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ABSTRACT 

Biocomposites have attracted a great deal of interest in research and industry 

sectors because they are typically lightweight, sustainable, environmentally friendly, and 

their thermomechanical properties can be designed to fit specific applications by tuning 

of their composition.  In this study, mechanical properties of natural-fiber reinforced 

thermoplastic composite films were explored. Thermoplastic resins (linear low-density 

polyethylene, high-density polyethylene, and polypropylene) reinforced with various 

ratios of agave fibers were prepared and characterized in terms of mechanical, thermal, 

and chemical properties as well as their morphology. The morphological properties of 

agave fibers and films were characterized by scanning electron microscopy, Fourier-

transform infrared spectroscopy was used to analyze variations in chemical interactions 

between the filler and matrix materials. No significant chemical interaction between the 

filler and matrix was observed. While addition of natural fillers did not affect the thermal 

properties of the composite materials, elastic modulus and yielding stress were generally 

proportional to fiber content. The level of the effect on yield stress and modulus of the 

fibers varied over the range of the different matrix materials.  
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CHAPTER 1 

BACKGROUND AND LITERATURE REVIEW 

1.1 Introduction 

In the past decades, conventional petroleum-based plastics have resulted in 

environmental and sustainability issues [1, 2]. The abundance, low cost and sustainability 

of biocomposites have brought them to the center of attention of polymer industries, 

especially for automotive, packaging and construction applications [1-5]. Bio-based 

composites with thermomechanical properties which were either similar or superior to 

their petroleum-based equivalents.  

As the significant component of biocomposites, natural plant fibers have 

experienced rapid growth in the bio-renewable marketplace in recent years. Natural plant 

fibers have various advantages compared to traditional fibers, including lower density, 

prevalence, ease of processing, and low environmental impact [6, 7]. There are some 

powerful evidences of the rising interest of bio-materials from research and industry. The 

growing number of publications including books [8-12] and reviews [1, 13-19] show the 

importance of the new biocomposites. In the market, the production of natural fibers 

around the world was approximately 45.5 million tons in 2013 [19] and the worldwide 

capacity of bio-based plastics and continues to grows.     

However, the matrix dominates composites’ shape, surface appearance and 

durability. In the polymer market, there are approximately 80% consuming materials 
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produced from the petroleum-based plastics [1].  The effects of natural fibers in 

petroleum-based thermoplastics and thermoset matrices have been extensively studied. 

Thermoplastic materials, as an important plastic type of polymer, are commonly used in 

production of consumer products. This research aims to study the effect of thermoplastics 

reinforced by those have been widely used natural fibers. Polyethylene (PE) and 

polypropylene (PP) were used for thermoplastic matrices for natural fiber reinforced 

polymer composites.  

1.2 Fiber Types 

Natural fibers have been classified into different types. Natural fibers including 

●bast fibers (flax, hemp, jute and ramie), ●leaf fibers (abaca, sisal and pineapple leaf), 

●seed fibers (coir), ●core fibers (kenaf), ●grass/reed fibers (rice husk) and ●other types 

(wood and roots) reinforced composites have been extensively reported in the past 

decades. 

1.2.1 Flax 

Flax, Linum usitatissimum, is a member of the genus Linum in the family 

Linaceae, belongs to the bast fibers.  

Various literature researches of flax fiber reinforced thermoplastic composites 

have been completed. The mechanical properties of unidirectional and multidirectional 

composites flax/polypropylene composites have been studied by K. Van de Velde and P. 

Kiekens [20]. They reported the influence of various process parameters and found the 

combination of boiled flax with maleic acid anhydride modified PP produced the best 

mechanical properties. Menghe Miao also reported a highly aligned composite structure 
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could be produced from flax fibers using a modified nonwoven process. This composite 

structure achieved the similar tensile and flexural strengths as the composites made from 

unidirectional woven fabrics, but the manufacturing process was much simpler and 

cheaper [21]. The influence of different fiber content on properties of flax fiber/HDPE 

composites was studied by X. Li [22]. They reported the HDPE with flax fiber content 

from 10 to 30 wt% processed by extrusion and injection molding. The results showed that 

compared to tensile and flexural strength of biocomposites, the tensile and flexural 

modulus was more dependent on fiber content. The trend was the mechanical properties 

increased when the fiber content was increasing. However, the water absorption 

increased with increased fiber content was a disadvantage of flax fiber reinforced 

composites. Researchers have also investigated the comparison of natural fiber 

thermoplastic mat (NMT) and conventional glass fiber thermoplastic mat (GMT) [23]. 

Investigation revealed that NMT composites had a high stiffness compared to the pure PP 

and for 50 wt% flax fiber content the NMT composites showed a better stiffness than the 

GMT composites. This result showed that NMT composites had a potential to replace the 

conventional GMT composites.   

The effects of different chemical treatments  modified flax fibers, such as 

mercerization, peroxide treatment, benzoylation and peroxide treatment [24] and maleic 

anhydride, maleic anhydride-polypropylene copolymer and vinly trimethoxy silane 

treatment [25] also have been investigated. 

1.2.2  Hemp 

Hemp belongs Cannabis sativa plant species and is one of the fastest growing 

plants. There are many studies focused on biocomposites reinforced by hemp. Different 
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research groups worked on the mechanical and thermal properties of thermoplastic 

composites with hemp fibers. P. Wambua’s group investigated the mechanical properties 

of hemp reinforced PP composites and they found the tensile strength and modulus 

increased with increasing fiber volume fraction [26]. PP composites reinforced with 

hemp fibers and modified by means of grafting reactions with glycidyl methacrylate 

(GMA) were also examined [27]. The modified fibers and the modified PP matrix, as 

well as various compatibilizers were used to improve the fiber/matrix interaction. 

Compared to the untreated PP/hemp composites, the composites after modified showed 

improved fiber dispersion in PP matrix and higher interfacial adhesion because of the 

new chemical bonding between the fiber and the matrix. The thermal stability was more 

dependent on the fiber and matrix modification. All modified composites exhibited 

higher tensile modulus. In another study, A. Etaati et al. [28] studied the static and 

dynamic mechanical and viscoelastic properties of short hemp reinforced PP composites 

in a temperature range of 25- 150 ℃. The matrices were modified with maleic anhydride 

grafted polypropylene (MAPP) and maleic anhydride grafted poly (ethylene octane) 

(MAPOE) and reinforced by up to 40 wt% short hemp fiber content. The results showed 

both storage modulus and tensile strength of the composites improved by the coupling 

agents because of improved interfacial adhesion between fiber and matrices. 

Another group reported the PP/hemp composites showed recyclability [29]. The 

PP/hemp fiber composites after recycling still exhibited good mechanical properties with 

injection cycles.   
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1.2.3 Jute 

Jute is a long, soft, shiny fiber and is produced from plants in the genus 

Corchorus. Jute is one of the most affordable natural fibers in the world. 

The dynamic mechanical and thermal properties of jute reinforced high density 

polyethylene (HDPE) composites were studied considering the effect of using maleic 

anhydride grafted polyethylene (MAPE) as coupling agent [30]. Various mechanical 

properties such as tensile, flexural and impact strengths and storage and loss modulus 

were investigated in this study. The outcomes of the study concluded that the mechanical 

and thermal properties of HDPE matrix with MAPE treated jute fiber reinforcement was 

improved compared with untreated composites. Moreover, it was observed that the 

optimum mechanical strengths of the composites achieved at the composites with 30 wt% 

fiber loading and 1 wt% MAPE. Compared to the neat polymer, the tensile, flexural and 

impact strength were increased 38%, 45%, and 67%, respectively. 

In another study, J. Gassan et al. [31] introduced the effect of fiber treatment on 

the mechanical properties of jute/PP composites. The maleic anhydride and graft 

copolymer of PP were applied as coupling agents in this case. The results revealed that 

the mechanical properties such as flexural strength, flexural modulus and dynamic 

strength of the composites with treated fibers was higher than the untreated composites. 

The trend was the strength increased with fiber loading up to 40%. This study also proved 

that using the coupling agent was able to reduce the progress of damage. 
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1.2.4 Kenaf 

Kenaf is in the genus Hibiscus, belongs to the Malvaceae family. Kenaf fibers 

shows similar characteristics with jute. 

