
Graduate Theses and Dissertations Graduate College

2016

Strategies for including cloud-computing into an
engineering modeling workflow
Sunil Suram
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted
for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Suram, Sunil, "Strategies for including cloud-computing into an engineering modeling workflow" (2016). Graduate Theses and
Dissertations. 15217.
http://lib.dr.iastate.edu/etd/15217

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/15217?utm_source=lib.dr.iastate.edu%2Fetd%2F15217&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


  

 

Strategies for including cloud-computing into an engineering modeling workflow 
 
 
 

by 
 
 
 

Sunil Suram  
 
 
 

A dissertation submitted to the graduate faculty 
 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 
 

Major: Mechanical Engineering 
 

Program of Study Committee: 
Kenneth M. Bryden, Major Professor 

Arne Hallam 
Richard A. Lesar 

Mark Mba-Wright 
Abhijit Chandra 

 
 
 

 
 

 
Iowa State University 

 
Ames, Iowa 

 
2016 

 
 

Copyright © Sunil Suram, 2016. All rights reserved.



ii 
 

TABLE OF CONTENTS 

 

              Page 

LIST OF FIGURES ................................................................................................... iv 

LIST OF TABLES ..................................................................................................... vi 

ACKNOWLEDGEMENTS ....................................................................................... vii 

CHAPTER 1. GENERAL INTRODUCTION .......................................................... 1 
 1.1 Introduction  ................................................................................................... 1 
 1.2 Dissertation Organization  ............................................................................. 4 
  References  ..................................................................................................... 6 

CHAPTER 2. INTEGRATING A REDUCED-ORDER MODEL SERVER  
INTO THE ENGINEERING DESIGN PROCESS ............................................. 7 

  Abstract  ......................................................................................................... 7 
 2.1 Introduction  ................................................................................................... 8 
 2.2 Background .................................................................................................... 10 
 2.3 Proposed Engineering Workflow ................................................................... 17 
 2.4 Design of the ROM Server ............................................................................ 30 
 2.5 Application to Heat Exchanger Fin Shape Design ........................................ 40 
 2.6 Conclusions and Future Work ....................................................................... 54 
  Acknowledgement  ........................................................................................ 56 
  References  ..................................................................................................... 56 

CHAPTER 3. A DISTRIBUTED SYSTEMS APPROACH TO ENGINEERING 
MODELING        ................................................................................................. 59 

  Abstract  ......................................................................................................... 59 
 3.1 Introduction  ................................................................................................... 60 
 3.2 Background .................................................................................................... 66 
 3.3 Problem Description ...................................................................................... 74 
 3.4 Methodology .................................................................................................. 77 
 3.5 Architecture ................................................................................................... 91 
 3.6 Example Application: Cookstove Preliminary Design  ................................. 94 
 3.7 Discussion and Results .................................................................................. 98 
 3.8 Conclusions and Future Work ....................................................................... 106 
  References  ..................................................................................................... 106 



iii 
 

CHAPTER 4. A NOVEL APPROACH TO INTEGRATE A COMPONENT ROM 
INTO A DISTRIBUTED ENGINEERING SYSTEM MODEL  ........................ 110 

  Abstract  ......................................................................................................... 110 
 4.1 Introduction  ................................................................................................... 111 
 4.2 Workflow ....................................................................................................... 121 
 4.3 Improved Workflow....................................................................................... 124 
 4.4 Example Application ..................................................................................... 135 
 4.5 Discussion and Results .................................................................................. 139 
 4.6 Conclusions and Future Work ....................................................................... 143 
  References  ..................................................................................................... 143 

CHAPTER 5. CONCLUSIONS AND FUTURE WORK ......................................... 145 
 5.1 Conclusions  ................................................................................................... 145 
 5.2 Future Work ................................................................................................... 150 



iv 
 

LIST OF FIGURES 

 
                                                                                                                                       Page 
 
Figure 2.1 Workflow in an engineering design  ........................................................ 11 
 
Figure 2.2 Workflow developed utilizing the ROM server  ...................................... 19 
 
Figure 2.3a Single producer and consumer information transfer  ............................. 26 
 
Figure 2.3b Data synchronization between multiple producers and consumers  ....... 26 
 
Figure 2.3c Synchronization with ROM server ......................................................... 27 
 
Figure 2.4 Main components of the ROM server architecture  ................................. 34 
 
Figure 2.5 Schematic diagram of the fins  ................................................................. 40 
 
Figure 2.6 Single fin being modeled .......................................................................... 43 
 
Figure 2.7 Initial design space of heat-exchanger designs  ....................................... 46 
 
Figure 2.8 Timeline of various producer consumer interactions during the  
  design process ....................................................................................... 47 
 
Figure 2.9a Velocity profile ....................................................................................... 48 
 
Figure 2.9b Temperature profile ................................................................................ 48 
 
Figure 2.10a Velocity disttribution ............................................................................ 49 
 
Figure 2.10b Temperature distribution ...................................................................... 49 
 
Figure 2.11 Variation of singular value spectrum with number of models ............... 50 
 
Figure 3.1 Stateless model that implements RK4 integration .................................... 71 
 
Figure 3.2 An example of a task workflow................................................................ 76 
 
Figure 3.3 Federation management system ............................................................... 81 
 
Figure 3.4 Timeline of interactions between a model and the FMS .......................... 82 
 
Figure 3.5 Example of a message contract ................................................................ 85 
 



v 
 

Figure 3.6 Representation of the Model and the Model SDK ................................... 90 
 
Figure 3.7 Architecture of the distributed system to compose computational models 92 
 
Figure 3.8A Coupled zonal models of cookstove system .......................................... 97 
 
Figure 3.8B The geometrical design variables .......................................................... 97 
 
Figure 3.9 Flow of component models within the federated system of models ........ 98 
 
Figure 4.1 Workflow in engineering design .............................................................. 112 
 
Figure 4.2 Information artefact  ................................................................................. 116 
 
Figure 4.3 Workflow developed utilizing the ROM server  ...................................... 122 
 
Figure 4.4 Improved workflow with the information artefact  .................................. 126 
 
Figure 4.5 Poisson equation on a square domain with boundary conditions ............. 128 
 
Figure 4.6 Flowchart showing the steps the FMS takes for model substitution ........ 131 
 
Figure 4.7 Data flow of mdoels and design parameters ............................................ 133 
 
Figure 4.8 Single fin considered in the design problem ............................................ 137 
 
Figure 4.9 Timeline of computations and user interactions with the federated  
  system of models .................................................................................. 140 
 
Figure 4.10 Interaction between producers and consumers with  

information artefacts ............................................................................. 141 
 
Figure 4.11 Evolution of singular value spectrum with number of detailed models . 141 
 
Figure 4.12 Evaluations of temperature and velocity ................................................ 142 
 
 



vi 
 

LIST OF TABLES 

 

                                                                                                                                  Page 

Table 2.1 Representative shape designs ..................................................................... 43 

Table 3.1 Examples of API endpoints and their functionality ................................... 88 
 
Table 3.2 Component models with their inputs and outputs...................................... 99 

Table 3.3 Design variables for the cases .................................................................... 105 

Table 3.4 Efficiency and time comparison of monolithic model with the  
  system of models .................................................................................. 105 

Table 4.1 Contents of an example message that enables model substitutability ....... 129 

Table 4.2 Relative computational time and computation type................................... 134 

Table 4.3 Inputs and outputs to the substitutable models .......................................... 137 

 



vii 
 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisor Dr. Mark Bryden for his guidance and patience 

during my graduate studies. Without his vision, mentorship and, help, it would not have been 

possible to conceive of and implement several of the ideas in this dissertation. I would also 

like to thank my committee members Dr. Richard LeSar, Dr. Abhijit Chandra, Dr. Mark 

Mba-Wright and Dr. Arne Hallam for their input.  

Needless to say, the completion of this dissertation would not have been possible 

without the infinite patience and support of my wife Mukta. To my daughter Mishika, who 

wondered where papa was during the last few months, lots of love and looking forward to 

many new beginnings with her. To my parents Umamaheswaram and Jayabhagya Suram and 

my sister Ragini, for their unconditional love and support over the years.  

Many thanks to Saurav for his friendship. I would also like to thank my family and 

friends for their love and support.  

Several quotes have kept me going over the years and this one by Mark Twain is one 

of my favorites’, “Never let your schooling interfere with your education.” 



1 
 

CHAPTER 1. GENERAL INTRODUCTION 

1.1. Introduction 

With the advent of cloud computing, high-end hardware is now universally accessible on 

an on-demand basis. Consumer and enterprise applications are being re-architected to utilize this 

new way of computing. The fields of engineering modeling and computational science have 

utilized cloud computing primarily as a pool of computing, storage, and networking resources 

that can be added and removed as needed (Vöckler et al. 2011, K. Jorissen et al. 2012). Most of 

the research within engineering and scientific computing has thus focused on using the cloud as a 

less expensive alternative to purchasing hardware and comparing its performance with traditional 

compute clusters. However, there are other cloud computing opportunities for building novel 

engineering and scientific analysis, visualization, and data management applications.  

With the on-demand availability of cloud computing resources, it has become easier to 

build and run detailed computational models to solve engineering problems (Iosup et al., 2011, 

Jorissen et al. 2012). As a result, massive amounts of data is created from computational fluid 

dynamics (CFD), finite element analysis, and other computational techniques (Liu et al. 2015). 

However, these models have high computational costs and are of limited use for engineering 

analyses that require a relatively quick turnaround for detailed engineering as well as a rapid 

turnaround for performing “what-if” analysis during conceptual and preliminary design. Thus 

today the demands for an iterative engineering workflow are largely unmet despite advances in 

computing capabilities. Additionally, there is a need for non-traditional data sources and models 

to be seamlessly coupled with engineering models using cloud computing platforms. 

In this dissertation, engineering modeling is considered from the perspective of Internet-

based applications running on a cloud infrastructure as opposed to a monolithic software or code 
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written to solve a specific engineering problem. From this vantage point, this dissertation seeks 

to reframe the question “how are detailed models used in engineering design and decision 

making?” to the question “how should engineering workflows be able to utilize models given the 

present day cloud platforms?” When asked this way, it is clear that detailed models need to be 

deployable in such a way that they can be used directly in the design and decision-making 

process. Additionally, this cloud-based engineering workflow must reduce the amount of work 

and complexity for the producers of the models, the system builders who today use the 

computational results (often as reduced order models), and the consumers of the systems models. 

Thus, engineering decision-making entails the following requirements: 

1. The models and data developed for an engineering application should be deployed as an 

Internet based service.  

2. The models used in the design process should be easily composable into complex 

systems of models capable of answering critical engineering questions. That is, models 

should be able to be invoked as and when needed.  

3. These models must be readily publishable by their developers for use in systems models 

and analyses. 

4. Models must be able to exchange information with each other via an intermediary service 

and must be able to join a federation of models in order to solve a larger set of problems.  

5. To reduce the time needed to compute an answer from a detailed model, hybrid models 

consisting of detailed computational models and reduced order models (ROMs). ROMs 

should be constructed on-the-fly in a manner that is transparent to the user and 

compatible with systems modeling.  
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6. Engineering teams should be able to substitute one model in a system of models for 

another model (with more or less detail or information) without disrupting the system of 

models.  

Implementing these principles requires a fundamental change in the current modeling and 

design paradigm. In today’s modeling and design paradigm 

x Most detailed models enter the design and decision making process as a single piece of 

information (e.g., the maximum stress on a component, the maximum temperature, etc.), 

a conclusion (e.g., the optimal thickness), qualitative guidance to be used in conjunction 

with engineering judgment; or after a set of detailed reviews, a reduced order model in 

larger systems model.  

x When a detailed model is needed the starting point is often an entirely new model. 

x The creation of a large, complex systems model requires the development of a global 

ontology, a set of coupling protocols that is accepted and used by model builders at their 

points of interaction between the models.  

This dissertation proposes a novel engineering workflow that addresses the first two 

aspects of the current modeling and design paradigm by 

1. Developing a framework using which engineers can use stateless computational models 

as services running on the Internet. Utilizing this framework, multiple constituent models 

can be linked together to create more complex, composite engineering models. 

2. Creating hybrid models (information artifacts) composed of detailed models and reduced 

order models (ROMs) that are transparent to the user and system analysts.  

The ability to choose between multiple compatible models and substitute one for the 

other on-the-fly, although clearly possible from the framework developed here, is not 
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demonstrated. In addition, the question of ontological and semantic independence is not 

addressed in this dissertation but is left for future research efforts. 

1.2. Dissertation Organization 

This dissertation consists of five chapters with chapters 2, 3 and 4 formatted as journal 

articles focusing on the methodology and results from this research work. Chapter 2 has been 

published in the journal Advances in Engineering Software, and chapters 3 and 4 will be 

submitted for peer review in the same journal.  

Chapter 2 discusses a methodology developed to utilize data generated from high-fidelity 

models to construct ROMs and incorporate them into an iterative engineering design workflow. 

As a part of this, the article introduces the concept of a ROM server and describes in detail its 

ability to enable seamless communication between the consumers of detailed analysis (the 

engineering designers and decision makers) and the producers of detailed analysis (the analysts). 

It also clarifies the roles of producers of the models and the consumers of the results of the 

models and uses the ROM server as the point of interaction between them. Several cases with 

varying number of producers and consumers of engineering data are considered, and an analysis 

is presented that demonstrates the efficiency of the ROM server. This framework is then 

demonstrated using the engineering design of the shape of heat exchanger fins.  

Chapter 3 introduces the concept of federations of web-enabled models that can be 

assembled and managed via the federation management system (FMS).  Within this architecture 

each of the constituent models is an independent web-based model service accessible via a web 

API using integration protocols chosen by the model developer. The developed modeling 

architecture is a decentralized system at its core where constituent models are treated as 

independent functional units that solve a particular problem. The constituent models are also 
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required to publish their input and output data formats. This is in essence a micro-service 

architecture. In addition, the models are stateless i.e., they do not persist state beyond the 

duration of the computation that is being performed, which allows their easy reuse by the same 

system model or another system model. Thus the user has the ability to choose individual models 

and link them with one another, and the FMS ensures that they are invoked and executed in the 

intended sequence. This approach is a departure from the traditional “library” approach where a 

monolithic piece of code is used to integrate several software libraries to solve a specific 

engineering problem. Finally, this federated model framework is demonstrated by solving the 

problem of linking individual models in the design of small wood-burning cookstoves.  

In chapter 4, the concepts introduced in chapters 2 and 3 are combined to create a hybrid 

modeling element (information artefact) that includes both a detailed model and a ROM of the 

detailed model. This hybrid model can be utilized as a web-based model service and is available 

to be included as a single information artefact in a federation of models. That is, the user and/or 

the system simply calls the model and receives the result in the same way as any other web-

enabled model within the federation. The creation and maintenance of the ROM and the choice 

of using the detailed model or the ROM are handled by the hybrid model with constraints 

provided by the FMS. This logic is introduced into the FMS as a set of substitutability rules, 

which are defined by a system builder and given to the FMS. This framework is demonstrated 

using the heat exchanger design problem used in chapter 2.  

Finally, chapter 5 summarizes the results and then discusses the potential of this research. 

It also points to future areas of research and a broad set of opportunities where further 

investigation is needed. 
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CHAPTER 2. INTEGRATING A REDUCED-ORDER MODEL SERVER INTO THE 

ENGINEERING DESIGN PROCESS 

 

Modified from a paper published in Advances in Engineering Software, (90), 2015 

Sunil Suram and Kenneth M. Bryden* 

 

Abstract 

 Engineering design is a complex and iterative process that involves multiple engineering 

teams sharing and communicating information during the design process. One aspect of 

engineering design involves the development of physics-based models and their analysis via 

numerical simulations that are computationally expensive. To overcome the time constraints due 

to the complexity of numerical simulations, reduced-order models (ROM) such as proper 

orthogonal decomposition are being increasingly used. Decreasing the simulation time, however, 

does not address the inefficiencies in communicating engineering models and analysis during the 

design process. This paper proposes developing and incorporating a ROM server into the design 

workflow. The ROM server stores all data associated with a given engineering model and 

automatically constructs a ROM every time a model is created or updated, thus maintaining a 

consistent version of information across multiple engineering teams. A common engineering 

workflow is compared with one using a ROM server. A cost of synchronization metric has been 

defined based on the parameters of data size, size of the engineering team and design iterations. 

This metric has been evaluated and compared for the cases with and without a ROM server and it 

was found that the cost of synchronization is lower when a ROM server is used in the design 

workflow. It is shown that as the team size increases, the ROM server helps with more efficient 
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information storage and transfer. Finally, an example problem of a heat-exchanger fin shape 

design is used to demonstrate the ROM server framework. 

2.1. Introduction 

Engineering is increasingly dependent on modeling and simulation for design, 

optimization, and many other engineering decision-making tasks. With increasing computational 

capabilities it has become easier to run large-scale, physics-based high-fidelity simulations and 

analyze various physical phenomena. Examples of these simulation techniques include 

computational fluid dynamics (CFD), finite element analysis, and molecular dynamics. Often 

this involves discretizing the domain into a finite number of grid points and solving the 

governing, coupled partial differential equations over the discretized domain. Resolving physical 

phenomena at these levels of fidelity is time-consuming, and the computational complexity is a 

function of the number of grid points considered, the complexity of the geometry, and the 

physics represented by the equation set. As a result, running the numerous “what-if” scenarios 

needed to support a simulation-based engineering and design process is often computationally 

prohibitive.  

To overcome this limitation, various data-driven reduced-order modeling techniques have 

been developed. Data-driven reduced-order modeling relies on first creating a collection of 

computational solutions to construct a set of basis functions. These basis functions are then used 

to make evaluations of the reduced-order model (ROM) in lieu of using the original large-scale 

physics-based computational model (Samadiani et al., 2010; Everson et al. 1995; My-Ha et al., 

2007; Sakurai et al., 2006). One reduced-order modeling technique is proper orthogonal 

decomposition (POD). POD-based ROMs have been used in a number of engineering and 

scientific applications, including fluid mechanics (Suram et al., 2008; Tan et al., 2003; My-Ha et 
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al., 2007; Astrid, 2004) and solid mechanics (Zhou and Hitt, 2011). For example, Suram et al. 

constructed a ROM based on CFD simulations of flow through a mixing nozzle (Suram, 

McCorkle and Bryden, 2008). Samadiani et al. reviewed design methodologies for data-center 

server thermal management based on the POD method (Samadiani and Joshi, 2010). Willcox et 

al. developed an inverse design technique based on a POD technique for incomplete data (Bui-

Thanh, Damodaran and Willcox, 2004). Zhou et al. used POD to analyze turbulent flow 

structures in a reacting jet (Zhou and Hitt, 2011). Du et al. have incorporated the POD technique 

into a finite difference scheme and have analyzed the errors after applying this unified scheme to 

develop a ROM for a chemical vapor deposition reactor (Du et al., 2011). The generality of the 

POD methodology also makes it useful in any field that involves studying and analyzing patterns 

of data that have been collected either computationally or experimentally. One interesting 

example where POD-based ROMs have been used with experimental data is in Chen et al. where 

the authors have analyzed bat flight kinematics from data collected from video samples (Chen, 

Kostandov et al., 2009). In engineering design, the focus of POD is to reduce the time to run the 

computational models within the engineering workflow. That is, the high fidelity models are 

created and are then used to create the ROM. The ROM is then used in the design process. 

Within this process it is often assumed that the ROM creation process is a linear and static 

process and that design exploration, optimization, and decision-making wait for the creation of 

the ROM. And that once the ROM is created, it does not change. However, engineering design is 

a dynamic process of exploration and consideration of multiple design options within a broad 

analysis space. Because of this, detailed high fidelity computational modeling is often delayed 

until the design is nearing completion. Pushing this detailed modeling forward in the design 

process has the potential to reduce costs and improve designs, but it requires a framework in 
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which the existing computational results can be utilized and updated while the analysis process 

proceeds. That is, the analysts and engineers need a common framework that enables a shared 

design-analysis workflow.  

To meet this need, this paper proposes a client-server based architecture to build and 

evaluate POD-based ROMs in which the inputs from multiple engineers and analysts are 

incorporated and managed as a part of a dynamic and shifting engineering design process. This 

ROM server enables independent insights obtained by the designers and analysts within each 

iteration of a design to be used to improve successive iterations. In addition, integrating the 

various steps into a cohesive workflow enables faster, more consistent, and more predictable 

information sharing within the engineering design team, which may result in shorter more 

effective design cycles. 

2.2. Background 

Engineering design is an iterative decision making process in which collaborative groups 

of designers and engineers work together from the conceptual design to a final product. Many 

engineering design workflows have been proposed but most of these are similar to Figure 2.1 

(Pahl et al., 2007; Ertas et al., 1996). As shown in Figure 2.1, the design process is composed of 

three main stages; (1) problem definition, (2) engineering design, and (3) design validation and 

verification. The engineering design stage can be thought of as consisting of three phases: 

conceptual design, preliminary design, and detailed design (Pahl et al., 2007; Ertas et al., 1996). 

