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CHAPTER 1 INTRODUCTION 

Biofuels 

Biomass is organic materials of recent biological origin [1]. Biomass can be 

converted to a variety of useful products such as transportation fuels, chemicals, and 

natural fibers [1]. One thing that differentiate biomass from other renewable energy 

sources like wind and solar energy is that it can be converted into liquid, commonly 

called biofuels [1, 2]. Ethanol and biodiesel are the most familiar biofuels in use 

today [2]. 

Biochemical & thermochemical routes 

There are two main two pathways for converting biomass into biofuels, i.e., 

biochemical and thermochemical. Biochemical processing of biomass uses enzymes 

and microorganisms to convert plant polymers into fuels, chemicals, or electric 

power [3]. Ethanol produced from fermentation is an example of biochemical route. 

Thermochemical processing of biomass uses heat and catalysts for the same 

purpose. Typical thermochemical routes include combustion, fast pyrolysis, 

gasification, hydrothermal liquefaction [3]. Hybrid pathway combines the two to 

achieve the conversion of biomass into transportation fuels. An example would be 

ethanol produced from fermentation of syngas produced by biomass gasification. 

Biochemical and thermochemical processing of biomass are distinct in many 

ways. Thermochemical conversion is rapid and takes much shorter time than 

biochemical conversions. Thermochemical conversion also eliminates the 

sterilization process which is necessary for most biochemical conversions. 
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Techno-economic analysis 

There are many distinct pathways under investigation for the conversion of 

biomass into transportation fuels. They all have advantages and disadvantages 

compared to each other. For example, thermochemical conversion of biomass 

avoids sterilization step and significantly accelerate the conversion at the cost of 

higher energy demand and thus higher operation cost when compared to 

biochemical pathways. It is thus crucial to determine which pathway has the greatest 

potential of economically competing with petroleum oil. 

Techno-economic analysis (TEA) has been utilized as a common tool to 

compare economic feasibility across various pathways [4-8]. It takes into account all 

the costs associated with the process of biofuel production and generates a 

breakeven price for the main product under certain financial assumptions. It is 

recognized as a powerful tool for evaluating economic feasibility by providing 

information about composition of capital cost, operation cost and breakeven product 

price. TEA provides decision makers with valuable information about process 

economics and facilitates comparison across processes involving distinct 

technologies and end products. 

Generally speaking, TEA compares cost and revenue for a specific process to 

understand the process economics. Input information for TEA falls into two 

categories. The first category is process-related, including plant capacity, product 

yield etc. The information may either come from published literature, or from a 

detailed process model using commercial software such as Aspen Plus and 

ChemCAD. Detailed mass and energy balance information is extracted from the 

modeling results and serves as important input for the subsequent analysis. The 

second category is economic assumptions that reflects common economic 
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conditions for the process under investigation. [9] provides useful assumptions for 

these processes. These assumptions include internal rate of return, interest rate, 

working capital, etc. The costs associated with a biofuel production system mainly 

includes capital investment and operation cost. Capital investment comprise 

investment for purchasing and installing process equipment, contingency, working 

capital, land cost, etc. [9, 10]. Operating cost includes feedstock cost, cost for utilities 

such as cooling water and superheated steam, waste disposal, labor cost, and 

maintenance cost, etc. [9, 10].  

Life cycle assessment 

Biofuel attracts public attention due to its potential environmental advantages 

over traditional fossil fuels [11, 12]. Since biomass is capable of fixing atmospheric 

CO2 during growth, production and consumption of biofuels effectively create a 

carbon cycle instead of releasing net carbon dioxide to the atmosphere as occurs in 

burning fossil fuels [13, 14]. It is hence imperative to quantify emissions from biofuel 

life cycle so that a comparison between biofuels and fossil fuels can be made. Life 

cycle analysis (LCA) is a common and powerful tool used for this purpose.  

Life cycle assessment (LCA) is an analytical methodology used for 

quantitative evaluation of energy, materials, wastes and emissions of a product 

system throughout its full life cycle along with an examination of associated 

environmental impacts [15]. The basic idea of LCA is to assess all environmental 

burdens associated with a product or service, from raw materials extraction to waste 

removal and treatment [16]. It is widely used as a tool of environmental effect 

assessment and decision making [17]. LCA has been seen both in academic 

literatures and reports targeting policy makers to describe the environmental impacts 
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associated with alternative production pathways and comparisons between several 

potential environment-related policy decisions [18-21]. 

Components of LCA 

A complete LCA consists of four components: (1) goal and scope definition; 

(2) inventory analysis; (3) life cycle impact assessment (LCIA); and (4) interpretation.  

Goal and scope definition plays a central role in LCA [16]. It defines many 

significant factors of a specific analysis, including the reason of a LCA, the goal, 

depth, the system to be investigated, system boundaries, functional units, main 

assumptions, the kind of impact assessment and valuation, etc. [16].  

Inventory analysis is the best developed part of LCA. It is also the most 

scientific and labor-intensive component [16, 22]. Inventory analysis requires that all 

activities related to the production of one functional unit of the product are analyzed. 

The activities investigated in inventory analysis include raw material extraction, 

production of intermediate products, production of the end product, consumption of 

the product and waste treatment [16]. Outputs of inventory analysis include co-

products, emissions to the environment, waste heat and solid wastes [16]. 

Life cycle impact assessment attempts to examine the potential environmental 

impacts of a product system [15]. It is performed for comparison among differing 

product systems as well as a more comprehensive understanding of the system 

investigated. Impact assessment associates inventory data with particular 

environmental issues using defined impact categories. The impact categories reflect 

environmental concerns related with common product systems. A list of impact 

categories can be found in Table 1 [16]. 

In practice, components that are identified to have adverse human and 

environmental effects for each impact category are targeted for inventory data 
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collection. The inventory data is converted into a numerical category indicator using 

simplified assumptions [15]. A simple example of category indicator is carbon dioxide 

equivalents obtained from all greenhouse gases. 

Four steps must be performed in order to convert inventory data into category 

indicator [16]: 

1. Classification: the process of assigning the parameters of the inventory data 

to the impact categories. 

2. Characterization: the process of transforming classified data quantitatively to 

indicate the contribution of the product system per functional unit to each 

category. 

3. Normalization: calculation of ratio of emission per functional unit to the total 

(global or national emission). 

4. Weighting (Valuation): subjective decision of weighting of each category. 

Interpretation aims at a critical evaluation of the LCA. It includes investigating 

impact assessment with mathematical tools such as sensitivity analysis and linking 

LCA with corresponding applications such as product development and 

improvement, strategic planning [16]. 
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Incorporation of geographic information into LCA 

Traditional LCA aims at evaluation total emissions associated with a product 

system. High level (i.e. country level) average data are usually utilized in the analysis 

for this purpose. The result of traditional LCA provides information on the 

environmental effect of a product system. However, regional information is missing 

from the results. That is to say, traditional LCA calculates the total emission of a 

product system while providing no information on where and when the emission 

occurs. In reality these information is valuable for understanding life cycle impact of 

emissions, especially non-greenhouse-gas emissions [23]. Also site-specific 

characteristics such as climate, soil type, water availability may have major impacts 

on the environmental impacts. For these reasons regionalized LCA has been a hot 

Table 1 List of categories [16] 

Input related categories (“resource depletion”) 
Abiotic resources (deposits, flows) 

Biotic resources 

Land 
Output related categories (“pollution”) 

Greenhouse gases 
Depletion of stratospheric ozone 

Human toxicological impacts 
Ecotoxicological impacts 
Photo-oxidant formation 

Acidification 
Eutrofication (including BOD and heat) 

Odor 
Noise 

Radiation 
Casualties 
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research topic in recent years where the location of emissions is reported as well as 

the total amount. Regionalized LCA is able to provide information such as: a) where 

the process has the least impact; b) optimal production chain design taking into 

account locally specific technology. Tessum et al. [23]  developed a spatially and 

temporally explicit life cycle inventory of air pollutants for gasoline and ethanol 

production and consumption. The model is capable of reporting spatial and temporal 

aspects of emissions. These information is then used as a basis for advanced air 

dispersion modeling [24-26]. Mutel and Hellweg [27] proposed a generic 

methodology to couple existing regionalized characterization factors with large life 

cycle inventory databases to allow for detailed geographic life cycle impact 

assessment results.  

Geographic information systems (GIS) has been integrated into life cycle 

inventory calculation to utilize geospatial information in LCA [28, 29]. Many of these 

studies use spatial grids for discretization and refinements of LCA results have been 

claimed.  It is found that appropriate spatial scale is a key to realizing the potential of 

regionalized LCA [30-32]. Appropriate spatial scales have to be selected in order to 

minimize spatial uncertainty of LCA results. However, this process leads to a 

heterogeneity of spatial units when conducting impact assessment, which makes the 

calculation of the regionalized impact assessment characterization factors more 

difficult [33].  

Uncertainty analysis 

Since many of the technologies for which TEA and LCA are conducted are 

still in early development stage, only limited information about them is available. 

There is hence intrinsic uncertainty associated with the results. In order for the 
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results of TEA and LCA to be more robust and informative, it is imperative to report 

the uncertainty together with the results.   

Uncertainties can be classified in many ways. Parameter uncertainty refers to 

uncertainty in observed or measured values used in a model, considering that 

parameters may be inherently variable and random. Scenario uncertainty relates to, 

for example, the normative choices in constructing scenarios and the inherent 

variability in scenario characteristics given various conditions such as geographical 

locations or situations. There also exists uncertainty associated with model structure 

or mathematical representation of the model. [34]  

Uncertainty of LCA results has been identified decades ago. Lloyd and Ries 

summarized common sources of uncertainty in LCA as listed in Table 2 [34]. 

Uncertainty of TEA has also attracted attention in recent years. Many 

researchers incorporated uncertainty analysis into their reports by considering 

probability distribution of model input parameters [35, 36]. Some analysis report a 

standard deviation as large as 25% [36]. Brown [37] analyzed probability distribution 

of the 20-year net present values (NPV) of six thermochemical cellulosic biofuel 

pathways. The results suggest that asymmetrical probability distributions increase 

the standard deviation of the NPV cumulative distribution by up to 35% relative to 

symmetrical distributions. Li et al. [38] compared TEA results of in-situ and ex-situ 

fast pyrolysis pathways for biofuel production. The results suggest similar breakeven 

selling price for in-situ and ex-situ catalytic fast pyrolysis but standard deviation of in-

situ pathway is higher than that of ex-situ pathway. 

Input uncertainty mainly derives from parameter variability. Sensitivity analysis 

or stochastic modeling are usually used to deal with input uncertainty. In sensitivity 

analysis, a group of parameter that have high impact on the result is identified first. 
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One parameter is varied at a time with several values while other parameters remain 

fixed [36]. The model runs again with the new data set and this process is repeated 

for each parameter. An alternative is to define a limited number of scenarios with 

specific but consistent realizations of each parameter and run the model for each 

scenario [39]. 

Table 2 Example sources of uncertainty in LCA [34] 

Sources of 
uncertainty Parameter Scenario Model 

Random error 
and statistical 

variation 

Parameter 
measurement 
error 

Imperfect fit of 
data to 
regressions for 
evaluating trends 
and forecasting 

Measurement 
error in physical 
constants or 
modeled 
relationships 
 

Systematic error 
and subjective 

judgment 

Methods for 
estimating missing 
data 

Developing 
scenarios based 
on past trends, 
using value 
judgment 

Extrapolating 
relationships from 
well-studied 
processes to 
similar processes 

Variability 

Inherent 
geographical, 
temporal and 
technological 
variability in 
parameter data 

Inherent variability 
in scenario 
characteristics 

Inherent variability 
in process 
relationships 
 

Inherent 
randomness 

Simplification of 
fluctuations in 
measured 
variables 

A scenario in 
which simplified 
characteristics are 
used 

Inconsistent 
process 
characteristics 
 

Expert 
uncertainty 

A single parameter 
value is not widely 
accepted 

Estimates of 
scenario 
characteristics 

Disagreement 
about process 
mechanisms and 
system behavior 
 

Approximation 
Characterizing 
parameters by a 
few important 
properties 

Choice of 
functional unit, 
allocation rules, 
system 
boundaries, cut-off 
criteria 

Simplifications of 
real-world 
systems, such as 
system boundaries 
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Stochastic modeling is one of the most popular methods employed to 

integrate uncertainty analysis into TEA and LCA. Stochastic modeling uses results 

from a large number of runs to investigate model uncertainty. It uses pre-determined 

probability distribution for each input parameter. Distributions that are used 

extensively include [39]: 

• normal distribution; 

• lognormal distribution; 

• triangular distribution; 

• uniform distribution. 

Each input parameter is first sampled from the pre-determined distribution. 

Usually thousands of samples are required to achieve satisfactory results. The 

model is then run for each sample combination of input parameters. The results from 

the runs are then used to infer the true distribution of the result. This method relies 

on the modern computing power since it requires many times of repetition of 

calculations with varied input parameters. Random sampling is the most common 

sampling method used in stochastic modeling, while other advanced sampling 

techniques such as Latin hypercube sampling were also employed for improved 

sampling efficiency. 

Uncertainty of the output is usually inferred using the results from stochastic 

modeling. The result may include an average value with boundary values and 

standard deviation, and cumulative distribution functions and /or probability density 

functions [34, 38]. 

Analytical methods can also be used for uncertainty analysis. It quantifies 

uncertainty of the results by building explicit mathematical expression for the 

distribution of the results [39]. It is based on a first-order approximation of Taylor 
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expansion of the underlying model [39]. The method is not widely applied due to its 

difficulty in implementation [39]. 

Non-traditional methods have also been employed in LCA uncertainty 

analysis. However, their applicability compared to the traditional methods is still 

controversial [34, 40]. Non-traditional methods have not seen many applications in 

TEA uncertainty analysis. 

The objective of this dissertation is to demonstrate a systematic methodology 

for evaluating economic and environmental performance of a biofuel production 

system with integrated uncertainty analysis. Chapter 1 introduces basics and 

fundamentals of related concepts. Chapter 2 demonstrates the TEA methodology 

with a case study of transportation fuels production from defatted algae hydrothermal 

liquefaction. Chapter 3 describes a TEA study to analyze the economic feasibility of 

co-located first and second generation ethanol plants. Chapter 4 evaluates the 

environmental impact of producing electricity from co-firing bio-oil co-firing fuel (BCF) 

with traditional coal. Chapter 5 demonstrates uncertainty analysis of TEA results by a 

case study of transportation fuel production via biomass gasification and mixed 

alcohol synthesis. 
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CHAPTER 2 TECHNO-ECONOMIC ANALYSIS OF CO-LOCATED 

CORN GRAIN AND CORN STOVER ETHANOL PLANTS 

A paper published in Biofuels, Bioproducts and Biorefining 

Longwen Ou, Tristan R. Brown, Rajeeva Thilakaratne, Guiping Hu, Robert C. Brown 

Abstract 

The goal of this paper is to evaluate the economic performance of co-located 

corn grain ethanol (Gen 1) and cellulosic ethanol (Gen 2) facilities. We present six 

scenarios to evaluate the impact of stover-to-grain mass (SGM) ratios on overall 

minimum ethanol selling price (MESP). For the Gen 1 plant, MESP is $3.18/ gasoline 

gallon equivalent (GGE) while for the Gen 2 plant it is $5.64/GGE. Co-located Gen 1 

and Gen 2 plants operating at the lowest SGM ratio of 0.4 generates the lowest 

overall MESP of $3.73/GGE as well as the highest MESP for cellulosic ethanol of 

$7.85/GGE. Co-located plants operating at the highest SGM ratio of 1.0 achieve the 

highest overall MESP of $3.94/GGE as well as the lowest MESP for cellulosic 

ethanol of $5.47/GGE. Sensitivity analysis shows that the prices of feedstocks have 

the greatest impact on the overall MESP. 

