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ABSTRACT

Solid models traditionally use boundary-representation (B-rep) to define and model their

geometry. However, performing modeling operations such as Boolean operations or computing

point membership classification with B-rep is computationally intensive, since B-reps do not

have volumetric information. Voxelized representations, on the other hand, can be extended

to include volumetric information of solid models. However, in order to use voxelized repre-

sentations for solid modeling, efficient methods for voxelizing a B-rep solid model needs to be

developed. In this thesis, GPU-accelerated methods are presented for creating and rendering a

multi-level voxelization of a solid model that can be used along with the existing B-rep for mod-

eling operations. Two GPU-accelerated algorithms are described; one for creating a multi-level

voxelization given a B-rep of a solid model and another for ray casting to render the multi-level

voxelization of the solid model. Compact and flat data structures are described that can be

used to store the multi-level voxelization data and can be efficiently retrieved in parallel us-

ing GPU-algorithms for rendering and modeling operations. The GPU-accelerated multi-level

voxelization method can generate models with an effective voxel count of up to 8 billion voxels.

In addition, the GPU voxelization algorithm is more than 40x faster than the CPU imple-

mentation in generating the voxelization. Finally, we outline a few applications for the hybrid

representation, which include fast point-membership classification, volume computation, and

collision detection.
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CHAPTER 1. INTRODUCTION

Traditional solid modeling makes use of boundary-representation (B-rep) to define and

model solid geometry [Shareef and Yagel, 1995]. Even though B-rep is ideally suited for ren-

dering using rasterization, performing modeling operations such as Boolean operations or com-

puting point membership classification require complex geometric algorithms [Requicha and

Voelcker, 1985]. In addition, several topological checks need to be performed with the B-

rep data structure to ensure the validity of the B-rep solid model [Bajaj and Schikore, 1996].

Volume-based representations, such as voxel representation or distance fields, provide an alter-

native to B-rep to represent the solid model [Shareef and Yagel, 1995]. However, converting a

B-rep to a voxel representation is computationally intensive. In addition, converting the voxel

representation back to B-rep may lead to many small triangles that have to be edited to get a

B-rep that is close to the original solid model [Tsuzuki et al., 2007]. In this thesis, we propose

a hybrid B-rep and voxel representation, where both representations are stored simultaneously.

This allows for the use of the representation that is better suited for a particular application.

However, storing both representations require the fast regeneration of the voxelized model after

any change to the B-rep model. We have developed a multi-level voxelization algorithm that

is accelerated by the GPU to perform this compute-intensive operation.

Another requirement for an integrated representation is the voxel representation needs to

be fine enough to capture small details in the B-rep solid model. However, an uniformly fine

voxelized representation necessitates a large memory usage, making it impractical for mod-

eling applications. Traditional CPU-based volume representations make use of hierarchical

data structures such as octree [Grimm et al., 2004] to perform selective refinement around the

boundary of the solid model and ultimately reduce memory usage. These octree data structures

are usually generated using recursive algorithms. However, these recursive algorithms are not
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(a) B-rep model (b) Voxelization (c) Multi-level voxelization

 

(d) Volume rendering (e) Surface rendering

Figure 1.1: Multi-level voxelization and direct rendering of voxel models.

suited for efficient parallelization using the SIMD GPU architecture. To make the hierarchical

data-structure efficient for GPU-accelerated algorithms, we make use of a multi-level voxeliza-

tion. Each level in our multi-level voxelization consists of an user-defined number of voxels in

each direction (O(10) per direction) that is significantly higher than the 2 voxels per direction

in an octree data structure. This allows for a fine voxelization of the solid model with only two

levels for many practical applications.

Traditional voxel representations that are directly generated using CT scans store a density

value for each voxel location indicating the density of the actual object. However, B-rep

solid models do not have any volumetric information and hence can be assumed to be of

uniform density. This can be exploited in generating a voxelized model by using a single

binary digit to represent the occupancy of material in a voxel. This reduces the memory

usage of the voxelized representation and can lead to large dense voxelized representations.

This was exploited previously by researchers to encode the voxel grids using a compact binary
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representation [Dong et al., 2004; Zhang et al., 2007; Eisemann and Décoret, 2008]. In this

thesis, we extend the voxelization to store not only the occupancy information, but also encode

the pointers to the original B-rep surfaces and triangles in the voxel. This allows for the use of

the voxelized representation to store additional information such as surface normals, which can

be used to create renderings of the model that are close to the raster rendering of the original

B-rep.

With the advent of direct GPU programming capability (CUDA and OpenCL), newer

voxelization methods make use of data parallel algorithms, which take advantage of direct

GPU memory write access to perform the voxelization. This allows the generation of an octree

voxelized representation on the GPU by first voxelizing only the surface of a model and then use

occupancy propagation methods to fill the interior [Schwarz and Seidel, 2010]. However, these

methods do not take advantage of the fast hardware rasterizer on the GPU that provides efficient

ray-triangle intersection tests. There has been recent research on developing an hardware

pipeline for voxelization [Pantaleoni, 2011], but it requires custom access to the GPU hardware.

Our method integrates the data-parallel approaches while also utilizing the hardware rasterizer

to perform the ray-triangle intersection test by directly rendering the triangles and making use

of the stencil buffer to count the intersections. This allows the better utilization of the GPU

hardware in performing the voxelization. In addition, we extend this method to efficiently

perform multi-level voxelization that is better suited for the rendering pipeline, than using

traditional octree representation.

