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 CHAPTER 1. GENERAL INTRODUCTION  

 

Motivation 

Valves are devices used in the industry to control the flow by varying the size of the 

flow passage manually or when a signal is sent from a controller. During their applications, 

they might experience cavitation, which is an undesired phenomenon. Cavitation occurs 

when the local static pressure falls below the vapor pressure in a liquid flow. Valves 

subjected to cavitation experience noise, erosion, vibrations, choked flow, and damage to the 

structural integrity of their components [1-5]. This result in plant shutting down, loss of time 

and capitals [4]. Valve designers have been searching for ways to reduce and/or eliminate 

cavitation during plant operations. ANSYS FLUENT will be used to investigate cavitation in 

Ball and Butterfly valve, to obtain an optimal design for each one.  

Fossil fuels have been the primary source of energy consumption in our society since 

the industrial revolution in the 18th century. The Energy Information Agency (EIA) estimates 

80% (97.7 quadrillions Btu) of the US energy consumption has been from fossil fuel sources 

for more than 100 years; 28% is used in the transportation sector [6]. Fossil fuels release 

greenhouse gases (GHG) that have contributed to global warming and climate change. 

Environmental concerns over energy use have prompted interest in turning into clean and 

renewable transportation fuels [7-12]. Biomass is biodegradable and renewable organic 

matter have been receiving more attention as an alternative to fossil fuels for transportation 

fuels (gasoline and diesel). Solvent liquefaction is a route currently explored for the 

conversion of biomass into biofuels. A techno-economic analysis is essential to evaluate its 

competitiveness against transportation fuels derived from fossil fuels.  
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CHAPTER 2. CAVITATION INVESTIGATION IN BALL AND BUTTERFLY 

VALVE USING COMPUTIONAL FLUID DYNAMICS TECHNIQUE FOR AN 

OPTIMAL DESIGN 

 

Nzombo D., Wright M., manuscript in preparation 

Abstract 

Cavitation phenomena are encountered in several engineering applications and 

devices. It occurs when the local static pressure drops below the liquid vapor pressure within 

an originally liquid flow; it is generally an undesired phenomenon.  Control valves which 

might experience cavitation are often subject to effects such as noise, erosion, vibrations, 

choked flow, and damage to the structural integrity of components. Valve walls and the 

surrounding area can experience localized damage during the collapse and implosion of 

vapor cavities. This results in a reduction of valve performance and damage to structural 

integrity. In the industry, most valves reducing cavitation effects are the results of 

accumulated engineering experience   

This study evaluates the possibility of obtaining an optimal design for both a ball and 

butterfly valve by using Computational Fluid Dynamics (CFD). In this study, we establish 

parameter correlations, develop a design of experiments, which provides a response surface, 

and then conduct an optimization of the design. A Multiple-Objective Genetic Algorithm 

(MOGA) is used for optimization. The optimal ball valve design met a vapor volume fraction 

of 8.87*10-5 and a mass flow rate of 0.287 kg/s parameter criteria and a flow domain length 

of 150 mm; and the optimal butterfly design met a vapor volume fraction of 2.01*10-5, mass 

flow rate of 0.291 kg/s, and a flow domain length of 146.9 mm parameter criteria. These 

designs minimized the potential for cavitation. However, the optimal designs did not meet all 

constraints suggesting that further work needs to be done to improve these designs. 
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1. Introduction 

 Butterfly and ball valves are device that control the flow by varying the size of the 

flow passage manually or when receiving a signal from a controller. These valves are largely 

used in the industry, especially to control flow processes of both compressible and 

incompressible fluids [1-3]. One of the purposes of using them in piping systems is to control 

flow. Control valves are often used in liquid service and might experience cavitation. 

Cavitation is described as the formation of vapor bubbles when the local static pressure falls 

below the saturated vapor pressure.  

Valve design consists of a “vena contracta’’ (point of narrowest flow restriction) 

section where the static pressure even at moderate operating conditions can reach a level 

sufficient for cavitation inception in liquids; at this point, the flow area is smaller compared 

to the rest of the flow path [3-6]. As the area becomes smaller, at the vena contracta, a 

transfer of pressure energy causes an increase in velocity, resulting in lower pressures at that 

region; for most control valves, at the vena contracta, the pressure will fall below the vapor 

pressure [3-7].  

When the local pressure falls below the liquid vapor pressure, bubble formation will 

start to occur. The pressure recovery in control valves causes bubbles that are filled with 

vapor and gas to implode once they reach the higher pressure region downstream [3, 5-7]. 