Introduction 

The goal of this paper is to evaluate the economic performance of co-located 

corn grain ethanol and cellulosic ethanol facilities, which has several advantages 

over separate facilities. Corn stover is the most abundant agricultural residue 

available in the U.S. [1], and is expected to be one of the single largest sources of 

lignocellulosic biomass in the country by the end of the decade [2]. Corn production 

and stover production occur on the same land and its use effectively increases the 

amount of biofuel feedstock that can be sustainably harvested per acre of cropland 
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by 30-51% [3]. Moreover, co-locating cellulosic ethanol and corn ethanol production 

plants has the potential to reduce the production costs of both pathways due to 

economies of scale, thus accelerating the commercialization of cellulosic ethanol and 

making corn ethanol more competitive with fossil fuels. Finally, co-locating the 

facilities increases the amount of bioenergy derived per acre of land, thereby 

decreasing the lifecycle emissions of both when measured on the same basis [4]. 

While such a reduction doesn’t benefit the corn ethanol pathway under the revised 

Renewable Fuel Standard (RFS2) due to its explicit production cap of 15 billion 

gallons per year (BGY), it could improve public perceptions of the pathway.  

Corn ethanol suffers from a number of drawbacks and has come under 

criticism in recent years. In 2011 nearly 46% of the U.S. corn crop, or 5 billion 

bushels, was used as corn ethanol feedstock [5]. Despite this high usage rate, fuel 

ethanol production for the same year equaled only 10% of gasoline production [6]. 

The diversion of such a large proportion of the U.S. corn crop to fuel ethanol 

production has driven fears that corn ethanol production causes chronic hunger in 

developing countries [7] and the destruction of rainforests in Brazil [8]. While more 

recent analyses have called into question the actual magnitude of these effects [9, 

10], the use of corn as a biofuel feedstock has remained controversial.  

Cellulosic ethanol has several advantages over corn ethanol from energetic, 

environmental, and economic perspectives. Cellulosic ethanol can be derived from a 

variety of lignocellulosic feedstocks including corn stover, switchgrass, hybrid poplar, 

and wood residues [11]. Lignocellulosic biomass is not a source of human nutrition 

and can be grown on marginal cropland and forestland, allowing cellulosic ethanol to 

avoid controversies over “food vs. fuel” and indirect land-use change. Furthermore, 

cellulosic ethanol has a better net energy balance than corn ethanol and contributes 
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less to direct-effect greenhouse gas (GHG) emissions than corn ethanol [11, 12]. 

Cellulosic ethanol has attracted significant attention in U.S. due to these advantages 

and, based on current construction, will account for nearly half of U.S. cellulosic 

biofuel capacity by the end of 2014 [13]. 

Co-locating a first generation (Gen 1) dry mill corn ethanol plant with a second 

generation (Gen 2) cellulosic ethanol plant is reported to be both technically feasible 

[14, 15] and capable of reducing cellulosic ethanol production costs [15]. However, 

the effects of different stover-to-grain mass (SGM) ratios on the economic feasibility 

of the co-located Gen 1+ Gen 2 plants have not been previously considered. The 

feedstock type mass ratio is linked to the sustainability of the pathway, since only a 

fraction of corn stover produced per acre can be sustainably removed for Gen 2 

ethanol production, it is important to quantify the impact of changing SGM ratios on 

the technical and economic feasibility of a Gen 1+ Gen 2 plant as a result. This 

paper quantifies these feasibilities via a comparative techno-economic analysis of six 

different process scenarios: a Gen 1 dry mill corn ethanol plant, a Gen 2 cellulosic 

ethanol plant using corn stover as feedstock, and a Gen 1+ Gen 2 plant under four 

SGM ratio scenarios of 0.4:1, 0.6:1, 0.8:1, and 1:1. Minimum ethanol selling prices 

(MESP) are calculated for each scenario. 

Methods 

Process modeling 

The models for the stand-alone Gen 1 and Gen 2 ethanol plants are based on 

models previously described in the literature [16-19], but with several important 

differences. First, the models used in the present study were constructed using 

ChemCADTM rather than SuperPro Designer® and Aspen PlusTM. Different 

compositions of corn grain and corn stover are assumed (see Table 1 and Table 2). 
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Moisture content of corn grain is assumed to be 15% while corn stover moisture is 

assumed to be 20% [17, 20] instead of 25% assumed in a previous National 

Renewable Energy Laboratory (NREL) model [18]. 

Table 1 Composition of corn [19]  
Component Mass% 

Starch 59.5 
Water 15.0 

Non-starch polysaccharides 7.0 
Other solids 6.7 

Protein - insoluble 6.0 
Protein - soluble 2.4 

Oil 3.4 
 

Table 2 Composition of Corn stover [17, 18] 
Components Composition (%) 

Extractives 6.608 
Cellulose 26.744 

Xylan 17.728 
Galactan 1.088 
Arabinan 3.264 
Mannan 0.464 
Lignin 8.552 
Ash 4.744 

Acetate 4.352 
Protein 1.792 

Soluble Solids 4.664 
Water 20 

 

In this analysis, both kinds of ethanol plants are assumed to have 30-year 

lifetimes, consistent with the assumption of Humbird et al. [17] but longer than 10-20 

year lifetimes assumed by several other studies [16, 18, 19]. Furthermore, a Lang 
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factor of 5.03 is used for both plants, which is higher than those used in previous 

reports.  

Gen 1 dry mill corn ethanol production 

Liquefaction

Saccharification Fermentor
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Rectifier

Beer column
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Slurry mix

Centrifuge

Evaporator

CO2 ScrubberHammer Mill

Ethanol

Enzyme
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Ammonia
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CO2
Yeast

Acid

Enzyme
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Figure 1 Schematic of a Gen 1 dry mill corn ethanol plant. 

 

Figure 1 is a schematic of the Gen 1 dry mill corn ethanol plant modeled in this 

study. Corn is received and cleaned using a blower and screens. The cleaned corn 

is fed to a hammer mill for size reduction. The ground corn is mixed with water, 

ammonia, lime and enzymes and undergoes liquefaction at 88 oC, where starch is 

broken down to oligosaccharides. The resulting oligosaccharides are then 

saccharified to glucose at 61 oC. Sulfuric acid is added to adjust pH in the tank and 

necessary enzymes are added. The glucose is then fermented to ethanol and carbon 

dioxide using yeast at 32 oC. Since the conversion of glucose to ethanol produces 

heat, cooling is necessary in the process of fermentation so that the temperature is 
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maintained to ensure high yeast activity. After flashing off vapor, the effluent from 

fermentation goes to a beer column where most of ethanol produced is captured. 

Rectification is then used to separate water from ethanol. Distillate from the rectifier, 

which captures more than 99% of the ethanol, feeds the molecular sieves to remove 

the remaining water, producing 99.6% pure ethanol. The bottoms from the beer 

column are dewatered by centrifugation. The liquid product is split and used as 

backset, while the rest goes to an evaporator, where water is recovered. The 

concentrate from the evaporator is mixed with the solid product from the centrifuge. 

The mixture is dewatered and concentrated further.  The product, known as distiller’s 

dried grains with solubles (DDGS), is sold as an animal feed. Thermal energy for 

liquefaction of cornstarch, distillation of ethanol, and drying of DDGS in the Gen 1 

plant is supplied by natural gas. 

Gen 2 ethanol derived from corn stover 
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Figure 2 Schematic of a Gen 2 cellulosic ethanol plant. 
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Figure 2 is a schematic of a Gen 2 ethanol production plant. Corn stover 

bales are received and delivered to a feed handling area for impurity removal and 

size reduction. From here, the washed and milled stover is fed to a pre-steamer 

reactor. Low pressure (LP) steam is added to remove non-condensable gases and 

reduce the pre-hydrolysis reaction heat requirement. Acid and high pressure (HP) 

steam are added to hydrolyze most of the hemicellulose to soluble sugars such as 

xylose, mannose, arabinose and galactose. The liquid portion is overlimed after 

being separated from the solids. After pH adjustment it is mixed with hydrolyzate 

solids from the solid/liquid separation step. The conditioned slurry is then mixed with 

purchased cellulase enzymes to saccharify the cellulose to glucose. The resulting 

glucose together with the sugars released in the hydrolysis of hemicellulose are co-

fermented to ethanol and carbon dioxide by the action of recombinant Z. mobilis, 

which is grown in a seed fermentation train of vessels in the process area. The beer 

from fermentation is fed into the beer column where almost all of the CO2 and about 

90% of water are removed. The vapor side draw from beer column then enters a 

rectifier to capture more than 99% of the ethanol. The distillate from the rectifier goes 

to molecular sieves to produce 99.5% pure ethanol by removing 95% of the water. 

The CO2 produced in fermentation and the vent of the beer column pass through a 

water scrubber before venting the gas. The water effluent from the scrubber is fed to 

the beer column. The bottoms of the beer column, which contains insoluble solids, 

are sent to a multi-effect evaporator. Lignin is separated from the slurry from the first 

stage of the evaporator by solid-liquid separation. The liquid portion is then returned 

to the second stage of the evaporator. The concentrated syrup from the evaporator 

is mixed with lignin and sent to a boiler, which supplies all the thermal energy 

required in the Gen 2 plant for pretreatment of stover, saccharification of cellulose 
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and hemicellulose, distillation of ethanol, and recovery of lignin and syrup from the 

distillation bottoms. The condensate from the evaporator is recycled to the process 

as relatively clean water.  

Combined heat and power (CHP) plant design for co-located Gen 1 and Gen 2 

plants 
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Figure 3 Schematic of the CHP plant. Stream types: steam (dash), water (solid), air (dash dot), flue 

gas (dot). 
 

Thermal energy for the co-located Gen 1 and Gen 2 plants is provided by a 

CHP plant, illustrated in Figure 3, co-fired by lignin and cornstover instead of natural 

gas, as is the case for a stand-alone Gen 1 plant. The fraction of corn stover that is 

combusted depends on the SGM ratio. The CHP plant also produces electricity in 

excess of plant requirements for power and is sold to the grid. Combustion occurs at 

20% excess air to generate superheated steam at 60 atm and 454 oC. This steam is 
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expanded through a turbine to 268 oC, 13 atm, which is split into three streams to 

meet the HP steam requirement of the Gen 2 plant, preheat boiler feed water to 177 

oC, and supply the second stage of turbine expansion to 164 oC, 4.42 atm. The LP 

steam exiting this expansion stage supports thermal energy requirements of both the 

Gen 1 and Gen 2 plants.  Excess LP steam is used to generate additional electricity. 

Efficiency of the turbine stages is assumed to be 0.85. Flue gas leaves the boiler at 

278 oC and is used to preheat compressed air to 204 oC.  

Economic analysis 

The first step in performing economic analyses of the Gen 1 dry mill ethanol 

and Gen 2 cellulosic ethanol plants are to build process models using ChemCADTM. 

The process data implemented in ChemCADTM are obtained from previously 

published papers [16-19]. The results from the ChemCADTM simulations are then 

used to estimate purchased equipment costs. Purchased costs of some simple 

equipment such as pumps are obtained directly from ChemCADTM. Purchased costs 

of the remaining equipment are derived from previous reports and publications and 

scaled according to the sizing results of the ChemCADTM simulations. The sum of 

purchased equipment costs is reported as total purchased equipment cost (TPEC). 

All prices are adjusted to 2012.  

Total project investment (TPI) cost is calculated as a function of TPEC. A total 

Lang factor of 5.03 is recommended for estimating TPI based on TPEC [21]. Table 3 

presents the methodology employed to calculate plant TPI. Operating cost is 

calculated using the output data from ChemCADTM and other available resources 

[16-19]. The results are imported into a Microsoft® Excel discounted cash flow rate of 

return (DCFROR) spreadsheet developed by NREL [22] in which MESP is calculated 

as a function of capital cost and operating cost. MESP is determined such that the 
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net present value equals zero at a 10% internal rate of return (IRR). Table 4 gives 

the main assumptions made to obtain the MESPs in this paper. Table 5 gives the 

prices of the main pathway input and output commodities, which are used to 

calculate operating costs and revenue. Since 2011 the prices of corn grain and 

DDGS have ranged widely from $5/bu to $8/bu and $200/ton to $300/ton, 

respectively [23]. A corn grain price of $6/bu ($236/metric ton) and a DDGS price of 

$245/ton ($0.27/kg) are employed in this analysis. Electricity price have ranged from 

$0.065/kwh to $0.074/kwh since 2011 [24]. An electricity price of $0.070/kwh is 

employed. The purchased cellulase price is taken such that it contributes $0.50/gal 

to Gen 2 ethanol production cost [17]. Prices of sulfuric acid, alpha-amylase, 

glucoamylase, yeast from previous papers [18,19] are adjusted to 2012 prices. 

The mass ratio of corn stover to corn grain in the production of a corn crop is 

estimated to be 1:1 [25]. Therefore, the maximum mass flow rate of corn stover 

available for ethanol production equals to the mass flow rate of corn if corn stover 

comes from the same location as corn. However, at least 40% of stover should be 

left on the field to ensure soil preservation by mitigating erosion.26 Therefore at most 

60% of stover can be sustainably harvested from the same location as the corn. In 

this paper, four SGM ratios are investigated: 0.4:1, 0.6:1, 0.8:1 and 1:1. Stover that 

exceeds 60% is either transported from other locations or from the same location on 

the occasion that it is demonstrated that more than 60% stover removal is 

agriculturally sustainable. The additional cost incurred either by transporting the 

exceeding part of stover or preservation of soil quality with more than 60% stover 

removal is dependent on plant location, feedstock availability and logistics and is 

difficult to account for. However, these addition costs can be treated as an increase 

in feedstock cost. Its impact on the overall MESP is discussed in sensitivity analysis. 
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Table 3 Ratio factors for estimating TPI [21]  
Direct Costs  
  Total purchased equipment cost (TPEC) 100 
  Purchased equipment installation 39 
  Instrumentation and controls (installed) 26 
  Piping (installed) 31 
  Electrical systems (installed) 10 
  Buildings (including services) 29 
  Yard improvements 12 
  Service facilities (installed) 55 
    Total installed cost (TIC) 302 
  
Indirect costs  
  Engineering and supervision 32 
  Construction expenses 34 
  Legal expenses 4 
  Contractor’s fee 19 
  Contingency 37 
    Total indirect cost 126 
  
  Fixed capital investment (TIC + indirect plant costs) 428 
  Working capital (15% of total capital investment) 75 
  Total project investment (Fixed capital investment + working 
capital) 

503 

 

Summarizing, six different scenarios are developed in the present study: a 

Gen 1 dry mill corn ethanol plant (Scenario A), a Gen 2 cellulosic ethanol plant using 

corn stover as feedstock (Scenario B), and a co-located Gen 1+ Gen 2 ethanol plant 

with SGM ratios of 0.4:1, 0.6:1, 0.8:1, and 1:1 (Scenarios C, D, E and F). This 

analysis assumes that the two co-located plants have in common only utility-related 

equipment; that is, steam and electricity generated at the facility are shared by the 

Gen 1 and Gen 2 plants, making the overall facility self-sufficient in meeting energy 
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demand, while the process streams are not co-mingled. Due to the fact that the dry 

mill corn ethanol plant is more energy intensive and requires a larger amount of 

steam than the Gen 2 plant, a fraction of the stover supply is combusted together 

with lignin co-product from processing corn stover in the Gen 2 plant to meet the 

overall steam demand.  

