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ABSTRACT

Over the past decade, design engineering has developed a systematic framework to coor-

dinate with consumer behavior models. Traditional consumer models applied in the past has

mainly focused on the preference of compensatory trade-offs in the choice decisions. Recent

marketing research has become interested in developing consumer models that are ”representa-

tive” in that they reflect realistic human decision processes. One important example is consider-

ation: the process of quickly screening out many available alternatives using non-compensatory

rules before trading off the value of different feature combinations. This research investigates

the impact of modeling consideration behavior to design engineering, aiming at constructing

consideration models that can inform strategic decisions. The study includes several features

absent in existing research: quantifying the mis-specifications of the underlying choice process,

tailoring survey instruments for particular models, and exploring the models? strategic value

on product profitability and design decisions.

First, numerical methods are explored to address the discontinuity in the profit-oriented

optimization problem introduced by the consideration models. Methods based on complemen-

tarity constraints, smoothing functions, and genetic algorithms are implemented and evaluated

with a vehicle design case study. Second, a simulation experiment based on synthetic market

data compares consideration models and a variety of conventional compensatory choice models

in model estimation and design optimization. The simulation finds that even when estimated

compensatory models provide relatively good predictive accuracy, they can lead to sub-optimal

design decisions when the population uses considerations; convergence of compensatory models

to non-compensatory behavior is likely to require unrealistic amounts of data; and modeling

heterogeneity in non-compensatory screening is more valuable than modeling heterogeneity

in compensatory trade-offs. The synthetic experiment framework then further extends the

comparison to include the survey design process guided by the different assumptions behind

consideration models and traditional choice models. A product line design case study reveals
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that even though both choice models and consideration models show robustness in profitabil-

ity, using consideration models leads to optimal portfolios with higher feature diversity and

reducing the risk of overestimating profits. Finally, the research explores how to use consider-

ation models to analyze the market penetration of a new designed product in a hybrid vehicle

adoption case study.

It is the hope that this research can arouse the attention of designers to the informative

power of consideration models, expand the understanding of consumer behavior modeling from

the predictive power to the strategic impacts to design decisions, and provide technical supports

to the future application of consideration models in design engineering.
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CHAPTER 1. INTRODUCTION

1.1 Design Decision, Consumer Behavior, and Energy Policy

Engineering designers are faced with growing challenges of coordinating consumer needs and

policy regulations. The design activity in vehicle industry is a typical example. Since 1975, the

energy regulation program Corporate Average Fuel Economy (CAFE) standards has served to

maintain energy secure by penalizing the manufacturers who fail to meet minimum targets for

sales-weighted average fuel economy. In addition, since becoming federal requirements in the

late 1960s, the emission standards managed by Environmental Protection Agency (EPA) exert

increasingly stringent limits on pollutant emissions based on Federal Test Procedure. Seemingly,

both higher fuel economy and lower emission meet the consumers needs for a cleaner vehicle with

lower fuel cost. Yet, the design decisions concerning these two development directions are not

straightforward for two reasons. First, conflicts between these two development directions occur

in the engineering constraints. Second, consumers also balance between mutually connected

factors such as price, driving experience, body type, capacity, and safety. For example, diesel

engines enjoyed the popularity of providing more torque and higher fuel economy than the

gasoline engines. However, the cost of reducing the emission level to comply with the same

standard level for diesel engines is higher than that needed for gasoline engines [Sanchez et al.

2012]. Gasoline engines, on the other hand, compete against diesel engines with lower pollutant

emissions, with the additional help of the tax imposed on diesel fuel. As the new generation

of hybrid powertrain technologies arises, the options for high fuel economy and low emission

enter the sight of consumers. But the cost of the hybrid technologies and the cognitive barrier

on the trust of the new technology are two drawbacks. In this illustrative example, vehicle

manufacturers have to face the challenging design decisions such as making bets on engine

types and the related technologies that reduce emission without sacrificing the performance on
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fuel economy and other product features, so that they can attract consumers.

In fact, designers and policy makers have noticed the important role of consumer model-

ing - the achievement of the entrepreneur value such as profit closely relates to the purchase

decision, and policy incentives or regulations cannot have meaningful impacts without acting

through products adopted by consumers. In the past decades, significant attention has been

paid on capturing the relationship between the demand and the product features, as well as

consumer preferences on the tradeoffs among the product features. One of the popular tools

to achieve these two goals is discrete choice analysis (DCA). DCA introduces the concept of

choice probability, which describes the chance of a consumer to choose a particular product

from a given set of alternatives. DCA formulates the choice probability as a function of prod-

uct features and consumers’ demographic information. The convenience of translating such

choice probability into the market share prediction makes DCA an important component when

informing energy policy making and design decision making. In the past applications, DCA

was employed to explain the vehicle market share changes after the energy policy applied[Boyd

and Mellman 1980, Goldberg 1995; 1998, Train and Winston 2007, Beresteanu and Li 2011] by

capturing important tradeoffs such as those between fuel economy, vehicle size and price. On

the engineering design side, DCA served as the demand component in a profit maximization

framework. Combining engineering models such as cost models, performance constraints, and

technical bounds, designers were able to identify the technical barriers and strategic changes

of the automakers under policy regulations[Michalek et al. 2004, Shiau et al. 2009a, Whitefoot

et al. 2011].

1.2 Challenges from Reality: Complex Consumer Behaviors and

Considerations

Two basic assumptions behind classic DCA models have permeated previous design engi-

neering research: consumers evaluate a product with the holistic utility additively contributed

by every product feature, and consumers make choice from a universal set of available products

in the market. Concededly, these assumptions offer a foundation to capture consumer decisions

on product feature trade-offs, as well as lead to some mathematical benefits during deriving
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choice probability formulas. However, how consumers process product information in reality

challenges these assumptions. Due to cognitive limitations, consumers may not carefully eval-

uate every piece of product information, and their perception of a feature may not quantitively

match the actual performance. In vehicle markets, the perception of fuel economy is a typical

example. Allcott and Wozny [2012] observed a discount rate when estimating the contribution

of fuel costs saving to hybrid choice. The discount rate indicated that consumers ”acted” as if

they were only willing to pay $0.61 to reduce the future cost by one dollar. In a lab experiment,

Larrick and Soll [2008] found that the fuel cost saving intuitively believed by the consumers

was biased. They termed the phenomena as ”MPG illusion” in which people misunderstood

the fuel cost as linearly related to MPG. Empirical evidences also uncovered that attribute like

fuel cost saving may not participate the careful trade-off process during the buying decision.

In a survey sampling 57 households in California conducted by Turrentine and Kurani [2007],

the respondents were found not tracking their gas expenditures in general. Even for those who

owned a hybrid vehicle, their decisions were stated to be more about values such as protecting

environment and being pioneers in new technology rather than caring in saving money on gas.

Whether the benefit of tax credit is evaluated in the hybrid choice is also questionable. For ex-

ample, according to the state-level hybrid sales statistics, in Colorado and Pennsylvania, there

were over 30% eligible hybrid purchasers who did not claim their income tax credits [Gallagher

and Muehlegger 2011], which made it less convincing that consumers would universally account

for tax credits in the feature tradeoffs.

Consideration is an important type of complex behaviors that describes a frugal and quick

screening process before the consumer will make careful evaluation and comparion among the

remained products [Roberts and Lattin 1997, Hauser 2014]. Fig.1.1 illustrates this process with

a vehicle purchase example: when facing with a large number of vehicle options, a consumer

first narrows down to five options via the screenings of brand, body type, powertrain, and

price; among the five options, the consumer then compares the utilities of price, head-room,

quality rating, safety in an additive manner as assumed by the traditional DCA models. The

consideration screening process differentiates itself from the comparison process in two aspects.

First, consideration reflects non-compensatory decision making, which means that unacceptable
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features cannot be compensated by other attractive features. Second, the non-compensatory

screening leads to only a subset of products considered by the consumer instead of a universal

choice set assumed by the conventional models.
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A B C D E
Vehicle

Safety

Quality
Rating

Head3
Room

Price

Compensatory Comparison

“I(want(either(a
Toyota(or(Ford”

“I(can(spend
$28k>$35k”

“I’ll(only(con>
sider(sedans.”

“I(don’t(want
a(hybrid.”

Form Consideration set using non3
compensatory screening rules 

Figure 1.1 Consideration decisions and compensatory comparisons

These two structural differences of consideration models potentially reshape the understand-

ing of design decisions. For example, when a household with children searches for a primary

vehicle with enough passage capacity for the whole family, then body types such as two-seaters

will be excluded, even if it has high fuel economy that the household also favors. Without

understanding the non-compensatory property, a firm may wrongly make investments on im-
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proving performance in product series that consumers do not consider. With the assumption

that consumers choose from a subset of products, consideration models predict market shares

and substitution patterns in a different viewpoint. When using consideration models, deci-

sion makers expect sales only from the proportion of consumers who consider it, and foresee

a product’s competition against the alternatives within the same consideration set. Ignoring

considerations potentially over-simplifies market share and competition patterns, and eventu-

ally misleads the design decisions. In the policy making perspective, identifying the screening

rules used during vehicle purchases enhances the effectiveness of energy policies. For example,

for consumers who do not consider hybrid vehicle because of price, financial incentives may

nudge their considerations. However, for those who reject hybrids because of vehicle engineer-

ing features, perhaps more effective strategy is encouraging vehicle industry to design hybrid

vehicles without sacrificing performance features that consumers screen on. Policy makers can

also find opportunity to enhance hybrid adoptions by directly changing the screening rules via

informational strategies such as role models and social orientations.

1.3 Contributions

The dissertation aims to bridge the gap between the current understanding of consideration

models and the practical usage of consideration models in design engineering and energy policy

analysis:

First, optimization tools are provided to handle the numerical difficulty in integrating con-

sideration models in the design framework. While consideration models capture more realistic

non-compensatory screenings in decision process, the non-compensatory property introduces

discontinuous choice probability into the optimization problem. Such discontinuity causes ob-

stacles to the usage of derivative-based methods during searching for optimal solutions. This

research offers treatments to get over these obstacles by implementing and testing two classes

of methods - nonlinear programming methods and genetic algorithms.

Second, the impact of consideration models on design decisions is identified by comparing

consideration models and traditional compensatory models. The model performance evaluation

quantifies not only the predictive accuracy in consumer choices, but also the differences of design
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features and the strategic value of the designs. The model comparison aims at communicating

between designers and marketers on their understanding of model applications. For designers,

it is the goal to show new opportunities of using more descriptive consumer models, and the

consequences of using traditional models when consumers are actually using non-compensatory

screenings. For marketers, this research serves to broaden their view of consumer modeling from

predicting choice observations further to guiding strategic outcomes in design applications.

A simulation framework is constructed to investigate model mis-specifications, i.e. the in-

consistency between the model assumptions and the behavioral mechanism behind the data.

The real world datasets are unable to quantify mis-specifications, because the complete behav-

ioral mechanism is unknown. This research creates a synthetic experimental environment where

mis-specifications can be controlled to focus on the consumer behavior of interest. Compared

to synthetic experiments in the past that only focused on model estimations, the experiments in

this research particularly simulate the model application in the design process. The simulation

also takes into account how the assumptions of a model affect the data collection process.

Finally, new design objective and new analysis tools are explored to utilize consideration

stage information. In the conventional profit-driven optimization framework, it is natural to

measure the strategic impact of a design as profitability. However, consideration models offer

new information such as the consideration sets formed by different types of individuals in a

population. One goal of this dissertation is to present new angles to analyze competitions and

substitution patterns based on the consideration sets.

The remaining chapters are organized as follows: Chapter 2 reviews conventional discrete

choice models, and their applications in the decision based design framework. The considera-

tion models will be also introduced in a general manner. Chapter 3 reveals the numerical diffi-

culty in applying the two-stage consider-then-choose models in design optimization problems.

This chapter implements a variety of treatments and evaluates their performances. Chapter

4 constructs a synthetic data simulation to investigate the consequences of using mis-specified

compensatory models and consideration models in the estimation and design processes. The

investigation discusses multiple performance measures, including predictive power, design fea-

ture difference, and profitability. Chapter 5 extends the simulation to include the survey design
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process tailored according to different model assumptions. Chapter 6 explores new design ob-

jectives and analysis approaches particularly for using consideration stage information with an

illustrative case of enhancing hybrid vehicle adoptions. Chapter 7 concludes and discusses open

questions.
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CHAPTER 2. BACKGROUND REVIEW

2.1 Classic Discrete Choice Models

Classic discrete choice models describe the probability an individual consumer chooses a

product from a set of available alternatives. Given the set of alternatives J , the characteristics

of the alternatives and the demographic information of the consumer, a random utility is as-

signed to each of the alternatives which consists a representative component and an unobserved

disturbance. The utility of product j for individual i is modeled as:

uij = βTi yij + εij (2.1)

where βi are coefficients indicating the taste of the consumer, yij are information of prod-

ucts attribute and the demographic information, for example
pricej
incomei

. In the representative

component, product attributes are weighted and contribute to the utility in an additive form.

Classic discrete choice theory assumes a product is chosen by an individual when its random

utility is the maximum among all the available alternatives. The models that follow this as-

sumption are called Random Utility Maximization models (RUM) [Block and Marschak 1960,

Manski 1977]. From this assumption, together with the prior beliefs of the distribution of the

random terms, a variety of formula of the choice probability can be derived. Three typical

models are reviewed in the follows.

Multinomial Logit Model

When the disturbance terms are iid distributed extreme value over all individuals and all

alternatives and the utility coefficients vector β is identical across all individuals, it yields the
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Logit model. The choice probability takes the form [McFadden 1974]:

PMNL
j =

expuj∑
k∈J expuk

(2.2)

Although Logit model was built for a market where consumers have homogeneous taste, it

is still a popular model in practice because it has a close form of choice probability and its

likelihood function is globally concave [Maddala 1983].

Random Coefficients Model (Mixed Logit Model)

In random coefficients model (RC), the utility coefficients are randomly distributed across

individuals. The most commonly assumed distribution of the coefficients are normal and log-

normal distribution. Given β’s density function f(β), the RC choice probability can be derived

as the integral of logit choice probability over β’s distribution:

PRCj =

∫
PMNL
j (β)f(β)dβ (2.3)

As this integral form does not have a close expression, Monte-Carlo sampling is needed to

compute the choice probability. Despite of its computation complexity, mixed logit model

allows high flexibility in taste variations, substitution patterns and correlation of unobserved

disturbance over time. These advantages make mixed logit model popular in practice [Hensher

and Greene 2003]. Furthermore, McFadden and Train [2000] have shown that this model can

approximate any random utility model. In practice, however, the coefficients are typically

assumed to be normally distributed [Nevo 2000].

Nested Logit Model

In a two-level nested logit model, alternatives are categorized into different predefined nests

B1, · · · , BK , consumers are assumed to first pick one nest then choose a product from the nest.

For example, suppose there are vehicle alternatives from brands Honda, Toyota, GM, Ford, if

the first level is categorized by foreign or domestic cars, then we will have nest B1 = {Honda,

Toyota} nest B2 = {GM, Ford}, thus the consumer first pick a nest, for instance, domestic
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cars, then choose between GM and Ford. In a nested model which presumes the nests are

disjoint, the choice probability is the product of the nest level probability and the lower level

choice probability within the nest:

PNML
j = Pj|Bk(j)

· PBk(j)
(2.4)

where PBk(j)
is the probability that nest Bk is chosen and Pj|Bk(j) is the conditional probability

that product j is chosen within the nest.

Denote the characteristics used to identify the nests are zik and the characteristics within

the nest level as wij , the condition choice probability within nest is the logit formula with wij

i.e.

Pj|Bk(j)
=

expu(wij |β)∑
h∈Bk

expu(wih|β)
(2.5)

The choice probability of the nest also takes the logit formula:

PBk
=

exp{Vk}∑K
k=1 exp{Vk}

(2.6)

with nest utility:

Vk = γT zik + λk log
∑
h∈Bk

expuh (2.7)

The log-sum term in this formula carries the lower level features information into the choice

of the nest. λk is referred as the log-sum coefficients which indicates the correlations of the

unobserved factor between products within nest k, with lower λ reflecting higher correlation.

The formula reviewed here is from Daly [1987]. Another alternative formula was given by

McFadden [1978]. The difference between two formulations is that McFadden’s model has the

lower level within nest utility normalized by the log-sum coefficient λk. Dividing uh by λk is

required for consistency with RUM, but there is still debate about whether that is essential in

the model [Train 2009].
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2.2 Data Resource: Revealed Preference and Stated Preference

Discrete choice models can be estimated from two broad categories of data resources: re-

vealed preference (RP) data and stated preference (SP) data. Revealed preference data come

from the real purchase observations and sales record. Besides the resource from aggregated

sales, revealed preference data can be collected to have more specific information. For ex-

ample, in Berry et al. [2004], a survey conducted by General Motor was used, in which a

sample of real purchasers for each vehicle in 1993 model year was drawn for the questionnaire

about household attributes. This sampling survey data supplemented pure macro observation

of market shares.

Stated preference data are collected from designed choice experiments. In stated preference

data, a choice experiment generally takes the following steps [Hensher 1994]: (1) identify a set

of attributes with specified measurement and decide the number and magnitude of attribute

levels; (2) design the combinations of attribute levels; (3) translate the designed combinations

(profiles) into a survey that respondents can comprehend for data collection.

Both data resources have well-known strengths and downsides. For example, revealed pref-

erence reflects realistic purchase habit but has difficulties in gathering sufficient information in

product attributes and specific demographic information, while stated preference is important

in obtaining information of attributes that are not available in the market and researchers

can design and control the experiment specifically for the choice models being studied but

the responses in stated preference may not closely match their actual preference [Wardman

1988]. To have the advantage of both RP and SP data in discrete choice modeling, there is a

trend in combining both data resources in estimation. Adamowicz et al. [1994] has estimated a

multinomial logit model from combined SP and RP data and found that combined information

can overcome the preference inconsistency in independent usage of either data type. Empirical

evidence also uncovered that the application of mixed logit model and the use of combined SP

and RP data are mutually beneficial [Brownstone et al. 2000, Hensher 2008].

To collect stated preference data for discrete choice modeling, a choice or ranking survey

is often used. The assumptions of the choice behavior not only influences the model structure,

but also conduct the design of the discrete choice survey for estimation. One example is in the
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evaluation of D-optimality, unlike the linear model where the efficiency only depends on the

alternative features, the efficiency formula of the discrete choice models also depends on the

choice probability [Kanninen 2002]. Therefore the prior beliefs of the estimated coefficients can

influence the design of the survey [Sandor and Wedel 2001].

Desired properties of a discrete survey design include orthogonality (each attribute level

appears an equal number of times in combination with all other attribute levels), level bal-

ance (each level within an attribute appears an equal number of times), minimal overlap (the

alternatives are prevented to have the same level for a given attribute) and utility balance (al-

ternatives within a choice set should be equally attractive to respondents) [Huber and Zwerina

1996, Johnson et al. 2013]. The efficiency of a choice survey is also quantified by criteria such

as D-efficiency [Kuhfeld et al. 1994], which is connected to maximum-likelihood estimation in a

way that by maximizing the determinant of the inverse of the variance-covariance matrix, the

joint confidence sphere around the complete set of estimated model parameters is minimized.

In achieving these properties, survey design methods vary. Methods based on orthogonal

arrays can achieve level balance and orthogonality by systematically shifting levels on the basis

of orthogonal arrays [Chrzan and Orme 2000, Street and Burgess 2007]. Sawtooth software

system uses levels selection strategies that directly target to achieve level balance and level

minimal overlap [Saw 2013]. Methods constructed to optimize D-efficiency can use candidate

profile exchange algorithm. The Fedorov algorithm, which commercial software SAS based on

[Kuhfeld 2010], is in this category. D-efficiency can be also locally optimized with heuristic

procedures such as cyclically generating alternatives, swapping and relabeling attribute levels,

and co-ordinate exchange algorithm [Huber and Zwerina 1996, Sandor and Wedel 2001, Yu

et al. 2009].

2.3 Decision-Based Design and the Integration of Consumer Models

The idea of decision-based design (DBD) framework stems from the need to coordinate

design teams within the same project who usually handle different aspects of information or

requirements [Hazelrigg 1998]. In its early proposal, the framework emphasized on unifying a

normative objective for a design project, and functionally mapping design alternatives into such
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objective, so that designers can reach consistent decisions via optimization. The construction

of framework adopted the views in information theory and engineering economics, in which the

mapping between design alternatives and the objective reflected the nature of risk and uncer-

tainty analysis in engineering and demand performances. The development of DBD actively

grows in the past two decades. Engineering community has enriched this decision making tool

in both case-specific applications and generalizable methodology study [Lewis et al. 2006]. One

important stream in DBD is to specify the objective of product design as business value such as

profit. In this interest, discrete choice models serve as a convenient tool in demand forecasting.

The flowchart in Figure 2.1 illustrates the interactions between the engineering components

and the market components in decision based design framework. The developments in DBD

research are shown in three aspects : consumer models, design scenarios and the corresponding

solving methods.

Table 2.1 Decision based design practices with discrete choice models

Literature Choice model Design scenario Solving method
Wassenaar et al. [2005] Logit Single product -
Besharati et al. [2006b] Logit Single product, multiobjectives Enumerate
Michalek et al. [2004] Logit Multiple firms Sequential iteration
Shiau et al. [2009b] Logit Multiple firms Equilibrium KKT constraints
Hoyle et al. [2010] Mixed Logit & ordered Logit Single product -

MacDonald et al. [2010] Latent Class Logit Single product Mesh adaptive direct search
Michalek et al. [2011] Mixed Logit Single firm product line ATC

Morrow and Skerlos [2011] Mixed Logit Multiple firms pricing Fixed-point iteration

Table 2.1 lists relevant DBD research literatures where discrete choice models are employed.

