(V0 +AX)2
(4.26)

+
A2 β (b1 i+ b3 i

2 +AV + P b2 i+ P b4 i
2)

(V0 +AX)2

)

+ Pb

(
Aβ2 (b4 i

2 + b2 i)
2

(V0 +AX)2
− Aβ w (b2 + 2 b4 i)

V0 +AX
+
A2 β V (b4 i

2 + b2 i)

(V0 +AX)2

)

+ ib

(
Aβ2 (b4 i

2 + b2 i) (b1 + P b2 + 2 b3 i+ 2P b4 i)

(V0 +AX)2

+
A2 β V (b1 + P b2 + 2 b3 i+ 2P b4 i)

(V0 +AX)2
− Aβ w (2 b3 + 2P b4)

V0 +AX

+
Aβ2 (b2 + 2 b4 i) (b1 i+ b3 i

2 +AV + P b2 i+ P b4 i
2)

(V0 +AX)2

)

− wb

(
Aβ (b1 + P b2 + 2 b3 i+ 2P b4 i)

V0 +AX

)

Solving for wb in Eq. (4.25) and Eq. (4.26) yields the robust control adjustment for

the affine system:



46

i ≥0

wb =
V0 +AX

Aβ (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps))

[
ν

− A2 V (AV − a3 i
2 − a1 i+ a2 i (P − Ps) + a4 i

2 (P − Ps))

(V0 +AX)2

− Aw (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps))

V0 +AX

− 2Aβ (a4 i
2 + a2 i) (AV − a3 i

2 − a1 i+ a2 i (P − Ps) + a4 i
2 (P − Ps))

(V0 +AX)2

+Xb

(
2A3 β V (AV − a3 i

2 − a1 i+ a2 i (P − Ps) + a4 i
2 (P − Ps))

(V0 +AX)3

+
A2 β w (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps))

(V0 +AX)2

+
2A2 β2 (a4 i

2 + a2 i) (AV − a3 i
2 − a1 i+ a2 i (P − Ps) + a4 i

2 (P − Ps))

(V0 +AX)3

)

− Vb

(
A3 β V

(V0 +AX)2
+
A2 β2 (a4 i

2 + a2 i)

(V0 +AX)2
(4.27)

+
A2 β (AV − a3 i

2 − a1 i+ a2 i (P − Ps) + a4 i
2 (P − Ps))

(V0 +AX)2

)

− Pb

(
Aβ2 (a4 i

2 + a2 i)
2

(V0 +AX)2
− Aβ w (a2 + 2 a4 i)

V0 +AX
+
A2 β V (a4 i

2 + a2 i)

(V0 +AX)2

)

+ ib

(
Aβ2 (a4 i

2 + a2 i) (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps))

(V0 +AX)2

+
A2 β V (a1 − a2 (P − Ps) + 2 a3 i− 2 a4 i (P − Ps)

(V0 +AX)2
− Aβ w (2 a3 − 2 a4 (P − Ps))

(V0 +AX)

− Aβ2 (a2 + 2 a4 i) (AV − a3 i
2 − a1 i+ a2 i (P − Ps) + a4 i

2 (P − Ps))

(V0 +AX)2

)]
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i <0

wb =
V0 +AX

Aβ (b1 + P b2 + 2 b3 i+ 2P b4 i)
V0 +AX

[
− ν

+
A2 V (b1 i+ b3 i

2 +AV + P b2 i+ P b4 i
2)

(V0 +AX)2
− Aw (b1 + P b2 + 2 b3 i+ 2P b4 i)

V0 +AX

+
2Aβ (b4 i

2 + b2 i) (b1 i+ b3 i
2 +AV + P b2 i+ P b4 i

2)

(V0 +AX)2

−Xb

(
2A3 β V (b1 i+ b3 i

2 +AV + P b2 i+ P b4 i
2)

(V0 +AX)3

− A2 β w (b1 + P b2 + 2 b3 i+ 2P b4 i)

(V0 +AX)2

+
2A2 β2 (b4 i

2 + b2 i) (b1 i+ b3 i
2 +AV + P b2 i+ P b4 i

2)

(V0 +AX)3

)

+ Vb

(
A3 β V

(V0 +AX)2
+
A2 β2 (b4 i

2 + b2 i)

(V0 +AX)2
(4.28)