The multi-level voxelization can be used to accelerate several solid modeling operations that

can be computationally inefficient with B-reps. One such computation is point-membership

classification (PMC), which identifies whether a given point in 3D space is inside an object

or not. Traditionally this is an O(n) operation, where n is the number of triangles. This is

further complicated in B-reps made up of spline surfaces. Using the multi-level voxelization

with our flat data structures reduces it to a O(1) operation, with 2 ∗ k− 1 address lookups for

level k voxelization. Another application of multi-level voxelization is fast collision detection.

The voxels can be considered as oriented bounding boxes (OBBs) to perform intersection tests.

These tests are data parallel and hence, can also be accelerated using the GPU.



4

In this thesis, we have developed GPU-accelerated methods to create and render a multi-

level voxelization of a solid model, which can be simultaneously used with the existing boundary-

representation for solid modeling operations. Our main contributions include:

• A GPU-accelerated method to create a multi-level voxelization given a boundary rep-

resentation of a solid model. This method can generate a fine voxelization of both the

boundary and the interior of the solid model more than 100x faster than existing CPU-

based ray intersection methods.

• Flat storage data structures that can be used to efficiently store the multi-level voxeliza-

tion data on the GPU for efficient retrieval for solid modeling applications.

• A GPU-accelerated ray casting method to render the multi-level voxelization of the solid

model. This method can perform volume rendering of solid models at more than 30fps

in full HD resolution (1920× 1080).

• Augmented voxel data structure to store the surface normals of solid models. The surface

normals can be used to interactively render the surfaces of the voxelized model with

realistic lighting.

• Application of the multi-level voxelization for fast point-membership classification and

GPU-accelerated collision detection.

This thesis is arranged as follows. We briefly describe some of the background and other

work related to voxelization and ray casting in Chapter 2. We then explain our GPU-accelerated

algorithm to construct the multi-level voxelization in Chapter 3. We describe our GPU-based

ray-casting approach to render the volume and surface of a solid model in Chapter 4. We

outline some of the solid modeling operations that can be accelerated by using the multi-level

voxelization in Chapter 6. Finally, we provide the computational timing results for generating

and rendering the multi-level voxelization in Chapter 5.
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CHAPTER 2. BACKGROUND AND RELATED WORK

Voxelized models are more effective than B-reps in representing volume data. For example,

using a voxel-based representation for 3D Magnetic Resonance Image (MRI) scans, will allow

the information about internal structures to be maintained [Gibson, 1995]. Since the voxel

representation contains information about the interior of the solid model, they can be modified

for simulation applications to encode the material properties of the volume element. This is

especially useful in using CT or MR images to construct voxel models that can be directly used

in simulations [Rank et al., 2012].

In addition to the density information, the voxelized representation can be extended to

hold multiple elements of data. An occupancy map is used to organize the voxels [Gibson,

1995]; it consists of a collection of pointers that have memory address location of a voxel

location. These addresses will either be a null pointer or a voxel data structure. The voxel

data structure will hold the information about the solid model, for example, color, material,

opacity, etc. To initialize an occupancy map, the voxel addresses are stored based on the

voxel positions relative to the object space. In our implementation we make use of a flat data

structure to store the occupancy map. This data structure consists of unrolling the 3D voxels

first along the x-direction, followed by y- and z-direction, sequentially.

Rasterization can be used for volume rendering of voxel models; however, the voxels must

be rendered in back-to-front order with transparencies correctly applied. Li et al. [2003] make

use of a volumetric partitioning method, where objects are stored in separate convex volumes,

and the final image can be made by compositing these objects. However, care must be taken

in rasterization-based methods to prevent z-fighting of adjacent voxels while rendering.

One of the more common ways to visualize voxelized data is to use ray-casting. Parallel

rays along each rendering pixel location are sent from the camera towards the bounding-box
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of object and intersections with the bounding-box are tracked using the parametric values of

the ray [Marques et al., 2009]. For rendering voxelized representations, the voxels are sampled

periodically along the ray and composited to generate the final pixel color. Ray-casting can

be implemented with the GPU due to the data parallel nature of the ray-casting algorithm.

In addition, the dataset can be stored in a 3D texture that allows for smooth interpolation of

density values [Hadwiger et al., 2005]. However, using 3D textures for multi-level voxelization

becomes tedious since a new 3D texture needs to be generated for each of the fine level voxels.

In addition, there exists a limit on the maximum number of textures that can be simultaneously

bound on the GPU (O(32), that limits the voxelization. Hence, we make use of a flat data

structure for the voxelization.

Certain physical interactions between solid models such as collision detection can be per-

formed efficiently using voxelized representations. There have been previous research on using

GPU-accelerated algorithms for handling collision detection in voxelized models [Chen et al.,

2004]. We show an application of using our multi-level voxelization to perform collision detec-

tion. In our approach the collision detection is reduced to performing overlap between oriented

bounding-boxes (OBBs) that can be efficiently performed in parallel using the GPU.