In the pioneer work of Wassenaar and Chen [2003] and Wassenaar et al. [2005] proposed a

framework to include discrete choice models as demand modelling for decision-based design

community, starting with the simple Logit model on a single product selection problem. Mod-

els with more complexity are applied to meet the need of different market scenarios such as

consumer heterogeneity [Michalek et al. 2011, Morrow and Skerlos 2011] and hierarchical choice

[Hoyle et al. 2010].

The development of solving tools is often paired with the growing complexity of the design

scenario considered in the problems. Analytical target cascading (ATC) is successfully applied

in both single product and product line optimization problem [Michalek et al. 2011]. Design

under competitive market has aroused the study of more complex optimization approaches.

The associated solving approaches for multiple firms design under competitive environment
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Figure 2.1 Flowchart of decision based design framework

includes: iterative approach in which each firm will sequentially maximize profit according to

the updating competitors’ information until convergence [Michalek et al. 2004], equilibrium

constraints approach where the KKT condition of the equilibrium is added in the optimization

problem [Shiau et al. 2009b] and fixed point iteration approach where the equilibrium condition

is formulated in a fixed-point form to prevent trivial solutions [Morrow and Skerlos 2011,

Morrow et al. 2013].
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2.4 Non-compensatory Behavior and Consideration

The classic compensatory models reviewed above shares the same assumption that decision

makers will weigh and add all the alternatives information and maximize the utility. However,

the concept of satisficing proposed by Simon in 1957 gave a different concept – a decision

maker will stop searching for further options as soon as one alternative exceeds the minimum

aspiration level. According to this view, decision makers need not examine all the options or

examine all their features. This concept has been supported by abundant empirical studies

in which respondents were revealed to use fast and frugal non-compensatory rules to elimi-

nate options when faced with time pressure [Rieskamp and Hoffrage 2008], information cost

[Bröder 2000] and memory requirement [Bröder and Schiffer 2003]. Decision makers can tailor

different simple heuristics to adapt to different problem solving environment [Gigerenzer and

Gaissmaier 2011]. The use of non-compensatory strategies such as conjunctive and disjunctive

screening was captured with early protocol tracing techniques [Einhorn 1971]. Consideration

strategies were found more likely to appear in some typical decision tasks. For example, Payne

et al. recorded that compensatory process usually existed in the two-alternative comparison

tasks, while the quick elimination of alternatives happened when the respondents were faced

with multi-alternative task [Payne 1976]. Rieskamp et al. observed that under high time

pressure, the participants are more likely to select a non-compensatory heuristic, particularly

lexicographic screening [Rieskamp and Hoffrage 2008]. Brder et al. validated that when deci-

sion tasks require memory search, respondents were more likely to use take-the-best strategy

[Bröder and Schiffer 2003].

As an impact in marketing research, the awareness of the use of non-compensatory rules

among consumers changed the traditional concept of choice set in discrete choice modelling.

Instead of only assuming a universal choice set (with all the alternatives), the Consideration

Set (a subset of the universal choice set) is studied [Roberts and Lattin 1997, Hauser et al.

2009]. Typical non-compensatory rules employed to form consideration set were discussed (see

early concepts in [Dawes 1964, Einhorn 1970, Tversky 1972a]):

• Aspirational : the early idea was from [Simon 1972] who proposed the theory of bounded

rationality, one of the examples was that decision makers will stop searching for options
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once the benefit they obtain from an option exceed some ”aspirational limit”. Later this

idea was translated into consideration modeling, see work from [Gilbride and Allenby

2004]. In aspirational screening, consumers will consider a product if the productÕs

utility exceed some aspirational criteria.

• Conjunctive: a decision maker will consider an alternative only if all its features are

acceptable. For example, If a consumer screens on hybrid and brand, a conjunctive rule

will be ”I will consider a vehicle if it is hybrid AND it is Toyota”.

• Disjunctive: a decision maker will consider an alternative as long as one of its features is

acceptable. For example, ”I will consider a Toyota OR a hybrid vehicle”.

• Subset conjunctive: a decision maker will consider an alternative if a certain number of its

features are acceptable. For example, there are brand, price and hybrid three screening

features and suppose the minimum number of acceptable features should be 2 for a vehicle

to be considered, then a subset conjunctive rule can be stated as ”I will consider a vehicle

if the vehicle is a Toyota hybrid OR if it is a hybrid with price under $25,000 OR if it is

a Toyota under $25,000”.

• Disjunction of conjunctions: a decision maker will consider an alternative if it satisfies

one or more than one sets of conjunctive rules. For example, also screening on brand,

price and hybrid, a disjunction of conjunctions rule can be ”I will consider a vehicle if it

is a Toyota OR if it is a hybrid under $25,000”.

• Elimination-by-Aspect : a decision maker successively chooses unacceptable feature levels

and eliminates alternatives with those levels. For example if one order screening aspects

as ”hybrid→ price→ brand ”, then the consumer will first eliminate non-hybrid vehicles

then compare the candidates on the price, if the price is a tie, then move on to the brand.

2.5 Consider-Then-Choose Models

A general model representing consider-then-choose decisions can be described as follows.

Suppose the universal choice set is J = 1, ..., J . A consideration set indexed by r = 1, ..., R,
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denoted as Cr ⊂ {1, . . . , J} is defined by a set of screening rules sr = [sr,1, ..., sr,Lr ]. For

conjunctive rules, it can be written as:

Cr =
{
j ∈ {1, . . . , J} : sr(xj , pj ,γ) ≤ 0

}
(2.8)

This definition means that a product needs to satisfy the all the screening rules to be a member

in the corresponding consideration set. An alternative form illustrating this is

Cr =
{
j ∈ {1, . . . , J} : max

l
sr,l(xj , pj ,γ) ≤ 0

}
(2.9)

The screening rules depend on product features xj , price pj and individual specific weights or

criteria γ. For example, a consideration set Cr = { all products j ∈ {1, ..., J} with price pj

under 20,000 dollars AND fuel economy ej over 30mpg } can be defined by two screening rule

functions sr = [sr,1(xj , pj , γ1) ≤ 0; sr,2(xj , pj , γ2) ≤ 0] = [pj − 20, 000 ≤ 0; 30− ej ≤ 0].

For disjunctions, e.g. Cr = { all products j ∈ 1, ..., J with price pj under 20,000 dollars OR

fuel economy ej over 30mpg }, the consideration set can be defined as:

Cr =
{
j ∈ {1, . . . , J} : min

l∈{1,...,Lr}
{sr,l(xj , pj , γl)} ≤ 0

}
(2.10)

Disjunctions of conjunctions can be formed by combining the min and max representations in

Eqns. (4.2) and (4.3).

This structure is consistent with the forms used in marketing literatures. For example in

Dzyabura and Hauser [2011], product features are binary coded, which can be transformed into

the structure presented here.

Given a collection of screening rules and the associated consideration set, let the conditional

probability that product j is chosen within the set be Pj|Cr and let the probability that the

consideration set Cr is formed by PCr , then the choice probability Pj can take the form of sum

up the joint probabilities cross all possible consideration sets.

Pj =
∑
r

Pj|Cr · PCr (2.11)
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Note that this structure is been found similar to a nested logit model. Relative research

can be seen in Swait [2001b] where the generalized nested logit formulation is used to model

consideration sets by specifying the possible consideration sets as ”nests”. This work connected

the consideration sets explosion models with the family of discrete choice models.

The conditional probability within the consideration set takes the form

Pj|Cr
(X,p) =


eu(xj ,pj ,β)

eϑog +
∑

k∈Cr e
u(xk,pk,β)

if j ∈ Cr

0 if j /∈ Cr

(2.12)

The utility coefficients β can be assumed to be homogeneous across population or take the

random coefficients form to include heterogeneity ( which requires a Monte-Carlo integral of

the simple Logit form above ).

The representation of consideration set probability PCr were developed into different spec-

ifications in previous marketing research. Swait and Ben-Akiva [1987] introduced a random

component into the screening rules function, so that with some assumed distribution of the

random component, PCr can be derived based on the probability of each alternative’s availabil-

ity in this consideration set. Ben-Akiva and Boccara [1995] extended this random consideration

set generation model by specifying the availability probability as Logit form. Instead of con-

necting PCr with parameterized screening rules, Chiang et al. [1999] assumed this consideration

set probabilities have a Dirichlet distribution across the population. Gilbride and Allenby

[2004] avoided the enumeration of consideration sets by using a reduced form choice proba-

bility which applied the Markov chain to identify the posterior distribution of the allowable

screening criteria values.

The specifications reviewed above can work on choice data and can be estimated with clas-

sical tools such as Maximum Likelihood Estimation (MLE) and Bayesian approaches. However

the exponential growth of the possible consideration sets makes consider-then-choose models

difficult to estimate in practice. This challenge motivated researchers to gather ”consider” stage

information other than just using the final choice observations. For example, Jedidi and Kohli

[2005] used ”acceptable/unacceptable” response data to estimate subset-conjunctive rule where

the probability that a particular attribute level is acceptable were estimated and each level is
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assumed to be independently perceived; this treatment allowed MLE method operate on the

likelihood of an alternative is considered. Another example came from Dzyabura and Hauser

[2011] who also presumed the binomial distribution for the screening rules to infer the most

likely consideration pattern from the stated consideration responses to the adaptive questions

online.

2.6 Methods of Estimating Consideration Models

Tracing and protocol analysis were classic methods applied to detect non-compensatory

rules [Payne 1976, Bettman 1980] in which respondents decision process were self-reported or

tracked. Shortcoming was reported along with the application of these direct elicitation ap-

proaches, for example, inconsistency was observed between the stated screening criteria and

the later choice made by the same individual [Green and Krieger 1988]. In spite of its im-

perfection, direct elicitation approach continued contributing to later research in two ways.

First, with the improvement of experiment design, self-elicitation approach can achieve higher

accuracy. An example was provided by Ding and Hauser [2011] where the incentive-aligned

setting was used. Second, methods based on latent constructs can use self-reported screening

aspects and criteria to pre-establish a two-stage model that requires less estimation complexity,

for example, Swait [2001a] constructed a two-stage model in which the acceptability thresholds

were directly reported from a survey. Their technique avoided enumerating all the possible

consideration sets.

Estimation tools that are widely applied in classic conjoint analysis such as maximum likeli-

hood and Bayesian methods were also useful in non-compensatory model parameter estimation

where probabilities of screening and choice are correspondingly formulated. Jedidi and Kohli

[1996] generalized conjunctive and disjunctive rules as a linear threshold model then operated

maximum likelihood method only on the probability of accepting an alternative and the con-

sideration stage data. In their later work in 2005, a more informative model was estimated

where the probability that each aspects/levels is screened was also included [Jedidi and Kohli

2005]. Gilbride and Allenby [2004] measured conjunctive and disjunctive rules with Bayesian

approach from choice data, their reduced form of consider-then-choose choice probability eased
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the enumeration of consideration sets.

Recently developed machine learning techniques brought new inferring tools to this field.

Yee et al. [2007] and Kohli and Jedidi [2007] adapted greedoid language into screening rules

inferring. One advantage of greedoid algorithm is that it makes use of the relationship between

profile ordering and screening aspects ordering to effectively update the screening pattern to-

wards the best fit to the data. Dzyabura and Hauser [2011] developed an active machine

learning method to adaptively select survey questions in which the profiles are configured to

maximize the information on the decision rules according to posterior beliefs and prior re-

sponses. These machine learning techniques largely reduced the computation time compared

to the traditional consideration sets exposion methods and thus enable the inferring of more

possible screening aspects and levels.

2.7 Improvement of Predictive Power

Pair with methods to uncover non-compensatory rules, the improvement of choice model

predictions has been observed in a variety of product categories when non-compensatory rules

were modeled. Swait reported an multinomial logit model with soft cut-offs fit the choice data

of rental cars better than a pure multinomial logit model [Swait 2001a]. In a smart phone

study Yee et al. observed that lexicographic models inferred by greedoid method predicts

better than Bayes-ranked logit model [Rossi and Allenby ] on hit rate for at least half of the

population in ranking task samples [Yee et al. 2007]. Ding et al. reported an improvement

of relative Kullback-Leibler divergence (relative to null model prediction) in cellphones data

with screening rules from unstructured direct elicitation than Hierachical Bayesian logit model

[Ding and Hauser 2011]. Other examples in categories of cameras, batteries, laptops, GPS

Units, vehicles [Hauser et al. 2009, Jedidi and Kohli 2005, Kohli and Jedidi 2007, Hauser and

Toubia 2010, Dzyabura and Hauser 2011] are listed in Table 4.1.

Note that the validation of prediction power can only indicate that the model better describe

the data as if the respondents are more likely to react as how these models describe. But they

don’t necessarily prove that the respondents are actually using these procedures of these models.
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Table 2.2 Recent consider-then-choose models constructed from stated preference data (cited from NSF Award NO.1334764). Abbreviations:
HB - Hierachical Bayes; MLE - Maximum Likelihood; HR - ”hit rate” (frequency of correct prediction on hold-out samples); KLD
- Kullback-Liebler Divergence; TAU - Kendall’s Tau [Hauser 1978], LL - Log-likelihood (increase)

Literature Product Compensatory Model Consider-then-Choose Model % Improvement
Hauser et al. [2009] Cameras HB Logit HB, Conjunctive screening 7.1% in HR

Jedidi and Kohli [2005] Batteries MLE Logit MLE, Subset conjunctive 1.1% in HR
Kohli and Jedidi [2007] Laptops LP Logit Greedy, Lexicographic 0% in TAU

Hauser and Toubia [2010] GPS Units HB Logit Greedy, Lexicographic 4.5% in HR, 54.5% in KLD
Ding and Hauser [2011] Cellphones HB Logit Unstructured Direct Elicitation 9.1% in KLD

Yee et al. [2007] Smartphones HB Ranked Logit Lexicographic by aspects 8.7% in HR
Swait [2001a] Rental Cars MLE Logit ”Cut-off rules” (conjunctions) 14% in LL

Dzyabura and Hauser [2011] Vehicles HB Logit Adaptive question HB 44.1% in HR,16.7% in KLD
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CHAPTER 3. CONSIDERATION AND DESIGN OPTIMIZATION

3.1 Introduction

Generally applying consider-then-choose models in a design optimization framework still

faces challenges. Specifically, the choice probabilities in consider-then-choose models can be

discontinuous in continuous decisions. For example, suppose an individual can purchase a

product with price p ($) and “value” x ≥ 0. If they buy the product they obtain a utility of

U(x, p) = u(x, p) + E where u(x, p) = 1 − p + x, and if they opt not to buy the product they

obtain a utility of Θ = 1 + E0 for i.i.d. extreme value errors E , E0. However they will consider

the product only if p ≤ $1−a screening rule. This example models a situation where individuals

only have so much to spend on a product, and can obtain utility from both ownership and the

amount of money left over after purchase. Consider-then-choose choice probabilities are then

given by

PC(x, p) =


e1−p+x/(e+ e1−p+x) if p ≤ $1

0 if p > $1

(3.1)

Observe that limp↑1 P
C(x, p) = ex/(e+ ex) > 0 while limp↓1 P

C(x, p) = 0, and thus PC(x, ·) is

discontinuous at p = 1. See also Fig. 3.1.

Because of these discontinuities, optimization methods that rely on derivatives information

cannot be assured to solve this type of problem. In this section, we present research that

addresses this numerical issue. The contribution of this work is to explore efficient tools to

support further application of consider-then-choose models. The outcomes of this research are:

• Numerical methods based on Nonlinear Programming (NLP) are explored. Three for-

mulations of the optimization problem are derived: formulations based on constrained

complementarity, penalized complementarity and smoothing.
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• Genetic Algorithm (GA) is applied. Two classes of GA methods are implemented: GA

with a penalty on constraints violation and a hybrid GA with constraints solved by NLP.

• The performance of the numerical methods are obtained in a demonstration case where a

firm is designing a vehicle under consumers’ budget screening rules. The properties of five

methods are shown by the optimality, feasibility and computation cost of their solutions.

In the remaining section, we will first introduce the general design optimization problem

with consider-then-choose model in Section 3.2. The formulations of three NLP methods and

two GA methods will be presented in Section 3.3 and Section 3.4. The demonstration example

will be described in Section 3.4. Section 3.5 reports the performance of the methods as results.

This discussion is based on work from Morrow et al. [2012] and Morrow et al. [pted], though

we include more details than available in those publications.

3.2 The Optimization Problem

Suppose a firm is designing a product line with J products, each with engineering features

vector xj and price pj . The engineering relationships among the features can be described in

equality or inequality constraints. With the costs as the function of engineering features and

the mapping from product attributes to predicted demand (i.e. choice probability), the general

formulation the design optimization problem can be written as:

maximize π(X,p) =

J∑
j=1

Pj(X,p)(pj − cj(xj))

with respect to for all j = 1, ..., J

pj ≥ 0

Lj ≤ xj ≤ Uj

subject to for all j = 1, ..., J

cEj (xj) = 0

cIj (xj) ≥ 0

(3.2)
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where cj(.) is the cost function, cEj (.) is equality constraints, cEj (.) is inequality constraints, L

and U are lower bounds and upper bounds of the features. When applying a consider-then-

choose model, the choice probability under individuals sample size I is specified as:

Pj(X,p) =
I∑
i=1

PCTCij (X,p) (3.3)

If product j is considered by individual i (i.e. in consideration set Ci), it will be compared with

other products in the same consideration set, otherwise it won’t be chosen. That is:

PCTCij (X,p) =


expui(xj ,pj)

1+
∑

k∈Ci
expui(xk,pk)

j ∈ Ci

0 j 6∈ Ci
(3.4)

The consideration set Ci is defined by a group of individual specific screening rules si(xj , pj)

such that

Ci = {j ∈ 1, · · · , J : si(xj , pj) ≤ 0} (3.5)

Note that the consider-then-choose (CTC) choice probability is discontinuous on the design

space, because at the point where screening criteria is active, the product will ”enter” or ”leave”

an individual’s consideration set. This discontinuous property is crucial for design optimization

as taking derivatives with respect to the design variables. When multiple products and mul-

tiple screening rules are involved, this issue become particularly challenging not only because

the number of possible consideration sets grows exponentially but also because the number

of feasible combinations of the possible consideration set are relatively small. Method like

enumeration the possible consideration pattern will suffer from explosive number of inefficient

searches.

3.3 NLP Methods

To implement nonlinear programming (NLP) approaches for the consider-then-choose op-

timization problem, Morrow et al. [2012] proposed a relaxation for the CTC choice probability
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in Eqn. (3.4), the relaxed form is:

P̂ij
CTC

(w,X,p) =
(
∏Ri
r=1wijr) expuij

1 +
∑J

k=1(
∏Ri
r=1wikr) expuik

. (3.6)

This formula relaxed discontinuity by introducing slack variables wi,j,r to represent : if product

j satisfies individual i’s screening rule r then wi,j,r = 1, otherwise wi,j,r = 0. To match the

CTC structure, ideally we seek to construct a formula such that for all i, j, r, when screening

rules si,r(xj ,pj) ≤ 0, wi,j,r strictly equals to 1, and when si,r(xj ,pj) > 0, wi,j,r strictly equals

to 0. We call this desired property as strictly choice-consistency.
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Figure 3.1 Two classes of NLP methods to handle discontinuous non-compensatory choice
probabilities. Left: Discontinuous choice probabilities from the example at the
start of this section. Center: “Smoothed” choice probabilities using Eqn. (3.6) and
the smoothing model in Eqn. (3.7). Right: “Relaxed” smooth choice probabilities
using Eqn. (3.6) and the complementarity constraints in Eqn. (3.9).

Two classes of NLP methods are implemented on this purpose: NLP with smoothing ap-

proach and NLP with complementarity constraints.
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3.3.1 NLP with Smoothing

The smoothing approach is using a smoothed step function to approximate the desired

relationship between w and s. This step function is defined as:

Lη(s) = (1 + e−η)

(
e−ηs

1 + e−ηs

)
(3.7)

for any η ≥ 0 and s ∈ R. These functions define the following smoothed problem:

maximize π̂C(w,X,p)

with respect to wi,j,r ∈ R for all i, j, r

lj ≤ xj ≤ uj , pj ≥ 0 for all j

subject to cEj (xj) = 0, cIj (xj) ≤ 0 for all j

wi,j,r − Lη(si,r(xj , pj)) = 0 for all i, j, r

(3.8)

The smoothing factor η performs in a way that when η = 0, the optimization problem will

collapse to the problem without consideration behavior and when η ↑ ∞, the step function will

be approaching the clear ”cut-off”. The solve of Problem (3.2) takes the following procedures:

solve Eqn. (3.8) with an initial small value of η; If the solve is successful, increase η and resolve

Eqn. (3.8) starting at the last solution. This process is repeated until either solving failure is

ecountered or the two successive solutions are sufficiently close.

3.3.2 NLP with Complementary Constraints

If adding complementary constraints to relate this slack variables w to the screening rule

by the following mixed complementarity problem (MCP):

0 ≤ w ≤ 1 ⊥ s ≡


w = 1 if s ≤ 0

w ∈ [0, 1] if s ≤ 0

w = 0 if s > 0

(3.9)

the initial problem can be smoothen to be an MPCC problem. This MPCC relaxation
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needs to be implemented explicitly for the NLP solver to handle. We use two implementations:

a) adding constraints to reflect complementarity (C-MPCC); b) penalizing the violation of

complementarity (P-MPCC).