+
A2 β (b1 i+ b3 i

2 +AV + P b2 i+ P b4 i
2)

(V0 +AX)2

)

+ Pb

(
Aβ2 (b4 i

2 + b2 i)
2

(V0 +AX)2
− Aβ w (b2 + 2 b4 i)

V0 +AX
+
A2 β V (b4 i

2 + b2 i)

(V0 +AX)2

)

+ ib

(
Aβ2 (b4 i

2 + b2 i) (b1 + P b2 + 2 b3 i+ 2P b4 i)

(V0 +AX)2

+
A2 β V (b1 + P b2 + 2 b3 i+ 2P b4 i)

(V0 +AX)2
− Aβ w (2 b3 + 2P b4)

V0 +AX

+
Aβ2 (b2 + 2 b4 i) (b1 i+ b3 i

2 +AV + P b2 i+ P b4 i
2)

(V0 +AX)2

)]

The input current adjustment ib is found by integrating Eq. (4.27) and Eq. (4.28) with

respect to time. Kb1
and Kb2

are designed to stabilize the sensitivity output according to
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to Eq. (4.29). In general, the same gains of the nominal feedback linearization controller

provide a good starting point for the sensitivity gains, though it was found through

experimentation that the sensitivity gains could be increased higher before chattering

occurs. The gains selected were: Kb1
= 5× 106 and Kb2

= 5× 104.

νb = −Kb1
Fb −Kb2

dFb

dt
(4.29)

To implement the input adjustment controller in Simulink, it is set up similar to

the nominal feedback linearization controller. MATLAB function blocks are used for

Eq. (4.27) and Eq. (4.28) with the additional sensitivity states, as well as i, w, and νb. A

switch is used to evauluate the criterion with i and the output is integrated to calculate

ib, which is fed back into the input adjustment calculation. The simulink diagram is

shown in Fig 4.13.

The complete robust feedback linearization controller includes the nominal controller

computed in Eq. (4.19) and Eq. (4.20), the sensitivity dynamics in Eq. (4.22), and the

input adjustment for sensitivity robustness in Eq. (4.27) and Eq. (4.28). Additionally,

four gains were chosen in calculating ν and νb according to Eq. (4.21) and Eq. (4.29) to

stabilize the system. The complete Simulink diagram for this is shown in Fig. 4.14. Here

the final input to the hydraulic plant is given by the summation of the nominal feedback

linearization controller and the input adjustment calculation. For simplicity, the gains

in the ν and νb calculations are put into the system using a PID Controller block, with

KP = K1, KI = 0, and KD = K2. This could have also been implemented using gain

blocks and differentiating the signal with a derivative block for K2.
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Figure 4.13: Simulink diagram of the robust input adjustment controller.
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Figure 4.14: Simulink diagram of the complete robust feedback linearization controller.
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4.4 Results

A closed loop system was simulated in Simulink for the combine header lift system.

The system includes the Integrated Robust Optimal Design (IROD) controller designed

in [1,22], the robust feedback linearization (RFL) controller designed in the previous sec-

tion, and the hydraulic and mechanical plant models. The combine terrain is modeled

as a sinusoidal surface with varying amplitudes and frequencies. Because the sinusoidal

frequency is a function of both the vehicle travel speed and the terrain profile, we will in-

stead specify the terrain period, with units of length, and vehicle travel speed separately.

With any given pair, the input frequency can be calculated as shown in Table 4.4. Even

though the frequency of any pair is not unique, the time delay between the header and

the front and rear wheels is only dependent on the terrain period. For this reason, two

conditions may have the same input frequency, but the combine will respond differently.

For example, driving slowly over steep terrain will be different than driving quickly over

gradual terrain, despite going over the peaks and valleys at the same rate.

Table 4.4: Conversion table for combine travel speed and terrain period to equivalent
frequency in Hertz.

Terrain Period

7m 15m 25m 35m

V
e
h
ic

le
S
p

e
e
d

1 0.401 0.187 0.112 0.080

2 0.803 0.375 0.225 0.161

3 1.204 0.562 0.337 0.241

4 1.605 0.749 0.449 0.321

5 2.006 0.936 0.562 0.401

6 2.408 1.124 0.674 0.482

7 2.809 1.311 0.786 0.562

8 3.210 1.498 0.899 0.642

9 4.013 1.873 1.124 0.803

Figure 4.15 shows the simulation plots for the IROD/RFL controller under the follow-

ing condition: terrain period = 15m, terrain amplitude = 0.15m, travel speed = 6mph.
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The plots show accurate header height tracking with an RMS error of 0.83cm or 5.5

percent of the terrain amplitude and a maximum error of 4.28cm. The RFL controller

tracked the desired hydraulic force very well with an actual force RMS error of 55N or

0.044 percent of the desired force.