During conceptual design engineers explore the design space through the generation of concepts 

that then are filtered using the constraints defined for the problem. Following conceptual design, 

preliminary design further refines these concepts to one design. During the detailed design phase 

the chosen design is optimized and finalized. High fidelity modeling offers the power to improve 
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and support creative engineering design in the exploration of ideas, which occurs during the 

conceptual design and preliminary design phases. But because of the time and expense required 

to develop, execute, and process these high fidelity models, they are typically used primarily 

during the detailed design phase. In contrast to the task oriented approach to the development of 

high fidelity models, engineering  

 

Figure 2.1. Workflow in an engineering design. 

 

design is an iterative process in which the designers typically move back-and-forth between the 

conceptual, preliminary, and detailed design phases with relatively quick consideration and 

analysis of multiple designs, repeated iterations and expansions of proposed solutions, revisiting 

assumptions and decisions, and a series of design changes. Once completed a reduced set of 

designs are chosen for further verification and validation using additional analysis and field data. 

This can lead to changes to the initial design, thus requiring a repeat of the design stage. The 

exploratory and iterative nature of engineering design makes the process of communicating 

engineering information and analysis during the design stage between various engineering teams 

challenging.  
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 2.2.1. Proper Orthogonal Decomposition 

 This section provides a brief discussion of the POD technique, which is needed to 

understand the implementation of the ROM server. Readers desiring a more detailed discussion 

of the POD technique are referred to (Kirby, 2001). The POD technique is used to find a set of 

optimal truncated orthogonal basis functions from a set of snapshot solutions. These snapshot 

solutions are solutions that span the space of interest. In engineering design these are typically 

from numerical simulations of the system or phenomena of interest. Within the space defined by 

the set of snapshot solutions, a solution vector, , can be found using a set of basis functions, 

 ui .  

 
1

D
i

isol
i

x a u
 

 ¦  (2.1) 

where D is the dimension of the truncated vector space and the  ai   are the coefficients that are 

used to compute the POD approximation for a given set of basis functions.  

To find the optimal set of truncated basis functions needed for the ROM, the first step is 

to generate a dataset of M snapshot solutions that span the engineering design space of interest. 

The snapshot solution dataset is then centered by computing and subtracting the mean of the 

dataset from each snapshot. The mean-subtracted M snapshots are then concatenated in a single 

ensemble matrix,   XN  M , where N is the size of each snapshot and M is the number of snapshots. 

Once the ensemble matrix is assembled, the POD basis functions are computed from the 

covariance of the ensemble matrix using singular value decomposition. The coefficients are then 

found by projecting the POD basis functions onto the original ensemble matrix.  

For a given ensemble matrix the basis functions are constant, and the coefficients are 

associated with the design space that was explored by the dataset of snapshot solutions used to 
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create the ensemble matrix. To evaluate a design for a set of parameters that are not a part of the 

dataset of snapshot solutions but are within the initial design space covered by the analysis, 

linear interpolation is performed on the coefficients as shown in Eq. (2.2). For example, if the 

coefficient vector,  at a given design parameter vector,  such that  have to be 

evaluated,  is given by Eq. (2.2). The POD approximation is then computed using the 

interpolated coefficients as described in Eq. (2.1).  

 � � � �
� �1

*
*

1
k k k

k
q q q

k k

q q
a a a a

q q�
�

�
 � �

�
  (2.2) 

The accuracy of the ROM is dependent on the number of terms used in the POD expansion and 

is determined by Eq. (2.3).  Ei is the “energy” of the POD expansion and  si  represents the ith 

singular value. It is called the energy because the singular values are equal to the square of the 

corresponding eigenvalues of the covariance matrix (Kirby, 2001).  

 

i
i

i

sE
s

 
¦

  (2.3) 

Thus the singular values of the covariance matrix   Xcov can be used to determine if sufficient data 

is included in the initial snapshot set and to determine the accuracy of the ROM. For a design 

engineer evaluating a ROM, the singular value spectrum can serve as a useful guide to determine 

if there is sufficient information to make an engineering decision before proceeding to the next 

step in the design process. If the total energy captured by the dominant singular values is within 

the acceptable range of error, it can be concluded that the ensemble matrix has captured 

sufficient information. If this is not the case the ensemble matrix needs to be expanded with 

more information.  The error of the ROM is a function of the number of models chosen to 
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construct the ensemble matrix that is dependent on the energy captured by the singular value 

spectrum (Kirby, 2001).  

The POD technique is useful because it captures all the required information about the 

phase space of a given physical problem. When using it to solve an engineering design problem, 

this information can then be used in conjunction with the coefficient interpolation technique to 

explore the design space in a computationally efficient manner. This process can be summarized 

as follows: 

x Identify the design parameters and design space of interest  

x Create the computational data needed for the snapshot dataset that spans the design 

space of interest 

x Create the POD coefficient and basis functions 

x Make the POD ROM available for use 

x Use the POD ROM to compute new solutions as needed to support the engineering 

design process 

If the design space to be explored needs to be expanded or new aspects of the problem 

need to be explored, the snapshot dataset will need to be expanded and a new POD ROM will 

need to be developed. Additionally, the accuracy of the POD ROM increases as the number of 

snapshot solutions increases. Thus as the design process evolves and more accurate solutions are 

needed, the POD ROM will likely need to be updated in regions of the design space of particular 

interest.  

The iterative nature of the design process and the continuing update of the ROM creates a 

communication challenge within the design and analysis team. To evaluate a ROM, the most 

recent set of coefficients and the basis functions need to be known by the user. If a user is 
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geographically in a different region or a part of a different engineering team interested in 

evaluating the ROMs or analyzing the results, this information has to be made available to them. 

Updating the ROM manually via email or download for local compute makes it challenging to 

ensure that the most recent ROM is used and that disparate members of the design group are 

using the same ROM. Furthermore, providing local access to this data for multiple users may not 

be possible. It is also likely that multiple POD ROM models would be used to address a large-

scale complicated design problem, and a process is needed to coordinate the development and 

use of these multiple POD ROM models. This creates problems with management of data and 

version control. The ROM may remain on a single computational machine or may be exported to 

remote machines for simultaneous use. If it is kept on a single machine, access is limited because 

only one ROM computation can be performed at a time. If it is exported, maintaining version 

control of the ROM becomes difficult and different groups having conflicting or out-of-date 

information can slow the design process. In the next few sections we propose an engineering 

workflow to overcome these challenges and enable the seamless utilization of ROMs within the 

engineering design process.  

2.2.2. Reduced-order modeling within traditional engineering design workflows 

In a typical design workflow the design engineers identify the parameters of interest 

within the proposed design space. The analysts then computationally model the physical 

phenomena, verify and validate the models, and run the computer simulations needed. If ROMs 

are being used, the set of computer simulations is used to create the ROMs. The ROMs are then 

used to explore design space and optimize the design. Overall the creation of the model and the 

ROM is linear and unidirectional. This contrasts with the dynamic, exploratory nature of the 



16 
 

design process. The issues posed by working in a traditional batch compute paradigm to create 

the ROM include 

x To work independently, the consumers of information have to make their own copies 

of the data. This imposes an inherent bottleneck in the collaborative process.  

x If a producer of information makes changes to a computational model or design 

parameter, the consumers must explicitly synchronize their copies of the data to get 

the updated information.  

x A part of this manual synchronization also involves the manual regeneration of the 

ROM.  

x The creation of the snapshot solutions and the design proceed in series rather than in 

parallel, and hence analysis process and the design engineering process cannot inform 

each other of critical decisions and information in real time. Rather, the design waits 

for the analysis and the analysis waits for the design. 

Thus, each of the activities involved are decoupled from one another, resulting in a discontinuous 

workflow and complicating the task of managing and effectively utilizing computational data.  

One solution to the coordination and communication problem posed by the incorporation 

of high fidelity analysis in the design process is to develop a client-server based engineering 

design workflow. A client-server architecture has one central computer node acting in the role of 

a server. Clients connect to this server to request information or use the server's hardware 

resources to perform a computational task. Once this task is performed information is returned 

back to the client, completing the transaction. This is a centralized architecture, which implies 

that the global state needs to be maintained only on one node. This makes the maintenance of a 

single server relatively straightforward. Because the client typically does not perform the heavy 
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computations, this architecture has the advantage that small form-factor clients (e.g., tablets and 

other mobile devices) can be developed to perform specific design engineering tasks. Based on 

this, this paper presents a client-server based architecture to support the integration of high-

fidelity modeling using POD ROM modeling into the engineering design workflow.  

2.3. Proposed Engineering Workflow 

As noted earlier, the engineering design process is a dynamic, information-rich process 

that brings together many disciplines to create a product or solution that addresses a given set of 

needs within a complex and constrained design space. Within this space computational models 

and information are created and used by varying groups at varying times. Within this simulation-

based engineering design environment a workflow that simplifies the creation, use, and update of 

the ROMs and enables various engineering groups to share this information easily is needed. 

Figure 2.2 shows the proposed engineering design workflow in which a ROM is included as a 

natural part of the design process. As shown, the ROM server is central to all the interactions at 

various stages of the engineering design process. The computational models created and updated 

and the solutions explored during the design process are all stored in the ROM server. The 

solution sets generated are utilized to build the reduced-order models that the ROM server 

publishes for use by various teams. During the design and analysis stages, changes to design 

parameters, computational constraints, changes to geometry, and other changes can all be stored 

in the ROM server, which periodically reconciles this data to generate an updated lower-

dimensional approximation. Various engineering groups can then use this database of 

computational models during the different stages of the design process to perform engineering 

tasks. For example, a CFD analyst can analyze a flow field and a design engineer can work on 

optimizing shape while yet another engineer can extend the design space by adding more 
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computational models to the database, all doing so simultaneously. In the same way, a design 

engineer can request that the ROM be extended or improved in a specific way. These interactions 

are marshalled by the ROM server in such a way that the producers and consumers of 

computational data have a consistent view of the current state and the requests for new or 

improved information, and they have access to the same data.  

Several researchers have referred to the collection of computational results that are 

utilized to construct the POD basis functions as a “database” (Suram et al., 2008; Tan et al., 

2003; My-Ha et al., 2007; Astrid, 2004; Gunzburger, 2002; Kerschen et al., 2005). Although in 

the strict sense of the word this collection of computational results is a database, from the 

perspective of database systems it is missing several key components. 
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Figure 2.2. Workflow developed utilizing the ROM server. 

It is not accessible to multiple users simultaneously and requires local access to all the 

data to perform evaluations. In addition, a database system addresses the issues of accessing the 

database, performing computations, and running optimization problems remotely across a 

computer network. In the cases cited here, the POD-based ROM evaluation process is a batch 

process (i.e., the computer program reads the necessary input data, computes the POD 

approximation for the given input, writes the output to a file and then exits). When the POD 

approximation needs to be computed for a different set of design parameters, the computer 

program is restarted. The same also applies to cases where computational datasets are added to or 

deleted from the ROM database. In these cases the entire database has to be recreated to account 
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for these changes and the POD basis functions have to be recomputed. Each user must then 

manually update their work, and as the number of users increases the cost of synchronization 

also increases. In a collaborative team environment this manual synchronization of data and 

information is a slow and inefficient process. Furthermore, because the run-time of a ROM is 

much quicker than that of a high-fidelity computational model, running ROMs as a batch process 

does not allow for efficient sharing of computational information and the fast computations 

associated with them. 

Because a data-driven ROM relies on a computational database, it is an excellent 

candidate to be treated as a database of engineering data that users can access remotely via a 

computer network. One way to achieve this is through the use of server-based architecture that 

manages the ROM process as a part of the engineering design process. Central to this proposed 

architecture is the ROM server. As shown in Figure 2.2, the ROM server provides access to the 

ROM to all the producers and consumers of the engineering models. The ROM server is 

accessible over a computer network so ROM computations and analysis can be performed 

independently by all the consumers simultaneously without involving data copying and manual 

synchronization. The key activities the ROM server needs to provide are 

x Management and storage of the data—A group of analysts can be involved in 

generating the computational snapshots required, based on the needs of the design 

engineers. This information is used as input to the ROM server, which manages all 

the computational data and ensures that it is available to other consumers as needed. 

This requires a mechanism that enables long-term persistence and storage of the data 

which enables users to access it when required. When an analyst updates this 

database, the ROM server needs to seamlessly trigger the computational processes 
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that recompute and update the necessary ROM parameters. The updated ROM 

parameters can then be made available to the engineers, analysts, and decision-

makers involved in the engineering process.  

x Managing the ROM creation and update process—After the snapshots for the 

ensemble matrix are computed the ROM server needs to collate the snaphots and 

compute the basis functions and coefficients for the reduced-order model. At this 

point the server should be ready and listening for client requests to perform ROM 

evaluations. When a producer updates the ROM database, the data is updated on the 

persistent storage immediately. However, the recompute of the ROM parameters must 

be carried out when no users are utilizing the ROM server resources. This is to ensure 

availability of the service during peak times when multiple engineers might be 

utilizing the ROM data for analysis.  

x Enabling interactive use and exploration using the ROM—With data management, 

storage and the ROM creation processes in place, the constructed ROMs need to be 

usable by multiple engineers within the organization. Thus, being able to perform 

ROM evaluations based on user requested input is a critical component of the ROM 

server. In addition to computing the ROM for a given set of input parameters, the 

ROM server can also evaluate requests for the singular value spectrum, principal 

axes, and the projections of field variables on the dominant principal axes where each 

of these can be part of the analysis of the physical phenomenon being studied. 

Another integral piece of design space exploration is the ability to perform 

engineering optimization utilizing the ROM, which the ROM server must be capable 

of supporting with an appropriate client that incorporates the optimization algorithm. 
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Because all the data from the aforementioned analyses can be visualized, the ROM 

server can have the capability to create the outputs needed to support the design 

process.  

x Maintaining version control—Many engineering organizations are geographically 

dispersed with engineers working across multiple time zones. Thus it is important that 

geographically distributed engineering groups have up-to-date access to the 

engineering data. When the ROM database is updated, the users automatically receive 

the updated model parameters from the ROM server, thus providing a unified version 

of all computational data across all the users in an organization. This ensures that 

once the model parameters are updated, all users have the exact same information. 

The ROM server is capable of synchronizing this information seamlessly, which 

eliminates the cost of explicit data synchronization between the users.  

In the proposed engineering workflow the analysts and design engineers are better 

integrated into the overall engineering design process and can exchange information with greater 

ease. Real-time synchronicity enables the production and consumption of information 

independently and helps breakdown the sequential and unidirectional flow of information 

associated with batch processing.  

2.3.1. Synchronization of data 

Section 2.3 introduced the notion of producers and consumers of data and information in 

the context of the engineering design process. When a subset of the data changes due to an 

update from an information producer, other producers as well as consumers need to synchronize 

their copies of data to ensure that their engineering decisions are made based on the latest 

information. Thus when information needs to be exchanged between multiple producers and 
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consumers, a cost can be computed based on the information to be exchanged so that all the 

engineers have access to up-to-date information; this is the cost of synchronization, D . The cost 

of synchronization includes the costs of data exchange, computation, and the associated user 

costs. In this context, the data exchange cost refers to the time that is needed to move data from 

one computer to another (i.e., a larger volume of data leads to higher data exchange costs). 

Computational cost is the time taken to perform a computation on a specified dataset. It is a 

function of the type of computation and size of data. User cost is the communication time 

between users of engineering data for either requesting or notifying other users about an update 

to the data. Because this is an asynchronous form of communication between users, it includes 

the lag between the intent and the time the action is actually performed. The asynchronous forms 

of communication include but are not limited to email, phone conversations etc. In distributed 

engineering teams the user synchronization cost can be high and difficult to estimate. In this 

section several cases are outlined that determine the cost of synchronization between multiple 

producers and consumers considering various amounts of information exchanged when a ROM 

server is not used. Comparisons are then made to the corresponding cases when a ROM server is 

used to emphasize the decrease in user costs due to the utilization of a central data repository for 

engineering data and computations.  

The types of data that need to be synchronized between a consumer and a producer using 

a POD-based ROM can be the entire ensemble matrix, the coefficients in conjunction with the 

basis functions, and the covariance matrix, each of which is essential for either the producer or 

the consumer to have the ability to evaluate an engineering model or make an engineering 

decision. Each has a different cost of synchronization and can be expected to follow the 

following inequalities 
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where X  is the original ensemble matrix, covX  is the covariance matrix, A  is the coefficient 

matrix and U  represents the basis functions. By synchronizing the covariance and coefficient 

matrices, covX  and A , respectively, the user can develop ROMs but can only access the initial 

snapshot models at a lower accuracy. On the other hand, having the entire ensemble matrix X , 

which has a higher cost of synchronization, one can recreate the basis functions U and 

coefficients A in addition to accessing the initial snapshot models at the same accuracy that they 

were created at.  Thus Eq. (2.4) signifies the trade-offs that can be made in order to balance the 

data exchange cost and accuracy of the ROM. 

Furthermore, there can be multiple design iterations among the producers and consumers 

adding to the data synchronization cost because it requires that the information exchange be 

repeated among the producers and consumers. Thus, enabling synchronicity in design enables 

engineers to exchange information easily, makes design cycles shorter, and boosts the quality of 

designs by allowing deeper design space exploration. The remainder of this section examines the 

cost of data synchronization for each of these scenarios.  

2.3.2. Producer-consumer synchronization 

To develop the concept of synchronization cost further, we consider the case of a single 

producer and a single consumer, as shown in Figure 2.3a. The producer has the ability to modify 

computational models and generate the ROM, whereas the consumer utilizes the ROM to 

perform further analysis and model evaluation. The consumer can either (a) get the entire 

ensemble matrix X  from the producer, (b) get a copy of the covariance matrix covX  from the 

producer, or (c) get only the necessary coefficients A  and basis functions U .   
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a. In the case where the consumer receives a copy of the ensemble matrix, the 

coefficients and basis functions can be computed by the consumer and then used for 

ROM evaluations as needed. The cost of synchronization, D , is thus the time to 

synchronize the ensemble matrix between producer P1 and consumer C1 and the time 

to compute the ROM.  

     1 1 1
ROM

PC C
no server T tD �  �X              (2.5) 

where T is the communication time and t is the consumer compute time. 

b. Alternatively, because the size of the ensemble matrix X  can be large, N Mu , the 

consumer can get a copy of the covariance matrix covX  of size M Mu  and compute 

the ROM parameters. In this case 

     1 1 1
cov ROM

PC C
no server T tD �  �X              (2.6) 

The trade-off in this case is that the consumer does not have all the information about 

the computational model but has access to sufficient information to compute the 

ROM and examine the design space. 

c. In this case the consumer requests only the ROM coefficients and basis functions, 

thus making the cost of synchronization, no serverD � , a function of synchronizing the U  

and A  matrices. 

     1 1 1 1PC PC
no server T tD �  �U A              (2.7) 

Each of the above cases has inherent advantages and disadvantages in terms of the amount of 

data that needs to be synchronized as well as any additional computations. It should also be 

noted that in each of these cases as the number of design iterations increase, the synchronization 

factor increases linearly by a corresponding factor. 
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Figure 2.3a. Single producer and consumer information transfer. 

 

 

 

 

Figure 2.3b. Data synchronization between multiple producers and consumers. 
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Figure 2.3c. Synchronization with ROM server.  
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2.3.3. Multiple producers and consumers 

Synchronizing all information is more complicated when there are multiple producers 

{P1, P2, …, PK }  and multiple consumers {C1, C2, …, CL} involved in the design process. This 

scenario is shown in Figure 2.3b. When there are K producers and each of the producers can 

make changes, there can be K concurrent changes to the ensemble matrix. Consider the scenario 

where L consumers have to get updates from one or more of the K producers. This is a two-step 

process which first requires a synchronization among all producers before synchronizing all 

consumers. For an update to be consistent with the global updates among the producers, all the 

producers must first synchronize their data. If CX  is the change to the ensemble matrix by any 

single producer, the total cost of synchronization for all the producers considering K changes. 

This is given by  

     2
i j

C

P PKP T �
X     

where 

       

K P2 =
K !

K  2( )!    

Once this is done the ROM must be recomputed by each producer before a consumer can 

request an update from any one of the producers. Thus the cost of synchronizing all consumers, 

D  is  

    2 A SVD
1 1

( )i j ji i
C

L K
P P PPCK

PC
i j

P T T t RD �
�

  
 � � u¦ ¦X U             (2.8) 

where R is the number of design iterations.  Eq. (2.8) shows the high cost of explicit 

synchronization when there are multiple producers and consumers. The synchronization can be 
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performed implicitly using the ROM server, which reduces the cost of explicit user 

synchronization and is explained in detail in the following section.  