Table 4 Main assumptions for economic calculations [17] 
Plant Life (Years)  30 
Operating Hours per Year 7920 
Equity 100% 
  General Plant Depreciation 200% declining balance (DB) 
  Steam Plant Depreciation 150% DB 
Depreciation Period (Years)  
  General Plant 7 
  Steam/Electricity System 20 
Construction Period (Years) 2.5 
  % Spent in Year -3 8.00% 
  % Spent in Year -2 60.00% 
  % Spent in Year -1 32.00% 
Start-up Time (Years) 0.5 
Revenues (% of Normal) 50% 
Variable Costs (% of Normal) 75% 
Fixed Cost (% of Normal) 100% 
IRR 10.00% 
Income Tax Rate 39.00% 
Table 5 Raw material price used in simulations 

Raw materials Price 
Corn $236/metric ton ($6/bu) 

Corn stover $83/dry metric ton [18] 
Sulfuric acid $0.28/kg 

Alpha-Amylase $3.96/kg 
Glucoamylase $3.96/kg 

Cellulase $0.39/kg 
Yeast $5.51/kg 

DDGS (selling price) $0.27/kg 
Electricity $0.070/kwh 
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In order to investigate the effect of SGM ratios on MESP, the capacity of the 

dry mill corn ethanol plant is fixed at 95.9 million gallons per year, which is a typical 

capacity of a modern dry mill plant [27], while the mass flow rate of corn stover is 

varied to account for different SGM ratios. Not all of the harvested stover is 

converted to ethanol in the co-located plant since a fraction is combusted to provide 

process heat. The mass of stover combusted is calculated so that the co-located 

plant is self-sufficient in terms of steam and electricity. The capital costs of the Gen 2 

ethanol plant in SGM ratio scenarios C, D, E and F are then scaled from the 

equipment cost of the stand-alone Gen 2 ethanol plant (Scenario B) based on the 

mass of stover combusted. The equipment scaling ratio is obtained from previous 

studies 16-18]. Finally, the capital costs and operating costs of the co-located plant is 

combined and the MESP for the co-located Gen 1 + Gen 2 facility is obtained. The 

MESP for cellulosic ethanol for the co-located plant is calculated via the following 

equation [28]: 

Where MESPGen 1+Gen 2 is the overall MESP, MESPGen 1 is the MESP for corn grain 

ethanol (Scenario A), YGen 1+Gen 2 is the volume of Gen 1+ Gen 2 ethanol produced in 

the co-located plant, and YGen 1 is the volume of ethanol produced in the Gen 1 

process. 

Results and discussion 

Results  

Table 6 shows TPEC and TIC of a 95.9 MMgal/yr stand-alone Gen 1 ethanol 

plant (Scenario A). Coproduct processing comprises the largest portion of installed 

cost of a Gen 1 ethanol plant, accounting for more than 40% of the total. The cost is 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺  2 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺  1+𝐺𝐺𝐺𝐺𝐺𝐺  2 ∙ 𝑌𝑌𝐺𝐺𝐺𝐺𝐺𝐺  1+𝐺𝐺𝐺𝐺𝐺𝐺  2 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺  1 ∙ 𝑌𝑌𝐺𝐺𝐺𝐺𝐺𝐺  1

𝑌𝑌𝐺𝐺𝐺𝐺𝐺𝐺  1+𝐺𝐺𝐺𝐺𝐺𝐺  2 − 𝑌𝑌𝐺𝐺𝐺𝐺𝐺𝐺  1
              (1) 
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mainly driven by the employment of a multi-effect evaporator, a rotary drum dryer 

and a centrifuge. Fermentation is the second largest contributor to the total installed 

cost, accounting for 20% of the total. These results accord with that of other 

publications [19]. 

Table 6 TPEC and TIC of a 95.9 MMgal/yr stand-alone Gen 1 ethanol plant (Scenario A) 

Area TPEC (MM$) TIC (MM$) 

Grain handling and 
milling 2.50 7.54 

Starch to sugar 
conversion 3.28 9.89 

Fermentation 7.42 22.42 

Ethanol processing 6.58 19.88 

Coproduct processing 16.33 49.30 

Auxiliaries 1.14 3.43 

Total 37.24 112.45 
 

Table 7 shows TPEC and TIC of a 47.7 MMgal/yr stand-alone Gen 2 ethanol 

plant (Scenario B). Combustor, boiler, and turbogenerator contributes 38% of the 

total. It is the largest portion of total installed cost and is followed by pretreatment, 

recovery, saccharification and fermentation. These results also agree with other 

reports [16,18]. 

Table 7 TPEC and TIC of a 47.7 MMgal/yr stand-alone Gen 2 ethanol plant (Scenario B) 

Area TPEC (MM$) TIC (MM$) 
Feedstock Handling 5.97 18.04 

Pretreatment 21.88 66.08 
Saccharification and Fermentation 18.09 54.65 

Recovery 20.75 62.67 
Wastewater Treatment 4.20 12.67 

Storage 1.62 4.90 
Combustor, Boiler, and 

Turbogenerator 
46.66 140.91 

Utilities 4.38 13.23 
Total 123.56 373.16 
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Table 8 shows the results of the six scenarios considered. MESPs of a stand-

alone 95.9 million gallons per year Gen 1 plant and a stand-alone 47.7 million 

gallons per year Gen 2 plant are $3.18/ gasoline gallon equivalent (GGE) and 

$5.64/GGE, respectively. The high MESP of a Gen 2 plant is a major obstacle to its 

commercialization. It is also noticeable that a significant amount of surplus electricity 

is produced in a Gen 2 plant while a Gen 1 plant purchases electricity from the grid, 

making it possible to share the generated electricity in a co-located plant, thus 

decreasing the production cost.  

In a co-located Gen 1 and Gen 2 plant, not all of the stover is used to produce 

cellulosic ethanol.  Part of it is combusted to supply thermal energy to the plant, the 

amount depending upon the SGM ratio. By comparing scenarios C, D, E and F, it 

can be seen that for a SGM ratio of 0.4:1 (Scenario C), more than 40% of the corn 

stover is combusted in order to meet the steam and power demand of the co-located 

plants while only a small portion of stover is converted to ethanol, producing only 

12.8 million gallons per year of cellulosic ethanol. As SGM ratio increases, the 

fraction of combusted corn stover decreases and cellulosic ethanol production 

increases. Co-located Gen 1 and Gen 2 plants with SGM ratios of 0.6:1 and 0.8:1 

(Scenarios D and E) produce 24.4 and 36.0 million gallons of cellulosic ethanol per 

year, respectively. When the SGM ratio reaches 1:1 (Scenario F), about 16% of 

stover is combusted and cellulosic ethanol production reaches 47.7 million gallons 

per year, about 4 times of that of Scenario C. As a consequence of increased 

cellulosic ethanol production, the overall MESP of co-located plants goes up as the 

SGM ratio increases due to higher production cost of cellulosic ethanol. The overall 

MESP ranges from $3.73/GGE to $3.94/GGE as SGM ratio increases from 0.4:1 and 
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1:1. Although this value is higher than the MESP of a stand-alone Gen 1 plant, it is 

still significantly lower than the MESP for a stand-alone Gen 2 ethanol plant, 

demonstrating the advantage of co-locating a Gen 2 plant with a Gen 1 plant. In spite 

of the increasing overall MESP, MESP for cellulosic ethanol reduces from 

$7.85/GGE to $5.47/GGE as the SGM goes from 0.4:1 to 1:1, demonstrating the 

effect of economies of scale. This result indicates that higher SGM ratio favors 

production of price-competitive cellulosic ethanol. It also can be seen from Table 8 

that more surplus electricity is produced alongside the increase of Gen 2 ethanol 

yield when the SGM ratio increases since electricity is a main byproduct of Gen 2 

ethanol.  

Table 8 Summary of analysis of the 6 scenarios 

 Scenarios a 

 A B C D E F 

Mass of stover 
(metric ton per 
day (MTPD)) 

__ 2233 1067 1600 2133 2667 

SMG ratio __ __ 0.4:1 0.6:1 0.8:1 1:1 

Mass of stover 
combusted 

(MTPD) 
__ __ 467.5 456.1 444.7 433.3 

Ratio of stover 
combusted __ __ 43.8% 28.5% 20.8% 16.3% 

Gen 1 ethanol 
produced (MM 

gal / yr) 
95.9 __ 95.9 95.9 95.9 95.9 

Gen 2 ethanol 
produced (MM 

gal / yr) 
__ 47.7 12.8 24.4 36.0 47.7 

Electricity 
produced 

(MW) 
__ 34.1 20.3 25.3 30.3 35.4 

Electricity 
Used by Gen 1 
process (MW) 

6.7 __ 6.7 6.7 6.7 6.7 

Electricity used 
by Gen 2 

process (MW) 
__ 13.4 3.6 6.9 10.1 13.4 
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Table 8 continued 
Surplus 

Electricity 
(MW) 

__ 20.7 10.0 11.7 13.5 15.3 

Surplus 
Electricity 

(kWh/gal Gen 
1+Gen 2) 

__ 3.43 0.72 0.77 0.81 0.84 

Overall MESPb 
($/GGE) 3.18 5.64 3.73 3.84 3.90 3.94 

MESP for 
cellulosic 
ethanolc 
($/GGE) 

__ __ 7.85 6.43 5.82 5.47 

a Scenario A: stand-alone corn grain ethanol plant; Scenario B: stand-alone cellulosic ethanol plant; 
Scenario C: co-located Gen 1+ Gen 2 plants with SGM ratio of 0.4:1; Scenario D: co-located Gen 1+ 
Gen 2 plants with SGM ratio of 0.6:1; Scenario E: co-located Gen 1+ Gen 2 plants with SGM ratio of 
0.8:1; Scenario F: co-located Gen 1+ Gen 2 plants with SGM ratio of 1:1. 
b Overall MESP of Scenarios A and B are MESP for corn grain ethanol and MESP for cellulosic 
ethanol respectively. 
c MESP for cellulosic ethanol of Scenarios C, D, E and F are calculated via equation (1). 

By comparing the MESP of Scenario B with that of Scenario D, it is found that 

the co-located plants provide lower MESP for cellulosic ethanol than stand-alone 

Gen 2 ethanol plants with the same yield. It is expected that if corn price is reduced, 

the co-located plants will result in even lower MESP for cellulosic ethanol. However, 

as previously mentioned, around 40% percent of stover should be left in the field to 

prevent soil erosion; hence a higher SGM ratio may incur additional transportation 

costs, which are not considered in the calculation. 

Sensitivity analysis 

The overall MESP for a Gen 1+ Gen 2 facility is very sensitive to the price of 

the feedstocks (corn grain and corn stover) and to byproduct (DDGS and electricity) 

selling price; capital cost and yield also have significant impact on overall MESP; 

thus an analysis of impact of these variables on the overall MESP is performed for 

scenarios C, D, E, and F. The results are shown in Figure 4. It should be noticed 

that as previously mentioned, the change in feedstock price may be a reflection of 
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either change in real market price or an increase incurred by additional feedstock 

transportation cost or soil preservation cost. 

The cost of purchasing corn grain accounts for a large proportion of the 

overall MESP for a Gen 1+ Gen 2 facility. In fact, with the rapid increase of corn price 

in recent years, corn accounts for a larger proportion of the MESP for grain ethanol 

than at any time in the past. Corn price has increased by more than 100% since 

2010, from about $118/metric ton ($3/bu) to higher than $236/metric ton ($6/bu). 

Hence, it is expected that corn price has a significant impact on overall MESP for a 

Gen 1+ Gen 2 facility, as can be seen in Figure 4(a). A decrease in corn price by 

30% reduces the overall MESP by more than 15% in all scenarios. When corn price 

reaches a very high value (>$300/metric ton), the overall MESP gets very close in all 

mass ratio scenarios. The high corn price covers the difference of other variables in 

this case, thus resulting in a similar overall MESP. 

Figure 4(b) shows the impact of corn stover price on the overall MESP for a 

Gen 1 + Gen 2 facility. Despite the fact that the impact of corn stover price on the 

overall MESP is very similar to that of corn grain price in trend, the former has much 

less impact on the overall MESP than the latter does. A decrease in corn stover price 

by 30% reduces the overall MESP by less than 5%. If more cellulosic ethanol plants 

are built in the future, the price of corn stover is likely to increase with growing stover 

demand and overall MESP will go up for a Gen 1 + Gen 2 facility. 

The impact of selling price of byproducts on the overall MESP is shown in 

Figure 4(c) and (d). A decrease in DDGS selling price by 30% reduces the overall 

MESP by about 6% while a decrease in electricity selling price by 40% reduces the 

overall MESP by about 1%. 

 



33 
 

 
 

       

  

 

 

 

        

  

 

       

   

 

       

  

 

       

  

 

 

 

 

       

 

 

 

 

 

 
 

       

 

 

 

 

 

       

 

 

 

 

 

 
 

Figure 4 Influence of different variables on the overall MESP for a Gen 1 + Gen 2 ethanol facility. 

 
The impact of capital cost and yield on overall MESP is evaluated by 

assuming a ±20% change in these parameters from base case for each scenario. 

The results are shown in Figure 4(e) and (f) respectively. A 20% increase 

(reduction) in capital cost leads to a 4% increase (reduction) in overall MESP. 

Overall MESP is more sensitive to yield by contrast. A 20% increase in ethanol yield 

results in approximately 17% reduction in overall MESP. If ethanol yield decreases 
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by 20%, overall MESP would rise by 25%. It is not likely to increase the yield of Gen 

1 ethanol plant due to relative maturity of technology; however, Gen 2 ethanol 

technology is still under development and it would be highly advantageous to employ 

new technologies such as 2-stage dilute acid pretreatment and separate C5 and C6 

fermentation18 if these technologies are proved to be able to increase Gen 2 ethanol 

yield. 

Conclusions 

Co-location of grain ethanol (Gen 1) and cellulosic ethanol (Gen 2) plants 

produces lower-cost cellulosic ethanol than stand-alone Gen 2 plants. In general, 

higher SGM ratio improves the competitiveness of cellulosic ethanol. An increase of 

SGM ratio from 0.4:1 to 1:1 reduces the MESP for cellulosic ethanol from $7.85/GGE 

to $5.47/GGE. Overall MESP for a Gen 1 + Gen 2 facility is most sensitive to the 

price of feedstocks.  

With increasing corn price and Gen 1 ethanol production rate approaching the 

RFS2 capping, co-location of Gen 1 and Gen 2 plants may become even more 

appealing in the near future. However, MESP of co-located ethanol plants is still 

higher than ethanol market price.29 This may be the main obstacle for 

commercialized co-located ethanol plants. The high MESP is mainly driven by high 

corn price and high conversion cost of Gen 2 stover ethanol plant. Sensitivity 

analysis indicates that increasing yield can lower MESP significantly. If new 

technologies are developed to increase the yield of Gen 2 ethanol plants, it is more 

likely to see co-located Gen 1 and Gen 2 ethanol plants emerge in the future.  
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CHAPTER 3 TECHNO-ECONOMIC ANALYSIS OF TRANSPORTATION 

FUELS FROM DEFATTED MICROALGAE VIA HYDROTHERMAL 

LIQUEFACTION AND HYDROPROCESSING 

A paper published in Biomass and Bioenergy 

Longwen Ou, Rajeeva Thilakaratne, Robert, C. Brown, Mark M. Wright 

Abstract 

This study describes a techno-economic analysis to evaluate the economic 

feasibility of transportation fuel production by hydrothermal liquefaction (HTL) of 

defatted microalgae followed by hydroprocessing of the resulting bio-crude. A 2000 dry 

metric ton per day biorefinery produces 112 million liters of gasoline-range fuels and 

121 million liters of diesel-range fuels per year. We estimate the total project investment 

is $504 million dollars and the annual operating cost is $158 million dollars. The 

minimum fuel-selling price (MFSP) is $0.68 per liter assuming a 10% internal rate of 

return. Sensitivity analysis shows that MFSP is most sensitive to product fuel yield 

indicating the relative importance of HTL conversion performance. Feedstock cost also 

strongly influences MFSP, which varied between $0.58 and $0.87 per liter for feedstock 

cost of $33 and $132 per dry metric ton, respectively. A Monte-Carlo analysis suggests 

an 80% probability of MFSP being between $0.61 and $0.83 per liter.   