Point membership classification (PMC) consists of classifying whether a point in 3D space

lies inside or outside an object. PMC is considered as one of the core modeling operations

in solid modeling [Requicha and Rossignac, 1992]. One of the standard PMC tests for B-rep

consists of counting the number of intersections between a ray starting from the PMC test

point and the object boundary [Tilove, 1980]. We make use of the PMC test to classify each

voxel to be inside or outside the object. Once the voxelized model is generated, it can be used

to accelerate the PMC test of the object by testing any new point against the voxelization

instead of the B-rep model.
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CHAPTER 3. CONSTRUCTING MULTI-LEVEL VOXELIZATION

In this chapter, we describe our new GPU-accelerated algorithm to create a multi-level vox-

elization of a B-rep solid model. Figure 3.1 shows an overview of the algorithm for creating the

multi-level voxelization. In our implementation, the B-rep solid model is first finely tessellated

to a set of triangles using a solid modeling kernel (such as ACIS). However, the method can be

extended to B-reps consisting of spline surfaces (such as NURBS).

Algorithm Overview

To create a multi-level voxelization, we construct a grid of voxels in the region occupied

by the object. We then make use of a rendering-based approach to classify the voxel centers

as being inside or outside the B-rep solid model. To generate the fine level voxelization, we

first make use of the tessellation to classify the coarse voxels that are on the boundary of

the solid model. Once the boundary voxels are identified, we create an index array that

identifies the memory location of each coarse level boundary voxel in the fine level voxel grid.

We then make use of the same rendering approach to classify the grid of fine level voxels by

rendering the clipped model inside each boundary voxel. Using this method on the GPU, a

fine voxelization of the model (up to 1 billion voxels) with a relative voxel size of 0.001, can

be generated (Figure 1.1(c)). This resolution is fine enough to perform modeling operations

with the voxelization. Using the triangles of the B-rep model that intersect with the fine-level

voxels, a surface normal can be encoded into each voxel. This normal information can then be

used to calculate lighting while rendering the surface of the solid model using ray-casting.
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Figure 3.1: Overview of the multi-level voxelization algorithm.

Coarse-Level Voxelization

To generate the coarse level voxelization, we first divide the axis-aligned bounding-box

(AABB) of the solid model into a regular grid of voxels. The voxels in our implementation are

axis-aligned bounding-boxes themselves, without any restriction on them being cubes, rectan-

gular boxes can be used as well. This allows for a better voxelization of models with skewed

aspect ratios, without compromising on the accuracy of the voxelized representation.

A 2D example of performing voxelization using GPU rendering is shown in Figure 3.2; the

method directly extends to 3D. The tessellated CAD model is transfered to the GPU using

display lists. The CAD model is then rendered slice-by-slice by clipping it while rendering.

Each pixel of this clipped model is then used to classify the voxel corresponding to the slice as

being inside or outside the CAD model. This is performed by counting the number of fragments

that are rendered in each pixel using the stencil buffer on the GPU. After the clipped model

is rendered, an odd value in the stencil buffer indicates that the voxel on the particular slice

is inside the CAD model, and vice versa. The process is then repeated by clipping the model

with a plane that is offset by the voxel size along the view direction. Without loss of generality,

the z-direction is chosen as the view direction in our implementation. We can get the coarse
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View Direction

Pixels

Slice 1

Pixels

Slice 3

Pixels

Slice 2

Figure 3.2: Performing voxelization in 2D using GPU rendering. A clipped CAD model is
rendered slice-by-slice and the number of rendered pixels is counted. The pixels that are rendered
an odd number of times in each slice are inside the object.

Voxelization Voxelized Data

Figure 3.3: Coarse voxelization after performing the inside-outside test for all slices. The
voxel centers that are inside the solid model are marked in green.

voxelization of the CAD model once all the slices are rendered and the voxel centers have been

classified (Figure 3.3).

Identifying Boundary voxels

Identifying the boundary voxels of the coarse voxelization is performed by identifying the

voxels that intersect with the triangles of the B-rep model. Since a valid B-rep model does not

contain any triangles in the interior, if a voxel intersects with a triangle then the voxel contains

a part of one of the boundary surfaces of the solid model. In our multi-level voxelization,

we identify the boundary voxels for two specific reasons. First, the boundary voxels need to

be identified in order to generate the fine level voxel grid only inside the boundary voxels.
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Triangle Classify Vertices

Triangle Box Intersection Classify Triangle

Figure 3.4: Identifying the boundary voxels in 2D. The voxels in which the vertices of the
triangle lie are first identified. The triangle is then intersected with the AABBs within the
bounds along the 2 directions (marked in yellow) to identify all boundary voxels (green).

This allows for a higher resolution voxelization without exponentially increasing the total voxel

count. In addition, once the boundary voxels are identified, the average surface normals of

the triangles that intersect with the voxel can be embedded into that voxel. This allows for

realistic lighting calculation using only the voxelization to generate a surface rendering of the

model using ray casting.