R. M. Rowell et al. [32, 33] studied the mechanical properties of kenaf/PP 

composites and did a comparison between biocomposites and conventional composites. 

The maleic anhydride grafted polypropylene (MAPP) as a coupling agent was introduced 

to the matrix to improve the interfacial property of the composites. The results presented 

the mechanical properties of biocomposites improved and compared to the conventional 

composites, the specific tensile and flexural modulus of 50 wt% of kenaf/PP composites 

had advantages to a 40 wt% glass fiber reinforced PP composites, where the specific 

tensile modulus and flexural modulus of 50 wt% kenaf/PP composites were 7.8 GPa and 

7.3 GPa respectively, and the specific tensile modulus and flexural modulus of 40 wt% 

glass fiber/PP composites were 7.3 GPa and 6.2 GPa respectively. 

M. Zampaloni et al. [34] also have proved that the layered sifting of a microfine 

PP powder and chopped kenaf fibers is a favorable fabrication method for compression 

molding process to manufacture the kenaf/PP composites. In this case, 3 wt% Epolene 

G3015 was used to improve the adhesion of fiber/matrix. The strength of PP powder 

increased when the fiber content was at both 30 wt% and 40 wt%. 

Another group has reported that the electron beam irradiation could change the 

thermal and mechanical properties of the kenaf fiber reinforced PP composites [35]. The 

result showed the thermal conductivity and the tensile strength changed and became 
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minimum when the dose of electron beam was 10kGy, which was important for energy 

savings in automobiles. 

1.2.5 Sisal 

Sisal is a species of Agave and produces a stiff fiber used in making various 

products. 

K. Jayaraman et al. [36] introduced a simple manufacturing method for producing 

sisal fiber reinforced polypropylene composites. They sprinkled the fibers down a drop 

feed tower onto a substrate to make loose fiber mats. This method could allow the fibers 

avoid the processing degradation. The sisal fiber mats was introduced into the PP matrix 

by vacuum forming or hot-pressing to make composites. The optimum mechanical 

properties of composites were achieved when the fiber length was greater than 10 mm 

and the fiber loading was in the range 15-35 wt%. 

In another study, sisal/PP composites investigated the influence of fiber treatment 

on the performance [37]. Various fiber loading of volume percent, the maleic anhydride 

coupling agent concentration and fiber treatment time were studied in the research. The 

optimum mechanical strength of the composites was observed when the fiber content was 

at 21% volume percent and the concentration of maleic anhydride grafted polypropylene 

was at 1%. Specifically, the tensile, flexural, and impact strength, increased to 64%, 

119%, and 123%, respectively.  

K. Josseph and coworkers did a series of studies on sisal fiber reinforced PE 

composites. They evaluated the influence of the processing method and the effect of fiber 

content, fiber length and orientation on mechanical properties of the low density 
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polyethylene-based composites. The results showed the tensile properties of the 

biocomposites increased with fiber content and got the maximum properties at the fiber 

length around 6 mm, specifically, the tensile strength and modulus were 34.27 MPa and 

3328 MPa respectively. They also investigated the surface treatment on various 

properties of short sisal fiber reinforced PE composites and proved that chemical 

treatment could improve the mechanical properties [38, 39] and electrical properties [40] 

of the composites. In addition, they studied the effect of ageing on mechanical properties 

of untreated and cardanol derivative of toluene diisocyanate (CTDIC) treated sisal/LDPE 

composites. Investigation revealed that CTDIC treated composites exhibited excellent 

mechanical properties and dimensional stability as compared to untreated composites.  

1.2.6 Abaca 

Abaca fiber is from the banana plant and is the strongest of the cellulose fibers on 

the market. 

Various fiber loadings (20, 30, 40 and 50 wt%), different fiber lengths (5, 25 and 

40 mm) and three different compounding processes (mixer-injection molding, mixer-

compression molding and direct compression molding process) for abaca fiber reinforced 

PP composites was investigated by Bledzki and coworkers [41, 42]. It was observed that, 

the tensile, flexural and Charpy impact strengths increased with fiber content up to 40 

wt% and the optimum fiber loading was 40 wt%, specifically, the tensile and flexural 

strength increased 30 to 80%. It was also learned that the tendency of the tensile and 

flexural strengths was increased with increasing the fiber length but not significantly. 

Moreover, the results exhibited that the mixer-injection molding process exhibited a 

better mechanical performance (tensile strength was around 90%). 
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Different fiber treatment methods used to enhance the fiber/matrices have been 

reported. M. R. Rahman et al. [43] studied the abaca fiber was treated with Benzene 

diazonium salt. It showed that abaca fibers treated with benzene diazonium salt could 

reduce the hydrophilicity of the cellulose present in the filler. The tensile strengths of the 

composites for both treated and untreated abaca were found to decrease as increasing 

fiber loading. The optimum tensile properties of treated abaca fiber reinforced composites 

was observed with the fiber loading at 15 wt%. However, other mechanical properties 

such as Young’s modulus, flexural strength, flexural modulus, impact strength and 

hardness values were showed the trend of increasing with the fiber content increased. 

Bledzki et al. [44] also reported the abaca fibers were modified by nature enzyme. The 

results showed that this modification of fibers could reduce 20-45% moisture absorption 

of the abaca/polypropylene composites. Meanwhile, the mechanical properties of the 

biocomposites were improved. 

1.2.7 Pineapple leaf fiber 

The pineapple is a tropical plant and the most affordable plant in the 

Bromeliaceae family. The pineapple leaf fiber is inexpensive and abundantly available. 

George et al. [45] studied on the effect of fiber length, fiber loading and 

orientation on the mechanical properties of pineapple leaf fiber (PALF) reinforced low 

density polyethylene (LDPE) and the viscoelastic properties of PALF/LDPE composites 

also have been reported [46]. Longitudinally oriented composites showed the better 

mechanical performance than randomly and transversely oriented composites. Dynamic 

storage and loss modulus increased with fiber content and leveled off beyond 20% due to 

fiber-to-fiber interactions. The dynamic viscoelastic results showed that the optimum 



10 
 

fiber length for reinforcement was at 2 mm [46]. However, considering the overall 

mechanical properties and processing characteristics, it was found that 6 mm was the 

optimum fiber length for reinforcement in LDPE [45]. Furthermore, the water absorption 

behavior of PALF/LDPE composites has been investigated with referring to fiber 

loading, fiber/matrix interface and temperature [47]. Because of good interfacial 

adhesion, the chemically modified fiber composites exhibited a reduction in water 

absorption. They also studied the flexural strength and modulus of composites after 

exposure to UV light and found that PALF did not have any significant effect on UV 

resistance. 

Sanjay K. et al. [48, 49] have investigated the influence of fiber length on 

mechanical, thermal and morphological properties of modified pineapple leaf fiber 

reinforced PP composites. They studied that the alkali treatment of the fibers improved 

the fiber/matrix interface by enhancing fiber aspect ratio, fiber wetting and impregnation 

and further improved by the action of maleic anhydride grafted polypropylene (MAPP) 

compatibilizer. They obtained a 73% increase in impact properties, 37% increase in 

flexural modulus, 33% increase in the flexural strength and 14% in Vicat Softening 

Temperature at 10 vol% PALF loading and 6mm fiber length in the longitudinally 

oriented composites. 

1.2.8 Ramie 

Ramie, commonly known as China grass, is a flowering plant and belongs to the 

family Urticaceae. Ramie is one of the strongest natural fibers. 
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Ramie fiber reinforced PP composites were fabricated with a hybrid method-

blending and injection molding method [50]. Different fiber loading, fiber length, and 

fiber pre-treatment method on mechanical properties of ramie/PP composites were 

investigated in this study. The results showed that the tensile strength, flexural strength, 

and compression strength increased with fiber length and fiber content increased, 

specifically, the tensile, flexural, and compression strength increased about 45%, 14%, 

and 10% respectively when the fiber loading was 20 wt%, but the impact strength 

decreased, of ramie/PP composites. The optimum fiber loading was observed between 

15-20 wt%.  