Keywords: Defatted microalgae; Hydrothermal liquefaction; Process modeling; 

Minimum fuel selling price; Uncertainty analysis 
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Introduction 

Environmental concerns and land availability constraints for energy use have 

prompted the search for clean sources of high-yielding biomass. Microalgae are a 

potential biomass resource for the production of renewable biofuels with low emissions 

and reduced land requirements [1-4].  Microalgae present several advantages for 

biomass production compared to lignocellulosic feedstock. These advantages include 

low maintenance cultivation, rapid growth, limited need of fresh water, and low nutrient 

utilization [3]. Microalgae are primarily composed of lipids, carbohydrates, and protein 

[5]. Their varied composition makes them suitable for multiple applications. They can be 

employed for ethanol production via fermentation [6] and hydrocarbon fuel synthesis via 

thermochemical pathways such as fast pyrolysis and gasification [7-9].  

Defatted microalgae are a by-product of biodiesel production via lipid extraction 

from microalgae [10-12]. The defatted microalgae, which can account for as high as 85 

wt. % of the whole microalgae on a dry basis [5], has similar carbon and hydrogen 

content as lipids [13] and could be used for biofuel production [5]. Previous studies 

identified several applications for defatted microalgae, including animal feeding 

supplements [14], biogas generation feedstock via anaerobic digestion (AD) [15, 16] 

and chemical production substrate via fermentation [17]. Defatted microalgae could also 

be converted into drop-in liquid fuels that are compatible with existing vehicles and 

transportation fuel infrastructure.  

Several thermochemical routes such as pyrolysis, gasification and hydrothermal 

liquefaction (HTL) [18-20], can convert biomass into biofuels. However, pyrolysis and 

gasification have a disadvantage with respect to high moisture feedstocks such as 
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defatted microalgae due to the significant energy losses associated with drying the 

material [21, 22]. HTL, on the other hand, is considered a promising pathway for 

processing feedstock with high moisture content [21]. HTL involves processing biomass 

in pressurized water at temperatures between 250 and 550 °C, and pressures of 5 to 25 

MPa. HTL produces a crude oil, an aqueous fraction and a gaseous fraction [21, 23].  

HTL crude oil, often called bio-crude, has a relative high heating value (>30 MJ per kg) 

[23-25] compared to pyrolysis oils (around 20 MJ per kg) [26-28]. HTL has been utilized 

to process lignocellulosic biomass in the presence of catalyst to produce high-energy 

content bio-crude [29, 30]. However, the intrinsic characteristics of HTL suggest that it is 

more economically advantageous for processing feedstock with high water content such 

as algae, sludge, etc. by eliminating the need to dry feedstock. 

The advantages of HTL include: a) avoidance of the costly feedstock drying; b) 

high yield of bio-crude [31, 32]; c) and the possibility of recycling the high nutrient 

containing aqueous fraction [33]. However, a significant drawback of HTL is the severe 

operating condition required (high pressure and high temperature), which incurs high 

investment and operating cost [1]. There is limited public literature on the costs of 

biofuel production from the HTL of algae feedstock [1, 5]. Therefore, this study seeks to 

evaluate the economic feasibility of converting defatted microalgae into biofuels via HTL 

with the understanding that it is in an early development phase.  

To our knowledge, only a limited number of studies investigate the feasibility of 

producing liquid biofuels from defatted microalgae [5, 32].  Slow pyrolysis and HTL were 

examined as potential ways of converting defatted microalgae into high-energy content 

oils [32], which could be subsequently upgraded to liquid fuels via hydrotreating and 
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hydrocracking. Previous research has shown that HTL has a more attractive energy 

balance than slow pyrolysis [32]. 

In this study, we conduct a techno-economic analysis (TEA) to evaluate the 

potential of producing liquid fuels from defatted microalgae by HTL followed by 

upgrading of bio-crude. A commercial-scale 2000 dry metric ton per day HTL and 

hydroprocessing facility is modeled to estimate its total project investment and annual 

operating costs. The process model assumes that the facility is the nth plant of its kind 

meaning that major technical challenges have been overcome and requisite equipment 

is commercially available. The commercialization potential is determined by the 

competitiveness of the minimum fuel-selling price (MFSP) relative to market 

alternatives. The MFSP is estimated based on a 10% internal rate of return (IRR) and 

30-year facility lifetime. 

Materials and Methods 

The TEA employs chemical process modeling and economic cost estimates to 

determine the process profitability. This study employs ChemCAD 6.5 software by 

ChemstationsTM for process modeling.  Purchase costs of common equipment such as 

compressors, pumps, and heat exchangers are appraised using ChemCAD. Purchase 

costs of custom engineered equipment such as the HTL reactor and hydrogen plant are 

projected based on a power law with the commonly employed scaling factor of 0.6 for 

chemical processing equipment [34-37]. The return on investment is evaluated with a 

30-year discounted cash flow rate-of-return (DCFROR) spreadsheet. Some major 

assumptions made in this analysis are listed below: 

• Plant capacity is 2000 dry metric ton per day of defatted microalgae. 
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• The wet feedstock contains 80% moisture. 

• Liquid effluent and solids from the HTL reactor are directed to a wastewater 

treatment plant and solid waste disposal plant, respectively. 

• Process off-gases are combusted for heat recovery.  

• The cost analysis represents a nth plant design, which assumes that major 

technical obstacles have been overcome and requisite equipment is 

commercially available. 

Process modeling 

The chemical process model comprises 5 areas: hydrothermal liquefaction, 

hydroprocessing, hydrogen generation, product refining, and a combined heat and 

power (CHP) plant as illustrated in Figure 1. The following sections describe 

assumptions relevant to each of these areas. Waste handling and disposal facilities are 

not modeled in this analysis. Instead, we assume that HTL wastewater could be treated 

by a third-party facility at a fixed price per unit volume ($0.89 per cubic meter) [38], and 

solid waste can be disposed at a fixed price per unit mass ($36.98 per metric ton) [39]. 

These costs assume that the waste treatment facilities are capable of handling all 

potential contaminants without additional capital investment or major infrastructure 

modifications. 
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Figure 1 Schematic of the Defatted Microalgae Hydrothermal Liquefaction Process for Gasoline and 
Diesel Production. 

 

Biomass feedstock 

Both raw and defatted microalgae can be used as feedstock of HTL process 

considering their high moisture content. However, estimated production cost of raw 

microalgae cultivation can be as high as $3000 per metric ton, impairing the potential of 

raw microalgae as HTL feedstock [12]. Prices of defatted microalgae, on the other hand, 

are expected to be in line with wet distiller’s grain with solubles (WDGS) considering the 

fact that they share similar protein and moisture content and can both be used as 

animal feed supplement. The lower price of defatted microalgae grants it advantage as 

a potential HTL feedstock. 

Vardon et al. [32] reported the elemental composition of raw Scenedesmus and 

defatted Scenedesmus, as listed in Table 1. The composition of defatted Scenedesmus 

with moisture content of 80% was employed in this analysis. Vardon et al. [32] 

determined that raw Scenedesmus contains 13% lipids while defatted Scenedesmus 
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contains less than 1% lipid. Despite the differences in nutritional profile, the elemental 

composition of defatted microalgae is comparable to that of raw microalgae, with slightly 

higher nitrogen content and lower carbon content. The hydrogen and oxygen contents 

are similar for both materials, and the sulfur content is low in both raw and defatted 

Scenedesmus. The nitrogen content in microalgae (around 8%) is much higher than in 

lignocellulosic biomass (<1%) [28]. The high nitrogen content in algal biomass can be 

attributed to protein [32]. A significant portion of the feedstock nitrogen may be retained 

in the bio-crude products, causing potential problems with direct combustion and bio-

crude upgrading [24, 31, 32, 40].  

Hydrothermal liquefaction 

Purchased wet algae are first pumped to 18 MPa and sent through a pair of heat 

exchangers to raise the temperature of the algae stream to 350°C. After this process, 

the state of the water in the stream is slightly below the supercritical point and is then 

capable of dissolving most of the organic material in the stream. Meanwhile, 

phosphates and sulfates in the feedstock cease to be soluble and precipitate as solids 

[41]. The stream then goes through a precipitation tank where the precipitated 

phosphates and sulfates congregate at the bottom of the tank and get removed so that 

the catalysts downstream will not be poisoned.  

The effluent from the precipitation tank is then fed into the HTL reactor with 

sodium carbonate to convert the biomass into bio-crude. The effluent from the 

hydrothermal reactor feeds into a filter to separate unreacted biomass, char and ash as 

solids waste. Yields of bio-crude, solids waste and aqueous fraction are 36%, 6%, 17%, 

respectively, as shown in Table 1 [32]. The rest is converted to gaseous components 
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[32]. The filtered effluent goes through a heat exchanger to recover heat and leaves at 

148 °C. A 3-phase separator follows to split the stream into a gaseous phase, an 

aqueous phase and an organic phase (bio-crude). The aqueous phase, mainly 

consisting of water and small polar compounds such as formic and acetic acid, is sent 

to a wastewater treatment facility [32, 40]. Based on engineering judgment, the aqueous 

phase does not contain enough carbon to be economically reformed or recovered. The 

gaseous phase, consisting mostly of hydrogen, carbon dioxide and light alkanes, is sent 

to the combustor area where it is combusted to supply process heat. The bio-crude is 

sent to the hydroprocessing process where it is deoxygenated via hydrotreating in 

reactor with cobalt molybdenum (CoMo) catalysts [35].  

Table 1 Process modeling parameters [32] 
Elemental Composition 

 Defatted 
Microalgae 

Raw 
Microalgae HTL Bio-crude 

C 49.9 52.1 72.2 
H 7.1 7.4 8.9 
N 9.9 8.8 7.8 
Oa 32.1 31.1 10.5 
S 0.96 0.48 0.90 

HTL Yields (wt%) 
Bio-crude Solids Aqueous Gaseous 

36 6 17 41 
a Oxygen content determined by difference for total mass. 

Upgrading 

Raw bio-crude material has high oxygen and nitrogen content, which must be 

reduced to meet transportation fuel standards. This process employs a two-stage 

hydroprocessing unit where the first stage operates at mild conditions (200 °C, 11.7 
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MPa) to stabilize the bio-crude, and the second stage operates at more severe 

conditions (400°C, 11.7 MPa) [42]. 

There are a few publications on the hydroprocessing of HTL bio-crude [43, 44]. 

However, there is not enough detailed data for the upgrading of algae-derived HTL oil. 

This analysis utilizes the same methodology as that used by [42] to estimate the product 

distribution of hydroprocessing. The model assumes that 85% of the oxygen in the bio-

crude is removed as water, and the rest is removed as carbon dioxide. Table 2 gives 

the material balance of hydroprocessing. 

Table 2 Process baseline material balance of bio-crude hydroprocessing at 200-400 °C, 11.7 MPa [42] 
Component wt% of dry feed 

Feed hydrogena 3.9 
Upgraded oila 77.9 

Gasa 16.27 
Water 9.75 

Gas components wt% of dry feed 
CO2 2.1 
CH4 2.0 
C2H6 0.61 
C3H8 0.55 
C4H10 0.58 
NH3 9.47 
H2S 0.96 

Upgraded oil composition  
Aromatics 25.0 

Cycloalkanes 50.6 
Partially saturated aromatics 7.4 

Olefins 2.4 
Paraffins 14.6 

a Calculated from mole balance 
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The effluent of the upgrading step, which has negligible oxygen content, is then 

separated into upgraded oil, aqueous waste, and off-gas streams. The aqueous waste 

is sent to a wastewater treatment plant, while the gases are sent to the cogeneration 

area and combusted for energy. 

The upgraded bio-crude is then stabilized using a debutanizer column by 

removing butane and other light compounds. The overhead gas containing light 

organics is sent to cogeneration area and combusted. The debutanizer bottom product 

is then further separated into gasoline and diesel range fuels using a fractionation 

column. 

Hydrogen generation  

In this study, hydrogen is produced by steam reforming of pipeline quality natural 

gas. The composition of the natural gas is based on National Energy Technology 

Laboratory (NETL) report [45]. Purchased natural gas is first compressed to 2 MPa, 

hydrodesulfurized, and then mixed with superheated steam at 335 °C with a steam-to-

carbon molar ratio of 3.5 [46, 47]. The mixture is fed to the steam reformer at 2 MPa to 

produce syngas. High temperature water-gas-shift follows to increase the hydrogen 

content of syngas by converting carbon monoxide and water into hydrogen and carbon 

dioxide. After condensing out the water, hydrogen is purified to greater than 99.99% 

concentration by pressure swing adsorption. The off-gas stream from the hydrogen 

plant is sent to cogeneration and combusted along with off-gas from other process 

areas. 
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2.1.5 Combined heat and power plant 

In this area, off-gas streams are combined and combusted to recover process 

heat. Flue gas from the combustor is used to preheat air feed to the combustor. The 

primary heat consumers in the process are the HTL reactor, steam reformer and natural 

gas heater in the hydrogen plant. Superheated steam (450 °C, 6 MPa) [34] is generated 

to supply heat for the process. The superheated steam is then split into 2 streams. The 

first stream provides dedicated heat to the HTL reactor. The second stream provides 

both heat and power by first going through a multistage turbine and power generator. 

Steam is extracted from the turbine at four different conditions for use in the process. 

Steam at 335 °C, 2.4 MPa is extracted for hydrogen generation [37]. High pressure 

steam at 4.2 MPa, medium pressure steam at 1.1 MPa and low pressure steam at 0.6 

MPa [48] are also extracted.  Part of the high-pressure steam is used to preheat boiler 

feed water. Plant steam demand consumes the remaining high-pressure steam and all 

of the medium pressure steam. Low pressure steam is sent to the deaerator to remove 

dissolved gases from boiler feed water [34]. In the final stage of the turbine, the 

expanded steam is cooled and condensed to 0.01 MPa and 46 °C [34]. Boiler blowdown 

is assumed to be 3% of the steam production [34]. The generated electricity is supplied 

to users of the plant. Purchased electricity supplies the remainder of the plant power 

demand. 

Economic analysis 

A process model is built in ChemCADTM to obtain material and energy balance of 

the microalgae HTL pathway. Process equipment units are then sized based on the 

material and energy balances and operating conditions. Purchase costs of common 
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equipment such as pumps, compressors and vessels are estimated using ChemCAD. 

Costs of more complex equipment such as reactors and distillation columns are 

estimated by scaling of publically available data for similar equipment [1, 35]. The 

installed cost of the hydrogen plant is obtained by volumetric scaling using estimates 

provided by Stanford Research Institute (SRI) for a natural gas steam-reforming 

hydrogen plant [37]. Once the Total Purchased Equipment Cost (TPEC) is obtained, 

Fixed Capital Investment (FCI) and Total Project Investment (TPI) can be determined 

from Peters and Timmerhaus [49] factors. The parameters used to estimate FCI and 

TPI from TPEC are listed in Table 3. The results were then used as input information 

into a modified DCFROR analysis spreadsheet to calculate the MFSP. Table 4 details 

the main assumptions of the economic analysis. A standard 15% contingency factor 

was included to account for unforeseen expenses during the startup-period [35]. 

However, the contingency factor for the hydrogen plant was assumed to be negligible 

due to the availability of turn-key commercial reforming units [35]. 

Annual operating costs include costs for feedstock, natural gas, catalysts and 

chemicals, waste disposal, utilities, fixed costs including labor and equipment 

maintenance, and capital depreciation. Feedstock cost is a factor that can have great 

impact on MFSP. Price of defatted microalgae is difficult to predict due to lack of 

commercial data. In this analysis, feedstock cost is assumed to be $66 per dry metric 

ton, which is the same as that of WDGS [50]. This assumption is valid if defatted 

microalgae could substitute WDGS in the animal feed market at a price of $66 per dry 

metric ton and there are no other higher value markets for defatted microalgae. Prices 

of natural gas and electricity ($5.59 per 1000 MJ and 7.9 cents per kWh) are taken from 
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U.S. Energy Information Administration (EIA) database [51, 52]. Prices of other raw 

materials and catalysts are taken from previous published literature [37, 53]. Catalyst 

and chemical costs are taken from other similar reports and adjusted to 2011 dollars 

[35, 37, 53]. 