2.3.4. Synchronization with a ROM server 

In this section we study the cost of synchronization when a ROM server is utilized, as 

shown in Figure 2.3c. A major advantage of utilizing a server to synchronize and manage 

computational data is that producers do not have to perform explicit synzhronization. All data 

synchronization tasks are performed by the ROM server. Individual producers only have to 

notify the ROM server of updates that were performed. The ROM server then reconciles the data 

and manages updated versions of the ROM ensemble matrix. When these are updated, the ROM 

server also periodically computes the ROM basis functions and coefficients, thus maintaining a 

unified version of the computational data when accessed by clients.  

The total cost of synchronization between any producer Pi and the ROM server R is  

     
1

i
K

P R
P

i
TD

 
 ¦ X                (2.9) 

where X  denotes a single update from a producer. Similarly the cost CD  for a consumer Cj to get 

data from the server is given by  

     
1

j
L

RC
C

j
TD

 
 ¦ X              (2.10) 

Furthermore because the server recomputed the POD approximation periodically for updates to 

the ROM database, the total computational cost is given by  

     POD SVD
RtD  ¦              (2.11) 
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Thus the total cost of synchronization is  

     PODserver P CD D D D � �            (2.12) 

Comparing the equations for the synchronization cost in the case of multiple producers and 

consumers and utilizing the ROM server shows that  

     server PCD D��              (2.13) 

This result supports the premise that the ROM server reduces the cost of synchronization 

between producers and consumers by managing the changes to computational data as well as 

performing the POD computations. Thus, repetitive computations are avoided and connectivity 

between engineers and analysts in the engineering team is enhanced.   

In summary, when a ROM server is not used, there is a significant user cost associated 

with information synchronization in the engineering design process, whereas using the ROM 

server eliminates the need for explicit synchronization and hence reduces the user costs. A 

server-based solution has significant advantages when the engineering team is large and 

distributed globally. Producers and consumers of engineering models can work and exchange 

information simultaneously and in a planned manner. Furthermore, having a single repository for 

all the engineering models in an organization enables users to access the computations and 

analysis as needed.   

2.4. Design of the ROM Server 

Typically in scientific computing, when performing tasks over a network or utilizing 

multiple nodes on a shared memory machine, the emphasis has been on using programming tools 

like MPI and OpenMP to parallelize code and decrease the runtime. An MPI-based application 

typically runs on a cluster of computers distributing tasks over them and finally gathering the 
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results. OpenMP on the other hand is designed for shared memory architectures and best suited 

for single input multiple data (SIMD) problems (Quinn, 2005). MPI- and OpenMP-based 

computational solutions do not allow the results to be shared by several users simultaneously 

across a computer network. Moreover, these compute jobs are typically batch processes (i.e., 

they run once and have to be rerun for the next numerical experiment). In contrast, the server-

based solution needed here involves a server process running continuously in the background 

and is always available to respond to client requests for ROM evaluations as well as edits to the 

ROM database. This enables multiple engineers to simultaneously leverage and share the same 

data while performing independent tasks and computations. For example, one design engineer 

could be analyzing a flow-field while another engineer simultaneously works on an optimization 

problem based on the same data, both without local access to the entire ROM database. 

Furthermore, the server-based ROM database solution helps provide vendor agnostic access to 

data, computations, and analysis. Specifically, although there are a number of commercial 

packages available to build engineering models, the ROM server as implemented here has the 

ability to read in data from most commercial packages utilizing the VTK data format (VTK, 

2015). This gives the server the ability to process and compute ROMs from multiple data 

sources. In addition, users when accessing the computations and analysis via the ROM server 

need not have access to the commercial package that was used to generate the initial set of 

models, thus helping provide vendor agnostic access to engineering models and analysis to 

experts and non-experts alike.  

Thus to get these benefits, the underlying architecture for the ROM server is client-server 

based. The main purpose of the ROM server is to be available to respond to user requests and 

perform the required computations in a timely fashion. Because multiple users can be requesting 
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evaluations simultaneously, the server must have a thread pool capable of processing such 

requests. There are four key building blocks needed: 

x Create and manage a computational database that is accessible over a computer 

network (TCP/IP)  

x Create the ROM 

x Enable a client node to submit an evaluation request that executes on the ROM server 

and sends the results back to the client. 

x Enable the ROM server to detect additions and deletions of computational data to the 

database and automatically schedule recomputations of the POD basis functions.  

Figure 2.4. shows the main components of the ROM server architecture. The dotted lines 

indicate loading of the POD databases from disk into memory on startup and the solid lines 

indicate operations of the server after startup. This must be achieved in a manner such that each 

user gets the correct information back regardless of the number of concurrent users. If there are 

edits to the ROM database, these should be reflected in the computations in a timely manner, so 

that stale information is not used to make engineering decisions on critical components. To 

achieve fast computations, the server on startup loads the coefficient A  matrix and basis 

function U  matrix into memory. From then on, as long as the server is running, all POD 

evaluations are done using the information stored in memory using these matrices and Eq. (2.1). 

The design considerations of the ROM server are 

x A schema has to be developed to store the computational models and design 

parameters associated with them on disk.  
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x For the client and the server to communicate, they both need to be able to interpret 

data passed from one to another correctly. This requires the construction of 

communication protocols for the messages that need to be passed between them. 

x The server must be capable of accepting client connections and making ROM 

evaluations as per their requests. This requires the selection of an appropriate data 

transport layer, in this case TCP/IP. The server must also be capable of accepting 

multiple client connections from analysts and design engineers, and processing them 

appropriately. This requires a pool of threads that can coordinate with one another. 

Because the threads in the thread pool share the same process address space, multiple 

threads can perform the same operation simultaneously on shared data structures 

which leads to race conditions (Quinn, 2005). Hence adequate precautions should be 

taken to enable data sharing while avoiding race conditions.  

x The need for the server to recompute the POD basis functions automatically requires 

a background thread that cannot be invoked by a client. For this purpose a 

background thread has to be created, and a suitable algorithm has to be developed to 

enable time-triggered recomputations.  
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Figure 2.4. Main components of the ROM server architecture.  
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In this work TCP/IP is used as the transport medium for communications between the 

client and the server (Kozierok, 2005). The primary reason is that TCP/IP guarantees ordered 

delivery of packets, which is critical in this application. Remote procedure calls are used to 

establish communications between the client and server at the application layer of the 

networking stack (Kozierok, 2005). It must be noted that in this case the availability of the ROM 

server is on a best-effort basis, and when recomputing the POD basis functions, it is briefly 

unavailable for client requests. This design trade-off is explained in detail in Section 2.4.2. 

2.4.1.  Server thread pool 

For a server application it is important that it have the ability to handle multiple client 

requests simultaneously. In the ROM server, this requirement is handled by having a thread pool 

containing multiple threads of execution. When a request for information or performing a 

computation comes in from a client, a free thread from the thread pool is assigned the task, 

performs the requested task, and sends the information back to the client. Once it is done with 

this task, the thread marks itself available and waits until another client request is assigned to it. 

In the example developed here, the ROM server has a total of 10 threads to process client 

requests in addition to the main thread of execution. The number of threads in the pool is 

configurable. It was chosen by trying to balance the requirement for multiple client requests and 

the total number of processors available on the machine, in this case 16. If more processors are 

available the thread pool size can be increased as needed.  

2.4.2.  ROM recomputations 

During the engineering design process situations can arise where the design parameter 

space increases, requiring that additional computational models be added to an existing database. 

Similarly some design parameters can be deemed unnecessary, which can lead to discarding 
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existing computational models. These scenarios have to be accounted for with minimal 

disruption to the continual operation of the ROM server to make it an effective tool for managing 

computational data. Thus, while the ROM server is running, edits should be allowed to the 

database of computational models. These edits can be datasets that have been added or deleted 

from the ROM database.  

Such edits require recomputation of the POD basis functions and coefficients to update 

POD evaluations to reflect the new information. The process of updating the POD basis 

functions leads to multiple software design choices to schedule the recompute task, each of 

which are briefly explained: 

x Immediate scheduling in which recomputation is scheduled based on the availability 

of new information. Immediate scheduling has the inherent advantage of making new 

information available immediately; however, there exists the possibility that there 

may be multiple consecutive changes to the ROM database in which the server 

performs repeated POD basis function recomputations, each superseding the previous 

one. This creates unnecessary delays in the work and results in unnecessary compute 

cycles.  

x Delayed scheduling in which recomputation waits for periods of no client activity to 

incorporate new data in the ROM database. Delayed scheduling has the advantage 

that existing requests for computations are given high priority. The primary 

disadvantage of delayed scheduling is that during periods of prolonged activity all 

client requests get stale information, and it requires manual coordination among the 

clients to cease new requests in order to trigger a POD basis function update.  
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x Periodic scheduling in which recomputation of the POD basis functions is scheduled 

at a regular time interval that can be configured as per the requirements of the 

engineering team. The major advantage of periodic scheduling is that multiple 

changes to the ROM database can be reconciled and computed at once without 

utilizing compute cycles for each update. This also establishes a deterministic 

schedule and ensures availability of the same information to the entire engineering 

team at all times. Thus the producers can work to have the updates done before the 

recompute, and the consumers know when to expect the next update. The tradeoff in 

this method is that updates to the ROM database may not be immediately available 

for use. In the example that follows the authors have chosen this scheduling technique 

due to its predictable nature and its advantage of being configurable to the work 

habits of the engineering team.  

To accomplish the task of computing the POD basis functions and coefficients while the 

ROM server is running, a background recomputation thread has been incorporated in the design 

of the server. This thread is a lazy asynchronous timer thread that checks the ROM database for 

changes at a specified frequency. Only when an edit is detected does this thread proceed with the 

recomputation. This is a background thread and does not belong to the thread pool discussed in 

the previous section, which processes client requests. This thread is in the idle state for most of 

the time and is alerted by an operating system signal at the end of the specified time period. Once 

it is out of the idle state, it proceeds to check the timestamp of the last ROM database update and 

compares it with its own copy from the previous time it was alerted. If a ROM database update 

has occurred since the previous run, it proceeds to perform a recomputation. Because 

recomputation of the POD basis functions is a computationally expensive task (i.e., it can take 
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several minutes depending on the size of the ensemble matrix), this thread should be scheduled 

to run during periods of no utilization of the ROM server.  

Furthermore once the POD basis functions are computed, client requests for POD 

evaluations are not processed for the brief period while the data structures are being replaced in 

memory. Although it is possible to serve existing client requests with the older version of the 

ROM, we chose not to do so to ensure that all clients get access to the same information once a 

recomputation is complete. The time-based triggering algorithm is described in pseudo code as 

follows:  
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Algorithm (1) 

Parameters : Database update time (tdb), Previous run time of thread (tp) 

Procedure ( Re-computation ) 

Step 1 :  If ( tdb > tp ) 

  Re-compute POD 

Close all existing client connections 

  Stop listening to newer client requests 

  Update in-memory data structures 

  Re-open server to process client requests 

  Sleep 

 Else 

  Sleep until next alert 

            Goto Step 1 

End Procedure 
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2.5. Application to Heat Exchanger Fin Shape Design 

Section 2.4 described the design of the ROM server; this section provides an example in 

which multiple engineers exchange computational models to perform a collaborative engineering 

task using a ROM server. The various interactions are studied in the absence of and then in the 

presence of a ROM server. The scenario involves two data producers (P1 and  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.5. Schematic diagram of the fins. 
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P2) and three data consumers (C1, C2, and C3). The producers in this case study are responsible 

for generating computational models, and the consumers perform engineering tasks related to 

analysis and optimization. Yet another important requirement is that the producers as well as the 

consumers should have access to all the models as well as the analysis that has been performed 

by the team as a whole. It should be noted that the focus of this work is on studying the 

interactions between the producers and consumers and not on the actual analysis of the problem 

under consideration. A two-dimensional heat exchanger fin shape design problem has been 

chosen as the engineering design problem in which multiple engineers work on different aspects 

of the overall design. The designs are then used to create a ROM. This ROM is utilized for 

further analysis of the design. 

2.5.1.  Mathematical model and numerical solution 

Heat exchanger fins are used to enhance removal of heat from any heated surface. Heat 

exchanger fins are of particular importance in cooling electronic components and other 

machinery and equipment. Changes in the shape of the fin can result in improved performance, 

thus reducing cost, space needed, and energy required for fans (Kays and London, 1998).  A 

number of researchers have studied the problem of heat dissipation from longitudinal fins, and 

earlier the authors developed an evolutionary algorithm coupled with numerical simulations to 

optimize the shape of heat exchanger fins (Suram, Ashlock and Bryden, 2006), to which the 

reader is referred to for a more detailed discussion of this design problem. This section describes 

in brief the governing equations of momentum and energy as applied to the heat exchanger fin 

model, the numerical solution, and development of the ROM.  

Figure 2.5 shows a set of fins. Fluid (water) is pumped through the channel between the 

curved surfaces of two consecutive fins to remove heat. The direction of flow is along the 
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positive z-axis. It is assumed that the flat plate is insulated and that the fluid velocity and 

temperature profiles are fully developed. The flow is also assumed to be laminar and 

incompressible, and any effects of natural convection are neglected. The whole system is 

assumed to be in steady state. Taking advantage of the symmetry, only one half of the fin is 

modeled, as shown in Figure 2.6. The distance from the base of the fin to the insulated flat plate 

is assumed to be of unit length. The length of the fin is denoted by a, the base thickness by W  and 

the spacing between two consecutive fins by 2b. The shaded portion represents the lateral surface 

of the fin. The thermal properties of the solid and fluid are assumed constant and only quadratic 

fin profiles are considered in this shape design problem. The mathematical model describing the 

fluid flow is given by 
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The temperature distribution in the fin is 
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and the temperature distribution in the fluid is given by  
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The momentum equation has no-slip at the fluid-solid interfaces and symmetry boundary 

conditions on the other surfaces, respectively. The energy equations also have symmetry  
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Figure 2.6. Single fin being modeled. 

Table 2.1. Representative shape designs. 

Producer Base 
Thickness 

(W ) 

Fin 
Spacing 

(b) 

 Points on 
Lateral Surface 

Shape 

y0 y1 y2 

P1 0.118 0.224   0.126 0.115 0.210  
 

P1 0.011 0.334   0.326 0.115 0.210  
 

P1 0.020 0.134   0.086 0.085 0.075  
 

P1 0.200 0.219   0.186 0.103 0.052  
 

P1 0.05 0.315   0.280 0.203 0.251  
 

P2 0.150 0.250   0.050 0.100 0.210  
 

P2 0.181 0.270   0.250 0.100 0.189  
 

P2 0.030 0.450   0.360 0.320 0.360  
 

P2 0.121 0.420   0.213 0.312 0.213  
 

P2 0.142 0.320   0.183 0.183 0.183  
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boundary conditions on the symmetric surfaces. At the solid-fluid interface, the boundary 

condition must satisfy the requirements of equality of temperatures and temperature gradients. 

The above governing equations were solved numerically using the finite difference method. 

Further details on the discretization, grid generation, and numerical solution can be found in 

(Suram, Ashlock and Bryden, 2006).  

2.5.2.  Shape design and ROM construction 

The objective of the fin shape design problem discussed here is to study the velocity field 

and temperature distribution when the shape of the lateral surface of the fin is varied. With the 

temperature and velocity profiles known, the heat transfer coefficient, the pumping power, 

material cost, and manufacturing cost can be determined and considered as a part of the design 

space. In this study the base thickness of the fin and spacing between the fins can be varied in 

addition to the lateral surface being constrained to being quadratic in shape. A total of 15 designs 

chosen by sampling the allowable design space were used as the initial snapshot set. Table 2.1. 

shows some representative designs created by producers P1 and P2. The shape design problem 

has five parameters, and the initial set of designs was chosen to account for all possible curvature 

variations of the lateral surface of the fin. The base thickness and fin spacing were chosen by 

randomly sampling the range of allowable values. Figure 2.7 shows the distribution of the design 

space covered by the initial set. In Figure 2.7, to represent the designs in three dimensions, the 

average of the three values of the points on the lateral surface of the fin is used in place of the 

actual values. It is possible that the sampling of the initial design set propagates error into the 

ROM, which can be overcome by adding and removing models as necessary from the ROM 

server. Also, if the initial snapshot set is insufficient to build an accurate ROM, more designs can 

be added to the ROM server as needed. A concatenated ensemble matrix with the temperature 
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and velocities at each point in the discretized domain was constructed. The energy of the POD 

expansion is used to compute the accuracy of the ROM as described in Eq. (2.3). If the accuracy 

of the ROM is outside the acceptable range, more models are added to the snapshot set. To 

simulate the design process and the exchange of information between the producers and 

consumers, the following sequence of operations is adopted: 

1. 15 designs were computed and used as the initial input to the ROM server 

2. Consumers make use of the ROM server to evaluate designs and analyze data 

3. More designs are added to the ROM server by the producers 

4. All consumers seamlessly get updated information without making explicit updates 

and are able to evaluate designs that were previously not possible.  
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Figure 2.7. Initial design space of heat-exchanger designs. 
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Figure 2.8. Timeline of various producer consumer interactions during the design 

process.  
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Figure 2.9a. Velocity profile. 

 

 

Figure 2.9b. Temperature profile. 



49 
 

 

 

Figure 2.10a. Velocity distribution. 

 

 

 

Figure 2.10b. Temperature distribution. 
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Figure 2.11. Variation of singular value spectrum with number of computational 

models. 
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2.5.3.  Information exchange and the ROM server 

The ROM server eliminates the need for explicit information synchronization between 

producers and consumers during the design process. This section extends in detail the design 

process outlined in Section 2.4.2. The steps in the design process are simulated as shown in 

Figure 2.8.  

1. The producers P1 and P2 run the computational experiments needed to generate 

models for the POD ensemble matrix by varying the design parameters that are used 

to construct the ROM. Initially the ROM database holds the results from 15 

computational models developed by the producers. Thus after this step the ROM 

server manages a database of 15 computational models, and the design space 

encompassed by this set of models is available to consumers (clients) to utilize for 

various tasks.  

2. Evaluations of the ROM for design parameters not in the initial set of computational 

results are computed by the consumers, who also have the ability to request individual 

modes as well as the singular value spectrum from the ROM server. A consumer C1 

uses the ROM server to evaluate the velocity and temperature profiles for the 

following design parameters, which though not in the initial solution set lie within the 

design space of the problem. The input to the ROM server is the following list of 

parameters:  

 

   b y0 y1 y2 

0.160 0.260 0.150 0.100 0.195 
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The ROM server then performs the computation and returns the results to consumer 

C1 as shown in Figure 2.9. 

3. Another consumer, C2, attempts to perform an evaluation for the following set of 

design parameters:  

  b y0 y1 y2 

0.210 0.220 0.190 0.105 0.060 

 

This request for evaluation of a proposed design is not within the design space of the 

existing ROM based on the 15 computational models. This results in a non-evaluation 

and the return of an appropriate message to consumer C2 and a notification to 

producer P2 that additional analysis is needed to extend the design space. This may 

lead to a discussion between the consumers and producers about the direction of 

design, the design space, and the analysis goals.  

4. Producer P2 and consumer C2 consult on the needed expansion of the design space, 

and producer P2 performs the additional analysis and adds it to the ROM server. In 

some cases, for example, due to physical constraints it might not be possible to 

extend the design space to accommodate the request from consumer C2.  

5. The ROM server recomputes the ROM. 

6. Producers P1 and P2 continue to populate and extend the design space with more 

models to the ROM server. The consumers can utilize the new information without 
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explicit synchronization of the data. For example, the unsuccessful attempt to 

evaluate the model in step 3 can now be evaluated after additional models have been 

added to extend the design space. Thus the consumer C2 can now request the ROM 

server to perform the same computation and visualize the normalized flow and 

temperature fields, as shown in Figure 2.10.   

7. Just as the POD-based ROM can be evaluated to determine the performance of a 

particular design configuration, consumers can also get information associated with 

the ROM, for instance the spectrum of singular values. The singular value spectrum 

shows the amount of energy associated with each dominant mode and is hence 

indicative of the number of modes to be considered in the POD approximation. Figure 

2.11 shows the variation of the singular value spectrum with the number of 

computational models utilized by the ROM server for the POD approximation. It is 

seen that as more computational models are added, the singular values begin to 

converge. In this case adding more than 15 computational models did not increase the 

accuracy of the ROM because the incremental energy captured by the later modes is 

only a small fraction of the total energy of the POD approximation. In this case the 

first five, ten, and fifteen modes capture 89.7%, 98.6%, and 99.99% of the total 

energy, respectively. Thus a ROM approximation based only on the first five modes 

will have a larger error compared to a ROM computed using the first fifteen modes.  