The properties of epoxy-silicone oil treated natural ramie fiber reinforced PP 

composites have also been reported [51]. The results showed that this modification 

method improved the compatibility between fiber and matrix but without changing the 

crystalline type of the ramie fiber. Compared to untreated ramie/PP composites, the 

modified ramie/PP achieved better mechanical and thermal properties. 

1.2.9 Coir 

Coir or coconut fiber, is a thick and coarse fiber obtained from the husk of 
coconut. 

The effects of treated coir fiber on the physico-mechanical properties of coir 

reinforced PP composites were reported [52-54]. The coir fiber was treated with o-

hydroxybenzene diazonium salt. The results revealed that the mechanical properties of 

the chemical modified coir fiber reinforced PP composites were much better than those 

untreated one, the tensile, flexural, and impact strength increased at least 6.8%, 8.6%, and 

3.9% respectively, and the optimum set of mechanical properties was achieved at 30 wt% 
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fiber loading. In addition, the treated coir fiber/PP composites obtained a lower water 

absorption compared to untreated one. 

In another study, Rozman et al. [55] investigated the influence of lignin as a 

compatibilizer on mechanical properties of coir fiber/polypropylene composites. The 

results demonstrated that the biocomposites with lignin as a compatibilizer achieved 

higher flexural properties and lower water absorption and thickness swelling compared to 

the neat composites, but there was not a significant change in tensile properties. In 

addition, the results also showed that the fiber size irregularities and fiber distribution 

might dominate the properties of the composites, which might overtake the influence of 

improved compatibility. 

The coir fiber reinforced PE composites also have been reported. Enriquez et al. 

[56] fabricated the high density polyethylene composites with coconut fiber and stearic 

acid (SA) as the coupling agent. The results showed that after SA treated coconut fiber 

improved the mechanical properties and the thermal stability of the composites. It also 

exhibited the better aging resistance of the composites when they were exposed to 

aqueous, acidic, and alkaline environments. Prasad et al. [57] also investigated the effects 

of different fiber loading, fiber treatment, and compatibilizer on properties of coir/low 

density polyethylene composites. The results showed that the mechanical properties of 

composites with alkali and acrylic acid treated fibers decreased. The reason of this 

phenomenon was the alkali treatment removed part of cementing materials from the fiber 

and impurities from the fibers surface and resulted poor fiber/matrix interfacial adhesion. 

On the other hand, the compatibilizer (maleic anhydride grafted polypropylene) did 

improve the mechanical properties and water resistance of the biocomposites. 
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1.2.10 Bamboo     

Bamboo is an evergreen perennial flowering plants and is an abundant natural 

resource in Asia. It is one of the best natural engineering materials in the world. 

Chen et al. [58] studied the mechanical properties of bamboo fiber reinforced PP 

composites. The results revealed that the bamboo fiber reinforced maleic anhydride 

grafted polypropylene (MAPP) composites obtained better interfacial adhesion between 

fiber and matrix compared to the untreated composites. The optimum mechanical 

properties, the tensile strength was 32-36 MPa which was more than three times higher 

than those commercial product and the tensile modulus was 5-6 GPa, of the modified 

composites were achieved at around 50 wt% fiber content.  

Several groups worked on bamboo fiber reinforced PE composites. Han et al. [59] 

investigated the compounding characteristics, clay dispersion, HDPE crystallization, and 

mechanical properties of the bamboo fiber/PP composites. The results showed that by 

adding 5% clay, the storage modulus and loss modulus was obtained the maximum; for 

the composites, the tensile strength increased with the increase of the maleic anhydride 

grafted polyethylene content. In another study, Ren and coworker studied the mechanical 

and thermal properties of HDPE composites reinforced by bamboo pulp fibers (BPF) and 

the comparison between BPF composites and bamboo flour (BF)/HDPE composites [60]. 

The results observed that the optimum mechanical properties of the composites with BPF 

was obtained at 30 wt% fiber content and higher than the composites reinforced with 50 

wt% BF. And the thermal properties of BPF/HDPE composites was better than BF/HDPE 

composites as well.   
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1.2.11 Rice husk 

Rice husk is a byproduct from the rice mill. Because of  their large availability 

many studies have been investigated by using the rice husk as a thermoplastic composites 

reinforcement. 

Permalal et al. [61] investigated the comparison of mechanical properties between 

the polypropylene composites reinforced with rice husk powder (RHP) and talc 

reinforced polypropylene composites. The results showed that the untreated talc 

composites exhibited higher yield strength, Young’s modulus, flexural modulus and 

impact resistance compared to the raw RHP composites. Rice husk/PP composites were 

investigated regarding the effect of compatibilizing agents on biocomposites with various 

fiber loading [62], mechanical and morphological [63]. The results showed that the 

compatibilizing agent (maleic anhydride polypropylene) improved the tensile strength 

and modulus but there was no positive effect on Izod impact strength.  

Rahman et al. [64] also investigated the effect of rice husk size and composition 

on injection molding of the rice husk/high density polyethylene composites. They 

observed that the most proper size as the biocomposite filler was the fiber size between 

250~500 µm, the rice husk improved the mechanical properties of HDPE based 

composites and the optimum impact strength was obtained at 30 wt% rice husk content. 

The thermal stability of the rice husk flour reinforced PP and HDPE composites 

was also investigated [65]. The results showed that the thermal stability of the composites 

decreased with the filler content increased. 
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1.2.12 Oil palm 

Oil palm, Elaeis, contains two species of palm family. Abundance of oil palm has 

the great potential for polymer reinforcement. 

Rozman et al. [66] investigated the flexural and impact properties of oil palm 

empty fruit bunch (EFB) reinforced PP composites. The EFB fiber modified with maleic 

anhydride (MA). The composites with treated EFB exhibited higher flexural and impact 

strength than the one with neat EFB due to there were new chemical bonding between 

fiber and matrix. In another study, Ramli and coworks suggested that the PP composites 

with 30 wt% oil palm fiber loading was the best formulation for biocomposites to obtain 

better young’s modulus, processing compatibility, and good thermal stabilities [67].  

Suradi et al. [68] studied the effects of alkali fiber treatment and coupling agents on 

properties of EFB/PP composites. The alkaline peroxide treatment helped EFB to 

separate lignin and hemicelluloses and it led to improvement of porosity, effectiveness of 

surface charge, and crystallinity index of fibers and addition of maleic anhydride 

polypropylene as coupling agent resulted a better interfacial adhesion between fiber and 

matrix compared to composites with raw EFB. In addition, a comparative study of 

EFB/PP composites and oil palm derived cellulose/PP composites were reported [69]. 

The results suggested that cellulose reinforced composites had a better mechanical 

properties compared to traditional oil palm fibers. 

Oil palm reinforced PE composites was also studied by different groups. Arif et 

al. [70] studied that the effect of EFB fiber shape on the tensile and flexural properties of 

high density polyethylene composites. It showed that the EFB short fiber was the better 

choice compared to particulate system to reinforce HDPE composites on mechanical 
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properties. The tensile strength and modulus, flexural properties had a better performance 

in short fiber system compared to the particulate composites, specifically, the tensile and 

flexural modulus increased up to 50% and 82%, and the flexural strength increased up to 

36%. Moreover, the dynamic mechanical properties of oil palm fiber/linear low density 

polyethylene (LLDPE) composites was investigated [71]. The results showed the storage 

modulus increased as fiber loading increased, the loss modulus also increased with fiber 

content increased except at 10% fiber loading; the glass transition temperature of neat 

LLDPE was increased from -145 ℃ to -128 ℃ when the fiber content was at 40%. 

1.2.13 Bagasse 

Bagasse is the fibrous matter that remains after sugarcane stalks are crushed to 

extract their juice. 

Luz et al. [72] investigated that the effect of different processes on producing the 

bagasse fiber reinforced PP composites. Compared to compression molding process, the 

injection under vacuum provided a better performance for processing the biocomposites. 

This method led to composites with homogeneous distribution of fibers and without 

blisters. Although poor interfacial adhesion was observed between fiber/matrix, the 

mechanical properties of composites was improved by bagasse fiber. 