To identify the boundary voxels, we loop through every face and in turn every triangle of

that face; we then find the voxels the triangle intersects with. To speed up this operation, we

first identify the voxels that contain the triangle vertices. By first identifying the voxels that

contain a vertex of the triangle, we can cull the voxels that need not be tested for intersections

with the triangle. This is because once we know the boundaries of the triangle, we do not need
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Figure 3.5: Data structures for the multi-level voxelization.

to test any of the voxels that lie outside the boundaries as shown in Figure 3.4. The index of

the voxel that the vertex lies in can be calculated using the position of the vertex relative to

the boundaries of the AABB of the object using

i = [Nx (xp − xmin)/(xmax − xmin)] , (3.1)

j = [Ny (yp − ymin)/(ymax − ymin)] , (3.2)

k = [Nz (zp − zmin)/(zmax − zmin)] , (3.3)

varray = kNy Nx + j Nx + i, (3.4)

where N contains the dimensions of the voxel grid generated to encapsulate the model, ∗min

and ∗max corresponds to the minimum and maximum corner of the AABB, and the varray is the

index in the global array of the coarse voxelization. We then perform an intersection test with all
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the voxels that lie within the bounds and the triangle using the separating-axis test [Gottschalk

et al., 1996]. The rendering-based voxelization has already classified the voxel as being inside

or outside the model, and hence, once the voxel has been identified as a boundary voxel we

can change the value in the voxelization to indicate it as a boundary voxel. For illustration

purposes, the boundary voxels are shown as a separate array in Figure 3.5; in practice, we use

the same array but indicate boundary voxels using a different integer, say 2.

Once all the boundary voxels are identified, we make use of an exclusive prefix-sum ar-

ray [Blelloch, 1990] to keep track of the address of the fine level voxelization. The size of the

prefix sum array will be the same as the coarse level voxelization (see Figure 3.5). The prefix

sum array will be referenced later when performing the fine level voxelization.

Fine-Level Voxelization

The fine level voxelization is implementing another level of voxelization inside the bound-

ary voxels of the first coarse level. Fine level voxelization allows creating a higher-resolution

voxel model without exponentially increasing the number of voxels. Voxelizing the fine level

is performed using the same method as the coarse level. However the AABB of the boundary

voxels are used to clip the model in the fine level voxelization except along the view direction

(as shown in Figure 3.6). Along the view direction, the model is clipped in the back similar

to the coarse voxelization using the plane that passes through the voxel centers that are be-

ing classified. However, the model is not clipped in the front in order to correctly count the

boundary fragments that are rendered.

After classifying the voxel centers in the boundary voxel, the classification result along with

any additional information about the voxel (such as coordinates, surface normals, etc.) need

to be stored in a flat array data structure for better and faster retrieval on the GPU. However,

since the number of boundary voxels will vary depending on the model and the coarse level

voxelization, the size of the fine level voxelization is not constant. To keep track of the address

locations of the boundary voxels in the fine level array, we make use of the exclusive prefix sum.

The prefix sum array keeps track of the boundary voxels in the coarse level voxelization. In

our implementation, all the boundary voxels are divided into the same number of user-defined
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Fine Level

Slice 1

Figure 3.6: Performing fine level voxelization in 2D using GPU rendering. The boundary
voxel (shaded green) is further refined into a fine level voxel grid. The model is clipped in all
directions except along the view direction to count the intersections using rendering.

fine level voxels, and hence, using the prefix sum address array, we can directly access the

memory location of the fine level voxelization. An example of this operation in 2D is shown in

Figure 3.6.

After the fine level voxels have been classified as inside or outside the B-rep solid model, the

boundary voxels in the fine level voxelization can also be identified. Classifying the boundary

voxels for the fine level uses the same procedure as the coarse level and uses the tessellation of

the B-rep. However, it is faster than the coarse level since instead of testing all the triangles in

every face, we just need to test the triangles that have already been classified as intersecting

with the coarse level voxel. We test the triangles that intersect with the coarse level voxels for

intersection with the fine level voxels.

Once the boundary voxels in the fine level have been identified, we again store the average

surface normal of all the triangles that intersect with the voxel. This surface normal is then

used while rendering the voxelization. We can also directly render the voxels as wireframe to

check for errors in voxelization. We assign different colors to the fine and coarse level voxels,

and also to inside and boundary voxels as shown in Figure 1.1(c). The resolution in the image

is set lower to better illustrate the differences between the coarse and fine level voxels.
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CHAPTER 4. RENDERING MULTI-LEVEL VOXELIZATION

We render the multi-level voxelization using a ray-casting method implemented on the

GPU. We can generate two kinds of rending, volume and surface rendering. Volume rendering

is performed by sampling which voxels are inside or outside the model along a particular ray.

The total of the number of voxels sampled is then used to calculate the color of the ray. Surface

rendering, on the other hand, stops when a boundary voxel has been sampled along the ray;

the relevant surface normal data of the voxel is then used to compute lighting calculations that

assign a color to the ray to be rendered. The resulting image from the surface rendering is

similar to the rasterized rendering of the B-rep solid model.

To perform the ray-casting, the voxel data for the classification of the inside voxels for

the coarse and the fine voxels are used. In addition, the average surface normals for the

coarse and fine level boundary voxels is also used for the surface rendering. We store these

data in respective flat arrays on the GPU. We use flat arrays to store the data instead of 3D

textures, since a 3D texture would be required for each boundary voxel while rendering. Due

to restrictions on the maximum number of textures that can be bound while rendering, using

3D textures for multi-level voxelization is not feasible. By using a flat array, a single array can

be used to store the data for all the fine level voxels. However, if only the coarse level voxels

need to be rendered, we have another implementation that makes use of 3D textures. One of

the main advantages of 3D textures over flat arrays, is that it is possible to perform fast linear

interpolation with 3D textures, which provides a better rendering of smooth surfaces.

Volume Rendering

Volume rendering is displaying a 2D projection of a 3D data set [Kruger and Westermann,

2003]. The data set in our case is the multi-level voxelized model that was generated earlier.
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Figure 4.1: Using ray casting to render the multi-level voxelization.