For a design engineer using a ROM to make engineering decisions, the singular value 

spectrum is an indication of the error (i.e., if the error is higher than the maximum 

acceptable value, more data needs to be added to the snapshot set for the ROM server 

to recompute an updated model). Because full CFD simulations are performed at the 



54 
 

end of the design phase before finalizing a design, an appropriate cutoff of the 

number of modes can be made to enable design decisions at the early stages in the 

process.   

By organizing and managing computational models in the ROM server, all members of 

an engineering team have access to the same information without repeated manual 

synchronization of data. It has also been demonstrated that each of the design tasks in the 

workflow can be accomplished using the POD-based ROM server, and the system helps all 

consumers seamlessly get updated information without making explicit updates. This results in 

the organization saving time as well as serving the purpose of maintaining the version history of 

computational models.  

2.6. Conclusions and Future Work 

In this work a computational data management system is proposed that incorporates 

reduced-order modeling to enable a distributed framework for engineering design. The data 

management system has been enabled by developing a client-server based architecture. The 

server stores computational data in a vendor agnostic format and enables POD computations that 

can be used in analysis and optimization for simulation-based engineering design. The client-

server based architecture enables persistent storage of computational data that can be accessed 

on-demand from any geographical location, thus improving collaboration among members of a 

distributed engineering team. The cost of synchronization was computed based on the size of the 

data and the number of times it needs to be transferred amongst multiple producers and 

consumers participating in a product design cycle, and this cost was computed for the cases with 

and without the ROM server. It was found that the cost of synchronization is lower when a ROM 

server is used in the design workflow. The software infrastructure developed allows real-time 
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collaboration in a distributed engineering team by leveraging the fast computational capabilities 

of POD-based ROMs. As discussed above a batch process creates a bottleneck to information 

sharing, which is overcome by utilizing a server-based solution. Furthermore, the client-server 

architecture enables exposing a synchronized view of all existing computational models and also 

accounts for the changes to these models in a near real-time fashion. The centralized server-

based solution also eliminates the user cost of data synchronization, which is high in a distributed 

engineering team. The solution developed in this work is especially useful to help with 

collaboration in a geographically distributed team of analysts and design engineers. 

Further research is needed to address several issues. To assemble the ensemble matrix in 

the POD algorithm, all the CFD datasets are required to have the same number of grid points. 

This is a rather stringent requirement in most cases. Developing an algorithm to reconcile data 

from CFD models into the ensemble matrix can help automate construction of the ensemble 

matrix. In the client-server model because the computation is being performed on a remote 

server, the total computational time is the sum of the time to perform the arithmetic and the 

network communications time. The network communication time introduces latency, which was 

not considered in this article. This is an important aspect and needs further study. This current 

work, implicitly requires that the computational database be located on a single node because of 

the restrictions imposed by the ROM server. In the future the authors plan to explore the 

possibility of utilizing a cloud-based ROM database to store as well as compute ROM 

parameters. The capabilities of the ROM server can thus be extended to incorporate multiple 

computational databases simultaneously. This will require that the ROM computation be 

performed in a distributed manner, where each node in the network can access data on other 

nodes based on some global metadata. Another aspect of this work that can be made more 
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efficient is the recomputation of the POD basis functions when new data is added or removed 

from the ROM database. This can be improved by utilizing SVD update methods so that the 

ROM server is always available for processing requests. A lazy recomputation can be performed 

when the ROM server has a negligible client load. Another aspect of this work that needs further 

study is the development of appropriate clients that access and leverage the ROM server. For 

instance, an optimization client can be developed that utilizes the ROM server to evaluate the 

objective function. Client-side caching techniques can be developed to minimize the effects of 

latency in making network calls. Also, versioning of engineering models can help engineers keep 

track of and compare incremental changes during the design process.  

Acknowledgement 

This research was supported in part by the US Department of Energy – Office of Fossil 

Energy under Contract No. DE-AC02-07CH11358 through the Ames Laboratory. 

References 

Tanenbaum A., Steen M., 2002. Distributed Systems: Principles and Paradigms. Prentice Hall.  

Kirby M., 2001 Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction 
and the Study of Patterns. Wiley. 

Suram S., McCorkle D., Bryden K., 2008. Proper orthogonal decomposition based reduced order 
model of a hydraulic mixing nozzle. AIAA MAO, Vancouver, Canada. 

Kays W.M., London A.L., 1998. Compact Heat Exchangers, 3rd ed, Krieger.  

Samadiani E., Joshi Y., 2010. Reduced order thermal modeling of data centers via proper 
orthogonal decomposition: a review. International Journal of Numerical Methods for Heat & 
Fluid Flow, Vol. 20 Iss: 5, pp.529 – 550. 

Trefethen L.N., Bau III D, 1997. Numerical Linear Algebra. SIAM, Philadelphia. 

Meyer C.D., 2000. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia. 

Tan B.T., 2003. Proper Orthogonal Decomposition Extensions and Their Applications in Steady 
Aerodynamics. MS Thesis, Singapore-MIT Alliance. 

Bui-Thanh T., Damodaran M., Willcox K., 2004. Aerodynamics Data Reconstruction and 
Inverse Design using Proper Orthogonal Decomposition. AIAA Journal, vol. 42, No. 8. 



57 
 

Everson R., Sirovich L., 1995. Karhunen- Loève Procedure for Gappy Data. Journal of the 
Optical Society of America, 12(8), 1657-1664. 

My-Ha D., Lim K.M., Khoo B.C., Willcox K., 2007. Real-time optimization using proper 
orthogonal decomposition: Free surface shape prediction due to underwater bubble 
dynamics, Computers and Fluids, Vol 36, Issue 3: 499-512. 

VTK, www.vtk.org, accessed on 1/27/2015. 

Astrid P., 2004. Reduction of Process Simulation Models: a proper orthogonal decomposition 
approach. PhD Thesis, Technische Universiteit Eindhoven. 

Seymour K., Yarkhan A., Agrawal S., Dongarra J., 2005. NetSolve: Grid Enabling Scientific 
Computing Environments In Grid Computing and New Frontiers of High Performance 
Processing, vol. 14, Advances in Parallel Computing. 

Kozierok C.M., 2005. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols 
Reference. No Starch Press. 1st ed.  

Tannehill J.C., Anderson D.A., Pletcher R.H., 1997. Computational Fluid Mechanics and Heat 
Transfer. 2nd ed.. Taylor & Francis. 

Mahule T et al., 2010. PADMINI: A Peer-To-Peer Distributed Astronomy Data Mining System 
and a Case Study. Conference on Intelligent Data Understanding. 

Djilali S., 2003. P2P-RPC: Programming Scientific Applications on Peer-to-Peer Systems with 
Remote Procedure Call. Third IEEE International Symposium on Cluster Computing and the 
Grid (CCGrid’03), pp.406. CCGrid. 

Hunter J., Choudhury S., 2005. Semi-automated preservation and archival of scientific data using 
semantic grid services. Fifth IEEE International Symposium on Cluster Computing and the 
Grid, vol. 1, pp.160 - 167. CCGrid. 

Sakurai T. et al., 2006. A Hybrid Parallel Method for Large Sparse Eigenvalue Problems on a 
Grid Computing Environment Using Ninf-G/MPI. Large-Scale Scientific Computing. pp 
438-445, Springer. 

Gunzburger M.D., 2002. Perspectives in Flow Control and Optimization. Society for Industrial 
and Applied Mathematics. 

Kerschen G., Golinval J.C., Vakakis A.F., Bergman L.A., 2005. The method of proper 
orthogonal decomposition for dynamical characterization and order reduction of mechanical 
systems. Nonlinear Dynamics, vol. 41, pp 147-169. 

Ly H.V., Tran H.T., 2001. Modeling and control of physical processes using proper orthogonal 
decomposition. Mathematical and Computer Modeling, vol. 33, pp. 223-235. 

Chen J., Kostandov M., Pivkin I.V., Riskin D.K., Willis D.J., Swartz S.M., Laidlaw D.H., 2009. 
Visual analysis of dimensionality reduction for exploring bat flight kinematics in a virtual 
environment. Joint Virtual Reality Conference of EGVE - ICAT - EuroVR. 

Zhou X., Hitt D.L., 2011. Proper Orthogonal Decomposition Analysis of Coherent Structures in 
Simulated Reacting Buoyant Jets. AIAA Journal, vol. 49, issue 5, pp. 945-952. 

Korpela E., 2011. Distributed Processing of SETI Data: Searching for extra terrestrial 
intelligence. The frontiers collection, Part 2, pp 183-199. 



58 
 

Liu J., 2003. Micro-benchmark level performance comparison of high-speed cluster 
interconnects. Proceedings of the 11th Symposium on High Performance Interconnects.  

Ghia U., Ghia K.N., Shin C., 1982. T: High-Re Solutions for Incompressible Flow Using the 
Navier-Stokes Equations and a Multigrid Method. Journal of Computational Physics, 48, pp 
387-411.  

Du, J., Zhu, J., Luo, Z. and Navon, I. M., 2011. An optimizing finite difference scheme based on 
proper orthogonal decomposition for CVD equations. International Journal for Numerical 
Methods in Biomedical Engineering, 27: 78–94. 

Pahl, G., Beitz, W., Schulz, H.-J., Jarecki, U., Wallace, K.B., Lucienne T.M. (Eds.), 2007. 
Engineering Design: A Systematic Approach, 3rd Edition, Springer Verlag.  

Ertas A., Jones J.C., 1996. The Engineering Design Process 2nd ed, Wiley.  

Suram S., Ashlock D.A., Bryden K.M., 2006. Graph based evolutionary algorithms for heat 
exchanger fin shape optimization, Portsmouth, VA, United states: American Institute of 
Aeronautics and Astronautics Inc., 647-657. 

Quinn M., 2005. Parallel Programming in C with MPI and OpenMP, 1st ed, McGraw-Hill.  
 

 



59 
 

CHAPTER 3. A DISTRIBUTED SYSTEMS APPROACH TO ENGINEERING 

MODELING 

 

Article to be submitted to Advances in Engineering Software 

Sunil Suram, Nordica A. MacCarty 

and Kenneth M. Bryden* 

 

Abstract 

 In this paper we present a novel methodology for modeling engineered and other systems 

based on integrating a set of component models that are accessible as “model-as-service” 

components within a cloud platform. These component models can be combined together to form 

a systems model. The component models are stateless and web-enabled. The advantage of being 

web-enabled is that developers can use the models as API endpoints as opposed to library 

components, hence making the models themselves language agnostic and less restrictive in their 

use. These ideas are presented within the context of a previously published engineering model 

for the preliminary thermal analysis and design of a small biomass cookstove. In this paper the 

monolithic biomass cookstove model is separated into six independent, stateless component 

models supported by a generic model application infrastructure. Interaction between the models 

is orchestrated by a federated model system. Finally, the efficiency of the cookstove from the 

monolithic model was compared with the distributed systems model, orchestrated by the 

federation management system. It was found that there was no change in the efficiency. 

However, the systems model increased the time-to-solution due to network latency. In 

conclusion, it is advantageous to build web-enabled component models for their easy reuse 
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across multiple systems models. Furthermore, if the computational time of a model is high, the 

effects of network latency can be neglected, because a model developer would not need to make 

any code changes for model integration.  

3.1. Introduction 

Engineered systems are generally composed from interdependent components that are 

themselves composed of other sub-components. Because of this the representation and analysis 

of the detailed interactions within and between the components comprising these engineered 

systems is critical. However, holistic modeling of these systems is challenging (Arnold, 2013). 

This is in part due to the size and complexity of detailed systems models and in larger part 

because of the need to organize and integrate a collection of models representing the components 

and subcomponents of the system into a single coherent information artifact. Particularly because 

in many cases each of the component and subcomponent models are developed by separate 

teams of analysts (or individual analysts) with differing domain knowledge, differing modeling 

practices, and differing expectations as to the outcomes of the modeling and analysis process. 

Integrated modeling (Laniak et al., 2013; Muth and Bryden, 2013) seeks to address these 

challenges and “includes a set of interdependent science-based components (models, data, and 

assessment methods) that together form the basis for constructing an appropriate modeling 

system” (Laniak et al., 2013). In a traditional modeling approach, the individual component 

models are linked with each other using software/code. In many scientific and engineering 

applications each of the submodels is incorporated as a subroutine within the larger systems 

code. In other cases each of the models is a software library that exposes application 

programming interfaces (APIs) (Michel, 2013). All the linking occurs in a single software 

program that brings together the individual models, including problem specific entities like 
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initial conditions, boundary conditions and information/data transfer between models. All of 

which must be mediated and controlled by the applications developer. More often than not, the 

monolithic software program also incorporates elements of the hardware that it is going to run 

on. For example, it may make assumptions about the availability of certain compute clusters, 

parallel programming models etc. Although this approach can be effective in solving the problem 

at hand, it makes it difficult for another engineer to reuse this work without undertaking the 

significant effort of refactoring the code to suit the new problem to be solved. 

One way of overcoming the problem of building and modeling large-scale systems 

models is by taking an integration framework based approach, where each individual model is 

part of a larger framework of models. This use of the term framework is consistent with the 

definition used by Rizzoli et al. (2008) to describe the integration frameworks used in 

environmental modeling. That is “a set of software libraries, classes, and components, which can 

be (re-) used to assemble and deliver an environmental decision support system (EDSS) or an 

integrated assessment tool (IAT) to support modeling and processing of environmental 

knowledge and to enhance the re-usability and distribution of such knowledge.” There are a wide 

range of open source integration frameworks (e.g., SCIRun (SCI, 2016), OpenDX (2011), 

Common Component Architecture (CCA)-capable CCaffeine (Allan, 2005; Bernholdt 

et al., 2006), Object Modeling System (OMS) (Lloyd et al., 2011; Ascough et al., 2005; David et 

al., 2002), The Invisible Modeling Environment (TIME) (Rahman et al., 2003), Open Modelling 

Interface (OpenMI) (Gregersen et al., 2007; Blind and Gregersen, 2005), and VE-Suite (Bryden 

and McCorkle, 2004) and closed-source integration packages (e.g., Matlab’s SimulinkTM 

(MathWorks, 2016), Execution Engine TM (Simulia, 2016), ModelCenterTM (Phoenix Integration, 

2016), and ProtraxTM (2015). In general these integration frameworks are targeted at a specific 
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applications (e.g., SciRun is focused on computational steering and does not support integrating 

generic simulation and modeling tools, Protrax is used for modeling large processing plants, and 

OpenDX is for visualization integration), provide support for particular types of models (e.g., 

ModelCenterTM, Execution EngineTM, and Matlab’s SimulinkTM all provide support for the 

integration of specific sets of tools), or have specific model integration needs that limit the 

development of generic system models (e.g., TIME requires utilization of .NET as the 

development environment and OMS 3.0 requires access to source code for the models being 

integrated). In each of these instances integration of the code is based on enabling the coupling 

of the models together by linking the inputs and the outputs together in the manner of message 

passing between the component packages (i.e., models) in a way the requires adherence to a 

given data standard or requires user intervention to identify and manage the data flow. 

The environmental modeling community, driven by the need to coordinate between 

various disciplines and to integrate the modeling efforts of these disparate groups, has been 

active in the development of a number of general purpose model integration tools (Laniak et al., 

2013). These efforts include the development of the Bespoke Framework Generator (Armstrong, 

Ford and Riley, 2009), the Earth System Modeling Framework – Flexible Modeling System 

(Balaji, 2002), OASIS (Ocean Atmosphere Sea Ice Soil) (Redler, Valke, and Ritzdorf, 2010), 

and CSDMS (Community Surface Dynamics Modeling System) (Peckham, Hutton and Norris, 

2013). All of these systems require models to have initialize, run, finalize, get, and set functions 

for basic control over the models; provide a code based method for connecting the models 

together, using some form of XML file or some other type of configuration file, to create a low-

level model-to-model interface; and require an agreed upon global ontology describing the 

variables passed between models. OASIS and CSDMS also provide GUIs for connecting the 
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models into an interface for visualization and automated configuration file generation. All of the 

integration frameworks other than CSDMS require that the models in the system use the same 

programming language. CSDMS uses Babel (Babel 2016) to support models in C++, C, Fortran, 

XML, Python, and Java. While the approach taken by these packages is effective, it requires 

significant coordination and cooperation between the various modeling teams and it compiles a 

single executable. If a model is going to be integrated into another system same type of 

coordination between the various modeling teams in the new system is required. 

This overall integration framework approach establishes bounds on model developers 

wherein each model has to satisfy a set of criteria to fit into the integrated modeling framework. 

An advantage of such an integrated framework is that all the individual models are consistent. 

Once a model developer understands the framework, developing newer models that are 

consistent with the established protocols of the framework becomes easier. On the other hand, 

developing a large scale systems model composed of separately developed models generally 

requires the development of a common (global) semantic schema and ontology, which can be a 

time consuming process. Additionally, imposing functional model development constraints on 

developers at a global level is a difficult task. The framework may not be sufficiently adaptable 

to incorporate some types of models, it may be difficult to incorporate legacy models and code 

into the integration framework, and some groups of developers may consider the global 

constraints too restrictive and need or want changes to the integrated framework. As a result, the 

integrated modeling framework changes with time and can cause version compatibility issues. 

Thus such a centralized approach can be useful for smaller groups of engineers, but can quickly 

become intractable for universal adoption.  
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In a departure from traditional engineering and scientific computing, the challenge of 

adapting and confirming to prescribed protocols can be overcome by taking the approach of 

developing loosely coupled and decentralized systems. In concept the decentralized system is 

very similar to a web-based application that, for example, predicts turnout at a public event based 

on location, weather and traffic conditions. Each of the public event listing, weather, and traffic 

conditions is an independent information service accessed over the Internet. Each of these 

services is developed independently of the others without making any assumptions or following 

common data interchange protocols. And the developers are free to define access, use, and 

content delivery protocols. And the users (the systems builders) are free to choose which 

information service to use. Only the service that combines the data from each of the three 

information services needs to know the protocol emitted by each service it is accessing. At a 

future date if the wrapper service needs to add, say, public transportation information, it can do 

so by calling yet another service that publishes this new piece of information. This can be done 

without renegotiating previously established protocols. Such a decentralized approach leads to a 

service-oriented architecture with cleaner interfaces and data transfer between each service 

(Perrey and Lycett, 2003).  

In this article, a novel approach to developing a loosely coupled and decentralized 

integrated modeling environment appropriate for engineering and scientific computing is 

proposed, based on a federation of independent models each of which is an independent web-

based model service (i.e., an information artifact) accessible via a web API using interaction 

protocols chosen by the model developer. In the proposed framework, this collection of 

independent models is joined together in a federation describing a particular system. In this way 

a complex system model can be built by composing together multiple individual models and can 



65 
 

be deployed as a system model. Furthermore, the developed models in the federation set do not 

have any schema imposed on the structure of inputs and outputs by the developer. The model 

developer decides the structure of inputs and outputs that the model accepts and emits, the only 

requirement being that this information be broadcast to model developers via API calls. In this 

way a component model can be used as-is in multiple systems models.  

The communication between constituent models is orchestrated by a federation 

management system (FMS). The FMS is aware of all the models that are registered members of 

the federation and has the ability to trigger the execution of any of the registered models as 

needed. A user communicates with the FMS by initializing the desired systems model, 

describing a list of individual models that constitute it and the actions the models need to take, 

and supplying any additional information needed (e.g., boundary conditions, system constraints, 

design parameters). The FMS is then responsible for the communication between each 

constituent model. The FMS is also responsible for the availability of computational resources to 

execute any registered model by starting up new instances of a model based on usage.  

For such a decentralized system of models to be functional and scalable a cloud-based 

architecture is the most practical solution. The primary reasons for this are 

x Universal availability—Cloud platforms can be accessed by anyone with a web-

browser and an Internet connection. This opens up the possibility for model 

developers to build and publish their models either as part of a closed group or 

globally regardless of their geographic location. Model developers should be able to 

publish their models by registering them with the FMS.  

x Scalable platforms—As more models are added the computational resources can be 

increased automatically without human intervention. The deployed models need to be 
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readily available every time the FMS sends a request for computation. Cloud 

platforms are inherently scalable in terms of hardware and the process of scaling can 

be made intelligent and automated by utilizing platform level APIs from the 

providers. Thus, highly scalable and fault-tolerant software systems can be 

developed.  

x Cost effective—Cloud platforms work on a cost per usage model and are hence cost 

effective because the user only pays for the compute time and not for procuring, 

provisioning and maintaining the compute, storage and networking resources.  

3.2. Background 

3.2.1.  Cloud computing 

Traditional HPC platforms have been built using custom hardware to provide massively 

scalable platforms for scientific computing applications. The number of floating-point operations 

per second delivered by this class of hardware is much greater than compute clusters built using 

commercial grade hardware. The pursuit of grand challenge scientific modeling and 

computational problems has warranted the purchase of expensive hardware for cutting-edge 

scientific research. However, this has made it difficult for engineering practitioners to solve 

engineering problems using HPC clusters because the hardware is deployed primarily towards 

solving the most difficult research problems. Thus the cost of HPC hardware can be prohibitive 

for most engineering problems in practice.  