Constrained MPCC (C-MPCC): With slacks variable s+i,j,r and s−i,j,r to capture the positive

part and the negative part of screening rules value, adding complementary constraints defines

the following problem:

maximize π̂C(w,X,p) + τ
∑
i,j,r

wi,j,r

with respect to lj ≤ xj ≤ uj , pj ≥ 0 for all j

wi,j,r, vi,j,r, s
+
i,j,r, s

−
i,j,r ≥ 0 for all i, j, r

subject to cEj (xj) = 0, cIj (xj) ≤ 0 for all j

I∑
i=1

(
Ri∏
r=1

wi,j,r

)
≥ 1 for all j

si,j,r(xj , pj)− s+i,j,r + s−i,j,r = 0

wi,j,r + vi,j,r = 1

wi,j,rs
+
i,j,r ≤ 0

vi,j,rs
−
i,j,r ≤ 0


for all i, j, r

(3.10)

The term τ
∑
w with τ > 0 serves to enforce strictly choice consistency of w. This for-

mulation will be solved with Sequential Quadratic Programming (SQP) solver SNOPT, for

the reason that SQP relaxes the constraints during solving the subproblem, preventing the

difficulty in an Interior point method where the feasible set of this problem does not have a

topological interior.

Penalized MPCC (P-MPCC): Penalizing the violation of complementarity in the objective



28

function yields the following formulation:

maximize π̂C(w,X,p) + τ
∑
i,j,r

wi,j,r −M
∑
i,j,r

(wi,j,rs
+
i,j,r + vi,j,rs

−
i,j,r)

with respect to lj ≤ xj ≤ uj , pj ≥ 0 for all j

wi,j,r, vi,j,r, s
+
i,j,r, s

−
i,j,r ≥ 0 for all i, j, r

subject to cEj (xj) = 0, cIj (xj) ≤ 0 for all j

I∑
i=1

(
Ri∏
r=1

wi,j,r

)
≥ 1 for all j

si,j,r(xj , pj)− s+i,j,r + s−i,j,r = 0 for all i, j, r

wi,j,r + vi,j,r = 1 for all i, j, r

(3.11)

for some M > 0. In practice, M is empirically chosen to be sufficiently large to enforce

complementarity.

3.4 GA Methods

Two classes of genetic algorithm are applied to solve the multiple products design problem

under consider-then-choose model : a penalty-based genetic algorithm (P-GA) that combines

feasible solutions selection technique; a hybrid genetic algorithm that embeds an NLP solver

to strictly handle design constraints (C-GA).

3.4.1 Penalized GA (P-GA)

Penalty-based genetic algorithm is widely applied to incorporating constraints, but there

are well-known difficulties associated with it. Specifically, the selection and the scaling of the

penalty parameter highly affect the balance between optimizing the objective and achieving

feasibility, and the appropriate value of penalty parameter is sensitive to problem features

including the number of constraints and the nonlinear complexity of the constraint functions

[Richardson et al. 1989]. These drawbacks are especially crucial when equality constraints are

involved, as the feasible searching space has smaller dimensions than the variables space. For
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our multiple products design problem, we have nonlinear equality constraints that describe the

relationship between acceleration and fuel consumption for each vehicle, therefore methods that

have less sensitivity of the penalty parameter to the constraints number and has demonstrates

successful example of incorporating equality constraints are expected to have a better fit to our

design problem features.

With the consideration of above, we implement the penalty-based method proposed by Deb

[2000], given its previous evidence that it eases the selection of the appropriate penalty value

and also has scheme of simplicity to implement. The scheme of the algorithm still follows

the traditional iteration steps of generating population, evaluating fitness, selecting parents

based on fitness and reproducing new generation with crossover and mutation.We describe

each procedure implemented for the design problem (3.2) as follows.

1. Population generation: For a member n in the population, we represent its design and

pricing solution for J product as real-coded (Xn,pn) = (x1, ...,xJ , p1, ..., pJ), where xj =

(aj , gj) (p, a, g respectively represent price, acceleration and fuel consumption).Population

members are randomly generated with their design and pricing variables uniformly dis-

tributed within their corresponding bounds.

2. Fitness evaluation: In order to allow searching space, we follow the strategy that the

equality constraint cEj (xj) = 0 is relaxed into inequality constraint |cEj (xj)| − ε ≤ 0

with small positive ε as tolerance when judging whether a member is feasible or not.

For notation convenience, we denote the whole set of inequality and relaxed equality

constraint as ĉj(xj) ≤ 0. The fitness computation is distinguished between feasible

members and infeasible members as:

fitnessn =


πC(Xn,pn) if member n is feasible, i.e. ĉj(xj) ≤ 0 for all j

−v(Xn) otherwise

(3.12)

where πC(.) is the profit (objective function) computed with Eqn. (3.4); v(.) is some
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norm of constraints violation, which is specified in our case as:

v(Xn) = max{||ĉj(xj)||} over all j such that ĉ(xj) > 0 (3.13)

3. Parents selection: Tournament technique is used in selecting parents, in which each mem-

ber has equal chance to be picked to participate a tournament. The following criteria

are enforced when deciding which member can win the tournament to be one parent: (1)

a feasible member is always preferred to an infeasible member; (2) if two members are

both feasible, select the one with higher objective value; (3) if two members are both

infeasible, select the one with lower violation.

4. Reproduction: Crossover is operated on the real-coded variables of the selected parents,

followed by the mutation process. In order to balance population diversity and conver-

gence, dynamic mutation probability and elitism are applied during the evolution. The

mutation probability starts with a relatively large mutation probability (e.g. 0.5 in our

case) then decreases as the evolution continues. We empirically adjust the frequency of

decreasing the mutation probability according to the number of constraints involved in

the problem. In applying elitism, the top 10% of members (ranking based on fitness) are

preserved in the new population.

3.4.2 Constrained GA (C-GA)

In the projection-based method, an NLP operator projects the population onto the feasible

space by solving the following problem for each member: Given the current design solution of

member n as (X̄n, p̄n) = (x̄1, ..., x̄J , p̄1, ..., p̄J)

minimize
1

2
(||Xn − X̄n||22 + ||pn − p̄n||22)

with respect to Xn,pn

subject to for all j = 1, ..., J

lj ≤ xj ≤ uj , pj ≥ 0

cI(xj) ≤ 0 and cE(xj) = 0

(3.14)
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The method takes steps as follows:

1. Randomly generate real-coded population.

2. Project the population onto feasible space by solving Eqn. (3.14).

3. Evaluate fitness by computing objective value of the feasible population.

4. If the population converges then stop; otherwise continue to Step 5.

5. Select parents through tournaments in which the member with higher fitness (therefor

objective value) is selected from a pair of candidates.

6. Reproduce new population by operating crossover and mutation on the real-coded design

and pricing variables of the parents.

7. Back to Step 2.

In both GA implementations, the convergence criteria is: once the average fitnesses over the

whole population in two successive iterations are sufficiently close (e.g. absolute difference

smaller than 10−5), the iteration will stop.

3.5 Example

To demonstrate the application of numerical methods presented in Section 3.3 and 3.4, we

study a vehicle portfolio design case where heterogeneous screening rules related to budgets are

modelled.

3.5.1 Choice model

Suppose there are I individuals and each individual i ∈ {1, ..., I} has an individual specific

budget screening rule:

si(a, g, p) = Rip+mip
G
i g −Bi (3.15)

with

Ri =
ri(1 + ri)

ni

(1 + ri)ni − 1
(3.16)
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where m is annual miles travelled, pG is gasoline price, g is fuel consumption per mile, r is

annual interest rate for the loan and n is the number of loan periods. With si ≤ 0, it means that

an individual only considers a vehicle when its annual owning cost and operating costs are within

the budget. The annual miles driven is modeled based on data from the National Household

Transportation Survey U.S. Department of Transportation, Federal Highway Administation

[2009], assuming the following relationship with the income: mi = 6639ι0.288i e0.253Nm,i where

Nm,i is a sample from a standard normal distribution. The annual budget is assumed to relate

to the income as Bi = 0.5 + 0.06ιi + 0.0512NB,i with standard normal distributed sample

NB,i. The coefficients of the budget model are estimated from the Consumer Expenditure

Survey [U.S. Department of Labor, Bureau of Labor Statistics 2006a]. Income ιi is sampled

from an empirical frequency distribution extracted from 2006 Current Population Survey [U.S.

Department of Labor, Bureau of Labor Statistics 2006b] and interest rate ri is sampled from

uniform distribution between 0.03 and 0.08.

In the compensatory stage, the each individual has utility:

ui(a, g, p) = βp,ip+ βg,ig +
βa,i
a

+ ϑi, (3.17)

The coefficients in this equation are as follows: βp,i = − |4.591 + 0.1756/ιi − 0.377Np,i| where

ιi denotes household income; βg,i = −36.77 + 2.2Ng,i; βa,i = 11.262 + 0.321Na,i; and ϑi =

23.178+0.5N0,i. The variables Np,i, Ng,i, Na,i, and N0,i each denote independent samples from

a standard normal distribution.

• βp,i = − |4.591 + 0.1756/ιi − 0.377Ni|

• βg,i = −36.77 + 2.2Ni

• βa,i = 11.262 + 0.321Ni

• ϑi = 23.178 + 0.5Ni

3.5.2 Engineering Model

In this vehicle portofolio design problem, the design variables are 0-60 acceleration time

(a, ranging from 2.5 - 15s) and fuel consumption (g, in gallons per mile) and price (p, in
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10,000 dollars). The engineering model is influenced by Whitefoot et al. [2011], giving the fuel

consumption and acceleration time are inversely related by:

G(a) = 0.035 +
53.5 + 69.5e−a − 1.8a1.4 + 106.9/a

1000
(3.18)

The unit cost is a function of acceleration:

c(a) = ea/12
(

1.5 + 1.97e−a − 0.04a+
1

a− 1.5

)
. (3.19)

Finally, the design optimization problem for a product line with J products under hetero-

geneous budget screening rules and compensatory utilities can be written as:

maximize
J∑
j=1

(
I∑
i=1

PCi,j(a,g,p)

)
(pj − c(aj , gj))

with respect to 2.5 ≤ aj ≤ 15, gj ≥ 0, pj ≥ 0 for all j

subject to pj − c(aj , gj) ≥ 0 for all j

gj −G(aj) = 0 for all j

(3.20)

3.6 Results

3.6.1 Computational Details

Both NLP and GA methods described above are applied in the vehicle portfolio design

example. Cases with multiple screening rules (I = 1, 5,10, 20, 30, 40, 50) and multiple products

(J = 1, 2, 5, 10) are tested. In all GA runs, we use initial mutation probability of 0.5 and

population size of 50. For S-NLP method, smoothing factor η = 10 is used. For P-MPCC

method, the penalty factor M = 10 is used. For all method except C-GA, we run 1000 trials by

drawing random initial conditions. For C-GA, 100 trials are run, given this number is sufficient

to capture the property of the C-GA in our test runs. Each method was written in C code, and

all NLPs were solved using the SQP solver SNOPT [Gill et al. 2005a] with relative optimality

and feasibility tolerances set to 10−6. All computations were undertaken on a single Mac

Pro tower with 2, quad-core 2.26GHz processors and 32 GB of RAM running OS X (10.6.8).
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The performance of the methods are compared in feasibility, optimality and computation costs

(time and number of function evaluation spent on a single solve). The results are presented in

illustrative cases in the follows.

3.6.2 Feasibility

In SNOPT solver, the feasibility of the problem is controlled by:

max
j
{|gj −G(aj)|}/max

j

{
max{|aj | , |gj | , |pj |}

}
.

With our specified tolerance 10−6, when NLP solver terminated successfully, solutions in S-NLP,

C-MPCC, P-MPCC and C-GA are guaranteed to achieve the relative constraint violation below

this tolerance. For P-GA where the satisfaction of constraints depends on feasibility selection

and random evolution, the constraint satisfaction is achieved in a looser level with relative

violation controlled under 3 × 10−3. Empirically one can tune the P-GA to obtain tighter

feasibility, for example by restricting the violation criteria when selecting feasible parents and

at the same time higher the initial mutation probability to avoid the population from being

stuck in a point with high feasibility but low objective value too early. However, these tuning

will sacrifice the optimality and computation time because the selection may get rid of members

with high objective value but slightly lower feasibility and the high initial mutation probability

will lead to slow convergence.

3.6.3 Optimality

In order to compare the performances on achieving high objective value in a normalized way,

we measure the relative difference between a solution and the best-known empirical solution

πC∗ . We find the πC∗ by looking for the solution with the highest objective value over all trials

of solves that have relative constraint violation under 10−4 in all methods. We capture the

optimality using cumulative distribution functions (CDFs) of solution’s objective level found

with each method over all trials normalized by πC∗ . Denote the optimal profit found by a
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method in trial t ∈ 1, ..., T as πCt , i.e. we plot

D(τ) =

∣∣{t :
∣∣πCt − πC∗ ∣∣ ≤ τπC∗ }∣∣

T

The “shallower” the CDF D : [0, 1] → [0, 1] is, the poorer a method is likely to perform for

a randomly drawn initial condition. Figure 3.2 plots these CDFs for all five methods in two

representative cases: (J, I) = (5, 10) (smaller problem size) and (J, I) = (10, 50) (larger problem

size).

95% 90% 80% 0%99% 50%

Percent of Best-Known Profits (log10 scale)

10 Products (J = 10), 50 Individuals (I = 50)

20%

40%

60%

80%

100%

P
er

ce
nt

 o
f T

ria
ls

0%
95% 90% 80% 0%99%

Percent of Best-Known Profits (log10 scale)

5 Products (J = 5), 10 Individuals (I = 10)

20%

40%

60%

80%

100%

P
er

ce
nt

 o
f T

ria
ls

0%
50%

C-
G

A

S-NLP

P-
G

A

P-
M

PC
C

C-MPCC C-GA

S-NLP

P-
G

A
P-

M
PC

C

C-MPCC

Figure 3.2 Empirical CDF of solution profits found relative to the best-known profit in two
cases: (J, I) = (5, 10) (left) and (J, I) = (10, 50) (right). Method abbreviations
are as defined in the text.

In both small and large size problems, C-GA has all solutions have objective level at least

as 95% as high as the best-known solution and feasibility (with relative violation < 10−4) is

guaranteed by the NLP projection operator. As for P-GA, over 95% of the solutions can achieve

profit as high as 80% of the best-known profit, but its ability to achieve a better profit level (

e.g. 90% as high as the best known profit ) decreases as problem size increases. For example,

in the I = 10, J = 5 case, there are over 90% of the solution observed to have a profit level of

90% as high as the best known profit, while in the I = 50, J = 10 case, only around 30% of

solutions are observed.

Both P-MPCC and C-MPCC methods have good performance in small size problems, char-

acterized by the portion of solutions that converge to the best-known profit and the portion of
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solutions with profit as 80% high as the best-known profit. However this good performance of

the constrained-NLP does not maintain in larger size problems. The growth of problem size

affect P-MPCC in a way that solutions are highly attracted in a local optima that lies in a

profit level of 80% 90% of the best-known solution. Among three NLP methods, the S-NLP

formulation suffers the mostly from the portions of trivial solutions which result in zero profit;

this shortcoming is more significant when problem size is larger.
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Figure 3.3 Solution times for Eqn. (3.20) of various sizes. Means plotted with dashed lines,
with solid lines illustrating one standard deviation above and below the mean.

The changes of computation time and function evaluation on a single solve with the growth

of problem size are illustrated in Figure 3.3 and 3.4. Among all methods C-GA is the most

expensive in both computation time and function evaluation in all problem sizes. C-MPCC and

P-MPCC have comparable computation costs. When the problem size is small, P-MPCC can

solve faster than P-GA method, while in larger size problem, P-GA has more advantage. We

observe the computation time of both GA methods are not sensitive to the growth of number

of screening rules I but to the number of products J . For C-MPCC and P-MPCC methods,

the increasing I and J can both have impact to the computation time.
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Figure 3.4 Function evaluation counts for Eqn. (3.20) of various sizes. Means plotted with
dashed lines, with solid lines illustrating one standard deviation above and below
the mean.

3.7 Discussion

Our results has not poited to an absolution best method for design optimization with

consider-then-choose model. C-GA is most reliable regarding feasibility and optimality but

it is the most time consuming to solve. P-GA has the ability to compute solutions with

good optimality with time efficiency in large size problem, however we need to accept a looser

feasibility tolerance. P-MPCC has the best performance among three NLP formulations, and

has more advantage in smaller size problem than P-GA, but increasing the problem size will

undermine its time efficiency and optimality. In the future, we may further explore hybrid

methods such that the advantage of MPCC and GA can be combined.

Based on the progress of this study, three directions will be in our future focus: First, more

approaches will be explored to enhance global convergence of the design optimization problem.

Second, design framework will be extended to include discrete product features which calls for

further exploration of optimization tools dealing with mixed-integer variables. Third, more

types of screening rules will be included in the design problem, requiring the corresponding

formulations and numerical solving techniques.



38

CHAPTER 4. CONSIDERATION AND DESIGN INFORMED BY

REVEALED PREFERENCE

4.1 Introduction

Conventional discrete choice models [Ben-Akiva and Lerman 1985b, Train 2009] have been

applied in design for market systems [Wassenaar and Chen 2003, Michalek et al. 2004; 2005,

Besharati et al. 2006b, Shiau et al. 2009b, Hoyle et al. 2010, MacDonald et al. 2010, Michalek

et al. 2011] in the past decade. Generally, the choice model serves to forecast demand as a

function of product features, thus enabling design decisions that maximize forecast profits.

These conventional choice models share the assumption that individuals choose by processing

and weighing all attributes, for all alternatives, when maximizing utility. According to this

assumption choice is a compensatory decision making process where tradeoffs can take place

across all features and all alternatives: in particular, shortcomings in one attribute can always

be compensated by making others sufficiently attractive. Empirical studies have shown the

opposite: people often use “fast and frugal” non-compensatory rules to eliminate options when

faced with task complexity [Payne 1976], time pressure [Rieskamp and Hoffrage 2008], informa-

tion cost [Bröder 2000] and memory requirements [Bröder and Schiffer 2003]. The use of such

heuristics−decision rules that ignore information−is widespread and beneficial [Gigerenzer and

Gaissmaier 2011]. This chapter investigates the importance of including consideration behavior

when making design decisions.

The awareness of the use of non-compensatory rules among consumers has changed the tra-

ditional concept of the choice set in choice modeling [Shocker et al. 1991]. Instead of assuming

only a universal choice set with all alternatives, consideration-sets [Roberts and Lattin 1997,

Hauser et al. 2009] have become a topic of active research. Consideration-sets are subsets of

the universal set that are chosen by individuals following internal, non-compensatory rules.
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Building on early research on non-compensatory decision models [Dawes 1964, Einhorn 1970,

Tversky 1972a], non-compensatory rules proposed for consideration set formation include con-

junctive, disjunctive, subset conjunctive, and even lexicographic rules; see Hauser [2014] for

further background and examples. Accepting consideration implies that identification of the

structure and distribution of screening rules is an important empirical task that much recent

research addresses, as reviewed in Section 4.2.

But is modeling consideration important when making design decisions? Marketers have

only shown the advantage of modeling consideration through improvement in model predictive

accuracy, though this has been accomplished across a wide variety of product categories in-

cluding cameras, batteries, automobiles, cellphones, and computers [Gilbride and Allenby 2004,

Jedidi and Kohli 2005, Hauser et al. 2009, Ding and Hauser 2011, Yee et al. 2007]; e.g., see Table

4.1 below. Simulation experiments have illustrated the limits of classical compensatory models

including the multinomial and random coefficient (Mixed) Logit models when modeling non-

compensatory choice behavior [Johnson and Meyer 1984, Andrews and Manrai 1998, Andrews

et al. 2008]. Existing engineering studies demonstrate how design can include consideration in

choice model structure, and how this might affect decisions [Besharati et al. 2006a], but have not

compared the performance of compensatory and non-compensatory models when both types

of models are estimated on the same data with a comparable level of system knowledge. Even

if compensatory models do not represent non-compensatory choice behavior well, could they

still suggest product designs similar to designs that are optimal for true, non-compensatory

behavior? If the non-compensatory behavior is modeled directly, how much closer could a firm

get to true optimal designs? What is the difference of the value of the chosen designs, e.g.

profits, between designs chosen using compensatory versus non-compensatory models?

We describe a simulation study that examines how well compensatory models perform

in 1) recovering non-compensatory choice behavior, 2) suggesting design decisions near to

ideal optimal decisions, and 3) suggesting designs that capture all potential profitability. Our

“synthetic data” Dzyabura and Hauser [2011] simulation experiment has the following steps:

1: Define a synthetic population with known “true” choice behavior;

2: Simulate responses of this population to a sequence of “markets” with randomly generated
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product profiles;

3: Estimate compensatory and non-compensatory models from the responses and validate pre-

dictive power;

4: Optimize design decisions with the estimated models and evaluate design profit using the

“true” behavior.

Synthetic data experiment is an effective method for detecting choice model properties in

specific situations or when testing the validity of an estimation approach [Andrews et al. 2008,

Kohli and Jedidi 2007, Kropko 2011, Dzyabura and Hauser 2011]. We extend this paradigm

to also include the quality and value of decisions made using estimated models, the ultimate

goal of choice modeling within engineering design. The synthetic data experiment allows us

to measure the divergence of design decisions and outcomes from ideal values that can be

obtained only by knowing the true behavioral model. We describe an “econometric-style”

(revealed preference) experiment that uses aggregate share data to estimate choice models. An

alternative perspective, more common in marketing, samples the population for respondents

to choice and/or consideration-based conjoint surveys (stated preference). Both perspectives

have value, as is discussed in Train [2009], pg.152. Both types of models have also been used

in design [Michalek et al. 2004, Wassenaar et al. 2005].