Volume rendering is performed in our case by implementing a ray-casting algorithm on the

GPU, where each pixel on the screen corresponds to a single ray [Kruger and Westermann,

2003].

Each ray is first tested for intersection with the AABB of the complete voxelization. The

AABB of the voxelization is mapped to a canonical volume [−1, 1]× [−1, 1]× [−1, 1]. If the ray

intersects with the AABB, the entry and exit points along the ray parameter are calculated.

This ray is then marched from the entry to the exit point at uniform intervals while keeping

track of the data from all the intersected voxels. Using the ray’s origin and direction along the

near and far intersections from a Ray-Box intersection, we can get the current position of the

ray along the parameter t (Equation 4.1). Rays that don’t intersect with the AABB can be

culled since they will never intersect with the model.

p = O + tD (4.1)

The current ray position is then used to get the i, j, and k grid positions for the voxel in
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intersects using

i = (px + 1)/2 ∗Nx,

j = (py + 1)/2 ∗Ny,

k = (pz + 1)/2 ∗Nz,

(4.2)

where p is the ray position and N is the x, y, and z dimensions of the voxel grid. These indexes

are then used to get the location (v) in the data arrays that have the associated information

for that voxel;

v = kNy Nx + j Nx + i. (4.3)

In the multi-level voxel model, the boundary voxels have a value different than an inside or

outside voxel in the coarse level array. When a boundary voxel is sampled, the fine level voxel

array is also sampled as the ray marches through the voxelization. The prefix sum address

array is used to identify the location of the fine level voxelization corresponding to the current

boundary voxel in the fine level voxelization array. The index in the prefix sum address array

for the boundary voxel is then multiplied by the fine level voxelization resolution. The ray-

position is also calculated relative to the AABB of the boundary voxel instead of the AABB of

the model. This is necessary to get the correct index for the fine level voxelization inside the

given boundary voxel.

i2 = [(px + 1)/2]NxN2x − iN2x,

j2 = [(py + 1)/2]Ny N2y − j N2y,

k2 = [(pz + 1)/2]Nz N2z − kN2z,

(4.4)

where N2 contains the dimensions of the fine level voxel grids, and i, j, k are the grid positions

for the current boundary voxel. The index for the fine level voxel can be calculated in a

similar manner to the coarse level, but with the fine level ray position and the fine level voxel

dimensions. To get the position in the array containing all the fine level data, the value from

the prefix sum array, PS, is combined with fine level index,

V2 = PSv N2xN2y N2z + k2N2y N2x + j2N2x + i2. (4.5)
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Surface Rendering

Surface rendering can generate a realistic image of the model’s surface compared to volume

rendering. In our method, the GPU-accelerated surface rendering is implemented in a similar

manner to the volume rendering. The same ray-casting method is used, but in addition to

the voxel occupancy information, the surface normals of the boundary voxels are also used.

Using the surface normals allows performing realistic lighting calculations on the GPU. When

rendering the surfaces using the multi-level voxelization the coarse level surface normals are not

used; only the fine level surface normals are used. The coarse level occupancy information is still

used to identify the boundary voxels. The index in the array for the fine level surface normals

is the same as the index (V2) for the fine level occupancy array. The occupancy information is

used to cull the voxels that need not be rendered. This is performed because only the boundary

voxels contain the normal information and hence have to be rendered.

To calculate the color of each ray that intersects the boundary voxel using lighting calcula-

tions, the sum of the different lighting components (Cambient, Cdiffuse, Cspecular, and Cemission)

is calculated. Cambient is light that comes from all directions equally. Cdiffuse is light that

comes from a point source and hits surfaces with an intensity that depends on whether or not

the surface faces the light; the light radiates from the surface equally for this property. Cspecular

is light from a point source that is reflected like a mirror and the light bounces in the direction

defined by the surface shape. Cemission is light emitted by the object. Note that all lighting

components are 3-element vectors corresponding to the red, green, blue color values. The ray

color can be calculated using

C = Cambient + Cdiffuse + Cspecular + Cemission. (4.6)

The ambient teflectivity coefficent (ka) controls the amount of ambient light reflected from the

surface,

Cambient = ka ∗Gambient, (4.7)

where Gambient refers to the value of the ambient light itself. Cdiffuse is calculated from the

diffuse reflectivity coefficient (kd), the light color (Clight), and the dot product of the light
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direction(L) and surface normal (n),

Cdiffuse = kdClight (n · L) . (4.8)

Cspecular is calculated from the specular reflectivity coefficient (ks), the light color, the shininess

coefficient (f), and the dot product of the view vector (v) and direction of perfect mirror-like

reflection (r).

Cspecular = ksClight (v · r)f . (4.9)

Cemission is a constant based on whether the model should be emitting light or not. The surface

constants are chosen for each model to give a realistic surface appearance; an example of the

surface rendering is shown in Figure 1.1(e). One limitation of our implementation of the surface

rendering is that the object is made up of a single solid color. This can be extended in the

future by storing the B-rep surface color along with the normals in the boundary voxels.
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CHAPTER 5. TIMING RESULTS

To test our new GPU-accelerated voxelization and rendering methods we used four different

models, Hammer (Figure 5.1(a)), Engine (Figure 5.1(b)), Engine Cover (Figure 5.1(c)), and

Trefoil (Figure 5.1(d)). These models were chosen based on their complexity; the Hammer,

Engine, and Engine Cover models correspond to models with low, medium, and high triangle

counts, respectively. The Trefoil model was used to assess the performance of methods in a

complex model with overlapping inside and outside regions along a given view direction. The

models with different triangle counts can be used assess the impact of the size of the tessellation

on the voxelization. For the Trefoil model, we assessed the accuracy of the voxelization and

the appearance of the volume and surface renderings. We varied the resolution of the coarse

level voxelization and the fine level voxelization separately to study the effect of each level on

the computation time. In addition, we measured the frame rates achieved during volume and

surface rendering of the different voxelized models in full HD (1920x1080) screen resolution.