Table 3 Total project investment cost factors [49]  
Direct Costs  
  Total purchased equipment cost (TPEC) 100 
  Purchased equipment installation 39 
  Instrumentation and controls (installed) 26 
  Piping (installed) 31 
  Electrical systems (installed) 10 
  Buildings (including services) 29 
  Yard improvements 12 
  Service facilities (installed) 55 
    Total installed cost (TIC) 302 
Indirect costs  
  Engineering and supervision 32 
  Construction expenses 34 
  Legal expenses 4 
  Contractor’s fee 19 
  Contingency 37 
    Total indirect cost 126 
  
  Fixed capital investment (TIC + indirect plant costs) 428 
  Working capital (15% of total capital investment) 75 
  Total project investment (Fixed capital investment + working 
capital) 

503 
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Table 4 Major economic analysis assumptions [34]  

Plant Life (Years)  30 
Operating Hours per Year 7920 
Equity 100% 
  General Plant Depreciation 200 declining balance (DB) 
  Steam Plant Depreciation 150 DB 
Depreciation Period (Years)  
  General Plant 7 
  Steam/Electricity System 20 
Construction Period (Years) 2.5 
  % Spent in Year -3 8.00% 
  % Spent in Year -2 60.00% 
  % Spent in Year -1 32.00% 
Start-up Time (Years) 0.5 
Revenues (% of Normal) 50% 
Variable Costs (% of Normal) 75% 
Fixed Cost (% of Normal) 100% 
IRR 10.00% 
Income Tax Rate 39.00% 

 

Sensitivity and uncertainty analysis 

Process parameters may vary during operation of the HTL facility. Therefore, 

sensitivity analysis is employed to evaluate the impact of parameter changes on the 

MFSP. This is accomplished by evaluating MFSP after changing one parameter while 

assuming that all other parameters remain fixed. In this analysis, the parameters 

considered are product fuel yield, fixed capital investment, IRR, feedstock cost, income 

tax rate, working capital, and hydrotreating catalyst cost. Sensitivity analysis is 

conducted by assuming a certain range of key process parameters. In order to account 

for the high variability potential of feedstock price, a relatively large range (-50% to 
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+100%) is employed. For other parameters, a ±20% range is employed. MFSP is 

evaluated for the base case, the high-end, and the low-end values for each parameter.  

The sensitivity analysis varies only one parameter change at a time while the rest 

remain fixed. This approach is valuable for understanding the impact of individual 

parameters. In practice, values for several of the parameters would vary simultaneously. 

The impact of this behavior can be captured with a stochastic Monte-Carlo analysis. A 

multivariate Monte-Carlo analysis was performed to obtain a MFSP probability 

distribution for the HTL facility. We employed triangular probability distributions with the 

same ranges assumed in the sensitivity analysis for product fuel yield, feedstock cost, 

fixed capital investment, and IRR. The stochastic analysis was performed with 10000 

trials using Crystal Ball®, and the results were analyzed using MathWorks® Matlab®.   

Results and Discussion 

Mass and energy balances 

The process model estimates that a 2000 dry metric ton feedstock per day plant 

produces 233 million liters of liquid fuel of which 112 million liters are gasoline and 121 

million liters are diesel fuel. These results translate to a fuel yield of 352 liter per dry 

metric ton feedstock.  This is slightly lower than the 367 liters per dry metric ton 

estimated for fast pyrolysis of corn stover but significantly higher than the 223 liters per 

dry metric ton estimated for mild catalytic pyrolysis of woody biomass [39, 42]. Major 

process modeling results are listed in Table 5.  
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Table 5 Process modeling results  
Algae feed flow rate (dry metric ton per day) 2000 
Natural gas flow rate (kg per hour) 3080 
Overall process yields  
    Gasoline production rate (million liters per 
year) 112 

    Diesel production rate (million liters per year) 121 
Hydrogen consumption (kg per kg feed oil) 0.04 
Water usage  
    Boiler feed water (kg per hour) 13479 
    Cooling water makeup (kg per hour) 30432 
Electricity usage  

    Electricity required (MW) 9.1 

    Electricity generated (MW) 3.0 
    Purchased Electricity (MW) 6.1 

 

The simulation also provides estimates for utility usage. Cooling make-up water 

and boiler feed water are the major uses of water in the plant, totaling 43914 kg per 

hour. Process off-gases are combusted to provide process heat with excess heat used 

to generate superheated steam. The steam reformer in the hydrogen plant and the HTL 

reactor consume the most process heat. Generated steam is used for: a) feed to steam 

reformer in the hydrogen plant; b) heat source in the process; and c) electricity 

generation. Although electricity is produced in the steam plant, the process is not self-

sufficient in electricity. Therefore, the facility is a net importer of electricity. The largest 

electricity consumer is the upgrading area, where most of the electricity is used for 

hydrogen compression. HTL is the second largest electricity consumer since pumping 

algal sludge into the reactor requires a large amount of energy. 
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Costs analysis 

Major economic results are listed in Tables 6 and 7. The minimum fuel-selling 

price is estimated to be $0.68 per liter. The 2000 dry metric ton per day plant requires a 

TPEC of $99 million and a TIC of $424 million, which are significantly higher than for a 

biomass pyrolysis facility processing the same amount of biomass [39]. HTL contributes 

51% of the fixed capital cost, which is chiefly due to the costs of the pressure vessel for 

the HTL reactor.  Hydroprocessing accounts for 17% of the capital costs, which is due 

to the presence of two hydrotreaters. The steam and hydrogen generation plants 

account for 13% and 12% of the installed cost with a value of $54 million and $48 

million, respectively. 

Table 6 Economic analysis results 
Total purchased equipment cost (TPEC) 100% TPEC $99 million 

Direct installed cost (DIC) 302% TPEC $299 million 
Indirect installed cost (TIC) 126% TPEC $125 million 

Fixed Capital investment (FCI) 428% TPEC $424 million 
Working capital 15% FCI $75 million 

Land 6% TPEC $6 million 
Total project investment (TPI) 510% TPEC $504 million 

 

The HTL and subsequent upgrading technology is still in early development. The 

technology employed in future commercial plants may require more capital investment 

than assumed in this analysis. In order to investigate potential risks of building a 

commercial plant based on this concept, fixed capital investment was varied in the 

sensitivity analysis to study its impact on the MFSP. 
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Table 7 Major economic analysis results  
Fixed Capital Investment $ million 
  Hydrothermal Liquefaction 209 
  Hydroprocessing 71 
  Product Refining 6 
  Hydrogen Generation 52 
  Steam Plant 63 
  Auxiliaries 23 
Total fixed capital investment 424 
  
Annual Operating Cost  
  Feedstock 43.4 
  Natural Gas 6.7 
  Catalysts & Chemicals 6.9 
  Waste Disposal 4.1 
  Electricity and other utilities 3.9 
Fixed Costs 22.8 
Capital Depreciation 21.2 
Average Income Tax 12.0 
Average Return on Investment 37.0 
Total annual operating cost 158.0 
  
MFSP, $ per liter 0.68 

 

Total annual operating costs are estimated at $158 million. Feedstock costs 

account for 28% of operating costs followed by fixed costs (14%) and capital 

depreciation (13%). Purchased natural gas, catalyst and chemicals constitutes 8% of 

annual operating costs.  

Figure 2 shows area contributions to conversion cost. It can be seen from 

Figure 2 that capital cost accounts for about 44% of the conversion cost while operating 
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cost accounts for 56%. HTL constitutes about 33% of the conversion cost. This result is 

in accordance with the high capital cost of the HTL reactor. Bio-crude upgrading and 

refining also contributes to more than 21% of conversion cost. 

 

Figure 2 Contributions to the Operating Cost of Hydrothermal Liquefaction of Defatted Microalgae and 
Upgrading to Transportation Fuels. Operating Costs Grouped by Process Area (Left) and Cost Type 

(Right). Cost Types Include Opex (Operating Expenditure) and Capex (Capital Expenditure). 

Energy flow analysis 

Figure 3 shows the energy flows in the facility expressed as  the sum of higher 

heating values (HHV) and sensible heats of the streams [42]. HHV of the streams is 

obtained from stream properties packages available in ChemCAD. Sensible heat is 

calculated as the difference between the enthalpy of stream at the process state and 

the enthalpy at reference state of 25 °C and 1 atm [42]. 
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Figure 3 Energy Flow of Process Mass and Energy (sensible + HHV) Streams as a Percentage of 
Feedstock HHV. 

 
Overall 63.5% of the total energy in the feedstock is retained in the liquid fuel end 

product. This conversion rate is higher than that of cellulosic ethanol (44%) and mild 

catalytic pyrolysis of woody biomass (39%) [34, 42]. HTL and upgrading efficiency can 

be attributed to the high yield and quality of bio-crude. Bio-crude from defatted 

microalgae would require less intensive hydroprocessing than bio-oil from catalytic 
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pyrolysis because of its lower oxygen content, and much less energy input for distillation 

than cellulosic ethanol due to a lower water content. The high energy efficiency for fuel 

production demonstrates a key advantage of the proposed facility. However, the facility 

requires significant energy input in the form of electricity and natural gas. Figure 3 

indicates that the facility can only meet 34% of total electricity demand while the rest 

must be purchased from the grid. If energy input from other sources such as natural gas 

and electricity are also considered, the proposed facility achieves an overall energy 

efficiency of 56.3%. Carbon yield of the proposed facility is 52.1%, which represents the 

percentage of carbon in feedstock and natural gas that is retained in the final product. 

Overall carbon yield of 49.3% is obtained when carbon input from natural gas is also 

considered. 

Sensitivity analysis 

Results of the sensitivity analysis are shown in Figure 4.  The results are 

obtained with a ±20% range employed for all the parameters except for feedstock cost, 

for which a relatively large range (-50% to +100%) is employed to account for its high 

variability potential. As shown in Figure 4, product fuel yield and feedstock cost have 

the greatest impact on MFSP. A ±20% variation in fuel yields result in a MFSP range of 

$0.57 per liter to $0.85 per liter. Several factors can impact final product yield, including 

bio-crude yield, upgrading yield, and separation efficiencies. In this analysis, the yield of 

hydroprocessing is calculated based on assumptions rather than from existing 

experimental data. Results of sensitivity analysis demonstrate the necessity of further 

experiments on the yield of bio-crude upgrading.  
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Figure 4 Sensitivity Analysis of the Minimum Fuel-Selling Price to Select Technical and Economic 
Parameters. 

The purchase costs of microalgae remain uncertain and difficult to predict. 

Therefore, a large value range is considered in this analysis. Sensitivity analysis shows 

that the MFSP can be as low as $0.58 per liter if the feedstock can be purchased at as 

low as $33 per dry metric ton. On the other hand, if feedstock costs increase to $132 

per dry metric ton, the MFSP would also increase to $0.87 per liter. More research effort 

should go into determining the market price of defatted algae before this HTL process is 

commercialized.  

The next key parameters in terms of MFSP sensitivity are fixed capital 

investment and IRR. A 20% increase in fixed capital investment and IRR lead to 8% and 

7% increases in MFSP, respectively. 
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Uncertainty analysis 

The uncertainty analysis evaluates the impact of stochastic variations between 

multiple parameters on the estimated MFSP. Product fuel yield, feedstock cost, fixed 

capital investment, and IRR were identified as the key parameters to which MFSP is 

most sensitive. To understand the interactions among these parameters, we conducted 

a Monte-Carlo analysis to evaluate the MFSP distribution for the process assuming 

triangular distributions for these parameters.  Triangular distributions are often 

employed in the absence of detailed statistical data [54]. Triangular distributions in this 

study are constructed based on the expected parameter value and ±20% limits except 

for feedstock cost, for which larger limits between -50% and +100% are assumed.  The 

resulting MFSP ranges from $0.48 per liter to $1.03 per liter, with a 50% probability of 

the MFSP being less than $0.72 per liter (Figure 5(a)). This fuel price is competitive 

with the 20-year average of historical gasoline prices, suggesting that the pathway 

evaluated in this analysis is a promising process for transportation fuel production [55]. 

The probability distribution of the MFSP based on variations in the product fuel yield, 

feedstock cost, fixed capital investment, and IRR is shown in Figure 5(b), which reveals 

an 80% probability of the MFSP falling within $0.61 per liter to $0.83 per liter. 
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(a) 

(b) 

Figure 5 (a) Cumulative Probability of Minimum Fuel-Selling Price (MFSP); (b) MFSP Probabilities Based 
on Triangular Distributions for Feedstock Cost, Fixed Capital Investment, And Internal Rate of Return. 

Shaded Region Indicates Confidence Interval Between 0.1 and 0.9. 
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Conclusions 

This techno-economic analysis evaluated the minimum fuel selling price for 

gasoline- and diesel-range fuels from HTP of defatted microalgae followed by bio-crude 

upgrading. The process yielded 352 liters per metric ton of dry biomass approximately 

equally divided between gasoline and diesel fuel. 

The 2000 dry metric ton per day facility had a total project investment cost of 

$489 million, 50% of which was associated with the HTL reactor due to the high-

pressure and high-temperature operating conditions. The MFSP was estimated to be 

$0.68 per liter. Sensitivity analysis showed MFSP to be most sensitive to product fuel 

yield. Fixed capital investment, IRR and feedstock also greatly influenced MFSP. 

Monte-Carlo analysis revealed a 50% probability of MFSP being lower than $0.72 per 

liter, which is comparable to the twenty-year average for gasoline price [55]. These 

results indicate that HTP of defatted microalgae followed by bio-crude upgrading is a 

promising pathway for producing advanced biofuels. 
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CHAPTER 4 UNDERSTANDING UNCERTAINTIES IN THE ECONOMIC 

FEASIBILITY OF TRANSPORTATION FUEL PRODUCTION USING 

BIOMASS GASIFICATION AND MIXED ALCOHOL SYNTHESIS 

A paper published in Energy Technology 

Longwen Ou, Boyan Li, Qi Dang, Susanne Jones, Robert Brown, Mark M Wright 

Abstract 

This study evaluates uncertainties in the techno-economic analysis of 

transportation fuel production from biomass gasification and mixed alcohol synthesis. 

Two scenarios are considered: a state-of-technology scenario and a target scenario 

with projected technological advances. Uncertainties of more than 10 parameters are 

investigated. The probability distributions of these parameters are estimated based on 

historical price data and experimental data. Data samples generated from the 

corresponding distribution are then utilized to run a Monte Carlo simulation. The results 

yield minimum fuel-selling prices of $ 1.85 L−1 with a standard deviation of 0.13 for the 

state-of-technology scenario and $ 1.14 L−1 with a standard deviation of 0.11 for the 

target scenario, respectively. The feedstock price and internal rate of return (IRR) have 

significant impacts on the minimum fuel-selling price in both scenarios. These findings 

are indicative of the reduction in biofuel cost and uncertainty achievable with increasing 

technology maturity. 

Introduction 

Growing demand for fossil fuels and increasing emphasis on the environment have 

made biofuels an attractive substitute of petroleum derived transportation fuels.[1-3] 
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Ethanol remains the biofuel most widely available commercially although a wide variety 

of pathways have been investigated including gasification, fast pyrolysis, and 

hydrothermal liquefaction.[4-8] These pathways have the potential to be scaled up 

commercially, but they require large capital investment at a significant financial risk.[9] 

Therefore, it is imperative that the uncertainty in the profitability of these pathways is 

investigated before investments are made to minimize risks. 