Over the last few years with the rise of cloud computing, it has become easier to obtain 

compute cycles on an on-demand basis (Amazon, 2016). Several companies have built data 

centers and technology platforms using commercial-off-the-shelf hardware and are making them 

available over the Internet. This has enabled applications to scale dynamically to support 
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millions of concurrent users for consumer applications. The same technology platforms are now 

being used in traditional enterprise applications blurring the difference between consumer and 

enterprise applications (Giessmann et al., 2012). Software vendors now host thousands of 

applications in the cloud that can be accessed by its users through a web-browser. Cloud 

computing eliminates the purchase of expensive processors, networking and storage resources by 

making them available over the Internet (Amazon, 2016). The availability of high-end hardware 

on an on-demand basis makes it possible to move many types of engineering, scientific and HPC 

applications and workflows into the cloud.    

This has opened up new opportunities for creating novel scientific, data management, 

analysis and visualization applications that leverage the performance capabilities offered by 

cloud computing. Engineering modeling and scientific computing problems can now be solved 

leveraging cloud-computing capabilities. By harnessing the computing power of the cloud, 

smaller form-factor devices can also be integrated into engineering workflows and to perform 

operational tasks in the field that might not be currently possible. It also becomes possible to 

scale applications at a lower cost per processing/computing unit (Armbrust et al., 2010).    

Consider the example of a cloud based traffic reporting application that helps drivers 

choose faster routes by making congestion data openly consumable.  With ubiquitously available 

computing resources and publicly available data, the decision to change a route can be easily 

made either by a software system or a human being. Also, these decisions can be made and 

shared continuously in real-time independently by multiple parties leading to better co-ordination 

between people using the service. Furthermore, software applications can be written using this 

data in conjunction with other data sources to add more value to the existing service as well as 

creating other independent services as a result. Thus a variety of software applications get built 
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independently that gives different contexts to ever growing sources of data, services and 

algorithmic techniques.  

A similar argument can be made for publishing and sharing engineering algorithms and 

information within an organization or globally.  Availability of the algorithms, data, information 

and analysis opens up access to various people within an organization that can make decisions 

based on this data. This in turn can trigger enhanced collaboration within and even across 

organizations to help speed up engineering design, problem solving, and decision-making tasks.  

Also new applications and workflows can make various types of engineering data, analysis, 

models etc. available to people in a group or organization. In addition non-engineering data such 

as bill-of-materials, cost models and project timelines can also be tracked and managed using 

cloud computing resources. These new applications augment and enhance existing 

methodologies and workflows by making the data more consumable and in the process, opening 

up new insights.  

Several researchers (Vöckler et al., 2011; Jorissen et al., 2012) as well as commercial 

entities (Amazon, 2016; Microsoft, 2016) have made attempts to run HPC workloads on cloud 

computing resources. Data from astronomical measurements was processed utilizing cloud 

computing resources from Amazon, Nimbus and Eucalyptus by provisioning cloud computing 

resources, mapping workloads to them and de-provisioning the resources on completion 

(Vöckler et al., 2011). They found that cloud computing can be a viable solution for several 

scientific computing problems. As part of their research they also concluded “being able to add 

and remove resources at runtime outweighs the networking and system management overheads”. 

A platform for scientific computing was developed and used for simulations in materials science 

(Jorissen et al., 2012) using the Amazon Elastic Compute Cloud (Amazon, 2016) to develop an 
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Amazon Machine Image that was the primary underlying technology for their platform. The 

authors solved two problems in materials simulations that involved loose and tight coupling of 

codes. They found that although the EC2 platform is not efficient for the transfer of large 

amounts of data, it is competitive in achieving the speedups similar to that provided by 

Infiniband clusters. A big data platform for scientific workflows was developed and used to 

solve an image processing problem (Zhao et al., 2014). They also compared the efficacy of 

multiple cloud platforms for performance, price and ease of provisioning and management of 

compute resources.  

A series of experiments were developed to evaluate the Amazon EC2 infrastructure as an 

alternative for many-task computing workloads (Iosup et al., 2011). Although the authors found 

that the overall performance of commercial cloud hardware is low compared to dedicated HPC 

resources, but underscore that fact that commercial clouds can fill the gap for temporary and 

instant need for compute resources. The authors also acknowledge that the performance 

evaluations are expected to change with time as commercial cloud vendors improve their 

offerings. Amazon EC2 is now offering HPC grade hardware for scientific applications 

(Amazon, 2016). HPC instances were found to be 8.5 times faster than the original general-

purpose cloud computing instances (Fox, 2011). This shows a trend of general-purpose compute 

instances becoming more powerful over time as the cost to run them goes down. Fox also points 

out, “Many scientific computing problems do not require supercomputer performance but would 

benefit greatly from modest parallelism”. HPC clusters were extended using EC2 based cloud 

clusters by Belgacem and Chopard, 2015. They found that with a load-balancing strategy they 

were able to benefit from utilizing the cloud computing resources, as opposed to merely adding 
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more machines to an existing cluster. The authors used MPI based models that were coupled and 

executed in a distributed manner.  

The researchers above primarily have used cloud computing instances to extend existing 

HPC hardware and augment the time-to-solution for their specific scientific problems. 

Commercial cloud hardware was found lacking in some instances (Vöckler et al., 2011), but 

several researchers have acknowledged the power of being able to quickly provision and utilize 

on-demand compute resources (Belgacem and Chopard, 2015). Also, most of the computational 

workloads have been using traditional models like MPI, but running on cloud hardware. So most 

of the problems solved in the literature are related to comparing performance of existing codes 

running in the cloud. Tightly coupled models have also been studied several of which have used 

MPI or other software libraries to distribute and combine tasks and results over distributed 

computing resources.  

3.2.2.  Stateless Models 

The concept of state is critical to the implementation of federated model sets described 

here. State refers to the entirety of information that defines a model while executing a 

computational task. For example, consider the solution of an ordinary differential equation using 

a fourth order Runge-Kutta (RK4) method.  The initial time-step, initial conditions, constants in 

the evolution equation and the current time-step define the state of the RK4 model. If the state 

within a model is continued to be maintained beyond the execution time-frame, the state is said 

to persist. This is typically the case in monolithic computer codes used in systems models where 

state in one model is continued to be maintained while a different model is executing based on 

the state from the first model. 
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However, if the model does not retain any state between invocations it is said to be 

stateless (Thönes, 2015). If it is possible for the model to pass-on its state information to the next 

model without persistence via shared-memory or some message passing mechanism, the 

individual models themselves become reusable computational entities across systems and 

multiple system models. Any system model can use an individual component model as needed. 

As noted above, this work requires that each individual model is stateless i.e., the model does not 

persist state information beyond the executing time-frame for the current task. This is an 

important consideration because it enables each model to act as a “functional unit” that can be 

reused and combined easily with other models. It must be noted that stateless models can be 

created either as a single solver, say, an RK4 solver or it could be a combination of multiple 

solvers. In stateless models the output is dependent only on the input. 

 

 

Figure 3.1. Stateless model that implements Runge-Kutta 4th order integration.  

There is no additional information needed i.e., given the same inputs the model returns 

the same output each time. Participation within a federation of independent models requires that 
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each model be stateless and that each model identify its inputs and outputs. An example of a 

simple stateless RK4 model is shown in Figure 3.1. The evolution equation, initial condition, the 

step-size and the final value are shown as inputs to the model on the left. Correspondingly, the 

output from the model is shown on the right. Two different sets of such inputs and outputs are 

shown in the figure, each of which is invoked at different times, possibly by different users. User 

1 invokes the RK4 model and once the service accepts this request it does not accept any further 

requests. All the information entering the model (on the left) is the state information that the 

service uses to evaluate the solution for t=2.0. Thus, all intermediate states are tracked by the 

service and these states are used for completing the computation. However, once the final step is 

reached, the service releases all state information and sends a response back to user 1. On 

completion of this computation, the service it now ready to accept and compute the request from 

user 2, which proceeds in a manner similar to the above description. If user 1 would like to 

further integrate the equation until t=4.0, this can be sent as another request to the service using 

the response from the previous integration. Thus, the service depicted is an example of a stateless 

service that keeps state only for the duration of a request and then discards this information on 

processing the request and responding to the user.  

3.2.3.  Microservices Architecture 

To integrate software written and maintained by disparate teams, the popular choices are, 

service oriented architectures (SOA) and microservices architectures (Erl, 2005; Thönes, 2015). 

A similarity between each of these architectures is their focus on development and deployment 

of modular services i.e., services that perform specific functions. The major difference between 

the two lies in the functionality that is encompassed by the modular services. In SOA, the 

modular components tend to be functionally similar and thus tend to be large and abstractions of 
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multiple code bases that perform a similar function. On the other hand, in microservices based 

architectures, the delineation between microservices is based on the logic incorporated in the 

service as opposed to functionality. The advantage of this approach is that each microservice is a 

stand-alone service with a well-defined interface, using which the microservice can be invoked 

by other microservices or users. More information on these architectures can be found in 

Villamizar, 2015 and Thönes, 2015.  

The approach taken in this article is towards developing engineering models as 

mircoservices. Microservices are independent software services that are designed to perform a 

focused function (Thönes, 2015). In general, microservices meet certain requirements: 

x They must be independently deployable and managed 

x They must publish their inputs and outputs 

x They must have the ability to be scalable on cloud-platforms 

Microservices can thus be developed by independent developers, deployed, and 

consumed by anyone needing that service in an easy manner, typically HTTP endpoints. In the 

context of this article, microservices are viewed as services that provide a solution to an 

engineering problem by performing a computation. For example, a 2D-Poisson grid-generation 

code can be a microservice that takes the inputs of the domain boundary and returns the 

computed grid in a certain format. Since engineering models are tightly tied to the initial state 

and boundary conditions, an additional requirement for the engineering modeling microservices 

that is proposed in this research is that the microservices must be stateless, as described in the 

section 2.2. This ensures that the model can be invoked by any other service that needs this 

computation as long as the invoking service can provide the inputs in the prescribed format. In 

addition, from the perspective of a cloud-based applications, stateless microservice architectures 
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are easier to scale up or down based on usage and demand requirements (Thönes, 2015). Since 

microservices are built on the premise of accomplishing a single functional or computational 

task, scaling them involves scaling only those services that are under a heavy load. As an 

extension, since only a targeted subset of services get scaled, the approach taken is more 

streamlined from scaling SOA based services that can involve coupling (Thönes, 2015; Erl, 

2005). 

3.3. Problem Description 

In this work, a novel methodology is proposed where cloud computing is used as the 

primary compute infrastructure for engineering modeling and computations, instead of 

augmenting existing hardware resources. Individual engineering models are enabled to be 

scheduled and execute on-demand, and more complex models built from foundational models. 

This approach abstracts out the details of the algorithms from the data passing and scheduling 

mechanisms, which enables the foundational models, and algorithms to be reused easily 

independent of the context of the problem being solved. Based on this the goal is to have the 

ability to build systems of models from simpler models and to build the software infrastructure to 

enable this. These models can include engineering models like finite element analysis and 

computational fluid dynamics as well as non-engineering models including cost models and 

product diffusion models. In this work we propose an approach to build models as compositions 

of individual computations that form a linked system of models that solves a larger problem. A 

primary driver for this approach is the advent of cloud computing which enables practically 

infinite scalability at a relatively low price point compared to traditional HPC systems. Existing 

cloud computing platforms abstract away from the user details of processors, storage and 

networking by making them available on demand. It is now possible to build new services 
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leveraging the maturity of these platforms. The authors envision such a platform approach to 

linking models as “Modeling-as-a-Service” where users can access and build complicated 

models based on sets of foundational models available for use over the Internet. In addition, 

users can add their own custom models by registering them with the FMS. This requires 

1. A set of models that solve specific problems. These models can be self-contained 

individual solvers that implement a specific algorithm or can be composed from other 

existing models. Users must have the ability to add more models to the federation as 

they see fit.  

2. A management system that can accept new models and broadcast the details about 

existing models in the federation set. This federation management system (FMS) 

needs to be able to accept requests from users and orchestrate, coordinate and execute 

models in the prescribed order necessary to solve the problem.  

3. A framework of communication between models and the FMS where each model can 

receive instructions to execute and notify the FMS of the completion of a 

computation or of errors.  

This paper proposes a novel methodology to compose complex systems from simpler 

ones using a distributed systems approach where individual services are orchestrated by the 

FMS. Using the proposed FMS a user has the ability to compose together multiple individual 

computational models to develop a systems model of a more complex system. In the process, the 

FMS checks for feasibility of interaction between the computational models and proceeds with 

composition only if the appropriate feasibility tests are valid. In this work, the ability to evaluate 

engineering models leveraging existing code and frameworks is also incorporated. This allows 

for seamless utilization of existing code bases.  
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However, solving complex problems in a decentralized manner is a challenging task due 

to: 

1. Coordination of the model services. Since multiple services will be utilized during the 

execution of a complex model they need to be executed in the correct order to obtain 

accurate results. In this work, the FMS is responsible for all coordination activities 

between models in the federated set.  

2. Exchange of state information between models at runtime. Since each model after 

execution does not retain any state information, the state at the end of an execution 

must be retained and passed onto the next service in the execution workflow. To 

accomplish this, a queuing system is used to pass messages between multiple distinct 

solver sub-systems/models. The queuing system coupled with the messaging schema 

is the primary communication mechanism between the solvers and the FMS.  

 

 

Figure 3.2. An example of a task workflow. 
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3.4. Methodology 

As discussed in Section 3.3 the federation management needs to perform the following 

specific tasks  

x Allow users to register new models  

x Broadcast information about available models 

x Accept user requests for performing computations 

x Schedule user requests and execute appropriate models 

If a set of models are linked and invoked by the user to perform a single computation, the 

FMS should be capable of executing all of them in the prescribed sequence without delay. 

Additionally, the framework should allow the models to access a common file system where 

each solver can store and access intermediate data that is exchanged between the solvers. 

Building an infrastructure to support this requires several key pieces. These are 

1. Queuing Service 

2. Federation Management System 

3. Solver Sub-system 

4. Namespaces 

5. Data Access Layer 

6. Caching and Storage Layers 

7. Web Application Programming Interfaces 

Each of these is further described in the remainder of this section.  
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3.4.1. A Solver Sub-system Approach 

 In this work, the authors take a solver sub-system approach to developing a loosely 

coupled distributed system. Each solver is an individual sub-system of the overall federated 

system of solvers. Each solver sub-system constitutes of an algorithm or can be the composition 

of other solvers. For example, a Runge-Kutta 4th order (RK4) integration algorithm is an 

individual solver that accepts the input evolution functions and initial state in an input format, 

solves the equations for a prescribed number of time-steps and returns the results (state) in an 

output format. This set of transactions is a compute job. After performing a compute job the RK4 

solver does not hold or persist state for any further compute jobs that may be coupled to the 

previous task. The state is instead encapsulated in a message that is sent back to a federation 

management system (FMS) that schedules a subsequent job with this result. In the event that the 

compute job is complete (convergence or evolution to prescribed time-steps) the completion 

information is sent to a task completion queue for delivery to the user that initiated the sequence 

of jobs. Since a solver subsystem does not persist state locally, it is free to pick up another 

compute job as the situation demands. A manager-worker architecture is not imposed and hence 

there are no single points of failure, the advantage being that it becomes possible to scale the 

model microservices with relative ease. The approach decouples the scheduler, the 

queuing/messaging service and data from the solvers, so they can operate as individual 

functional units to perform operations as triggered by the messages they receive.  

3.4.1.1. Queuing Service/Layer 

The queuing layer ties together individual subsystem components in a loosely 

coupled manner. The queuing service forms the foundation for the channels that individual 

models use to communicate with the federation management system. Messages sent from models 
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to the FMS and vice-versa are all sent via the channels through the queuing system. Messages 

are processed by sub-systems in the order they are received, since the underlying queuing service 

satisfies first-in-first-out (FIFO) characteristics. A channel is an abstraction layer over the 

queuing system that defines where a sub-system sends or receives a message.  Each channel is 

tied to every sub-system to either send or receive messages. A generic message structure is 

published by the FMS and the model services derive from this structure and extend it by defining 

their own message formats.  

3.4.1.2. Federation Management System 

The federation management system (FMS) is the primary orchestrator of the various 

solver subsystems. It has two primary responsibilities a) accept user requests and b) schedule and 

orchestrate/coordinate the appropriate solvers needed to solve the workflow at hand. To meet 

these requirements the FMS has two ingress channels one to accept user requests and one to 

receive messages from registered services, as shown in Figure 3.3. The channel for user requests, 

as the name suggests, only accepts requests from a user. The second ingress channel, the job 

scheduler channel, is used by models to communicate with the FMS. Each of these input 

channels has a thread pool that listens for messages coming through; a user request (UR) thread 

pool and a job scheduler (JS) thread pool.  

A thread in the UR thread pool accepts a task workflow from the user and checks if 

the requested models have been registered. In the event that any of the models required to 

complete the workflow have never been registered, an appropriate error message is returned 

immediately and the workflow is rejected. If all the required models have been registered, the 

first task in the workflow is scheduled to run. This is the only time a thread in the UR pool 

schedules a task. Models never communicate with the FMS on the user request channel. Once 
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this first task has been completed, the model notifies the job-scheduler channel in the FMS with 

the completion status and current state information. The FMS then schedules the next task in the 

workflow to the appropriate model, which again notifies the FMS on its completion. This process 

continues until convergence has been reached or the requested number of time-steps in the have 

been reached.  

Every model has to register with the FMS in order for the FMS to know about its 

availability. In the process of registering with the FMS the model has to advertise the 

computation that it can perform and the channel that the model is listening on. The negotiations 

that occur between a model and the FMS are shown in Figure 3.4. As soon as the model 

executable starts up, it sends a model identification, its message contract information and the 

name of its ingress channel to the FMS. The FMS checks this information in its database of 

previously registered model microservice if this information is valid and that there are no 

conflicts in either the model identification or the ingress channel names. This is an important step 

in order to ensure that the appropriate compute information is assigned the appropriate task. 

Once verified the FMS sends back an appropriate response to the model service and it is 

registered. In case any conflicts were detected, the FMS sends a response with an appropriate 

error message and the model service logs the message. The developer of the model in this case 

would have to make changes to the solver ID and ingress channel names, as appropriate.  
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Figure 3.3. Federation management system.  
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Figure 3.4. Timeline of interactions between a model and the FMS.  
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3.4.1.3. Data Access Layer 

The data access layer is a software layer over the caching and cloud storage layers. It 

is used primarily by the namespace manager to store retrieve data from the namespace 

corresponding to a task workflow.  

3.4.1.4. Message Contracts 

This section describes the message contracts that need to be established between a 

model and the FMS. Since the architecture developed in this work is loosely coupled, 

information exchange between models and the FMS is critical to the functioning of the entire 

system. Furthermore, since the FMS orchestrates and schedules various models in the 

appropriate sequence to drive the workflow to convergence, the information exchanged between 

them must reflect the state of the problem being solved adequately. This aspect is also critical 

because the models are stateless.  

Information is exchanged between various subsystems in the form of messages in the 

JavaScript Object Notation (JSON) (Nolan, 2014). This structure was chosen due to its 

simplicity and interoperability with multiple languages. JSON is primarily a text based key-value 

pair data structure, which make it easy to construct and read. This property is useful to 

developers and engineers for creating message formats and debugging them. Most popular 

languages in use today either have built-in capabilities or have mature libraries that can be 

included to parse, read and write JSON objects. This helps maintain programming language 

independence amongst the models and the FMS. JSON is also an accepted standard for various 

Internet based APIs lately. This section explains in detail the design of message structures used 

in this work.  
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For any two independently developed codes to exchange information, a “contract” 

has to be established between them to do so efficiently. This is relatively simple in tightly 

coupled software systems where these contracts can be re-negotiated and all the individual 

models can be updated as needed. However, in loosely coupled software systems this is 

challenging because some parts of the system cannot be changed to accommodate changes in 

other models that may have been developed by multiple independent developers. Hence 

changing something fundamental to the integrity of the entire system can be impractical.  

Every message passed between a model and the FMS has two parts to the contract. 

One part of the contract is utilized by only the FMS to make decisions about scheduling and 

orchestrating models. The second part of the contract is used by the solver to load its initial state, 

read solver parameter information and the output location in the namespace used to write 

intermediate data.    

As a simple illustrative example a system model is considered with an addition model 

and a multiplication model as constitutive models. They are used by the system builder to find 

the result of the operation ( )*a b c� . The addition is performed first by passing in the values of 

a  and b . The resulting value and a value of c  are then passed to the multiplication model. Once 

the second computation is complete the final result is passed back to the user. Figure (3.5) shows 

an example of such a message structure exchanged between solvers and the FMS.  The list of 

solvers  
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Figure 3.5. Example of a message contract. 
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that need to be utilized in the system model is specified by the system builder, while the 

workflow ID is assigned by the FMS.  

