
Graduate Theses and Dissertations Graduate College

2016

Strategies for including cloud-computing into an
engineering modeling workflow
Sunil Suram
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted
for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Suram, Sunil, "Strategies for including cloud-computing into an engineering modeling workflow" (2016). Graduate Theses and
Dissertations. 15217.
http://lib.dr.iastate.edu/etd/15217

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/15217?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Strategies for including cloud-computing into an engineering modeling workflow

by

Sunil Suram

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mechanical Engineering

Program of Study Committee:
Kenneth M. Bryden, Major Professor

Arne Hallam
Richard A. Lesar

Mark Mba-Wright
Abhijit Chandra

Iowa State University

Ames, Iowa

2016

Copyright © Sunil Suram, 2016. All rights reserved.

ii

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... iv

LIST OF TABLES ... vi

ACKNOWLEDGEMENTS ... vii

CHAPTER 1. GENERAL INTRODUCTION .. 1
 1.1 Introduction ... 1
 1.2 Dissertation Organization ... 4
 References ... 6

CHAPTER 2. INTEGRATING A REDUCED-ORDER MODEL SERVER
INTO THE ENGINEERING DESIGN PROCESS ... 7

 Abstract ... 7
 2.1 Introduction ... 8
 2.2 Background .. 10
 2.3 Proposed Engineering Workflow ... 17
 2.4 Design of the ROM Server .. 30
 2.5 Application to Heat Exchanger Fin Shape Design .. 40
 2.6 Conclusions and Future Work ... 54
 Acknowledgement .. 56
 References ... 56

CHAPTER 3. A DISTRIBUTED SYSTEMS APPROACH TO ENGINEERING
MODELING ... 59

 Abstract ... 59
 3.1 Introduction ... 60
 3.2 Background .. 66
 3.3 Problem Description .. 74
 3.4 Methodology .. 77
 3.5 Architecture ... 91
 3.6 Example Application: Cookstove Preliminary Design 94
 3.7 Discussion and Results .. 98
 3.8 Conclusions and Future Work ... 106
 References ... 106

iii

CHAPTER 4. A NOVEL APPROACH TO INTEGRATE A COMPONENT ROM
INTO A DISTRIBUTED ENGINEERING SYSTEM MODEL 110

 Abstract ... 110
 4.1 Introduction ... 111
 4.2 Workflow ... 121
 4.3 Improved Workflow... 124
 4.4 Example Application ... 135
 4.5 Discussion and Results .. 139
 4.6 Conclusions and Future Work ... 143
 References ... 143

CHAPTER 5. CONCLUSIONS AND FUTURE WORK ... 145
 5.1 Conclusions ... 145
 5.2 Future Work ... 150

iv

LIST OF FIGURES

 Page

Figure 2.1 Workflow in an engineering design .. 11

Figure 2.2 Workflow developed utilizing the ROM server 19

Figure 2.3a Single producer and consumer information transfer 26

Figure 2.3b Data synchronization between multiple producers and consumers 26

Figure 2.3c Synchronization with ROM server ... 27

Figure 2.4 Main components of the ROM server architecture 34

Figure 2.5 Schematic diagram of the fins ... 40

Figure 2.6 Single fin being modeled .. 43

Figure 2.7 Initial design space of heat-exchanger designs 46

Figure 2.8 Timeline of various producer consumer interactions during the
 design process ... 47

Figure 2.9a Velocity profile ... 48

Figure 2.9b Temperature profile .. 48

Figure 2.10a Velocity disttribution .. 49

Figure 2.10b Temperature distribution .. 49

Figure 2.11 Variation of singular value spectrum with number of models 50

Figure 3.1 Stateless model that implements RK4 integration 71

Figure 3.2 An example of a task workflow.. 76

Figure 3.3 Federation management system ... 81

Figure 3.4 Timeline of interactions between a model and the FMS 82

Figure 3.5 Example of a message contract .. 85

v

Figure 3.6 Representation of the Model and the Model SDK 90

Figure 3.7 Architecture of the distributed system to compose computational models 92

Figure 3.8A Coupled zonal models of cookstove system .. 97

Figure 3.8B The geometrical design variables .. 97

Figure 3.9 Flow of component models within the federated system of models 98

Figure 4.1 Workflow in engineering design .. 112

Figure 4.2 Information artefact ... 116

Figure 4.3 Workflow developed utilizing the ROM server 122

Figure 4.4 Improved workflow with the information artefact 126

Figure 4.5 Poisson equation on a square domain with boundary conditions 128

Figure 4.6 Flowchart showing the steps the FMS takes for model substitution 131

Figure 4.7 Data flow of mdoels and design parameters .. 133

Figure 4.8 Single fin considered in the design problem .. 137

Figure 4.9 Timeline of computations and user interactions with the federated
 system of models .. 140

Figure 4.10 Interaction between producers and consumers with

information artefacts ... 141

Figure 4.11 Evolution of singular value spectrum with number of detailed models . 141

Figure 4.12 Evaluations of temperature and velocity .. 142

vi

LIST OF TABLES

 Page

Table 2.1 Representative shape designs ... 43

Table 3.1 Examples of API endpoints and their functionality 88

Table 3.2 Component models with their inputs and outputs...................................... 99

Table 3.3 Design variables for the cases .. 105

Table 3.4 Efficiency and time comparison of monolithic model with the
 system of models .. 105

Table 4.1 Contents of an example message that enables model substitutability 129

Table 4.2 Relative computational time and computation type................................... 134

Table 4.3 Inputs and outputs to the substitutable models .. 137

vii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Mark Bryden for his guidance and patience

during my graduate studies. Without his vision, mentorship and, help, it would not have been

possible to conceive of and implement several of the ideas in this dissertation. I would also

like to thank my committee members Dr. Richard LeSar, Dr. Abhijit Chandra, Dr. Mark

Mba-Wright and Dr. Arne Hallam for their input.

Needless to say, the completion of this dissertation would not have been possible

without the infinite patience and support of my wife Mukta. To my daughter Mishika, who

wondered where papa was during the last few months, lots of love and looking forward to

many new beginnings with her. To my parents Umamaheswaram and Jayabhagya Suram and

my sister Ragini, for their unconditional love and support over the years.

Many thanks to Saurav for his friendship. I would also like to thank my family and

friends for their love and support.

Several quotes have kept me going over the years and this one by Mark Twain is one

of my favorites’, “Never let your schooling interfere with your education.”

1

CHAPTER 1. GENERAL INTRODUCTION

1.1. Introduction

With the advent of cloud computing, high-end hardware is now universally accessible on

an on-demand basis. Consumer and enterprise applications are being re-architected to utilize this

new way of computing. The fields of engineering modeling and computational science have

utilized cloud computing primarily as a pool of computing, storage, and networking resources

that can be added and removed as needed (Vöckler et al. 2011, K. Jorissen et al. 2012). Most of

the research within engineering and scientific computing has thus focused on using the cloud as a

less expensive alternative to purchasing hardware and comparing its performance with traditional

compute clusters. However, there are other cloud computing opportunities for building novel

engineering and scientific analysis, visualization, and data management applications.

With the on-demand availability of cloud computing resources, it has become easier to

build and run detailed computational models to solve engineering problems (Iosup et al., 2011,

Jorissen et al. 2012). As a result, massive amounts of data is created from computational fluid

dynamics (CFD), finite element analysis, and other computational techniques (Liu et al. 2015).

However, these models have high computational costs and are of limited use for engineering

analyses that require a relatively quick turnaround for detailed engineering as well as a rapid

turnaround for performing “what-if” analysis during conceptual and preliminary design. Thus

today the demands for an iterative engineering workflow are largely unmet despite advances in

computing capabilities. Additionally, there is a need for non-traditional data sources and models

to be seamlessly coupled with engineering models using cloud computing platforms.

In this dissertation, engineering modeling is considered from the perspective of Internet-

based applications running on a cloud infrastructure as opposed to a monolithic software or code

2

written to solve a specific engineering problem. From this vantage point, this dissertation seeks

to reframe the question “how are detailed models used in engineering design and decision

making?” to the question “how should engineering workflows be able to utilize models given the

present day cloud platforms?” When asked this way, it is clear that detailed models need to be

deployable in such a way that they can be used directly in the design and decision-making

process. Additionally, this cloud-based engineering workflow must reduce the amount of work

and complexity for the producers of the models, the system builders who today use the

computational results (often as reduced order models), and the consumers of the systems models.

Thus, engineering decision-making entails the following requirements:

1. The models and data developed for an engineering application should be deployed as an

Internet based service.

2. The models used in the design process should be easily composable into complex

systems of models capable of answering critical engineering questions. That is, models

should be able to be invoked as and when needed.

3. These models must be readily publishable by their developers for use in systems models

and analyses.

4. Models must be able to exchange information with each other via an intermediary service

and must be able to join a federation of models in order to solve a larger set of problems.

5. To reduce the time needed to compute an answer from a detailed model, hybrid models

consisting of detailed computational models and reduced order models (ROMs). ROMs

should be constructed on-the-fly in a manner that is transparent to the user and

compatible with systems modeling.

3

6. Engineering teams should be able to substitute one model in a system of models for

another model (with more or less detail or information) without disrupting the system of

models.

Implementing these principles requires a fundamental change in the current modeling and

design paradigm. In today’s modeling and design paradigm

x Most detailed models enter the design and decision making process as a single piece of

information (e.g., the maximum stress on a component, the maximum temperature, etc.),

a conclusion (e.g., the optimal thickness), qualitative guidance to be used in conjunction

with engineering judgment; or after a set of detailed reviews, a reduced order model in

larger systems model.

x When a detailed model is needed the starting point is often an entirely new model.

x The creation of a large, complex systems model requires the development of a global

ontology, a set of coupling protocols that is accepted and used by model builders at their

points of interaction between the models.

This dissertation proposes a novel engineering workflow that addresses the first two

aspects of the current modeling and design paradigm by

1. Developing a framework using which engineers can use stateless computational models

as services running on the Internet. Utilizing this framework, multiple constituent models

can be linked together to create more complex, composite engineering models.

2. Creating hybrid models (information artifacts) composed of detailed models and reduced

order models (ROMs) that are transparent to the user and system analysts.

The ability to choose between multiple compatible models and substitute one for the

other on-the-fly, although clearly possible from the framework developed here, is not

4

demonstrated. In addition, the question of ontological and semantic independence is not

addressed in this dissertation but is left for future research efforts.

1.2. Dissertation Organization

This dissertation consists of five chapters with chapters 2, 3 and 4 formatted as journal

articles focusing on the methodology and results from this research work. Chapter 2 has been

published in the journal Advances in Engineering Software, and chapters 3 and 4 will be

submitted for peer review in the same journal.

Chapter 2 discusses a methodology developed to utilize data generated from high-fidelity

models to construct ROMs and incorporate them into an iterative engineering design workflow.

As a part of this, the article introduces the concept of a ROM server and describes in detail its

ability to enable seamless communication between the consumers of detailed analysis (the

engineering designers and decision makers) and the producers of detailed analysis (the analysts).

It also clarifies the roles of producers of the models and the consumers of the results of the

models and uses the ROM server as the point of interaction between them. Several cases with

varying number of producers and consumers of engineering data are considered, and an analysis

is presented that demonstrates the efficiency of the ROM server. This framework is then

demonstrated using the engineering design of the shape of heat exchanger fins.

Chapter 3 introduces the concept of federations of web-enabled models that can be

assembled and managed via the federation management system (FMS). Within this architecture

each of the constituent models is an independent web-based model service accessible via a web

API using integration protocols chosen by the model developer. The developed modeling

architecture is a decentralized system at its core where constituent models are treated as

independent functional units that solve a particular problem. The constituent models are also

5

required to publish their input and output data formats. This is in essence a micro-service

architecture. In addition, the models are stateless i.e., they do not persist state beyond the

duration of the computation that is being performed, which allows their easy reuse by the same

system model or another system model. Thus the user has the ability to choose individual models

and link them with one another, and the FMS ensures that they are invoked and executed in the

intended sequence. This approach is a departure from the traditional “library” approach where a

monolithic piece of code is used to integrate several software libraries to solve a specific

engineering problem. Finally, this federated model framework is demonstrated by solving the

problem of linking individual models in the design of small wood-burning cookstoves.

In chapter 4, the concepts introduced in chapters 2 and 3 are combined to create a hybrid

modeling element (information artefact) that includes both a detailed model and a ROM of the

detailed model. This hybrid model can be utilized as a web-based model service and is available

to be included as a single information artefact in a federation of models. That is, the user and/or

the system simply calls the model and receives the result in the same way as any other web-

enabled model within the federation. The creation and maintenance of the ROM and the choice

of using the detailed model or the ROM are handled by the hybrid model with constraints

provided by the FMS. This logic is introduced into the FMS as a set of substitutability rules,

which are defined by a system builder and given to the FMS. This framework is demonstrated

using the heat exchanger design problem used in chapter 2.

Finally, chapter 5 summarizes the results and then discusses the potential of this research.

It also points to future areas of research and a broad set of opportunities where further

investigation is needed.

6

REFERENCES

J. Vöckler, G Juve, E Deelman, M Rynge and G. B. Berriman, 2011. Experiences Using Cloud
Computing for a Scientific Workflow Application, Proceedings of the 2nd international
workshop on scientific cloud computing, pp 15-24, ACM New York, NY, USA.

K. Jorissen, F.D. Vila and J.J. Rehr, 2012. A high performance scientific cloud computing

environment for materials simulations, Computer Physics Communications, vol 183, issue 9,
pp 1911-1919.

A. Iosup, S. Ostermann, et al., 2011. Performance Analysis of cloud computing services for

many-tasks scientific computing, IEEE Transactions on Parallel and Distributed Sytems, vol.
22, no. 6, pp. 931-945.

J. Liu , E. Pacitti, P. Valduriez, M. Mattoso, 2015. A Survey of Data-Intensive Scientific

Workflow Management, Journal of Grid Computing, Dec. 2015, vol. 13, issue 4, pp 457-493.

7

CHAPTER 2. INTEGRATING A REDUCED-ORDER MODEL SERVER INTO THE

ENGINEERING DESIGN PROCESS

Modified from a paper published in Advances in Engineering Software, (90), 2015

Sunil Suram and Kenneth M. Bryden*

Abstract

 Engineering design is a complex and iterative process that involves multiple engineering

teams sharing and communicating information during the design process. One aspect of

engineering design involves the development of physics-based models and their analysis via

numerical simulations that are computationally expensive. To overcome the time constraints due

to the complexity of numerical simulations, reduced-order models (ROM) such as proper

orthogonal decomposition are being increasingly used. Decreasing the simulation time, however,

does not address the inefficiencies in communicating engineering models and analysis during the

design process. This paper proposes developing and incorporating a ROM server into the design

workflow. The ROM server stores all data associated with a given engineering model and

automatically constructs a ROM every time a model is created or updated, thus maintaining a

consistent version of information across multiple engineering teams. A common engineering

workflow is compared with one using a ROM server. A cost of synchronization metric has been

defined based on the parameters of data size, size of the engineering team and design iterations.

This metric has been evaluated and compared for the cases with and without a ROM server and it

was found that the cost of synchronization is lower when a ROM server is used in the design

workflow. It is shown that as the team size increases, the ROM server helps with more efficient

8

information storage and transfer. Finally, an example problem of a heat-exchanger fin shape

design is used to demonstrate the ROM server framework.

2.1. Introduction

Engineering is increasingly dependent on modeling and simulation for design,

optimization, and many other engineering decision-making tasks. With increasing computational

capabilities it has become easier to run large-scale, physics-based high-fidelity simulations and

analyze various physical phenomena. Examples of these simulation techniques include

computational fluid dynamics (CFD), finite element analysis, and molecular dynamics. Often

this involves discretizing the domain into a finite number of grid points and solving the

governing, coupled partial differential equations over the discretized domain. Resolving physical

phenomena at these levels of fidelity is time-consuming, and the computational complexity is a

function of the number of grid points considered, the complexity of the geometry, and the

physics represented by the equation set. As a result, running the numerous “what-if” scenarios

needed to support a simulation-based engineering and design process is often computationally

prohibitive.

To overcome this limitation, various data-driven reduced-order modeling techniques have

been developed. Data-driven reduced-order modeling relies on first creating a collection of

computational solutions to construct a set of basis functions. These basis functions are then used

to make evaluations of the reduced-order model (ROM) in lieu of using the original large-scale

physics-based computational model (Samadiani et al., 2010; Everson et al. 1995; My-Ha et al.,

2007; Sakurai et al., 2006). One reduced-order modeling technique is proper orthogonal

decomposition (POD). POD-based ROMs have been used in a number of engineering and

scientific applications, including fluid mechanics (Suram et al., 2008; Tan et al., 2003; My-Ha et

9

al., 2007; Astrid, 2004) and solid mechanics (Zhou and Hitt, 2011). For example, Suram et al.

constructed a ROM based on CFD simulations of flow through a mixing nozzle (Suram,

McCorkle and Bryden, 2008). Samadiani et al. reviewed design methodologies for data-center

server thermal management based on the POD method (Samadiani and Joshi, 2010). Willcox et

al. developed an inverse design technique based on a POD technique for incomplete data (Bui-

Thanh, Damodaran and Willcox, 2004). Zhou et al. used POD to analyze turbulent flow

structures in a reacting jet (Zhou and Hitt, 2011). Du et al. have incorporated the POD technique

into a finite difference scheme and have analyzed the errors after applying this unified scheme to

develop a ROM for a chemical vapor deposition reactor (Du et al., 2011). The generality of the

POD methodology also makes it useful in any field that involves studying and analyzing patterns

of data that have been collected either computationally or experimentally. One interesting

example where POD-based ROMs have been used with experimental data is in Chen et al. where

the authors have analyzed bat flight kinematics from data collected from video samples (Chen,

Kostandov et al., 2009). In engineering design, the focus of POD is to reduce the time to run the

computational models within the engineering workflow. That is, the high fidelity models are

created and are then used to create the ROM. The ROM is then used in the design process.

Within this process it is often assumed that the ROM creation process is a linear and static

process and that design exploration, optimization, and decision-making wait for the creation of

the ROM. And that once the ROM is created, it does not change. However, engineering design is

a dynamic process of exploration and consideration of multiple design options within a broad

analysis space. Because of this, detailed high fidelity computational modeling is often delayed

until the design is nearing completion. Pushing this detailed modeling forward in the design

process has the potential to reduce costs and improve designs, but it requires a framework in

10

which the existing computational results can be utilized and updated while the analysis process

proceeds. That is, the analysts and engineers need a common framework that enables a shared

design-analysis workflow.

To meet this need, this paper proposes a client-server based architecture to build and

evaluate POD-based ROMs in which the inputs from multiple engineers and analysts are

incorporated and managed as a part of a dynamic and shifting engineering design process. This

ROM server enables independent insights obtained by the designers and analysts within each

iteration of a design to be used to improve successive iterations. In addition, integrating the

various steps into a cohesive workflow enables faster, more consistent, and more predictable

information sharing within the engineering design team, which may result in shorter more

effective design cycles.

2.2. Background

Engineering design is an iterative decision making process in which collaborative groups

of designers and engineers work together from the conceptual design to a final product. Many

engineering design workflows have been proposed but most of these are similar to Figure 2.1

(Pahl et al., 2007; Ertas et al., 1996). As shown in Figure 2.1, the design process is composed of

three main stages; (1) problem definition, (2) engineering design, and (3) design validation and

verification. The engineering design stage can be thought of as consisting of three phases:

conceptual design, preliminary design, and detailed design (Pahl et al., 2007; Ertas et al., 1996).

During conceptual design engineers explore the design space through the generation of concepts

that then are filtered using the constraints defined for the problem. Following conceptual design,

preliminary design further refines these concepts to one design. During the detailed design phase

the chosen design is optimized and finalized. High fidelity modeling offers the power to improve

11

and support creative engineering design in the exploration of ideas, which occurs during the

conceptual design and preliminary design phases. But because of the time and expense required

to develop, execute, and process these high fidelity models, they are typically used primarily

during the detailed design phase. In contrast to the task oriented approach to the development of

high fidelity models, engineering

Figure 2.1. Workflow in an engineering design.

design is an iterative process in which the designers typically move back-and-forth between the

conceptual, preliminary, and detailed design phases with relatively quick consideration and

analysis of multiple designs, repeated iterations and expansions of proposed solutions, revisiting

assumptions and decisions, and a series of design changes. Once completed a reduced set of

designs are chosen for further verification and validation using additional analysis and field data.

This can lead to changes to the initial design, thus requiring a repeat of the design stage. The

exploratory and iterative nature of engineering design makes the process of communicating

engineering information and analysis during the design stage between various engineering teams

challenging.

12

 2.2.1. Proper Orthogonal Decomposition

 This section provides a brief discussion of the POD technique, which is needed to

understand the implementation of the ROM server. Readers desiring a more detailed discussion

of the POD technique are referred to (Kirby, 2001). The POD technique is used to find a set of

optimal truncated orthogonal basis functions from a set of snapshot solutions. These snapshot

solutions are solutions that span the space of interest. In engineering design these are typically

from numerical simulations of the system or phenomena of interest. Within the space defined by

the set of snapshot solutions, a solution vector, , can be found using a set of basis functions,

 ui .

1

D
i

isol
i

x a u

 ¦ (2.1)

where D is the dimension of the truncated vector space and the ai are the coefficients that are

used to compute the POD approximation for a given set of basis functions.

To find the optimal set of truncated basis functions needed for the ROM, the first step is

to generate a dataset of M snapshot solutions that span the engineering design space of interest.

The snapshot solution dataset is then centered by computing and subtracting the mean of the

dataset from each snapshot. The mean-subtracted M snapshots are then concatenated in a single

ensemble matrix, XN M , where N is the size of each snapshot and M is the number of snapshots.

Once the ensemble matrix is assembled, the POD basis functions are computed from the

covariance of the ensemble matrix using singular value decomposition. The coefficients are then

found by projecting the POD basis functions onto the original ensemble matrix.

For a given ensemble matrix the basis functions are constant, and the coefficients are

associated with the design space that was explored by the dataset of snapshot solutions used to

13

create the ensemble matrix. To evaluate a design for a set of parameters that are not a part of the

dataset of snapshot solutions but are within the initial design space covered by the analysis,

linear interpolation is performed on the coefficients as shown in Eq. (2.2). For example, if the

coefficient vector, at a given design parameter vector, such that have to be

evaluated, is given by Eq. (2.2). The POD approximation is then computed using the

interpolated coefficients as described in Eq. (2.1).

 � � � �
� �1

*
*

1
k k k

k
q q q

k k

q q
a a a a

q q�
�

�
 � �

�
 (2.2)

The accuracy of the ROM is dependent on the number of terms used in the POD expansion and

is determined by Eq. (2.3). Ei is the “energy” of the POD expansion and si represents the ith

singular value. It is called the energy because the singular values are equal to the square of the

corresponding eigenvalues of the covariance matrix (Kirby, 2001).

i
i

i

sE
s

¦

 (2.3)

Thus the singular values of the covariance matrix Xcov can be used to determine if sufficient data

is included in the initial snapshot set and to determine the accuracy of the ROM. For a design

engineer evaluating a ROM, the singular value spectrum can serve as a useful guide to determine

if there is sufficient information to make an engineering decision before proceeding to the next

step in the design process. If the total energy captured by the dominant singular values is within

the acceptable range of error, it can be concluded that the ensemble matrix has captured

sufficient information. If this is not the case the ensemble matrix needs to be expanded with

more information. The error of the ROM is a function of the number of models chosen to

14

construct the ensemble matrix that is dependent on the energy captured by the singular value

spectrum (Kirby, 2001).