The timings were measured in a workstation with Intel Xeon CPU E5-2630 v3 @2.40GHz, 32

GB RAM, and nVIDIA GeForce GTX Titax X GPU with 12 GB GPU-RAM

Voxelization Timings

The voxelization timings were separated between the coarse and the fine levels, to compare

the time for computing the different levels. Table 5.2 and Table 5.2 gives a comprehensive listing

of all the timing results. It can be seen that computing the fine level voxelization takes the

largest percentage of the total time. This is expected since the voxelization and identification

of boundary voxels is repeated for every boundary voxel in the coarse level.

The time taken for 2-level voxelization can also be compared with its 1-level equivalent.

For example, looking at the maximum number of a voxels along an axis, having 20 voxels
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(a) Hammer (b) Engine (c) Engine Cover (d) Trefoil

Figure 5.1: Models used for testing the multi-level voxelization.

(a) Voxelization (b) Volume render-
ing

(c) Surface ren-
dering

Figure 5.2: Hammer Model.

along an axis for the coarse level with 10 voxels along an axis for the fine level will have the

same resolution as 200 voxels along the longest axis for a 1-level voxelization. The time for

just the 1-level voxelization is significantly shorter than doing multiple levels. Because of this

time difference, whether a multi-level voxelization is used over a single-level voxelization will

depend on the application. The multi-level voxelization can achieve higher resolutions than a

single-level, since the highest single-level voxel count along an axis is 300 in our testing, due

to memory requirements of the voxel data structure. However, the multi-level voxelization

can easily reach >1,000 equivalent single-level voxels along an axis within the CPU and GPU

memory limits. As a result, using the multi-level voxelization is the only option if a higher
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(a) Voxelization (b) Volume rendering (c) Surface rendering

Figure 5.3: Engine Cover Model.

(a) Voxelization (b) Volume rendering (c) Surface rendering

Figure 5.4: Trefoil Model.

resolution is desired for a particular model.

We also implemented a CPU version of the voxelization method using the Möller-Trumbore

ray intersection algorithm [Möller and Trumbore, 2005]. We then tested the time taken for the

CPU to voxelize the same models. It can be seen from Table 5.1 that except for the smallest

resolutions, the GPU voxelization algorithm is > 40× faster than the CPU implementation. In

addition, the GPU voxelization takes < 150ms for intermediate resolutions, making it suitable

for interactive updates in a CAD system.

Rendering Frame Rates

We measured the frame rates while interactively rendering the multi-level voxelization using

GPU ray casting. The main objective is to maintain a frame rate of at least 30 frames-per-

second (fps) in full HD screen resolution (1920x1080). The frame-rates achieved during surface

rendering were all fairly consistent at around 61 fps. The Engine Cover model was the only



22

Table 5.1: GPU and CPU time for performing a single coarse level voxelization. It can be
seen that the GPU based voxelization is more than 40x faster than the CPU in most cases.

Voxel Grid
Effective
Voxels

GPU Time
(s)

CPU Time
(s)

Speedup

Hammer

12x20x8 122,880 0.012 0.161 14×
48x100x28 134,400 0.024 11.181 466×
100x200x52 1,040,000 0.13 85.393 658×

Engine

12x16x20 245,760 0.043 1.874 43×
64x76x100 486,400 0.202 234.485 1,161×
124x156x200 3,868,800 0.747 1,839.420 2,463×

Engine Cover

20x20x8 204,800 0.063 32.632 518×
100x96x40 384,000 0.939 4,746 5,054×
200x188x76 2,857,600 3.467 35,299.8 10,181×

model that had the most values under 61 fps with the lowest being 35 fps. This may be because

of the significantly larger number ( 10M) of fine level voxels in the model.

In addition to the complexity of the model, the distance of the camera to the model has

a large effect on the rendering frame rates. The further away from the model the higher the

frame rate and vice versa. This could be attributed to the fact that the further away from

the camera the model is, fewer rays are intersecting with the model, and hence requires fewer

memory lookups on the GPU. The rays that are not intersecting with the AABB of the model

are culled leading to a higher fps.

The results of our GPU-accelerated ray-casting method show that we can achieve our goal of

at least 30fps at full HD for all the models at the tested resolutions. The fps were significantly

higher on most models.
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Table 5.2: Timings for voxelization and rendering at different resolutions for the different
models tested.