Valve walls and surrounding area can experience localized damage during the collapse and 

implosion of vapor cavities. This is an undesired phenomenon and causes a reduction in 

valve performance and damage to structural integrity. 

 In the industry, valve designs for reducing cavitation effects are based on 

accumulated engineering experience; however, cavitation still remains a problem in many 
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engineering applications and industries [4, 7, 8]. Computational Fluid Dynamics (CFD) is 

being widely used in the industry and by valve designers to simulate cavitation in control 

valves, yet there are a limited number of public studies available with experimental data to 

validate CFD simulations. Cavitation intensity in control valves is commonly evaluated in 

terms of effects such as noise, erosion, vibrations, choked flow, and damage to the structural 

integrity of the components. [3, 4, 6-9].  

A better understanding of cavitation in both ball and butterfly valve could be 

improved by employing particle tracking visualization method, and using a specially 

customized plexiglass tubing to capture and show recirculation regions [4, 8]. Additional 

techniques of visualizing cavitation include using pressure sensitive films and high-speed 

photography [4], which gives the possibility of determining the vortex cavitation location 

responsible for erosion [4, 11, 12]. Bernard and R. Susan-Resiga [11] performed a 3D 

computational fluid dynamics (CFD) study of cavitational flow inside of a hydraulic poppet 

valve using the commercial software Fluent V12.0. 

 Cavitation prediction using simulation techniques still remains a challenge. A 

method of predicting cavitation in a flow past a cylinder with a square cross-section area 

using Large-Eddy Simulation (LES) and stability criteria for the cavitation nuclei was 

developed by Wienken et al. [12]. They obtained significant agreement between the 

cavitation prediction of their simulations and experimental results.  

This study evaluates the possibility of finding an optimal valve design while reducing 

the adverse effects of cavitation within a flow during valve operation. ANSYS FLUENT 

V17.1 will be used to select parameters of interest for the current design. The selected 

parameters are as follow:  two different valve geometries (ball and butterfly valve), the pipe 
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length, fluid properties (pressure inlet and pressure drop), and compared with a range of 

output parameters (mass flow rate, vapor volume fraction, volumetric flow, and velocity). 

The aim of this study will consist of determining which design parameters have the most 

influence and alter them to improve it. 

 

2. Modeling 

2.1 Bubble growth and implosion 

2.1.1 Bubble formation and dynamics 

 Cavitation is described as the formation of vapor bubbles when the local static 

pressure falls below the saturated vapor pressure. Consider a spherical bubble of radius, R (t) 

(t is time) in where both the temperature and pressure (T∞ and P∞) are far away from the 

bubble. The temperature is assumed to be constant and any uniform heating of the liquid by 

internal source or radiation are neglected. ΡL is the liquid density (constant), r being the radial 

distance in the liquid from the center of the bubble, S the surface tension, νL the liquid 

kinematic viscosity, U (r, t) the radial outward velocity, and T(r, t) the temperature within the 

liquid.  Pressure (known or controlled) is the physical force regulating the growth and/or 

collapse of the bubble [9]. Additional assumptions are made: the density of the liquid is 

constant and the dynamic viscosity is constant and uniform. The contents of the bubble are 

homogenous, while the temperature and pressure within the bubble are uniform. In the 

presence of mass transport across boundaries (evaporation and condensation), the bubble 

dynamics is described by the generalized form of the Rayleigh-Plesset equation (1). Figure 1 

shows the image of a spherical bubble in an infinite liquid. 
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Figure 1: Schematic of a spherical bubble in an infinite liquid, copied from [9]. 

 
𝑃𝐵(𝑡)−𝑃∞(𝑡)

𝜌𝐿
= 𝑅

𝑑2𝑅

𝑑𝑡2 +
3

2
(

𝑑𝑅

𝑑𝑡
)2 +

4𝜈𝐿

𝑅

𝑑𝑅

𝑑𝑅
+

2𝑆

𝜌𝐿𝑅
      (1)  

 

2.1.2 Bubble implosion 

 The formation of bubbles occurs when the local pressure drops below the vapor 

pressure within a flow. When the pressure recovers, bubbles filled with vapor and gases have 

high kinetic energy and velocities, and will implode when reaching higher pressure zones [2, 

10-11]. Pressure gradient in ambient fluid or the influence of rigid boundaries causes 

cavitation bubbles to change from its spherical symmetric shape before imploding and 

forming micro jets [3, 5, 9]. Figure 2 and 3, respectively, shows the image of a bubble growth 

in a superheated droplet, and vapor-filled cavitation bubble in the trailing edge of a foil. 