The influence of various fiber treatment methods on the mechanical properties of 

bagasse fiber reinforced PP composites was also investigated [73]. The isocyanate, 

acrylic acid, mercerization, and alkaline solution were applied to bagasse fiber in order to 

improve the fiber/matrix interface. The results showed that the composites with fiber 

using mercerization treatment was achieved the better mechanical properties which the 
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storage modulus increased about 59%. The optimum results were obtained with the 

composites with 12 wt% mercerized bagasse fiber. 

In another study, Darabi et al. [74] evaluated that the high density polyethylene 

composites reinforced with bagasse fiber after accelerated weathering followed by 

biodegradation. The results proved that bagasse fiber did reduce the discoloration of 

weathered composites. Although bagasse fiber reinforced HDPE composites obtained 

high resistance ability to against biological attack, the weathering triggers attack by 

termites and fungi on the surface and caused surface quality decreased. 

1.2.14 Lignin 

Lignin is a natural polymer based on phenylpropane derivatives and is found in 

wood and other lignin cellulosic materials. It is one of the most abundant biopolymer on 

earth. 

The effect of lignin reinforced PE and PP on physical properties was studied [75]. 

The composites with lignin loading up to 30 wt% were prepared by extrusion molding. 

The results showed that the tensile strength decreased with lignin content increasing was 

very similar for both lignin/LDPE and lignin/PP composites. Toriz et al. [76] studied the 

effect of the coupling agent on mechanical properties of biocomposites. Maleic anhydride 

grafted polypropylene as a coupling agent improved strength properties especially at high 

lignin loading. It also showed that the flexural and tensile modulus were slightly 

improved. 
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1.2.15 Agave fiber 

Recently, plant-based byproducts, such as agave fibers, have has received 

considerable attention from the industry sector. As the world's leading automobile 

manufacturing enterprises, Ford researched the use of sustainable materials for their 

vehicles since 2000 [77]. Currently, Ford uses eight bio-based materials in their vehicles, 

including soy foam, kenaf fiber, cellulose, wood, coconut fiber, rice husk, castor oil, and 

wheat straw. Today, Ford is exploring agave-based parts for every single vehicle in their 

fleet. Agave fiber comes from Agave Americana, belonging to the Agavaceae family, and 

the fibers used are a co-product of agave tequila production [78]. Similar to other natural 

fibers, agave fibers are light, low cost, and reproducible [79]. Despite abundance of agave 

fibers and desirable properties of agave fiber-based composites, there is only limited 

published information on agave fiber-based polymer composites. Singha and Rana 

studied the effects of different fiber concentrations and surface modification on 

mechanical properties of polystyrene (PS)/agave-fiber composites. Their investigations 

revealed that PS composites reinforced with 20% fiber loading by weight exhibited the 

best mechanical properties and that the mechanical properties of biocomposites 

reinforced with modified fibers were superior to those reinforce with raw fiber [6, 80]. 

Moscoso et al. reported that with PS and agave-fiber composites and foams the specific 

stiffness and strength where enhanced[81]. In another study, Pérez-Fonseca investigated 

the effect of hybridization of two natural fibers on the mechanical properties of high-

density polyethylene-(pine/agave) composites and observed that the addition of agave 

fibers improved the mechanical properties of the composites [82]. Several fiber 

pretreatment methods have been reported; for instance, López-Bañuelos and Moscoso 
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reported on rotational molded agave fiber/linear medium density polyethylene 

composites, where alkali was used to pre-treat the agave fibers [79]. The outcomes of the 

study concluded that the composites reinforced with treated fibers exhibit a slightly 

higher tensile, compression, flexural and impact strength than the one with raw fibers, 

specifically, the tensile and flexural modulus increased up to 65% and 21%, and the 

tensile and flexural strength did not change significantly. A.A. Pérez-Fonseca and C. 

Gómez reported another chemical treatment method. They discovered the composites of 

high-density polyethylene and agave fibers coated with chitosan exhibited high 

adsorption capacity. The high adsorption ability could make the composites as a good 

treatment material of contaminated effluents [83]. The study concluded that composites 

reinforced with treated fibers exhibited slightly higher tensile, compression, flexural and 

impact strength than composites reinforced with raw fibers. When maleated polyethylene 

(MAPE) was used as the matrix and dry-blended with agave fibers, an increase in several 

mechanical properties (impact, tensile and flexural strength and tensile and flexural 

modulus) was reported [84, 85]. Corral et al. [86] investigated plasma treatment to 

improve adhesion between agave fiber powder and polyethylene matrix, reporting an 

increase of 21.7% in Young’s modulus over composites with untreated filler.  In general, 

short agave fibers (< 3 mm) exhibit better adhesion with epoxy resin matrices [78]. 

1.3 Summary 

Extensive studies were carried out and introduced in the literature and reviewed in 

this paper, showing the great possibilities of using natural fiber to enhance the 

thermoplastics. In this study, we investigated the properties of biocomposite films 

containing different fiber loading ratios in linear low-density polyethylene (LLDPE), 
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high-density polyethylene (HDPE), and polypropylene (PP) matrices. Composite films 

with various agave fiber contents (up to 30 wt%) were prepared by extrusion molding and 

their mechanical and thermal properties were studied. This study evaluated the use of 

agave fibers that were not pretreated in order to determine if “raw” fibers could be used 

to effectively as fillers to enhance mechanical properties.  The only pretreatment that was 

studied was washing to remove residual sugars.  It is envisioned that these sugars could 

be used to produce additional co-products through fermentation. 
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CHAPTER 2 

MODIFICATION OF NATURE FIBERS 

Low cost, easy to process, and ease of recycling are the main advantages of 

natural fibers. Many studies have reported that natural fiber reinforced polymer-based 

composites. A good fiber/matrix interface bond is critical for composites with high 

mechanical properties. However, the high moisture absorption and lack of adhesion 

between fiber and polymer matrix are the major disadvantages of nature fibers. 

Therefore, natural fibers modifications are the important methods to improve the 

properties of the composites. There are two main methods to modify the natural fibers, 

physical modifications and chemical modifications. 

2.1 Physical modifications 

Physical methods involve stretching [1], calendaring [2], thermos-treatment, 

electronic discharge (corona, plasma), and the production of hybrid yarns. The purposes 

of physical modifications are changing the structure and surface properties of the fibers 

without changing their chemical composition. Physical treatments improve the interface 

adhesion between fiber and matrices by increased physical bonding in the composites.  

2.1.1 Corona treatment  

Corona treatment is a surface oxidation activation techniques. The corona 

discharge treatment results that the fiber and matrix adhesion improved by increasing of 

the fiber surface energy by introducing polar groups on the surface [3]. Corona treatment 
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is an effective method to improve the compatibility between hydrophilic fibers and 

hydrophobic matrix [4]. 

Pizzi et al. investigated that the properties of composites of natural fibers and 

resin matrices [5]. The flax and hemp fiber mats were treated by corona method and the 

optimum length and time (10 mins) of corona treatment determined to improve the 

mechanical properties of the biocomposites. After the corona treatment, the fibers were 

shown a rougher surface because of the raising surface layers compared to untreated 

fibers. In addition, it was proven that the modulus of elasticity tensile property was 

increased up to 67% with increasing the corona treatment time while the tensile break 

force decreased.  

Ragoubi et al. reported that the effect of corona treated hemp fiber on mechanical 

properties of PP based composites [6]. Fibers were treated in a corona discharge 

treatment device based on a dielectric barrier technique for 15 mins. The results proved 

that the property of composites with treated fiber was improved about 30% in Young’s 

modulus. 

2.1.2 Plasma treatment 

As another physical treatment, plasma surface modification removes the current 

contaminants on the surface and improve the surface energy to make the surface more 

suitable for further processing. Plasma treatment can be used to treat surfaces of various 

materials before any coating and bonding processes.  

The effects of plasma treatment on the performance of wood fiber/PP composites 

has been reported [7]. A radio-frequency generated cold plasma system was used to 
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modify the pine wood fibers for 30s. The results proved that the surface roughness of 

wood fiber increased after plasma treatment and the higher interfacial contact and better 

mechanical interlocking improve the tensile strengths and modulus of wood fiber/PP 

composites.  