Level 1 Level 2
Level 1
Voxels

Level 2
Voxels

Effective
Voxels

Level 1
Time
(s)

Level 2
Time
(s)

Total
Time
(s)

Frame
Rate
(fps)

Hammer: 5,668 Triangles

8x12x4 4x4x4 192 3,072 12,288 0.032 0.179 0.240 61
8x12x4 10x10x10 192 48,000 192,000 0.036 1.721 1.782 61
8x12x4 20x20x20 192 384,000 1,536,000 0.032 12.869 12.951 61

12x20x8 4x4x4 1,920 7,872 122,880 0.036 0.327 0.400 61
12x20x8 10x10x10 1,920 123,000 1,920,000 0.035 2.047 2.119 45
12x20x8 20x20x20 1,920 984,000 15,360,000 0.036 15.355 15.473 61

48x100x28 1x1x1 134,400 0 134,400 0.133 0.000 0.156 61
48x100x28 4x4x4 134,400 170,304 8,601,600 0.410 4.039 4.508 61
48x100x28 10x10x10 134,400 2,661,000 134,400,000 0.426 13.321 13.996 52

100x200x52 1x1x1 1,040,000 0 1,040,000 0.887 0.000 0.956 61
100x200x52 4x4x4 1,040,000 661,248 66,560,000 2.775 15.372 18.328 53
100x200x52 6x6x6 1,040,000 10,332,000 1,040,000,000 2.884 41.374 45.125 45

Engine: 28,134 Triangles

8x12x12 4x4x4 768 10,560 49,152 0.319 1.44 1.805 61
8x12x12 10x10x10 768 165,000 768,000 0.309 9.264 9.619 61
8x12x12 20x20x20 768 556,875 2,592,000 0.320 29.583 29.983 61

12x16x20 4x4x4 3,840 31,680 245,760 0.388 3.025 3.451 56
12x16x20 10x10x10 3,840 495,000 3,840,000 0.393 14.238 14.711 61
12x16x20 20x20x20 3,840 1,670,625 12,960,000 0.388 40.756 41.358 45

64x76x100 1x1x1 486,400 0 486,400 0.723 0.000 0.776 61
64x76x100 4x4x4 486,400 1,192,128 31,129,600 12.654 88.328 101.299 40
64x76x100 10x10x10 486,400 18,627,000 486,400,000 12.510 234.382 248.379 50

124x156x200 1x1x1 3,868,800 0 3,868,800 3.710 0.000 3.953 61
124x156x200 4x4x4 3,868,800 4,752,128 247,603,200 87.262 352.715 440.831 40
124x156x200 6x6x6 3,868,800 16,038,432 835,660,800 97.059 508.369 607.207 43
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Table 5.3: Timings for voxelization and rendering at different resolutions for the different
models tested.

Level 1 Level 2
Level 1
Voxels

Level 2
Voxels

Effective
Voxels

Level 1
Time
(s)

Level 2
Time
(s)

Total
Time
(s)

Frame
Rate
(fps)

Engine Cover: 118,921 Triangles

12x12x4 4x4x4 576 4,736 36,864 4.820 3.797 8.689 50
12x12x4 10x10x10 576 74,000 576,000 4.639 29.674 34.383 39
12x12x4 20x20x20 576 592,000 4,608,000 4.752 228.073 232.944 48

20x20x8 4x4x4 3,200 18,688 204,800 2.080 8.203 10.393 45
20x20x8 10x10x10 3,200 292,000 3,200,000 2.144 44.444 46.683 44
20x20x8 20x20x20 3,200 2,336,000 25,600,000 2.123 269.462 271.871 45

100x96x40 1x1x1 384,000 0 384,000 0.873 0.000 0.939 61
100x96x40 4x4x4 384,000 791,232 24,576,000 26.308 273.027 299.545 36
100x96x40 10x10x10 384,000 12,363,000 384,000,000 25.708 743.213 770.021 35

200x188x76 1x1x1 2,857,600 0 2,857,600 3.251 0.000 3.462 61
200x188x76 4x4x4 2,857,600 3,314,816 182,886,400 128.443 1,060.007 1,189.130 35
200x188x76 6x6x6 2,857,600 11,187,504 617,241,600 129.02 1,620.829 1751.220 34

Trefoil: 22,318 Triangles

12x12x12 4x4x4 1,728 13,120 110,592 0.155 0.761 0.958 65
12x12x12 10x10x10 1,728 205,000 1,728,000 0.146 6.634 6.825 62
12x12x12 20x20x20 1,728 1,640,000 13,824,000 0.145 52.044 52.322 61

20x20x20 4x4x4 8,000 43,135 512,000 0.298 1.571 1.943 63
20x20x20 10x10x10 8,000 674,000 8,000,000 0.291 9.369 10.238 61
20x20x20 20x20x20 8,000 5,392,000 64,000,000 0.280 66.309 66.979 61

100x100x100 1x1x1 1,000,000 0 1,000,000 0.948 0.000 1.024 61
100x100x100 4x4x4 1,000,000 1,145,088 64,000,000 9.299 26.380 35.931 61
100x100x100 10x10x10 1,000,000 17,892,000 1,000,000,000 9.219 76.497 87.079 61

200x200x200 1x1x1 8,000,000 0 8,000,000 6.795 0.000 7.257 61
200x200x200 4x4x4 8,000,000 4,604,928 512,000,000 73.193 94.522 168.785 50
200x200x200 6x6x6 8,000,000 71,952,000 1,728,000,000 74.391 340.763 431.958 60
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CHAPTER 6. APPLICATIONS OF MULTI-LEVEL VOXEL MODELS

In this chapter, we briefly outline some of the applications of the integrated B-rep and

multi-level voxel models in solid modeling. Having a fast voxelized version of the B-rep model

is ideal to accelerate some of the core solid modeling operations. The applications listed here

can serve as a starting point for more complex usage of the integrated representation.