The POD technique is useful because it captures all the required information about the

phase space of a given physical problem. When using it to solve an engineering design problem,

this information can then be used in conjunction with the coefficient interpolation technique to

explore the design space in a computationally efficient manner. This process can be summarized

as follows:

x Identify the design parameters and design space of interest

x Create the computational data needed for the snapshot dataset that spans the design

space of interest

x Create the POD coefficient and basis functions

x Make the POD ROM available for use

x Use the POD ROM to compute new solutions as needed to support the engineering

design process

If the design space to be explored needs to be expanded or new aspects of the problem

need to be explored, the snapshot dataset will need to be expanded and a new POD ROM will

need to be developed. Additionally, the accuracy of the POD ROM increases as the number of

snapshot solutions increases. Thus as the design process evolves and more accurate solutions are

needed, the POD ROM will likely need to be updated in regions of the design space of particular

interest.

The iterative nature of the design process and the continuing update of the ROM creates a

communication challenge within the design and analysis team. To evaluate a ROM, the most

recent set of coefficients and the basis functions need to be known by the user. If a user is

15

geographically in a different region or a part of a different engineering team interested in

evaluating the ROMs or analyzing the results, this information has to be made available to them.

Updating the ROM manually via email or download for local compute makes it challenging to

ensure that the most recent ROM is used and that disparate members of the design group are

using the same ROM. Furthermore, providing local access to this data for multiple users may not

be possible. It is also likely that multiple POD ROM models would be used to address a large-

scale complicated design problem, and a process is needed to coordinate the development and

use of these multiple POD ROM models. This creates problems with management of data and

version control. The ROM may remain on a single computational machine or may be exported to

remote machines for simultaneous use. If it is kept on a single machine, access is limited because

only one ROM computation can be performed at a time. If it is exported, maintaining version

control of the ROM becomes difficult and different groups having conflicting or out-of-date

information can slow the design process. In the next few sections we propose an engineering

workflow to overcome these challenges and enable the seamless utilization of ROMs within the

engineering design process.

2.2.2. Reduced-order modeling within traditional engineering design workflows

In a typical design workflow the design engineers identify the parameters of interest

within the proposed design space. The analysts then computationally model the physical

phenomena, verify and validate the models, and run the computer simulations needed. If ROMs

are being used, the set of computer simulations is used to create the ROMs. The ROMs are then

used to explore design space and optimize the design. Overall the creation of the model and the

ROM is linear and unidirectional. This contrasts with the dynamic, exploratory nature of the

16

design process. The issues posed by working in a traditional batch compute paradigm to create

the ROM include

x To work independently, the consumers of information have to make their own copies

of the data. This imposes an inherent bottleneck in the collaborative process.

x If a producer of information makes changes to a computational model or design

parameter, the consumers must explicitly synchronize their copies of the data to get

the updated information.

x A part of this manual synchronization also involves the manual regeneration of the

ROM.

x The creation of the snapshot solutions and the design proceed in series rather than in

parallel, and hence analysis process and the design engineering process cannot inform

each other of critical decisions and information in real time. Rather, the design waits

for the analysis and the analysis waits for the design.

Thus, each of the activities involved are decoupled from one another, resulting in a discontinuous

workflow and complicating the task of managing and effectively utilizing computational data.

One solution to the coordination and communication problem posed by the incorporation

of high fidelity analysis in the design process is to develop a client-server based engineering

design workflow. A client-server architecture has one central computer node acting in the role of

a server. Clients connect to this server to request information or use the server's hardware

resources to perform a computational task. Once this task is performed information is returned

back to the client, completing the transaction. This is a centralized architecture, which implies

that the global state needs to be maintained only on one node. This makes the maintenance of a

single server relatively straightforward. Because the client typically does not perform the heavy

17

computations, this architecture has the advantage that small form-factor clients (e.g., tablets and

other mobile devices) can be developed to perform specific design engineering tasks. Based on

this, this paper presents a client-server based architecture to support the integration of high-

fidelity modeling using POD ROM modeling into the engineering design workflow.

2.3. Proposed Engineering Workflow

As noted earlier, the engineering design process is a dynamic, information-rich process

that brings together many disciplines to create a product or solution that addresses a given set of

needs within a complex and constrained design space. Within this space computational models

and information are created and used by varying groups at varying times. Within this simulation-

based engineering design environment a workflow that simplifies the creation, use, and update of

the ROMs and enables various engineering groups to share this information easily is needed.

Figure 2.2 shows the proposed engineering design workflow in which a ROM is included as a

natural part of the design process. As shown, the ROM server is central to all the interactions at

various stages of the engineering design process. The computational models created and updated

and the solutions explored during the design process are all stored in the ROM server. The

solution sets generated are utilized to build the reduced-order models that the ROM server

publishes for use by various teams. During the design and analysis stages, changes to design

parameters, computational constraints, changes to geometry, and other changes can all be stored

in the ROM server, which periodically reconciles this data to generate an updated lower-

dimensional approximation. Various engineering groups can then use this database of

computational models during the different stages of the design process to perform engineering

tasks. For example, a CFD analyst can analyze a flow field and a design engineer can work on

optimizing shape while yet another engineer can extend the design space by adding more

18

computational models to the database, all doing so simultaneously. In the same way, a design

engineer can request that the ROM be extended or improved in a specific way. These interactions

are marshalled by the ROM server in such a way that the producers and consumers of

computational data have a consistent view of the current state and the requests for new or

improved information, and they have access to the same data.

Several researchers have referred to the collection of computational results that are

utilized to construct the POD basis functions as a “database” (Suram et al., 2008; Tan et al.,

2003; My-Ha et al., 2007; Astrid, 2004; Gunzburger, 2002; Kerschen et al., 2005). Although in

the strict sense of the word this collection of computational results is a database, from the

perspective of database systems it is missing several key components.

19

Figure 2.2. Workflow developed utilizing the ROM server.

It is not accessible to multiple users simultaneously and requires local access to all the

data to perform evaluations. In addition, a database system addresses the issues of accessing the

database, performing computations, and running optimization problems remotely across a

computer network. In the cases cited here, the POD-based ROM evaluation process is a batch

process (i.e., the computer program reads the necessary input data, computes the POD

approximation for the given input, writes the output to a file and then exits). When the POD

approximation needs to be computed for a different set of design parameters, the computer

program is restarted. The same also applies to cases where computational datasets are added to or

deleted from the ROM database. In these cases the entire database has to be recreated to account

20

for these changes and the POD basis functions have to be recomputed. Each user must then

manually update their work, and as the number of users increases the cost of synchronization

also increases. In a collaborative team environment this manual synchronization of data and

information is a slow and inefficient process. Furthermore, because the run-time of a ROM is

much quicker than that of a high-fidelity computational model, running ROMs as a batch process

does not allow for efficient sharing of computational information and the fast computations

associated with them.

Because a data-driven ROM relies on a computational database, it is an excellent

candidate to be treated as a database of engineering data that users can access remotely via a

computer network. One way to achieve this is through the use of server-based architecture that

manages the ROM process as a part of the engineering design process. Central to this proposed

architecture is the ROM server. As shown in Figure 2.2, the ROM server provides access to the

ROM to all the producers and consumers of the engineering models. The ROM server is

accessible over a computer network so ROM computations and analysis can be performed

independently by all the consumers simultaneously without involving data copying and manual

synchronization. The key activities the ROM server needs to provide are

x Management and storage of the data—A group of analysts can be involved in

generating the computational snapshots required, based on the needs of the design

engineers. This information is used as input to the ROM server, which manages all

the computational data and ensures that it is available to other consumers as needed.

This requires a mechanism that enables long-term persistence and storage of the data

which enables users to access it when required. When an analyst updates this

database, the ROM server needs to seamlessly trigger the computational processes

21

that recompute and update the necessary ROM parameters. The updated ROM

parameters can then be made available to the engineers, analysts, and decision-

makers involved in the engineering process.

x Managing the ROM creation and update process—After the snapshots for the

ensemble matrix are computed the ROM server needs to collate the snaphots and

compute the basis functions and coefficients for the reduced-order model. At this

point the server should be ready and listening for client requests to perform ROM

evaluations. When a producer updates the ROM database, the data is updated on the

persistent storage immediately. However, the recompute of the ROM parameters must

be carried out when no users are utilizing the ROM server resources. This is to ensure

availability of the service during peak times when multiple engineers might be

utilizing the ROM data for analysis.

x Enabling interactive use and exploration using the ROM—With data management,

storage and the ROM creation processes in place, the constructed ROMs need to be

usable by multiple engineers within the organization. Thus, being able to perform

ROM evaluations based on user requested input is a critical component of the ROM

server. In addition to computing the ROM for a given set of input parameters, the

ROM server can also evaluate requests for the singular value spectrum, principal

axes, and the projections of field variables on the dominant principal axes where each

of these can be part of the analysis of the physical phenomenon being studied.

Another integral piece of design space exploration is the ability to perform

engineering optimization utilizing the ROM, which the ROM server must be capable

of supporting with an appropriate client that incorporates the optimization algorithm.

22

Because all the data from the aforementioned analyses can be visualized, the ROM

server can have the capability to create the outputs needed to support the design

process.

x Maintaining version control—Many engineering organizations are geographically

dispersed with engineers working across multiple time zones. Thus it is important that

geographically distributed engineering groups have up-to-date access to the

engineering data. When the ROM database is updated, the users automatically receive

the updated model parameters from the ROM server, thus providing a unified version

of all computational data across all the users in an organization. This ensures that

once the model parameters are updated, all users have the exact same information.

The ROM server is capable of synchronizing this information seamlessly, which

eliminates the cost of explicit data synchronization between the users.

In the proposed engineering workflow the analysts and design engineers are better

integrated into the overall engineering design process and can exchange information with greater

ease. Real-time synchronicity enables the production and consumption of information

independently and helps breakdown the sequential and unidirectional flow of information

associated with batch processing.

2.3.1. Synchronization of data

Section 2.3 introduced the notion of producers and consumers of data and information in

the context of the engineering design process. When a subset of the data changes due to an

update from an information producer, other producers as well as consumers need to synchronize

their copies of data to ensure that their engineering decisions are made based on the latest

information. Thus when information needs to be exchanged between multiple producers and

23

consumers, a cost can be computed based on the information to be exchanged so that all the

engineers have access to up-to-date information; this is the cost of synchronization, D . The cost

of synchronization includes the costs of data exchange, computation, and the associated user

costs. In this context, the data exchange cost refers to the time that is needed to move data from

one computer to another (i.e., a larger volume of data leads to higher data exchange costs).

Computational cost is the time taken to perform a computation on a specified dataset. It is a

function of the type of computation and size of data. User cost is the communication time

between users of engineering data for either requesting or notifying other users about an update

to the data. Because this is an asynchronous form of communication between users, it includes

the lag between the intent and the time the action is actually performed. The asynchronous forms

of communication include but are not limited to email, phone conversations etc. In distributed

engineering teams the user synchronization cost can be high and difficult to estimate. In this

section several cases are outlined that determine the cost of synchronization between multiple

producers and consumers considering various amounts of information exchanged when a ROM

server is not used. Comparisons are then made to the corresponding cases when a ROM server is

used to emphasize the decrease in user costs due to the utilization of a central data repository for

engineering data and computations.

The types of data that need to be synchronized between a consumer and a producer using

a POD-based ROM can be the entire ensemble matrix, the coefficients in conjunction with the

basis functions, and the covariance matrix, each of which is essential for either the producer or

the consumer to have the ability to evaluate an engineering model or make an engineering

decision. Each has a different cost of synchronization and can be expected to follow the

following inequalities

24

 cov
D D
D D

�

�
X X

UA
 (2.4)

where X is the original ensemble matrix, covX is the covariance matrix, A is the coefficient

matrix and U represents the basis functions. By synchronizing the covariance and coefficient

matrices, covX and A , respectively, the user can develop ROMs but can only access the initial

snapshot models at a lower accuracy. On the other hand, having the entire ensemble matrix X ,

which has a higher cost of synchronization, one can recreate the basis functions U and

coefficients A in addition to accessing the initial snapshot models at the same accuracy that they

were created at. Thus Eq. (2.4) signifies the trade-offs that can be made in order to balance the

data exchange cost and accuracy of the ROM.

Furthermore, there can be multiple design iterations among the producers and consumers

adding to the data synchronization cost because it requires that the information exchange be

repeated among the producers and consumers. Thus, enabling synchronicity in design enables

engineers to exchange information easily, makes design cycles shorter, and boosts the quality of

designs by allowing deeper design space exploration. The remainder of this section examines the

cost of data synchronization for each of these scenarios.

2.3.2. Producer-consumer synchronization

To develop the concept of synchronization cost further, we consider the case of a single

producer and a single consumer, as shown in Figure 2.3a. The producer has the ability to modify

computational models and generate the ROM, whereas the consumer utilizes the ROM to

perform further analysis and model evaluation. The consumer can either (a) get the entire

ensemble matrix X from the producer, (b) get a copy of the covariance matrix covX from the

producer, or (c) get only the necessary coefficients A and basis functions U .

25

a. In the case where the consumer receives a copy of the ensemble matrix, the

coefficients and basis functions can be computed by the consumer and then used for

ROM evaluations as needed. The cost of synchronization, D , is thus the time to

synchronize the ensemble matrix between producer P1 and consumer C1 and the time

to compute the ROM.

 1 1 1
ROM

PC C
no server T tD � �X (2.5)

where T is the communication time and t is the consumer compute time.

b. Alternatively, because the size of the ensemble matrix X can be large, N Mu , the

consumer can get a copy of the covariance matrix covX of size M Mu and compute

the ROM parameters. In this case

 1 1 1
cov ROM

PC C
no server T tD � �X (2.6)

The trade-off in this case is that the consumer does not have all the information about

the computational model but has access to sufficient information to compute the

ROM and examine the design space.

c. In this case the consumer requests only the ROM coefficients and basis functions,

thus making the cost of synchronization, no serverD � , a function of synchronizing the U

and A matrices.

 1 1 1 1PC PC
no server T tD � �U A (2.7)

Each of the above cases has inherent advantages and disadvantages in terms of the amount of

data that needs to be synchronized as well as any additional computations. It should also be

noted that in each of these cases as the number of design iterations increase, the synchronization

factor increases linearly by a corresponding factor.

26

Figure 2.3a. Single producer and consumer information transfer.

Figure 2.3b. Data synchronization between multiple producers and consumers.

27

Figure 2.3c. Synchronization with ROM server.

28

2.3.3. Multiple producers and consumers

Synchronizing all information is more complicated when there are multiple producers

{P1, P2, …, PK } and multiple consumers {C1, C2, …, CL} involved in the design process. This

scenario is shown in Figure 2.3b. When there are K producers and each of the producers can

make changes, there can be K concurrent changes to the ensemble matrix. Consider the scenario

where L consumers have to get updates from one or more of the K producers. This is a two-step

process which first requires a synchronization among all producers before synchronizing all

consumers. For an update to be consistent with the global updates among the producers, all the

producers must first synchronize their data. If CX is the change to the ensemble matrix by any

single producer, the total cost of synchronization for all the producers considering K changes.

This is given by

 2
i j

C

P PKP T �
X

where

K P2 =
K !

K 2()!

Once this is done the ROM must be recomputed by each producer before a consumer can

request an update from any one of the producers. Thus the cost of synchronizing all consumers,

D is

 2 A SVD
1 1

()i j ji i
C

L K
P P PPCK

PC
i j

P T T t RD �
�

 � � u¦ ¦X U (2.8)

where R is the number of design iterations. Eq. (2.8) shows the high cost of explicit

synchronization when there are multiple producers and consumers. The synchronization can be

29

performed implicitly using the ROM server, which reduces the cost of explicit user

synchronization and is explained in detail in the following section.

2.3.4. Synchronization with a ROM server

In this section we study the cost of synchronization when a ROM server is utilized, as

shown in Figure 2.3c. A major advantage of utilizing a server to synchronize and manage

computational data is that producers do not have to perform explicit synzhronization. All data

synchronization tasks are performed by the ROM server. Individual producers only have to

notify the ROM server of updates that were performed. The ROM server then reconciles the data

and manages updated versions of the ROM ensemble matrix. When these are updated, the ROM

server also periodically computes the ROM basis functions and coefficients, thus maintaining a

unified version of the computational data when accessed by clients.

The total cost of synchronization between any producer Pi and the ROM server R is

1

i
K

P R
P

i
TD

 ¦ X (2.9)

where X denotes a single update from a producer. Similarly the cost CD for a consumer Cj to get

data from the server is given by

1

j
L

RC
C

j
TD

 ¦ X (2.10)

Furthermore because the server recomputed the POD approximation periodically for updates to

the ROM database, the total computational cost is given by

 POD SVD
RtD ¦ (2.11)

30

Thus the total cost of synchronization is

 PODserver P CD D D D � � (2.12)

Comparing the equations for the synchronization cost in the case of multiple producers and

consumers and utilizing the ROM server shows that

 server PCD D�� (2.13)

This result supports the premise that the ROM server reduces the cost of synchronization

between producers and consumers by managing the changes to computational data as well as

performing the POD computations. Thus, repetitive computations are avoided and connectivity

between engineers and analysts in the engineering team is enhanced.

In summary, when a ROM server is not used, there is a significant user cost associated

with information synchronization in the engineering design process, whereas using the ROM

server eliminates the need for explicit synchronization and hence reduces the user costs. A

server-based solution has significant advantages when the engineering team is large and

distributed globally. Producers and consumers of engineering models can work and exchange

information simultaneously and in a planned manner. Furthermore, having a single repository for

all the engineering models in an organization enables users to access the computations and

analysis as needed.

2.4. Design of the ROM Server

Typically in scientific computing, when performing tasks over a network or utilizing

multiple nodes on a shared memory machine, the emphasis has been on using programming tools

like MPI and OpenMP to parallelize code and decrease the runtime. An MPI-based application

typically runs on a cluster of computers distributing tasks over them and finally gathering the

31

results. OpenMP on the other hand is designed for shared memory architectures and best suited

for single input multiple data (SIMD) problems (Quinn, 2005). MPI- and OpenMP-based

computational solutions do not allow the results to be shared by several users simultaneously

across a computer network. Moreover, these compute jobs are typically batch processes (i.e.,

they run once and have to be rerun for the next numerical experiment). In contrast, the server-

based solution needed here involves a server process running continuously in the background

and is always available to respond to client requests for ROM evaluations as well as edits to the

ROM database. This enables multiple engineers to simultaneously leverage and share the same

data while performing independent tasks and computations. For example, one design engineer

could be analyzing a flow-field while another engineer simultaneously works on an optimization

problem based on the same data, both without local access to the entire ROM database.

Furthermore, the server-based ROM database solution helps provide vendor agnostic access to

data, computations, and analysis. Specifically, although there are a number of commercial

packages available to build engineering models, the ROM server as implemented here has the

ability to read in data from most commercial packages utilizing the VTK data format (VTK,

2015). This gives the server the ability to process and compute ROMs from multiple data

sources. In addition, users when accessing the computations and analysis via the ROM server

need not have access to the commercial package that was used to generate the initial set of

models, thus helping provide vendor agnostic access to engineering models and analysis to

experts and non-experts alike.

Thus to get these benefits, the underlying architecture for the ROM server is client-server

based. The main purpose of the ROM server is to be available to respond to user requests and

perform the required computations in a timely fashion. Because multiple users can be requesting

32

evaluations simultaneously, the server must have a thread pool capable of processing such

requests. There are four key building blocks needed:

x Create and manage a computational database that is accessible over a computer

network (TCP/IP)

x Create the ROM

x Enable a client node to submit an evaluation request that executes on the ROM server

and sends the results back to the client.

x Enable the ROM server to detect additions and deletions of computational data to the

database and automatically schedule recomputations of the POD basis functions.

Figure 2.4. shows the main components of the ROM server architecture. The dotted lines

indicate loading of the POD databases from disk into memory on startup and the solid lines

indicate operations of the server after startup. This must be achieved in a manner such that each

user gets the correct information back regardless of the number of concurrent users. If there are

edits to the ROM database, these should be reflected in the computations in a timely manner, so

that stale information is not used to make engineering decisions on critical components. To

achieve fast computations, the server on startup loads the coefficient A matrix and basis

function U matrix into memory. From then on, as long as the server is running, all POD

evaluations are done using the information stored in memory using these matrices and Eq. (2.1).

The design considerations of the ROM server are

x A schema has to be developed to store the computational models and design

parameters associated with them on disk.

33

x For the client and the server to communicate, they both need to be able to interpret

data passed from one to another correctly. This requires the construction of

communication protocols for the messages that need to be passed between them.

x The server must be capable of accepting client connections and making ROM

evaluations as per their requests. This requires the selection of an appropriate data

transport layer, in this case TCP/IP. The server must also be capable of accepting

multiple client connections from analysts and design engineers, and processing them

appropriately. This requires a pool of threads that can coordinate with one another.

Because the threads in the thread pool share the same process address space, multiple

threads can perform the same operation simultaneously on shared data structures

which leads to race conditions (Quinn, 2005). Hence adequate precautions should be

taken to enable data sharing while avoiding race conditions.

x The need for the server to recompute the POD basis functions automatically requires

a background thread that cannot be invoked by a client. For this purpose a

background thread has to be created, and a suitable algorithm has to be developed to

enable time-triggered recomputations.

34

Figure 2.4. Main components of the ROM server architecture.

35

In this work TCP/IP is used as the transport medium for communications between the

client and the server (Kozierok, 2005). The primary reason is that TCP/IP guarantees ordered

delivery of packets, which is critical in this application. Remote procedure calls are used to

establish communications between the client and server at the application layer of the

networking stack (Kozierok, 2005). It must be noted that in this case the availability of the ROM

server is on a best-effort basis, and when recomputing the POD basis functions, it is briefly

unavailable for client requests. This design trade-off is explained in detail in Section 2.4.2.

2.4.1. Server thread pool

For a server application it is important that it have the ability to handle multiple client

requests simultaneously. In the ROM server, this requirement is handled by having a thread pool

containing multiple threads of execution. When a request for information or performing a

computation comes in from a client, a free thread from the thread pool is assigned the task,

performs the requested task, and sends the information back to the client. Once it is done with

this task, the thread marks itself available and waits until another client request is assigned to it.

In the example developed here, the ROM server has a total of 10 threads to process client

requests in addition to the main thread of execution. The number of threads in the pool is

configurable. It was chosen by trying to balance the requirement for multiple client requests and

the total number of processors available on the machine, in this case 16. If more processors are

available the thread pool size can be increased as needed.

2.4.2. ROM recomputations

During the engineering design process situations can arise where the design parameter

space increases, requiring that additional computational models be added to an existing database.

Similarly some design parameters can be deemed unnecessary, which can lead to discarding

36

existing computational models. These scenarios have to be accounted for with minimal

disruption to the continual operation of the ROM server to make it an effective tool for managing

computational data. Thus, while the ROM server is running, edits should be allowed to the

database of computational models. These edits can be datasets that have been added or deleted

from the ROM database.