The message contract can include any information deemed necessary by the model 

developer. The only requirement is that the basic information needed by the FMS be included in 

the message. For this purpose and for easier programmability, a model specific message is 

derived from a generic message class that enforces the necessary contracts. The model must then 

implement those contracts for it to be registered with the FMS.  

This approach makes the FMS generic enough where it can function with any model. 

Also, the solvers and logic within the models can be developed independently without enforcing 

language or programmability restrictions. The message contract structure is critical to the 

functioning of the entire system in a loosely coupled manner. Further details about how each 

solver change message parameters during the execution of a workflow are explained in the 

examples.  

3.4.1.5. Namespaces 

As engineers create computational models, they are added to a database and assigned 

to an appropriate namespace. The namespaces are necessary to partition data in a logical and 

intuitive manner and enables sharing of the data between multiple users or software systems. As 

changes to the computational models are made, they are “checked-in” to the corresponding 

namespace in the database and updated accordingly. The metadata associated with each set of 

models is also updated as needed. The metadata may include information such as the geometry, 

material properties, grid information etc. This is an important aspect, because it reduces the time 

to extract useful information about a set of models. Users and automated software applications 

can thus use the metadata to obtain information about the namespace, instead of going through 
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each computational model. The metadata reflects a higher-level abstraction of information 

pertaining to the computational models in the namespace. It should be noted that the process of 

adding and updating models is a continuous process during the entire lifecycle of the design. 

Each of these instances can function independently or in concordance with one or more of the 

other instances in the collective to help solve a more complex problem.  

3.4.1.6. Web Application Programming Interfaces 

Web APIs are used to hide the server-side complexity by incorporating processing 

logic and exposing only the limited set of allowable inputs as HTTP endpoints for the system 

model to specify. In this way system models can access engineering model computations and 

metadata without knowledge of the details of the interactions, but only of the exposed interfaces 

of the Web API. In this work RESTful web APIs (Fielding, 2002) were developed to expose 

HTTP endpoints of the individual models. Using the exposed APIs a system builder can 

assemble multiple models into a single model space which can in-turn be exposed as another 

HTTP endpoint for reuse by other systems. Thus web APIs are critical in hiding complexity of 

the existing models while enabling their efficient reuse.  Some examples of the Web APIs are 

described in Table 3.1 below.  
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Table 3.1. Examples of API endpoints and their functionality.  

API endpoint Description Example 

/fms/post 

A POST request to the 
FMS with a payload 
that contains model(s) 
to be used and their 
inputs.  
The response from this 
request is an ID that 
can be used to track 
progress.  

/fms/post 
PAYLOAD : 
{ 
“solverlist”:[”addition,multipl
ication”], 
“a”:5, 
“b”:3 
} 

/fms/getinfo?model=<modelname> 

A GET request to 
retrieve input payload 
and output format 
information about the 
specified model.  

/fms/getinfo?model=”addition
” 
Gets input and output 
information about the addition 
model.  

/fms/getmodels 

A GET request to 
retrieve all the models 
registered with the 
FMS.  

/fms/getmodels 
Returns a list of registered 
models for the system builder 
to utilize.  

 

3.4.1.7. Model Software Development Kit (SDK) 

As described above, each model interacts with the FMS by registering with the FMS, 

reading messages from the FMS and sending messages back to the FMS. To encapsulate these 

“boiler-plate” interactions an SDK has been developed that enforces a programmatic contract 

between the individual models and the FMS. The SDK creates an interface between the FMS and 

the models in such a way that the FMS does not need to know the details of model computations 

while the model has all the necessary information to communicate with the FMS. The SDK also 

provides generic message contract classes for the models to inherit, which enables model 

developers to implement their own custom messages without disrupting the necessary message 

construct needed by the FMS. As shown in Figure 3.6, before performing any computations the 

models load their initial state after receiving a message from the FMS.  When the computation is 

complete, the model sends the message back to the FMS and discards all state information. This 
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ensure that the stateless condition of the individual model and prepares it for use another system 

model. In addition, the Model SDK also incorporates persistence and caching objects for use by 

model developers. This allows model developer in focusing on the computational logic primarily 

and making use of the readily available persistence and caching mechanisms seamlessly. This 

approach also enables uniformity at the infrastructure level in order for models to be reused.
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Figure 3.6. Representation of the Model and the Model SDK. 
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3.5. Architecture 

The overall architecture of such a system is shown in Figure 3.7. In traditional 

approaches to linking engineering models the “linkage” occurs in code i.e. information transfer 

between models has to be incorporated in code. Thus the model-associated state information is 

tightly coupled to the models being used and to the execution context of the engineering 

problem. This makes the coupled code difficult to reuse without modifications and refactoring 

because of the state information is embedded into this coupled model. A primary reason for this 

is the availability of models as software libraries as opposed to individual atomic compute 

“engines” which act on request to a specified set of boundary conditions. Such an approach 

would require a loosely coupled distributed system based approach to building each model, 

scheduling their execution and orchestrating information transfer. An important requirement is 

that state information be moved away from individual models as they run. This enables any 

model of the same type can carry out subsequent runs without keeping track of state information. 

This is an important requirement when linking models together, because information transfer 

from one model to another can occur by models loading the updated state at run-time. This is an 

important distinction that the authors would like to note, from a “library approach” where this 

coupling occurs primarily at compile time of the code. This also plays a key role towards 

enabling a fault-tolerant and scalable distributed system to be constructed of collections of 

engineering models. Moving the contextual state information away from a model helps make it a 

foundational construct within a larger collection, which can be called to perform a task. Existing 

cloud computing platforms can be used to “spin-up” new model instances as per usage and 

demand requirements.  
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Figure 3.7. Architecture of the distributed system to compose computational models.  

 

 



93 
 

For this architecture to be functional it is important to address three key elements.  

3.5.1. Information exchange protocol 

For traditional system models to exchange information successfully between multiple 

models requires the development of protocols that must be adhered to by all models. However, 

for federated model systems i.e., loosely coupled systems it becomes difficult to develop and 

maintain standardized information protocols. For this reason, in this work each individual model 

publishes its own information exchange protocol for publishing and receiving data and analysis. 

This is similar to web application programming interfaces (APIs) (Michel, 2013). Using API 

based protocols gives each component model control and independence over the data it can 

receive and publish and eliminates errors due to incompatible protocols, leading to a service-

oriented architecture (Erl, 2005). This is advantageous because the component models can be 

developed independent of each other. For this purpose, message contracts are developed for all 

transactions between component models and the FMS.  

 3.5.2. Information routing 

The composition of the individual sub-systems is of critical importance as it affects the 

validity of the final result of the engineering problem. In this work the user determines the order 

of composition of sub-systems, using which a directed graph is generated. The directed graph 

specifies the execution order of individual subsystems (McNunn and Bryden, 2013). This is a 

critical step since some subsystems may have to exchange information iteratively to converge. 

Once the order of is determined, it is submitted to the FMS, which schedules execution of the 

appropriate components.  
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 3.5.3.  Information compatibility 

The metadata for an engineering model includes data such as the topology, operating 

range of the component, material characteristics, etc. This metadata is used to make decisions 

regarding the compatibility of connected domains.  There are two primary issues with 

information compatibility: 

a. Adjacency: Two adjacent models must always be compatible with one another with 

regard to their topologies, time and spatial domains. In addition, the types of 

information being exchanged must be the same. For example, information about 

temperature from one domain must be passed onto an appropriate temperature field in 

the second domain. Units and descriptors of the information being passed must also 

be the same and translators could be used to convert standard units as required.  

b. Appropriate use: If two models satisfy the requirements of being compatible, it 

however, does not imply that they can be used adjacent to each other. There might be 

differences in material properties or operating ranges that the model might be 

specifically addressing. These engineering decisions need to be taken into account by 

the system builder during the process of assembling the system model.  

It is important to understand if the sub-problems being considered can interact with one 

another. Although it is not necessary that all the domains should have feasible interactions, it is 

expected that the strongly connected components should respect this criterion.  

3.6. Example Application: Cookstove Preliminary Design 

MacCarty and Bryden have developed a steady-state heat transfer model for the 

conceptual design of a biomass cookstove (MacCarty and Bryden, in review).  These low-cost 

technologies have been identified as an important option to help alleviate the impacts of energy 
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poverty in developing countries where over 2.4 billion people rely on open combustion of 

biomass to meet as much as 97% of their daily energy needs for cooking, heating, and lighting 

(IEA, 2010; Johnson and Bryden, 2012). The household air pollution associated with this 

inefficient and incomplete combustion has been attributed to an estimated 4 million premature 

deaths each year, representing the 2nd leading cause of death for women globally, and contributes 

to global climate change particularly due to emissions of black carbon particles (Lim et al., 2012; 

Bond et al., 2013). In these diverse communities, the cooking practices, available resources, and 

cultural preferences vary considerably on a local basis.  Therefore, cookstove designs must be 

adapted and the use of modeling simulations in which the various design parameters are tailored 

to these communities can help to increase the efficiency of the design process.  

A basic improved cookstove typically consists of 1) a combustion chamber, in some 

cases insulated, to enclose and shield the fire in order to contain the heat and generate more 

complete combustion; 2) a grate to elevate the fuel and allow better flow of air through the fuel 

bed; and 3) a flow path including channels to provide improved heat transfer to the bottom and in 

some cases the sides (when a pot shield is used) of the cooking pot. The stove is typically fired 

with wood of varying moisture content ranging in size from small twigs to large unsplit 

branches, although in some cases crop residues and dung may be used. The goal for designers is 

to develop designs that generate efficient heating and low emissions while still providing a user-

friendly device that can operate at varying firepower, with a variety of cooking pots, and a range 

of fuels (MacCarty and Bryden, 2015). 

The model for predicting the efficiency of heat transfer into the cooking pot was 

developed by breaking the system into three separate but coupled zones, including a) the fuel bed 

zone; b) the flame zone; and c) the convective heat transfer zone; which are in turn coupled to a 
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model of the air flow due to buoyancy and friction (Figure 3.8A). In the packed bed, solid phase 

combustion includes heating of the wood and drying of the fuel moisture followed by pyrolysis 

and char burning with primary air. In the flame zone, secondary air enters, is heated, and is 

supplied to gas phase combustion.  In the heat transfer zone, energy is lost through the stove 

walls, transferred to the pot via convection and radiation, and exits as sensible losses. Fluid flow 

and the entrainment of excess air is driven by natural buoyancy, and is slowed by pressure losses 

due to friction throughout the various geometries of the flow path. The temperature and velocity 

profiles throughout the system are determined using traditional heat transfer and fluid flow 

theory as a function of fifteen design variables, including 10 geometric parameters (Figure 3.8B), 

2 material properties, and three operating conditions (MacCarty and Bryden, in review). 

In this incarnation, the model operates with initial estimations for flow and temperature 

profiles, and then progresses through the three zones up through the exit of the stove, at which 

point the velocity is evaluated. With this new flow rate, the model iterates through the zones 

again until convergence is reached. In this sense, the model is a singular entity that executes each 

of its three constitutive models within a monolithic piece of code. Most scientific codes are 

designed in this manner and do not permit model reuse and substitution with ease.  

In the context of FMS, this method is extended by separating the individual models and re-

constituting them using application programming interfaces (APIs) that are accessible over the 

Internet. Thus, there are individual services that execute the algorithms for each of the three 

models i.e. a bed model, a flame model and a heat transfer model. Each of these services is 

registered with the FMS and advertises the input data formats they accept and the output that is 

emitted. 
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Heat Transfer Zone
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Fluid Flow
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(A) (B)  

Figure 3.8. (A) The coupled zonal models of the cookstove system; (B) the geometrical design 

variables (after MacCarty and Bryden, 2015; MacCarty and Bryden, in review) 

 

This allows each of the services to be called independently, if required. In addition to the 

individual services, a wrapper program has been written that encapsulates the sequence of API 

calls to each of the services in a modular fashion. The inputs and outputs to each model and the 

equations they solve are shown in Table 3.2. Thus if changes are made to the upstream 

constituent models, only the wrapper code needs to change. The configuration of services and the 

wrapper program with the FMS is shown in Figure 3.9. 
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Figure 3.9. Flow of component models within the federated system of models.  

 

3.7. Discussion and Results 

The original software for the stove model was a single piece of code that solved all the 

above mentioned regions and finally reported efficiency. This model code was split into 6 

individual component models chosen on the basis of the heat-transfer zones as shown in Figure 

3.8 and the physics of the problem (MacCarty and Bryden, 2015). Table 3.2 shows the individual 

model equations with their inputs and outputs.  
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Each component model was re-factored with the Model SDK and assigned a unique 

channel ID as explained in section 3. Once the model services are started, they are considered to 

be deployed and ready to process messages routed to them by the FMS. Figure 3.9 shows the 

integrated system using the component models. It can be seen that the time loop encompasses 

most of the models except for the meshing model. Each of the models are invoked in the order as 

shown and state passed via the message contract from one model to the next. For every iteration, 

the l2 norm is computed and the norm is passed to the “Check” model, which checks the norm 

with the user specified convergence criterion. If this criterion is satisfied, the “Check” model 

updates a flag in the message. When this message is received by the FMS, it checks this flag to 

determine if further iterations are needed. If so, they next step in the iteration of the models is 

invoked. If not, the FMS does not schedule any further models and the final message which 

contains the stove efficiency is returned to the caller for proving the final answer to the user.  

The user inputs are the parameters that allows a user to evaluate the efficiency of a 

cookstove design and are discussed in detail in MacCarty and Bryden, 2015. In this work the 

user inputs are provided to the federated system via a web API end-point. This can be enhanced 

to provide a web-browser based GUI, using which the cookstove design parameters can be input 

to the federated system model by the user. The output efficiency from the distributed system of 

models was compared with the monolithic code for the same given inputs. These results are 

shown in Table 3.4. 

In each of the three cases, the resulting efficiency value was identical using the 

monolithic model and the system of component models. This demonstrates that the 

decomposition of models did not affect the outcome of the computations.  
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In Table 3.4 it can also be observed that the computational time is higher in the cases 

where the federated models are used. This is expected in due to network latency, in 

communicating between the FMS and the component model services. Additionally, as noted in 

MacCarty, 2015, the models utilized in this work have been built for preliminary design, hence 

the computational time is low compared to models built for detailed design, e.g. CFD models. 

Additionally, since the results of the federated system of models is accessed through a web-

browser, it added on average about 100 milliseconds to the response time. The monolithic code 

on the other hand, reports the final efficiency as console output.  

However, it is important to note that the monolithic code does not support easy 

evaluations, especially in the case where multiple design parameters need to be evaluated. Input 

parameters would have to be input from either a file or using a script based method.  
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Table 3.3. Design variables for the cases.  

Case Dc Hc Gc Hp Ds Ks Hsh Tsh Ksh gp gs Dp 

1 0.1 0.2326 0.025 0.11052753 0.101 1.0 0.08 0.0005 35.0 0.01 0.008 0.24 

2 0.4 0.2326 0.25 0.11052753 0.301 15.0 0.08 0.005 3.0 0.01 0.008 0.34 

3 0.2 0.2726 0.25 0.110 0.301 2.0 0.08 0.005 30.0 0.01 0.008 0.24 

 

 

 

Table 3.4. Efficiency and time comparison of monolithic model with the system of models.  

Case Efficiency (%) Time (seconds) 
Monolithic 

model 
System of models Monolithic 

model 
System of 

models 
1 34.7 34.7 2.2 3.06 
2 13.69 13.69 1.06 2.75 
3 28.4 28.4 0.72 1.33 

 
 

 

Furthermore, once a system model has been established it does not need to be 

disassembled. As the design moves from the preliminary phase to the detailed-design phase, 

simple models can be replaced by detailed models. Similarly, during the design optimization 
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phase, the detailed models can be replaced by ROMs to support quick function evaluations of the 

optimization algorithm objective function.   

3.8. Conclusions and Future Work 

Lloyd et al. (2011) classified environmental modeling frameworks as “traditional vs. 

lightweight” and presented a methodology for measuring framework “invasiveness,” defined as 

the “degree to which model code is coupled to the underlying framework.” In this article the 

novel concept of a federation system of models was proposed and implemented. A federated 

system of models were developed from a monolithic model code, for the preliminary design of 

cookstoves.  

Another interesting extension of this work would be to use machine learning techniques 

to automatically learn the characteristics of individually engineered systems (topological, 

operational, response characteristics, etc.) and intelligently suggest to the FMS the extents of 

composability. Fusion of computational information with experimental or on-field observations 

is yet another open question in the field of model integration. Stringent access controls pertaining 

to user specific security protocols will have to be adapted in order to make this technology useful 

in an enterprise.  
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CHAPTER 4. A NOVEL APPROACH TO INTEGRATE A COMPONENT ROM INTO A 

DISTRIBUTED ENGINEERING SYSTEM MODEL 

 

Article to be submitted to Advances in Engineering Software 

Sunil Suram and Kenneth M. Bryden* 

 

Abstract 

 As computational models and simulations are getting easier to run with the advent of 

cloud computing, the management of the associated data and models is getting more difficult. 

For producers of these high-fidelity models getting access to high-end hardware has become 

easier. However, for consumers of the models, key stakeholders in the design process, and 

designers, the process of utilizing these models in decision-making tasks the complexity 

involved has not decreased by increases in computational power. A novel engineering workflow 

based approach is proposed in this article to bridge this gap using information artefacts. In the 

proposed approach, data from high-fidelity computational models are utilized to construct ROMs 

seamlessly without user intervention. Utilizing the ROMs and the computational models 

concurrently, a higher level of abstraction to these models is created as an information artefact. 

The consumers of this information can query the information artefact for information based in 

the design parameters. The information artefacts are web-enabled and communicate with a 

federation management system. This approach is demonstrated using a heat-exchanger fin shape 

design example and comparisons are drawn between the resulting engineering workflow and the 

workflow proposed in Suram and Bryden, 2015. It is found that this proposed approach has the 
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potential to make the consumption of engineering modeling information easier by removing the 

tight coupling between the producers and consumers of these models.  

4.1. Introduction 

In a traditional modeling approach, the individual component models are linked with 

each other using software/code. Each of the models is usually a software library that exposes 

application programming interfaces (APIs). All the linking occurs in a single software program 

that brings together the individual models, including problem specific entities like initial 

conditions, boundary conditions, geometry and information/data transfer between models. More 

often than not, the monolithic software program also incorporates elements of the hardware that 

it is going to run on. For example, it can make assumptions about the availability of certain 

compute clusters, parallel programming models etc. Although this approach can be effective in 

solving the problem at hand, it makes it difficult for another engineer to reuse this work without 

undertaking the effort of refactoring the code to suit the new problem to be solved. 

One way of overcoming this problem of building and modeling large-scale models is by 

taking an integrated framework based approach, where each individual model is part of a larger 

framework of models (Peckham, Hutton and Norris, 2013). The overall framework establishes 

bounds on model developers wherein each model has to satisfy a set of criteria to fit into the 

integrated modeling framework (Peckham, Hutton and Norris, 2013). An advantage of such an 

integrated framework is that all the individual models are consistent. Once a model developer 

understands the framework, developing newer models that are consistent with the established 

protocols of the framework becomes easier. On the other hand, imposing functional model 

development constraints on developers at a global level is a difficult task. Several groups of 

developers may consider this too restrictive and suggest changes to the integrated framework. As 
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a result, the integrated modeling framework changes with time and can cause version 

compatibility issues. Thus such a centralized approach can be useful for smaller groups of 

engineers, but quickly becomes intractable for universal adoption. 

 4.1.1. Reduced Order Models 

Engineering design is an iterative decision making process in which collaborative groups 

of designers/engineers work together from conceptual design to a final product. Many 

engineering design workflows have been proposed but most of these are similar to Figure 4.1 

(Pahl et al., 2007; Ertas and Jones, 1996). As shown in Figure 4.1, the design process is 

composed of three main stages, (1) problem definition, (2) engineering design, and (3) design 

validation and verification. (Pahl et al., 2007; Ertas and Jones, 1996).  

 

 

Figure 4.1. Workflow in engineering design. 