Sever et al. [8] studied that the effects on mechanical properties of HDPE 

composites reinforced with oxygen plasma treated jute fibers. The jute fibers treated by 

two different plasma systems, low frequency (LF) and radio frequency (RF), at various 

plasma powers (3, 60, and 90 W) for 15 mins were observed. In general, RF plasma 

treated jute fiber/HDPE composites achieved the best improvements in mechanical 

properties. The optimum parameter for oxygen plasma treatment was plasma power at 90 

W for 15 mins. 

Flax fibers were treated in different atmospheric plasma systems (argon and air) 

under various plasma powers to increase the interface adhesion between the flax fiber and 

HDPE matrix. The composites with treated fibers was obtained higher interlaminar shear 

strength value and a rougher surface compared to the composites with untreated fibers. In 

addition, a new functional group (O-C=O) were observed on the flax fiber surface [9]. 

2.2 Chemical modifications 

The goal of chemical modification of natural fibers is improving the adhesion 

with the polymer matrix. The chemical composition of natural fibers include cellulose, 

hemicellulose, lignin, pectin, waxes, and moisture. The chemical composition of various 

natural fibers are shown in Table 1 [10]. There is large amount of hydrophilic group in 

cellulose which leads the natural fiber hydrophilic properties. The hydrophilic nature of 
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natural fibers causes poor interface between natural fiber and matrix [11]. Chemical 

treatments may activate hydroxyl groups or introduce some new groups that can enhance 

the bonding between fibers and the matrix. Basically, the functions of chemical coupling 

agents are activating the hydroxyl groups of cellulose in the fiber and the functional 

groups of the matrix. 

Table 1. Chemical composition of various natural fibers [10] 

Fiber name Cellulose 
(%) 

Lignin 
(%) 

Hemi-
cellulose (%) 

Wax 
(%) 

Moisture 
(%) 

Abaca 56-63 7-9 20-25 3 - 
Agave fiber 68.42 4.85 4.85 0.26 7.69 

Bamboo 26-43 1-31 30 - 9.16 
Coir 37 42 - - 11.36 
Flax 64.1-71.9 2.0-2.2 64.1-71.9 1.7 8-12 

Hemp 70.2-74.4 3.7-5.7 17.9-22.4 0.8 6.2-12 
Jute 61-71.5 11.8-13 17.9-22.4 0.5 12.5-13.7 

Kenaf 45-57 21.5 8-13 0.8 6.2-12 
Oil palm 65 17.5 10.12 4 - 
Ramie 68.6-91 0.6-0.7 5-16.7 - - 

Rice husk 38-45 - 12-20 - - 
Sisal 78 8 10 2 11 

 

2.2.1 Alkaline treatment 

Alkaline treatment or mercerization in one of the most widely used chemical 

treatment for natural fibers when used to reinforce polymers. The modification of 

alkaline treatment is the disruption of hydrogen bonding in the network structure, thus 

increasing surface roughness. This treatment reduces the amount of lignin, wax and oils 

covering the external surface of the fiber cell wall [12]. The reaction of sodium hydroxide 

with natural fiber is shown below: 

Fiber-OH + NaOH → Fiber-O-Na + H2O 
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Huda et al. [13] investigated the effect of alkali treatment of pineapple leaf fiber 

on interfacial and mechanical properties of poly(lactic acid) (PLA) based composites. 

They found that alkali-treated fiber reinforced composites exhibited excellent mechanical 

properties including higher storage modulus and flexural modulus compared to the 

composites with untreated fiber. It was also found that with modified fiber surfaces, the 

interfacial properties of the composites improved significantly. 

2.2.2 Silane treatment 

Silane is an inorganic compound with chemical formula SH4. Silane coupling 

agents are known as efficient coupling agents widely used in composites and adhesive 

formulations. This type of agents is used as adhesion promoters or substrate primers 

which offer strong adhesion. 

Xie et al. [14] reported that in the case of aminosilanes, the amino groups cannot 

react with the hydrocarbon backbone of PP or PE, however, the natural fibers and 

thermoplastic-based composites modified with APS was exhibited a better mechanical 

properties than untreated composites. 

Cantero et al. [15] studied that the effects of various fiber treatments on 

wettability and mechanical properties of the flax/PP composites. The maleic anhydride 

(MA), maleic anhydride-polypropylene copolymer (MAPP) and vinyl trimethoxy silane 

(VTMO) were used as coupling agents in this research. They observed that the 

composites with MAPP treated fibers achieved the highest mechanical properties, 

meanwhile there was no significant change in the value of composites containing the MA 

and VTMO treated fibers compared to the untreated one.    
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2.2.3 Maleated coupling 

Maleated coupling agents are extensively used to enhance natural fibers 

reinforced composites. Compared to other chemical modifications, maleic anhydride 

(MA) can be used to modify both the fiber surface and the polymer matrix to obtain 

better interfacial adhesion between fiber and matrix and improve the mechanical 

properties of composites. There are plenty of studies related to this topic especially for 

PE or PP based composites reinforced with natural fibers. 

Yang et al. [16] reported the effect of MAPP coupling agents on rice-husk flour 

reinforced PP composites. The tensile strength and modulus were improved with the 

addition of MAPP coupling agent while there was no significant change on Izod impact 

strength. The morphological study also proved the positive influence of the coupling 

agents on interfacial adhesion. 

Gassan et al. [17] investigated the effect of MAPP modification on fiber/matrix 

bonding in jute fiber reinforced PP-based composites and on the material properties. It 

obtained that a strong interface is connected with a higher dynamic modulus and 

reduction in stiffness degradation with increasing load cycles and applied maximum 

stresses due to using MAPP modified the fiber surfaces. Moreover, the loss-energy for 

non-penetration impact tested composites reduced about 30% because of the better 

fiber/matrix interface. Mohanty et al. [18] also reported using MAPP as a coupling agent 

for fiber modification on properties of jute/PP composites. It observed that the 

mechanical properties of treated composites were improved due to better fiber matrix 

adhesion. 
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 In addition, Liu et al. [19] investigated that the properties of abaca (banana) fiber 

reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. 

Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-

MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to improve the 

interfacial adhesion between fiber and matrix. The results showed that using SEBS-g-MA 

as coupling agents modified abaca fibers obtained a positive influence on the Nylon-6 

component in the composites. The effect of MA treated various fibers (including banana, 

hemp and sisal fibers) reinforced polymer composites was reported [20]. The MA as the 

coupling agent reduced the water absorption and steam absorption to a significant extent. 

The MA modified composites obtained a greater mechanical properties including 

Young’s modulus, flexural modulus, hardness and impact strength. 

2.2.4 Acetylation 

Acetylation is a widely studied modification method of cellulosic fibers to make 

them more hydrophobic. Acetylation is to react with hydroxyl groups of fiber to change 

their hydrophilic properties to more hydrophobic. 

Bledzki et al. [21] investigated the effect of acetylation on properties of flax fiber 

reinforced PP composites. The results showed: 1) the flax fiber surface morphology 

improved significantly after the acetylation; 2) the moisture absorption properties 

decreased with increased of acetyl content of fiber; 3) before the acetyl content was 18%, 

the degree of polymerization slowly decreased with increased degree of acetylation, after 

18% acetyl content, the polymerization decreased rapidly; 4) the thermal stability 

improved with increasing the acetylation degree; 5) compared to untreated composites, 
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the tensile and flexural strengths of composites with acetyl treated fiber increased with 

increasing the acetyl content up to 18%.  

Favaro et al. [22] reported that the effects of acetyl treated sisal fiber reinforced 

recycled HDPE composites. For sisal fiber surface modification, the fibers were treated 

with NaOH solution then acetylated with acetic acid and sulfuric acid. The results 

showed that the flexural and impact properties of composites with both treated and 

untreated fiber were improved. Nonetheless, this modification was not good for oxidation 

of the HDPE.  