Such edits require recomputation of the POD basis functions and coefficients to update

POD evaluations to reflect the new information. The process of updating the POD basis

functions leads to multiple software design choices to schedule the recompute task, each of

which are briefly explained:

x Immediate scheduling in which recomputation is scheduled based on the availability

of new information. Immediate scheduling has the inherent advantage of making new

information available immediately; however, there exists the possibility that there

may be multiple consecutive changes to the ROM database in which the server

performs repeated POD basis function recomputations, each superseding the previous

one. This creates unnecessary delays in the work and results in unnecessary compute

cycles.

x Delayed scheduling in which recomputation waits for periods of no client activity to

incorporate new data in the ROM database. Delayed scheduling has the advantage

that existing requests for computations are given high priority. The primary

disadvantage of delayed scheduling is that during periods of prolonged activity all

client requests get stale information, and it requires manual coordination among the

clients to cease new requests in order to trigger a POD basis function update.

37

x Periodic scheduling in which recomputation of the POD basis functions is scheduled

at a regular time interval that can be configured as per the requirements of the

engineering team. The major advantage of periodic scheduling is that multiple

changes to the ROM database can be reconciled and computed at once without

utilizing compute cycles for each update. This also establishes a deterministic

schedule and ensures availability of the same information to the entire engineering

team at all times. Thus the producers can work to have the updates done before the

recompute, and the consumers know when to expect the next update. The tradeoff in

this method is that updates to the ROM database may not be immediately available

for use. In the example that follows the authors have chosen this scheduling technique

due to its predictable nature and its advantage of being configurable to the work

habits of the engineering team.

To accomplish the task of computing the POD basis functions and coefficients while the

ROM server is running, a background recomputation thread has been incorporated in the design

of the server. This thread is a lazy asynchronous timer thread that checks the ROM database for

changes at a specified frequency. Only when an edit is detected does this thread proceed with the

recomputation. This is a background thread and does not belong to the thread pool discussed in

the previous section, which processes client requests. This thread is in the idle state for most of

the time and is alerted by an operating system signal at the end of the specified time period. Once

it is out of the idle state, it proceeds to check the timestamp of the last ROM database update and

compares it with its own copy from the previous time it was alerted. If a ROM database update

has occurred since the previous run, it proceeds to perform a recomputation. Because

recomputation of the POD basis functions is a computationally expensive task (i.e., it can take

38

several minutes depending on the size of the ensemble matrix), this thread should be scheduled

to run during periods of no utilization of the ROM server.

Furthermore once the POD basis functions are computed, client requests for POD

evaluations are not processed for the brief period while the data structures are being replaced in

memory. Although it is possible to serve existing client requests with the older version of the

ROM, we chose not to do so to ensure that all clients get access to the same information once a

recomputation is complete. The time-based triggering algorithm is described in pseudo code as

follows:

39

Algorithm (1)

Parameters : Database update time (tdb), Previous run time of thread (tp)

Procedure (Re-computation)

Step 1 : If (tdb > tp)

 Re-compute POD

Close all existing client connections

 Stop listening to newer client requests

 Update in-memory data structures

 Re-open server to process client requests

 Sleep

 Else

 Sleep until next alert

 Goto Step 1

End Procedure

40

2.5. Application to Heat Exchanger Fin Shape Design

Section 2.4 described the design of the ROM server; this section provides an example in

which multiple engineers exchange computational models to perform a collaborative engineering

task using a ROM server. The various interactions are studied in the absence of and then in the

presence of a ROM server. The scenario involves two data producers (P1 and

Figure 2.5. Schematic diagram of the fins.

Channel

Insulated Plate

41

P2) and three data consumers (C1, C2, and C3). The producers in this case study are responsible

for generating computational models, and the consumers perform engineering tasks related to

analysis and optimization. Yet another important requirement is that the producers as well as the

consumers should have access to all the models as well as the analysis that has been performed

by the team as a whole. It should be noted that the focus of this work is on studying the

interactions between the producers and consumers and not on the actual analysis of the problem

under consideration. A two-dimensional heat exchanger fin shape design problem has been

chosen as the engineering design problem in which multiple engineers work on different aspects

of the overall design. The designs are then used to create a ROM. This ROM is utilized for

further analysis of the design.

2.5.1. Mathematical model and numerical solution

Heat exchanger fins are used to enhance removal of heat from any heated surface. Heat

exchanger fins are of particular importance in cooling electronic components and other

machinery and equipment. Changes in the shape of the fin can result in improved performance,

thus reducing cost, space needed, and energy required for fans (Kays and London, 1998). A

number of researchers have studied the problem of heat dissipation from longitudinal fins, and

earlier the authors developed an evolutionary algorithm coupled with numerical simulations to

optimize the shape of heat exchanger fins (Suram, Ashlock and Bryden, 2006), to which the

reader is referred to for a more detailed discussion of this design problem. This section describes

in brief the governing equations of momentum and energy as applied to the heat exchanger fin

model, the numerical solution, and development of the ROM.

Figure 2.5 shows a set of fins. Fluid (water) is pumped through the channel between the

curved surfaces of two consecutive fins to remove heat. The direction of flow is along the

42

positive z-axis. It is assumed that the flat plate is insulated and that the fluid velocity and

temperature profiles are fully developed. The flow is also assumed to be laminar and

incompressible, and any effects of natural convection are neglected. The whole system is

assumed to be in steady state. Taking advantage of the symmetry, only one half of the fin is

modeled, as shown in Figure 2.6. The distance from the base of the fin to the insulated flat plate

is assumed to be of unit length. The length of the fin is denoted by a, the base thickness by W and

the spacing between two consecutive fins by 2b. The shaded portion represents the lateral surface

of the fin. The thermal properties of the solid and fluid are assumed constant and only quadratic

fin profiles are considered in this shape design problem. The mathematical model describing the

fluid flow is given by

2 2

2 2
1 p

zx y
Q Q

P
ww w�
ww w

 (2.14)

The temperature distribution in the fin is

2 2

2 2 0s s

x y
T Tw w�

w w
 (2.15)

and the temperature distribution in the fluid is given by

2 2

2 2
f f f pf f

f

c
k zx y

T T U T
Q

w w w
�

ww w
 (2.16)

The momentum equation has no-slip at the fluid-solid interfaces and symmetry boundary

conditions on the other surfaces, respectively. The energy equations also have symmetry

43

Figure 2.6. Single fin being modeled.

Table 2.1. Representative shape designs.

Producer Base
Thickness

(W)

Fin
Spacing

(b)

 Points on
Lateral Surface

Shape

y0 y1 y2

P1 0.118 0.224 0.126 0.115 0.210

P1 0.011 0.334 0.326 0.115 0.210

P1 0.020 0.134 0.086 0.085 0.075

P1 0.200 0.219 0.186 0.103 0.052

P1 0.05 0.315 0.280 0.203 0.251

P2 0.150 0.250 0.050 0.100 0.210

P2 0.181 0.270 0.250 0.100 0.189

P2 0.030 0.450 0.360 0.320 0.360

P2 0.121 0.420 0.213 0.312 0.213

P2 0.142 0.320 0.183 0.183 0.183

44

boundary conditions on the symmetric surfaces. At the solid-fluid interface, the boundary

condition must satisfy the requirements of equality of temperatures and temperature gradients.

The above governing equations were solved numerically using the finite difference method.

Further details on the discretization, grid generation, and numerical solution can be found in

(Suram, Ashlock and Bryden, 2006).

2.5.2. Shape design and ROM construction

The objective of the fin shape design problem discussed here is to study the velocity field

and temperature distribution when the shape of the lateral surface of the fin is varied. With the

temperature and velocity profiles known, the heat transfer coefficient, the pumping power,

material cost, and manufacturing cost can be determined and considered as a part of the design

space. In this study the base thickness of the fin and spacing between the fins can be varied in

addition to the lateral surface being constrained to being quadratic in shape. A total of 15 designs

chosen by sampling the allowable design space were used as the initial snapshot set. Table 2.1.

shows some representative designs created by producers P1 and P2. The shape design problem

has five parameters, and the initial set of designs was chosen to account for all possible curvature

variations of the lateral surface of the fin. The base thickness and fin spacing were chosen by

randomly sampling the range of allowable values. Figure 2.7 shows the distribution of the design

space covered by the initial set. In Figure 2.7, to represent the designs in three dimensions, the

average of the three values of the points on the lateral surface of the fin is used in place of the

actual values. It is possible that the sampling of the initial design set propagates error into the

ROM, which can be overcome by adding and removing models as necessary from the ROM

server. Also, if the initial snapshot set is insufficient to build an accurate ROM, more designs can

be added to the ROM server as needed. A concatenated ensemble matrix with the temperature

45

and velocities at each point in the discretized domain was constructed. The energy of the POD

expansion is used to compute the accuracy of the ROM as described in Eq. (2.3). If the accuracy

of the ROM is outside the acceptable range, more models are added to the snapshot set. To

simulate the design process and the exchange of information between the producers and

consumers, the following sequence of operations is adopted:

1. 15 designs were computed and used as the initial input to the ROM server

2. Consumers make use of the ROM server to evaluate designs and analyze data

3. More designs are added to the ROM server by the producers

4. All consumers seamlessly get updated information without making explicit updates

and are able to evaluate designs that were previously not possible.

46

Figure 2.7. Initial design space of heat-exchanger designs.

47

Figure 2.8. Timeline of various producer consumer interactions during the design

process.

48

Figure 2.9a. Velocity profile.

Figure 2.9b. Temperature profile.

49

Figure 2.10a. Velocity distribution.

Figure 2.10b. Temperature distribution.

50

Figure 2.11. Variation of singular value spectrum with number of computational

models.

51

2.5.3. Information exchange and the ROM server

The ROM server eliminates the need for explicit information synchronization between

producers and consumers during the design process. This section extends in detail the design

process outlined in Section 2.4.2. The steps in the design process are simulated as shown in

Figure 2.8.

1. The producers P1 and P2 run the computational experiments needed to generate

models for the POD ensemble matrix by varying the design parameters that are used

to construct the ROM. Initially the ROM database holds the results from 15

computational models developed by the producers. Thus after this step the ROM

server manages a database of 15 computational models, and the design space

encompassed by this set of models is available to consumers (clients) to utilize for

various tasks.

2. Evaluations of the ROM for design parameters not in the initial set of computational

results are computed by the consumers, who also have the ability to request individual

modes as well as the singular value spectrum from the ROM server. A consumer C1

uses the ROM server to evaluate the velocity and temperature profiles for the

following design parameters, which though not in the initial solution set lie within the

design space of the problem. The input to the ROM server is the following list of

parameters:

 b y0 y1 y2

0.160 0.260 0.150 0.100 0.195

52

The ROM server then performs the computation and returns the results to consumer

C1 as shown in Figure 2.9.

3. Another consumer, C2, attempts to perform an evaluation for the following set of

design parameters:

 b y0 y1 y2

0.210 0.220 0.190 0.105 0.060

This request for evaluation of a proposed design is not within the design space of the

existing ROM based on the 15 computational models. This results in a non-evaluation

and the return of an appropriate message to consumer C2 and a notification to

producer P2 that additional analysis is needed to extend the design space. This may

lead to a discussion between the consumers and producers about the direction of

design, the design space, and the analysis goals.

4. Producer P2 and consumer C2 consult on the needed expansion of the design space,

and producer P2 performs the additional analysis and adds it to the ROM server. In

some cases, for example, due to physical constraints it might not be possible to

extend the design space to accommodate the request from consumer C2.

5. The ROM server recomputes the ROM.

6. Producers P1 and P2 continue to populate and extend the design space with more

models to the ROM server. The consumers can utilize the new information without

53

explicit synchronization of the data. For example, the unsuccessful attempt to

evaluate the model in step 3 can now be evaluated after additional models have been

added to extend the design space. Thus the consumer C2 can now request the ROM

server to perform the same computation and visualize the normalized flow and

temperature fields, as shown in Figure 2.10.

7. Just as the POD-based ROM can be evaluated to determine the performance of a

particular design configuration, consumers can also get information associated with

the ROM, for instance the spectrum of singular values. The singular value spectrum

shows the amount of energy associated with each dominant mode and is hence

indicative of the number of modes to be considered in the POD approximation. Figure

2.11 shows the variation of the singular value spectrum with the number of

computational models utilized by the ROM server for the POD approximation. It is

seen that as more computational models are added, the singular values begin to

converge. In this case adding more than 15 computational models did not increase the

accuracy of the ROM because the incremental energy captured by the later modes is

only a small fraction of the total energy of the POD approximation. In this case the

first five, ten, and fifteen modes capture 89.7%, 98.6%, and 99.99% of the total

energy, respectively. Thus a ROM approximation based only on the first five modes

will have a larger error compared to a ROM computed using the first fifteen modes.

For a design engineer using a ROM to make engineering decisions, the singular value

spectrum is an indication of the error (i.e., if the error is higher than the maximum

acceptable value, more data needs to be added to the snapshot set for the ROM server

to recompute an updated model). Because full CFD simulations are performed at the

54

end of the design phase before finalizing a design, an appropriate cutoff of the

number of modes can be made to enable design decisions at the early stages in the

process.

By organizing and managing computational models in the ROM server, all members of

an engineering team have access to the same information without repeated manual

synchronization of data. It has also been demonstrated that each of the design tasks in the

workflow can be accomplished using the POD-based ROM server, and the system helps all

consumers seamlessly get updated information without making explicit updates. This results in

the organization saving time as well as serving the purpose of maintaining the version history of

computational models.

2.6. Conclusions and Future Work

In this work a computational data management system is proposed that incorporates

reduced-order modeling to enable a distributed framework for engineering design. The data

management system has been enabled by developing a client-server based architecture. The

server stores computational data in a vendor agnostic format and enables POD computations that

can be used in analysis and optimization for simulation-based engineering design. The client-

server based architecture enables persistent storage of computational data that can be accessed

on-demand from any geographical location, thus improving collaboration among members of a

distributed engineering team. The cost of synchronization was computed based on the size of the

data and the number of times it needs to be transferred amongst multiple producers and

consumers participating in a product design cycle, and this cost was computed for the cases with

and without the ROM server. It was found that the cost of synchronization is lower when a ROM

server is used in the design workflow. The software infrastructure developed allows real-time

55

collaboration in a distributed engineering team by leveraging the fast computational capabilities

of POD-based ROMs. As discussed above a batch process creates a bottleneck to information

sharing, which is overcome by utilizing a server-based solution. Furthermore, the client-server

architecture enables exposing a synchronized view of all existing computational models and also

accounts for the changes to these models in a near real-time fashion. The centralized server-

based solution also eliminates the user cost of data synchronization, which is high in a distributed

engineering team. The solution developed in this work is especially useful to help with

collaboration in a geographically distributed team of analysts and design engineers.

Further research is needed to address several issues. To assemble the ensemble matrix in

the POD algorithm, all the CFD datasets are required to have the same number of grid points.

This is a rather stringent requirement in most cases. Developing an algorithm to reconcile data

from CFD models into the ensemble matrix can help automate construction of the ensemble

matrix. In the client-server model because the computation is being performed on a remote

server, the total computational time is the sum of the time to perform the arithmetic and the

network communications time. The network communication time introduces latency, which was

not considered in this article. This is an important aspect and needs further study. This current

work, implicitly requires that the computational database be located on a single node because of

the restrictions imposed by the ROM server. In the future the authors plan to explore the

possibility of utilizing a cloud-based ROM database to store as well as compute ROM

parameters. The capabilities of the ROM server can thus be extended to incorporate multiple

computational databases simultaneously. This will require that the ROM computation be

performed in a distributed manner, where each node in the network can access data on other

nodes based on some global metadata. Another aspect of this work that can be made more

56

efficient is the recomputation of the POD basis functions when new data is added or removed

from the ROM database. This can be improved by utilizing SVD update methods so that the

ROM server is always available for processing requests. A lazy recomputation can be performed

when the ROM server has a negligible client load. Another aspect of this work that needs further

study is the development of appropriate clients that access and leverage the ROM server. For

instance, an optimization client can be developed that utilizes the ROM server to evaluate the

objective function. Client-side caching techniques can be developed to minimize the effects of

latency in making network calls. Also, versioning of engineering models can help engineers keep

track of and compare incremental changes during the design process.

Acknowledgement

This research was supported in part by the US Department of Energy – Office of Fossil

Energy under Contract No. DE-AC02-07CH11358 through the Ames Laboratory.

References

Tanenbaum A., Steen M., 2002. Distributed Systems: Principles and Paradigms. Prentice Hall.

Kirby M., 2001 Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction
and the Study of Patterns. Wiley.

Suram S., McCorkle D., Bryden K., 2008. Proper orthogonal decomposition based reduced order
model of a hydraulic mixing nozzle. AIAA MAO, Vancouver, Canada.

Kays W.M., London A.L., 1998. Compact Heat Exchangers, 3rd ed, Krieger.

Samadiani E., Joshi Y., 2010. Reduced order thermal modeling of data centers via proper
orthogonal decomposition: a review. International Journal of Numerical Methods for Heat &
Fluid Flow, Vol. 20 Iss: 5, pp.529 – 550.

Trefethen L.N., Bau III D, 1997. Numerical Linear Algebra. SIAM, Philadelphia.

Meyer C.D., 2000. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia.

Tan B.T., 2003. Proper Orthogonal Decomposition Extensions and Their Applications in Steady
Aerodynamics. MS Thesis, Singapore-MIT Alliance.

Bui-Thanh T., Damodaran M., Willcox K., 2004. Aerodynamics Data Reconstruction and
Inverse Design using Proper Orthogonal Decomposition. AIAA Journal, vol. 42, No. 8.

57

Everson R., Sirovich L., 1995. Karhunen- Loève Procedure for Gappy Data. Journal of the
Optical Society of America, 12(8), 1657-1664.

My-Ha D., Lim K.M., Khoo B.C., Willcox K., 2007. Real-time optimization using proper
orthogonal decomposition: Free surface shape prediction due to underwater bubble
dynamics, Computers and Fluids, Vol 36, Issue 3: 499-512.

VTK, www.vtk.org, accessed on 1/27/2015.

Astrid P., 2004. Reduction of Process Simulation Models: a proper orthogonal decomposition
approach. PhD Thesis, Technische Universiteit Eindhoven.

Seymour K., Yarkhan A., Agrawal S., Dongarra J., 2005. NetSolve: Grid Enabling Scientific
Computing Environments In Grid Computing and New Frontiers of High Performance
Processing, vol. 14, Advances in Parallel Computing.

Kozierok C.M., 2005. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols
Reference. No Starch Press. 1st ed.

Tannehill J.C., Anderson D.A., Pletcher R.H., 1997. Computational Fluid Mechanics and Heat
Transfer. 2nd ed.. Taylor & Francis.

Mahule T et al., 2010. PADMINI: A Peer-To-Peer Distributed Astronomy Data Mining System
and a Case Study. Conference on Intelligent Data Understanding.

Djilali S., 2003. P2P-RPC: Programming Scientific Applications on Peer-to-Peer Systems with
Remote Procedure Call. Third IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’03), pp.406. CCGrid.

Hunter J., Choudhury S., 2005. Semi-automated preservation and archival of scientific data using
semantic grid services. Fifth IEEE International Symposium on Cluster Computing and the
Grid, vol. 1, pp.160 - 167. CCGrid.

Sakurai T. et al., 2006. A Hybrid Parallel Method for Large Sparse Eigenvalue Problems on a
Grid Computing Environment Using Ninf-G/MPI. Large-Scale Scientific Computing. pp
438-445, Springer.

Gunzburger M.D., 2002. Perspectives in Flow Control and Optimization. Society for Industrial
and Applied Mathematics.

Kerschen G., Golinval J.C., Vakakis A.F., Bergman L.A., 2005. The method of proper
orthogonal decomposition for dynamical characterization and order reduction of mechanical
systems. Nonlinear Dynamics, vol. 41, pp 147-169.

Ly H.V., Tran H.T., 2001. Modeling and control of physical processes using proper orthogonal
decomposition. Mathematical and Computer Modeling, vol. 33, pp. 223-235.

Chen J., Kostandov M., Pivkin I.V., Riskin D.K., Willis D.J., Swartz S.M., Laidlaw D.H., 2009.
Visual analysis of dimensionality reduction for exploring bat flight kinematics in a virtual
environment. Joint Virtual Reality Conference of EGVE - ICAT - EuroVR.

Zhou X., Hitt D.L., 2011. Proper Orthogonal Decomposition Analysis of Coherent Structures in
Simulated Reacting Buoyant Jets. AIAA Journal, vol. 49, issue 5, pp. 945-952.

Korpela E., 2011. Distributed Processing of SETI Data: Searching for extra terrestrial
intelligence. The frontiers collection, Part 2, pp 183-199.

58

Liu J., 2003. Micro-benchmark level performance comparison of high-speed cluster
interconnects. Proceedings of the 11th Symposium on High Performance Interconnects.

Ghia U., Ghia K.N., Shin C., 1982. T: High-Re Solutions for Incompressible Flow Using the
Navier-Stokes Equations and a Multigrid Method. Journal of Computational Physics, 48, pp
387-411.

Du, J., Zhu, J., Luo, Z. and Navon, I. M., 2011. An optimizing finite difference scheme based on
proper orthogonal decomposition for CVD equations. International Journal for Numerical
Methods in Biomedical Engineering, 27: 78–94.

Pahl, G., Beitz, W., Schulz, H.-J., Jarecki, U., Wallace, K.B., Lucienne T.M. (Eds.), 2007.
Engineering Design: A Systematic Approach, 3rd Edition, Springer Verlag.

Ertas A., Jones J.C., 1996. The Engineering Design Process 2nd ed, Wiley.

Suram S., Ashlock D.A., Bryden K.M., 2006. Graph based evolutionary algorithms for heat
exchanger fin shape optimization, Portsmouth, VA, United states: American Institute of
Aeronautics and Astronautics Inc., 647-657.

Quinn M., 2005. Parallel Programming in C with MPI and OpenMP, 1st ed, McGraw-Hill.

59

CHAPTER 3. A DISTRIBUTED SYSTEMS APPROACH TO ENGINEERING

MODELING

Article to be submitted to Advances in Engineering Software

Sunil Suram, Nordica A. MacCarty

and Kenneth M. Bryden*

Abstract

 In this paper we present a novel methodology for modeling engineered and other systems

based on integrating a set of component models that are accessible as “model-as-service”

components within a cloud platform. These component models can be combined together to form

a systems model. The component models are stateless and web-enabled. The advantage of being

web-enabled is that developers can use the models as API endpoints as opposed to library

components, hence making the models themselves language agnostic and less restrictive in their

use. These ideas are presented within the context of a previously published engineering model

for the preliminary thermal analysis and design of a small biomass cookstove. In this paper the

monolithic biomass cookstove model is separated into six independent, stateless component

models supported by a generic model application infrastructure. Interaction between the models

is orchestrated by a federated model system. Finally, the efficiency of the cookstove from the

monolithic model was compared with the distributed systems model, orchestrated by the

federation management system. It was found that there was no change in the efficiency.