Figure 4.16 shows the difference between nominal feedback linearization and robust

feedback linearization by comparing the force sensitivity with respect to the bulk mod-

ulus. The nominal system is tested by disconnecting the sensitivity adjustment ib and

plotting the force sensitivity from the sensitivity dynamics. It can be seen from the

figure that for the given condition, the RMS sensitivity decreases from 1.919 × 10−6 to

6.009 × 10−9, an improvement of 99.7 percent. To put that in perspective, if the bulk

modulus decreases from 1.45 × 109 to 3.625 × 108, a decrease of 75 percent caused by 1

percent of entrained air [33], the actual force output of the hydraulic cylinder would be

off by 2,087N on average for the nominal feedback linearizion system. This could cause

major tracking and stability issues. For the robust system this change in bulk modulus

would only cause a 6.53N change in the hydraulic force on average. To compare the

cost of decreased sensitivity, we can compare the performance of the nominal feedback

linearization and see how it differs from the robust feedback linearization under the same

conditions. The performance plots of the nominal system are shown in Fig. 4.17. The

plots show that the effect in performance is very small. There is a slight decrease in the

hydraulic force tracking of the robust system (52N - Nominal, 55N - Robust), but has

no noticeable impact on the overall header height tracking.

To test a lower frequency and higher amplitude case, simulation was run for the

nominal and robust controllers with the following conditions: terrain period = 35m,

terrain amplitude = 1.0m, travel speed = 3mph. The IROD/RFL performance plot is

shown in Fig 4.18, with similar height and force tracking as the previous condition. The

sensitivity plots of the nominal and robust controllers are shown in Fig. 4.19, which show

a similar sensitivity improvement of 98.1 percent. Figure 4.20 shows the performance
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of the nominal controller, which is nearly equivalent to the robust controller, thus the

robust input adjustment for sensitivity has no noticeable impact on the header height

tracking performance.
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Figure 4.15: Simulation plots for IROD/RFL controller with terrain period = 15m,
terrain amplitude = 0.15m, travel speed = 6mph.
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Figure 4.16: Comparing force sensitivity of nominal and robust feedback linearization
with terrain period = 15m, terrain amplitude = 0.15m, travel speed = 6mph.
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Figure 4.17: Simulation plots for IROD and nominal feedback linearization controller
with terrain period = 15m, terrain amplitude = 0.15m, travel speed = 6mph.
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Figure 4.18: Simulation plots for IROD/RFL controller with terrain period = 35m,
terrain amplitude = 1.0m, travel speed = 3mph.
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Figure 4.19: Comparing force sensitivity of nominal and robust feedback linearization
with terrain period = 35m, terrain amplitude = 1.0m, travel speed = 3mph.
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Figure 4.20: Simulation plots for IROD and nominal feedback linearization controller
with terrain period = 35m, terrain amplitude = 1.0m, travel speed = 3mph.
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To benchmark the performance of the control system designed in this study, it was

compared to a PID controller, which is commonly used in industry. For the PID system,

both the IROD and the robust feedback linearizing controller are replaced with a single

PID controller as shown in Fig 4.21. The input to the controller is the header height

tracking error and the output is the control current to the poppet valves. The gains were

initially tuned using the MATLAB Control Design toolbox. The toolbox automatically

linearized the plants and selected gains based on a standard step input for best reference

tracking. Then the gains were manually tuned by simulation under the same conditions

that would be used for the final simulation tests. The final gains selected were: Kp = 1.2,

KI = 1.6, and KD = −0.4. Note that this controller is likely much more aggressive that

would normally be used in this application, where it is common to use only a PI controller

for robust purposes, but we wanted to provide the best possible reference tracking for a

PID controller under the tested conditions for benchmarking.

Figure 4.21: Control structure of PID system for performance comparison.