The influence of acetylation on properties of cellulose and cellulignin fibers from 

bagasse reinforced PP composites was studied [23]. However, for this study, acetylation 

was not a good modification method for cellulose and cellulignin fibers from sugarcane 

bagasse. The acetylation changed the morphology of fibers, led to agglomerates with 

globular form. The results revealed that the mechanical properties of the acetylation of 

fibers reinforced composites decreased.  

2.2.5 Enzyme technology 

Enzyme technology is becoming more popular, especially for modifying textile 

and natural fibers. It has various benefits involving environmental friendly, the reactions 

catalyzed are very specific with a focused performance as a result, cost reduction, energy 

and water saving [24]. 

The properties of enzyme treated abaca fiber reinforced PP composites was 

investigated [25]. The fibers were treated by fungamix and natural enzyme. After 

modification, the fiber surface became smooth compared to the surface of untreated fiber. 
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The tensile strength of the composites with enzyme treated fibers increased 5-45%. The 

moisture absorption of the treated composites was reduced. The modified fiber reinforced 

composites also exhibited a better acid and base medium resistance. The MAPP coupling 

agent modified abaca fiber composites was also studied in this research. The enzyme 

treated abaca composites showed a comparable or better performance in moisture 

absorption, mechanical and rheological properties compared to the MAPP treated 

composites. 

2.3 Modifications of agave fiber 

Like the other natural fibers, the agave fiber contains cellulose, hemi cellulose, 

lignin, wax, ash etc. and the cellulose dominates the chemical composition of it. In order 

to obtain a better interfacial bonding between the fiber/polymer matrices, it is necessary 

to modify the fiber. Currently, there are limited studies and publications on agave fiber 

reinforced polymer-based composites, especially on agave fiber modifications. Based on 

those published studies, alkali treatment [26, 27] and maleated treatment [28, 29] were 

the common chemical modification methods for agave fiber. Other chemical method such 

as graft copolymerization of methyl methacrylate onto agave fiber [30] and coated with 

chitosan [31] were also investigated. In addition, Corral et al. [32] reported the effect of 

plasma treatment of agave fiber power on properties of PE composites. All those 

researches proved that modification of agave fiber had the positive influence on the 

performance of the biocomposites.  
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2.4 Summary 

Various studies showed the importance of the modification of natural fibers to 

improve the interfacial properties of the composites. For those physical treatments, they 

may create a hydrophilic or hydrophobic fiber surface by changing the surface energy, 

without changing the hygroscopic characteristics of fiber, to improve the interfacial 

adhesion in the composites. Chemical modifications are more and more popular than 

physical methods. The alkaline treatment, silane treatment, and maleated coupling agents 

are the most commonly used chemical treatments. Compared to the physical treatments, 

the chemical modifications may make the fiber walls more dimensionally stable, reduce 

water sorption, or increase resistance against fungal decay, however, there may be an 

associated reduced dynamic strength such as impact strength due to embrittlement [14]. 

Furthermore, the cost of chemical treatment is higher than physical treatment and 

disposal of chemical after modification should be concerned. 
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CHAPTER 3 

AGAVE FIBER REINFORCED THERMOPLASTIC FILMS 

In this chapter, agave fiber reinforced thermoplastic composite films were 

prepared using extrusion molding method and their mechanical and thermal properties 

were investigated. The linear low-density polyethylene (LLDPE), high-density 

polyethylene (HDPE), and Polypropylene (PP) are selected as matrices. In this study, the 

fibers and matrices were mixed directly and no coupling agent was used to produce the 

composites. The study presented in this chapter is submitted for publication. 

3.1 Experimental  

3.1.1 Materials 

Polymer matrices were created using LLDPE, HDPE or PP, all in pellet form. The 

LLDPE had a melt flow index of 20 g/10 min at 190 °C and a density of 0.925 g/cm3 

(ExxonMobil Chemical Corporation, Texas). The HDPE had a melt flow index of 20 

g/10 min at 190 °C and a density of 0.952 g/cm3 (Chevron Phillips Chemical Company 

LP, Texas). The PP had a density of 0.868 g/cm3 (Formosa Plastics Corporation, Texas). 

Agave fibers were obtained from Byogy Renewables, Inc. 

3.1.2 Preparation of agave fibers 

Agave fibers and water were placed in a 70-liter tank (Feldmeier Equipment, 

INC., USA) at a 2:3 (solid:liquid) volume ratio. The solution was heated to 70 °C and 

stirred for 24 hours, the fibers were then removed from the water using a filter. This wash 

cycle was repeated 6 times. After the washing cycles, the agave fibers were laid onto 
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drying trays, the thickness of the layer of fibers was less than 1.5" and dried at 105 °C for 

18-24 hours. Figure 1 shows photo of Feldmeier 70-liter tank (a) and agave fiber during 

the wash treatment. Figure 2 shows photo of the raw agave fiber before (a) and after (b) 

wash treatment. The washing removed the residual sugars in the fiber and the dust on the 

surface, which resulted in the color of the agave fibers after washing as seen in a lighter 

color compared to the raw fibers.  

 

 

 

 

 

 

Figure 1. Photos of (a) Feldmeier 70-liter tank and (b) agave fiber during the wash 
treatment 
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Figure 2. Agave fibers: (a) before and (b) after washing treatment; SEM images 
of agave fibers: (c) 1 mm, (d) 200 µm; fiber diameter varies: (e) and (f) 50 µm; Surface 

roughness of agave fiber: (g) 50 µm, and (h) 20 µm. 
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3.1.3 Test for density stop 

The density of the agave fiber was determined by the ethanol displacement 

method. The fibers were completely submerged in ethanol and the volumetric 

displacement was measured.  

3.1.4 Preparation of biocomposite film 

Polymers and agave fibers were blended in a Leistritz 27mm co-rotating twin-

screw extruder. The extrusion temperatures parameters of compound processing are 

detailed in Table 2. In total, four agave fiber compositions were integrated: 0, 5, 10, 20 

and 30 wt%. The screw speed was set to 225 RPM. When blending was complete, the 

extrudates were pelletized. Table 1 also details the temperatures of the Brabender 18mm 

single extruder from the feeder to the die for creating films. The screw speed was set to 

75 RPM. Figure 3 shows images of all film samples. 

Table 2. The extrusion temperature (℃) parameters of extrusion for compounding and 
films 

The extrusion temperature(℃) parameters of extrusion for compounding (twin screw extrude) 
Heating 

zone 
1 

(feeder) 
2 3 4 5 6 7 8 9 10 11 

(die) 
 

Resin 
LLDPE 70 160 165 170 175 180 170 175 170 165 165 
HDPE 70 165 170 175 170 185 185 180 175 170 165 

PP 70 170 195 200 210 215 215 210 205 200 190 
The extrusion temperature(℃) parameters of extrusion for films (single screw extruder)  

Heating 
zone 

1 
(feeder) 

2 3 4 5 
(die) 

 
Resin 

LLDPE 90 165 180 175 165 
HDPE 90 175 185 180 170 

PP 90 150 190 180 180 
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Figure 3. Images of agave fiber reinforced thermoplastic composite films. a-d), LLDPE 

reinforced with agave fiber at 0 wt%, 5 wt%, 10 wt%, 20 wt% and 30 wt%; f-j), HDPE 
reinforced with agave fiber at 0 wt%, 5 wt%, 10 wt%, 20 wt% and 30 wt%; k-o), PP 

reinforced with agave fiber at 0 wt%, 5 wt%, 10 wt%, 20 wt% and 30 wt%. 

 

 

3.2 Characterization 

3.2.1 Scanning electron microscopy 

The morphology of the prepared fibers and the cross-sections of the biocomposite 

films were investigated using SEM (NeoScopo, JCM-6000 Benchtop SEM). Before SEM 

measurements, the samples were freeze-fractured with liquid nitrogen to reveal cross-

sections. 
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3.2.2 Mechanical analysis 

Tensile test was conducted with a DMA machine, which was using a Mettler 

Toledo instrument, model DMA 1. All measurements were performed at room 

temperature (25 °C) at a force rate of 0.5 N/min. The thickness of the film was measured 

at three positions for each sample. The thickness of the film varied depending on the 

extrusion molding conditions. The thickness of biocomposite films with LLDPE, HDPE 

and PP resins are 0.41-0.63 mm, 0.34-0.54 mm and 0.31-0.47 mm respectively. The 

length and width of all samples were 10 mm and 2 mm. 