However, the systems model increased the time-to-solution due to network latency. In

conclusion, it is advantageous to build web-enabled component models for their easy reuse

60

across multiple systems models. Furthermore, if the computational time of a model is high, the

effects of network latency can be neglected, because a model developer would not need to make

any code changes for model integration.

3.1. Introduction

Engineered systems are generally composed from interdependent components that are

themselves composed of other sub-components. Because of this the representation and analysis

of the detailed interactions within and between the components comprising these engineered

systems is critical. However, holistic modeling of these systems is challenging (Arnold, 2013).

This is in part due to the size and complexity of detailed systems models and in larger part

because of the need to organize and integrate a collection of models representing the components

and subcomponents of the system into a single coherent information artifact. Particularly because

in many cases each of the component and subcomponent models are developed by separate

teams of analysts (or individual analysts) with differing domain knowledge, differing modeling

practices, and differing expectations as to the outcomes of the modeling and analysis process.

Integrated modeling (Laniak et al., 2013; Muth and Bryden, 2013) seeks to address these

challenges and “includes a set of interdependent science-based components (models, data, and

assessment methods) that together form the basis for constructing an appropriate modeling

system” (Laniak et al., 2013). In a traditional modeling approach, the individual component

models are linked with each other using software/code. In many scientific and engineering

applications each of the submodels is incorporated as a subroutine within the larger systems

code. In other cases each of the models is a software library that exposes application

programming interfaces (APIs) (Michel, 2013). All the linking occurs in a single software

program that brings together the individual models, including problem specific entities like

61

initial conditions, boundary conditions and information/data transfer between models. All of

which must be mediated and controlled by the applications developer. More often than not, the

monolithic software program also incorporates elements of the hardware that it is going to run

on. For example, it may make assumptions about the availability of certain compute clusters,

parallel programming models etc. Although this approach can be effective in solving the problem

at hand, it makes it difficult for another engineer to reuse this work without undertaking the

significant effort of refactoring the code to suit the new problem to be solved.

One way of overcoming the problem of building and modeling large-scale systems

models is by taking an integration framework based approach, where each individual model is

part of a larger framework of models. This use of the term framework is consistent with the

definition used by Rizzoli et al. (2008) to describe the integration frameworks used in

environmental modeling. That is “a set of software libraries, classes, and components, which can

be (re-) used to assemble and deliver an environmental decision support system (EDSS) or an

integrated assessment tool (IAT) to support modeling and processing of environmental

knowledge and to enhance the re-usability and distribution of such knowledge.” There are a wide

range of open source integration frameworks (e.g., SCIRun (SCI, 2016), OpenDX (2011),

Common Component Architecture (CCA)-capable CCaffeine (Allan, 2005; Bernholdt

et al., 2006), Object Modeling System (OMS) (Lloyd et al., 2011; Ascough et al., 2005; David et

al., 2002), The Invisible Modeling Environment (TIME) (Rahman et al., 2003), Open Modelling

Interface (OpenMI) (Gregersen et al., 2007; Blind and Gregersen, 2005), and VE-Suite (Bryden

and McCorkle, 2004) and closed-source integration packages (e.g., Matlab’s SimulinkTM

(MathWorks, 2016), Execution Engine TM (Simulia, 2016), ModelCenterTM (Phoenix Integration,

2016), and ProtraxTM (2015). In general these integration frameworks are targeted at a specific

62

applications (e.g., SciRun is focused on computational steering and does not support integrating

generic simulation and modeling tools, Protrax is used for modeling large processing plants, and

OpenDX is for visualization integration), provide support for particular types of models (e.g.,

ModelCenterTM, Execution EngineTM, and Matlab’s SimulinkTM all provide support for the

integration of specific sets of tools), or have specific model integration needs that limit the

development of generic system models (e.g., TIME requires utilization of .NET as the

development environment and OMS 3.0 requires access to source code for the models being

integrated). In each of these instances integration of the code is based on enabling the coupling

of the models together by linking the inputs and the outputs together in the manner of message

passing between the component packages (i.e., models) in a way the requires adherence to a

given data standard or requires user intervention to identify and manage the data flow.

The environmental modeling community, driven by the need to coordinate between

various disciplines and to integrate the modeling efforts of these disparate groups, has been

active in the development of a number of general purpose model integration tools (Laniak et al.,

2013). These efforts include the development of the Bespoke Framework Generator (Armstrong,

Ford and Riley, 2009), the Earth System Modeling Framework – Flexible Modeling System

(Balaji, 2002), OASIS (Ocean Atmosphere Sea Ice Soil) (Redler, Valke, and Ritzdorf, 2010),

and CSDMS (Community Surface Dynamics Modeling System) (Peckham, Hutton and Norris,

2013). All of these systems require models to have initialize, run, finalize, get, and set functions

for basic control over the models; provide a code based method for connecting the models

together, using some form of XML file or some other type of configuration file, to create a low-

level model-to-model interface; and require an agreed upon global ontology describing the

variables passed between models. OASIS and CSDMS also provide GUIs for connecting the

63

models into an interface for visualization and automated configuration file generation. All of the

integration frameworks other than CSDMS require that the models in the system use the same

programming language. CSDMS uses Babel (Babel 2016) to support models in C++, C, Fortran,

XML, Python, and Java. While the approach taken by these packages is effective, it requires

significant coordination and cooperation between the various modeling teams and it compiles a

single executable. If a model is going to be integrated into another system same type of

coordination between the various modeling teams in the new system is required.

This overall integration framework approach establishes bounds on model developers

wherein each model has to satisfy a set of criteria to fit into the integrated modeling framework.

An advantage of such an integrated framework is that all the individual models are consistent.

Once a model developer understands the framework, developing newer models that are

consistent with the established protocols of the framework becomes easier. On the other hand,

developing a large scale systems model composed of separately developed models generally

requires the development of a common (global) semantic schema and ontology, which can be a

time consuming process. Additionally, imposing functional model development constraints on

developers at a global level is a difficult task. The framework may not be sufficiently adaptable

to incorporate some types of models, it may be difficult to incorporate legacy models and code

into the integration framework, and some groups of developers may consider the global

constraints too restrictive and need or want changes to the integrated framework. As a result, the

integrated modeling framework changes with time and can cause version compatibility issues.

Thus such a centralized approach can be useful for smaller groups of engineers, but can quickly

become intractable for universal adoption.

64

In a departure from traditional engineering and scientific computing, the challenge of

adapting and confirming to prescribed protocols can be overcome by taking the approach of

developing loosely coupled and decentralized systems. In concept the decentralized system is

very similar to a web-based application that, for example, predicts turnout at a public event based

on location, weather and traffic conditions. Each of the public event listing, weather, and traffic

conditions is an independent information service accessed over the Internet. Each of these

services is developed independently of the others without making any assumptions or following

common data interchange protocols. And the developers are free to define access, use, and

content delivery protocols. And the users (the systems builders) are free to choose which

information service to use. Only the service that combines the data from each of the three

information services needs to know the protocol emitted by each service it is accessing. At a

future date if the wrapper service needs to add, say, public transportation information, it can do

so by calling yet another service that publishes this new piece of information. This can be done

without renegotiating previously established protocols. Such a decentralized approach leads to a

service-oriented architecture with cleaner interfaces and data transfer between each service

(Perrey and Lycett, 2003).

In this article, a novel approach to developing a loosely coupled and decentralized

integrated modeling environment appropriate for engineering and scientific computing is

proposed, based on a federation of independent models each of which is an independent web-

based model service (i.e., an information artifact) accessible via a web API using interaction

protocols chosen by the model developer. In the proposed framework, this collection of

independent models is joined together in a federation describing a particular system. In this way

a complex system model can be built by composing together multiple individual models and can

65

be deployed as a system model. Furthermore, the developed models in the federation set do not

have any schema imposed on the structure of inputs and outputs by the developer. The model

developer decides the structure of inputs and outputs that the model accepts and emits, the only

requirement being that this information be broadcast to model developers via API calls. In this

way a component model can be used as-is in multiple systems models.

The communication between constituent models is orchestrated by a federation

management system (FMS). The FMS is aware of all the models that are registered members of

the federation and has the ability to trigger the execution of any of the registered models as

needed. A user communicates with the FMS by initializing the desired systems model,

describing a list of individual models that constitute it and the actions the models need to take,

and supplying any additional information needed (e.g., boundary conditions, system constraints,

design parameters). The FMS is then responsible for the communication between each

constituent model. The FMS is also responsible for the availability of computational resources to

execute any registered model by starting up new instances of a model based on usage.

For such a decentralized system of models to be functional and scalable a cloud-based

architecture is the most practical solution. The primary reasons for this are

x Universal availability—Cloud platforms can be accessed by anyone with a web-

browser and an Internet connection. This opens up the possibility for model

developers to build and publish their models either as part of a closed group or

globally regardless of their geographic location. Model developers should be able to

publish their models by registering them with the FMS.

x Scalable platforms—As more models are added the computational resources can be

increased automatically without human intervention. The deployed models need to be

66

readily available every time the FMS sends a request for computation. Cloud

platforms are inherently scalable in terms of hardware and the process of scaling can

be made intelligent and automated by utilizing platform level APIs from the

providers. Thus, highly scalable and fault-tolerant software systems can be

developed.

x Cost effective—Cloud platforms work on a cost per usage model and are hence cost

effective because the user only pays for the compute time and not for procuring,

provisioning and maintaining the compute, storage and networking resources.

3.2. Background

3.2.1. Cloud computing

Traditional HPC platforms have been built using custom hardware to provide massively

scalable platforms for scientific computing applications. The number of floating-point operations

per second delivered by this class of hardware is much greater than compute clusters built using

commercial grade hardware. The pursuit of grand challenge scientific modeling and

computational problems has warranted the purchase of expensive hardware for cutting-edge

scientific research. However, this has made it difficult for engineering practitioners to solve

engineering problems using HPC clusters because the hardware is deployed primarily towards

solving the most difficult research problems. Thus the cost of HPC hardware can be prohibitive

for most engineering problems in practice.

Over the last few years with the rise of cloud computing, it has become easier to obtain

compute cycles on an on-demand basis (Amazon, 2016). Several companies have built data

centers and technology platforms using commercial-off-the-shelf hardware and are making them

available over the Internet. This has enabled applications to scale dynamically to support

67

millions of concurrent users for consumer applications. The same technology platforms are now

being used in traditional enterprise applications blurring the difference between consumer and

enterprise applications (Giessmann et al., 2012). Software vendors now host thousands of

applications in the cloud that can be accessed by its users through a web-browser. Cloud

computing eliminates the purchase of expensive processors, networking and storage resources by

making them available over the Internet (Amazon, 2016). The availability of high-end hardware

on an on-demand basis makes it possible to move many types of engineering, scientific and HPC

applications and workflows into the cloud.

This has opened up new opportunities for creating novel scientific, data management,

analysis and visualization applications that leverage the performance capabilities offered by

cloud computing. Engineering modeling and scientific computing problems can now be solved

leveraging cloud-computing capabilities. By harnessing the computing power of the cloud,

smaller form-factor devices can also be integrated into engineering workflows and to perform

operational tasks in the field that might not be currently possible. It also becomes possible to

scale applications at a lower cost per processing/computing unit (Armbrust et al., 2010).

Consider the example of a cloud based traffic reporting application that helps drivers

choose faster routes by making congestion data openly consumable. With ubiquitously available

computing resources and publicly available data, the decision to change a route can be easily

made either by a software system or a human being. Also, these decisions can be made and

shared continuously in real-time independently by multiple parties leading to better co-ordination

between people using the service. Furthermore, software applications can be written using this

data in conjunction with other data sources to add more value to the existing service as well as

creating other independent services as a result. Thus a variety of software applications get built

68

independently that gives different contexts to ever growing sources of data, services and

algorithmic techniques.

A similar argument can be made for publishing and sharing engineering algorithms and

information within an organization or globally. Availability of the algorithms, data, information

and analysis opens up access to various people within an organization that can make decisions

based on this data. This in turn can trigger enhanced collaboration within and even across

organizations to help speed up engineering design, problem solving, and decision-making tasks.

Also new applications and workflows can make various types of engineering data, analysis,

models etc. available to people in a group or organization. In addition non-engineering data such

as bill-of-materials, cost models and project timelines can also be tracked and managed using

cloud computing resources. These new applications augment and enhance existing

methodologies and workflows by making the data more consumable and in the process, opening

up new insights.

Several researchers (Vöckler et al., 2011; Jorissen et al., 2012) as well as commercial

entities (Amazon, 2016; Microsoft, 2016) have made attempts to run HPC workloads on cloud

computing resources. Data from astronomical measurements was processed utilizing cloud

computing resources from Amazon, Nimbus and Eucalyptus by provisioning cloud computing

resources, mapping workloads to them and de-provisioning the resources on completion

(Vöckler et al., 2011). They found that cloud computing can be a viable solution for several

scientific computing problems. As part of their research they also concluded “being able to add

and remove resources at runtime outweighs the networking and system management overheads”.

A platform for scientific computing was developed and used for simulations in materials science

(Jorissen et al., 2012) using the Amazon Elastic Compute Cloud (Amazon, 2016) to develop an

69

Amazon Machine Image that was the primary underlying technology for their platform. The

authors solved two problems in materials simulations that involved loose and tight coupling of

codes. They found that although the EC2 platform is not efficient for the transfer of large

amounts of data, it is competitive in achieving the speedups similar to that provided by

Infiniband clusters. A big data platform for scientific workflows was developed and used to

solve an image processing problem (Zhao et al., 2014). They also compared the efficacy of

multiple cloud platforms for performance, price and ease of provisioning and management of

compute resources.

A series of experiments were developed to evaluate the Amazon EC2 infrastructure as an

alternative for many-task computing workloads (Iosup et al., 2011). Although the authors found

that the overall performance of commercial cloud hardware is low compared to dedicated HPC

resources, but underscore that fact that commercial clouds can fill the gap for temporary and

instant need for compute resources. The authors also acknowledge that the performance

evaluations are expected to change with time as commercial cloud vendors improve their

offerings. Amazon EC2 is now offering HPC grade hardware for scientific applications

(Amazon, 2016). HPC instances were found to be 8.5 times faster than the original general-

purpose cloud computing instances (Fox, 2011). This shows a trend of general-purpose compute

instances becoming more powerful over time as the cost to run them goes down. Fox also points

out, “Many scientific computing problems do not require supercomputer performance but would

benefit greatly from modest parallelism”. HPC clusters were extended using EC2 based cloud

clusters by Belgacem and Chopard, 2015. They found that with a load-balancing strategy they

were able to benefit from utilizing the cloud computing resources, as opposed to merely adding

70

more machines to an existing cluster. The authors used MPI based models that were coupled and

executed in a distributed manner.

The researchers above primarily have used cloud computing instances to extend existing

HPC hardware and augment the time-to-solution for their specific scientific problems.

Commercial cloud hardware was found lacking in some instances (Vöckler et al., 2011), but

several researchers have acknowledged the power of being able to quickly provision and utilize

on-demand compute resources (Belgacem and Chopard, 2015). Also, most of the computational

workloads have been using traditional models like MPI, but running on cloud hardware. So most

of the problems solved in the literature are related to comparing performance of existing codes

running in the cloud. Tightly coupled models have also been studied several of which have used

MPI or other software libraries to distribute and combine tasks and results over distributed

computing resources.

3.2.2. Stateless Models

The concept of state is critical to the implementation of federated model sets described

here. State refers to the entirety of information that defines a model while executing a

computational task. For example, consider the solution of an ordinary differential equation using

a fourth order Runge-Kutta (RK4) method. The initial time-step, initial conditions, constants in

the evolution equation and the current time-step define the state of the RK4 model. If the state

within a model is continued to be maintained beyond the execution time-frame, the state is said

to persist. This is typically the case in monolithic computer codes used in systems models where

state in one model is continued to be maintained while a different model is executing based on

the state from the first model.

71

However, if the model does not retain any state between invocations it is said to be

stateless (Thönes, 2015). If it is possible for the model to pass-on its state information to the next

model without persistence via shared-memory or some message passing mechanism, the

individual models themselves become reusable computational entities across systems and

multiple system models. Any system model can use an individual component model as needed.

As noted above, this work requires that each individual model is stateless i.e., the model does not

persist state information beyond the executing time-frame for the current task. This is an

important consideration because it enables each model to act as a “functional unit” that can be

reused and combined easily with other models. It must be noted that stateless models can be

created either as a single solver, say, an RK4 solver or it could be a combination of multiple

solvers. In stateless models the output is dependent only on the input.

Figure 3.1. Stateless model that implements Runge-Kutta 4th order integration.

There is no additional information needed i.e., given the same inputs the model returns

the same output each time. Participation within a federation of independent models requires that

72

each model be stateless and that each model identify its inputs and outputs. An example of a

simple stateless RK4 model is shown in Figure 3.1. The evolution equation, initial condition, the

step-size and the final value are shown as inputs to the model on the left. Correspondingly, the

output from the model is shown on the right. Two different sets of such inputs and outputs are

shown in the figure, each of which is invoked at different times, possibly by different users. User

1 invokes the RK4 model and once the service accepts this request it does not accept any further

requests. All the information entering the model (on the left) is the state information that the

service uses to evaluate the solution for t=2.0. Thus, all intermediate states are tracked by the

service and these states are used for completing the computation. However, once the final step is

reached, the service releases all state information and sends a response back to user 1. On

completion of this computation, the service it now ready to accept and compute the request from

user 2, which proceeds in a manner similar to the above description. If user 1 would like to

further integrate the equation until t=4.0, this can be sent as another request to the service using

the response from the previous integration. Thus, the service depicted is an example of a stateless

service that keeps state only for the duration of a request and then discards this information on

processing the request and responding to the user.

3.2.3. Microservices Architecture

To integrate software written and maintained by disparate teams, the popular choices are,

service oriented architectures (SOA) and microservices architectures (Erl, 2005; Thönes, 2015).

A similarity between each of these architectures is their focus on development and deployment

of modular services i.e., services that perform specific functions. The major difference between

the two lies in the functionality that is encompassed by the modular services. In SOA, the

modular components tend to be functionally similar and thus tend to be large and abstractions of

73

multiple code bases that perform a similar function. On the other hand, in microservices based

architectures, the delineation between microservices is based on the logic incorporated in the

service as opposed to functionality. The advantage of this approach is that each microservice is a

stand-alone service with a well-defined interface, using which the microservice can be invoked

by other microservices or users. More information on these architectures can be found in

Villamizar, 2015 and Thönes, 2015.

The approach taken in this article is towards developing engineering models as

mircoservices. Microservices are independent software services that are designed to perform a

focused function (Thönes, 2015). In general, microservices meet certain requirements:

x They must be independently deployable and managed

x They must publish their inputs and outputs

x They must have the ability to be scalable on cloud-platforms

Microservices can thus be developed by independent developers, deployed, and

consumed by anyone needing that service in an easy manner, typically HTTP endpoints. In the

context of this article, microservices are viewed as services that provide a solution to an

engineering problem by performing a computation. For example, a 2D-Poisson grid-generation

code can be a microservice that takes the inputs of the domain boundary and returns the

computed grid in a certain format. Since engineering models are tightly tied to the initial state

and boundary conditions, an additional requirement for the engineering modeling microservices

that is proposed in this research is that the microservices must be stateless, as described in the

section 2.2. This ensures that the model can be invoked by any other service that needs this

computation as long as the invoking service can provide the inputs in the prescribed format. In

addition, from the perspective of a cloud-based applications, stateless microservice architectures

74

are easier to scale up or down based on usage and demand requirements (Thönes, 2015). Since

microservices are built on the premise of accomplishing a single functional or computational

task, scaling them involves scaling only those services that are under a heavy load. As an

extension, since only a targeted subset of services get scaled, the approach taken is more

streamlined from scaling SOA based services that can involve coupling (Thönes, 2015; Erl,

2005).

3.3. Problem Description

In this work, a novel methodology is proposed where cloud computing is used as the

primary compute infrastructure for engineering modeling and computations, instead of

augmenting existing hardware resources. Individual engineering models are enabled to be

scheduled and execute on-demand, and more complex models built from foundational models.

This approach abstracts out the details of the algorithms from the data passing and scheduling

mechanisms, which enables the foundational models, and algorithms to be reused easily

independent of the context of the problem being solved. Based on this the goal is to have the

ability to build systems of models from simpler models and to build the software infrastructure to

enable this. These models can include engineering models like finite element analysis and

computational fluid dynamics as well as non-engineering models including cost models and

product diffusion models. In this work we propose an approach to build models as compositions

of individual computations that form a linked system of models that solves a larger problem. A

primary driver for this approach is the advent of cloud computing which enables practically

infinite scalability at a relatively low price point compared to traditional HPC systems. Existing

cloud computing platforms abstract away from the user details of processors, storage and

networking by making them available on demand. It is now possible to build new services

75

leveraging the maturity of these platforms. The authors envision such a platform approach to

linking models as “Modeling-as-a-Service” where users can access and build complicated

models based on sets of foundational models available for use over the Internet. In addition,

users can add their own custom models by registering them with the FMS. This requires

1. A set of models that solve specific problems. These models can be self-contained

individual solvers that implement a specific algorithm or can be composed from other

existing models. Users must have the ability to add more models to the federation as

they see fit.

2. A management system that can accept new models and broadcast the details about

existing models in the federation set. This federation management system (FMS)

needs to be able to accept requests from users and orchestrate, coordinate and execute

models in the prescribed order necessary to solve the problem.

3. A framework of communication between models and the FMS where each model can

receive instructions to execute and notify the FMS of the completion of a

computation or of errors.

This paper proposes a novel methodology to compose complex systems from simpler

ones using a distributed systems approach where individual services are orchestrated by the

FMS. Using the proposed FMS a user has the ability to compose together multiple individual

computational models to develop a systems model of a more complex system. In the process, the

FMS checks for feasibility of interaction between the computational models and proceeds with

composition only if the appropriate feasibility tests are valid. In this work, the ability to evaluate

engineering models leveraging existing code and frameworks is also incorporated. This allows

for seamless utilization of existing code bases.

76

However, solving complex problems in a decentralized manner is a challenging task due

to:

1. Coordination of the model services. Since multiple services will be utilized during the

execution of a complex model they need to be executed in the correct order to obtain

accurate results. In this work, the FMS is responsible for all coordination activities

between models in the federated set.

2. Exchange of state information between models at runtime. Since each model after

execution does not retain any state information, the state at the end of an execution

must be retained and passed onto the next service in the execution workflow. To

accomplish this, a queuing system is used to pass messages between multiple distinct

solver sub-systems/models. The queuing system coupled with the messaging schema

is the primary communication mechanism between the solvers and the FMS.

Figure 3.2. An example of a task workflow.

77

3.4. Methodology

As discussed in Section 3.3 the federation management needs to perform the following

specific tasks

x Allow users to register new models

x Broadcast information about available models

x Accept user requests for performing computations

x Schedule user requests and execute appropriate models

If a set of models are linked and invoked by the user to perform a single computation, the

FMS should be capable of executing all of them in the prescribed sequence without delay.

Additionally, the framework should allow the models to access a common file system where

each solver can store and access intermediate data that is exchanged between the solvers.

Building an infrastructure to support this requires several key pieces. These are

1. Queuing Service

2. Federation Management System

3. Solver Sub-system

4. Namespaces

5. Data Access Layer

6. Caching and Storage Layers

7. Web Application Programming Interfaces

Each of these is further described in the remainder of this section.