Biomass gasification is a mature technology recognized for its ability to deliver a 

wide range of fuels through several catalytic upgrading routes. Biomass gasification 

generates a synthetic gas that can be upgraded to hydrocarbons via Fischer-Tropsch[10, 

11] or Methanol-to-Gasoline synthesis,[12] alcohols through mixed alcohol synthesis[13] 

and fermentation.[14] Although gasification is a mature technology, the catalytic 

upgrading pathways are at varying levels of development and few have achieved large 

industrial scale in the biofuel sector. Several commercialization ventures have pursued 

gasification-based biofuel production in recent years. [15]  

Biomass gasification and mixed alcohol synthesis is an attractive option for biofuel 

production because of its ability to produce ethanol at a high yield (350 L/MT [13]) from a 

wide range of feedstock. However, barriers to commercial success are the high capital 

cost, limited market for higher alcohol co-products, and challenges with tar removal. The 

sensitivity of the minimum ethanol selling price (MESP) to various techno-economic 

parameters has been evaluated in a previous study by Dutta et al. [13] That study found 

potential changes of up to +38.6%/-34.5% to the MESP for variations in individual 

parameters. However, the range of potential MESP values could be greater if more than 

one parameter deviates from expected values.  
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Techno-economic analysis (TEA) has been used widely to evaluate economic 

feasibility of various biofuel pathways, including mature first generation ethanol 

biorefineries, and relatively novel fast pyrolysis, gasification, and hydrothermal 

liquefaction. [16-20] Immaturity of these processes dictate their intrinsic risk, which result 

from uncertainties of the parameters chosen to conduct the TEA such as feedstock price, 

internal rate of return (IRR), etc. These uncertainties can be accounted for by 

incorporating variability in commodity prices, experimental measurements, and financing 

parameters among others. In a previous study, Brown and Wright demonstrated that 

these uncertainties have a significant influence on the predicted profitability of biofuel 

pathways. [9] Therefore, TEAs with single point estimates [21] could be enhanced by 

addressing the uncertainties in the analyses.  

Monte-Carlo simulation has been adopted in recent TEAs as an effort to account 

for the uncertainties within the analyses. [17, 22, 23] The sequence proceeds as follows: 

several key parameters with potential for significant impact on the results are first 

identified, a predetermined distribution is then assigned for each parameter, and large 

data sets (usually 10,000 data) are generated according to the assigned distributions. 

These data sets are then incorporated into the financial spreadsheet to run a Monte-Carlo 

simulation so that each iteration utilizes a unique combination of data for each parameter 

in the data set. [24] It allows more than one parameter to vary at the same time so that 

the impacts of multiple parameters on the result can be evaluated. It also provides 

distribution information on the result of TEA.  

This paper contributes a detailed uncertainty analysis of two biomass gasification 

and mixed alcohol synthesis scenarios: a state-of-technology scenario and a target 
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scenario. More than ten parameters that may have significant impact on the Minimum 

Fuel Selling Prices (MFSP) are investigated. Distributions of each parameter are 

determined from historical data, which are then used to generate data sets for Monte-

Carlo simulations.  

Methodology 

Process design of biomass gasification and alcohol synthesis for diesel fuel production 

Steam and power generation

Hydrocarbon 
production

Mixed 
alcohol 

synthesis

Gas 
cleanupGasificationFeed 

handling
Biomass

Dried 
biomass

Raw 
gas

Clean 
syngas

Mixed 
alcohol

Fuel 
product

 

Figure 1 Schematic of biomass gasification and alcohol synthesis for diesel fuel production. 

The process evaluated in this analysis is transportation fuel production via biomass 

gasification and subsequent alcohol synthesis and conversion to distillates. Six areas are 

involved in this process: feed handling and preparation, gasification, syngas cleanup, 

mixed alcohol synthesis, hydrocarbon production, and steam and power generation, as 

shown in Figure 1. The design of feedstock handling, gasification, syngas cleanup, and 

mixed alcohol synthesis is based on previous work by NREL. [25] The design of 

hydrocarbon production is based on related patents. 

Feed handling and preparation involves feedstock drying to below 10 wt. % 

moisture content. The dried biomass is then gasified at 870 °C and 2 bar. A relatively 

small fraction of biomass is converted into tars, which are comprised mostly of aromatic 
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and poly-aromatic hydrocarbons. The nitrogen in the feedstock is primarily converted to 

ammonia. The raw producer gas from the gasifier is sent to a catalytic tar reformer to 

convert a portion of tar, methane and other light hydrocarbons to CO and H2. Part of the 

ammonia is converted to nitrogen and hydrogen. The syngas is then cooled and sent to 

a wet scrubber to remove impurities such as particulates, remaining ammonia and 

residual tars.  

The conditioned syngas is then compressed to 207 bar using a six-stage 

compressor system with inter-stage cooling. The compressed syngas is mixed with 

recycled syngas and recycled methanol and preheated to 313 °C before entering for 

mixed alcohols reactor. The gas entering the alcohol synthesis reactor has a H2/CO molar 

ratio of 1.5. Steam is generated using the heat released from the exothermic alcohol 

synthesis reactions. The effluent gases from the reactor are cooled and flashed to remove 

alcohols as a liquid stream. The gaseous stream is recycled to the reactor after removal 

of CO2 and H2S with a physical solvent: dimethyl ethers of polyethylene glycol (DEPG). 

The solvent from the absorber is then flashed at a lower pressure to expel less soluble 

compounds such as H2, CO, and CH4, which is then recycled to the tar reformer and fuel 

combustor. The liquid effluent is directed to a distillation column for methanol removal 

before dehydration. Overhead product of the methanol removal column, consisting of 

essentially all of the feed methanol and other light compounds such as CO2 and H2, is 

then cooled and flashed. The gaseous stream of the flash drum goes to fuel combustor 

with the liquid stream, which consists mostly of methanol and a small amount of ethanol, 

recycled to the mixed alcohol synthesis reactors. 
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Dehydration of mixed alcohols is designed based on US patent 4396789 and US 

patent application 20130190547. The synthesized alcohols are pumped to 20 bar and 

dehydrated in a series of three adiabatic reactors to produce small molecular weight 

olefins. After heat recovery, the olefin product from the dehydration reactors goes through 

a water scrubber for removal of methanol and other residual alcohols. The olefin stream 

undergoes oligomerization in the presence of organic solvent, toluene, at 32 bar to 

produce linear alpha olefins including 1-decene and 1-dodecene. This process is based 

on patent DE4338414C1. 

The product stream is depressurized and cooled in a flash separator. The gaseous 

stream is recycled to the oligomerization reactor while the liquid stream is directed to a 

distillation column to separate solvent from olefins. The solvent is recycled to the 

oligomerization reactor. The olefins are hydrogenated at 29 bar to produce saturated 

hydrocarbons product.  

The process also includes a steam cycle that generates steam through recovering 

waste heat from the hot process streams throughout the plant. The steam cycle also 

generates power for plant operations through a multi-stage steam turbine. A fuel 

combustor is also included to recover energy from plant off-gases. 

State-of-technology scenario and target scenario 

This analysis involves two scenarios: a state-of-technology scenario and a target 

scenario. These scenarios are distinguished primarily by assumptions in Lang Factor and 

oligomerization technology. The state-of-technology scenario assumes a Lang Factor 

(total investment divided by bare equipment costs) of 4.15 to account for the high degree 

of uncertainty in the process equipment needed and costs for a pioneer technology 



74 
 

 
 

implementation.  In the target scenario, a lower Lang factor and equipment costs are 

assumed to account for technological and process improvements. A mean value of 4 is 

assumed for Lang factor which is lower than the fixed value in the state-of-technology 

scenario. Ethylene per pass conversion to butene and hexene is estimated to be 

approximately 11 wt. %. A low per-pass conversion of 0.11% was considered in order to 

understand the potential impact on long-term profitability. Per-pass conversion affects the 

amount of olefin recycle and the yield of the desired products. 

Uncertainty analysis 

This analysis evaluates TEA uncertainties of a biomass gasification and mixed 

alcohol synthesis process design for ethanol production. Uncertainties of the TEAs result 

from various factors including variability in parameters such as IRR, capital costs, and 

volatility of feedstock and product prices. Uncertainties of more than ten parameters are 

considered in this analysis to gain a better understanding of the economic performance 

of the proposed process including feedstock price, IRR, capital cost, Lang Factor, catalyst 

cost, electricity price, conversion factors of key reactions such as mixed alcohol synthesis 

and olefin oligomerization. The analysis proceeds as follows: data for the parameters 

mentioned above are first collected and categorized. [25-28] The data are then fitted to 

an appropriate distribution. Several candidate distributions are considered: Normal, 

Lognormal, Exponential, Chi-Square, Cauchy, Laplace, and Logistic. The best fit 

distributions are determined from the Anderson-Darling goodness-of-fit test. [29] In some 

cases, the best-fit distributions are adjusted to account for differences in the expected 

mean value, variance, or distribution type. For example, the mean of feedstock price is 

shifted from $28/dry MT from the original data set to $80/dry ton in order to account for 
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additional costs associated with transportation, handling, and grower payments. Data sets 

with 10,000 unique samples are gathered from the best-fit probability distributions.  

The parameters investigated in this analysis can be divided into two categories. 

The first category includes all parameters except for reaction conversion factors. These 

parameters are incorporated directly into the financial spreadsheet to run the Monte-Carlo 

analysis. Reaction conversion parameters fall into the second category, whose impact on 

the final MFSP is evaluated indirectly via the biofuel production rate. That is, a relationship 

between the biofuel production rate and reaction conversions was first determined 

through a surrogate model of the CHEMCAD process model. A predetermined triangular 

distribution was assigned to the conversion of each alcohol synthesis and olefin 

oligomerization reaction. For example, the mixed alcohol reactor converts syngas and 

recycled methanol into alcohols, hydrocarbons and carbon dioxide.  Each reaction is 

modeled by a stoichiometric equation with fixed conversion rates. The conversion rates 

were varied and a simple yield correlation developed. The built-in CHEMCAD sensitivity 

analysis tool is then used to investigate the impact of each conversion yield factor on the 

diesel biofuel production rate. The sensitivity analysis data is employed to develop a linear 

regression, and it appears that alcohol and hydrocarbon synthesis yields have a linear 

relationship with biofuel production. This linear relationship is employed to generate 

10,000 product fuel production rates based on the conversion yield distributions. The 

results of the fuel production rate data, along with other key parameters are integrated 

into financial spreadsheets to calculate the minimum fuel-selling price (MFSP) of biofuels. 

Uncertainty analysis results are reported as error bars and distributions of the MFSP, and 
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the relative impacts of the key input parameters. Figure 2 shows a flowchart of the 

research methodology. 

Parameter Data 
Collection

Probability 
Distribution Fitting

Randomized Data Set 
Generation

Alcohol Synthesis
Surrogate Model 

Development

Minimum Fuel-Selling 
Price Analysis Uncertainty Analysis

 

Figure 2 Flowchart of the uncertainty methodology for biomass gasification and mixed alcohol synthesis. 

Historical price data for feedstock and various fuels from 2007 to 2012 are 

collected from several sources.  U.S. average wholesale prices for gasoline and diesel 

and industrial natural gas and electricity prices are taken from Energy Information 

Administration (EIA).[27] Feedstock price data are collected from pine pulpwood prices 

from the Texas A&M Forestry Service.[26]   

The parameters investigated in this analysis are shown in Table 1. The mixed 

alcohol synthesis reactor conversions shown in Table 1 are taken from the data given 

in.[25] Uncertainties of several parameters such as Lang Factor and catalysts costs are 

only investigated in the target scenario to see how they affect the MFSP. Oligomerization 

conversion yields differ as well based on the assumption of improving ethanol yields. 
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Table 1 Mean, 10% and 90% confidence levels, and best-fit distributions of selected techno-economic 
analysis parameters  

Parameter Mean 10% Confidence / 
Min[a] 

90% Confidence / 
Max[a] Distribution 

Industrial Natural Gas Price ($/m3) 0.22 0.14 0.32 Lognormal 

Industrial Electricity Price (¢/kwh) 6.05 5.00 7.09 Normal 

Pine pulpwood ($/MT) 78.69 67.21 90.18 Lognormal 

Gasoline Wholesale ($/L) 0.47 0.24 0.76 Lognormal 

Diesel Wholesale ($/L) 0.46 0.16 0.77 Lognormal 

Gasifier uninstalled capex (MM$) 9.80 7.35 12.93 Triangular 
Tar reformer uninstalled capex 
(MM$) 4.90 4.90 9.70 Triangular 

Installation factor 2.31 1.50 2.80 Triangular 

Methanol to Ethanol Conv. Frac 0.44 0.46 0.48 Triangular 

CO to Methanol Conv. Frac. 0.059 0.062 0.065 Triangular 

CO to Ethanol Conv. Frac. 0.040 0.042 0.044 Triangular 

CO to N-Propanol Conv. Frac. 0.015 0.016 0.016 Triangular 

CO to Methane Conv. Frac. 0.039 0.042 0.044 Triangular 

CO to Ethane Conv. Frac. 0.0029 0.0030 0.0032 Triangular 

CO to Propane Conv. Frac. 0.0010 0.0011 0.0012 Triangular 

Butene to Hexadecene Conv. Frac. 0.86 0.90 0.95 Triangular 

Ethylene to Butene Conv. Frac. 0.10 (0.0011)[b] 0.11 (0.11) 0.12 (0.12) Triangular 

Ethylene to Hexene Conv. Frac. NA[c] (0.0011) NA (0.11) NA (0.11) Triangular 

Syngas compressors capex[c] 100% (90%) 80% (50%) 140% (140%) Triangular 

Synthesis reactor capex[c] 100% (90%) 90% (50%) 140% (140%) Triangular 

Purge gas expanders capex[c] 100% (90%) 90% (50%) 140% (140%) Triangular 

acid gas system capex[c] 100% (90%) 100% (50%) 140% (140%) Triangular 

heat integration capex[c] 100% (90%) 100% (50%) 140% (140%) Triangular 

Compression duty (MW)[c] 100% (90%) 80% (50%) 100% (100%) Triangular 

Expander duty (MW)[c] 100% (90%) 50% (50%) 100% (100%) Triangular 
Alcohol to hydrocarbon fuels capex, 
MM$ NA (160) NA (120) NA (280) Triangular 

Catalysts Costs, MM$/year NA (3.20) NA (1.00) NA (7.50) Triangular 

Lang Factor NA (4.00) NA (3.00) NA (5.00) Triangular 

[a] For lognormal distribution, 10% / 90% confidence interval is given. For triangular distribution, minimum / maximum 
values are given. [b] Values in parentheses are used in the analysis of the target scenario. [c] NA: not available. [c] 
Values are given as percentage of the base case values. 
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Results and discussion 

Distribution fitting 

Figure 3 shows fitted Probability Density Functions (PDF) of historical feedstock 

and energy prices. The fitted distribution for each variable is listed in Table 1. They reflect 

the historical trends of these commodities. Lognormal distribution best fitted historical 

price data for all commodities. Triangular distributions are used for variables with limited 

sample data. 

Figure 3 Fitted Probability Density Functions (PDF) of Historical Feedstock and Energy Prices. 
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State-of-technology scenario 

Tables 2-4 show the base case results of the state-of-technology scenario. The 

results are obtained by assuming the most probable values for all input variables. The 

estimated MFSP is high due to immaturity of some process areas such as mixed alcohol 

synthesis and diesel fuel production. High capital costs and heavy utility demand of these 

areas contribute to the high MFSP.    