3.2.3 Differential scanning calorimetry (DSC) 

DSC was conducted using a Mettler Toledo polymer differential scanning 

calorimeter. The samples of both LLDPE and HDPE with agave fiber were heated from 

25 °C to 150 °C at a rate of 10 °C /min. The samples of PP/agave fiber were heated from 

25 °C to 200 °C at a rate of 10 °C /min. 

3.2.4 Fourier-transform infrareds 

FT-IR spectra of bio-filler reinforced thermoplastic films were recorded using a 

Perkin-Elmer FT-IR Spectrometer in the range of 4000-650 cm-1. 
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3.3 Results and Discussion 

Different types of biocomposite films were prepared and the elastic modulus, the 

melting point, and the fiber-matrix interface were characterized for each sample. The 

density of agave fiber is 1.348 g/cm3 and the length of agave fibers are between 3 to 7 

mm. the length distribution of fibers was not investigated in this studied. 

3.3.1 Morphology 

The SEM of a single agave fiber is seen in Figure 2. The fiber diameter and 

surface morphology for different fibers have been studied. Agave fiber has a visibly 

rough surface and varying diameter.  

Prior to SEM analysis, the films were fractured following an axis perpendicular to 

the extruding direction. Figure 4 shows SEM cross-sectional images of PP: agave fiber; 

LLDPE and HDPE with agave fiber are similar. Fig. 4(a) is the PP control group film.  

Fig. 4(b, c, d, e) and (f) show the variations of fibers in the polymer matrix for 80:20 

wt% PP-agave fiber film. The cross-sectional of agave fiber is shown in Fig. 4(e) and (f). 

This image shows random morphology and distribution of agave fibers in the polymeric 

blends. In Fig. 4(c), it is apparent that there are three voids at the bottom part of the 

image. These voids are likely air bubbles. One explanation for their presence is that 

although those pellets were went through the drying process for more than 24 hours, there 

was still a small amount of moisture, less than 0.34%, in the pellets. The moisture could 

cause the steam during the extrusion processing. The steam could be trapped in the film 

as well. 
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Figure 4. Cross-sectional SEM micrographs of PP/agave fiber films: (a) PP control 
group, (b)-(f) PP:agave fiber 80:20 wt%. 
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3.3.2 FT-IR analysis of polymeric films 

FT-IR spectroscopy was used to examine the interactions between the thermoplastic 

matrix and the agave fibers. Figure 5 (a) shows the FT-IR spectra of pure agave fibers, an 

LLDPE control group, and a 80:20 wt% LLDPE:agave fiber composite. FTIR spectrum of 

pure agave fiber showed a broad peak at 3331 cm-1, which was due to the stretching 

vibrations of hydroxyl groups from the cellulose in the agave fiber. The peak at 2923 cm-1 

was assigned to C-H group. The peak at 1732 cm-1 was corresponding to the C=O group 

of hemicellulose, waxes, pectin, and lignin [2]. The peak at 1616 cm-1 was due to H-O-H 

group stretching of absorbed moisture and for lignin C-H deformation. The peak at 1517 

cm-1 was due to the lignin aromatic ring vibration and stretching. The milder peaks at 1375 

cm-1 to 1427 cm-1 were attributed to -CH, -CH2-, or -CH3 groups [3]. The peak at 1317 

cm-1 was due to the –CH group from the cellulose. The peak at 1238 cm-1 was assigned to 

C-O-C and C=O groups of lignin [4]. The peak at 1028 cm-1 was attributed to C-O 

stretching vibrations of the cellulose. The peak at 893 cm-1 was due to –β glycosidic linkage 

of the agave fiber [3]. 

The LLDPE control group showed peaks at 2915 cm-1 –2849 cm-1, 1473 cm-1 –

1463 cm-1, and 730 cm-1 –719 cm-1. These variations where the peaks at 2915 cm-1 –2849 

cm-1, 1473 cm-1 –1463 cm-1, and 730 cm-1 –719 cm-1,are assigned to the symmetrical 

stretching vibration of the C–H bonds. However, the LLDPE composites reinforced with 

agave fibers exhibited additional peaks: 1) a broad peak between 3600 cm-1 and 3200 cm-

1 was due to the –OH group in the cellulose of agave fiber; 2) the peak at 1712 cm-1 was 

assigned to C=O group of hemicellulose; 3) the peak at 1614 cm-1 was due to H-O-H 

stretching; 4) the peak at 1376 cm-1 was attributed to –CH2– group; 5) the peak at 1271 
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cm-1 was due to C-O-C stretching; 6) the milder peaks at 1165 cm-1 and 1125 cm-1 were 

attributed to O-C-O asymmetric stretching of the cellulose; 7) the peak at 998 cm-1 was 

assigned to C-O stretching vibrations of the cellulose.  

Figure 5 (b) shows the spectra of pure agave fiber, an HDPE control group, and a 

80:20 wt% HDPE:agave fiber composite. The results for HDPE composites were similar 

to those for the LLDPE composites. Compared to the neat HDPE, there were several 

additional peaks exhibited in the composites. The explanations of those additional peaks 

were the same as the LLDPE composites. 

Figure 5 (c) shows the spectra of agave fiber, neat PP, and a 80:20 wt% PP:agave 

fiber composite. Both neat PP and the PP composites showed four peaks in the wavenumber 

range between 3000 cm-1 and 2800 cm-1: the peaks at 2950 cm-1 and 2868 cm-1 were 

assigned to –CH3 asymmetric and symmetric stretching vibrations, respectively; the peaks 

at 2918 cm-1 and 2839 cm-1 were caused by –CH2 asymmetric and symmetric stretching 

vibrations, respectively [5-7]. The peak at 1456 was assigned to –CH2– or –CH3 groups, 

while the peak at 1376 cm-1 was caused by –CH3 groups. Various small peaks also appeared 

in the wavenumber range between1200 cm-1 and 700 cm-1: the peak at 1168 cm-1 was 

attributed to C–C, –CH3 and C–H groups. The peak at 998 cm-1 was assigned to –CH3 

groups, while the peak at 973 cm-1 was attributed to –CH3 or C–C groups. The peak at 841  

cm-1 was assigned to the –CH2– group [7]. However, the PP composites reinforced with 

agave fibers showed additional peaks: 1) a broad peak between 3600 cm-1 and 3200 cm-1 

was due to the –OH group in the cellulose of agave fiber; 2) the peak at 1712 cm-1 was 

assigned to C=O group of hemicellulose; 3) the peak at 1610 cm-1 was due to H-O-H 

stretching; 4) the peak at 1376 cm-1 was attributed to –CH2– group; 5) the peak at 1275 
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cm-1 was due to C-O-C stretching; 6) the peak at 1166 cm-1 was attributed to O-C-O 

asymmetric stretching of the cellulose; 7) the peak at 998 cm-1 was assigned to C-O 

stretching vibrations of the cellulose; 8) the peak at 900 cm-1 was due to –β glycosidic 

linkage of the agave fiber.  

From the FT-IR spectrum, neither LLDPE, HDPE, nor PP composites have new 

chemical bonds at the interface between polymer and fiber. 