78

3.4.1. A Solver Sub-system Approach

 In this work, the authors take a solver sub-system approach to developing a loosely

coupled distributed system. Each solver is an individual sub-system of the overall federated

system of solvers. Each solver sub-system constitutes of an algorithm or can be the composition

of other solvers. For example, a Runge-Kutta 4th order (RK4) integration algorithm is an

individual solver that accepts the input evolution functions and initial state in an input format,

solves the equations for a prescribed number of time-steps and returns the results (state) in an

output format. This set of transactions is a compute job. After performing a compute job the RK4

solver does not hold or persist state for any further compute jobs that may be coupled to the

previous task. The state is instead encapsulated in a message that is sent back to a federation

management system (FMS) that schedules a subsequent job with this result. In the event that the

compute job is complete (convergence or evolution to prescribed time-steps) the completion

information is sent to a task completion queue for delivery to the user that initiated the sequence

of jobs. Since a solver subsystem does not persist state locally, it is free to pick up another

compute job as the situation demands. A manager-worker architecture is not imposed and hence

there are no single points of failure, the advantage being that it becomes possible to scale the

model microservices with relative ease. The approach decouples the scheduler, the

queuing/messaging service and data from the solvers, so they can operate as individual

functional units to perform operations as triggered by the messages they receive.

3.4.1.1. Queuing Service/Layer

The queuing layer ties together individual subsystem components in a loosely

coupled manner. The queuing service forms the foundation for the channels that individual

models use to communicate with the federation management system. Messages sent from models

79

to the FMS and vice-versa are all sent via the channels through the queuing system. Messages

are processed by sub-systems in the order they are received, since the underlying queuing service

satisfies first-in-first-out (FIFO) characteristics. A channel is an abstraction layer over the

queuing system that defines where a sub-system sends or receives a message. Each channel is

tied to every sub-system to either send or receive messages. A generic message structure is

published by the FMS and the model services derive from this structure and extend it by defining

their own message formats.

3.4.1.2. Federation Management System

The federation management system (FMS) is the primary orchestrator of the various

solver subsystems. It has two primary responsibilities a) accept user requests and b) schedule and

orchestrate/coordinate the appropriate solvers needed to solve the workflow at hand. To meet

these requirements the FMS has two ingress channels one to accept user requests and one to

receive messages from registered services, as shown in Figure 3.3. The channel for user requests,

as the name suggests, only accepts requests from a user. The second ingress channel, the job

scheduler channel, is used by models to communicate with the FMS. Each of these input

channels has a thread pool that listens for messages coming through; a user request (UR) thread

pool and a job scheduler (JS) thread pool.

A thread in the UR thread pool accepts a task workflow from the user and checks if

the requested models have been registered. In the event that any of the models required to

complete the workflow have never been registered, an appropriate error message is returned

immediately and the workflow is rejected. If all the required models have been registered, the

first task in the workflow is scheduled to run. This is the only time a thread in the UR pool

schedules a task. Models never communicate with the FMS on the user request channel. Once

80

this first task has been completed, the model notifies the job-scheduler channel in the FMS with

the completion status and current state information. The FMS then schedules the next task in the

workflow to the appropriate model, which again notifies the FMS on its completion. This process

continues until convergence has been reached or the requested number of time-steps in the have

been reached.

Every model has to register with the FMS in order for the FMS to know about its

availability. In the process of registering with the FMS the model has to advertise the

computation that it can perform and the channel that the model is listening on. The negotiations

that occur between a model and the FMS are shown in Figure 3.4. As soon as the model

executable starts up, it sends a model identification, its message contract information and the

name of its ingress channel to the FMS. The FMS checks this information in its database of

previously registered model microservice if this information is valid and that there are no

conflicts in either the model identification or the ingress channel names. This is an important step

in order to ensure that the appropriate compute information is assigned the appropriate task.

Once verified the FMS sends back an appropriate response to the model service and it is

registered. In case any conflicts were detected, the FMS sends a response with an appropriate

error message and the model service logs the message. The developer of the model in this case

would have to make changes to the solver ID and ingress channel names, as appropriate.

81

Figure 3.3. Federation management system.

82

Figure 3.4. Timeline of interactions between a model and the FMS.

83

3.4.1.3. Data Access Layer

The data access layer is a software layer over the caching and cloud storage layers. It

is used primarily by the namespace manager to store retrieve data from the namespace

corresponding to a task workflow.

3.4.1.4. Message Contracts

This section describes the message contracts that need to be established between a

model and the FMS. Since the architecture developed in this work is loosely coupled,

information exchange between models and the FMS is critical to the functioning of the entire

system. Furthermore, since the FMS orchestrates and schedules various models in the

appropriate sequence to drive the workflow to convergence, the information exchanged between

them must reflect the state of the problem being solved adequately. This aspect is also critical

because the models are stateless.

Information is exchanged between various subsystems in the form of messages in the

JavaScript Object Notation (JSON) (Nolan, 2014). This structure was chosen due to its

simplicity and interoperability with multiple languages. JSON is primarily a text based key-value

pair data structure, which make it easy to construct and read. This property is useful to

developers and engineers for creating message formats and debugging them. Most popular

languages in use today either have built-in capabilities or have mature libraries that can be

included to parse, read and write JSON objects. This helps maintain programming language

independence amongst the models and the FMS. JSON is also an accepted standard for various

Internet based APIs lately. This section explains in detail the design of message structures used

in this work.

84

For any two independently developed codes to exchange information, a “contract”

has to be established between them to do so efficiently. This is relatively simple in tightly

coupled software systems where these contracts can be re-negotiated and all the individual

models can be updated as needed. However, in loosely coupled software systems this is

challenging because some parts of the system cannot be changed to accommodate changes in

other models that may have been developed by multiple independent developers. Hence

changing something fundamental to the integrity of the entire system can be impractical.

Every message passed between a model and the FMS has two parts to the contract.

One part of the contract is utilized by only the FMS to make decisions about scheduling and

orchestrating models. The second part of the contract is used by the solver to load its initial state,

read solver parameter information and the output location in the namespace used to write

intermediate data.

As a simple illustrative example a system model is considered with an addition model

and a multiplication model as constitutive models. They are used by the system builder to find

the result of the operation ()*a b c� . The addition is performed first by passing in the values of

a and b . The resulting value and a value of c are then passed to the multiplication model. Once

the second computation is complete the final result is passed back to the user. Figure (3.5) shows

an example of such a message structure exchanged between solvers and the FMS. The list of

solvers

85

Figure 3.5. Example of a message contract.

86

that need to be utilized in the system model is specified by the system builder, while the

workflow ID is assigned by the FMS.

The message contract can include any information deemed necessary by the model

developer. The only requirement is that the basic information needed by the FMS be included in

the message. For this purpose and for easier programmability, a model specific message is

derived from a generic message class that enforces the necessary contracts. The model must then

implement those contracts for it to be registered with the FMS.

This approach makes the FMS generic enough where it can function with any model.

Also, the solvers and logic within the models can be developed independently without enforcing

language or programmability restrictions. The message contract structure is critical to the

functioning of the entire system in a loosely coupled manner. Further details about how each

solver change message parameters during the execution of a workflow are explained in the

examples.

3.4.1.5. Namespaces

As engineers create computational models, they are added to a database and assigned

to an appropriate namespace. The namespaces are necessary to partition data in a logical and

intuitive manner and enables sharing of the data between multiple users or software systems. As

changes to the computational models are made, they are “checked-in” to the corresponding

namespace in the database and updated accordingly. The metadata associated with each set of

models is also updated as needed. The metadata may include information such as the geometry,

material properties, grid information etc. This is an important aspect, because it reduces the time

to extract useful information about a set of models. Users and automated software applications

can thus use the metadata to obtain information about the namespace, instead of going through

87

each computational model. The metadata reflects a higher-level abstraction of information

pertaining to the computational models in the namespace. It should be noted that the process of

adding and updating models is a continuous process during the entire lifecycle of the design.

Each of these instances can function independently or in concordance with one or more of the

other instances in the collective to help solve a more complex problem.

3.4.1.6. Web Application Programming Interfaces

Web APIs are used to hide the server-side complexity by incorporating processing

logic and exposing only the limited set of allowable inputs as HTTP endpoints for the system

model to specify. In this way system models can access engineering model computations and

metadata without knowledge of the details of the interactions, but only of the exposed interfaces

of the Web API. In this work RESTful web APIs (Fielding, 2002) were developed to expose

HTTP endpoints of the individual models. Using the exposed APIs a system builder can

assemble multiple models into a single model space which can in-turn be exposed as another

HTTP endpoint for reuse by other systems. Thus web APIs are critical in hiding complexity of

the existing models while enabling their efficient reuse. Some examples of the Web APIs are

described in Table 3.1 below.

88

Table 3.1. Examples of API endpoints and their functionality.

API endpoint Description Example

/fms/post

A POST request to the
FMS with a payload
that contains model(s)
to be used and their
inputs.
The response from this
request is an ID that
can be used to track
progress.

/fms/post
PAYLOAD :
{
“solverlist”:[”addition,multipl
ication”],
“a”:5,
“b”:3
}

/fms/getinfo?model=<modelname>

A GET request to
retrieve input payload
and output format
information about the
specified model.

/fms/getinfo?model=”addition
”
Gets input and output
information about the addition
model.

/fms/getmodels

A GET request to
retrieve all the models
registered with the
FMS.

/fms/getmodels
Returns a list of registered
models for the system builder
to utilize.

3.4.1.7. Model Software Development Kit (SDK)

As described above, each model interacts with the FMS by registering with the FMS,

reading messages from the FMS and sending messages back to the FMS. To encapsulate these

“boiler-plate” interactions an SDK has been developed that enforces a programmatic contract

between the individual models and the FMS. The SDK creates an interface between the FMS and

the models in such a way that the FMS does not need to know the details of model computations

while the model has all the necessary information to communicate with the FMS. The SDK also

provides generic message contract classes for the models to inherit, which enables model

developers to implement their own custom messages without disrupting the necessary message

construct needed by the FMS. As shown in Figure 3.6, before performing any computations the

models load their initial state after receiving a message from the FMS. When the computation is

complete, the model sends the message back to the FMS and discards all state information. This

89

ensure that the stateless condition of the individual model and prepares it for use another system

model. In addition, the Model SDK also incorporates persistence and caching objects for use by

model developers. This allows model developer in focusing on the computational logic primarily

and making use of the readily available persistence and caching mechanisms seamlessly. This

approach also enables uniformity at the infrastructure level in order for models to be reused.

90

Figure 3.6. Representation of the Model and the Model SDK.

91

3.5. Architecture

The overall architecture of such a system is shown in Figure 3.7. In traditional

approaches to linking engineering models the “linkage” occurs in code i.e. information transfer

between models has to be incorporated in code. Thus the model-associated state information is

tightly coupled to the models being used and to the execution context of the engineering

problem. This makes the coupled code difficult to reuse without modifications and refactoring

because of the state information is embedded into this coupled model. A primary reason for this

is the availability of models as software libraries as opposed to individual atomic compute

“engines” which act on request to a specified set of boundary conditions. Such an approach

would require a loosely coupled distributed system based approach to building each model,

scheduling their execution and orchestrating information transfer. An important requirement is

that state information be moved away from individual models as they run. This enables any

model of the same type can carry out subsequent runs without keeping track of state information.

This is an important requirement when linking models together, because information transfer

from one model to another can occur by models loading the updated state at run-time. This is an

important distinction that the authors would like to note, from a “library approach” where this

coupling occurs primarily at compile time of the code. This also plays a key role towards

enabling a fault-tolerant and scalable distributed system to be constructed of collections of

engineering models. Moving the contextual state information away from a model helps make it a

foundational construct within a larger collection, which can be called to perform a task. Existing

cloud computing platforms can be used to “spin-up” new model instances as per usage and

demand requirements.

92

Figure 3.7. Architecture of the distributed system to compose computational models.

93

For this architecture to be functional it is important to address three key elements.

3.5.1. Information exchange protocol

For traditional system models to exchange information successfully between multiple

models requires the development of protocols that must be adhered to by all models. However,

for federated model systems i.e., loosely coupled systems it becomes difficult to develop and

maintain standardized information protocols. For this reason, in this work each individual model

publishes its own information exchange protocol for publishing and receiving data and analysis.

This is similar to web application programming interfaces (APIs) (Michel, 2013). Using API

based protocols gives each component model control and independence over the data it can

receive and publish and eliminates errors due to incompatible protocols, leading to a service-

oriented architecture (Erl, 2005). This is advantageous because the component models can be

developed independent of each other. For this purpose, message contracts are developed for all

transactions between component models and the FMS.

 3.5.2. Information routing

The composition of the individual sub-systems is of critical importance as it affects the

validity of the final result of the engineering problem. In this work the user determines the order

of composition of sub-systems, using which a directed graph is generated. The directed graph

specifies the execution order of individual subsystems (McNunn and Bryden, 2013). This is a

critical step since some subsystems may have to exchange information iteratively to converge.

Once the order of is determined, it is submitted to the FMS, which schedules execution of the

appropriate components.

94

 3.5.3. Information compatibility

The metadata for an engineering model includes data such as the topology, operating

range of the component, material characteristics, etc. This metadata is used to make decisions

regarding the compatibility of connected domains. There are two primary issues with

information compatibility:

a. Adjacency: Two adjacent models must always be compatible with one another with

regard to their topologies, time and spatial domains. In addition, the types of

information being exchanged must be the same. For example, information about

temperature from one domain must be passed onto an appropriate temperature field in

the second domain. Units and descriptors of the information being passed must also

be the same and translators could be used to convert standard units as required.

b. Appropriate use: If two models satisfy the requirements of being compatible, it

however, does not imply that they can be used adjacent to each other. There might be

differences in material properties or operating ranges that the model might be

specifically addressing. These engineering decisions need to be taken into account by

the system builder during the process of assembling the system model.

It is important to understand if the sub-problems being considered can interact with one

another. Although it is not necessary that all the domains should have feasible interactions, it is

expected that the strongly connected components should respect this criterion.

3.6. Example Application: Cookstove Preliminary Design

MacCarty and Bryden have developed a steady-state heat transfer model for the

conceptual design of a biomass cookstove (MacCarty and Bryden, in review). These low-cost

technologies have been identified as an important option to help alleviate the impacts of energy

95

poverty in developing countries where over 2.4 billion people rely on open combustion of

biomass to meet as much as 97% of their daily energy needs for cooking, heating, and lighting

(IEA, 2010; Johnson and Bryden, 2012). The household air pollution associated with this

inefficient and incomplete combustion has been attributed to an estimated 4 million premature

deaths each year, representing the 2nd leading cause of death for women globally, and contributes

to global climate change particularly due to emissions of black carbon particles (Lim et al., 2012;

Bond et al., 2013). In these diverse communities, the cooking practices, available resources, and

cultural preferences vary considerably on a local basis. Therefore, cookstove designs must be

adapted and the use of modeling simulations in which the various design parameters are tailored

to these communities can help to increase the efficiency of the design process.

A basic improved cookstove typically consists of 1) a combustion chamber, in some

cases insulated, to enclose and shield the fire in order to contain the heat and generate more

complete combustion; 2) a grate to elevate the fuel and allow better flow of air through the fuel

bed; and 3) a flow path including channels to provide improved heat transfer to the bottom and in

some cases the sides (when a pot shield is used) of the cooking pot. The stove is typically fired

with wood of varying moisture content ranging in size from small twigs to large unsplit

branches, although in some cases crop residues and dung may be used. The goal for designers is

to develop designs that generate efficient heating and low emissions while still providing a user-

friendly device that can operate at varying firepower, with a variety of cooking pots, and a range

of fuels (MacCarty and Bryden, 2015).

The model for predicting the efficiency of heat transfer into the cooking pot was

developed by breaking the system into three separate but coupled zones, including a) the fuel bed

zone; b) the flame zone; and c) the convective heat transfer zone; which are in turn coupled to a

96

model of the air flow due to buoyancy and friction (Figure 3.8A). In the packed bed, solid phase

combustion includes heating of the wood and drying of the fuel moisture followed by pyrolysis

and char burning with primary air. In the flame zone, secondary air enters, is heated, and is

supplied to gas phase combustion. In the heat transfer zone, energy is lost through the stove

walls, transferred to the pot via convection and radiation, and exits as sensible losses. Fluid flow

and the entrainment of excess air is driven by natural buoyancy, and is slowed by pressure losses

due to friction throughout the various geometries of the flow path. The temperature and velocity

profiles throughout the system are determined using traditional heat transfer and fluid flow

theory as a function of fifteen design variables, including 10 geometric parameters (Figure 3.8B),

2 material properties, and three operating conditions (MacCarty and Bryden, in review).

In this incarnation, the model operates with initial estimations for flow and temperature

profiles, and then progresses through the three zones up through the exit of the stove, at which

point the velocity is evaluated. With this new flow rate, the model iterates through the zones

again until convergence is reached. In this sense, the model is a singular entity that executes each

of its three constitutive models within a monolithic piece of code. Most scientific codes are

designed in this manner and do not permit model reuse and substitution with ease.

In the context of FMS, this method is extended by separating the individual models and re-

constituting them using application programming interfaces (APIs) that are accessible over the

Internet. Thus, there are individual services that execute the algorithms for each of the three

models i.e. a bed model, a flame model and a heat transfer model. Each of these services is

registered with the FMS and advertises the input data formats they accept and the output that is

emitted.

97

Cooking Pot

Heat Transfer Zone

Flame Zone

Fuel Bed Zone

Fluid Flow

Hsh

Hc

Dc

Dstove

Wgap

Hp

Wp Wc

Dp

Wsh

(A) (B)

Figure 3.8. (A) The coupled zonal models of the cookstove system; (B) the geometrical design

variables (after MacCarty and Bryden, 2015; MacCarty and Bryden, in review)

This allows each of the services to be called independently, if required. In addition to the

individual services, a wrapper program has been written that encapsulates the sequence of API

calls to each of the services in a modular fashion. The inputs and outputs to each model and the

equations they solve are shown in Table 3.2. Thus if changes are made to the upstream

constituent models, only the wrapper code needs to change. The configuration of services and the

wrapper program with the FMS is shown in Figure 3.9.

98

Figure 3.9. Flow of component models within the federated system of models.

3.7. Discussion and Results

The original software for the stove model was a single piece of code that solved all the

above mentioned regions and finally reported efficiency. This model code was split into 6

individual component models chosen on the basis of the heat-transfer zones as shown in Figure

3.8 and the physics of the problem (MacCarty and Bryden, 2015). Table 3.2 shows the individual

model equations with their inputs and outputs.

99

M
O

D
EL

 1
 –

 M
es

h

In
iti

al
iz

es
 th

e
ge

om
et

ry
 a

nd
 a

llo
ca

te
s v

ar
ia

bl
es

 fo
r c

om
pu

ta
tio

ns
.

𝑨 𝑓
𝑙𝑜

𝑤
,𝒇

,𝑨
𝑯

𝑻 𝑝
𝑜𝑡

,𝑫
ℎ

,

𝑨𝑯
𝑻 𝑙

𝑜𝑠
𝑠,

𝑭 𝑓
𝑖𝑟

𝑒𝑏
𝑒𝑑

−
𝑝𝑜

𝑡,
𝑨 𝑝

𝑜𝑡
−

𝑏𝑜
𝑡𝑡

𝑜𝑚
,

𝑨 𝑓
𝑢𝑒

𝑙𝑏
𝑒𝑑

−
𝑏𝑜

𝑡𝑡
𝑜𝑚

,𝐴
𝑝𝑜

𝑡,
𝐴 𝑤

𝑎𝑙
𝑙,

𝐴 𝑠
ℎ𝑖

𝑒𝑙
𝑑

,𝑻

M
O

D
EL

 2
 –

 B
ed

C
al

cu
la

te
s r

at
e

of
 b

ur
ni

ng
 a

nd
 p

ro
du

ct
io

n
of

 fu
el

 m
oi

stu
re

 a
nd

 p
ro

du
ct

s o
f c

ha
r c

om
bu

st
io

n
ba

se
d

on
 fi

re
po

w
er

, a
nd

 a
pp

lie
s

co
ns

er
va

tio
n

of
 e

ne
rg

y
to

 th
e

ch
ar

 c
on

te
nt

 o
f t

he
 fu

el
 to

 d
et

er
m

in
e

th
e

te
m

pe
ra

tu
re

 o
f t

he
 fu

el
be

d
an

d
ex

it
ga

se
s.

Eq
ua

tio
ns

:

𝑚
𝑐ℎ

𝑎𝑟
𝐻

𝐻
𝑉 𝑐

ℎ𝑎
𝑟

=
∑

𝑚
𝑖̇

𝑖

 (
ℎ 𝑏

𝑒𝑑
,𝑖

−
ℎ 𝑎

𝑚
𝑏,

𝑖)
+

𝑚
𝑤

ℎ 𝑓
𝑔

+
∅ 𝑓

𝑙𝑎
𝑚

𝑒𝜀
𝑐ℎ

𝑎𝑟
𝜎𝐴

𝑏𝑒
𝑑

𝐹 𝑏
𝑒𝑑

−
𝑝𝑜

𝑡 (
𝑇 𝑏

𝑒𝑑4
−

𝑇 𝑝
𝑜𝑡4

)+

∅ 𝑔
𝜀 𝑐

ℎ𝑎
𝑟𝜎

𝐴 𝑏
𝑒𝑑

(1
−

𝐹 𝑏
𝑒𝑑

−
𝑝𝑜

𝑡)
(𝑇

𝑏𝑒
𝑑

4
−

𝑇 𝑤
𝑎𝑙

𝑙
4

)

𝑻 𝑓

𝑢𝑒
𝑙𝑏

𝑒𝑑
,𝑻

𝒒
,𝑚

𝑔𝑣
,𝑚

𝐻
2𝑂

−
𝑚

𝑐

𝐻
𝑐,

𝐻
𝑝

,𝑟
𝑐,

𝑟 𝑝

𝐿𝐻
𝑉 𝑤

𝑜𝑜
𝑑

,𝑀
𝐶 𝑤

𝑜𝑜
𝑑

,𝑓
𝑖𝑟

𝑒𝑝
𝑜𝑤

𝑒𝑟
,c

on
st

an
ts

,𝑇
𝑏𝑜

𝑖𝑙
,𝑇

𝑎𝑚
𝑏

ℎ 𝑓
𝑔

−
𝐻

2𝑂
,𝑦

𝑐ℎ
𝑎𝑟

Ta
bl

e
3.

2.
 C

om
po

ne
nt

 m
od

el
s w

ith
 th

ei
r i

np
ut

s a
nd

 o
ut

pu
ts

.

100

M
O

D
EL

 3
 –

 F
la

m
e

D
et

er
m

in
es

 ra
te

 o
f b

ur
ni

ng
 v

ol
at

ile
s,

an
d

ap
pl

ie
s c

on
se

rv
at

io
n

of
 e

ne
rg

y
to

 th
e

ch
ar

 c
on

te
nt

 o
f t

he
 fu

el
 to

 d
et

er
m

in
e

th
e

te
m

pe
ra

tu
re

 o
f

ga
se

s e
xi

tin
g

th
e

fla
m

e
zo

ne
.