Several observations are enabled by the experiment. As would be expected, modeling consid-

eration with a non-compensatory model results in the best design and pricing decisions when the

population exhibits matching non-compensatory behavior. Conventional compensatory models

can reasonably support profitable design decisions, however, with several caveats: conventional

models might require more data than is reasonably available to capture non-compensatory

behaviors, can suggest simplistic product portfolios, can be sensitive to sample variance in

the training data, and don’t forecast the value of design decisions well even if those decisions

couldn’t be improved with a better model. Overall, modeling heterogeneity in the screening

rules used to form consideration sets captures more value to design than modeling heterogeneity

in the compensatory stage. A similar observation has been made by Andrews et al. [Andrews

et al. 2008]. Finally, while assuming that better model predictive power implies better design
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decisions is reasonable, it is not necessarily true: models with lower predictive power can sug-

gest more profitable designs. We hope our case study will motivate market systems researchers

to further examine what consideration behaviors exist in their product categories and how these

behaviors might influence optimality of chosen designs.

The rest of this chapter is organized as follows: Section 4.2 reviews the consider-then-choose

model construction and estimation studied in marketing research. Section 4.3 describes the

simulation framework and synthetic data generation process. Section 4.4 and 4.5 respectively

provides details of model estimation and design optimization. Section 6.3 presents our results,

followed by discussion in Section 4.7. Section 4.8 concludes.

4.2 Consider-Then-Choose Models

A consider-then-choose model can be described as follows. Suppose the universal choice set

is J = {1, ..., J}. A consideration set indexed by r = 1, ..., R, denoted as Cr ⊂ {1, . . . , J} is

defined by a set of screening rules sr = [sr,1, ..., sr,Lr ]. For conjunctive rules, Cr can be written

as:

Cr(X,p) =
{
j ∈ {1, . . . , J} : sr(xj , pj) ≤ 0

}
(4.1)

The screening rules depend on product features xj , price pj as well as other rule-specific pa-

rameters. This definition means that a product needs to satisfy all the screening rules to be a

member in the corresponding consideration set. An alternative form illustrating this is

Cr =
{
j ∈ {1, . . . , J} : max

l∈{1,...,Lr}
sr,l(xj , pj ,γr) ≤ 0

}
(4.2)

For example, the consideration set

Cr(X,p) ={all vehicles j with price pj under $20,000

AND fuel economy ej over 30 mpg}
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can be defined by

sr(xj , pj) =

pj − 20, 000

30− ej

 ≤ 0.

For disjunctions, e.g.

Cr = { all products j ∈ 1, ..., J with price pj under 20,000 dollars OR fuel economy

ej over 30mpg },

the consideration set can be defined as:

Cr =
{
j ∈ {1, . . . , J} : min

l∈{1,...,Lr}
sr,l(xj , pj ,γr) ≤ 0

}
(4.3)

Disjunctions of conjunctions can be formed by combining the min and max representations

in Eqns. (4.2) and (4.3). This structure is consistent with the forms used in the marketing

literature, although marketers often define screening rules in terms of indicators instead of

inequalities. See, for example [Gilbride and Allenby 2004, Liu and Arora 2011, Dzyabura and

Hauser 2011]. These representations can be transformed into the structure presented here.

Given a collection of screening rules and the associated consideration set, let the conditional

probability that product j is chosen within the set be Pj|Cr and let the probability that the

consideration set Cr is formed be PCr . Then the choice probability Pj can be written as a

weighted sum of the choice probabilities across all possible consideration sets:

Pj =
∑
r

Pj|CrPCr (4.4)

Hauser Hauser [2014] calls such models “consideration” or “choice set explosion” models, as

they are subject to combinatorial explosion in the number of parameters needed to capture

consideration set occurrence. Empirical methods estimate PCr directly, rather than uncovering

structure behind screening by identifying the rules sr. Manrai and Andrews Manrai and An-

drews [1998] provide a thorough review of studies applying Eqn. (4.4) to scanner panel data.

Note that Eqn. (4.4) can also be considered a type of random coefficients (Mixed) Logit model,

though not one with normally distributed coefficients. This structure has also been found to

be similar to a nested Logit model, as we detail in Sec. 4.4.5 below.
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Preference-conditional choice probabilities then take the following form:

Pj|Cr(X,p | θ) =


eu(xj ,pj ,θ)

1 +
∑

k∈Cr e
u(xk,pk,θ)

if j ∈ Cr

0 if j /∈ Cr

(4.5)

where utility u(.) is a function of product characteristics xj and price pj given coefficients θ that

measure preferences. The utility coefficients θ can be assumed to be homogeneous across the

population or take a random coefficients form to include heterogeneity (which requires a Monte-

Carlo integral of the simple Logit form above). This formula can, in principle, be extended

to capture heterogeneity across consideration sets by allowing a nontrivial joint distribution

between coefficients θ and consideration sets.

Methods used in early studies to discover non-compensatory screening rules included trac-

ing and protocol analysis [Payne 1976, Bettman 1980] in which respondents’ decision processes

were self-reported or tracked. Shortcomings of this type of method have been reported and in-

clude inconsistencies between the stated screening criteria and observed choices from the same

individual [Green and Krieger 1988]. More recent research shows that the accuracy of direct

elicitation approaches can be improved by designing experiments that are incentive-compatible:

for example, by participating in a survey in which respondents describe their screening rules

for new vehicles, they have a decent chance of actually winning a vehicle described [Ding and

Hauser 2011]. Estimation tools that are widely applied in traditional discrete choice analysis,

e.g. maximum likelihood and Bayesian methods, can also be used in non-compensatory model

parameter estimation [Jedidi and Kohli 1996; 2005, Gilbride and Allenby 2004]. These methods

may, however, suffer from high computation costs due to exponential growth in the number of

possible consideration sets as the number of attributes and/or attribute levels grows. Machine

learning techniques have recently been adapted to circumvent this problem by applying gree-

doid methods [Yee et al. 2007, Kohli and Jedidi 2007] or low-dimensional parameterizations of

screening rule likelihood [Urban et al. 2010, Dzyabura and Hauser 2011]. Broadly speaking,

marketing research has demonstrated predictive power improvement by modeling consideration;

see Table 4.1.

In principle the specification reviewed above can be estimated from choice data with classical
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Table 4.1 Recent consider-then-choose models constructed from stated preference data, com-
pared to compensatory models estimated in the same study. Abbreviations: HB
- Hierachical Bayes; MLE - Maximum Likelihood; HR - “hit rate” (frequency of
correct prediction on hold-out samples); KLD - Kullback-Liebler Divergence; TAU
- Kendall’s Tau [Hauser 1978].

% Improvement
Reference Product Compensatory Model Consider-then-Choose Model HR KLD TAU

Kohli and Jedidi [2007] Laptops LP Logit Greedy, Lexicographic 0%
Jedidi and Kohli [2005] Batteries MLE Logit MLE, Subset conjunctive 1.1%

Hauser et al. [2009] Cameras HB Logit HB, Conjunctive screening 7.1%
Yee et al. [2007] Smartphones HB Ranked Logit Lexicographic by aspects 8.7%

Ding and Hauser [2011] Cellphones HB Logit Unstructured Direct Elicitation 9.1%

Swait [2001a] Rental Cars MLE Logit “Cut-off rules” (conjunctions) 14.0%(a)

Hauser and Toubia [2010] GPS Units HB Logit Greedy, Lexicographic 4.5% 54.5%
Dzyabura and Hauser [2011] Vehicles HB Logit Adaptive question HB 44.1% 16.7%
(a) Swait [2001a] characterized improvement with improvement in log-likelihood, which is proportional to KLD.

tools such as Maximum Likelihood Estimation (MLE) and Bayesian methods. To facilitate

this, the representation of consideration set probability PCr has taken different forms.Swait

and Ben-Akiva [1987] introduced a random component into the screening rules so that with an

assumed distribution PCr can be derived based on the probability any alternative is acceptable.

Ben-Akiva Ben-Akiva and Boccara [1995] extended this random consideration set generation

model by specifying the availability probability as Logit form. Instead of defining PCr through

parameterized screening rules, Chiang et al. [1999] assumed consideration set probabilities have

a Dirichlet distribution across the population. Gilbride and Allenby Gilbride and Allenby [2004]

avoided the enumeration of consideration sets by using a reduced form choice probability and

Markov Chain Monte-Carlo methods to sample from the posterior distribution of the allowable

screening criteria values. Exponential growth in the number of possible consideration sets

and rules makes consider-then-choose models difficult to estimate in practice. This challenge

motivated researchers to develop methods that apply to “consider” stage observations to infer

screening rules with more attributes and complexity. For example, MLE methods have been

used on “acceptable/unacceptable” responses to the profiles to estimate the probability that a

particular attribute level is acceptable [Jedidi and Kohli 2005]. Dzyabura and Hauser [2011]

model a case where capturing the distribution of screening rules would require 253 parameters,

too many for a direct estimation strategy. They develop an adaptive question survey strategy

to estimate conjunctive screening rules by parameterizing screening rule likelihood presuming

feature acceptability is independent, obtaining a model with only 53 parameters per respondent.
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4.3 Case Study: Vehicle Design Under Body Style Screening

We simulate a stylized model of the new vehicle market with potential purchasers that

screen over vehicle body style. Empirical studies have shown body style screening in both

self-reported surveys ?] and statistical inferences Dzyabura and Hauser [2011]. Body style also

significantly impacts the engineering relationships between other features in vehicle design. We

often refer to the synthetic behavior described below as the “true” behavior. We do not use

this terminology to suggest this is how households actually choose new vehicles. This is only a

shorthand appropriate for the context of the simulation experiment.

4.3.1 Synthetic Behavior

Our population is a mix of groups that screen over B = 9 vehicle body styles listed in Table

4.2. Vehicles are described by fuel economy (e), acceleration (a), price (p) and a B-element

binary vector δ for which δb = 1 if, and only if, the vehicle has body style b (thus
∑

b δb = 1).

Let s 6= 0 be a B-element binary vector defining which body styles are “acceptable” to a given

individual in the population; we refer to these vectors succinctly as “screening rules.” Unlike

δ, which can have only one element equal to 1, s can have any number of elements equal to 1.

An individual with screening rule s considers only those vehicles with body styles b such that

sb = 1 or, equivalently, s>δ ≥ 1. In the notation of Eqn. (4.1,4.5) we can index individuals by

screening rules s and define

Cs(4) =
{
j ∈ {1, . . . , J} : 1− s>δj ≤ 0

}
(4.6)

where 4 = (δ1, . . . , δJ) is a matrix of binary body style vectors.

The fraction of individuals in the population with a particular screening rule s is given by a

probability mass function α(s) drawn from the results of the empirical study reported in [Urban

et al. 2010, Dzyabura and Hauser 2011]. This study estimated conjunctive screening rules with

a Bayesian adaptive question method for 874 respondents. More specifically, we take α to be

the empirical frequency distribution (over respondents) of the modal (most probable) rules s for

the posterior distribution. Out of the 874 respondents, 219 distinct most-probable conjunctive
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screening rules were estimated, and every body style is acceptable to some individual. See

Table 4.2 for the aggregated acceptability of different body styles over the full respondent pool.

Table 4.2 Percentage of respondents accepting the given body style, as reported in Dzyabura
and Hauser [2011].
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Conditional on using a screening rule s, individuals choose from those vehicles in Cs(4) by

maximizing the random utility:

Uj = û(ej , aj , pj ; θ̂) + Ej (4.7)

û(e, a, p; θ̂) = − exp{θ̂p}p+
θ̂e
e

+
θ̂a
a

+ θ̂0 (4.8)

for random coefficients θ̂l ∼ N (µ̂l, σ̂l) (l = p, e, a, 0). N (µ̂, σ̂) is the normal distribution with

mean µ̂ and variance σ̂. The exponential in the price coefficient ensures that lower prices are

preferred, all other things being equal. The errors E = (E0, E1, . . . , EJ) are i.i.d. extreme value

variables mean-shifted towards zero. The resulting screening-conditional sub-populations thus

follow a Mixed Logit model. There are no correlations between screening rules and preference

over vehicle attributes and price, but there is heterogeneity in the population.

Table 4.3 Means and Variances of random coefficients (θ̂’s) in synthetic population utility
function, Eqn. (4.7). N (µ̂, σ̂) refers to a normally distributed variable with mean
µ̂ and variance σ̂2. Values based on the model from [?].

Random Coefficient
Attribute Utility Mean (µ̂) Variance (σ̂)

Price (p) − exp{N (µ̂, σ̂)}p 2.0 0.1
Fuel Economy (a) N (µ̂, σ̂)/e −36.8 2.2
Acceleration (e) N (µ̂, σ̂)/a 11.3 0.3
Constant (−) N (µ̂, σ̂) −23.2 0.5
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4.3.2 Market Share Simulation

We simulate sales data set that might be collected from multiple, separate new vehicle

markets. The vehicles in each market form a “universal” choice set for the consumers in that

market. A data set for estimation then consists of vehicle market shares in M separate markets

indexed by m. For each market, we draw a set of Jm vehicles, denoted Jm. The profile

of vehicle j in market m is given by drawing fuel economy (ej,m), acceleration (aj,m), price

(pj,m) and body style (bj,m) from a uniform distribution respectively on intervals [5, 50] (mpg),

[2, 15] (s) and [10, 60] (10k$) and {1, . . . , B}. An alternative consistent with our optimal design

problem presented below would be to draw sets of vehicles that satisfy our assumed design

constraints. This is possible, and better matches the stylized market modeling paradigm we

employ. However random draws are likely to give us better information about choice behavior

than correlated draws, and thus allow us to focus more completely on choice model quality. To

investigate statistical properties of model estimation and use with stochastic data generation

and choice outcomes, this process is repeated with different random seeds.

Given product profiles in market m, we draw Nm choice observations in which individuals

can purchase one of the vehicles or choose not to purchase any vehicle (choose the “outside

good”). Nm individuals are drawn from the synthetic population by drawing Nm screening

rules si from the distribution α(s) along with associated random coefficients θi. Shares Sj,m

for each vehicle j in each market m (and the outside good) are then generated by maximizing

random utilities (utilities plus error term) foreach individual over their consideration set. See

?] for an explicit algorithm.

(1) set Sj,m ← 0 for all j ∈ Jm ∪ {0}

(2) for i = 1, ..., Nm

(2.a) set Ci ← {0} (only contain ”not buy” decision)

(2.b) for j = 1, ..., Jm, if sTi δj = 1, Ci ← Ci ∪ {j}

if sTi δj = 1, Ci ← Ci ∪ {j}

if sTi δj = 0 (i.e. screening rule not satisfied)

· S0,m ← S0,m + 1 ( ”not buy” decision)
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else Ci ← Ci ∪ {j}

· Ci ← Ci ∪ {j}

(2.c) draw θ̂i,l, (l = p, e, a, 0) in Eqn. (4.8) according to the distribution listed in Table

4.3;

(2.d) draw Ei,j in Eqn. (4.7) according to extreme value distribution for all j ∈ Ci

(2.e) evaluate Ui,j for all j ∈ Ci using Eqn. (4.7) and (4.8)

(2.f) find alternative k = arg maxj∈Ci Ui,j

(2.g) set Sk,m ← Sk,m + 1

(3) Sj,m ← Sj,m/Nm for all j ∈ Jm ∪ {0}

4.4 Choice Models

We examine four choice model specifications: Multinomial Logit (MNL), Random Coeffi-

cients Logit (RCL), Nested Multinomial Logit (NML) and Consider-Then-Choose Logit (CTC)

models. We assume that all models incorporate the prior information that body style plays a

role in consumer decision, but different model specifications incorporate this piece of informa-

tion in different structures: MNL and RCL model assume the tradeoffs between body style and

other attributes, NML uses nests that separate body styles, thus constructing a two-stage but

yet compensatory process; CTC models the frequency of any possible consideration sets, based

on body style, along with compensatory choices conditional on consideration set. Note that

the true behavior of the synthetic population exhibits characteristics of both non-compensatory

screening and heterogeneity in compensatory stage. Thus all the models are misspecified on

at least one behavioral feature. The comparison between these models will thus illustrate the

consequence of failing to capture different behavioral features.

Coefficients in all models are estimated by maximizing the log-likelihood with respect to the

coefficients Train [2009]. For a general choice model with probabilities Pj,m(θ) for coefficients
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θ, this takes the form:

maximize
M∑
m=1

∑
j∈Jm∪{0}

Sj,m log
(
Pj,m(θ)

)
with respect to θ (plus possible constraints)

(4.9)

where

`(θ) =
M∑
m=1

∑
j∈Jm∪{0}

Sj,m log
(
Pj,m(θ)

)
(4.10)

We abbreviate this process by “MLE” and, for brevity, do not explicitly list each MLE problem

below. Instead we define the choice probability model and list any constraints imposed on the

coefficients as this is sufficient to recreate our process.

4.4.1 Multinomial Logit Model (MNL)

The MNL model takes the utility of product j to be

uMNL
j,m (θ) = − exp{θp}pj,m +

θe
ej,m

+
θa
aj,m

+
B∑
b=1

θbδj,m,b + θ0 (4.11)

giving choice probabilities

PMNL
j,m (θ) =

exp{uMNL
j,m (θ)}

1 +
∑

k∈Jm exp{uMNL
k,m (θ)}

(4.12)

As with the true behavior, the “exp” term in the price coefficient ensures that the price coef-

ficient is negative, and thus lower prices are preferred (all other attributes being equal). The

“no buy” or outside good probability is PMNL
0,m (θ) = 1−

∑
j∈Jm P

MNL
j,m (θ).

The maximum likelihood estimation problem is written as:

maximize `MNL(θ)

with respect to θ

subject to

B∑
b=1

θb = 0

(4.13)
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where

`MNL(θ) =

M∑
m=1

(
S0,m log

(
PMNL
0,m (θ)

)
+
∑
j∈Jm

Sj,m log
(
PMNL
j,m (θ)

)) (4.14)

The coefficients over body styles are constrained to sum to zero because they are not inde-

pendently identified from the constant θ0. Specifically, utilities are not changed if we add any

number to all coefficients for all body style dummies and subtract the same number from the

mean of the constant term. We could, equivalently, leave the constant term out of the specifica-

tion. We prefer to include it as it allows us to capture only those body style specific variations

in utility with the coefficients on the body style dummies. This type of representation is con-

sistent with ”effects coding” widely used in discrete choice modeling [Bech and Gyrd-Hansen

2005].

4.4.2 Random Coefficients Logit Model (RCL)

In the RCL model, choice probabilities PRCLj,m are defined for each vehicle j in each market

m by

PRCLj,m (µ,σ) =

∫
PMNL
j,m (θ)φ(θ | µ,σ)dθ (4.15)

for PMNL
j,m as given in Eqn. (4.12). All random coefficients as written in Eqns. (4.12-4.15)

are assumed to be normally distributed, θl = N (µl, σl) l = p, a, e, 1, ..., B, with mean µI and

variance σ2I . Note, however, that this implies that the price coefficient will be log-normal (e.g.,

Boyd and Mellman [1980], Berry et al. [2004]). The density φ is thus a product of 4 + B

independent normal densities each having two parameters. The RCL model thus has 8 + 2B

coefficients we must estimate, two of which enter into the utility function nonlinearly.

Given synthetic revealed preference data we estimate the parameters (µ,σ) using simulated

MLE Train [2009]. We perform Monte-Carlo sampling over random coefficients to obtain I

samples θi ∼ N (µ, diag(σ2)) and simulated RCL choice probabilities

P̃RCLj,m (µ,σ) =

(
1

I

) I∑
i=1

PMNL
j,m (θi). (4.16)
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We use I = 1, 000 Monte-Carlo samples throughout this study if not otherwise mentioned.

Similar to the Logit model estimation, the perfect correlation between body style coefficients

can lead to multiple estimators that give the same choice probability. Therefore the mean

coefficients on body styles are also constrained so that their sum equals to zero. Note that this

does not imply that
∑

b θb = 0 with probability one, but only that E[
∑

b θb] = 0.

4.4.3 Nested Multinomial Logit Model (NML)

We also examine a NML model in which vehicles with the same body style are assigned to

the same nest. Suppose product j in market m belongs to nest Nb(j),m where b(j) is the body

style of product j. The probability product j is chosen in market m is

PNML
j,m (θ) = Pj|b(j),mPb(j),m (4.17)

where PNb,m is the probability that any product from nest Nb is chosen in market m and PCj|b(j),m

is the probability that product j is chosen in market m, conditional on nest b(j) being chosen.

PCj|b(j),m follows the logit formula in which only non-body style features are involved in the

utility:

PCj|b(j),m(θ) =
exp{uNML

j,m (θp, θe, θp)}∑
k∈Nb(j),m

exp{uNML
k,m (θp, θe, θa)}

(4.18)

with utility within the nest defined as:

uNML
j,m (θp, θe, θa) = − exp{θp}pj,m +

θe
ej,m

+
θa
aj,m

(4.19)

The choice of nest depends on the “nest utility”

Vb,m(θp, θe, θa) = log

 ∑
j∈Nb,m

exp{uNML
j,m (θp, θe, θa)}

 (4.20)

and also takes the logit form

PNb,m(θ,λ) =
exp{θ0 + θb + λbVb,m(θp, θe, θa)}

1 +
∑B

c=1 exp{θ0 + θc + λcVc,m(θp, θe, θa)}
(4.21)
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We again constraint the body style dummies coefficient to sum to zero, for the same reason as

in MNL and RCL models.