Collision Detection

The voxelization can be used to perform fast collision detection between CAD models. The

voxels of each model can be considered as oriented bounding-boxes (OBBs), which can be

checked for overlap using the separating-axis tests. Since the voxels are also independent, the

pair-wise OBB overlap tests can be performed in parallel using the GPU. Figure 6.1 shows

an example of interactively highlighting the OBBs that overlap between the Hammer and

the Engine model. Performing collision detection using the hybrid representation allows for

the detection of the case when a particular model is completely enclosed by another model;

identifying this case using only B-reps is difficult.

Figure 6.1: Performing collision detection between voxelized models using OBB overlap tests.
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Figure 6.2: Computing the volume of the Engine model using the voxelization gives an estimate
of the error for PMC. The voxelized representation is within 10% of the B-rep volume with only
a few million voxels.

Point-Membership Classification

Another application of the hybrid representation is fast point membership classification

(PMC) using the voxelization. Given any point in 3D space, it can be identified as belonging

to inside or outside of the B-rep CAD model with O(1) lookups. In addition, since we also

identify the boundary voxels in the hybrid representation, we can provide an error probability

for the PMC based on whether the test point lies inside a boundary voxel. One way to quantify

the error in our voxelized representation is to compute the volume enclosed by the voxelization.

The volume of the voxelization can be easily calculated, since the size of each voxel and the

number of voxels that are classified as inside the model is known. Figure 6.2 shows the volume

computed with different resolutions of the voxelization for the Engine model. It can be seen

that since we enclose the model completely with voxels, the voxelization volume will always be

higher than the actual B-rep volume. It can be seen that the voxelization volume converges to

the B-rep volume with higher resolution voxelization, and a few million voxels are enough to

capture the volume to within 10% error.
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CHAPTER 7. CONCLUSIONS

This thesis has proposed a new hybrid multi-level voxelization representation that can

be used simultaneously with the boundary representation (B-rep) of a solid model. We have

presented GPU-accelerated methods for creating the multi-level voxelization given a B-rep solid

model and rendering the multi-level voxelization using ray casting. Our methods make use of

the GPU rendering pipeline to accelerate the voxelization process. We have also developed flat

data structures that can be used to efficiently store the multi-level voxelization along with B-rep

surface information such as surface normals. The surface normals stored inside the boundary

voxels can be used to generate a smooth surface rendering of the CAD model using only the

multi-level voxelization.

We tested our methods on multiple models and the GPU-accelerated voxelization is 40×

faster than the CPU-based method for most high resolutions. This shows that this method

can be used to interactively generate the voxelization while the user is editing the CAD model,

leading to acceleration of some of the common solid modeling operations such as PMC, collision

detection, clearance computation, etc. The GPU-accelerated ray-casting method developed to

render the multi-level voxelization can achieve > 30fps for volume or surface rendering of the

models, allowing for real-time interactions.

We have outlined some applications of the multi-level voxelization including fast PMC, and

collision detection. These applications can be easily extended to B-reps that consist of spline

surfaces. In addition, since the CAD system also contains the source feature, such as holes,

extrusions, etc., that generated the B-rep surfaces, the voxel models can also encode a Feature

Link between the CAD model features and the B-rep surfaces. The voxelization can store

pointers to the surfaces that intersect with each voxel. This information along with the Feature

Link will provide information required to trace back from the voxel the original feature in the
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CAD model. This Feature Link is important to provide modifications to the CAD model based

on the modifications to the voxelized model. This would allow for a true integrated B-rep

and voxel representation for several applications such as shape editing and automatic design

modifications.
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Eisemann, E., Décoret, X., 2008. Single-pass GPU solid voxelization for real-time applications.

In: Proceedings of Graphics Interface. Canadian Information Processing Society, pp. 73–80.

Gibson, S. F. F., 1995. Beyond volume rendering: visualization, haptic exploration, and physical

modeling of voxel-based objects. In: Visualization in Scientific Computing95. Springer, pp.

10–24.

Gottschalk, S., Lin, M. C., Manocha, D., 1996. Obbtree: A hierarchical structure for rapid

interference detection. In: Proceedings of the 23rd annual conference on Computer graphics

and interactive techniques. ACM, pp. 171–180.



30

Grimm, S., Bruckner, S., Kanitsar, A., Groller, E., 2004. Memory efficient acceleration struc-

tures and techniques for cpu-based volume raycasting of large data. In: Volume Visualization

and Graphics, 2004 IEEE Symposium on. IEEE, pp. 1–8.

Hadwiger, M., Sigg, C., Scharsach, H., Bühler, K., Gross, M., 2005. Real-time ray-casting

and advanced shading of discrete isosurfaces. In: Computer Graphics Forum. Vol. 24. Wiley

Online Library, pp. 303–312.

Kruger, J., Westermann, R., 2003. Acceleration techniques for gpu-based volume rendering. In:

Proceedings of the 14th IEEE Visualization 2003 (VIS’03). IEEE Computer Society, p. 38.

Li, W., Mueller, K., Kaufman, A., 2003. Empty space skipping and occlusion clipping for

texture-based volume rendering. In: Visualization, 2003. VIS 2003. IEEE. IEEE, pp. 317–

324.

Marques, R., Santos, L. P., Leskovsky, P., Paloc, C., 2009. Gpu ray casting.
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