 

 



113 
 

During the detailed design phase the chosen design is optimized and finalized. The 

engineering design stage involves an iterative process in which the designers typically move 

back-and-forth between conceptual, preliminary, and detailed design with relatively quick 

consideration and analysis of multiple designs, repeated iterations and expansions of proposed 

solutions, revisiting assumptions and decisions, and a series of design changes. Once completed 

a reduced set of designs are chosen for further verification and validation using additional 

analysis and field data. This can lead to changes to the initial design, thus requiring a repeat of 

the design stage. The exploratory and iterative nature of engineering design makes the process of 

communicating engineering information and analysis during the design stage, between various 

engineering teams challenging. Suram and Bryden, 2015, introduced a ROM server that stores all 

the data from computational models and creates reduced order models from the data. The ROM 

server enhanced communication between analysts and designers compared to the traditional 

model of running ROMs. However, in cases where the ROM server does not have sufficient data, 

the communication between the analysts and designers has to be explicit, in order to update the 

data. To further streamline this process, in this research the concept of information artefact is 

introduced. Using information artefacts the boundary between a detailed model and a ROM is 

obfuscated helping make the engineering decision making process.  

4.1.1.1. Proper Orthogonal Decomposition 

In this work the proper orthogonal decomposition (POD) technique is used to 

construct and evaluate ROMs. The POD technique has been used extensively in prior research 

and details about can be found in (Suram and Bryden, 2015). POD has been incorporated into the 

engineering workflow as described in (Suram and Bryden, 2015). The POD technique is useful 

because it captures all the required information about the phase space of a given physical 
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problem. When using it to solve an engineering design problem, this information can then be 

used in conjunction with the coefficient interpolation technique to explore the design space in a 

computationally efficient manner. This process can be summarized as follows: 

x Identify the design parameters and design space of interest  

x Create the computational data needed for the snapshot dataset that spans the 

design space of interest 

x Create the POD coefficient and basis functions 

x Make the POD ROM available for use 

x Use the POD ROM to compute new solutions as needed to support the 

engineering design process 

If the design space to be explored needs to be expanded or new aspects of the problem 

need to be explored, the snapshot dataset will need to be expanded and a new POD ROM will 

need to be developed. Additionally, the accuracy of the POD ROM increases as the number of 

snapshot solutions increases. Thus as the design process evolves and more accurate solutions are 

needed, the POD ROM will likely need to be updated in regions of the design space of particular 

interest.  

The iterative nature of the design process and the continuing update of the ROM 

creates a communication challenge within the design and analysis team. To evaluate a ROM, the 

most recent set of coefficients and the basis functions need to be known by the user. If a user is 

geographically in a different region or a part of a different engineering team interested in 

evaluating the ROMs or analyzing the results, this information has to be made available to them. 

Updating the ROM manually via email or download for local compute makes it challenging to 

ensure that the most recent ROM is used and that disparate members of the design group are 
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using the same ROM. Furthermore, providing local access to this data for multiple users may not 

be possible. It is also likely that multiple POD ROM models would be used to address a large-

scale complicated design problem, and a process is needed to coordinate the development and 

use of these multiple POD ROM models. This creates problems with management of data and 

version control. The ROM may remain on a single computational machine or may be exported to 

remote machines for simultaneous use. If it is kept on a single machine, access is limited because 

only one ROM computation can be performed at a time. If it is exported, maintaining version 

control of the ROM becomes difficult and different groups having conflicting or out-of-date 

information can slow the design process. In the next few sections we propose an engineering 

workflow to overcome these challenges and enable the seamless utilization of ROMs within the 

engineering design process. 

 4.1.2.  Information Artefacts 

In this article the concept of information artefacts is introduced. For an engineering 

system, an information artefact is a provider of information to a system model i.e., they can be 

computational models, closed-form solutions, data, design parameters, optimization algorithms, 

etc. In this context, all these pieces of information are recognized as information artefacts (IAs) 

where they can be queries with an input and a response of returned from them. 

Information artefacts are a higher-level of abstraction from detailed models and ROMs 

i.e. they encompass the information within each of the models. Thus when an information 

artefact is invoked by the FMS, either the detailed model or the ROM can be invoked in-turn, 

based on how much information each of these models contains. If the ROM has insufficient 

information, the detailed model is invoked. The advantage of this abstraction is that for tasks that 
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do not require detailed models, a user cannot inadvertently invoke a model of higher 

computational cost.  

 

 

Figure 4.2. Information artefact.  

As shown in Figure 4.2, when a user requests a computation from the information artefact 

there is no distinction made between the high-fidelity model and the ROM. The model that is 

capable of returning the information fastest is given priority. If a detailed model solution to the 

request exists in the cache, it is returned immediately without performing a ROM computation. 

On the other hand, if a detailed model solution does not exist, a ROM computation is performed. 

If both these criteria are not satisfied, the information artefact proceeds to perform a detailed 

model computation.  Similarly, it is known that closed-form solutions to complex problems are 

not always possible, especially for complex boundary conditions. However, can it be used within 

an information artefact during preliminary design to understand the response of an engineering 

system model in order to inform some engineering decisions. In this article, the terms 



117 
 

information artefact and hybrid model are used interchangeably, since the information artefacts 

used in this work are limited to computational models and ROMs.  

4.1.2.1. Model Substitution  

In this work, the framework developed in (Suram and Bryden, 2016) is extended to 

include the concept of engineering model substitution. There are several scenarios during the 

engineering design process where complex models have to be substituted by simpler models. 

This is typically needed when “what-if” analysis needs to be performed to study and analyze the 

impact of certain design decisions. In such situations, running high-fidelity models is an option 

but involves a high turnaround time for completion.  When multiple design iterations are 

involved, high-fidelity models increase the time to make the engineering decision.  

In this article, a framework is outlined for these scenarios where a detailed high-

fidelity model can be substituted by a simpler model that has a faster computational time, but has 

the ability to provide the same output for the engineering system model. The framework is 

capable of storing high-fidelity computational data and automatically creating reduced order 

models utilizing the proper-orthogonal decomposition technique.  

4.1.3.  Federated Models 

In the framework developed in (Suram and Bryden, 2016), a collection of individual 

models constitutes a federated set of models, where each of the models has a set of inputs and 

outputs. It was demonstrated that a complex system model can be built by composing together 

multiple individual models and can be deployed as a system model that can be reused and 

exposed as an Internet application (Suram and Bryden, 2016). Furthermore, any of the developed 

models in the federation set do not have any schema imposed on the structure of inputs and 

outputs. The model developer decides the structure of inputs and outputs that the model accepts 
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and emits, the only requirement being that this information be broadcast to model developers via 

API calls. The communication between constituent models is orchestrated by a federation 

management system (FMS). The FMS is aware of all the models that are registered with it and 

has the ability to trigger the execution of any of the registered models as needed. A user 

communicates with the FMS by initializing the desired model, describing a list of individual 

models that constitute it and supplying the boundary conditions. The FMS is responsible for the 

communication between each constituent model. The FMS is also responsible for the availability 

of computational resources to execute any registered model by starting up new instances of a 

model based on usage.  

For such a decentralized system of models to be functional and scalable a cloud-based 

architecture is the most practical solution. The primary reasons for this are: 

x Universal availability: Cloud platforms can be accessed by anyone with a web-browser 

and an Internet connection. This opens up the possibility for model developers to build 

and publish their models either as part of a closed group or globally regardless of their 

geographic location. Model developers should be able to publish their models by 

registering them with the FMS.  

x Scalable platforms: As more models get added computational resources need to be 

increased automatically without human intervention. The deployed models need to be 

readily available every time the FMS sends a request for computation. Cloud platforms 

are inherently scalable in terms of hardware and the process of scaling can be made 

intelligent and automated by utilizing platform level APIs from the providers. Thus, 

highly scalable and fault-tolerant software systems can be developed.  
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x Cost Effective: Cloud platforms work on a cost per usage model and are hence cost 

effective as the user only pays for the compute time and not for procuring, provisioning 

and maintaining compute, storage and networking resources. 

4.1.4.  Loosely Coupled Engineering Models 

In traditional approaches to linking engineering models (Babel, 2016; Peckham et al., 

2013) the “linkage” occurs in code i.e. information transfer between models has to be 

incorporated in code. Thus the model-associated state information is tightly coupled to the 

models being used and to the execution context of the engineering problem. This makes the 

coupled code difficult to reuse without modifications and refactoring because of the state 

information is embedded into this coupled model. A primary reason for this is the availability of 

models as software libraries as opposed to individual atomic compute “engines” which act on 

request to a specified set of boundary or initial conditions. 

Such an implementation would require a loosely coupled distributed system based 

approach to building each model, scheduling their execution and orchestrating information 

transfer. An important requirement is that state information be moved away from individual 

models as they run. This enables any model of the same type can carry out subsequent runs 

without keeping track of state information. This is an important requirement when linking 

models together, because information transfer from one model to another can occur by models 

loading the updated state at run-time. This is an important distinction that the authors would like 

to note, from a “library approach” where this coupling occurs primarily at compile time of the 

code. This also plays a key role towards enabling a fault-tolerant and scalable distributed system 

to be constructed of collections of engineering models. Moving the contextual state information 

away from a model helps make it a foundational construct within a larger collection, which can 
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be called to perform a task. Existing cloud computing platforms can be used to “spin-up” new 

model instances with increases and usage and demand requirements. When engineering models 

are coupled using code, they become tightly-coupled and become difficult and unwieldy to take 

apart for reuse. For this reason, if models are built as individual functional units that perform a 

particular computational task.  

4.1.5.  Stateless Models 

The concept of statelessness is critical to the implementation of federated model sets 

described here. State refers to the entirety of information that defines a model while executing a 

computational task. For example, in an RK4 model, the initial time-step, initial conditions, 

constants in the evolution equation and the current time-step define the state of the RK4 model. 

If state within a model is continued to be maintained beyond the execution time-frame, state is 

said to persist. This is typically the case in monolithic computer codes (system models) where 

state in one model is continued to be maintained while a different model is executing based on 

the state from the first model.  However, if the model does not retain any state between 

invocations it is said to be stateless (Thönes, 2015). If it is possible for the model to pass-on its 

state information to the next model without persistence, the individual models themselves 

become reusable computational entities across systems and multiple system models. Any system 

model can use an individual model as needed. As noted above, this work requires that each 

individual model is stateless i.e. the model does not persist state information beyond the 

executing time-frame for the current task. This is an important consideration because it enables 

each model to act as a “functional unit” that can be reused and combined easily with other 

models. It must be noted that stateless models can be created either as a single solver, say, an 

RK4 solver or it could be a combination of multiple solvers. Participation within a federation of 
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independent models requires that each model be stateless and that each model identify its inputs 

and outputs. An important aspect of being stateless is that the message and hence the code can be 

executed on any node in the federation, which is an important aspect of scalability. 

4.2. Workflow 

 4.2.1. Engineering Workflow Using the ROM Server 

 Figure 4.3 shows the engineering workflow using the ROM server introduced in previous 

work (Suram and Bryden, 2015). Engineering design is a complex and iterative process that 

involves multiple engineering teams sharing and communicating information during the design 

process. Computational modeling and the development of high-fidelity models play a significant 

role in the design process. High-fidelity models are accurate but on the other hand they are time-

consuming and can slow down the design process. To address this, a framework was developed 

in (Suram and Bryden, 2015) to integrate ROMs into the engineering design workflow. As was 

shown in Suram and Bryden, 2015, the ROM server is capable of providing a single consistent 

view into the computational models within an organization. However, for the ROM server to 

function consistently, the producers and consumers of models must communicate outside the 

context of this information space. For example, adding, updating or deleting data from the ROM 

database requires that the producers and consumers of the model communicate with one another. 

Thus, the ROM server implemented in Suram and Bryden, 2015, requires an implicit coupling 

between the producers and consumers of models and does not enable seamless interactions 

between models, data and the associated analysts and designers. 
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Figure 4.3. Workflow developed utilizing the ROM server.  
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To enable such seamless interactions between all the associated stakeholders of an 

engineering models, within an organization, requires a framework that makes use of the concept 

of information artefacts. It should allow producers (analysts) to produce high-fidelity models and 

the consumers (designers) to interact with the information artefact, as opposed to the ROM 

server. It must thus enable dynamic and seamless substitution of high-fidelity models with 

reduced order models. As a part of this, the goal is to build the software infrastructure to enable 

such model substitution and reuse. These models can include engineering models like finite 

element analysis and computational fluid dynamics as well as non-engineering models including 

cost models and product diffusion models. In this work we build on the approaches developed in 

Suram and Bryden, 2015 and 2016, to include reduced order models that can substitute high-

fidelity models to form a linked system of models that solves a larger problem. This approach 

requires 

1. A set of models that solve specific problems. These models can be self-contained 

individual solvers that implement a specific algorithm or can be composed from other 

existing models. Users must have the ability to add more models to the federation as they 

see fit.  

2. A management system that can accept new models and broadcast the details about 

existing models in the federation set. This federation management system (FMS) needs to 

be able to accept requests from users and orchestrate, coordinate and execute models in 

the prescribed order necessary to solve the problem.  

3. A framework of communication between models and the FMS where each model can 

receive instructions to execute and notify the FMS of the completion of a computation or 

of errors. 
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In addition, the framework also needs the following services to perform computations 

and store the generated data for reuse.  

1. A cloud-based data storage layer that can store high-fidelity models efficiently in a 

scalable manner. The results from the high-fidelity models can be cached for reuse with 

the same input design parameters. 

2. A generic model that is capable of generating ROMs using the data generated from the 

high-fidelity computational models and input design parameters. 

3. A generic model that uses the above generated ROM and evaluates user requested input 

design parameters and returns the output to the user. This is useful in order to reduce 

computational time for a set of design parameters that lie within the phase-space of the 

problem being considered. The user must be allowed to assign a higher preference to 

either the accuracy of the computation or the time to solution. In the former case, the 

high-fidelity computational model is invoked by the FMS and in the latter the ROM 

evaluation is invoked.  

4.3. Improved Workflow 

In this article, an improved engineering workflow is proposed utilizing information 

artefacts. The previous section summarized the engineering workflow from Suram and Bryden, 

2015, based on the ROM server. IAs allow the seamless integration of ROMs and high-fidelity 

models. Thus, IAs can be a starting point for the integration of models as well as the interactions 

between analysts, designers, and engineering decision-makers. Figure 4.4 shows the proposed, 

improved workflow where the IA is central to all the interactions between the producers and 

consumers. Additionally, the IA is also central to the process of collecting computational data 

and computing ROMs from the data.  
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The producers, during the design process formulate the problem, identify design 

parameters of interest and run high-fidelity models. The data from these models is stored in the 

background without any user intervention or explicit instructions. As the data gets collected, the 

ROM construction service periodically constructs ROMs from this data and updates the ROM 

parameters. The designers can simply query the IA for information about the design, which 

responds with the solution based on either the ROM or the high-fidelity model. The IA uses the 

“energy” of the ROM to determine if sufficient data was used in its construction.  

It can thus be seen that this proposed workflow improves the engineering workflow 

(Suram and Bryden, 2015) by eliminating the need for interactions between designers and 

analysts. For updates to the design during the design process, each analyst and designer can 

proceed with their own tasks, and the IA will process the requests either using the ROM or the 

high-fidelity model. The remainder of this section provides details about the methodology and 

architecture built to develop the information artefact.  
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Figure 4.4. Improved workflow with the information artefact.  

4.3.1.  Methodology 

To address the problems described in the previous section the framework developed by 

Suram and Bryden, 2015, is extended. The key additions to the framework are the  

a. ROM construction model  

b. ROM evaluation model  

These models provide the system builder the option of generating ROMs for computationally 

expensive models and utilizing them during the design process when quick iterations on the 

design are needed.  

In Figure 4.5, the overall architecture of the distributed system for model substation is 

shown. There is an association between Model 1 and its corresponding ROM and similarly 

between Model 2 and its corresponding ROM. In both cases, the model and the ROM accept the 

same set of inputs and their corresponding outputs are the same and hence they can be 

substituted for one another. For example, the system builder can invoke the ROM for a set of 
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input design parameters instead of running the high-fidelity model. However, this substitution 

cannot occur in all situations. For example, the user might be requesting an evaluation of the 

ROM, say, for Model 2 with certain input parameters that were not within the initial design 

parameter space used to construct the ROM. In such situations, the FMS must make a decision 

about the high-fidelity model that needs to be invoked for this set of input parameters. For a 

decision to be made there must be established rules that help the FMS make an appropriate 

decision wherein the high-fidelity model is invoked. 

4.3.2.  Model Substitution and Evaluation Rules 

A key aspect of this work is the ability of the FMS to seamlessly substitute a high-fidelity 

computational model with a ROM. To enable this substitution, the FMS needs to have access to 

key pieces of information concerning the high-fidelity model. These are: 

1. The design parameters 

2. Access to computed data from these models 

3. A set of rules that the FMS can refer to when making the decision of switching 

between the high-fidelity and reduced order models. This requires association rules 

that establish substitutability of a high-fidelity model with a ROM.  

To further explain association rules for substitutable models, a simple example is 

provided. Consider the computational problem of solving the Poisson equation in a square 

domain as shown in Figure 4.5 along with Dirichlet boundary conditions on all four boundaries. 

Only the top boundary has a variable parameter boundary condition while the other three sides 

do not vary. For this simple problem, the top boundary temperature is the input design parameter 

and the designer’s goal is to compute the temperature field in the domain for any acceptable 

design parameter value.  
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Figure 4.5. Poisson equation on a square domain with boundary conditions.  

 

A computational model that is based on solving the equation () numerically is considered, 

in this example, as the high-fidelity model. Using data from this model, a ROM is constructed 

that takes the same input parameter. It must be noted that the ROM evaluations are valid only in 

the parameter range shown in the Figure 4.5. For any values of the input parameter p, that are 

outside the range [p1, p2] the computational model will have to be invoked to solve the problem. 

Based on these criteria, either the numerical model or the ROM can be evaluated for an input 

design parameter. Thus, the federation management system needs to be able to use association 

rules set by the system builder and invoke the appropriate model based on the user preferences of 

accuracy or speed.  
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4.3.3.  Rules 

The system builder creates the association rules that define substitutability of the models. 

To ensure that incompatible models cannot be associated with one another, the inputs and 

outputs to and from the models are examined for compatibility. This process can be either 

programmatic or manual. Once model compatibility is ensured, this information is submitted to 

the FMS which stores and retrieves it as needed, at run-time. Also, the substitution rules can be 

added by the system builder dynamically without restarting either the FMS or any of the 

associated model services. These rules are communicated to the FMS through messages via its 

input channel (Suram and Bryden, 2016). Table 4.1 shows an example of the constituents of such 

a message that sets substitution rules between Models 1 and 2 and their appropriate ROMs.  

 

Table 4.1. Contents of an example message that enables model substitutability.  

Key Value 
compatible_list ["model1","rom1"],["model2","rom2"] 

data_repo [dfs://model_data_bucket/model1, 
s3://model_data_bucket/model2 ] 

meta_data_repo [<table_name>, meta_repo_m1] 
[<table_name>, meta_repo_m2] 

cache_loc [<model_id>, dist_cache_IP] 
 

The message also contains design meta-data information, which references the parameter 

values for the design. This key is used by the FMS to lookup the design parameter ranges when 

there is a ROM associated with a high-fidelity model. This key, points to the location of design 

parameters which the FMS reads into its own cache. When it receives a user request, the FMS 

performs a model substitution action based on the user input. If the user has requested accuracy 

over speed, the FMS invokes the high-fidelity model.  
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If the user favors speed over accuracy, the FMS will attempt to invoke the ROM. In order 

to do this, it must a) check its cache for model associativity and find an associated ROM and b) 

check if the user requested design parameter values are within range of the ROM. If both these 

conditions are met, the FMS invokes the appropriate ROM. If no substitutable ROM is found or 

input parameters are out of the range, the FMS reverts to invoking the high-fidelity model and 

informs the user of this status. The FMS also marks the message with this status, which is read 

by the FMS when the high-fidelity model execution is complete. The execution of the high-

fidelity model proceeds in an asynchronous manner and the user is informed by the FMS when it 

completes. While informing the user of the completion status, the FMS also sends a message to 

the ROM construction service to use the newly added data and update the ROM parameters. 

When the ROM parameters get updated, the ROM evaluation service uses them for processing 

new requests. The flowchart in Figure 4.6 shows the process that the FMS takes to substitute 

compatible models for one another.  
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Figure 4.6. Flowchart showing the steps the FMS takes for model substitution.  

 

4.3.4.  Data Management 

The section outlines the approach taken to manage computational data generated from 

high-fidelity models in the model federation. Figure 4.7 shows the data flow of computational 

models and design parameters. The data flow can be divided into 5 distinct steps. The key points 

to be noted in Figure 4.7 are: 

a. As new computational models are created they get added into a repository. Adding 

data to the repository also triggers the associated model meta-data to be saved in the 

meta-data repository.  
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b. This repository is used by the ROM computation service to generate reduced order 

models.  

c. The ROM computation service updates the ROM parameters.  

d. The ROM evaluation service utilizes the ROM parameters for fast computations of 

user inputs.  

e. The FMS seamlessly facilitates these interactions and computations without explicit 

user intervention.  