Eq
ua

tio
ns

:

𝑚
𝑣𝐻

𝐻
𝑉 𝑣
+
[∑

[𝑚
𝑗̇ℎ

𝑗]
𝑗

𝑏𝑒
𝑑

+
[𝑚

𝑎𝑖
𝑟2
ℎ 𝑎

𝑖𝑟
2]
𝑎𝑚

𝑏
] 𝑖𝑛

=
∑

[𝑚
𝑗̇ℎ

𝑗]
𝑜𝑢

𝑡
𝑗

 𝑚
𝑔𝑎

𝑠
=
𝑚

𝑐ℎ
𝑎𝑟
+
𝑚

𝑣
+
𝑚

𝑤
+
𝑚

𝑎𝑖
𝑟2

𝑻 𝑓
𝑙𝑎
𝑚
𝑒,
𝑻,
𝑚

𝑣

𝑨 𝑓
𝑢𝑒

𝑙𝑏
𝑒𝑑

−
𝑏𝑜

𝑡𝑡
𝑜𝑚

,𝐴
𝑝𝑜

𝑡,
𝐴 𝑤

𝑎𝑙
𝑙,
𝐴 𝑠

ℎ𝑖
𝑒𝑙
𝑑
,𝑻

M

O
D

EL
 4

 –
 H

ea
t T

ra
ns

fe
r

A
pp

lie
s c

on
se

rv
at

io
n

of
 e

ne
rg

y
to

 d
et

er
m

in
e

th
e

he
at

 tr
an

sf
er

 c
oe

ff
ic

ie
nt

s a
nd

 fl
ux

, a
nd

 re
su

lti
ng

 e
xi

t t
em

pe
ra

tu
re

 th
ro

ug
h

ea
ch

di

ff
er

en
tia

l c
on

tro
l v

ol
um

e
al

on
g

th
e

flo
w

 p
at

h.

Eq
ua

tio
ns

:

∑
𝑚

𝑘
(ℎ

𝑓𝑙
𝑎𝑚

𝑒,
𝑘
−
ℎ 𝑜

𝑢𝑡
,𝑘
)
=
∅ 𝑔

𝜎𝐴
𝑝𝑜

𝑡,
𝑟𝑎

𝑑
𝐹 𝑏

𝑒𝑑
−
𝑤
𝑎𝑙
𝑙(
𝑇 𝑖
𝑛𝑡4
−
𝑇 𝑝

𝑜𝑡4
)+

∅ 𝑓
𝑙𝑎
𝑚
𝑒𝜀

𝑐ℎ
𝑎𝑟
𝜎𝐴

𝑏𝑒
𝑑
𝐹 𝑏

𝑒𝑑
−
𝑤
𝑎𝑙
𝑙(
𝑇 𝑖
𝑛𝑡4
−
𝑇 𝑏

𝑒𝑑4
)+

𝑞 𝑤
𝑎𝑙
𝑙

𝑘

𝑞 𝑤
𝑎𝑙
𝑙
=

𝑇 𝑖
𝑛
−
𝑇 𝑎

𝑚
𝑏

𝑅 𝑖
𝑛𝑡
+
𝑅 𝑐

𝑜𝑛
𝑑
+
𝑅 𝑒

𝑥𝑡
=
𝑇 𝑖
𝑛
−
𝑇 𝑖
𝑛𝑡

𝑅 𝑖
𝑛𝑡

=
𝑇 𝑒

𝑥𝑡
−
𝑇 𝑎

𝑚
𝑏

𝑅 𝑒
𝑥𝑡

 𝑻 𝑓
𝑢𝑒

𝑙𝑏
𝑒𝑑
,𝑻

𝑔
,𝑚

𝒈
𝒗,
𝑻 𝑎

𝑚
𝑏
,𝑚

𝑔𝑐
ℎ𝑎

𝑟,
𝑚

𝑎𝑖
𝑟,
𝑞 𝑟

𝑎𝑑
−
𝑓𝑙
𝑎𝑚

𝑒,

𝑚
𝑣,
𝐻
𝐻
𝑉 𝑣
,ℎ

𝑓𝑔
−
𝐻
2𝑜
,𝑚

𝐻
2𝑂

−
𝑚
𝑐 Ta

bl
e

3.
2.

 (c
on

td
.).

 C
om

po
ne

nt
 m

od
el

s w
ith

 th
ei

r i
np

ut
s a

nd
 o

ut
pu

ts
.

101

Po
t b

ot
to

m
 c

en
te

r:

∑
𝑚

𝑘
𝑘

(ℎ
𝑖𝑛

,𝑘
−

ℎ 𝑜
𝑢𝑡

,𝑘
)

=
ℎ̃𝜋

(𝐷 𝑐 2
)2

(𝑇
𝑖𝑛

−
𝑇 𝑝

𝑜𝑡
)

Po
t b

ot
to

m
 a

bo
ve

 st
ov

e:

∑
𝑚

𝑘
𝑘

(ℎ
𝑖𝑛

,𝑘
−

ℎ 𝑜
𝑢𝑡

,𝑘
)

=
ℎ̃𝐴

𝑝𝑜
𝑡(

𝑇 𝑖
𝑛

−
𝑇 𝑝

𝑜𝑡
)+

𝑞 𝑤
𝑎𝑙

𝑙
+

∅ 𝑔
𝜎𝐴

𝑝𝑜
𝑡(

𝑇 𝑖
𝑛𝑡4

−
𝑇 𝑝

𝑜𝑡4
)

Po
t c

or
ne

r:

∑
𝑚

𝑘
𝑘

(ℎ
𝑖𝑛

,𝑘
−

ℎ 𝑜
𝑢𝑡

,𝑘
)

=
𝑞 𝑤

𝑎𝑙
𝑙,𝑠

𝑡𝑜
𝑣𝑒

𝑡𝑜
𝑝

+
𝑞 𝑤

𝑎𝑙
𝑙,𝑠

ℎ𝑖
𝑒𝑙

𝑑

𝑻,

𝑞 𝑝
𝑜𝑡

, 𝑞
𝑙𝑜

𝑠𝑠
−

𝑤
𝑎𝑙

𝑙,
 𝑞

𝑟𝑎
𝑑

−
𝑝𝑜

𝑡,
𝑞 𝑐

𝑜𝑛
𝑣−

𝑝𝑜
𝑡,

𝑒𝑓
𝑓

M
O

D
EL

 5
 –

 F
lo

w

D
et

er
m

in
es

 th
e

ve
lo

ci
ty

 a
nd

 p
re

ss
ur

e
dr

op
 a

s a
 fu

nc
tio

n
of

 te
m

pe
ra

tu
re

 a
nd

 a
re

a
th

or
ou

gh
 e

ac
h

ge
om

et
ric

al
 re

gi
on

 a
nd

 fe
at

ur
e

of
 th

e
flo

w

pa
th

, i
nc

lu
di

ng
 tu

be
s/

ch
an

ne
ls

, b
en

ds
, e

xp
an

si
on

s,
an

d
co

nt
ra

ct
io

ns
.

Eq
ua

tio
n:

𝜌 𝑒
𝑥𝑖

𝑡𝑉
𝑒𝑥

𝑖𝑡
2

2
=

𝑔(
𝐻

𝑐
+

𝑊
𝑐

+
𝐻

𝑠ℎ
)(

𝜌 𝑎
𝑚

𝑏
−

𝜌 𝑒
𝑥𝑖

𝑡)
−

∑
𝜌 𝑙

𝑉 𝑙
2 2

𝑙

(𝑓 𝑙
𝑥 𝑙

𝐷 ℎ
,𝑙

+
𝐾 𝑙

)

 𝑻 𝑓
𝑢𝑒

𝑙𝑏
𝑒𝑑

,𝑻
𝑓𝑙

𝑎𝑚
𝑒,

𝑻,
𝑚

𝒈
𝒂𝒔

,𝑚
𝐻

2
𝑂

−
𝑚

𝑐,
𝑨 𝒇

𝒍𝒐
𝒘

,𝑨
𝒘

𝒂𝒍
𝒍,

𝑨 𝑓
𝑢𝑒

𝑙−
𝑏𝑒

𝑑
,∅

𝑓𝑙
𝑎𝑚

𝑒,
∅ 𝑔

𝑎𝑠
, 𝑻

𝑝𝑜
𝑡,

 𝑻
𝑓𝑖

𝑟𝑒
𝑏𝑒

𝑑
−

𝑝𝑜
𝑡,

𝜺 𝑐
ℎ𝑎

𝑟,

𝑻 𝑖
𝑛𝑡

,𝑻
𝑒𝑥

𝑡𝑻
𝑤

𝑎𝑙
𝑙

Ta
bl

e
3.

2.
 (c

on
td

.).
 C

om
po

ne
nt

 m
od

el
s w

ith
 th

ei
r i

np
ut

s a
nd

 o
ut

pu
ts

.

102

𝑚
𝑔𝑎

𝑠−
𝑛𝑒

𝑤

M
O

D
EL

 6
 –

 l 2
 n

or
m

 b
et

w
ee

n
m

as
s f

lo
w

 ra
te

s.

Eq
ua

tio
n:

𝜀

=
‖𝑚

𝑔𝑎
𝑠

𝑝
−

𝑚
𝑔𝑎

𝑠
𝑝−

1 ‖

𝑙 2
 n

or
m

 v
al

ue

M
O

D
EL

 7
 –

 C
he

ck

D
et

er
m

in
es

 if
 th

e
ite

ra
tio

ns
 n

ee
d

to
 p

ro
ce

ed
. I

f n
ot

, s
et

s a
 fl

ag
 in

 th
e

m
es

sa
ge

 th
at

 is
 re

ad
 b

y
th

e
FM

S
w

hi
ch

 s
to

p
sc

he
du

lin
g

th
is

 sy
st

em
 o

f
m

od
el

s a
ny

 fu
rth

er
.

𝑡𝑟
𝑢𝑒

 /
 𝑓

𝑎𝑙
𝑠𝑒

𝑻,
𝑨 𝑓

𝑙𝑜
𝑤

,𝑫
ℎ

,𝑚
𝑔𝑎

𝑠,
𝐻

𝑐,
𝐻

𝑝

𝑨 𝑓
𝑢𝑒

𝑙−
𝑏𝑒

𝑑
,∅

𝑓𝑙
𝑎𝑚

𝑒,
∅ 𝑔

𝑎𝑠
, 𝑻

𝑝𝑜
𝑡,

 𝑻
𝑓𝑖

𝑟𝑒
𝑏𝑒

𝑑
−

𝑝𝑜
𝑡,

𝜺 𝑐
ℎ𝑎

𝑟,

𝑻 𝑖
𝑛𝑡

,𝑻
𝑒𝑥

𝑡𝑻
𝑤

𝑎𝑙
𝑙

 𝑚
𝑔𝑎

𝑠 ,
𝑚

𝑔𝑎
𝑠−

𝑛𝑒
𝑤

𝑙 2
 n

or
m

 v
al

ue
, ε

Ta
bl

e
(3

.2
 c

on
td

.).
 C

om
po

ne
nt

 m
od

el
s w

ith
 th

ei
r i

np
ut

s a
nd

 o
ut

pu
ts

.

103

Each component model was re-factored with the Model SDK and assigned a unique

channel ID as explained in section 3. Once the model services are started, they are considered to

be deployed and ready to process messages routed to them by the FMS. Figure 3.9 shows the

integrated system using the component models. It can be seen that the time loop encompasses

most of the models except for the meshing model. Each of the models are invoked in the order as

shown and state passed via the message contract from one model to the next. For every iteration,

the l2 norm is computed and the norm is passed to the “Check” model, which checks the norm

with the user specified convergence criterion. If this criterion is satisfied, the “Check” model

updates a flag in the message. When this message is received by the FMS, it checks this flag to

determine if further iterations are needed. If so, they next step in the iteration of the models is

invoked. If not, the FMS does not schedule any further models and the final message which

contains the stove efficiency is returned to the caller for proving the final answer to the user.

The user inputs are the parameters that allows a user to evaluate the efficiency of a

cookstove design and are discussed in detail in MacCarty and Bryden, 2015. In this work the

user inputs are provided to the federated system via a web API end-point. This can be enhanced

to provide a web-browser based GUI, using which the cookstove design parameters can be input

to the federated system model by the user. The output efficiency from the distributed system of

models was compared with the monolithic code for the same given inputs. These results are

shown in Table 3.4.

In each of the three cases, the resulting efficiency value was identical using the

monolithic model and the system of component models. This demonstrates that the

decomposition of models did not affect the outcome of the computations.

104

In Table 3.4 it can also be observed that the computational time is higher in the cases

where the federated models are used. This is expected in due to network latency, in

communicating between the FMS and the component model services. Additionally, as noted in

MacCarty, 2015, the models utilized in this work have been built for preliminary design, hence

the computational time is low compared to models built for detailed design, e.g. CFD models.

Additionally, since the results of the federated system of models is accessed through a web-

browser, it added on average about 100 milliseconds to the response time. The monolithic code

on the other hand, reports the final efficiency as console output.

However, it is important to note that the monolithic code does not support easy

evaluations, especially in the case where multiple design parameters need to be evaluated. Input

parameters would have to be input from either a file or using a script based method.

105

Table 3.3. Design variables for the cases.

Case Dc Hc Gc Hp Ds Ks Hsh Tsh Ksh gp gs Dp

1 0.1 0.2326 0.025 0.11052753 0.101 1.0 0.08 0.0005 35.0 0.01 0.008 0.24

2 0.4 0.2326 0.25 0.11052753 0.301 15.0 0.08 0.005 3.0 0.01 0.008 0.34

3 0.2 0.2726 0.25 0.110 0.301 2.0 0.08 0.005 30.0 0.01 0.008 0.24

Table 3.4. Efficiency and time comparison of monolithic model with the system of models.

Case Efficiency (%) Time (seconds)
Monolithic

model
System of models Monolithic

model
System of

models
1 34.7 34.7 2.2 3.06
2 13.69 13.69 1.06 2.75
3 28.4 28.4 0.72 1.33

Furthermore, once a system model has been established it does not need to be

disassembled. As the design moves from the preliminary phase to the detailed-design phase,

simple models can be replaced by detailed models. Similarly, during the design optimization

106

phase, the detailed models can be replaced by ROMs to support quick function evaluations of the

optimization algorithm objective function.

3.8. Conclusions and Future Work

Lloyd et al. (2011) classified environmental modeling frameworks as “traditional vs.

lightweight” and presented a methodology for measuring framework “invasiveness,” defined as

the “degree to which model code is coupled to the underlying framework.” In this article the

novel concept of a federation system of models was proposed and implemented. A federated

system of models were developed from a monolithic model code, for the preliminary design of

cookstoves.

Another interesting extension of this work would be to use machine learning techniques

to automatically learn the characteristics of individually engineered systems (topological,

operational, response characteristics, etc.) and intelligently suggest to the FMS the extents of

composability. Fusion of computational information with experimental or on-field observations

is yet another open question in the field of model integration. Stringent access controls pertaining

to user specific security protocols will have to be adapted in order to make this technology useful

in an enterprise.

References

Laniak G. F., Olchin G., et al., 2013. Integrated environmental modeling: A vision and roadmap
for the future, Environmental Modeling and Software, vol. 39, pp 3-23.

Muth Jr., D. J., Bryden K. M., 2012. An integrated model for assessment of sustainable
agricultural residue removal limits for bioenergy systems, Environmental Modeling and
Software, vol. 39, pp 50-69.

Allan B., Armstrong R., Lefantzi S., Ray J., Walsh E., Wolfe P., 2005. Ccaffeine: a CCA
component framework for parallel computing. Common Component Architecture Forum.
http://www.cca-forum.org/ccafe (Retrieved 15 Feb 2016).

107

Peckham, Scott D., Eric, W. H. Hutton, and Norris, Boyana, 2013. "A component-based
approach to integrated modeling in the geosciences: The design of CSDMS." Computers &
Geosciences 53: 3-12.

Arnold, T. R., 2013. Procedural knowledge for integrated modelling: towards the modelling
playground. Environ. Modell. Softw. 39, 135–48.

Rizzoli, A. E., Leavesley G., Ascough II J. C., Argent R. M., Athanasiadis I. N., Brilhante V., et
al., 2008. Integrated Modelling Frameworks for Environmental Assessment and Decision
Support. In: Jakeman, A. J., Voinov, A. A., Rizzoli, A. E., Chen, S. H. (Eds.). Environmental
Modelling, Software, and Decision Support: State of the Art and New Perspectives, Vol. 3,
Elsevier, Amsterdam.

Scientific Computing and Imaging Institute (SCI Institute), 2016. SCIRun.
http://www.sci.utah.edu/cibc-software/scirun.html (last accessed 15 Feb 2016).

Vöckler J., Juve G., Deelman E., Rynge M., and Berriman G. B., 2011. Experiences Using Cloud
Computing for a Scientific Workflow Application, Proceedings of the 2nd international
conference on Scientific Cloud Computing, pp 15-24.

Bernholdt D.E., Allan B.A., Armstrong R., Bertrand F., Chiu K., Dahlgren T.L., et al., 2006. A
component architecture for high-performance scientific computing. Int. J. High Perform.
Comput. Appl. 20, 162–202.

Jorissen K., Villa F.D. and Rehr. J. J., 2012. A high performance scientific cloud computing
environment for materials simulations, Computer Physics Communications, vol 183, issue 9,
pp 1911-1919.

Zhao. Y., Li Y., Lu S., Raicu I., et al., 2014. Devising a Cloud Scientific Workflow Platform for
Big Data, 10th Word Congress on Services, pp 393-401.

Iosup A., Ostermann S., Yigitbasi M. N., et al., 2011. Performance Analysis of cloud computing
services for many-tasks scientific computing, IEEE Transactions on Parallel and Distributed
Systems, vol. 22, pp 931-945.

Fox A, 2011. Cloud computing – What’s in It for Me as a Scientist, vol 331, Science, pp 406-
407.

Belgacem M. B, Chopard B, 2015. A hybrid HPC/cloud distributed infrastructure: Coupling EC2
cloud resources with HPC clusters to run large tightly coupled multiscale applications, Future
Generation Computer Systems, vol. 42, pp 11-21.

Thönes J., Microservices, 2015. IEEE Software, vol. 32, no. 1, pp. 116-116.

Michel J. P., Web service APIs and Libraries, American Library Association, 2013.

Villamizar M., et al., 2015. Evaluating the monolithic and the microservice architecture pattern
to deploy web applications in the cloud, Computing Colombian Conference (10CCC), 10th,
Bogota, 2015, pp. 583-590.

Pahl C. and Lee B., 2015. Containers and Clusters for Edge Cloud Architectures -- A
Technology Review, Future Internet of Things and Cloud (FiCloud), 3rd International
Conference on, Rome, 2015, pp. 379-386.

108

Armbrust Michael, et al., 2010. "A view of cloud computing." Communications of the ACM
53.4: 50-58.

Suram S. and Bryden K. M., 2015. Integrating a Reduced-Order Model Server into the
Engineering Design Process, Advances in Engineering Software, 90:169–182.

MacCarty N. A. and Bryden K. M., 2015, Modeling of Household Biomass Cookstoves: A
Review, Energy for Sustainable Development, 26:1–13.

Johnson+ P. E., Ashlock D. A., and Bryden K. M., 2014. A Novel Engineering Tool for Creative
Design of Fluid Systems, Engineering with Computers, 30(1):15–29.

MacCarty N. A. and Bryden K. M., in review submitted December 2015, A Generalized Heat-
Transfer Model for Shielded-Fire Household Cookstoves, Energy for Sustainable
Development, in review.

Bryden K. M., 2014. A Proposed Approach to the Development of Federated Model Sets,
Proceedings of the 7th International Congress on Environmental Modelling and Software.

International Energy Agency (IEA), 2010. Energy Poverty: How to make modern energy access
universal?, World Energy Outlook, Paris.

Lloyd W., David O., Ascough II J.C., Rojas K.W., Carlson J.R., Leavesley G.H., et al., 2011.
Environmental modeling framework invasiveness: Analysis and implications. Environ.
Modell. Softw. 26(10), 1240–1250.

Ascough II J.C., Flanagan D.C., David O., 2005. Assessing the potential of the object modeling
system (oms) for erosion prediction modeling. In: Proceedings 05-211. 2005 ASAE Annual
International Meeting, Tampa, FL.

David O., Markstrom S. L., Rojas K. W., Ahuja L. R., Schneider I. W., 2002. The object
modeling system. In: Ahuja, L., Ma., L., Howell, T.A. (Eds.), Agricultural System Models in
Field Research and Technology Transfer. Lewis Publishers, Boca Raton, FL, pp. 317–331.

Rahman J. M., Seaton S.P., Perraud J. M., Hotham H., Verrelli D. I., Coleman J. R., 2003. It’s
TIME for a New Environmental Modelling Framework. In: Post, D.A. (Ed.). MODSIM 2003
International Congress on Modelling and Simulation, 4, 1727–1732.

Gregersen J. B., Gijsbers P. J. A., Westen S. J. P, 2007. OpenMI: Open modelling interface.
Journal of Hydroinformatics, 9(3): 175–191.

Blind M. and Gregersen J. B., 2005. Towards an Open Modeling Interface (OpenMI) and the
HarmonIT project. Advances in Geosciences, 4: 69-74.

MathWorks. 2016. Simulink – simulation and Model-Based Design. 2011. The MathWorks, Inc.
http://www.mathworks.com/products/simulink/ (last accessed 15 Feb 2016)

Simulia™, 2016. Execution Engine (formerly Fiper). http://www.simulia.com/products/see.html
(last accessed 15 March 2016).

Phoenix Integration, 2008. PHX ModelCenter® 10.0. http://www.phoenix-int.com/ (Retrieved
15 March 2016).

Pro-Trax Suite Simulation Software, 2016. http://www.traxintl.com/ (last accessed 10 March
2015).

http://www.phoenix-int.com/

109

MacCarty N. A., Bryden K. M., 2015. Modeling of household biomass cookstoves: A review.
Energy for Sustainable Development 26:1-13.

Armstrong C. W., Ford R. W., Riley G. D., 2009. Concurrency and Computation- Practice &
Experience, 21: 767-791.

Balaji V., 2002. The FMS Manual: A developer's guide to the GFDL Flexible Modeling System.
URL: http://www.gfdl.noaa.gov/fms (Retrieved 18 January 2015).

Redler R., Valcke S., Ritzdorf H., 2010. Geoscientific Model Development 3: 87- 104.

Bryden K. M., and McCorkle D. S., 2004. "VE-Suite: a foundation for building virtual
engineering models of high performance, low emission power plants." 29th International
Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida. R. Perrey
and M. Lycett, "Service-oriented architecture," Applications and the Internet Workshops,
2003. Proceedings. 2003 Symposium on, 2003, pp. 116-119.

Amazon, Overview of Amazon Web Services, https://d0.awsstatic.com/whitepapers/aws-
overview.pdf, Retrieved Feb., 2016.

Fielding Roy T., and Richard N. Taylor, 2002. Principled design of the modern Web
architecture, ACM Transactions on Internet Technology, 2.2: 115-150.

Erl T., 2005. Service-Oriented Architecture (SOA): Concepts, Technology, and Design, Prentice
Hall.