The PID and the IROD/RFL controllers were simulated under a variety of identical

conditions. The simulations varied three parameters over 105 total simulations: combine

travel speed (1-10 mph), terrain sinusoidal amplitude (0.1 - 1.0 m), and terrain period

(7 - 35 m). The simulation time was set to 60 seconds and RMS height tracking error

and the mean fluid power were tabulated for every test. The fluid power was calculated
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from the product of cylinder pressure and flow rate. Because the lift cylinder is a single

acting cylinder, the power is non-zero only when i > 0. When i ≤ 0 the fluid is forced out

of the cylinder due to gravity, and besides the negligible electrical power to the control

valve, no power is used. Additionally, for the IROD/RFL system, RMS force tracking

error and RMS force sensitivity were also tabulated to verify the performance of just the

RFL controller compared to the nominal feedback linearization controller.

Figures 4.22, 4.23, 4.24, and 4.25 show the overall height tracking error of the PID and

IROD/RFL systems for 7m, 15m, 25m, and 35m terrain periods respectively, at various

terrain amplitudes and combine travel speeds. These plots show significantly better

header height tracking with the IROD/RFL controller compared to the PID controller,

where the IROD/RFL controller performed better in all 105 different simulations. In

fact, it can be seen that under the same ground conditions, the IROD/RFL controller

performed better at 10mph than the PID did at 2mph. Table 4.5 give the average

performance summary over all tested conditions for the PID and IROD/RFL controllers.

It shows that the IROD/RFL controller improves the header height tracking RMS error

by 84.1 percent and the maximum error by 71.1 percent with 4.05 percent less power

input compared to the PID controller.

Even though the results show that with the IROD/RFL controller combine harvesters

can travel over five times as fast with the same tracking tolerance, combines currently

do not have the capacity to travel at speeds up to 10mph while harvesting. To verify

performance over conditions which a typical combine would be harvesting, Table 4.6

shows a summary of tests where the travel speed was 5mph or less. This table shows that

the improvements of the slower speeds are nearly identical to the overall improvements

in Table 4.5. This implies that the header height tracking improvement is not a function

of the speed, but a user can expect approximately an 84 percent improvement in the

RMS error over all speed ranges.

Table 4.7 compares the performance of the IROD/RFL and the IROD/nominal feed-
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back linearization controller without the sensitivity adjustment. It shows that the robust

controller improves the sensitivity with respect to the bulk modulus by an average of

98.8 percent over all 105 simulations. By also comparing height tracking error, force

tracking error, and fluid power, it is seen that there is no decrease in performance when

adding the robust adjustment to the controller. This shows that besides the additional

development, there is no additional cost for the robust controller compared to nominal

feedback linearization.

Figure 4.22: Comparison between header height tracking error of IROD/RFL and PID
controllers at 7m terrain period and various travel speeds and terrain amplitudes.
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Figure 4.23: Comparison between header height tracking error of IROD/RFL and PID
controllers at 15m terrain period and various travel speeds and terrain amplitudes.

Figure 4.24: Comparison between header height tracking error of IROD/RFL and PID
controllers at 25m terrain period and various travel speeds and terrain amplitudes.
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Figure 4.25: Comparison between header height tracking error of IROD/RFL and PID
controllers at 35m terrain period and various travel speeds and terrain amplitudes.

Table 4.5: Performance comparison of IROD/RFL to PID over all tested conditions.

Metric PID IROD/RFL Improvement
Height Tracking RMS Error 7.73 cm 1.23 cm 84.1%
Height Tracking Max Error 21.08 cm 6.10 cm 71.1%
Fluid Power 2.22 kW 2.13 kW 4.05%
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Table 4.6: Performance comparison of IROD/RFL to PID where vehicle speed is 5mph
or less.

Metric PID IROD/RFL Improvement
Height Tracking RMS Error 5.76 cm 0.88 cm 84.7%
Height Tracking Max Error 17.33 cm 4.27 cm 75.4%
Fluid Power 1.69 kW 1.64 kW 2.96%

Table 4.7: Performance comparison of the nominal controller and robust controller over
all test conditions.