Table 2 Process modeling results 

Scenario MFSP ($/L) Fuel production rate (MM 
L/year) 

Fuel product yield (L/dry 
MT feedstock) 

SOT 1.79 159 246 

Target 1.04 178 269 

 

Table 3 Breakdown of Installed equipment cost in million dollars 

Scenario Feed 
Handling  

Gasification Syngas 
Cleanup 

Mixed Alcohol 
Synthesis 

Diesel Fuel 
Production 

Power & 
Heat 
Plant 

Balance 
of Plant 

Total 

SOT 0 48.2 106.5 83.8 118.8 30.8 9.0 397.1 

Target 0 48.2 83.5 58.7 59.4 27.7 9.0 286.5 

 

Table 4 Breakdown of operating costs in million dollars 

Scenario Feedstock Catalysts & 
Chemicals 

Waste 
Disposal 

Electricity 
and other 

utilities 

Fixed Costs Capital 
Depreciation 

Average 
Income 

Tax 

Average 
Return on 
Investment 

Total 

SOT 57.9 19.8 0.7 11.6 44.6 47.4 25.4 79.3 286.7 

Target 57.9 5.4 0.7 2.4 28.5 27.3 14.8 46.3 183.3 
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Figure 4 shows the probability and cumulative MFSP distributions for the high 

Lang Factor syngas to distillates case scenario. It can be seen that the base case MFSP 

lies on the left of the most probable region. The most probable MFSP value is slightly 

higher than the base case value. There is an 80% probability that the MFSP falls between 

$1.69/L and $2.02/L for the given assumptions. 

Figure 4 Minimum Fuel-Selling Price (MFSP) probability (left) and cumulative (right) distributions for 
syngas to distillates with high Lang factor. 

Figure 5 shows the parameter uncertainty impact on the syngas to distillate MFSP 

for the state-of-technology scenario. This figure is more informative than traditional 

sensitivity analysis. It gives not only the range of the MFSP, but also the 0.25/0.75 quartile 

values for each parameter investigated. In some cases, the parameter that generates the 

largest MFSP range does not necessarily give the largest range of 0.25/0.75 quartile 

values, as will be shown later in Figure 7. Figure 5 also provides the median value for 

each parameter in contrast to the sensitivity analysis in which only the base case value 

is provided for each parameter. For instance, the median value of feedstock price in 

Figure 5 is skewed leftward, indicating that the uncertainty of feedstock price is likely to 

result in a lower MFSP than the base case. Figure 5 presents the parameters investigated 

in such a way that the parameter with the greatest direct influence (a larger value of the 
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parameter generates a higher MFSP) comes first while those with the greatest inverse 

influence (a larger value of the parameter generates a lower MFSP) come last. For 

example, feedstock has a positive influence on the MFSP since higher feedstock price 

would increase the MFSP. In contrast, higher gas hourly space velocity reduces the size 

of the reactors and thus capital cost; therefore it has an inverse influence on the MFSP. 

As is shown in Figure 5, IRR has the most significant impact on MFSP, followed by 

feedstock price. However, the latter has a smaller range of expected (0.25/0.75 quartile) 

values. This result agrees with other research regarding biomass gasification and 

methanol-to-gasoline.[12] The relatively low impact of process parameters, installation 

factors and equipment costs indicates that this process is mature.   

 

Figure 5 Syngas to distillates high Lang factor parameter uncertainty impact on the MFSP. Gates indicate 
min/max MFSP range; boxes indicate 0.25-0.75 quantiles of the MFSP; white vertical lines show the 

median MFSP value. Bold legends indicate significant (p<0.05) parameters. 
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Target scenario 

Base case results of the target scenario are shown in Tables 2-4. The main 

difference from the state-of-technology scenario is that installed equipment costs related 

to mixed alcohol synthesis, and fuel production are lower due to improved maturity of the 

target scenario concept design. Installed equipment costs of steam plant are also reduced 

to account for lower energy demand in the target scenario. Other improvements include 

higher product yield and lower catalyst load in mixed alcohol synthesis, alcohol 

dehydration, and alkene hydrogenation reactions. 

Figure 6 shows the target scenario MFSP distribution. In the target scenario, the 

uncertainty of Lang Factor impact are also investigated. It can be seen from Figure 6 that 

the base case MFSP lies on the left half of the probability density curve, while the most 

probable value for MFSP (~$1.12/L) is actually higher than the base case value of $1.04/L. 

It is shown in Figure 6 that there is 80% probability that the MFSP lies between $1.01/L 

and $1.29/L.  

 

Figure 6 Minimum Fuel-Selling Price (MFSP) probability (left) and cumulative (right) distributions for 
syngas to distillates with low Lang factor target scenario.  
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Figure 7 Syngas to distillates target scenario with low Lang factor parameter uncertainty impact on the 
MFSP. Gates indicate min/max MFSP range; boxes indicate 0.25-0.75 quantiles of the MFSP; white 
vertical lines show the median MFSP value. Bold legends indicate significant (p<0.05) parameters. 

Figure 7 shows the impactful parameters for the target scenario. Feedstock price 

has the widest range of MFSP suggesting it might have the greatest impact on MFSP. 

However, the range of most probable feedstock prices lying between the 0.25-0.75 

quantiles suggest it has a smaller influence than Lang factor and IRR. This result 

highlights how uncertainty analysis can enhance sensitivity analysis by identifying not 

only potential values but also their likelihood.  

Comparison of state-of-technology and target scenarios 

Figure 8 shows a comparison of the MFSP for the state-of-technology and target 

scenarios. The results indicate that the state-of-technology scenario has a high expected 

MFSP of $1.85/L. With the capital cost being lowered in the target scenario, a lower mean 

MFSP ($1.14/L) was obtained. Capital costs are the main contributing factors to the 

higher cost for the base case scenario. However, the standard deviation of the target 
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scenario (10% of the mean MFSP) is higher than that of the state-of-technology scenario 

(7% of the mean MFSP).  

 

 

Figure 8 Syngas to distillates target scenario with low Lang factor parameter. 

Conclusions 

This analysis investigated the uncertainty of biomass gasification and subsequent 

diesel fuel production process by comparing with a state-of-technology and a target 

scenario. Impacts of more than ten parameters on the MFSP were explored by Monte-

Carlo simulation, consisting of 10,000 runs. The state-of-technology scenario yielded a 

MFSP of $1.85/L with a standard deviation of 0.13; the target scenario presented a MFSP 
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of $1.14/L with a standard deviation of 0.11. The analysis gave a 10% to 90% probability 

interval of the two scenarios of $1.69/L to $2.02/L, and $1.01/L to $1.29/L respectively. 

Feedstock price and IRR were the most impactful parameters on the MFSP in both 

scenarios. Uncertainty of Lang Factor was investigated in the target scenario. The results 

indicated that it had significant impact on the MFSP. The results of this analysis justified 

the need to better understand uncertainties of these parameters. 
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CHAPTER 5 ENVIRONMENTAL IMPACTS OF CO-FIRING BIO-OIL IN 

COAL-FIRED POWER PLANTS 

A paper in preparation for submission to Environmental Science & Technology 

Abstract 

This study evaluates the environmental impacts of using bio-oil co-firing fuel (BCF) for 

power generation. Life cycle emissions of hazardous air pollutants are estimated and 

broken down based where the emissions occur. A case study is also conducted to 

evaluate the environmental and health impacts of replacing 10% of coal electricity with 

BCF electricity in the United States. The results show that BCF electricity decreases the 

emissions of SOx and primary PM2.5 compared to coal electricity, but in the same time 

increases the emission of NH3 from farming activities. Air quality simulation results 

suggest that replacing 10% of coal electricity with BCF electricity results in lower annual 

average concentration of PM2.5 in most areas in the United States. Exceptions are the 

Midwest corn-belt and the southern coast where fertilizer plants are located. Overall 

PM2.5 exposures are reduced by 11 tonne/yr. Total death attributable to PM2.5 

exposures is reduced by 709 deaths/year. 

 
Introduction 

Biofuels have attracted tremendous attention in recent years due to the fact that 

climate change resulting from greenhouse gases emitted from combustion of fossil fuels 

becomes a major social concern [1-3]. In order for biofuel to succeed in the competition 

between fossil fuels, it is important to understand not only its economics, but also its 
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environmental and social impacts. Life cycle analysis (LCA) has been extensively used 

to quantify the environmental impacts of biofuel production systems [4, 5]. Greenhouse 

gas (GHG) emissions is one of the major environmental concerns associated with 

transportation fuel consumption. Significant research has been done to quantify the net 

GHG emission for a variety of biofuel production pathways [6-8]. The GHG emissions, 

together with the result of techno-economic analysis, gives the decision makers a more 

comprehensive understanding of the particular biofuel production system under 

investigation.  

There are also impacts that biofuel production and consumption has on the 

society and the environment as well, among which is Hazardous Air Pollutant (HAP) 

emissions. HAP, also known as toxic air pollutants, are suspected to cause cancer or 

other serious health effects such as reproductive effects or birth defects, or adverse 

environmental effects [9]. HAP emissions are regulated by EPA through National 

Emission Standards for Hazardous Air Pollutants (NESHAP) [10].  

Particulate Matter (PM) refers to particles found in air, including dust, dirt, soot, 

smoke, and liquid droplets [11].  Particles less than 2.5 micrometers in diameter (PM2.5) 

are referred to as “fine” particles and are believed to pose the greatest health risks due 

to the fact that their small size enables them to lodge deeply into the lungs [11].  

PM2.5 may result from direct emission; it may also derive from other pollutants 

such as Volatile Organic Compounds (VOC), SOx, NOx, and Ammonia (NH3) [12]. The 

particles formed from chemical reactions of other pollutants are also called “secondary 

PM2.5”. In order to quantify PM2.5 emissions from biofuel production and consumption, it 

is essential that both directly emitted and secondary PM2.5 are taken into account. 
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Distinct from GHGs which are stable after emission and can stay in the atmosphere for 

many years, these HAPs (PM2.5, VOC, SOx, NOx, NH3) evolves via chemical reactions 

[13]. Hence it is important to consider the location of emissions so that meteorological 

and geographical information can be integrated when considering evolution of the 

emissions.  

Although biofuels have advantage in GHG emissions over traditional petroleum 

fuels when considering the CO2 fixed during plant growth. It is still worth investigation 

whether biofuels also cause less emissions of other HAPs. Tessum et al. [14] 

developed a spatially and temporally explicit life cycle inventory of air pollutants and 

analyzed the emissions from gasoline, first generation ethanol produced from corn 

grain, and second generation ethanol produced from corn stover. It is concluded that life 

cycle PM2.5 emissions are higher for ethanol from corn grain than for ethanol from corn 

stover. Hill, et al. quantified the life cycle PM2.5 emissions from gasoline, corn ethanol 

and cellulosic ethanol and concluded that cellulosic ethanol provides health benefits 

from PM2.5 reduction [15].  

Fast pyrolysis is regarded a promising way to convert biomass into useful end 

products including biofuels and biochemicals. It refers to the process in which biomass 

is converted to liquid (bio-oil), soilds (bio-char) and gas products in the absence of 

oxygen at medium temperature [16]. Brown et al. [17, 18] developed a system that 

recovers bio-oil as five stage fractions (SF) with distinctive physical and chemical 

properties to facilitate further upgrading of the fractions according to their unique 

composition and properties. The high-boiling-point heavy ends, which consists mostly of 

phenolic oligomers and sugars, can then be used to form a bio-oil co-firing fuel (BCF) 
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after treating at 105 oC to remove water contents [19, 20].  Dang et al. [21] analyzed 

economics and GHG emissions of co-firing BCF and coal for power generation, 

concluding that it is promising in reducing GHG emission from electricity produced from 

coal power plants [21]. It is also economically competitive to conventional coal electricity 

if carbon price reach is higher than $67 per metric ton. 

However, emissions of other HAPs that may result from burning BCF with coal 

has not been reported. It is necessary to evaluate HAPs emissions from BCF electricity 

generation with coal electricity to quantify the impact of replacing part of coal with BCF 

for power generation. Coal has been the primary energy source in the United States in 

the past decades. It is only until recently has coal been overtaken by natural gas in the 

power generation sector [22, 23]. Coal-generated power emits more pollutant than 

electricity generated from other sources such as natural gas and other renewable 

energy sources [24]. Despite the advantage of reduced CO2 emission, it is also 

important to quantify emission of other pollutants involved in the process of electricity 

generation from BCF combustion. 

This analysis quantifies life cycle HAPs emission from power generation by 

combusting BCF. The results are compared with emissions from electricity generation 

from coal power plants. The emissions of electricity generation from both BCF and coal 

combustion are broken down into subprocesses according to where the emissions 

occur. A case study is then developed to quantify the HAPs emissions across the 

contiguous United States by allocated emissions of each subprocess to corresponding 

locations. 
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Methodology 

Life cycle assessment of BCF production and electricity generation 

This analysis utilized the same system described in [21]. Corn stover is employed 

as the feedstock. It is then pyrolyzed and recovered as heavy, middle, and light ends 

with decreasing boiling point. The heavy ends are then treated at 105 oC for 1.75 hours 

to form BCF which is then combusted for electricity generation. Figure 1 shows the 

process diagram. In this analysis, the middle ends are also combusted for increased 

power generation. However, it may be used for other purposes such as hydrogen 

production via steam reforming. The Greenhouse Gases, Regulated Emissions, and 

Energy Use in Transportation Model (GREET) developed by the Argonne National 

Laboratory was used to conduct LCA for the process [25].  

 

Figure 1 Process diagram of coal generation from BCF combustion. 

Emission from combustion of BCF is not available in literature. It is estimated 

based on the composition of BCF. Table 1 shows properties of BCF in comparison with 

various types of coal [20, 26]. BCF has much lower ash, sulfur and nitrogen content 

than coal. It is thus assumed that BCF combustion emits much lower SOx and NOx. 

Emissions of PM2.5 from BCF combustion is also assumed low since it is found that 
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PM2.5 emissions is correlated to the ash content of fuel. To be more specific, it is 

assumed BCF combustion emits one fourth of NOx from combustion of coal and one 

tenth of PM2.5. SOx emission is calculated by GREET model based on the sulfur content 

in BCF. NH3 emission is not included in the GREET model. Hence NH3 emission from 

each subprocess is calculated separately [15, 27]. It is assumed that electricity is 

generated from coal or BCF combustion using steam turbine, which accounts for 99% of 

the electricity generated from coal-fired power plant [28]. Mass balance and energy 

balance data from Aspen Plus model is used as input to the GREET model. The main 

inputs to the GREET model is summarized in Table 2. 

Case study 

A case study is analyzed to see how BCF utilization may impact the emission 

pattern of the United States. In 2015, 4 trillion kWh of electricity was generated in the 

United States, among which around 33% was generated from coal combustion [23]. 

This case study evaluates the emission structure If 10% of electricity generated from 

coal combustion is replaced with that generated from fast pyrolysis and BCF 

combustion. It is done by process breakdown and emission allocation. Details about 

these steps are provided below. 

Process breakdown 

In order to track down the location of emission sources of HAPs, the GREET 

model is then broken down to more than 30 subprocesses based on the location of 

emission source, including corn farming, fast pyrolysis and electricity generation, 

production of ammonia, transportation of coal, etc. Overall over 92% of total emission is 

included in these subprocesses. Onsite emission (emission that excludes all upstream 
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and downstream process emissions) is evaluated for each subprocess and is later 

allocated according to capacity and locations of emission sources.  