This formulation follows Daly’s version of the NML Daly [1987], rather than the “General-

ized Extreme Value” formulation given by McFadden McFadden [1978]. The difference between

two formulations is that McFadden’s model uses

θ0 + θb + λbVb,m

(
θp
λb
,
θe
λb
,
θa
λb

)

as the utility in Eqn. (4.21). This change is required for consistency with random utility

maximization, but there is still debate about whether that is essential in the model Train

[2009]. Both versions have similarities with consideration behavior, as discussed below.

4.4.4 Consider-Then-Choose Logit Model (CTC)

In the CTC model body styles are screened in the non-compensatory stage and do not enter

the compensatory stage. Preference in compensatory stage is assumed to be homogeneous both

among the population and across all consideration sets. The body styles screening rules are

S = (s1, ..., sR) characterizing all R = 2B − 1 possible consideration sets C1, ..., CR, except the

“null set” in which no body style is considered. Each screening rule is coded as B-element

binary vector sr = (sr,1, ..., sr,B) where sr,b = 1 if body style b is acceptable, sr,b = 0 otherwise.

Thus

Cr,m = {j : s>r δj,m ≥ 1} (4.22)

which means that a product will be considered as long as its body style is acceptable.

The choice probability for product j in market m is

PCTCj,m (θ,α) =

R∑
r=1

αr

(
exp{uCTCj,m (θ)}

1 +
∑

k∈Cr,m exp{uCTCk,m (θ)}

)
(4.23)

if j ∈ Cr,m and zero otherwise, where αr = α(sr) is an estimator of the probability that a

randomly drawn individual in the population has screening rule sr and utilities are defined by:
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uCTCj,m (θ) = − exp{θp}pj,m +
θe
ej,m

+
θa
aj,m

+ θ0 (4.24)

We estimate this model with MLE, solving for both θ and α ∈ [0,1],
∑

r αr = 1. These

constraints are required to ensure that α is a probability mass function.

Note that we directly estimate consideration set probability PCr = α(sr) rather than esti-

mating parameters of the distribution α(s). Our case study is small enough to enable us to

enumerate the consideration sets, requiring only R = 511 α values to fully characterize the dis-

tribution of consideration sets. This formulation allows us to estimate from the same observed

market share data using a MLE technique consistent with that employed for the MNL, RCL,

and NML models. The CTC model we estimate does not, however, then reflect the level of

generality and efficiency available in the applications we review above. This does not affect our

main purpose, to demonstrate the impact on design of non-compensatory behavior.

4.4.5 Connecting Nested Logit with Consideration

A few comments regarding the connection between the NML and CTC models are required,

motivated by the similarity in the choice probabilities in the CTC and NML models. If the

consideration sets used in the population are disjoint, then Eqn. (4.4) describes the choice

probabilities in a single-level nested Logit model whose nests are given by the consideration

sets. However a NML would use the specific parameterization of PCr given in Eqn. (4.21).

It is easy to see that any true value of PCr can be recovered in this parameterization by

taking the nesting parameter λr to be 1 and choosing the right value of the coefficients for

attributes that are constant over the consideration set (e.g., body style). Swait [2001b] has

linked the generalized nested logit model to construct a general consideration set explosion

model. Similarly, it is also easy to show that a single-level cross-nested Logit model [Bierlaire

2006] can realize choice processes as described in Eqn. (4.4).

Though these models are the mathematically similar their interpretations differ, which

drives a non-trivial difference in formalization. The NML model pictures rational, compen-

satory individuals that might use any consideration set and choose any product, and models

consideration set frequency as a function of the expected maximum utility of choosing from a
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given consideration set [Train 2009]. While a NML can recover CTC behavior choosing the right

parameters, it does not necessarily result in the same predictions as designs change because

nest selection is a function of in-nest utilities. In contrast, the CTC model views individuals as

drawn from a population with heterogeneous screening rules, and decouples consideration set

frequency from utility. When consideration set occurrence is, completely or partially, indepen-

dent of compensatory utilities, this distinction is meaningful.

4.5 Design Optimization

This section defines a single firm’s optimal vehicle design problem matching the stylized

market model discussed above. The firm’s objective is to maximize the expected profit of

its vehicle portfolio by deciding the number of vehicles Jf and choosing the body style, fuel

economy, acceleration, and price for each vehicle. We allow firms to offer multiple vehicles of

the same body style, as this is observed in real auto markets.

4.5.1 Engineering Model

Each vehicle is described by its 0-60 acceleration time (a, in s), fuel economy (e, in mpg),

weight (w, 103 lbs), body style (b ∈ {1, . . . , B}), “technology content” (t, unitless), and price

(p, $104). In the original model by ?], t is a continuous proxy for efficiency improvement

through adoption of discrete technology content; this efficiency improvement can be directed

towards either fuel economy or acceleration performance. To accomplish this, and to represent

a physical connection between acceleration and fuel economy, e, a, w and t are related by a

function gb(e, a, t) as given in Eqn. (4.25):

gb(e, a, t) =
1000

e− 3.46
− βgconst(b)− βga(b) exp{−a} − βgt (b)t

− βgat(b)a2t− βgw(b)w − βgwa(b)wa
(4.25)

Eqn. (4.25) can be written as an equality constraint gb(e, a, t) = 0 on acceleration and fuel

economy decisions. Unit costs are also a function of design variables expressed by the following
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function:

cb(e, a) = βcconst(b) + βca(b) exp{−a}+ βct (b)t

+ βcw(b)w + βcwa(b)wa

(4.26)

the body style specific coefficients in these models were estimated using detailed engineering

simulations from AVL Cruise in conjunction with confidential technology production cost data

provided to NHTSA by automakers in advance of the 2012 − 2016 fuel economy rule making

[Whitefoot et al. 2013]. Table 4.4 and 4.5 summarizes body style specific coefficient values. In

our case study we assume that vehicle weight and technology content for each vehicle are fixed,

and thus do not include these as arguments in gb or cb. We use the average curb weights listed

in Table 4.6, based on 2005 model year vehicle data as reported in [Wenzel et al. 2010], and

technology content tb = 20.

Table 4.4 Coefficients in fuel consumption function for each body style

Body style Coefficients

βg
const βg

a βg
t βg

at βg
w βg

wa

Two-seat 20.8484 89.6806 -0.2049 0.0016 2.9159 0.028
Hatchback 10.792 69.5244 -0.2605 0.0013 12.9897 -0.5593

Compact sedan 10.792 6 9.5244 -0.2605 0.0013 12.9897 -0.5593
Standard sedan 11.5531 733.706 -0.0829 0.0002 8.668 -0.2954

Crossover 10.8515 452.552 -0.0794 0.0002 8.3583 -0.2539
Small SUV 11.5531 733.706 -0.0829 0.0002 8.668 0.2954
Full SUV 11.5531 733.706 -0.0829 0.0002 8.668 0.2954

Pickup truck 10.5185 2979.096 -0.089 0.0003 8.6604 -0.2225
Minivan 10.5185 2979.096 -0.089 0.0003 8.6604 -0.2225

Table 4.5 Coefficients in cost function for each body style

Body style Coefficients

βc
const βc

a βc
t βc

w βc
wa

Two-seat 0.3669 10.6686 0.0175 0.0002579 -0.0000082
Hatchback 0.78 1.9716 0.0016 0.000225 -0.0000123

Compact sedan 0.78 1.9716 0.0016 0.000225 -0.0000123
Standard sedan 0.554 24.3842 0.0054 0.0001963 -0.0000071

Crossover 0.4029 24.0527 0.0057 0.0002339 -0.0000069
Small SUV 0.02 92.3965 0.0038 0.000347 -0.0000108
Full SUV 0.02 92.3965 0.0038 0.000347 -0.0000108

Pickup truck 0.3025 160.56 0.0066 0.0002538 -0.0000055
Minivan 0.3025 160.56 0.0066 0.0002538 -0.0000055
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Table 4.6 Vehicle curb weight for each body style

Body style Average weight (lbs) Min weight (lbs) Max weight (lbs)

Two-seat 2701 1873 3518
Hatchback 3128 2700 3709

Compact sedan 3128 2700 3709
Standard sedan 3258 2864 3818

Crossover 3909 3409 5391
Small SUV 3672 3182 3909

Full-size SUV 4985 3281 5727
Pickup truck 4651 3987 5754

Minivan 4264 3654 4813

4.5.2 Formulation and Solution

Given a portfolio with Jf vehicles and body style vector b the optimal choices of fuel

economy, acceleration, and price for each vehicle are those that solve

maximize π(p, e,a|Jf ,b)

with respect to ∀j, pj ≥ 0

Le,b(j) ≤ ej ≤ Ue,b(j),

La,b(j) ≤ aj ≤ Ua,b(j),

subject to gb(j)(ej , aj) = 0 ∀j

(4.27)

where expected profits are

π(p, e,a|Jf ,b) =

Jf∑
j=1

Pj(p, e,a,b)(pj − cj(ej , aj)) (4.28)

and (Le,b, Ue,b), (La,b, Ua,b) are body-style specific lower and upper bounds on fuel economy and

acceleration. Note that we are not specific about what probability model we use. Eqn. (4.27)

is smooth for any of the models, because choosing prices, fuel economy, and acceleration does

not affect screening in the CTC or, similarly, the nesting structure in NML.

The optimal number of vehicles, body styles, and associated designs and prices can be
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obtained by solving

maximize π∗(Jf ,b)

with respect to Jf ∈ {1, . . . , B},

bj ∈ {1, . . . , B} for all j = 1, ..., Jf

(4.29)

where π∗(Jf ,b) is the optimal value of Eqn. (4.27) for given Jf and b. Note that we allow for

multiple vehicles with the same body style. Because enumerating all all the feasible choices of

body styles b for 1, . . . , B vehicles is computationally prohibitive, we use a Genetic Algorithm

(GA) to solve Eqn. (4.29).

4.5.3 Genetic Algorithm Scheme

The scheme of genetic algorithm in solving for optimal body styles combination:

Generate members: each member n is assigned a binary coded genome ∆n = (δ1, ..., δJ)

where δj = (δj,1, ..., δj,B) with δj,b = 1 if j’s body style = b, δj,b = 0 otherwise. If δj = 0, it

represents that product j is taken away from the portfolio. Note that we force the condition∑B
b=1 δj,b ≤ 1 to be satisfied ( a product only has one body style, or the product is not launched

) during randomly generating the population.

Compute fitness: For each member, we can formulate the problem in Eqn. (4.27) based on

the coded information given in ∆, i.e. number of vehicles decided by Jf =
∑J

j=1 max{0,
∑B

b=1 δj,b},

and the body style collection b is coded in each nonzero vector δj as stated above. Fitness is

defined as the optimal solution of Eqn. (4.27) whose solving process can be handled by NLP

solver.

Reproduce new generation: the probability of member n to be selected as a parent is com-

puted by π∗n/
∑

k∈all members π
∗
k. When crossover takes place between a pair of parents, the

parents will switch at least 1 but less than J successive connected δ, for example, crossover

between member n and n′ with crossover site j with j randomly chosen from 2 to J :

before crossover :

∆n = (δ1, ..., δj−1, δj , ..., δJ) and ∆n′ = (δ′1, ..., δ
′
j−1, δ

′
j , ..., δ

′
J)

after crossover :
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∆n = (δ1, ..., δj−1, δ
′
j , ..., δ

′
J) and ∆n′ = (δ′1, ..., δ

′
j−1, δj , ..., δJ)

Mutation happens with probability qmut, mutation site is randomly selected among any (j, b) ∈

{1, ..., J} × {1, ..., B}, for the selected (j, b), we do the following to ensure
∑B

b=1 δj,b ≤ 1: if

δj,b = 1 then switch 1 to 0; otherwise find b′ such that δj,b′ = 1 and make δj,b′ = 0, δj,b = 1.

To enhance optimality, 50 trials have been done with different initial population. Among

these trials, the best solution is reported.

4.6 Results

This section presents performance results pertaining to choice model accuracy or predic-

tive power, design “error”, and profitability potential. To investigate how the amount of

market information influences performance, we performed the simulation experiment with

M = 10, 25, 50, 100, 200, 500, and 1000 markets. For each M we draw 20 separate sets of

Jm = 5 profiles and Nm = 100 choice observations, estimate MNL, RCL, NML, and CTC

models, and then use these models to design product portfolios obtaining 20 separate sets of

model estimates and designs. Sampling different sets of share data for a given market size

allows us to gauge the effect of sampling variance in the data on model predictions, design

outcomes, and design value, while examining different numbers of markets allows us to assess

the asymptotic properties of the estimated models and their associated designs. The MLE and

design optimization routines were programmed in C language, and nonlinear programs involved

in estimation and design optimization were solved with the sequential quadratic programming

(SQP) solver SNOPT (version 7) Gill et al. [2005b]. All computations were undertaken on a

single Mac Pro tower with 2, quad-core 2.26GHz processors and 32GB of RAM running OS X

(10.6.8).

4.6.1 Predictive Power

The predictive power of the estimated models is validated on a new data set that consists

of M ′ markets, where each market m′ = 1, ...,M ′ has a set of vehicles Jm′ . Kullback-Leibler

Divergence ?],

KLD =

(
1

M ′

) M ′∑
m′=1

∑
j∈Jm′

P Tj,m′ log

(
P Tj,m′

Pj,m′

)
, (4.30)
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captures how close the predicted choice probability distribution P is to the actual choice prob-

ability distribution P T in the validation set. Predictive share errors are evaluated via Eqn.

(4.30) using 1,000 markets of validation data different from the estimation data, but drawn

using the same approach.

Fig. 4.1 plots the divergence between predictions for estimated models and the true behavior

against the number of markets used to train the models. Increasing the amount of market

data available for estimation reduces both expected prediction error and the variance of the

error. Increasing the amount of data, however, does not result in traditional compensatory

models that match the predictive power of the CTC model. For example, the divergence of the

three traditional models’ predictions observing 1000 markets is larger than the CTC prediction

observing only 10 markets. When observing more than 50 markets, the predictive power of

RCL and NML models is generally between those of MNL and CTC with RCL predictions

appearing to be slightly closer to the true behavior. However, when observing fewer than 10

markets the MNL model outperforms RCL and NML models. We believe designers should be

particularly interested in performance when estimating models with relatively small amount of

market data because real revealed preference market research often uses a very limited number

of markets for estimation. For example, econometric new vehicle market models most often

use fewer than 20 markets (marked with vertical line in Fig. 4.1) Berry et al. [1995], Goldberg

[1995], Train [2009]. Our market simulation setting is not strictly comparable to these studies

because of a difference in the number of vehicle-observations in each market, the complexity

of real vehicle profiles, and the detail often given by population demographics. But these

results suggest caution given the small number of markets usually used for model estimation

in practice.

4.6.2 Decision Bias and Variance

We first define a “design error” metric to quantify how different portfolios chosen using

an estimated model are from portfolios that would be chosen for the true behavior (perfect

information). Comparing product portfolios is a complicated task, and we do not suggest we

have a uniquely good metric for comparison. Essentially, our metric compares the relative
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Figure 4.1 Kullback-Leibler Divergence (KLD) of predicted choice probability distribution
from true behavior. Solid lines represent the range of observed values over 20
separate data sets while the dashed line represents the average value.

difference in specific vehicle attributes − excluding price to focus on engineering aspects of

strategy − for the same styles of vehicles and number of vehicles with different body styles.

The specific numerical values of “design error” for any given choice model are less important

than comparisons across the different choice model types we explore.

Suppose a portfolio has Jf vehicles, each with body style bj and design xj = (ej , aj). Denote

the body style combinations of a portfolio as (n1, n2, ..., nB) where nb is the number of vehicles

in the portfolio that have body style b. We refer to the ideal portfolio as the optimal portfolio

using the true behavior and denote the ideal portfolio with superscript “*”; multiplicity of ideal

portfolios is addressed below. Our design error metric is

d =
1

2

(
B∑
b=1

Nb + max{H+, H−}

)
(4.31)
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where

Nb =


|nb − n∗b |/n∗b if n∗b > 0

nb if n∗b = 0

(4.32)

H+ = max
j:n∗

b(j)
>0

{
min

k:b∗(k)=b(j)

{
dw(xj ,x

∗
k)

}}
(4.33)

H− = max
j:nb(k)>0

{
min

j:b(j)=b∗(k)

{
dw(xj ,x

∗
k)

}}
(4.34)

dw(x,x∗) =
1

2

(
|e− e∗|
e∗

+
|a− a∗|
a∗

)
(4.35)

The first term in Eqn. (4.31), Eqn. (4.32), captures differences in body style combinations by

penalizing differences in the number of vehicles offered with each body style. The second term

in Eqn. (4.31), composed of Eqns. (4.33-4.35), is a Hausdorff distance [?] comparing sets of

vehicles with the same body styles using the relative error metric in Eqn. (4.35). This portion

of the metric is zero so long as the sets of vehicles offered are equivalent, even if offered in

different multiplicities. If nonzero, this portion gives the relative error in the attributes of any

vehicle offered when that vehicle shares a body style with a body style offered in the ideally

optimal portfolio. Note that this distance measure gives an error only in engineering decisions,

while pricing is obviously important to profitable product design. However it is plausible

that “incorrect” prices could be corrected relatively quickly in the marketplace after offering a

particular set of products, while errors in engineering features cannot be. Section 4.6.4 explores

this in more detail. See [?] for a generalization of Eqn. (4.31)-(4.35) that accounts for prices.

Fig. 4.2 plots design error for optimal decisions based on the MNL, RCL, NML, and CTC

choice models against number of markets observed. Two features are of interest: design bias

refers to the difference between mean model-optimal designs and ideal optimal designs; design

variance refers to the spread of designs that might be made given different observed markets

used to estimate the choice models. With fewer than 25 markets the CTC model has the lowest

design bias, consistent with the performance this model showed in predictive power. As the

amount of market data grows, designs under the CTC model appear to be converging to ideal

designs. Designs chosen using a NML model compare well to CTC designs when observing
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50 or more markets. Designs chosen using a RCL model have the largest variation among the

models, and this variation cannot be overcome by increasing the number of markets observed.

Unlike RCL, NML and CTC models, using a MNL model suggests identical vehicles with the

same body style should be produced; this is reflected as the high design error compared to the

ideal design in which there is wide diversity among body styles.
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Figure 4.2 Design error, measured as in Eqn. (4.31), for all models over all numbers of markets
observed. Solid lines represent the range of observed values over 20 separate data
sets while the dashed line represents the average value.

In computing design error we presume that a computed ideal portfolio is a good represen-

tation of portfolios required to achieve optimality relative to the true behavior. If there are

distinct locally optimal portfolios that achieve nearly globally optimal profits a different metric

would be required. Similarly, if profits were ”flat” near the ideal portfolio design error loses

meaning. In the next section we discuss decision profitability, which is the ultimate metric of

portfolio performance.

4.6.3 Decision Profitability

A decision that differs from an ideal decision is not necessarily un-profitable. The true

profit of a product portfolio is its expected profits computed under the true behavior, rather

than the estimated model. We compute true profit Π as

Π =

Jf∑
j=1

P Tj (e,a,p,4)(pj − cj) (4.36)
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computing market share P Tj by computing the choice probability in the true behavior described

in Section 4.3.1 instead of the sampling procedure described in Section 4.3.2. Here the Monte-

Carlo sampling size used to approximate the compensatory stage random coefficients model was

I = 100, 000. We do not include competitive firms’ vehicles in this profit validation in order to

be consistent with the design optimization problems, which do not include competition. Note

that true profit for any model-optimal portfolio should be less than the true profit given by the

optimal portfolio under the true behavior. We refer the the profit gained by optimal decisions

under the true model as the ideal profit.

Fig. 4.3 plots the percentage of ideal profits that can be achieved by choosing designs and

prices using an estimated model. CTC designs and prices are, not surprisingly, best able to

capture true profits. Even when observing only 10 markets, CTC designs and prices can be

expected to achieved at least 90% of the ideal profits with the worst designs achieving around

70% of the ideal profits. MNL designs and prices can be expected to obtain only 60% of the

ideal profit due to a single body-style portfolio that lacks diversity. Estimating a model with

limited amount of market data appears to affect the profitability of the RCL model designs the

most out of all the models, consistent with our observations regarding design error variance.

Even observing up to 50 markets it is possible for RCL designs and prices to recover less than

40% of the ideal profits, depending on sampling variance in the market data. More data results

in RCL designs and prices within 90-95% of the ideal profits. Observing less than 25 markets

NML designs capture approximately 20% less true profit than the CTC designs and also shows

relatively high variation in true profits (facts obscured by the log10-scale axis in Fig. 4.3).

However like RCL, NML designs and prices can ultimately capture 90-95% of the true ideal

profits when estimating the model with enough data.

4.6.4 Pricing-On-Offering

An additional test assesses the degree to which a model suggests unprofitable decisions

simply because of a poor representation of preferences over prices. Prices can, in principle, be

changed up until the point-of-sale while design decisions must often be fixed far in advance of

sale. Thus it is reasonable to consider a case where firms learn more about preferences when
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they offer the portfolio designed and exercise price flexibility to maximize profits. Suppose that

the MNL, RCL, NML, and CTC models inform the design of the product portfolio but that

prices can be changed even the product is offered (as in, e.g., Morrow 2014). How much more

profits could the firm recover by using the true choice behavior in order to set optimal prices,

for fixed designs? While the firm is not likely to actually know the true behavior, this value

represents an upper bound on profitability of design decisions made using an estimated model

when prices are flexible and determined when offering the portfolio.