Metric Nominal Robust Improvement
Height Tracking RMS Error 1.2309 cm 1.2302 cm 0.06%
Height Tracking Max Error 6.1037 cm 6.1018 cm 0.03%
Force Tracking Error 259.01 N 258.03 N 0.38%
Fluid Power 2.134 kW 2.130 kW 0.19%
Force Sensitivity 2.03× 10−6 N

Pa
2.40× 10−8 N

Pa
98.8%
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CHAPTER 5. SUMMARY AND FUTURE WORK

The primary focus of this research work has been extending the robust feedback

linearization (RFL) methodology to control non-affine systems and applying it to the

combine harvester header height problem. Feedback linearization is often the best con-

troller for systems with minimum phase zero dynamics and are feedback linearizable,

but it is traditionally known for not being robust to parameter variations. The method-

ology presented in this work uses sensitivity dynamics to adjust the input to minimize

the effects of parametric uncertainties on the system. Previously, RFL could only be

applied to control affine non-linear systems, but this research expands the nominal and

robust controllers to the control non-affine systems as well, by extending the states and

defining a new input to the system. This increases the relative degree of the system by

one and does not solve for the initial input directly, but this can easily be accounted for

by integrating the calculated input.

The RFL method is ideally suited for hydraulically actuated systems and can be used

in conjuction with previous work on integrated robust optimal design (IROD) to design

a controller for a complete hydraulically controlled multi-body system. A general design

methodology is proposed in this work and is applied to the combine harvester header

height problem. Rigorous simulation testing showed that the IROD/RFL controller can

achieve very accurate header height tracking. It was compared to a PID controlled

system, which is commonly used in industry, and the IROD/RFL proved to have much

better tracking with lower input power. This could effectively reduce harvest yield losses

and increase harvest speed and productivity, which could save the agricultural producer
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on the bottom line as well as the consumer. Adding the robust adjustment to the control

input significantly reduced the sensitivity to the chosen uncertain parameter, the bulk

modulus. Comparing the performance of the nominal and robust system, it was seen

that adding the robust aspect did not diminish tracking performance.

The contributions of this work addressed implementation concerns by simplifying the

design process and increasing the usability. The major contributions of this thesis are:

1. Extending the methodology to control non-affine systems

• Hydraulic valve dynamics are rarely input affine and exhibit non-linear be-

havior.

• The example shown in Chapter 4 has an input with degree 2, and could be

expanded for higher degrees as well.

2. Defining the input as control current instead of spool/poppet valve position

• Although certain valves (servovalves) do have spool/poppet closed-loop feed-

back, this comes at an added expense and is not generally used in the mobile

equipment industry.

• Control current is the true input into the hydraulic plant and requires no

separate controller or conversion.

3. Reducing complexity involving the hydraulic equations of motion

• Early feedback suggested that design engineers in industry rarely if ever deal

with hydraulic equations of motion for valve dynamics.

• The valve equations were replaced with flow diagrams/tables directly from the

manufacturer, which do not require knowledge of actual valve specifications.

• The hydraulic actuator equation was still used, but this is more standardized

over all sizes and types and contains measurable parameters.
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The work presented here has made significant improvements in the development of

IROD/RFL, but there are still opportunities for improvement before implementing the

methodology for off-highway mobile equipment. Even though feedback linearization has

been made more robust to parametric uncertainties, it is still sensitivity to time delays.

This did not pose a problem for simulations, but in a physical system there will be small

time delays in the electronics and software architecture, which could cause tracking or

stability issues. There is a large amount of research on the topic of addressing time delays

in closed-loop systems and could be added to this controller. Similarly, it would be good

to include the valve dynamics, which could be included as a lowpass filter according to

the manufacturers specifications. This was not included in this study because of the

lack of time delay compensation. The simulations in this study were run in continuous

time, but using a discrete time system would bring it one step closer to implementation.

Mobile equipment often use CAN bus for networking and communication for sensors and

controllers on the machine. CAN bus is a message based protocol which sends specific

information over a preset transmission rate, essentially acting as a discrete time system

with a fixed step size. The next step would be to implement a hardware in the loop

test using physical controllers and communication methods, but closing the loop with

the simulated plants. Finally, the IROD/RFL controller can be tested on a physical

machine.

Expansion of the work could involve applying the IROD/RFL controller to different

applications. Possible applications include: smart feedrate control for cotton harvest-

ing, bucket level control for a wheel loader, and automatic boom height control for an

agricultural sprayer, among many others. To encourage industry use, the design process

could also be simplified by automating the controller and sensitivity derivations for fu-

ture applications of the RFL. All that would be required by the design engineer would

be selecting the hydraulic configuration/specifications and entering the flow charts for

the selected valves.
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