Giessmann, Andrea, Stanoevska-Slabeva, Katarina, and Visser, Bastiaan De, 2012. Mobile
Enterprise Applications--Current State and Future Directions, System Science (HICSS), 2012
45th Hawaii International Conference on. IEEE.

Nolan D., and Duncan T. L., 2014 Javascript object notation, XML and Web Technologies for
Data Sciences with R. Springer New York. 227-253.

McNunn G. S., and Bryden K. M., 2013. "A Proposed Implementation of Tarjan's Algorithm for
Scheduling the Solution Sequence of Systems of Federated Models." Procedia Computer
Science 20: 223-228.

Babel, 2016, http://csdms.colorado.edu/wiki/Help:Tools_CSDMS_Handbook (Retrieved 25
March 2015).

Microsoft, 2016, https://azure.microsoft.com/en-us/solutions/big-compute/ (Retrieved 25 March
2016).

http://www.gfdl.noaa.gov/fms
https://d0.awsstatic.com/whitepapers/aws-overview.pdf
https://d0.awsstatic.com/whitepapers/aws-overview.pdf
http://csdms.colorado.edu/wiki/Help:Tools_CSDMS_Handbook
https://azure.microsoft.com/en-us/solutions/big-compute/

110

CHAPTER 4. A NOVEL APPROACH TO INTEGRATE A COMPONENT ROM INTO A

DISTRIBUTED ENGINEERING SYSTEM MODEL

Article to be submitted to Advances in Engineering Software

Sunil Suram and Kenneth M. Bryden*

Abstract

 As computational models and simulations are getting easier to run with the advent of

cloud computing, the management of the associated data and models is getting more difficult.

For producers of these high-fidelity models getting access to high-end hardware has become

easier. However, for consumers of the models, key stakeholders in the design process, and

designers, the process of utilizing these models in decision-making tasks the complexity

involved has not decreased by increases in computational power. A novel engineering workflow

based approach is proposed in this article to bridge this gap using information artefacts. In the

proposed approach, data from high-fidelity computational models are utilized to construct ROMs

seamlessly without user intervention. Utilizing the ROMs and the computational models

concurrently, a higher level of abstraction to these models is created as an information artefact.

The consumers of this information can query the information artefact for information based in

the design parameters. The information artefacts are web-enabled and communicate with a

federation management system. This approach is demonstrated using a heat-exchanger fin shape

design example and comparisons are drawn between the resulting engineering workflow and the

workflow proposed in Suram and Bryden, 2015. It is found that this proposed approach has the

111

potential to make the consumption of engineering modeling information easier by removing the

tight coupling between the producers and consumers of these models.

4.1. Introduction

In a traditional modeling approach, the individual component models are linked with

each other using software/code. Each of the models is usually a software library that exposes

application programming interfaces (APIs). All the linking occurs in a single software program

that brings together the individual models, including problem specific entities like initial

conditions, boundary conditions, geometry and information/data transfer between models. More

often than not, the monolithic software program also incorporates elements of the hardware that

it is going to run on. For example, it can make assumptions about the availability of certain

compute clusters, parallel programming models etc. Although this approach can be effective in

solving the problem at hand, it makes it difficult for another engineer to reuse this work without

undertaking the effort of refactoring the code to suit the new problem to be solved.

One way of overcoming this problem of building and modeling large-scale models is by

taking an integrated framework based approach, where each individual model is part of a larger

framework of models (Peckham, Hutton and Norris, 2013). The overall framework establishes

bounds on model developers wherein each model has to satisfy a set of criteria to fit into the

integrated modeling framework (Peckham, Hutton and Norris, 2013). An advantage of such an

integrated framework is that all the individual models are consistent. Once a model developer

understands the framework, developing newer models that are consistent with the established

protocols of the framework becomes easier. On the other hand, imposing functional model

development constraints on developers at a global level is a difficult task. Several groups of

developers may consider this too restrictive and suggest changes to the integrated framework. As

112

a result, the integrated modeling framework changes with time and can cause version

compatibility issues. Thus such a centralized approach can be useful for smaller groups of

engineers, but quickly becomes intractable for universal adoption.

 4.1.1. Reduced Order Models

Engineering design is an iterative decision making process in which collaborative groups

of designers/engineers work together from conceptual design to a final product. Many

engineering design workflows have been proposed but most of these are similar to Figure 4.1

(Pahl et al., 2007; Ertas and Jones, 1996). As shown in Figure 4.1, the design process is

composed of three main stages, (1) problem definition, (2) engineering design, and (3) design

validation and verification. (Pahl et al., 2007; Ertas and Jones, 1996).

Figure 4.1. Workflow in engineering design.

113

During the detailed design phase the chosen design is optimized and finalized. The

engineering design stage involves an iterative process in which the designers typically move

back-and-forth between conceptual, preliminary, and detailed design with relatively quick

consideration and analysis of multiple designs, repeated iterations and expansions of proposed

solutions, revisiting assumptions and decisions, and a series of design changes. Once completed

a reduced set of designs are chosen for further verification and validation using additional

analysis and field data. This can lead to changes to the initial design, thus requiring a repeat of

the design stage. The exploratory and iterative nature of engineering design makes the process of

communicating engineering information and analysis during the design stage, between various

engineering teams challenging. Suram and Bryden, 2015, introduced a ROM server that stores all

the data from computational models and creates reduced order models from the data. The ROM

server enhanced communication between analysts and designers compared to the traditional

model of running ROMs. However, in cases where the ROM server does not have sufficient data,

the communication between the analysts and designers has to be explicit, in order to update the

data. To further streamline this process, in this research the concept of information artefact is

introduced. Using information artefacts the boundary between a detailed model and a ROM is

obfuscated helping make the engineering decision making process.

4.1.1.1. Proper Orthogonal Decomposition

In this work the proper orthogonal decomposition (POD) technique is used to

construct and evaluate ROMs. The POD technique has been used extensively in prior research

and details about can be found in (Suram and Bryden, 2015). POD has been incorporated into the

engineering workflow as described in (Suram and Bryden, 2015). The POD technique is useful

because it captures all the required information about the phase space of a given physical

114

problem. When using it to solve an engineering design problem, this information can then be

used in conjunction with the coefficient interpolation technique to explore the design space in a

computationally efficient manner. This process can be summarized as follows:

x Identify the design parameters and design space of interest

x Create the computational data needed for the snapshot dataset that spans the

design space of interest

x Create the POD coefficient and basis functions

x Make the POD ROM available for use

x Use the POD ROM to compute new solutions as needed to support the

engineering design process

If the design space to be explored needs to be expanded or new aspects of the problem

need to be explored, the snapshot dataset will need to be expanded and a new POD ROM will

need to be developed. Additionally, the accuracy of the POD ROM increases as the number of

snapshot solutions increases. Thus as the design process evolves and more accurate solutions are

needed, the POD ROM will likely need to be updated in regions of the design space of particular

interest.

The iterative nature of the design process and the continuing update of the ROM

creates a communication challenge within the design and analysis team. To evaluate a ROM, the

most recent set of coefficients and the basis functions need to be known by the user. If a user is

geographically in a different region or a part of a different engineering team interested in

evaluating the ROMs or analyzing the results, this information has to be made available to them.

Updating the ROM manually via email or download for local compute makes it challenging to

ensure that the most recent ROM is used and that disparate members of the design group are

115

using the same ROM. Furthermore, providing local access to this data for multiple users may not

be possible. It is also likely that multiple POD ROM models would be used to address a large-

scale complicated design problem, and a process is needed to coordinate the development and

use of these multiple POD ROM models. This creates problems with management of data and

version control. The ROM may remain on a single computational machine or may be exported to

remote machines for simultaneous use. If it is kept on a single machine, access is limited because

only one ROM computation can be performed at a time. If it is exported, maintaining version

control of the ROM becomes difficult and different groups having conflicting or out-of-date

information can slow the design process. In the next few sections we propose an engineering

workflow to overcome these challenges and enable the seamless utilization of ROMs within the

engineering design process.

 4.1.2. Information Artefacts

In this article the concept of information artefacts is introduced. For an engineering

system, an information artefact is a provider of information to a system model i.e., they can be

computational models, closed-form solutions, data, design parameters, optimization algorithms,

etc. In this context, all these pieces of information are recognized as information artefacts (IAs)

where they can be queries with an input and a response of returned from them.

Information artefacts are a higher-level of abstraction from detailed models and ROMs

i.e. they encompass the information within each of the models. Thus when an information

artefact is invoked by the FMS, either the detailed model or the ROM can be invoked in-turn,

based on how much information each of these models contains. If the ROM has insufficient

information, the detailed model is invoked. The advantage of this abstraction is that for tasks that

116

do not require detailed models, a user cannot inadvertently invoke a model of higher

computational cost.

Figure 4.2. Information artefact.

As shown in Figure 4.2, when a user requests a computation from the information artefact

there is no distinction made between the high-fidelity model and the ROM. The model that is

capable of returning the information fastest is given priority. If a detailed model solution to the

request exists in the cache, it is returned immediately without performing a ROM computation.

On the other hand, if a detailed model solution does not exist, a ROM computation is performed.

If both these criteria are not satisfied, the information artefact proceeds to perform a detailed

model computation. Similarly, it is known that closed-form solutions to complex problems are

not always possible, especially for complex boundary conditions. However, can it be used within

an information artefact during preliminary design to understand the response of an engineering

system model in order to inform some engineering decisions. In this article, the terms

117

information artefact and hybrid model are used interchangeably, since the information artefacts

used in this work are limited to computational models and ROMs.

4.1.2.1. Model Substitution

In this work, the framework developed in (Suram and Bryden, 2016) is extended to

include the concept of engineering model substitution. There are several scenarios during the

engineering design process where complex models have to be substituted by simpler models.

This is typically needed when “what-if” analysis needs to be performed to study and analyze the

impact of certain design decisions. In such situations, running high-fidelity models is an option

but involves a high turnaround time for completion. When multiple design iterations are

involved, high-fidelity models increase the time to make the engineering decision.

In this article, a framework is outlined for these scenarios where a detailed high-

fidelity model can be substituted by a simpler model that has a faster computational time, but has

the ability to provide the same output for the engineering system model. The framework is

capable of storing high-fidelity computational data and automatically creating reduced order

models utilizing the proper-orthogonal decomposition technique.

4.1.3. Federated Models

In the framework developed in (Suram and Bryden, 2016), a collection of individual

models constitutes a federated set of models, where each of the models has a set of inputs and

outputs. It was demonstrated that a complex system model can be built by composing together

multiple individual models and can be deployed as a system model that can be reused and

exposed as an Internet application (Suram and Bryden, 2016). Furthermore, any of the developed

models in the federation set do not have any schema imposed on the structure of inputs and

outputs. The model developer decides the structure of inputs and outputs that the model accepts

118

and emits, the only requirement being that this information be broadcast to model developers via

API calls. The communication between constituent models is orchestrated by a federation

management system (FMS). The FMS is aware of all the models that are registered with it and

has the ability to trigger the execution of any of the registered models as needed. A user

communicates with the FMS by initializing the desired model, describing a list of individual

models that constitute it and supplying the boundary conditions. The FMS is responsible for the

communication between each constituent model. The FMS is also responsible for the availability

of computational resources to execute any registered model by starting up new instances of a

model based on usage.

For such a decentralized system of models to be functional and scalable a cloud-based

architecture is the most practical solution. The primary reasons for this are:

x Universal availability: Cloud platforms can be accessed by anyone with a web-browser

and an Internet connection. This opens up the possibility for model developers to build

and publish their models either as part of a closed group or globally regardless of their

geographic location. Model developers should be able to publish their models by

registering them with the FMS.

x Scalable platforms: As more models get added computational resources need to be

increased automatically without human intervention. The deployed models need to be

readily available every time the FMS sends a request for computation. Cloud platforms

are inherently scalable in terms of hardware and the process of scaling can be made

intelligent and automated by utilizing platform level APIs from the providers. Thus,

highly scalable and fault-tolerant software systems can be developed.

119

x Cost Effective: Cloud platforms work on a cost per usage model and are hence cost

effective as the user only pays for the compute time and not for procuring, provisioning

and maintaining compute, storage and networking resources.

4.1.4. Loosely Coupled Engineering Models

In traditional approaches to linking engineering models (Babel, 2016; Peckham et al.,

2013) the “linkage” occurs in code i.e. information transfer between models has to be

incorporated in code. Thus the model-associated state information is tightly coupled to the

models being used and to the execution context of the engineering problem. This makes the

coupled code difficult to reuse without modifications and refactoring because of the state

information is embedded into this coupled model. A primary reason for this is the availability of

models as software libraries as opposed to individual atomic compute “engines” which act on

request to a specified set of boundary or initial conditions.

Such an implementation would require a loosely coupled distributed system based

approach to building each model, scheduling their execution and orchestrating information

transfer. An important requirement is that state information be moved away from individual

models as they run. This enables any model of the same type can carry out subsequent runs

without keeping track of state information. This is an important requirement when linking

models together, because information transfer from one model to another can occur by models

loading the updated state at run-time. This is an important distinction that the authors would like

to note, from a “library approach” where this coupling occurs primarily at compile time of the

code. This also plays a key role towards enabling a fault-tolerant and scalable distributed system

to be constructed of collections of engineering models. Moving the contextual state information

away from a model helps make it a foundational construct within a larger collection, which can

120

be called to perform a task. Existing cloud computing platforms can be used to “spin-up” new

model instances with increases and usage and demand requirements. When engineering models

are coupled using code, they become tightly-coupled and become difficult and unwieldy to take

apart for reuse. For this reason, if models are built as individual functional units that perform a

particular computational task.

4.1.5. Stateless Models

The concept of statelessness is critical to the implementation of federated model sets

described here. State refers to the entirety of information that defines a model while executing a

computational task. For example, in an RK4 model, the initial time-step, initial conditions,

constants in the evolution equation and the current time-step define the state of the RK4 model.

If state within a model is continued to be maintained beyond the execution time-frame, state is

said to persist. This is typically the case in monolithic computer codes (system models) where

state in one model is continued to be maintained while a different model is executing based on

the state from the first model. However, if the model does not retain any state between

invocations it is said to be stateless (Thönes, 2015). If it is possible for the model to pass-on its

state information to the next model without persistence, the individual models themselves

become reusable computational entities across systems and multiple system models. Any system

model can use an individual model as needed. As noted above, this work requires that each

individual model is stateless i.e. the model does not persist state information beyond the

executing time-frame for the current task. This is an important consideration because it enables

each model to act as a “functional unit” that can be reused and combined easily with other

models. It must be noted that stateless models can be created either as a single solver, say, an

RK4 solver or it could be a combination of multiple solvers. Participation within a federation of

121

independent models requires that each model be stateless and that each model identify its inputs

and outputs. An important aspect of being stateless is that the message and hence the code can be

executed on any node in the federation, which is an important aspect of scalability.

4.2. Workflow

 4.2.1. Engineering Workflow Using the ROM Server

 Figure 4.3 shows the engineering workflow using the ROM server introduced in previous

work (Suram and Bryden, 2015). Engineering design is a complex and iterative process that

involves multiple engineering teams sharing and communicating information during the design

process. Computational modeling and the development of high-fidelity models play a significant

role in the design process. High-fidelity models are accurate but on the other hand they are time-

consuming and can slow down the design process. To address this, a framework was developed

in (Suram and Bryden, 2015) to integrate ROMs into the engineering design workflow. As was

shown in Suram and Bryden, 2015, the ROM server is capable of providing a single consistent

view into the computational models within an organization. However, for the ROM server to

function consistently, the producers and consumers of models must communicate outside the

context of this information space. For example, adding, updating or deleting data from the ROM

database requires that the producers and consumers of the model communicate with one another.

Thus, the ROM server implemented in Suram and Bryden, 2015, requires an implicit coupling

between the producers and consumers of models and does not enable seamless interactions

between models, data and the associated analysts and designers.

122

Figure 4.3. Workflow developed utilizing the ROM server.

123

To enable such seamless interactions between all the associated stakeholders of an

engineering models, within an organization, requires a framework that makes use of the concept

of information artefacts. It should allow producers (analysts) to produce high-fidelity models and

the consumers (designers) to interact with the information artefact, as opposed to the ROM

server. It must thus enable dynamic and seamless substitution of high-fidelity models with

reduced order models. As a part of this, the goal is to build the software infrastructure to enable

such model substitution and reuse. These models can include engineering models like finite

element analysis and computational fluid dynamics as well as non-engineering models including

cost models and product diffusion models. In this work we build on the approaches developed in

Suram and Bryden, 2015 and 2016, to include reduced order models that can substitute high-

fidelity models to form a linked system of models that solves a larger problem. This approach

requires

1. A set of models that solve specific problems. These models can be self-contained

individual solvers that implement a specific algorithm or can be composed from other

existing models. Users must have the ability to add more models to the federation as they

see fit.

2. A management system that can accept new models and broadcast the details about

existing models in the federation set. This federation management system (FMS) needs to

be able to accept requests from users and orchestrate, coordinate and execute models in

the prescribed order necessary to solve the problem.

3. A framework of communication between models and the FMS where each model can

receive instructions to execute and notify the FMS of the completion of a computation or

of errors.

124

In addition, the framework also needs the following services to perform computations

and store the generated data for reuse.

1. A cloud-based data storage layer that can store high-fidelity models efficiently in a

scalable manner. The results from the high-fidelity models can be cached for reuse with

the same input design parameters.

2. A generic model that is capable of generating ROMs using the data generated from the

high-fidelity computational models and input design parameters.

3. A generic model that uses the above generated ROM and evaluates user requested input

design parameters and returns the output to the user. This is useful in order to reduce

computational time for a set of design parameters that lie within the phase-space of the

problem being considered. The user must be allowed to assign a higher preference to

either the accuracy of the computation or the time to solution. In the former case, the

high-fidelity computational model is invoked by the FMS and in the latter the ROM

evaluation is invoked.

4.3. Improved Workflow

In this article, an improved engineering workflow is proposed utilizing information

artefacts. The previous section summarized the engineering workflow from Suram and Bryden,

2015, based on the ROM server. IAs allow the seamless integration of ROMs and high-fidelity

models. Thus, IAs can be a starting point for the integration of models as well as the interactions

between analysts, designers, and engineering decision-makers. Figure 4.4 shows the proposed,

improved workflow where the IA is central to all the interactions between the producers and

consumers. Additionally, the IA is also central to the process of collecting computational data

and computing ROMs from the data.

125

The producers, during the design process formulate the problem, identify design

parameters of interest and run high-fidelity models. The data from these models is stored in the

background without any user intervention or explicit instructions. As the data gets collected, the

ROM construction service periodically constructs ROMs from this data and updates the ROM

parameters. The designers can simply query the IA for information about the design, which

responds with the solution based on either the ROM or the high-fidelity model. The IA uses the

“energy” of the ROM to determine if sufficient data was used in its construction.

It can thus be seen that this proposed workflow improves the engineering workflow

(Suram and Bryden, 2015) by eliminating the need for interactions between designers and

analysts. For updates to the design during the design process, each analyst and designer can

proceed with their own tasks, and the IA will process the requests either using the ROM or the

high-fidelity model. The remainder of this section provides details about the methodology and

architecture built to develop the information artefact.

126

Figure 4.4. Improved workflow with the information artefact.

4.3.1. Methodology

To address the problems described in the previous section the framework developed by

Suram and Bryden, 2015, is extended. The key additions to the framework are the

a. ROM construction model

b. ROM evaluation model

These models provide the system builder the option of generating ROMs for computationally

expensive models and utilizing them during the design process when quick iterations on the

design are needed.

In Figure 4.5, the overall architecture of the distributed system for model substation is

shown. There is an association between Model 1 and its corresponding ROM and similarly

between Model 2 and its corresponding ROM. In both cases, the model and the ROM accept the

same set of inputs and their corresponding outputs are the same and hence they can be

substituted for one another. For example, the system builder can invoke the ROM for a set of

127

input design parameters instead of running the high-fidelity model. However, this substitution

cannot occur in all situations. For example, the user might be requesting an evaluation of the

ROM, say, for Model 2 with certain input parameters that were not within the initial design

parameter space used to construct the ROM. In such situations, the FMS must make a decision

about the high-fidelity model that needs to be invoked for this set of input parameters. For a

decision to be made there must be established rules that help the FMS make an appropriate

decision wherein the high-fidelity model is invoked.

4.3.2. Model Substitution and Evaluation Rules

A key aspect of this work is the ability of the FMS to seamlessly substitute a high-fidelity

computational model with a ROM. To enable this substitution, the FMS needs to have access to

key pieces of information concerning the high-fidelity model. These are:

1. The design parameters

2. Access to computed data from these models

3. A set of rules that the FMS can refer to when making the decision of switching

between the high-fidelity and reduced order models. This requires association rules

that establish substitutability of a high-fidelity model with a ROM.

To further explain association rules for substitutable models, a simple example is

provided. Consider the computational problem of solving the Poisson equation in a square

domain as shown in Figure 4.5 along with Dirichlet boundary conditions on all four boundaries.

Only the top boundary has a variable parameter boundary condition while the other three sides

do not vary. For this simple problem, the top boundary temperature is the input design parameter

and the designer’s goal is to compute the temperature field in the domain for any acceptable

design parameter value.

128

Figure 4.5. Poisson equation on a square domain with boundary conditions.

A computational model that is based on solving the equation () numerically is considered,

in this example, as the high-fidelity model. Using data from this model, a ROM is constructed

that takes the same input parameter. It must be noted that the ROM evaluations are valid only in

the parameter range shown in the Figure 4.5. For any values of the input parameter p, that are

outside the range [p1, p2] the computational model will have to be invoked to solve the problem.

Based on these criteria, either the numerical model or the ROM can be evaluated for an input

design parameter. Thus, the federation management system needs to be able to use association

rules set by the system builder and invoke the appropriate model based on the user preferences of

accuracy or speed.

129

4.3.3. Rules

The system builder creates the association rules that define substitutability of the models.

To ensure that incompatible models cannot be associated with one another, the inputs and

outputs to and from the models are examined for compatibility. This process can be either

programmatic or manual. Once model compatibility is ensured, this information is submitted to

the FMS which stores and retrieves it as needed, at run-time. Also, the substitution rules can be

added by the system builder dynamically without restarting either the FMS or any of the

associated model services. These rules are communicated to the FMS through messages via its

input channel (Suram and Bryden, 2016). Table 4.1 shows an example of the constituents of such

a message that sets substitution rules between Models 1 and 2 and their appropriate ROMs.

Table 4.1. Contents of an example message that enables model substitutability.

Key Value
compatible_list ["model1","rom1"],["model2","rom2"]

data_repo [dfs://model_data_bucket/model1,
s3://model_data_bucket/model2]

meta_data_repo [<table_name>, meta_repo_m1]
[<table_name>, meta_repo_m2]

cache_loc [<model_id>, dist_cache_IP]

The message also contains design meta-data information, which references the parameter

values for the design. This key is used by the FMS to lookup the design parameter ranges when

there is a ROM associated with a high-fidelity model. This key, points to the location of design

parameters which the FMS reads into its own cache. When it receives a user request, the FMS

performs a model substitution action based on the user input. If the user has requested accuracy

over speed, the FMS invokes the high-fidelity model.