Fig. 4.4 plots percent of ideal profits obtained using the vehicle portfolios suggested by the

estimated models, but offered at prices determined by the optimizing profits for that portfolio

under the true behavior. From this perspective the RCL, NML, and CTC models each have

the potential to suggest nearly equivalently profitable design decisions. RCL and NML, in

particular, can suggest much more profitable portfolios if we admit pricing flexibility than if we

donÕt, and thus RCL and NML capture pricing preferences more weakly than does the CTC

model. Moreover, for intermediate numbers of markets (25, 50, 100, and 200), the NML model

appears to suggest the most profitable portfolios by a small margin (less than 2.7%) that is

exaggerated by the log10 axis scaling. Finally, even the best possible pricing strategy cannot

increase the true profitability of the single body-style portfolio designed under the MNL model.

4.7 Discussion and Limitations

There are several observations for designers to take away from this exploratory simulation

study.

First, conventional compensatory models can reasonably support profitable design decisions

even when the population exhibits non-compensatory behavior with enough data. Designs based

on estimated RCL and NML models were capable of obtaining above 90% of the ideal profits

(Fig. 4.3); however this required roughly twice the amount of market data (50 markets) that

might typically be available (20 markets) judging from the vehicle modeling literature. The RCL

and NML models could suggest designs that obtain almost 100% when an ideal pricing strategy

is followed (Fig. 4.4), but this would require learning preferences exactly when actually offering

the vehicles designed (Fig. 4.4). This is practically impossible but does suggest that a significant
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portion of the “error” made with conventional models pertains to pricing bias, not design bias.

However designers should be aware of the possible side effects of different compensatory model

structures: The MNL model suggests portfolios with identical body styles; the RCL model,

estimated on limited amounts of aggregate market share data, is highly sensitive to sample

error leading to large variations in optimal designs; and the NML model, while it might capture

optimal designs very well if the nesting structure reflects consideration, suggests biased pricing

decisions and thus cannot present accurate forecasts of design profitability. Designers also

need to take into account the amount of information available to train their model when they

decide what model to use. According to our simulation using the MNL might be more reliably

profitable than using the RCL and NML models if market data are very limited, because noise

in the data induces greater variance in designs suggested by RCL and NML models.

Second, modeling the heterogeneity in the screening rules may capture more value to design

than modeling heterogeneity in the compensatory stage. This is most directly observed by

comparing the CTC and RCL models. The RCL model ignores screening stage heterogeneity,

and achieved only 30% of the ideal profit (on average) with 10 markets while displaying an

unacceptably large sensitivity to sample variance with limited training data. The CTC model

with only 10 marketsÕ of training data gives a firm expected profit that is at least 80% as much

as what they could get with perfect knowledge. Recall that the CTC model is mis-specified,

in that it ignores compensatory stage heterogeneity. Other evidence comes from the NML.

NML and CTC are similar in a two-stage modeling structure. In effect, our NML is a close

approximation to a CTC model assuming that individuals consider one, and only one, vehicle

body style. Decisions made based on the NML are most often more profitably than those

made with the RCL model for all amounts of training data. This observation may be driven

by limited amount of heterogeneity in our assumed true behavior (see Table 4.3), suggesting

further research is required.

Note also that the CTC model has the potential to be seriously overfit. For example, the

CTC model in with M = 50 has more than twice as many parameters (515) as observations

(250), but is still the most predictively accurate model (Fig. 4.1, right) and results in the

most profitable decisions (Fig. 4.3, right). Conventional wisdom would suggest that at least as
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many observations as parameters are required for a valid model; i.e., the CTC model requires,

at a minimum, M ≥ 103 markets with 5 vehicles per market. We believe that the stability of

estimated model predictions is more important than the ratio of parameters to observations;

Fig. 4.1 shows that the predictive power of the estimated CTC model is as good as it can get

with as few as 50 markets. However, overfitting effects may result in the difference between

NML and CTC model performance when pricing on offering (Fig. 4.4): our CTC model

presumes that all 511 screening rules may be in use by the population generating the data,

while the NML approximates a CTC model with only B = 9 screening rules. Slightly better

performance with the simpler model suggests some overfitting may be occurring, although any

such overfitting could be easily corrected by restricting the number of nonzero α coefficients in

the CTC estimation.

Third, assuming that better predictive power indicates better design decisions is reasonable

but not necessarily true. Pearson correlation coefficients are positive but weak: 0.62 between

predictive power (divergence) and design error, 0.73 between predictive power and profit error

(measured as error, not percent of ideal profits recovered), and 0.73 between design and profit

errors. Fig. 4.5 scatters the average design error and average true profitability versus the

average Kullback-Leibler divergence of four models estimated under two market information

conditions: 10 and 1,000 markets; Here, the average is taken over different data sets with

the same number of markets. While there is a general trend that lower divergence (better

model predictive power) is consistent with lower design error, deviation from this trend is also

observed. For example, NML has, on average, worse choice predictions but better designs than

RCL for both 10 and 1,000 markets worth of data. Lower model divergence also generally

indicates less loss of profit. However there are exceptions, such as the comparison between the

NML and the RCL. Note also the difference in scales: the MNL model does not appear to

predict that much worse than the NML or RCL models while suggesting designs that capture

almost no profit relative to NML or RCL.

These results shows that the true profitability of designs made using traditional models

cannot be judged from predictive power alone. While further investigation of the relationship

between predictive accuracy and decision value across a range of design problems and market
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conditions is needed, it is clear that choice models with structure representative of the under-

lying choice process are better for design even if they may not show significant benefits from

the perspective of modeling choice alone.

Important limitations of our study are as follows.

Our study has focused on the value of incorporating prior knowledge on screening without

demonstrating the process needed to obtain that knowledge. Nor has our study examined the

consequences of misspecified prior knowledge. The CTC model in this study is able to estimate

the distribution of the possible consideration sets from choice data given that the attributes

involved in the screening process are known and limited. Our presumed behavior−screening

over body style−is a reasonable prior for the case study and is represented in some form in

every model we tested. Aggregate share data is insufficient to infer what attributes and screens

are involved in the consideration stage. We are currently mirroring this simulation study within

the context of survey design for both choice-based conjoint and consideration-based questions

[Dzyabura and Hauser 2011] in which screening rules can be statistically inferred. Subjective

beliefs, however, often inform choice model construction; they underlie decisions about what

utility function to use and what distribution the error term takes (including heterogeneous

preferences and nesting structures). While we must assume that misspecification of screening

rules would impact design outcomes, this is a generic problem for choice modeling.

The design problem in our case study is also simplistic. The engineering model merely

focuses on a body style specific fuel consumption-acceleration relationship and cost function

that depends only on fuel economy and acceleration. The screening rules we used were indepen-

dent of continuous features such as price and fuel economy; in contrast, the study from which

we drew screening rules estimated rules over a body style, brand, fuel economy, price, quality,

safety, power, and powertrain [Dzyabura and Hauser 2011]. Future studies should include more

engineering model as well as complexities in screening.

Bayesian methods for model estimation were also not used in this study. An important fact

is that Bayesian methods provide an alternative path to estimate the parameters of a choice

model, not fundamentally different models. Theoretically speaking, maximum likelihood and

Bayesian estimators are often similar; in particular the posterior mean of a Bayesian estimator
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is asymptotically equivalent to the maximum likelihood estimator [Train 2009]. Empirically

Bayesian estimators have been reported to have better fit small-sample data but have predic-

tive power and parameter recovery similar to maximum likelihood estimation [Andrews et al.

2002]. In the context of our study we might then expect Bayesian estimators to achieve larger-

sample performance with fewer data, but not to qualitatively change the comparison between

conventional compensatory models and non-compensatory models when consumers consider.

4.8 Conclusions

This chapter explores the impact of consideration behavior on optimal design for market

systems models by presenting a simulation study of vehicle portfolio design for a population

with heterogeneous screening over body style and heterogenous compensatory evaluations after

screening. With synthetically generated aggregate marketshare data we estimate multinomial

Logit, random coefficient Logit, nested multinomial logit, and consider-then-choose logit mod-

els. All four models contain some representation of screening, and all are misspecified in at

least one dimension of the true behavior. We use the estimated models to optimize designs

for a single model and compare model performance in terms of predictive power, design error,

and profitability. We find that capturing heterogeneous consideration, when it exists, is more

important than capturing heterogeneous tradeoffs. This can be accomplished with consider-

then-choose Logit, but also with the right nested Logit model. Decisions made using Logit

models are simplistic, suggesting portfolios with a single body style, and decisions made using

random coefficients Logit models are noisy; with limited amounts of data, Logit models may

often lead to more profitable decisions than random coefficients Logit. We also observe that

higher model predictive power generally does imply a more profitable design decision, but that

there are cases where poorer predictors can yield higher profits.
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CHAPTER 5. CONSIDERATION AND DESIGN INFORMED BY

STATED PREFERENCE

5.1 Introduction

In the past decade, preferential choice models have played an important role in product

design by informing designers of how consumer respond to product features [Wassenaar and

Chen 2003, Michalek et al. 2004, Shiau et al. 2009b, MacDonald et al. 2010, Hoyle et al. 2010,

Morrow and Skerlos 2011]. Widely applied traditional choice models with additive utilities [Ben-

Akiva and Lerman 1985a, Train 2009] have viewed the product evaluation as a compensatory

process, meaning that consumers allow attractive features to compensate for undesired features.

Derived from Payne?s analysis work on the information search in task complexity [Payne 1976],

marketers have been refreshing choice modeling with the concept of ”consideration”, [?Roberts

and Lattin 1997], which describes a non-compensatory screening process in which consumers

quickly eliminate a large number of products before careful trade-offs. It remains open questions

whether using compensatory choice models versus non-compensatory consideration models will

lead to different design decisions, particularly: 1) Will consideration models suggest different

product line designs than traditional choice models? 2) Will consideration models and choice

models lead to different strategic values, such as profitability? 3) Can the predictive power

of the models indicate their strategic values? These questions appeal to product designers

because the product development concerns not only how a model predicts consumer choices of

the existing products, but also how a model directs the feature innovation of new products.

For example, suppose a firm observed that a household with children excluded any two-seaters

when purchasing a primary vehicle. A compensatory choice model may be able to capture

this observation by using specific part-worths on the body type attribute such that the existing

two-seaters have significantly low utilities. However, when it comes to designing a new product,
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the compensatory structure may lead the designers to believe that increasing the utilities of

attributes such as fuel economy to a higher new level can compensate for the body type. In

contrast, if a consideration model explicitly identifies body type as a non-compensatory feature,

it will lead the firm to develop body types with sufficient passenger capacity. Furthermore,

consideration models hold a different perspective of profit predictions, because consideration

models expect the market share of a product only from consumers who consider the product.

Motivated by the intuitions above, this chapter aims at comparing the performances of

compensatory choice models and non-compensatory consideration models in the design per-

spective. The comparison requires a framework to handle three issues. First, the capabilities

of the models need to be tested in an environment where the performance benchmark can be

found. A synthetic data experiment is proposed to compare the performances of the models in

scenarios where the synthetic consumers use complex screening rules. Second, the comparison

needs to accounts for the fact that using different models often implies different data collecting

and model estimating processes. Thus, our experiment tailors different surveys according to

different assumptions behind choice models and consideration models. Third, the compari-

son requires applying the models in a design process and accessing the strategic value of the

design outcomes. Therefore, our experiment simulates the design optimization process after

model estimations and quantitatively compares design outcomes in terms of feature diversity

and profitability.

This chapter proceeds as follows: Section 5.2 reviews the studies related to the comparison

between consideration models and choice models in the past, as well as the consideration mod-

eling methods in marketing research. Section 5.3 describes our synthetic simulation framework

in detail, including the design of experiment, the synthetic data generation process, the model

estimation methods, the product design problem, and the metrics to evaluate the model perfor-

mances. Section 6.3 presents and discusses the results of the simulation. Section 6.4 highlights

the managerial implications. Section 6.5 concludes.
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5.2 Background and Literature Review

5.2.1 Consideration models versus choice models

Growing evidence has revealed that consumers often use frugal and simple screening rules

to eliminate products before carefully making trade-off decisions due to factors such as eval-

uation complexity [Payne 1976], information cost [Bröder 2000] and time pressure [Rieskamp

and Hoffrage 2008]. Previous marketing literature referred this screening process as ”consid-

eration” [Roberts and Lattin 1997]. Marketing research in the past has modeled a variety of

consideration screening strategies:

Aspirational : Simon [1956; 1972] first proposed the theory of bounded rationality, in which

decision makers will stop searching for options once the benefit they obtain from an option

exceeds some ”aspirational limit”. Gilbride and Allenby [2004] implemented this idea into

consideration modeling in the form that consumers will consider a product if the product’s

utility exceeds some aspirational criteria.

Conjunctive: a consumer will consider a product only if all its screened attributes are

acceptable. For example, ”I will consider a vehicle if it is hybrid AND it is Toyota”.

Disjunctive: a consumer will consider a product as long as one of its screened attributes is

acceptable. For example, ”I will consider a vehicle if it is hybrid AND it is Toyota”.

Subset conjunctive: a consumer will consider a product if a certain number of its screened

attributes are acceptable. For example, a consumer screens on brand, price and powertrain,

and suppose a considered product must have at least two acceptable features, then a subset

conjunctive rule may state ”I will consider a vehicle if it is a Toyota hybrid OR if it is a hybrid

with price under 25, 000ORifitisaToyotaunder25,000”.

Disjunction of conjunctions: a consumer will consider a product if it satisfies at least one

sets of conjunctive rules. For example, if a consumer screens by brand, price and powertrain,

a disjunction of conjunctions rule can be ”I will consider a vehicle if it is a Toyota OR if it is

a hybrid under 25, 000”.

It should be clarified that choice models are not necessarily labeled as ”compensatory”,

since choice decisions can also include non-compensatory processes, such as ”elimination-by-

aspects” [Tversky 1972b]. When referring choice models, this chapter particularly emphasizes
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the model structure that does not include non-compensatory screenings. Marketers have com-

pared the non-compensatory consideration models and compensatory choice models in terms

of their capabilities of predicting choices in empirical data. Table 1 provides a list of research

practices where consideration models improved the predictive power in a variety of product

categories. On the other hand, some investigations revealed that compensatory choice models

could approximate non-compensatory considerations. For example, the nested logit model can

approximate the consideration sets structure when applied to choice-based data [Swait 2001a];

the aspect-coded linear weighted additive model with a specific sequence of part-worths can re-

cover conjunctive rules [Martignon and Hoffrage 2002]. However, the capability of choice models

to mimic considerations has limitations. Specifically, Andrews and Manrai [1998] showed in

a synthetic data experiment that the capability of multinomial logit models to accommodate

considerations depend on conditions such as the degree of heterogeneity of the considerations

and the sizes of consideration sets. Further experiments revealed that underspecifying consider-

ations had higher impact to predictive errors than underspecifying compensatory heterogeneity

[Abramson et al. 2000, Andrews et al. 2008].

The literatures of comparing consideration models and choice models are relatively sparse in

the domain of engineering design. Existing applications included the usage of conjunctive and

disjunctive models in a product selection system [Besharati et al. 2006b], and the prediction

of consideration sets via network analysis [Wang and Chen 2015]. Yet, these studies did not

focus on comparing the design outcomes. Our previous synthetic market data experiment

suggested that consideration models had the advantage in design profitability compared to logit,

mixed logit, and nested logit models [Long and Morrow 2015]. Shin and Ferguson performed

a choice survey based synthetic experiment where the latent class logit model and hierarchical

Bayes mixed logit model yielded similar optimal designs to those by using a conjunctive model

Shi [2015]. However, neither of these two studies took into account how the data collections

would differ according to the model assumptions, given that the consideration models and

choice models in these two studies were estimated from the same discrete choice data. Before

introducing our simulation framework that tailors separate surveys for consideration models

and choice models, we review methods to model considerations in the following.
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5.2.2 Consideration modeling methods

A classic stream of consideration modeling methods relied on choice panel data. These

consideration models probabilistically captured the existence of a consideration set and the

memberships of the consideration set. This formulation presented choice probabilities condi-

tionally on the consideration set probabilities [Manrai and Andrews 1998]. Yet, the computation

burden of this method grows exponentially as the number of the product alternatives grows.

The parameterization of the attribute acceptance distribution relaxed this problem by reducing

the estimation dimensions [Siddarth et al. 1995, Chiang et al. 1999, Jedidi and Kohli 2005].

Recent advanced methods not only inherited the treatment of parameterization, but also

inferred screening rules more efficiently with consideration data. These advanced methods often

corresponded to their own specific models, for example, greedoid algorithm for lexicographic

models [Kohli and Jedidi 2007, Yee et al. 2007], Bayes theorem based adaptive learning for

conjunctive screening models [Dzyabura and Hauser 2011], and support vector machine learning

for aspirational screening models [Huang and Luo 2015]. The following section presents how the

Bayes adaptive learning and the support vector machine learning are applied in our simulation

framework.

5.3 Synthetic Experiment

Figure 5.1 shows the flowchart of our proposed synthetic experiment. The simulation started

with generating a synthetic population with pre-specified behaviors that includes both con-

sideration stage and choice stage decision parameters. The simulation queried the synthetic

respondents in two independent sets of survey questions: adaptive consideration surveys, and

discrete choice surveys. The consideration surveys infer individual specific consideration rules

by adaptively combine questions selection and responses collection in an iterative process. The

discrete choice surveys estimate choice models via pre-designed question sets. The output con-

sideration models and choice models then informed the product line optimization separately.

Eventually, the optimal portfolios were compared on their design strategies and profitability.

The remaining of this section further explains the framework components in detail.
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Figure 5.1 Simulation framework flowchart

5.3.1 Pre-specified behaviors

The simulation describes a product profile with the attributes and levels given in Table 5.1.

There are 8 attributes (including vehicle make) with a total of 53 attribute-levels. Throughout

this chapter, The profile vector x is denoted as a binary string of length 53 with 1 representing

that the profile has the feature of the corresponding level and 0 otherwise.

The experiment configured two scenarios: In scenario I, respondents used aspirational

screening; in scenario II, respondents used subset-conjunctive screening. When being asked

the ”consider/reject” questions, the respondents answered according to their individual spe-

cific screening rules. When being asked the choice questions, the respondents first performed
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the screening then made a choice according to their individual specific compensatory choice

parameters. Throughout this chapter, ”true behavior” is used to denote the pre-specified

mechanisms that generate the responses in the simulation environment, which are described as

follows.

Table 5.1 Attributes and levels for the new vehicle case study, following Urban et al. [2010]
and Dzyabura and Hauser [2011]

Attributes # of Levels Level Values

Body Style 9 Sports Car, Hatchback, Compact Sedan, Standard Sedan,
Crossover, Small SUV, Full-size SUV, Pickup Truck, Minivan

Make 21 BMW, Buick, Cadillac, Chevrolet, Chrysler, Dodge, Ford,
GMC, Honda, Hyundai, Jeep, Kia, Lexus, Lincoln,
Mazda, Nissan, Pontiac, Saturn, Subaru, Toyota, VW

Price 7 $12K, $17K, $22K, $27K, $32K, $37K, $45K

Cylinders 3 4, 6, 8

Powertrain 2 Hybrid, Gasoline

MPG 5 15, 20, 25, 30, 35

Quality Rating 3 3, 4, 5

Crash Rating 3 3, 4, 5

Scenario I: Subset-conjunctive Screening

Individual i’s consideration set Ci(X) is formulated as:

Ci(X) = {j : δTi xj ≥ N}, N = 1, · · · , A (5.1)

The binary vector δi is an individual specific screening rule. An element of δi is one, if and

only if the corresponding attribute-level of the element is acceptable. A is the total number

of attributes. Thus K = A corresponds to the conjunctive model. K = 1 yields a disjunctive

screening rule. Any K between these two values represents a subset-conjunctive rule. The

subset-conjunctive is sampled such that the profiles considered by the respondents follow a

log-normal distribution with mean value of 0.1. The sampling process is as follows: all possible

rules (i.e. δ and K combinations in Eqn.6.1) were enumerated to compute the corresponding

proportion of profile considered. The rules were categorized into 100 bins (i.e.0− 0.01, 0.01−

0.02, · · · , 0.99− 1) according to the proportion of profile considered given by the rules. One of
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Table 5.2 Part-worths structure of the pre-specified compensatory stage MNL model param-
eters for the synthetic population.

Attributes Part-worths Structure

Body Style Uniform random draw from [-1, 1]

Make Uniform random draw from [-1, 1]

Price Uniform random draw from [-1, 1], then order as
β$12K > β$17K > β$22K > β$27K > β$32K > β$37K > β$45K

Cylinders Uniform random draw from [-1, 1], with
0.5 chance β4cyl = β6cyl = β8cyl (indifference)
0.5 chance β4cyl < β6cyl < β8cyl (prefer larger engine sizes)

Powertrain Uniform random draw from [-1, 1], with
0.25 chance βgas > βhybrid (prefer gasoline)
0.5 chance βgas = βhybrid (indifference)
0.25 chance βgas < βhybrid (prefer hybrid)

MPG Uniform random draw from [-1, 1], then order as
β15mpg < β20mpg < β25mpg > β30mpg < β35mpg

Quality Rating Uniform random draw from [-1, 1], then order as
β3star < β4star < β5star

Crash Rating Uniform random draw from [-1, 1], then order as
β3star < β4star < β5star

the rules from the bin that ci fell in was randomly selected for individual i.

Scenario II: Aspirational screening

An individual i will consider product j if it achieves a utility value above some ”aspirational”

limit. The following formula defines individual i’s consideration set Ci(X):

Ci(X) = {j : vTi xj ≥ γi} (5.2)

where v is individual specific part-worths and γ is the aspirational limit. To enable the pro-

portion of profiles considered by the individuals to follow flexible distributions, the simulation

sampled the part-worths and aspirational limit using a scheme inspired by Jedidi and Kohli

[1996]. For each individual, we first sampled the proportion of profiles considered c ∈ [0, 1]

from its distribution f(c), and assigned the screening rule that led to such proportion. The

partworths βi were randomly drawn from uniform distribution between [−1, 1]. The utilities of

all possible profiles were then computed and sorted. Given the sampled proportion of profiles

considered ci, the same proportion of profiles that have the highest utilities were identified as
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”considered”. An aspiration limit γi was assigned to this individual such that γi was lower

or equal to any utility of a considered profile but higher than any utility of a rejected pro-

file. In both screening behaviors, the proportion of considered profiles followed a log normal

distribution with mean of 0.1.