3.3.3 Mechanical properties 

Tensile test was conducted with a DMA machine. Based on the stress-strain curves 

obtained, Figure 6 shows the elastic modulus (E) and Figure 7 shows yield stress (σ) of 

the thermoplastic control group films and composites films. The physical and mechanical 

properties of all agave fiber and biocomposite films are summarized in Table 3. It is seen 

from Table 3 that for LLDPE, neat LLDPE films exhibited elastic modulus of 88.4 MPa 

whereas LLDPE composites reinforced with agave fibers exhibited an elastic modulus of 

241.5, 266.7, 370.7 and 324.2 MPa at 5 wt%, 10 wt%, 20 wt% and 30 wt% fiber loading 

respectively. Similarly, for HDPE, neat HDPE exhibited an elastic modulus of 435.1 MPa 

while HDPE composites reinforced with agave fibers exhibited an elastic modulus of 617.6, 

657.6 736.0 and 640.3 MPa at 5 wt%, 10 wt%, 20 wt% and 30 wt% fiber loading 

respectively. Moreover, it has been observed that PP control group films exhibited an 

elastic modulus of 560.4 MPa whereas PP composites showed an elastic modulus of 766.7, 

829.7, 882.7 and 738.8 MPa when reinforced with agave fibers at 5 wt%, 10 wt%, 20 wt% 

and 30 wt% respectively. 
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Figure 5. FT-IR spectra of agave fiber reinforced thermoplastic-based composite films: 

(a) LLDPE with agave fiber, (b) HDPE with agave fiber, (c) PP with agave fiber. 
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Figure 6. Elastic modulus (E) of biocomposite films 

 
Figure 7. Yield stress (σ) of biocomposite films 
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Figure 7 shows the yield stress (σ) of LLDPE, HDPE and PP composites reinforced 

with agave fibers.  The results from Figure 7 and Table 3 show that the yield strength of 

agave fiber reinforced LLDPE films increased with fiber loading increased and the highest 

yield strength was achieved at 20 wt%. For the HDPE reinforced with agave fiber, 

compared to the neat polymer the yield strength of composites with all fiber contents was 

improved and the highest yield strength was achieved at 30 wt%. For agave fiber reinforced 

PP composites, the highest yield strength was achieved when the fiber loading was at 30 

wt%. However, the yield strength decreased when the fiber loading were at 5 wt% and 10 

wt%, compared to neat polymer. This might be because of it was not ensured that there 

were enough fibers forming a 'network' to reinforce the composites, when the composites 

was at a lower fiber content. Specifically, neat LLDPE film exhibited a yield strength of 

1.7 MPa while LLDPE composites reinforced with agave fibers exhibited yield strength of 

2.0 MPa, 2.1 MPa, 3.5 MPa and 3.3 MPa at 5 wt%, 10 wt%, 20 wt%, and 30 wt% fiber 

loading, respectively. Similarly, neat HDPE film exhibited a yield strength of 3.8 MPa 

whereas HDPE composites reinforced with agave fibers exhibited yield strength of 5.1 

MPa, 4.8 MPa, 5.4 MPa and 5.8 MPa at 5 wt%, 10 wt%, 20 wt%, and 30 wt% fiber loading, 

respectively. In addition, neat PP film exhibited a yield strength of 8.1 MPa while PP 

composites reinforced with agave fibers exhibited yield strength of 6.1 MPa, 7.0 MPa, 9.0 

MPa and 9.1 MPa at 5 wt%, 10 wt%, 20 wt%, and 30 wt% fiber loading, respectively. 

In addition, the specific yield strength was also investigated and the results was 

shown in Table 3. The neat LLDPE film exhibited a specific yield strength of 1.83 

kN∙m/kg while LLDPE composites reinforced with 20 wt% agave fibers loading achieved 

the highest specific yield strength of 3.55 kN.m/kg; compared to the neat LLDPE film, 
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the specific yield strength of LLDPE composites was increased with fiber loading 

increased. The HDPE film exhibited a specific yield strength of 3.99 kN.m/kg whereas 

HDPE composites reinforced with 30 wt% agave fibers loading achieved the highest 

specific yield strength of 4.03 kN.m/kg; the specific yield strength of with all the fiber 

contents composites was improved compared to the neat polymer. Moreover, compared 

to the neat PP film, the PP composites reinforced with 20 wt% agave fibers exhibited the 

highest specific yield strength of 9.63 kN.m/kg. 

3.3.4 Thermal analysis 

The samples of thermoplastics and composites reinforced with agave fibers were 

subjected to heating, cooling and second heating cycles in DSC analysis to determine the 

variations of samples’ melting temperature (Tm). The DSC results are shown in Figure 8. 

There are no significant changes in Tm between control groups and composites. 

Table 3. Mechanical properties of biocomposite films 

 Fiber 
ratio 

(wt%) 

Elastic 
modulus 

(MPa) 

Standard 
deviation 
numbers 

Yield 
stress 
(MPa) 

Standard 
deviation 
numbers 

Specific 
yield 

strength 
(kN∙m/kg) 

 
LLDPE:agave 

fiber 

0 88.4 9.29 1.9 0.51 1.83 
5 241.5 27.16 2.0 0.15 2.13 

10 266.7 41.65 2.1 0.06 2.09 
20 
30 

370.7 
324.2 

46.55 
43.64 

3.5 
3.3 

0.35 
0.29 

3.55 
3.23 

 
HDPE:agave 

fiber 

0 435.1 50.83 3.8 0.06 3.99 
5 617.6 42.58 5.1 0.10 5.28 

10 657.6 68.23 4.8 0.47 4.89 
20 
30 

736.0 
640.3 

82.06 
56.38 

5.4 
5.8 

0.64 
0.12 

5.34 
5.68 

 
PP:agave fiber 

0 560.4 40.04 8.1 0.51 9.33 
5 766.7 118.18 6.1 0.23 6.90 

10 829.7 40.73 7.0 0.65 7.78 
20 
30 

882.7 
738.8 

48.31 
113.43 

9.0 
9.1 

0.76 
1.17 

9.63 
9.36 
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Figure 8. Melting temperatures of biocomposites 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

4.1 Conclusion 

Biocomposite films made of thermoplastic (LLDPE, HDPE and PP) matrices and 

agave fiber reinforcement were successfully prepared in order to investigate the effect of 

fiber addition on chemical structure and mechanical and thermal properties. The level of 

fiber loading was varied between 0 and 30 wt%. SEM images of the freeze-fractured 

biocomposite samples revealed a good distribution of the agave fibers. Compared to 

control films, the elastic moduli of composites reinforced with agave fibers exhibited 

improvement as fiber content increased. . The highest elastic modulus was observed 

when the fiber concentration was at 20 wt%. For LLDPE composites, the highest yield 

strength was observed when fiber loading was at 20 wt%; for HDPE and PP composites, 

the highest yield strength was observed when fiber concentration was at 30 wt%. The 

specific strength of agave fiber reinforced biocomposite film was also investigated and it 

was observed that the specific yield strength of LLDPE, HDPE, and PP reinforced with 

agave fiber was improved. However, the interfacial adhesion between bio-fillers and 

matrices was poor. The FT-IR spectra suggested that the bonding between fibers and 

matrices was solely physical and no chemical interaction occurred. Because there were 

no new chemical bonds created, the thermal properties of the composites were dominated 

by the matrix resin. The melting temperature of biocomposites did not change 

significantly by the addition of agave fibers compared to neat thermoplastic films. The 

results combining mechanical and thermal properties of biocomposites showed that agave 
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fibers have a great potential as an excellent substitutable nature filler for thermoplastics 

reinforcement and the composites with 20 wt% fiber loading was the optimum 

formulation.  

4.2 Future work 

In the current study, we have successfully manufactured agave fiber reinforced 

thermoplastic-based composite films, which achieved a significant improvement in 

mechanical properties compared to those neat thermoplastics. In the future, there still has 

lot of works to do on study of composites with agave fiber. 

1) Modification of fibers and polymer matrix 

Although good mechanical properties were obtained in this study, poor 

fiber/matrices interfacial bonding was observed by both SEM and FTIR investigations. 

To achieve a better mechanical and thermal properties, we should treat the fiber surface 

and modify the polymer matrix. Based on the extensive studies, it suggested that the 

alkali treatment [1, 2] and maleated treatment [3, 4] methods are more efficient for 

modifying the agave fiber reinforced composites. 

2) Study on the durability of biocomposite films 

The agave fiber reinforced composites have been got the attention from the 

industry, the industrial giant, like Ford motor company [5], have tried to use this 

sustainable material to replace those conventional petroleum-based polymer parts. As a 

very practical research, the durability of the material is important. In the future, we could 

investigated the reliability of the biocomposites including the UV durability, accelerating 

aging test, corrosion resistance, and so on. 
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3) Other possible modification works on agave fiber reinforced composites 

Owing to the nature of agave fiber and polymers, some odor would associate with 

the final products. Eliminated the odor will make the bio-products more environment 

friendly.  
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