In step 1, data generated by engineering models are added to a model data repository. The 

model data repository is a cloud based storage platform that stores all the computational data in a 

fault-tolerant manner. The meta-data associated with this engineering model is stored in the 

meta-data repository, depicted by step 2. As soon as these steps are complete, the FMS sends a 

message to the ROM construction service, which uses the data from these two repositories and 

computes the ROM parameters, as shown in steps 3a and 3b. Since this can be time-consuming, 

the process is asynchronous and can be scheduled to run on a periodic basis (Suram and Bryden, 

2015). The resulting ROM parameters are then stored in a repository for use by the ROM 

evaluation service as shown in steps 4 and 5. When the FMS can find a compatible ROM, it 

invokes the ROM evaluation service with inputs of the user requested parameters. The ROM 

evaluation service uses the ROM parameter repository to compute the output and sends the 

response back the FMS which responds to the user.  
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Figure 4.7. Data flow of models and design parameters.  

 

4.3.5.  Computations 

The computations can be categorized into two types’ viz. high-fidelity model and ROM 

computations. Additionally, the computational time to construct the ROM is more expensive 

compared to the evaluation of the ROM. The relative computational times of the models 

considered in this work are shown in Table 4.2. For each category of computation, a different 

strategy is utilized due to differences in execution times. 
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Table 4.2. Relative computational time and computation type.  

Model Type Relative Computation Time Computation Strategy 

High-fidelity model Very high Asynchronous 

ROM construction High Asynchronous timed-
execution 

ROM evaluation Low Synchronous 

 

Each of the strategies is explained below in the context of a user request and the model 

substitution rules given to the FMS.  

a. Asynchronous Strategy 

Consider a user request for a ROM evaluation that consists of input design parameters 

that are outside the initial design parameter range of the ROM. In this event, the FMS 

invokes the high-fidelity model after looking up the substitution rules. Since this 

occurs without explicit user intervention and the execution time of the high-fidelity 

model can be very high, the user is immediately notified and the response contains a 

unique job identifier that can be used to query the FMS of the jobs status. Thus, the 

execution of the high-fidelity model continues in an asynchronous manner and the 

user can retrieve the results on its completion.  

In the event that the user requested a high-fidelity model, the FMS does not need 

to lookup substitution rules and proceeds to invoke the high-fidelity model and a job 

identifier is assigned as described above.  

b. Asynchronous Timed-Execution Strategy 

This strategy applies to the ROM construction service which uses the results of high-

fidelity models to compute ROM parameters. On completion this service updates the 
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ROM parameters that are used by the ROM evaluation service. Additionally, it also 

updates the design meta-data that is referenced by the FMS. This computation is 

dependent on upstream updates to the model database and the downstream ROM 

evaluation service depends on the results from its successful execution. Also, the 

ROM construction should not be triggered on every model database update. 

Considering these restrictions an asynchronous timed-execution strategy is utilized, 

which triggers the ROM construction service on a periodic basis. Once it begins 

execution, this service checks for updates to the model database and proceeds to 

perform a ROM construction only if needed.  

c. Synchronous Strategy 

Once the ROM parameters are computed, the computation time is small for a user 

request that is within the parameter range of the ROM. Thus for such a request, the 

results are returned immediately. Once the FMS looks up the design meta-data, it 

invokes the ROM evaluation service, waits for the response from the ROM and 

returns the results to the user. Thus, a single request is sufficient to return the result of 

a computation to the user.   

4.4. Example Application 

The shape design of a heat exchanger fin is used in this work as an example problem to 

demonstrate the capability of the strategy developed in this article to switch between a ROM and 

high-fidelity model. It should be noted that the problem considered is primarily to demonstrate 

the value of storing data from high-fidelity models and using the data to a) create ROMs and b) 

use the ROMs in a manner that is transparent to a user of a system model.  
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A two-dimensional heat exchanger fin shape design problem has been chosen as the 

engineering design problem. A brief description of the problem is outlined in this section and 

further details can be found in Suram et al., 2006. Figure 4.8 shows a set of fins where fluid 

(water) is pumped through the channel between the curved surfaces of two consecutive fins to 

remove heat. Four design parameters have been considered: 

1. Length of the fin (a) 

2. Spacing between the fins (b) 

3. Base thickness (tau)  

4. Thickness of the lateral surface of the fin (y).  

These design parameters are the inputs to the ROM construction service and as well as the high-

fidelity model. The outputs from these models are the temperature distribution in the fin and the 

fluid as well as the velocity distribution in the fluid.  

In this example problem, the process of validating the inputs and outputs of the two 

substitutable models is simple. However, if there are several models the validation process can 

be programmatic and hence automated. Table 4.3 shows the inputs and outputs from each of the 

substitutable models. Since the outputs are temperature and velocity fields, for brevity they are 

depicted symbolically as a numeric array in JSON format. The ROM output contains the energy 

key-value pair while the output from the high-fidelity model does not. The energy value can be 

used by the engineer or analyst to determine if the ROM was constructed with sufficient data. 
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Figure 4.8. A single fin considered in the design problem. 

 

Table 4.3. Inputs and outputs to the substitutable models.  

Model Input Output 

ROM { 
  "a": 1.0, 
  "b": 0.224, 
  "tau": 0.118, 
  "y0": 0.126 
} 

{  
  "T": [1,0.99,…], 
  "u": [0,0,…], 
  "energy": 0.95 
} 

High-fidelity { 
  "a": 1.0, 
  "b": 0.224, 
  "tau": 0.118, 
  "y0": 0.126 
} 

{ 
  "T": [1,0.99,…], 
  "u": [0,0,…] 
} 

 

Each of the services are invoked at different points in time and can be categorized into 

the following timeline: 

1. Substitutability rules to FMS 

2. Model deployment 

3. User requests 
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4. ROM construction and parameter updates 

5. ROM evaluations 

These steps are explained in detailed in the following sections.  

4.4.1.  Substitutability Rules 

The first step is to assign substitutability rules to the FMS. In this case, the high-fidelity 

model and ROM are substitutable and this information is provided to the FMS as shown in 

Figure 4.2. Once these rules are assigned, the FMS is aware of the compatibility of the models 

and will attempt to substitute the high-fidelity model with the ROM.  

4.4.2. Model Deployment  

Once the model developer deploys the model, they are running as background services 

waiting on the FMS to assign tasks to them, as soon as a user request for evaluation is received. 

The ROM construction service although deployed, is not triggered to perform any computations 

since no data has yet been generated by the model services.  

4.4.3. User Requests 

The data from the first user request for a model bootstraps the high-fidelity model 

database. Every user request that cannot be evaluated using the ROM is evaluated by the high-

fidelity model and stored in the model data repository. As soon as a user request for evaluating a 

set of design parameters is received the FMS performs its checks and routes the request to eh 

appropriate model, to be executed.  

4.4.4. Rom Construction and Parameter Updates 

When there is sufficient data from high-fidelity models, the ROM construction service 

begins processing data on the timed-execution basis as explained in section 3. This service 

constructs a ROM based on the POD technique (Suram and Bryden, 2015) and once this is 
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completed, the resulting ROM parameters are stored in the ROM parameter store. These 

parameters are associated with a unique ID that corresponds to the model for easy and efficient 

retrieval by the ROM evaluation service.  

Once there are ROM parameters associated with this model are stored in the meta-data 

store, user requests can be evaluated based on these parameters. The ROM evaluation service 

retrieves the parameters for the model bases on its unique ID and proceeds to perform a POD 

computation. On completion the temperature and velocity values are returned, in addition to the 

energy captured by the ROM.  

4.5. Discussion and Results 

The remainder of this section discusses the results from using this framework to solve 

this problem. Figure 4.9 shows the time-line of actions performed by a user and the results of the 

actions taken by the FMS and the services associated with the hybrid model. Based on the user 

inputs and the substitution rules, the hybrid model results vary as additional models were added 

to the repository.  
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Figure 4.9. Timeline of computations and user interactions with the federated system of models.  
 

Initially, only the detailed model exists after its deployment. Concurrently the ROM 

construction and evaluation services wait for data and evaluation requests. At this point in time 

the hybrid model consists only of the detailed model service, since no data has yet been 

generated to create a ROM. As analysts request the FMS for design evaluations, they get directed 

to the detailed model. Periodically the ROM construction service checks the repository if there is 

sufficient data to create a ROM. When there is sufficient data, it proceeds with ROM 

construction and on completion updates the ROM meta-data repository with the ROM 

parameters.  
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Figure 4.10. Interactions between producers and consumers with information artefacts.  

 

Figure 4.11. Evolution of singular value spectrum with number of detailed models added.  
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Once the ROM parameters are updated, the hybrid model now consists of both the 

detailed model as well as the ROM. Hence, the ROM evaluation service can also participate in 

design parameter evaluations by engineers and analysts. Figure 4.10 shows the information 

artefact as a single information entity that encompasses the ROM and computational models. As 

seen, multiple models that are stored in the model repository can be accessed by the IA. As the 

producers add more models, ROMs get created and the consumers have access to the 

computations as well as the resulting analysis.  

 

 

 

 

 

 

Figure 4.12. Evaluations of temperature and velocity.  
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4.6. Conclusions and Future Work 

In this article, the concept of information artefacts was introduced which are a layer of 

abstraction over computational models, ROMs, closed-form solutions etc., that are web-enabled. 

Thus, information artefacts when queried for information about a model return information to the 

user based on the components that constitute it. In this article, a ROM and a high-fidelity model 

were considered within an information artefact. The example considered, demonstrates the 

ability of the artefact to substitute between the constituent models to provide an answer to the 

user.  

In the current work, the process of validating compatibility of models has not been 

automated. This is an important aspect and can be improved by using a programmatic approach 

and automating it. One important aspect of automated validation is to ensure that units used in 

the inputs and emitted in the outputs are the same across compatible models. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

In this chapter a summary of the research work completed is presented along with a 

discussion of the potential impacts of the research. There are also several areas for improvement, 

further investigation, and analysis which are discussed in the future work section. 

5.1. Conclusions 

The work presented in this dissertation constitutes three major themes: 

• Reduced Order Modeling Server: The reuse of high-fidelity computational data for 

constructing ROMs to enhance communication of engineering data and models 

between the producers and consumers of the models.  

• Distributed Systems based Engineering Modeling: A proposal to decompose 

monolithic models into smaller reusable components that are web-enabled. As part of 

this, this dissertation implements and demonstrates a federation management system 

which helps link models and orchestrate the flow of information between them.  

• Compound or Hybrid Models: The concept of a compound or hybrid model is 

introduced in the context of an engineering model composed of information artefacts. 

A compound or hybrid model as discussed is a standalone model composed of two or 

more models, each with differing approaches to delivering the same information. 

Depending on the request received and the availability of information, any one of the 

information sources (models) may provide a response with the requested information. 

In the example developed here, a high-fidelity computational model and a ROM are 

constituents of an information artefact (compound model) that responds to queries 

about the engineering model. 

Each of the above themes are summarized in the remainder of this section.  
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5.1.1. Reduced Order Modeling Server 

While ROMs have been used to reduce the time-to-solution of complex and time-

consuming problems, a novel use for ROMs in the form of a ROM server was introduced in this 

research. The driving requirement for this is the difficulty of sharing engineering data. 

Specifically, in distributed engineering teams where there are multiple producers and consumers 

of engineering models and data, sharing the models and data is a challenging problem that 

compounds as the team size increases.  

To address this issue, a ROM server has been developed that consumes data from high-

fidelity computational models to construct POD based ROMs. A server based approach was 

taken so that clients have the ability to connect to the server and request engineering design 

evaluations, over a network. This approach decouples the tight interactions between designers 

(consumers of models) and analysts (producers of models). In an iterative engineering process 

this decoupling decreases the design time considerably because the designers and analysts do not 

have to synchronize their data explicitly on a periodic basis. In this research, an analysis of the 

cost of synchronization between multiple producers and consumers has been presented. As part 

of the analysis, comparisons have been made based on the absence and utilization of a ROM 

server. It was found that the ROM server decreases the cost of synchronization between 

producers and consumers of engineering models and data. As analysts add engineering models to 

the ROM server, the POD-based ROM parameters are periodically recomputed and stored. Based 

on these parameters and knowledge of design parameters, the implemented ROM server is 

capable of evaluating designs that are within the design parameter range. Thus, once the ROM 

parameters are known designs can be evaluated quickly without invoking time-consuming high-

fidelity models. As the design space changes over time, data can be updated, added or removed 



147 
 

as needed, by the design team. The ROM server thus provides a consistent view of the 

engineering models, data, and analysis as well as performing designs evaluations in an efficient 

manner. Additionally, the ROM server also track the “energy” of the POD approximation and 

can inform users if more data needs to be added to the design space.  

A heat-exchanger fin shape design problem was demonstrated using the implemented 

ROM server. Starting with an initial set of designs a ROM was constructed using the ROM 

server. Multiple producers and consumers of these models and data were simulated with varying 

conditions of availability of data and models. These interactions using the ROM server were then 

evaluated during the course of the design life-cycle to conclude that the ROM server enabled 

seamless interactions between various producers and consumers of engineering models and data.  

5.1.2. Distributed Systems Based Engineering Modeling 

Traditionally engineering codes are built using libraries of numerical codes and other 

integration codes. This approach requires that the model developer be proficient with the 

corresponding computer language as well as have the ability to understand the inner workings of 

the libraries as well as the codes being integrated. In this research, an approach based on 

distributed, statelsss microservices has been proposed, implemented, and evaluated with an 

example engineering problem in which a larger more complex design code has been divided into 

a set of smaller models. Each of these models was then implemented as an independent, stateless, 

and web-enabled microservice. Each of these microservices publish their inputs and outputs, and 

systems models can be built by linking one or more of these microservices together. Once linked, 

the systems model can also be published as an independent service. The primary advantage of 

publishing engineering models as web-enabled services is that the interface to the models is 

language agnostic and available over the Internet. Thus, a model developer does not need to 
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know details about a library or programming language to invoke the model, but only an 

understanding of the input format and the corresponding outputs form the service. Additionally, 

the model microservices are stateless, implying that state information is not stored after the 

model computations have been completed. This is an important consideration in this research 

because statelessness of the models allows their easy reuse across different systems of models 

and their scalability. The set of component models are then called a federated set of models. In 

order to orchestrate information flow between these models within a systems model, a federation 

management system has been developed. Each model registers with the FMS, after which the 

FMS can send requests for computations to that model. When multiple models need to be 

invoked in succession, a message that consists of this list can be sent to the FMS, which routes 

and invokes these models in the requested order. All state information that needs to be passed 

between models is encapsulated in the message, either directly or as a reference to a location that 

can be accessed by all services in the federation, say, a distributed file system for large amounts 

of data. To enable model developers to easily develop models using this architecture, a Model 

software development kit (SDK) was developed as a part of this research. Using the Model SDK, 

interacting with the FMS becomes easier as model developers need to implement three function 

calls ( GetMessage(), ProcessMessage() and SendMessage() ) to encapsulate 

all the interactions with the FMS and other models registered within that federation of models.  

As noted previously a previously developed monolithic numerical model for the 

preliminary design of cookstoves was split into five stateless models and two stateless functions 

and incorporated into the developed architecture using the SDK. The primary objective of 

solving this design problem was to demonstrate the applicability of this research. The results 

from the monolithic model and the federated set of models were compared for accuracy and 
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computation time. It was found that both models resulted in the same efficiency of the cookstove 

for a given set of design parameters. The computational time was, however, higher in the 

distributed systems model due to network latency introduced by the interactions with the FMS. 

The effect of network latency can be considerable when the component models have small 

execution times. However, for component models that have larger computational times the 

latency effect can be small compared to the computational time of the systems model. The 

distributed system of models enables model developers to reuse and efficiently build systems 

models.  

5.1.3. Compound or Hybrid Models 

An information artefact is a provider of information to a system model i.e., they can be 

computational models, closed-form solutions, data, design parameters, optimization algorithms, 

etc. In this context, all these pieces of information are recognized as information artefacts (IAs) 

that can be queried with an input and a response of returned from them. In this research, a high-

fidelity model and its corresponding ROM were combined to form a compound model which 

then becomes an IA. This IA was then incorporated into the previously developed FMS.  

An IA for a heat-exchanger fin was created using the ROM and the high-fidelity 

computational model. The IA returns the temperature and velocity fields, when queried by the 

design parameters for the heat-exchanger fin. Under certain conditions the IA invokes the ROM 

and the more time consuming high-fidelity model is invoked when these conditions are not 

satisfied. In this case, if the user requests design parameters that are not within the design 

parameter space of the ROM, the high-fidelity model is invoked. The results of the computation 

are stored, and once there is sufficient data to construct a ROM, the ROM construction service is 

invoked and the resulting ROM parameters are stored. Further user evaluations by the IA were 
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then based on the ROM parameters, by checking if the user query is within the bounds of the 

ROM. If so, the response is returned to the user based on the results of the ROM evaluation 

service.  

Thus, the IA functions as a hybrid model that encapsulates the entirety of information, 

models, etc. about a specific piece of information or model within a larger systems model and 

can evaluate each of them based on user needs. For instance, if a user explicitly requests a high-

fidelity model evaluation, the request is evaluated without performing any model substitutions. 

This hybrid model is particularly useful when long compute times are encountered in a detailed 

model. 

5.2. Future Work 

There are several avenues to extend and improve the work presented in this dissertation. 

These can be categorized under the areas of infrastructure, applications, performance and 

visualization, each of which is detailed in the following sections.  

5.2.1. Infrastructure 

This research focused on building a framework for stateless, loosely coupled models to 

interact with one another through the FMS. The utility of this framework has been demonstrated 

with example engineering problems. An advantage of stateless models is that they can be scaled-

up with relative ease using containerization technologies like Docker. However, for this 

framework to scale to, say, thousands of constituent models, certain aspects of the FMS need to 

be improved. Currently models need to be registered manually with the FMS. Incorporating 

automated registration of model services in the FMS will address this particular scalability issue.  

In the current work, for two models to be substituted for one another they need to have 

the same inputs and outputs. The system builder needs to manually map the inputs and outputs in 
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order to make the substitution between the models. This process can potentially be automated by 

incorporating a service that discovers all compatible mappings and suggests the most compatible 

ones to the system builder.  

Yet another very interesting extension to the current research is the development of a 

domain specific language (DSL). DSLs as the name suggests are languages built for domain 

experts in a particular field, where the experts can perform their tasks without the need to use a 

programming language. In this context, there is an opportunity to develop a DSL that can link 

component models to construct a system model. Since the framework developed in this research 

requires that the system builder be familiar with some aspects of programming, development of a 

DSL would be major improvement and can enable wider adoption. 

5.2.2. Applications 

The framework developed in this research has been utilized for solving examples 

involving a) computationally expensive, coupled high-fidelity models for the heat exchanger fin 

and b) coupled first-principles models for the cook-stoves. This research can be extended by 

solving more complicated engineering problems and coupling them with financial models for 

price-performance studies on engineering designs. Another example is coupling the cook-stoves 

model with an economics model to study the economic impact of the cook-stove design at the 

level of an entire village as proposed by Bryden et al. 2015. Engineering optimization problems 

would also benefit from the framework developed in this research. For example, the ROM 

evaluation service can be utilized to compute the objective function when possible. Objective 

function evaluations requiring the high-fidelity model can be computed asynchronously and the 

results can be used to update the ROM. This strategy can be especially useful in optimization 

methods requiring evolutionary algorithms. 
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5.2.3. Performance 

In this dissertation, constituent models have been converted into services that are exposed 

to the Internet. Examples have been demonstrated of successfully using these services to create 

complex models based on the constituent models. Although this approach helps engineering 

models and data to be communicated in an easier manner, it also adds latency due to 

communications and model interactions over a network via the FMS. For a model built using the 

“library approach” that has no latency issues, this added latency cost can seem to be very high. 

However, this depends on the computational time of the model. For models with high 

computational time, small increase in communication time can be acceptable. On the other hand, 

for models that have a small computation time, added communication time increases the overall 

time-to-solution. Although this can be acceptable in many cases, it can also make the solution 

using this approach unacceptable in some cases. More studies need to be performed to 

understand, in this context, the relationship between communication and computation times. 

Also, if data-locality in data centers is considered, it opens up opportunities for interesting 

research in optimizing the run-times of the model services depending on the computations. 

5.2.4. Visualization and Usability 

The primary focus of this dissertation is on the development of an infrastructure level 

distributed system that can be used to link engineering models for efficient use. An important 

aspect of making this system usable is at the interface of humans and computers. This is an area 

that has not been addressed in this dissertation. Thus, there are several areas where major 

improvements to the current work can be made. One such example is user-interface design for 

“visually building” composite engineering models using the FMS. Furthermore, since the 
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framework that has been developed is loosely-coupled, the visualization and usability extensions 

can be made without changes to the framework itself. This approach will be complementary to 

the DSL based approach discussed previously. Further research in these areas influence the 

applicability of this research to practical engineering problems in the industry. 
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