Compensatory choice

After screening, a respondent chose an option with maximum random utility within the

consideration set, i.e. chose option j such that j = arg maxk∈Ci
βTi x+ εi,kwhereβi is individual

specific part-worths and εi,k is the random disturbance of the utility following extreme value

distribution across the respondents and options. The sampling of individual specific parameter

βi followed a preference structure shown in Table 5.2. The main rationale of this structure

is that, during the compensatory comparison, the respondents prefer lower price than higher

price, prefer higher MPG than lower MPG, prefer higher quality than lower quality and prefer

higher crash safety rating than lower rating.

5.3.2 Consideration Models and Adaptive Surveys

The simulation investigated two consideration models - the conjunctive model estimated

with Bayesian adaptive questions and the aspirational model estimated with support vector

machine. Both models ignore choice stage part-worths estimation (see Table 5.3 for a summary

of the mis-specifications, estimation methods, and survey properties of four estimated models).

Conjunctive model

Consideration criteria δTi xj ≤ K in Eqn.(6.1) collapses to a pure conjunctive model when

K equals to the number of screened attributes. Dzyabura and Hauser [2011] proposed an

adaptive machine learning algorithm to estimated the individual specific screening rule δi by

parameterizing the screening rules as the acceptance probabilities of the attribute levels, and

assuming the acceptance probabilities to be independent across all attribute levels. Based on

the history of profile queries and responses, the algorithm updated the posterior acceptance

probability with Bayes theorem. After each update, the next question was adaptively selected
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to minimize the expected information entropy. The update and selection process iterated until

the maximum number of questions were asked. The estimated posteriors were converted to

the binary screening rules such that posteriors < 0.5 was interpreted as ”unacceptable” on the

corresponding attribute level, and ”acceptable” otherwise.

Aspirational model

Given the aspirational screening structure vTi xj ≤ γi in Eqn.(6.2), the training of screening

rule vi of individual i requires solving a support vector machine problem [Bishop 2006]:

minimize
1

2
||w||2

with respect to w, b

subject to yn · (wTx + b) ≥ 1 for all n = 1, · · · , N

where N is the number of questions asked and yj is the response to profile xj (value as 1

if ”consider”, -1 if ”reject”). Huang and Luo [2015] combined this learning algorithm with

the adaptive question strategy in which the profile with the smallest distance to the decision

hyperplane h(x) = vTi xj − γi was selected.

Table 5.3 Models and their survey questions and estimation methods.

Mis- Estimation Survey
Model specifications Method Questions

Conjunctive Ignores choice Bayesian Consider (one profile),
screening stage, simples adaptive or not, adaptive questions

screening questions

Aspirational Ignores choice Adaptive soft- Consider (one profile),
screening stage (only) margin support or not, adaptive questions

vector machine

Ignore consideration Maximum Choose among
Multinomial logit and heterogeneity likelihood 3 or 4 alternatives,

or none; fixed questions

Ignore consideration Maximum Choose among
Latent-class logit and simplifies likelihood 3 or 4 alternatives,

heterogeneity or none; fixed questions
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5.3.3 Choice Models and Discrete Choice Surveys

Multinomial logit (MNL) and latent-class logit (LCL) serve as two representatives of the

compensatory choice models. Both models ignore consideration stage and can be estimated

from traditional discrete choice survey with Maximum likelihood method (see Table 5.3 for a

summary of model and survey properties). In the choice surveys, respondents were asked to

choose one profile, or none, from a set of alternatives. 25 sets of surveys used in this experiment

varied in the number of questions (from 10 to 35), the number of alternatives (3 and 4), and the

generation methods (SAS macros and Sawtooth software schemes). SAS macros generated ”D-

efficient” surveys [Kuhfeld 2010]. A ”D-efficient” survey consisted of multiple sub-surveys, and

each respondent was randomly assigned with one of these sub-surveys. Two types of Sawtooth’s

discrete choice survey are generated: a ”shortcut” survey and a ”random” survey [Saw 2013].

In the ”shortcut” scheme, each alternative profile is built by choosing attribute levels used least

frequently in previous profiles. If there are more than one least frequently used levels, the one

that has been used the least in the same question will be selected. In the ”random” scheme,

every level of the same attribute has equal chance to be assigned to the profile. Such structured

randomness in these two schemes enhance the level balance and level minimal overlap in the

questions [Huber and Zwerina 1996, Johnson et al. 2013]

Multinomial model

Multinomial logit model was one of the most established models in the maximum random

utility theoretic framework [Ben-Akiva and Lerman 1985a, McFadden 1974], with the choice

probability derived as:

PMNL
j =

expβTxj∑J
k=0 expβTxk

(5.4)

In the weighted additive utility βTxj , part-worths vector β is homogeneous across the popula-

tion and xj is an attribute-level coded (or called aspect coding) feature vector of option j. To

be consistent with survey setting, in options 0, · · · , J , with ”none” option is labeled as 0.
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Latent class logit model

Latent class logit model [Swait 1994, Greene 2001, Greene and Hensher 2003] captures

preference heterogeneity by sorting individuals into one of Q classes with probability αq. The

conditional choice probability of choosing option j given the sorted class q takes the logit

formula:

PLCLj|q =
expβTq xj∑J
k=0 expβTq xk

(5.5)

The likelihood for option j to be chosen is the sum over the product of latent class probability

and the conditional choice probability across all classes:

PLCLj =

Q∑
q=1

αq · PLCLj|q (5.6)

Both mulinomial model and latent class model are fitted via maximum likelihood method by

solving:

maximize

M∑
m=1

J∑
j=0

Nj,m logPModel
j,m (θ)

with respect to θ

subject topossibleconstraints

(5.7)

For the multinomial model related to Eqn.(5.4), the estimated coefficients are θ = β, for latent

class model related to Eqn.(5.5) and (5.6), θ = (α,βq) for q = 1, , Q. For both models, the

part-worths of the same attribute are constrained to have a zero sum. The latent class model

estimation, in addition, is also constrained to satisfy
∑Q

q=1 αq = 1.

5.3.4 Product Line Design

Suppose an automaker aims to design J distinct products (products with non-identical

engineering features) to maximize profits across all vehicles. With the brand fixed, a firm
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solves the following optimization problem:

maximize πf =
J∑
j=1

fP
Model
j (p,Y|f) · (p̂j − c(yj))

with respect to p = (p1, · · · , pJ),Y = (y1; · · · ; yJf )

subject to (pj ,yj) · · · (pk,yTj )T ≤ Ā− 1

for any (j, k) such that (j, k) ∈ {1, · · · , Jf} × {1, · · · , Jf} AND j 6= k

(5.8)

Here, pj is the binary level coded vector of price attribute and yj is the non-price attributes’

binary vector consistent with the levels in the survey experiment. p̂j represents the correspond-

ing numeric value mapped from pj . The profit is formulated as the product of the predicted

choice probability and markup. This study simplified the cost function to be constant. Sup-

pose, excluding the make feature, the number of attributes is A, the constraint in Eqn.(5.8)

serves to ensure the distinction between two products in a product line. The choice probability

PModel
j applied the estimation result of models described in Section 5.3.2 and 5.3.3. Our multi-

nomial model and latent class model directly provided choice probability formula. Lacking of

choice stage information, our subset-conjunctive and aspirational models assigned equal choice

probability to the products within the same consideration set. For a baseline comparison, the

case study also included a null model (a zero information logit model), which gives all the

alternatives equal choice probabilities regardless what features are in the designs. As the null

model merely generates random combinations of vehicle features. Its performance was based

on 100 design trials.

In this problem, the number of distinct product portfolios grows rapidly as the number of

products increases. A genetic algorithm (GA) was used to search for optimal attribute level

combinations. The genetic algorithm scheme is described as follows:

(1) Generate members: each member n is randomly assigned a binary coded genome X̄n =

(x̄1, · · · , x̄Jf ) where x̄j includes the binary coded price and other brand-excluded attributes.

(2) Compute fitness: for each member, compute the fitness using the objective formula in Eqn.

5.8.
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(3) Reproduce new generation: the probability of member n to be selected as a parent is

πn/
∑

k∈all membersπk
. When crossover takes place between a pair of parents, the parents will

switch at least one successively connected attributes. Mutation happens with probability

qmut, mutation site is randomly selected among any attribute of any product. For the

selected attribute, the current level will be replace by a different level.

(4) Check uniqueness: for each member, the product profiles in the product line are scanned

and any two members’ genomes are compared. If two profiles are found to have identical

non-price attributes, repairing will be performed by randomly mutate one attribute in one

of the profiles. After all possible pairs of profiles are checked, the scanning process is

started over again to make sure that the repaired profiles in the last check do not conflict

the uniqueness of the previously scanned profiles. This ”scan and repair” process will be

repeated until all the profiles in the product line are unique in their non-price attributes.

(5) Check convergence: convergence is determined by the improvement of the best fitness as

well as the average fitness of population. If both the improvement of best fitness and

average fitness of the population are sufficiently small to fall within a tolerance of 0.0001,

the iteration will terminated, otherwise the iteration will be back to step (2).

50 trials have been run with different initial population of size N = 50. Among these trials,

the solution with the highest objective value is reported.

5.3.5 Performance Measures

Predictive power

Relative likelihood (RL) quantifies the predictive power by measuring the best possible

likelihood of a model relative to the likelihood of the true distribution:

RL = (
M∏
m=1

(

Jm∏
j=0

(
PModel
j,m

P Truej,m

)P
True
j,m ))1/M (5.9)

In this formula, PModel
j,m represents the predicted choice probability of alternative j (with j = 0

labeling the none option) in question m, and P Truej,m represents the choice probability computed
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with the true behavior parameters. The higher value of relative likelihood indicates higher

predictive power. The simulation generated 25 sets of surveys to calibrate the multinomial

and latent class logit models coefficients. 25 new validation sets validated the predictive power

of each set of the estimated coefficients. The validation sets shared the same variety as the

calibration sets in the number of alternatives per question, the number of questions per survey,

and the survey generation methods. A zero information logit model (null model) also served

as a baseline comparison.

Feature commonality

One of the widely used metric to measure commonality of the product line is degree of

commonality index (DCI) [Collier 1981], which is implemented in our case as:

DCI =

∑J+d
k=J+1 φk

d
(5.10)

In the computation, each product is labeled as 1, · · · , J and distinct features are labeled

as J + 1, · · · , J + d, with J as the number of products in the product line (corresponding to

the end items in the original definition), and d is the number of distinct feature levels (referred

as component items in the original definition). φk is the number of immediate parents that

feature level k has. In our case, this metric reflects the average number of common products

that share a feature. For example, in a simple two products case in our context, see Figure 5.2,

both product 1 and 2 are standard sedans, one with 30 MPG and one with 35 MPG. Item 3 and

5 each has one immediate parent item, respectively end products labeled as item 1 and item 2.

For item 4, both item 1 and item 2 are its immediate parents. Thus, we have φ3 = 1,φ4 = 2,

φ5 = 1 with distinct feature number d = 3. The DCI in this example is (1+2+1)/3 = 4/3.With

this metric, a product line with totally identical features yields a DCI value of J , and the lowest

possible value is 1, when all the products have no feature in common.

Profitability

The evaluation distinguishes two types of profit - the profit predicted by the estimated

models (denoted as predicted profit), and the profit validated in the synthetic population
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#1 End Product #2 End Product

#3 Feature:
   30 MPG

#5 Feature:
   35 MPG

#4 Feature:
   Standard
      Sedan

Figure 5.2 A two-product example of computing degree of commonality index

(denoted as actual profit). Given an optimal design solution, the predicted profit is computed

as the objective function value in Eqn.(5.8), while the actual profit is computed using the

true behavior parameters. To detect whether a firm will actually achieve what it expects, we

quantify the fraction of actual profit that exceeds the predicted profit as:

%profit exceeded = 100 · ((profitactual − profitpredicted))/(profitpredicted) (5.11)

5.4 Results

This section compares the predictive power, design portfolios, and profitability of two con-

sideration models (conjunctive model and aspirational model) and two choice models (multi-

nomial logit model and latent class logit model). Each model is examined in two scenarios. In

Scenario I, the synthetic population uses subset-conjunctive screening, while in Scenario II, the

synthetic population uses aspirational screening.

5.4.1 Predictive Power

Figure 5.3 shows the relative likelihood in four estimated models across 25 validation sets.

The aspirational model has the highest predictive power and the smallest variations over the

validation sets even when the respondents do not use aspirational screening. This result verifies

the mathematical generality of the aspirational model. That is, the aspirational formula governs

the subset-conjunctive screening rules when the parameters take specific integers.
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The conjunctive model predicts better in Scenario I than in Scenario II. The explanation lies

within its over-stringent screening structure. The conjunctive model tolerates no unacceptable

attributes, while the synthetic respondents allow some unacceptable attributes. Thus, the con-

junctive model predicts the product considerations more conservatively. In scenario II, where

the respondents are more likely to allow unacceptable attributes, the conservative prediction

diverges even further from the observations.

Both the multinomial logit model and the latent class logit model approximate the con-

siderations better when the consumers use aspirational screening, which is observed in their

higher predictive power in Scenario II. This is reasonable because the respondents in Scenario

II evaluate the overall utility during screening, still allowing compensatory trade-offs among

the attributes.
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Figure 5.3 Predictive power measured by relative likelihood in 25 validation sets. The results
are grouped by the number of alternatives per question in the validation sets. The
solid center bars mark the mean over all estimates validated in all validation sets.
The shaded boxes indicate the maximum and minimum values.

5.4.2 Optimal Portfolios

Using different models leads to different optimal portfolios. The optimal portfolio of Ford is

reported as a representative case. Figure 5.4 and 5.5 depict the body styles, prices, powertrain,

number of cylinders, and fuel economy of the optimal portfolios.
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Design strategies

In scenario I (Figure 5.4), the optimal portfolio of the true behavior model covers all body

styles except hatchback and pickup truck. The product line also offers various price levels, mpg

levels and powertrains among the SUVs. In the same scenario, the portfolio of the conjunctive

model focuses sports cars and hatchbacks by offering multiple price levels. The aspirational

model has the widest coverage of body styles. Two choice models suggest similar body style

coverage but different focuses. Half of the products recommended by latent class logit model

are small hybrid SUVs. The multinomial logit model mainly focuses on standard sedans and

small SUVs, with all vehicles having the gasoline powertrain.

In scenario II (Figure 5.5), the true behavior model suggests all body styles except standard

sedan. Two compact sedans at two price levels are offered, and two crossovers with different

powertrains are offered. The conjunctive model and aspirational model have higher diversity of

body styles and mpg levels. In contrast, multinomial logit model suggests four hybrid full-size

SUVs, three of which share the same MPG, and latent class logit model recommends exclusively

SUVs.

In both scenarios, the product lines of consideration models have lower degree of common-

ality index than the choice models on average. This quantification result is consistent with the

representative optimal portfolios described above. That is, the portfolios of the consideration

models diverse in attribute combinations, while the portfolios of choice models tend to share

certain attributes, such as the gasoline powertrain of the multinomial logit model in Scenario

I, and the ”8 cyl engine & 35mpg” combinations of the latent class logit model in Scenario II.

Pricing strategies

The highest price level ($45K) dominants the optimal portfolios, due to the fact that as

price increases, the profit margin in Eqn.(5.8) increases faster than the decrease of the choice

probability. Two influential factors may drive the optimization process towards the highest

pricing level. First, if a simulated consumer does not strictly screen out the product at the

highest price level, then the optimal portfolios can still attract the consumer to consider the

pricy products by introducing other acceptable feature aspects. For example, when the sub-set
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conjunctive screening is used, even if a consumer may label $45K as ”unacceptable”, he/she

may still consider a product at $45K. The tolerance of high price is even more significant when

the consumer uses aspirational screening.

Second, if the fraction of consumers who strictly reject the highest price level is trivial in

the whole simulated population, then the optimal portfolios may prioritize the major fraction

that tolerates the highest price. Moreover, this experiment only involves ten products, which

is a relatively small number to cover a wide range of pricing levels. In this case, spreading the

product line on attributes such as body styles may benefit the profit more than varying price

levels, because the product line can satisfy more people who are compromised to pay more.

5.4.3 Profitability

Next, the actual profits of the designs produced by the estimated models are compared

to the actual profit of the true behavior model (denoted as ideal profit). Both consideration

models and choice models show robustness in achieving at least 80% of the ideal profit. In

Scenario I, both consideration models outperform the multinomial logit model. In Scenario II,

where the respondents use aspirational screening, the choice models have higher capability of

achieving profits.

The predictive power does not necessarily indicate profitability. However, the higher pre-

dictive power benefits the accuracy of profit predictions, since the error in profit predictions is

highly correlated to the error in market share predictions (see Figure 5.7). The aspirational

model has the most accurate prediction of profits and shares, which is consistent to its predictive

power presented in relative likelihood (shown in Figure 5.6).

Using the conjunctive model prevents over-predicting profit. The actual profit of the con-

junctive model designs achieves at least 30% higher than the prediction in Scenario II, while

all other models achieve at least 40% lower profit than their prediction in Scenario I, and

20% lower profit in Scenario II. These observations echo the conservative prediction of the

conjunctive model.
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5.5 Discussions

This study investigated the performance of consideration models and choice models in

product design. Our synthetic data simulation estimated consideration models and choice

models respectively from adaptive consideration surveys and discrete choice surveys. The

experiment further applied the estimated models to a single firm product line optimization

problem and compared the design outcomes.

The use of consideration models changed design decisions, reflecting on the attribute combi-

nations and the product line diversity. On the philosophy of selecting what consumer models to

use, product decision makers need to account for that the assumptions behind the models will

drive the data collecting methods towards different manners and trigger the consumer to give

different aspects of responses. Thus, different models capture and deliver different information

for design optimizations, and eventually lead to different design strategies.

On comparing profitability, our simulation identified two important aspects of evaluation

for product decision makers - the actual profit, and the discrepancy between the actual and

predicted profits. Despite the robustness in achieving actual profits, the choice models exposed

their weakness in profit prediction, i.e. expecting significantly higher profit than they actually

obtained. This weakness stems from their model assumption of expecting market shares from

the universal choice set rather than merely a subset of products. In contrast, the conjunctive

model may miss some highly profitable attribute combinations due to its stringent screening

rule structure. However, the conservative prediction of the conjunctive model prevents over-

expecting profit. Product decision makers should balance the strength and weakness of these

models, for example, valuing not only the compensatory trade-offs information during profit

optimizations, but also the non-compensatory screening information in avoiding over-ambitious

planning.

The simulation identified the positive correlation relationship between the predictive power

in the validation surveys and their profitability on average. However, the simulation signaled

the product decision makers to consider other evaluation perspectives when selecting what

models to use. Because the predictive power in the validation surveys is unable to indicate the

design strategies suggested by the models and the impacts of these strategies to a firm?s further
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practices. This limitation arouses the challenge of finding metrics to signal and quantify these

strategic impacts outside of a synthetic simulation framework.

The implications of this study should account for the simplistic engineering models and the

randomly sampled synthetic consideration rules. More complex engineering constraints and

cost functions may reshape the optimal portfolio, as the engineering constraints may reduce

the feasible design space and the cost functions may counteract the choice probability in some

regions of the design space. Despite this limitation, this study provides a comparison reference

for future research to distinguish the impact of complex engineering models.

5.6 Conclusions

This study investigated the performance of consideration models and choice models on

product line design strategies. The simulation tailored survey instruments for particular models,

allowing us to comment on how the model assumptions sequentially resulted in differences in

survey designs, response collections, and product designs. The findings suggest that product

decision makers question the assumptions behind the consumer models deployed during the

product development and expand the performance evaluation from the traditional predictive

power to the potential strategic impacts.



92

Sports
 C

ar

H
atc

hback

C
om

pact S
edan

C
ro

ssover

Sta
ndard

 S
edan

Sm
all 

SU
V

Full-
siz

e S
U

V

Pic
kup T

ru
ck

M
in

iv
an

$32K

35

35

35

35

302530

20 25

35

$37K
$45K

20

35

30

25

15

35

30

20

25

35

35

20

15

1525

3035

30

25

20

35

20

2525
30

25

2025

30

25

2.5

3

3.5

4

4.5

D
eg

re
e 

of
 

Co
m

m
on

al
ity

 In
de

x

Conjunctive Aspirational
Latent class

 logit
Multinomial

 logitTrue behavior

$32K
$37K

$45K
$32K

$37K
$45K

$32K
$37K

$45K

Scenario I: Respondents use subset-conjunctive screening

Gasoline Hybrid mpgmpgPowertrain: 4 CylCylinders: 6 Cyl 8 Cyl

15

25

15

20
20

20
20

15

35

30

$32K
$37K

$45K

Figure 5.4 The degree of commonality indices (DCI) of the optimal portfolios designed using
different models in Scenario I and the corresponding representative optimal port-
folios of Ford. The central bar represents the mean value of DCI across 21 brands.
The shaded box represents the minimum and maximum values.
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CHAPTER 6. ENHANCING HYBRID VEHICLE ADOPTIONS WITH

CONSIDERATION MODELS

6.1 Introduction

Hybrid vehicles increasingly capture attentions in vehicle markets due to their fuel efficiency

and advantages in emission reduction. Since the first surge of sales in 2005 when governmental

incentives such as tax credits, sales tax waiver and access to high-occupancy vehicle lane ap-

plied, the hybrid vehicles still experience slow growth in the light-duty vehicle market. Making

design decisions of hybrid vehicle involves understanding what factors motivate consumers to

consider a hybrid vehicles. Consumer surveys among hybrid users [Ozaki and Sevastyanova

2011] identified several important factors that influenced the consumers: the performance re-

lated to driving experience, the fashion appearance or space utility, the cost benefits from

fuel saving or government incentives, the brand/manufacture’s reliability and trust, the aware-

ness of environment impact, the interest of new technology, and the social orientation towards

compliance with the value of a community.