Table 1 Comparison between BCF and different types of coal 

Fuel type Moisture 
(wt%) 

Ash 
(wt%) 

Sulfur 
(wt%) 

Nitrogen 
(wt%) 

Calorific 
value 

(Btu/lb) 
Anthracite 

(Pennsylvania) 4.3 9.6 0.8 0.9 12880 

Low-volatile 
Bituminous 

(West Virginia) 
2.6 5.4 0.8 1.3 14400 

Medium-
volatile 

Bituminous 
(Pennsylvania) 

2.1 6.1 1.0 1.4 14310 

High-volatile A 
Bituminous 

(West Virginia) 
2.3 5.2 0.8 1.6 14040 

High-volatile B 
Bituminous 
(Kentucky) 

8.5 10.8 2.8 1.3 11680 

High-volatile C 
Bituminous 

(Illinois) 
14.4 9.6 3.8 1.0 10810 

Subbituminous 
A (Wyoming) 16.9 3.6 1.4 1.2 10650 

Subbituminous 
B (Wyoming) 22.2 4.3 0.5 1.0 9610 

Subbituminous 
C (Wyoming) 26.6 5.8 0.6 0.9 8630 

Lignite (North 
Dakota) 36.8 5.9 0.9 0.6 7000 

BCF 0.72 0.47 0.01 0.3 12264 
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Table 2 Input and out for the fast pyrolysis and BCF electricity generation 

Input Output 

Corn stover Electricity Biochar 

0.2962 kg 1 MJ 38.6840 g 
 
Spatial allocation of emission 

Geographical information of the locations of emission sources are collected for 

each subprocess, including the location of coal mines [29], coal power plants [30], corn 

farms, petroleum refineries [30], natural gas processing facilities [30], fertilizer 

production facilities [31], sulfuric acid production facilities [32], oil and gas fields [33] etc. 

Production capacity information is also collected for these emission sources. The 

emission results for each subprocess is then allocated to each facility according to their 

relative capacity. For instance, a coal power plants producing 1% of total coal electricity 

in the United States would be allocated 1% of total emission of the coal mining 

subprocess. 

In order to account for only domestic emissions occurred in contiguous U.S., 

import of major resources is taken into account to exclude emissions outside contiguous 

U.S. Domestic fraction of resources such as crude oil, sulfuric acid, fertilizers are listed 

in Table 3. Alaska and Hawaii production is excluded from the total domestic 

production. 
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Table 3 Domestic fraction of major resources 

Resource Domestic fraction (%) 

Natural gas [34-36]  83.5 

Crude oil [37, 38] 47.5 

Sulfuric acid [14] 72.0 

Phosphoric acid and rock [14] 85.0 

All nitrogen fertilizers [14] 56.5 

Potassium [14] 17.0 
 

Transportation emission allocation 

 Emission from truck transportation is allocated using linear programming. First 

the shortest possible route between each pair of supplier and market are identified. The 

amount of transportation between each pair of supplier and market is then decided 

based on the optimal results of linear programming. In some cases, the numbers of 

suppliers and demands are so large (>1000), leading to more than a million pairs of 

suppliers and demands. In order to save running time, the suppliers and demands are 

grouped by states due to the constraint of computing power.  

Air quality simulation 

In order to simulate formation of secondary PM2.5, detailed air quality simulation 

was performed with InMAP (Intervention Model for Air Pollution) [39]. InMAP is a 

reduced complexity air quality model for estimating the air pollution health impacts of 

emission reductions [39]. It was chosen in this study over detailed Chemical 

Transportation Models (CTMs) for the reason that it provides several desirable features. 

First of all, InMAP provides estimates of air pollution health impacts resulting from 
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marginal changes in pollutant emissions, which suits the goal of this study. Secondly, 

InMAP significantly reduces computational cost relative to traditional CTMs while 

providing good predictive accuracy. Running InMAP also does not require expertise in 

air pollution models, facilitating utilization by non-experts such as scientists and 

policymakers. In order to focus on human exposures, InMAP features a variable 

resolution grid according to population density. High resolution grids are used in high-

population areas while lower resolution grids are used in less densely populated areas. 

The output of InMAP is a shapefile with a number of attribute columns including 

estimated annual-average changes in primary and secondary PM2.5 concentrations 

attributable to annual changes in precursor (primary PM2.5, SOx, NOx, VOCs, and NH3) 

emissions, and number of deaths attributable to PM2.5. A detailed introduction of InMAP 

and its performance compared to traditional CTMs can be found in [39].  

Results and discussion 

Life cycle assessment and process breakdown 

Table 4 shows life cycle inventory results of electricity generation from BCF 

combustion. Life cycle inventory results of coal electricity is also listed for comparison. It 

can be seen that electricity from BCF combustion emits significantly less SOx and PM2.5. 

NOx emissions are quite similar to coal electricity.  VOC and NH3 emissions are 

increased by generating electricity from BCF. Figure 2 shows the result of LCA of 

electricity generated from BCF and coal. It can be seen that each subprocess contribute 

differently to HAP emissions. Corn farming is the major contributor of NOx and emission. 

Around 30% of NOx and more than 90% of NH3 are emitted on corn farms. Major source 

of SOx emission comes from sulfuric acid production. Fast pyrolysis and combustion of 
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BCF also leads to some NOx and SOx emissions. For traditional coal electricity, coal 

combustion is the major source of emission for NOx, SOx, and PM2.5, while coal mining 

emits most part of VOC and NH3. In general, using BCF as a fuel for electricity 

generation mitigates onsite emission of electricity generation, at the cost of increasing 

upstream emissions. NOx emission from the two processes are roughly the same (<1% 

difference). BCF electricity incurs much lower SOx emission in its life cycle (<20% of 

coal electricity), with the most significant contributor being sulfuric acid production. The 

low SOx emission from BCF electricity is mainly because the low S content in BCF. BCF 

electricity causes 30% higher VOC emission than coal electricity. It is worth noting that 

the majority of VOC emission comes from the upstream process including fertilizer 

production and farming activities. The actual onsite VOC emission is pretty close with 

<1% difference. Emission of fine particulate matter from BCF electricity is 66% higher 

than that from coal electricity. The actual onsite emission of PM2.5 is more than 10 times 

higher than that from coal electricity.  

Table 4 Life cycle inventory results (g/MJ) 

 VOC NOx PM2.5 SOx NH3 

BCF 
electricity 0.02932 0.1387 0.01033 0.1237 0.1072 

Coal 
electricity 0.02258 0.1399 0.01714 0.6688 4.554e-4 

 



99 
 

 
 

(a) 

 

(b) 

Figure 2 Breakdown of BCF electricity emissions and coal electricity emissions. (a) and (b) 
shows life cycle inventory results of BCF electricity generation; (c), (d) and (e) shows life cycle 

inventory results of coal electricity generation. 
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Figure 2 continued 

(c) 

(d) 
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Figure 2 continued 

(e) 

 

Case study 

HAPs evolve into other pollutants after being emitted. The evolution involves 

chemical reactions that are affected by reactant concentration (amount of emission) and 

meteorological conditions such as temperature, wind speed, etc. It is therefore crucial to 

identify both the amount and location of the emissions. In this case study, it is assumed 

that 10% of coal electricity is replaced with BCF electricity in order to evaluate the 

impact of BCF utilization in power sector on the emission pattern in the United States.  

Allocation of emissions 

Emissions of each of the subprocess of the life cycle is associated with location 

of the emission sources. For instance, emissions from coal mining take place at coal 

mines; emissions from fertilizer production happen in the fertilizer plants; emissions 

related to fertilizer production and other farming activities occur at corn farms. Total 

emissions of each subprocess is first calculated, and then allocated to each location 
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based on their capacities. For instance, a plant producing 1% of ammonia of the total 

production of the country is allocated 1% of the total emissions from ammonia 

production. The emission allocated to each source is then further distributed to a 

staggered grid of 36 km by 36 km. This grid is one of the standard grids used in the air 

quality modeling software CMAQ [40]. Emissions of all the subprocesses is then added 

together to obtain the total emissions for each grid. 

Figure 3 shows the subprocesses with the highest emissions for each pollutant. 

The center of the circles indicates the location of the emission sources and the area of 

the circles indicate the relative emission amount (i.e., the capacity of the source). 

Amount of emissions of each pollutant is also shown in the bar chart. It is clear that coal 

mines are concentrated in states of Wyoming, West Virginia, and Pennsylvania. The 

major emissions associated with coal electricity generation is coal mining and coal 

combustion, causing locations of coal mines and coal power plants the major victim of 

HAP emissions. Especially considering that most coal power plants are built close to 

coal mines to minimize transportation cost, the emission locations of coal mining and 

coal combustion is highly related. Emissions from corn farming activities are highly 

concentrated in the corn-belt, with the major pollutants being NOx and NH3. Figure 3(d) 

shows the emission from transportation of corn stover from corn farms to fast pyrolysis 

plants that are co-located with existing coal power plants. Transportation routes with 

darker lines have higher transportation loads, meaning that more corn stover is 

transported in this route. SOx emission is mainly from sulfuric acid production facilities, 

which are located in Florida, and Louisiana. 
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(a) Coal mining and cleaning 

 
(b) Coal and BCF combustion 

 
(c) Corn farming 

 
(d) Transportation of corn stover 

 
Figure 3 Emission allocation of some subprocesses. 
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Figure 3 continued 

 
(e) Ammonia production 

 
(f) Sulfuric acid production 

 

(a) PM2.5 emissions. Total net emission change = -4232 tonne/yr 
 

Figure 4 Net emission change results of case study. 
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Figure 4 continued 

(b) VOC emissions. Total net emission change = -878 tonne/yr 

(c) NOx emissions. Total net emission change = -13,106 tonne/yr 
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Figure 4 continued 

(d) SOx emissions. Total net emission change = -270,886 tonne/yr 

(e) NH3 emissions. Total net emission change = 49,749 tonne/yr 
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Figure 4 shows the net change of air pollutant emissions under the assumption 

that 10% of U.S. coal power is replaced with BCF power. It shows that replacing coal 

electricity with BCF electricity reduces emissions of SOx significantly and PM2.5, VOC, 

and NOx slightly. Nonetheless emission of NH3 increases drastically as a consequence 

of fertilizer nitrification. To be more specific, most areas see reduction of PM2.5 emission 

owing to reduction in emissions related to coal mining and coal combustion. However, 

PM2.5 emissions in corn-belt slightly increases as a result of intensified farming 

activities. Areas where sulfuric acid plants are located also see increased PM2.5 

emissions since more sulfuric acid is used for fertilizer production. 

 NOx emission also shows similar trends. Since life cycle emission of NOx is 

similar for coal and BCF electricity, change of NOx emission may be interpreted in a way 

that emission from coal combustion is transferred to corn farming, BCF combustion, and 

transportation of corn stover. Major increase in NOx is seen in the Midwest where a 

large amount of corn is produced. Areas where fertilizer plants are located also see 

increase in NOx emission while other areas benefit from BCF electricity thanks to its 

lower demand of fossil fuels such as petroleum, natural gas, and coal.  

Replacement of coal electricity by BCF electricity causes drastic increase in NH3 

emission. The most significant contributor to NH3 emission is farming activities. 

Emission of NH3 in the process of fertilizer production is another reason of increased 

NH3 emission. The only exception is that NH3 emissions decrease in the northeastern 

corner of Wyoming where several large coal mines are located as seen in Figure 3 

Wyoming is the largest coal producer in the U.S., producing about 40% of coal in the 

U.S. [41]. Therefore, BCF electricity generation causes significant reduction of coal 
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mining activities and thus leads to decreased NH3 emission in this area. As a matter of 

fact, emissions of all the five categories of pollutants decrease in this area.  

Air quality simulation and health impact evaluation 

The results of emission allocation serve as input to InMAP. The results of InMAP 

simulation is shown in Figure 5. It is obvious that replacing coal with BCF changes the 

emission pattern of the United States. Reduction in total annual average PM2.5 

concentrations is seen in most areas, especially where coal mines and coal power 

plants are located. Slight reduction is also seen in Mountain West region due to 

abatement of coal mining activities. Increase in total annual average PM2.5 

concentrations mainly occurs in the corn-belt, which is attributable to increased farming-

activity-related emissions, especially NH3 emissions as seen in Figure 4(e). PM2.5 

concentrations also increase in some areas in the southern States including Florida, 

Louisiana, and Texas where large sulfuric acid plants are located. Overall PM2.5 

exposures are reduced by 11 tonne/yr. 

InMAP also reports the health impacts of the emissions in the form of number of 

deaths attributable to exposures to PM2.5. The results are shown in Figure 6. The death 

distribution displays a pretty similar profile as PM2.5. Total death attributable to PM2.5 

exposures is reduced by 709 deaths/year. 
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Figure 5 Simulated marginal change in annual average PM2.5 concentrations. 

 

Figure 6 Simulated deaths attributable to exposures to PM2.5. 
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Conclusion 

BCF electricity generation has great potential of replacing part of coal electricity 

with the benefit of reduced emission of air pollutants such as SOx and PM2.5. However, 

it also causes increased emission of NH3 due to more intense farming activities.  

Actually this is also a common downside for all biofuels derived from agricultural crops. 

Reduction of NH3 emissions from fertilizer nitrification may reduce life cycle NH3 

emissions of BCF electricity significantly. The results of the case study show the extra 

information obtained from including geographical information into LCA results. The 

results indicate that the major beneficiaries of BCF electricity are the areas where coal 

mines and coal power plants are located. On the contrary, corn farms and fertilizer 

producing areas will see increased emissions. A topic for future research would be to 

evaluate annual emission concentrations by run air quality models using these results. 

Annual average concentration of PM2.5 was simulated with InMAP. The results 

show reductions in the eastern and southern regions where coal mines and coal power 

plants are located. Exceptions include areas in Florida, Louisiana, and Texas, where 

large fertilizer plants are located. Major increase in PM2.5 is seen in the Midwest corn-

belt, contributed by intensified farming activities. Distribution of deaths attributable to 

PM2.5 exposures also shows a similar profile as PM2.5 concentrations. Overall replacing 

coal with BCF results in reductions in both PM2.5 exposures and related deaths.   
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CHAPTER 6 CONCLUDING REMARKS AND FUTURE WORK 

Summary 

This dissertation displays a systematic platform for evaluating performance of 

biofuel production systems by considering both economic and environmental metrics. It 

also demonstrates the necessity of incorporating uncertainty analysis into the results.  

Techno-economic analysis is helpful in identifying pathways that have great 

potential of producing economically competitive end products. It also assists in 

understanding cost structure and thus guiding research efforts to effectively reducing 

costs of investigated pathway.  

Life cycle assessment on the other hand comprehensively evaluate life cycle 

environmental impact of a biofuel pathway. Greenhouse gas emission has been a hot 

topic in biofuel LCA. The results of Chapter 5 show that emission of other air pollutants 

should also be considered in biofuel LCA. Furthermore, it is important to also consider 

the locations of the emission sources. One important conclusion from Chapter 4 is that 

upstream emission from biomass cultivation is a major source of the life cycle emission 

of biofuels produced from agricultural crops.  

The results of LCA and TEA provides policy makers valuable information in 

identifying the optimal pathway to stimulate. Nevertheless, inherent uncertainty is 

present in TEA and LCA results. Hence uncertainty analysis is necessary in order to 

provide robust results as well as to give the readers more comprehensive 

understanding of the results. 
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Future work 

The pathway that TEA and LCA tackles is usually still at very early development 

stage and hence uncertainty of the results may be significant. It is thus necessary to 

develop a standard procedure to incorporate uncertainty analysis and to devise 

techniques to effectively reduce uncertainty. These techniques may include more 

effective and accurate data collection, or improved mathematical models of the process 

as more experience is gained and better understanding is achieved.  

Monte Carlo simulation with random sampling is so far the most popular method 

of uncertainty analysis. It depends on the computing power of modern computers. 

However, cases still exist where a single run may take such long time that a simulation 

with tens of thousands of run would take too long to run. For instance, when a detailed 

process model is used to provide mass and energy balance for TEA and some process 

parameters are in the interested uncertain parameters. A single run would take too long 

if the process model is complex. On these occasions, it becomes imperative to adopt 

more efficient sampling methods such as Latin Hypercube Sampling. It would also be 

necessary to develop judgment when convergence of Monte Carlo simulation is 

reached. 

The results of Chapter 5 also demonstrate the importance of geographical 

information incorporated LCA when considering HAPs emissions. Future research effort 

could work on using the results for detailed air quality simulation to better compare the 

two pathways. 
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