130

If the user favors speed over accuracy, the FMS will attempt to invoke the ROM. In order

to do this, it must a) check its cache for model associativity and find an associated ROM and b)

check if the user requested design parameter values are within range of the ROM. If both these

conditions are met, the FMS invokes the appropriate ROM. If no substitutable ROM is found or

input parameters are out of the range, the FMS reverts to invoking the high-fidelity model and

informs the user of this status. The FMS also marks the message with this status, which is read

by the FMS when the high-fidelity model execution is complete. The execution of the high-

fidelity model proceeds in an asynchronous manner and the user is informed by the FMS when it

completes. While informing the user of the completion status, the FMS also sends a message to

the ROM construction service to use the newly added data and update the ROM parameters.

When the ROM parameters get updated, the ROM evaluation service uses them for processing

new requests. The flowchart in Figure 4.6 shows the process that the FMS takes to substitute

compatible models for one another.

131

Figure 4.6. Flowchart showing the steps the FMS takes for model substitution.

4.3.4. Data Management

The section outlines the approach taken to manage computational data generated from

high-fidelity models in the model federation. Figure 4.7 shows the data flow of computational

models and design parameters. The data flow can be divided into 5 distinct steps. The key points

to be noted in Figure 4.7 are:

a. As new computational models are created they get added into a repository. Adding

data to the repository also triggers the associated model meta-data to be saved in the

meta-data repository.

132

b. This repository is used by the ROM computation service to generate reduced order

models.

c. The ROM computation service updates the ROM parameters.

d. The ROM evaluation service utilizes the ROM parameters for fast computations of

user inputs.

e. The FMS seamlessly facilitates these interactions and computations without explicit

user intervention.

In step 1, data generated by engineering models are added to a model data repository. The

model data repository is a cloud based storage platform that stores all the computational data in a

fault-tolerant manner. The meta-data associated with this engineering model is stored in the

meta-data repository, depicted by step 2. As soon as these steps are complete, the FMS sends a

message to the ROM construction service, which uses the data from these two repositories and

computes the ROM parameters, as shown in steps 3a and 3b. Since this can be time-consuming,

the process is asynchronous and can be scheduled to run on a periodic basis (Suram and Bryden,

2015). The resulting ROM parameters are then stored in a repository for use by the ROM

evaluation service as shown in steps 4 and 5. When the FMS can find a compatible ROM, it

invokes the ROM evaluation service with inputs of the user requested parameters. The ROM

evaluation service uses the ROM parameter repository to compute the output and sends the

response back the FMS which responds to the user.

133

Figure 4.7. Data flow of models and design parameters.

4.3.5. Computations

The computations can be categorized into two types’ viz. high-fidelity model and ROM

computations. Additionally, the computational time to construct the ROM is more expensive

compared to the evaluation of the ROM. The relative computational times of the models

considered in this work are shown in Table 4.2. For each category of computation, a different

strategy is utilized due to differences in execution times.

134

Table 4.2. Relative computational time and computation type.

Model Type Relative Computation Time Computation Strategy

High-fidelity model Very high Asynchronous

ROM construction High Asynchronous timed-
execution

ROM evaluation Low Synchronous

Each of the strategies is explained below in the context of a user request and the model

substitution rules given to the FMS.

a. Asynchronous Strategy

Consider a user request for a ROM evaluation that consists of input design parameters

that are outside the initial design parameter range of the ROM. In this event, the FMS

invokes the high-fidelity model after looking up the substitution rules. Since this

occurs without explicit user intervention and the execution time of the high-fidelity

model can be very high, the user is immediately notified and the response contains a

unique job identifier that can be used to query the FMS of the jobs status. Thus, the

execution of the high-fidelity model continues in an asynchronous manner and the

user can retrieve the results on its completion.

In the event that the user requested a high-fidelity model, the FMS does not need

to lookup substitution rules and proceeds to invoke the high-fidelity model and a job

identifier is assigned as described above.

b. Asynchronous Timed-Execution Strategy

This strategy applies to the ROM construction service which uses the results of high-

fidelity models to compute ROM parameters. On completion this service updates the

135

ROM parameters that are used by the ROM evaluation service. Additionally, it also

updates the design meta-data that is referenced by the FMS. This computation is

dependent on upstream updates to the model database and the downstream ROM

evaluation service depends on the results from its successful execution. Also, the

ROM construction should not be triggered on every model database update.

Considering these restrictions an asynchronous timed-execution strategy is utilized,

which triggers the ROM construction service on a periodic basis. Once it begins

execution, this service checks for updates to the model database and proceeds to

perform a ROM construction only if needed.

c. Synchronous Strategy

Once the ROM parameters are computed, the computation time is small for a user

request that is within the parameter range of the ROM. Thus for such a request, the

results are returned immediately. Once the FMS looks up the design meta-data, it

invokes the ROM evaluation service, waits for the response from the ROM and

returns the results to the user. Thus, a single request is sufficient to return the result of

a computation to the user.

4.4. Example Application

The shape design of a heat exchanger fin is used in this work as an example problem to

demonstrate the capability of the strategy developed in this article to switch between a ROM and

high-fidelity model. It should be noted that the problem considered is primarily to demonstrate

the value of storing data from high-fidelity models and using the data to a) create ROMs and b)

use the ROMs in a manner that is transparent to a user of a system model.

136

A two-dimensional heat exchanger fin shape design problem has been chosen as the

engineering design problem. A brief description of the problem is outlined in this section and

further details can be found in Suram et al., 2006. Figure 4.8 shows a set of fins where fluid

(water) is pumped through the channel between the curved surfaces of two consecutive fins to

remove heat. Four design parameters have been considered:

1. Length of the fin (a)

2. Spacing between the fins (b)

3. Base thickness (tau)

4. Thickness of the lateral surface of the fin (y).

These design parameters are the inputs to the ROM construction service and as well as the high-

fidelity model. The outputs from these models are the temperature distribution in the fin and the

fluid as well as the velocity distribution in the fluid.

In this example problem, the process of validating the inputs and outputs of the two

substitutable models is simple. However, if there are several models the validation process can

be programmatic and hence automated. Table 4.3 shows the inputs and outputs from each of the

substitutable models. Since the outputs are temperature and velocity fields, for brevity they are

depicted symbolically as a numeric array in JSON format. The ROM output contains the energy

key-value pair while the output from the high-fidelity model does not. The energy value can be

used by the engineer or analyst to determine if the ROM was constructed with sufficient data.

137

Figure 4.8. A single fin considered in the design problem.

Table 4.3. Inputs and outputs to the substitutable models.

Model Input Output

ROM {
 "a": 1.0,
 "b": 0.224,
 "tau": 0.118,
 "y0": 0.126
}

{
 "T": [1,0.99,…],
 "u": [0,0,…],
 "energy": 0.95
}

High-fidelity {
 "a": 1.0,
 "b": 0.224,
 "tau": 0.118,
 "y0": 0.126
}

{
 "T": [1,0.99,…],
 "u": [0,0,…]
}

Each of the services are invoked at different points in time and can be categorized into

the following timeline:

1. Substitutability rules to FMS

2. Model deployment

3. User requests

138

4. ROM construction and parameter updates

5. ROM evaluations

These steps are explained in detailed in the following sections.

4.4.1. Substitutability Rules

The first step is to assign substitutability rules to the FMS. In this case, the high-fidelity

model and ROM are substitutable and this information is provided to the FMS as shown in

Figure 4.2. Once these rules are assigned, the FMS is aware of the compatibility of the models

and will attempt to substitute the high-fidelity model with the ROM.

4.4.2. Model Deployment

Once the model developer deploys the model, they are running as background services

waiting on the FMS to assign tasks to them, as soon as a user request for evaluation is received.

The ROM construction service although deployed, is not triggered to perform any computations

since no data has yet been generated by the model services.

4.4.3. User Requests

The data from the first user request for a model bootstraps the high-fidelity model

database. Every user request that cannot be evaluated using the ROM is evaluated by the high-

fidelity model and stored in the model data repository. As soon as a user request for evaluating a

set of design parameters is received the FMS performs its checks and routes the request to eh

appropriate model, to be executed.

4.4.4. Rom Construction and Parameter Updates

When there is sufficient data from high-fidelity models, the ROM construction service

begins processing data on the timed-execution basis as explained in section 3. This service

constructs a ROM based on the POD technique (Suram and Bryden, 2015) and once this is

139

completed, the resulting ROM parameters are stored in the ROM parameter store. These

parameters are associated with a unique ID that corresponds to the model for easy and efficient

retrieval by the ROM evaluation service.

Once there are ROM parameters associated with this model are stored in the meta-data

store, user requests can be evaluated based on these parameters. The ROM evaluation service

retrieves the parameters for the model bases on its unique ID and proceeds to perform a POD

computation. On completion the temperature and velocity values are returned, in addition to the

energy captured by the ROM.

4.5. Discussion and Results

The remainder of this section discusses the results from using this framework to solve

this problem. Figure 4.9 shows the time-line of actions performed by a user and the results of the

actions taken by the FMS and the services associated with the hybrid model. Based on the user

inputs and the substitution rules, the hybrid model results vary as additional models were added

to the repository.

140

Figure 4.9. Timeline of computations and user interactions with the federated system of models.

Initially, only the detailed model exists after its deployment. Concurrently the ROM

construction and evaluation services wait for data and evaluation requests. At this point in time

the hybrid model consists only of the detailed model service, since no data has yet been

generated to create a ROM. As analysts request the FMS for design evaluations, they get directed

to the detailed model. Periodically the ROM construction service checks the repository if there is

sufficient data to create a ROM. When there is sufficient data, it proceeds with ROM

construction and on completion updates the ROM meta-data repository with the ROM

parameters.

141

Figure 4.10. Interactions between producers and consumers with information artefacts.

Figure 4.11. Evolution of singular value spectrum with number of detailed models added.

142

Once the ROM parameters are updated, the hybrid model now consists of both the

detailed model as well as the ROM. Hence, the ROM evaluation service can also participate in

design parameter evaluations by engineers and analysts. Figure 4.10 shows the information

artefact as a single information entity that encompasses the ROM and computational models. As

seen, multiple models that are stored in the model repository can be accessed by the IA. As the

producers add more models, ROMs get created and the consumers have access to the

computations as well as the resulting analysis.

Figure 4.12. Evaluations of temperature and velocity.

143

4.6. Conclusions and Future Work

In this article, the concept of information artefacts was introduced which are a layer of

abstraction over computational models, ROMs, closed-form solutions etc., that are web-enabled.

Thus, information artefacts when queried for information about a model return information to the

user based on the components that constitute it. In this article, a ROM and a high-fidelity model

were considered within an information artefact. The example considered, demonstrates the

ability of the artefact to substitute between the constituent models to provide an answer to the

user.

In the current work, the process of validating compatibility of models has not been

automated. This is an important aspect and can be improved by using a programmatic approach

and automating it. One important aspect of automated validation is to ensure that units used in

the inputs and emitted in the outputs are the same across compatible models.

References

Pahl G., Beitz W., Schulz H.-J., Jarecki U. Wallace, Ken, Blessing, Lucienne T.M., 2007. (Eds.),
Engineering Design: A Systematic Approach, 3rd Edition, Springer Verlag.

Ertas, A. and Jones, J. C., 1996. The Engineering Design Process 2nd ed, Wiley.

Bryden, K. M., 2014. A Proposed Approach to the Development of Federated Model Sets,
Proceedings of the 7th International Congress on Environmental Modelling and Software.

Suram, S. and Bryden, K. M., In Review, 2016. A distributed systems approach to engineering
modeling.

Suram S. and Bryden K. M., 2015. Integrating a reduced-order model server into the engineering
design process, Advances in Engineering Software, vol. 90, pp. 169-182.

Fox A., 2011. Cloud computing – What’s in It for Me as a Scientist, Vol 331, Science, pp. 406-
407.

144

Erl, Thomas. Service-oriented architecture: concepts, technology, and design. Prentice Hall,
2005.

Thönes J., 2015. Microservices, IEEE Software, vol. 32, no. 1, pp. 116-116.

Babel, 2016, http://csdms.colorado.edu/wiki/Help:Tools_CSDMS_Handbook (Retrieved 25
March 2015).

Peckham, Scott D., Eric, W. H. Hutton, and Norris, Boyana, 2013. "A component-based
approach to integrated modeling in the geosciences: The design of CSDMS." Computers &
Geosciences 53: 3-12.

http://csdms.colorado.edu/wiki/Help:Tools_CSDMS_Handbook

145

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

In this chapter a summary of the research work completed is presented along with a

discussion of the potential impacts of the research. There are also several areas for improvement,

further investigation, and analysis which are discussed in the future work section.

5.1. Conclusions

The work presented in this dissertation constitutes three major themes:

• Reduced Order Modeling Server: The reuse of high-fidelity computational data for

constructing ROMs to enhance communication of engineering data and models

between the producers and consumers of the models.

• Distributed Systems based Engineering Modeling: A proposal to decompose

monolithic models into smaller reusable components that are web-enabled. As part of

this, this dissertation implements and demonstrates a federation management system

which helps link models and orchestrate the flow of information between them.

• Compound or Hybrid Models: The concept of a compound or hybrid model is

introduced in the context of an engineering model composed of information artefacts.

A compound or hybrid model as discussed is a standalone model composed of two or

more models, each with differing approaches to delivering the same information.

Depending on the request received and the availability of information, any one of the

information sources (models) may provide a response with the requested information.

In the example developed here, a high-fidelity computational model and a ROM are

constituents of an information artefact (compound model) that responds to queries

about the engineering model.

Each of the above themes are summarized in the remainder of this section.

146

5.1.1. Reduced Order Modeling Server

While ROMs have been used to reduce the time-to-solution of complex and time-

consuming problems, a novel use for ROMs in the form of a ROM server was introduced in this

research. The driving requirement for this is the difficulty of sharing engineering data.

Specifically, in distributed engineering teams where there are multiple producers and consumers

of engineering models and data, sharing the models and data is a challenging problem that

compounds as the team size increases.

To address this issue, a ROM server has been developed that consumes data from high-

fidelity computational models to construct POD based ROMs. A server based approach was

taken so that clients have the ability to connect to the server and request engineering design

evaluations, over a network. This approach decouples the tight interactions between designers

(consumers of models) and analysts (producers of models). In an iterative engineering process

this decoupling decreases the design time considerably because the designers and analysts do not

have to synchronize their data explicitly on a periodic basis. In this research, an analysis of the

cost of synchronization between multiple producers and consumers has been presented. As part

of the analysis, comparisons have been made based on the absence and utilization of a ROM

server. It was found that the ROM server decreases the cost of synchronization between

producers and consumers of engineering models and data. As analysts add engineering models to

the ROM server, the POD-based ROM parameters are periodically recomputed and stored. Based

on these parameters and knowledge of design parameters, the implemented ROM server is

capable of evaluating designs that are within the design parameter range. Thus, once the ROM

parameters are known designs can be evaluated quickly without invoking time-consuming high-

fidelity models. As the design space changes over time, data can be updated, added or removed

147

as needed, by the design team. The ROM server thus provides a consistent view of the

engineering models, data, and analysis as well as performing designs evaluations in an efficient

manner. Additionally, the ROM server also track the “energy” of the POD approximation and

can inform users if more data needs to be added to the design space.

A heat-exchanger fin shape design problem was demonstrated using the implemented

ROM server. Starting with an initial set of designs a ROM was constructed using the ROM

server. Multiple producers and consumers of these models and data were simulated with varying

conditions of availability of data and models. These interactions using the ROM server were then

evaluated during the course of the design life-cycle to conclude that the ROM server enabled

seamless interactions between various producers and consumers of engineering models and data.

5.1.2. Distributed Systems Based Engineering Modeling

Traditionally engineering codes are built using libraries of numerical codes and other

integration codes. This approach requires that the model developer be proficient with the

corresponding computer language as well as have the ability to understand the inner workings of

the libraries as well as the codes being integrated. In this research, an approach based on

distributed, statelsss microservices has been proposed, implemented, and evaluated with an

example engineering problem in which a larger more complex design code has been divided into

a set of smaller models. Each of these models was then implemented as an independent, stateless,

and web-enabled microservice. Each of these microservices publish their inputs and outputs, and

systems models can be built by linking one or more of these microservices together. Once linked,

the systems model can also be published as an independent service. The primary advantage of

publishing engineering models as web-enabled services is that the interface to the models is

language agnostic and available over the Internet. Thus, a model developer does not need to

148

know details about a library or programming language to invoke the model, but only an

understanding of the input format and the corresponding outputs form the service. Additionally,

the model microservices are stateless, implying that state information is not stored after the

model computations have been completed. This is an important consideration in this research

because statelessness of the models allows their easy reuse across different systems of models

and their scalability. The set of component models are then called a federated set of models. In

order to orchestrate information flow between these models within a systems model, a federation

management system has been developed. Each model registers with the FMS, after which the

FMS can send requests for computations to that model. When multiple models need to be

invoked in succession, a message that consists of this list can be sent to the FMS, which routes

and invokes these models in the requested order. All state information that needs to be passed

between models is encapsulated in the message, either directly or as a reference to a location that

can be accessed by all services in the federation, say, a distributed file system for large amounts

of data. To enable model developers to easily develop models using this architecture, a Model

software development kit (SDK) was developed as a part of this research. Using the Model SDK,

interacting with the FMS becomes easier as model developers need to implement three function

calls (GetMessage(), ProcessMessage() and SendMessage()) to encapsulate

all the interactions with the FMS and other models registered within that federation of models.

As noted previously a previously developed monolithic numerical model for the

preliminary design of cookstoves was split into five stateless models and two stateless functions

and incorporated into the developed architecture using the SDK. The primary objective of

solving this design problem was to demonstrate the applicability of this research. The results

from the monolithic model and the federated set of models were compared for accuracy and

149

computation time. It was found that both models resulted in the same efficiency of the cookstove

for a given set of design parameters. The computational time was, however, higher in the

distributed systems model due to network latency introduced by the interactions with the FMS.

The effect of network latency can be considerable when the component models have small

execution times. However, for component models that have larger computational times the

latency effect can be small compared to the computational time of the systems model. The

distributed system of models enables model developers to reuse and efficiently build systems

models.

5.1.3. Compound or Hybrid Models

An information artefact is a provider of information to a system model i.e., they can be

computational models, closed-form solutions, data, design parameters, optimization algorithms,

etc. In this context, all these pieces of information are recognized as information artefacts (IAs)

that can be queried with an input and a response of returned from them. In this research, a high-

fidelity model and its corresponding ROM were combined to form a compound model which

then becomes an IA. This IA was then incorporated into the previously developed FMS.

An IA for a heat-exchanger fin was created using the ROM and the high-fidelity

computational model. The IA returns the temperature and velocity fields, when queried by the

design parameters for the heat-exchanger fin. Under certain conditions the IA invokes the ROM

and the more time consuming high-fidelity model is invoked when these conditions are not

satisfied. In this case, if the user requests design parameters that are not within the design

parameter space of the ROM, the high-fidelity model is invoked. The results of the computation

are stored, and once there is sufficient data to construct a ROM, the ROM construction service is

invoked and the resulting ROM parameters are stored. Further user evaluations by the IA were

150

then based on the ROM parameters, by checking if the user query is within the bounds of the

ROM. If so, the response is returned to the user based on the results of the ROM evaluation

service.

Thus, the IA functions as a hybrid model that encapsulates the entirety of information,

models, etc. about a specific piece of information or model within a larger systems model and

can evaluate each of them based on user needs. For instance, if a user explicitly requests a high-

fidelity model evaluation, the request is evaluated without performing any model substitutions.

This hybrid model is particularly useful when long compute times are encountered in a detailed

model.

5.2. Future Work

There are several avenues to extend and improve the work presented in this dissertation.

These can be categorized under the areas of infrastructure, applications, performance and

visualization, each of which is detailed in the following sections.

5.2.1. Infrastructure

This research focused on building a framework for stateless, loosely coupled models to

interact with one another through the FMS. The utility of this framework has been demonstrated

with example engineering problems. An advantage of stateless models is that they can be scaled-

up with relative ease using containerization technologies like Docker. However, for this

framework to scale to, say, thousands of constituent models, certain aspects of the FMS need to

be improved. Currently models need to be registered manually with the FMS. Incorporating

automated registration of model services in the FMS will address this particular scalability issue.

In the current work, for two models to be substituted for one another they need to have

the same inputs and outputs. The system builder needs to manually map the inputs and outputs in

151

order to make the substitution between the models. This process can potentially be automated by

incorporating a service that discovers all compatible mappings and suggests the most compatible

ones to the system builder.

Yet another very interesting extension to the current research is the development of a

domain specific language (DSL). DSLs as the name suggests are languages built for domain

experts in a particular field, where the experts can perform their tasks without the need to use a

programming language. In this context, there is an opportunity to develop a DSL that can link

component models to construct a system model. Since the framework developed in this research

requires that the system builder be familiar with some aspects of programming, development of a

DSL would be major improvement and can enable wider adoption.

5.2.2. Applications

The framework developed in this research has been utilized for solving examples

involving a) computationally expensive, coupled high-fidelity models for the heat exchanger fin

and b) coupled first-principles models for the cook-stoves. This research can be extended by

solving more complicated engineering problems and coupling them with financial models for

price-performance studies on engineering designs. Another example is coupling the cook-stoves

model with an economics model to study the economic impact of the cook-stove design at the

level of an entire village as proposed by Bryden et al. 2015. Engineering optimization problems

would also benefit from the framework developed in this research. For example, the ROM

evaluation service can be utilized to compute the objective function when possible. Objective

function evaluations requiring the high-fidelity model can be computed asynchronously and the

results can be used to update the ROM. This strategy can be especially useful in optimization

methods requiring evolutionary algorithms.

152

5.2.3. Performance

In this dissertation, constituent models have been converted into services that are exposed

to the Internet. Examples have been demonstrated of successfully using these services to create

complex models based on the constituent models. Although this approach helps engineering

models and data to be communicated in an easier manner, it also adds latency due to

communications and model interactions over a network via the FMS. For a model built using the

“library approach” that has no latency issues, this added latency cost can seem to be very high.

However, this depends on the computational time of the model. For models with high

computational time, small increase in communication time can be acceptable. On the other hand,

for models that have a small computation time, added communication time increases the overall

time-to-solution. Although this can be acceptable in many cases, it can also make the solution

using this approach unacceptable in some cases. More studies need to be performed to

understand, in this context, the relationship between communication and computation times.

Also, if data-locality in data centers is considered, it opens up opportunities for interesting

research in optimizing the run-times of the model services depending on the computations.

5.2.4. Visualization and Usability

The primary focus of this dissertation is on the development of an infrastructure level

distributed system that can be used to link engineering models for efficient use. An important

aspect of making this system usable is at the interface of humans and computers. This is an area

that has not been addressed in this dissertation. Thus, there are several areas where major

improvements to the current work can be made. One such example is user-interface design for

“visually building” composite engineering models using the FMS. Furthermore, since the

153

framework that has been developed is loosely-coupled, the visualization and usability extensions

can be made without changes to the framework itself. This approach will be complementary to

the DSL based approach discussed previously. Further research in these areas influence the

applicability of this research to practical engineering problems in the industry.

	2016
	Strategies for including cloud-computing into an engineering modeling workflow
	Sunil Suram
	Recommended Citation

	tmp.1470684968.pdf.VgDr3