These factors have different implementations in hybrid design strategies. For consumers

motivated by factors such as the awareness of environment impact, the interest of new technol-

ogy, and social orientation, the feature ”hybrid powertrain” directly drives the acceptance of

the hybrid products. For those who concern more on performance or financial benefits, enhanc-

ing hybrid vehicle adoptions requires accounting for whether the hybrid powertrain conflicts

other ”must-have” features. For example, if a group of households specifically look for family

traveling vehicles, then placing a hybrid powertrain in a two-seat car will not win the purchases

of this group, even if fuel economy may also be of their interest. Or, if a household plans to

buy a hybrid vehicle, merely aiming at financial savings from lower fuel cost and tax returns,

but it turns out that the pricing of a hybrid counteract the financial benefit they perceived for
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the future, then the hybrid product may also encounter failure in this group of households.

Consideration models have advantages in making analysis in this context. Explicitly mod-

eling consideration sets allows identifying the acceptance of the attributes and thus placing

hybrid vehicle design with optimal feature combination to target specific population groups.

Traditional compensatory models may reflect the acceptance of the hybrid powertrain feature

by modeling the tradeoffs between hybrid powertrain and other features. However, using con-

sideration models has benefit of analyzing the impact of a newly introduced hybrid product to

particular groups of consumers. Also, consideration models specifically identify the competi-

tors rather than simplifying the substitution pattern by assuming that a product universally

competing with all available products.

This chapter demonstrates the use of consideration models in a hybrid vehicle design prob-

lem with an simulation example. The example shows how a firm’s design maximizes the con-

sideration of the hybrid vehicles of its own brand and detects the impact of such product to

both the firm and its competitors. In the perspective of policy makers, the example illustrates

how consideration models identify the population who cannot be influenced by a firm’s design

activity and simulate the effect if a policy can use persuasive informative campaigns to enhance

the hybrid powertrain acceptance directly. This chapter is organized as follows. Section 6.2

describes the configuration of the simulation example, including the construction of competing

market, the consideration models applied, and the optimization problem of consideration max-

imization. Section 6.3 presents the results, followed by Section 6.4 discussions and Section 6.5

conclusions.

6.2 Maximizing Consideration in the Competing Market

6.2.1 Synthetic Market

To investigate how the consideration information will impact the design strategies of a

firm, the simulation built a synthetic market with competing brands based on real U.S. market

data - with the vehicle feature data collected from WardsAuto (U.S. Car and Light Truck

Specifications and Prices, ’14 Model Year), and the monthly sales data collected from Auto

News database (U.S. Total Vehicle Sales by Make, Jan.2010 - Mar.2014). The synthetic market
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included 18 brands, in total 131 series that were still offered in 2014, with particular focus on

vehicle series with sales over 10,000 sales during 2013 & 2014, and vehicles that were newly

offered during 2013 & 2014. The vehicle feature information also combined crash rating from the

test report of National Highway Traffic Safety Administration’s 5-Star Safety Ratings Program

(NHTSA Vehicle Crash Test Database), which evaluated crash rating on the overall safety

performance on frontal crash, side crash and rollover tests. Quality ratings were summarized

through Initial Quality Study conducted by J.D. Power Research (J.D.Power 2014), which

measured new vehicles quality after the first 90 days of ownership.

6.2.2 Consideration Models

The exploration continues the interest of two consideration behaviors studied in Chapter

5 - subset-conjunctive behavior and aspirational behavior. In subset-conjunctive screening, an

individual will consider a product if the number of acceptable attributes exceeds a criteria

number, which yields the consideration set expression:

Ci(X) = {j : δTi xj ≥ N}, N = 1, · · · , A (6.1)

where A is the total number of attributes of a profile. For some a binary consideration rule

δ. An element of δ is 1 if, and only if, that attribute-level is acceptable. When N = A,

it correspondents to the conjunctive model, which means that all attributes of a considered

profile must have acceptable levels. When N = 1, the inequality is satisfied if, and only if, at

least one attribute has an acceptable levels, giving a disjunctive screening rule. The value of

N between these two extremes gives a subset conjunctive rule. In aspirational screening, an

individual will consider a product if the holistic utility of the product exceeds some aspirational

level, with the consideration set expressed as:

Ci(X) = {j : vTi xj ≥ γi} (6.2)

for some ”part-worths” v and an aspiration level γ. Given the goal focusing the impact of the

models rather than the estimation methods and the influence of bias or mis-specification in the
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estimations, the simulation inherits the consideration behavior parameters used in generating

the synthetic population in Chapter 5 (see sampling process described in Section 5.3.1).

6.2.3 Maximize the Consideration of Hybrid Vehicles

Suppose a firm is planning a ”remove add” strategy - remove one vehicle from its existing

product line and add one newly designed vehicle. The firm aims at maximizing the proportion

of hybrids it owns in a consideration set averaging over the sampled population. The firm

solves the following optimization problem:

max(
1

I
)

I∑
i

Number of hybrid vehicles considered by individual i AND offered by the firm

Total number of vehicles considered by individual i

(6.3)

Ford is used as a case study. The removals are enumerated over each vehicle in the existing

product line. After removing a vehicle, the optimization problem of Eqn.6.3 is solved. The

”remove & add” strategy with the highest objective value from these removal enumerations

will be selected as the optimal strategy.

6.3 Results

6.3.1 Impact of the Optimal Strategy

In the case of subset-conjunctive screening, the optimal strategy is removing Focus Titanium

from the existing product line and at the same time introducing a hatchback at $17k, with

30mpg, and both quality and crash rating as 4, see Table 6.1. Figure 6.1 shows how the

considerations of Ford and hybrid vehicles change after introducing the optimal strategy. The

individuals are sorted into five categories: those who consider Ford and do not consider any

hybrids (represented with Region A), those who consider hybrids and do not consider any

Ford vehicles (Region B), those who consider both Ford non-hybrid vehicles and hybrids of

other brands but do not consider Ford hybrids (Region C), those who consider Ford hybrids

(Region D), and those who consider neither Ford vehicles nor hybrids (Region E). The new

designed hybrid vehicle expands the Ford hybrid population by impacting four categories of

individuals. First, the new product attracts the Ford considerers - for 7 out of 45 Ford non-
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hybrid individuals, the new Ford hybrid enters their consideration sets (see Region Da). Second,

the new product increases the consideration of Ford among the hybrids considerers - for 38

individuals who consider hybrid but do not consider any Ford products, there are 19 of them

include this new Ford hybrid in their consideration sets (See Region Db). Third, the new design

significantly impacts those who consider Ford and also consider hybrids but do not consider

any Ford hybrid - 38 out of 113 of those individuals now consider this new vehicle. Fourth,

previously there are 20 individuals who consider neither Ford nor hybrids, but now 3 of them

consider the new Ford hybrid.

There are 22 individuals who previously do not consider Ford, but due to this new hybrid

product, now their consideration sets include a Ford product (Region Db and De in Figure 6.1).

Interestingly, 14 out of these 22 individuals even have the brand ”Ford” as an unacceptable

product, thus the new hybrid vehicle is actually taking the advantage of the subset-conjunctive

behavior to make them consider a Ford. The implication for this result is that, for consumers

who have hybrid powertrain as an acceptable feature, a company is able to not only promote

hybrid among its old customers, but also benefit the brand consideration with an optimally

designed hybrid vehicle.

In the case of aspirational screening behavior simulation, the optimization results in a

different strategy - removing Escape SE from the existing product line and adding a hybrid

pickup truck at price level of $22k with 20 mpg, see Table 6.2. Figure 6.2 shows the impact

of the optimal strategy in the aspirational screening population. The newly added vehicle

gains the consideration of 44 individuals who did not consider Ford hybrid even though they

considered both Ford and hybrids of other brands. This impact is similar as in the subset-

conjunctive behavior. In terms of attracting Ford non-hybrid customers, the new design has

slightly stronger impact than that in the subset-conjunctive population - attracting about 20%

of those customers compared to attracting 15% in the subset-conjunctive population. On the

other hand, the new design has a weaker impact to those who consider hybrids but did not

consider any Ford vehicles - attracting 25% of them compared to 50% in the subset-conjunctive

population.



100

Table 6.1 The optimal removed and added vehicle portfolios in the consideration maximiza-
tion problems with subset-conjunctive screening population

Quality Crash
Body Style Price Level Cylinder Powertrain MPG Rating Rating

Removed Hatchback $25K 4 Gas 36 3 4
Added Hatchback $17-22K 8 Hybrid 30-35 3 4

Table 6.2 The optimal removed and added vehicle portfolios in the consideration maximiza-
tion problems with aspirational screening population

Quality Crash
Body Style Price Level Cylinder Powertrain MPG Rating Rating

Removed Small SUV $28K 4 Gas 22 3 4
Added Pickup Truck $22-27K 6 Hybrid 20-25 5 3

6.3.2 Substitution Pattern

Figure 6.3 presents the statistics of the changes of the consideration set sizes in the popula-

tion. Potential positive impact of hybrid sales comes in three different ways: (1) for individuals

who already had hybrids in their consideration sets, remove one gasoline vehicle from their

consideration sets (labeled as ”only gas removed”); (2) for those whose consideration sets did

not include the removed gasoline vehicle, add the new hybrid vehicle into their consideration

sets (labeled as ”only hybrid added”); (3) both remove an gasoline vehicle and add a new

hybrid (labeled as ”gas replaced with hybrid”). All these three changes can lead to increasing

the proportion of hybrids in the consideration sets, which can potentially increase the purchase

of hybrids, not necessarily benefiting certain brands’ hybrids, but growing the sum of choice

probability of hybrids as a whole category. In both subset-conjunctive screening population

and aspirational screening population, the ”remove add” strategies are able to impact over

57% of the population in the three ways stated above. There remains approximately 43% of

the population whose consideration sets either (1) do not change, or (2) did not include any

hybrids thus removing a gasoline vehicle does not impact the sales of hybrids from them.

The ”remove add” strategy impacts not only Ford’s product line but also those of other

brands. In the subset-conjunctive screening case, where Focus Titanium is removed, the com-

petitor products, such as Sonic LTZ offered by Chevrolet, will potentially benefits from the
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removal of Focus Titanium among 46 consumers who previously consider both of these vehi-

cles. That’s because those 46 consumers will have a higher chance to purchase a Sonic. On

the other hand, Sonic LTZ may loose sales among 48 people who previously consider it. The

reason is that the new designed vehicle enters the consideration sets of these people, which will

distract the choice probabilities of the products in the same consideration sets. Some products

may be more significantly affected by the new designed product rather than benefit from the

removal of its competitor. Kia Rio LX will have around 36% of its previous considerers dis-

tracted by the new hybrid hatchback, while only around 14% will increase choice probability

of Rio LX because the removal of the old hatchback. In the simulation, except hybrids offered

by BMW, existing hybrids in the market generally have at least as twice as many consider-

ers who are distracted by the new hybrid than those who have increased choice probabilities

due to the removed product. As for Ford C-max series, there are around four times as many

considerers who are distracted than increase purchase chances. Thus, Ford needs to be aware

of the competition between its own existing hybrids series and the newly introduced hybrid

product. In the aspirational screening case, the removal of Escape SE benefits competitors,

such as Hyundai Sante Fe, Kia Sedona EX, Nissan Rogue, and Volkswage Touareg, in a way

that there are more individuals who have higher chance to choose these competing products

because of the removal than those who have lower chance to choose these products because of

added new vehicle.

6.3.3 Changing the Consideration Rules

The optimization problem above is solved in the condition that the screening rules of the

population are unchanged. For the results shown in Section 6.3, we are able to see the impact

of the firm activity alone. In the subset-conjunctive screening case, it is observed that, before

Ford offers its optimal new hybrid, there are 65 sampled individuals (13% of the population)

who do not consider hybrids of any brands (see Region A and E in 6.1). And Ford’s new hybrid

vehicle turns 10 of those people to start considering a hybrid (see Region Da and De in Figure

6.1). In a policy maker’s perspective, there are still 55 individuals (11% of the population)

who still reject a hybrid and are not attracted by this new designed hybrid (see Region A’ and
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E’ in Figure 6.1). Thus, we investigate what if the policy makers conduct campaigns that can

change consumers’ screening rules. For the proportion of population who cannot be influenced

by the firms optimal design activity, we aim to see the effects of changing their consideration

rules.

Specifically, for all these 55 people, their screenings on the feature ”hybrid” are switched

from ”rejected” to ”accepted”, as if ideally there are some campaigns successfully persuade

them to regard hybrid as an acceptable feature. In this case, 20 of them will consider at least

one hybrid in the existing market. However there still remain 35 of them who reject any hybrids

in the market. We speculate two reasons for this. First, they are more picky consumers. On

average, they screen out 95% of products in the market, while others screen out around 70%.

Therefore the hybrids available in the market cannot satisfy them on other features even if

hybrid is an acceptable feature. Second, their screening rules may contradict those of many

other individuals. Thus, satisfying their screening may results in trading off the consideration

of majority of others, which could explain why Ford is not able to capture this proportion of

population with its optimal product.

6.4 Discussions

As in product planning, consideration model provides another perspective in optimization.

A firm is faced with different optimization objective when using consideration information.

Different from the compensatory models, which views a product potentially competing with all

available products in the whole market, consideration optimization drives the design process

towards specific customer groups. Our simulation demonstrates that consideration models

enable the observation that which customers are attracted or distracted from what products

by investigating the changes of the consideration sets. This design perspective is important

in two ways. First, the changes of consideration sets explicitly show how the change of some

attribute(s) can pull the adoption on other attribute(s). In this simulation, for example, the

new designed hybrid vehicle of Ford gains the consideration from the group that considers

a hybrid but never considers a Ford. Second, the consideration sets specifically identify the

competing products. The impact of the new product or removed product to market is tracable
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by investigating which products are in the same consideration sets of the new product.

In the policy-making perspective, the simulation illustrates that tracing the consideration

pattern can identify the segment of population that cannot be affected by the firm’s optimal

strategy. This provides better targets for future campaigns to change the consideration rules of

particular groups. Further research should be conducted to quantify and compare the influence

on hybrid vehicle adoption exerted by changing consideration rules and that by optimizing

products.

The limitation of the optimization framework in this study is that the simulation has not

included the preference trade-offs in the choice stage decision. Thus, the profitability can

not be assessed as an evaluation of a design as in the traditional profit-oriented optimization

framework. This limitation, however, reflect the reality that real world’s product development

often place detail pricing and marketing strategies in a different stage that the design decisions

of technology or physical features. In this perspective, the process of maximizing consideration

is reasonable and practical for making design decisions such as whether a firm needs to invest

on energy efficient technology in a relatively long term planning. For example, a firm may

not be able to predict the profitability but can prevent product being excluded as a result of

consumers’ budgets. We call for further research that can fill this gap between the consideration

maximization and the final design/pricing decision refinement related to profit analysis.

6.5 Conclusions

This chapter has explored the usage of consideration models in a product design problem

with the goal of enhancing hybrid vehicle adoptions. The optimization example demonstrates

that analyzing the memberships of the consideration sets and the changes of the consideration

sets provides insights to brand promotion opportunity and competition pattern related to

specific product features and specific consumer groups. The simulation also shows the potential

for policy makers to target specific consumer groups to increase hybrid vehicles adoption by

influencing their consideration rules.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This dissertation offers three major contributions to the application of consideration models

in design engineering: providing numerical methods to incorporate consideration models into

the design optimization framework; identifying the impact of consideration models to design

decisions in terms of design features and strategic values; exploring new analysis approaches

regarding consideration maximization.

Chapter 3 provides the numerical tools to handle the challenge of discontinuity when apply-

ing the consider-then-choose models in design optimization problems. The chapter investigates

two classes of methods - methods based on nonlinear programming (NLP) and methods based

on genetic algorithms (GA). In the NLP methods, smoothing techniques and complementarity

constraints are explored to enable the derivatives in NLP. In the genetic algorithms, where the

engineering quality constraints increases the difficulty in balancing between optimality and fea-

sibility, penalized GA and constrained GA are implemented to ensure feasibility. The chapter

evaluates different methods on optimality, feasibility, and computation burden.

Chapter 4 and 5 utilize synthetic experiments to simulate the successive processes of esti-

mating the consumer models and applying the consumer models in design. The experiments

provide insights into the consequences of mis-specifying consideration behaviors. Two chap-

ters focus on two different sources of data. In Chapter 4, market based revealed preference

data are used. Synthetic markets are generated where purchase activities with consideration

behaviors are simulated. Four models (multinomial logit, random coefficient logit, nested logit

and consider-then-choose) are compared in the their predictive power, design decision and prof-

itability. The experiment reveals that modeling considerations have benefits in achieving higher

decision accuracy and profitability, especially under the small-data condition.
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Chapter 5 focuses on survey based stated preference data. Unlike in Chapter 4 where mis-

specified models are estimated from the same set of market based data, this chapter takes

into account that different assumptions of models actually lead to different data collecting and

estimating processes. Therefore two types of survey are investigated, the one designed to cap-

ture the consideration information (adaptive consideration experiment) and the other designed

to capture the choice information (traditional discrete choice experiment). The simulation

has found that using consideration models increases the product line diversity and prevents

over-predicting profits.

Chapter 6 conducts an explorational case study of hybrid vehicle adoption to investigate

new analysis approaches based on consideration models. The case study demonstrates that

a firm can use the consideration information to observe how the new product will penetrate

the consideration sets of different categories of consumers. The example also illustrates how

policy makers can identify the proportion of consumers whose consideration of hybrids cannot

be influenced by the design activity but can be changed if campaigns exist to persuade them

to accept the hybrid powertrain.

In the simulation experiments, the model comparisons do not argue for an absolute best

model for designers to use, but enrich the field of design engineering by introducing consid-

eration models and their important informational role in design decisions. In our findings,

explicitly modeling consideration changes designs and maintains robustness in profitability.

Strategic value of a model, such as profitability, is not necessarily consistent with the predic-

tive power of the model. This finding should bring cautions to researchers when evaluating

consumer models in their application, since outside of the synthetic experiment, predictive

power is often the only indicator used in model selection. As a future direction on this issue,

we advocate for various perspectives and metrics analyzing the application value of consumer

models.

The study allows us to comment on model complexity. Model complexity does not neces-

sarily imply higher benefit in design application. This conclusion comes in several perspectives.

First, increasing the data cannot guarantee the increase of estimation accuracy due to the ex-

istence of mis-specification. The mis-specification influences not only the estimation process
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but also the data collecting process. Second, models with simple structure may still capture

the essential information needed to make good design decisions. Moreover, simplified model

structure potentially reduces the quantity of data and computation burden during estimation.

7.2 Open Questions

In Chapter 4, the simulation has simplified the engineering models of the cost and perfor-

mance constraints. The simulation Chapter 5 has not considered the influence of engineering

constraints. Whether engineering models will significantly change the impact of consideration

models still need further validation, since engineering constraints will reshape the feasible space

of the design optimization problem. One possibility is that, if engineering constraints or cost

models strongly restrict the profitable and feasible design space, the optimal solutions will

be dominated by the engineering constraints instead of by the consumer models. Thus, the

optimal solutions may share higher similarity even using different consumer models.

Further research questions arise regarding how compensatory models and consideration

models deliver information. For compensatory models, information is presented as aggregate

preferences, even if the data are collected on an individual level. For example, logit model

with the assumption of homogeneous preference uses the same taste coefficients to aggregately

represent a population. The latent class model represents heterogeneity by sorting consumers

into different segments, but the distribution of the latent class membership is still modeled in an

aggregate manner. On the other hand, the conjunctive model and the aspirational model deliver

individual specific information by explicitly describing the screening rules each individual uses.

It remains an open question whether it has benefits to abstract information from individual-

specific screening rules and translate the individual-specific information into an aggregate style

model before the design application. For example, when the number of individuals become

large, it is possible to categorize major types of consumers to determine market segmentations

before designing the products targeting for each segment.

The illustrative case in Chapter 6 discusses the opportunity of directly encouraging the

acceptance of hybrid powertrain in order to increase the consideration of hybrid vehicles. The

discussion serves to arouse similar strategic analysis for pro-environment products. Further
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study is needed to quantify and compare the effectiveness of structural and informational

strategies on the acceptance of these products. For example, the effectiveness comparison can

be based on the proportion of population that can be attracted to the products via design

& pricing activities versus the proportion that can be persuaded to consider the products by

directly making the consumers to accept the pro-environment features. Relevant cost analysis

on these strategies should be also conducted. For example, which strategy would cost more

given the same level of impact - regulating/compensating the product manufactures, financially

stimulating the consumers, or organizing informational program to psychologically change the

consumers’ acceptance?

The complexity of consideration rules deserves further investigation. The sampling of syn-

thetic population in the simulation has not fully reflected consideration rules in real life. The

distribution of the acceptance on particular features, and the correlation of the acceptance have

not been taken into account. For example, there may exist that the rejection of low mpg re-

lates to the acceptance of hybrid. More realistic consideration rules can enable more conclusive

findings and provide practical guidances for vehicle design and energy policy in the future.
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