Figure 4 shows the image of bubble moving into a higher pressure region and collapsing near 

the wall of a rigid boundary. 
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Figure 2: Bubble formation and growth, copied from [9]. 

 

 

Figure 3: Dense traveling cavitation on the surface, copied from [9].
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Figure 4: Bubble collapsing and microjet formation, copied from [3]. 

2.2 Physical modeling 

 The present cavitation model is based on the following physical assumptions: 

cavitation is modeled as the growth and collapse process of vapor bubbles. The system 

investigated consists of a liquid and vapor phase coupled as a mixture. The mixture model 

used in this study for the numerical simulation of cavitating flows is from ANSYS FLUENT 

V17.1 code [13, 14]. Due to its large use for engineering applications in both industrial and 

academic settings, ANSYS-FLUENT is the commercial CFD code chosen to investigate 

cavitation in this study. This is a simplified multiphase model used to model homogeneous 

flows with great coupling capabilities where each phase (liquid and vapor) moves at the same 

velocity [8, 13, 14]. The flow is assumed to be in thermal and dynamic equilibrium and the 
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velocity continuous. Lastly, the mixture is modeled as an incompressible flow and all density 

changes are neglected.   

2.3 Governing equations 

In the present study, the mixture is composed of the liquid water and vapor predicted 

using the cavitation model. It is modeled as homogeneous flows where each phase is 

assumed to move at the same velocity. The mixture model of both phases solve the main 

CFD equations of continuity, momentum, and energy [7, 16-18]. 

 The continuity equation for the mixture is described as: 

𝜕

𝜕𝑡
(𝜌𝑚) + ∇. (𝜌𝑚�⃗⃗�𝑚) = 0         (2) 

𝑉𝑚
⃗⃗ ⃗⃗ ⃗  is the local mass-averaged velocity is: 

𝑉𝑚
⃗⃗ ⃗⃗ ⃗ =

∑ 𝛼𝑘𝜌𝑘𝑉𝑘⃗⃗⃗⃗ ⃗⃗  2
𝑘=1

𝜌𝑚
          (3) 

𝜌𝑚 is the mixture density described as: 

𝜌𝑚 = ∑ 𝛼𝑘𝜌𝑘
2
𝑘=1           (4) 

𝛼𝑘 is defined as the volume fraction of phase k. The two phases involved are liquid water and 

water vapor. The momentum equation for the mixture is the sum of the momentum equation 

of each phase (liquid and vapor), and it is described as:  

𝜕

𝜕𝑡
(𝜌𝑚�⃗⃗�𝑚) + ∇. (𝜌𝑚�⃗⃗�𝑚�⃗⃗�𝑚) = −∇p + ∇. [𝜇𝑚(∇�⃗⃗�𝑚 + �⃗⃗�𝑚)] + 𝜌𝑚�⃗� + �⃗� +

∇. (∑ 𝛼𝑘𝜌𝑘 �⃗⃗�𝑑𝑟,𝑘�⃗⃗�𝑑𝑟,𝑘
2
𝑘=1 )          (5) 

�⃗� and 𝜇𝑚 are respectively the body force and the mixture viscosity. 

𝜇𝑚 = ∑ 𝛼𝑘𝜇𝑘
2
𝑘=1           (6) 

�⃗⃗�𝑑𝑟,𝑘 is the drift velocity for the vapor phase       (7) 
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The energy equation for the mixture is described as: 

𝜕

𝜕𝑡
∑ (𝛼𝑘𝜌𝑘𝐸𝑘

2
𝑘=1 ) + ∇. ∑ (𝛼𝑘𝑣𝑘(𝜌𝑘𝐸𝑘

2
𝑘=1 + 𝑝)) = ∇. (𝐾𝑒𝑓𝑓∇T) + 𝑆𝐸   (8) 

Where 𝐾𝑒𝑓𝑓 is the effective conductivity 

𝐸𝑘 = ℎ𝑘 (Incompressible phase)                                     (10) 

hk is the sensible enthalpy for phase k 

2.4 Numerical Method 

The cavitation simulation in this study was conducted by using the numerical code in 

FLUENT V17.1 [14]. The code uses the finite control volume (FCV) method, which requires 

solving the problem of interest by spatial discretization of the domain from generated meshes 

[15, 16]. This technique converts the governing equations into algebraic equations to be 

solved numerically. The governing equations are integrated for each control volume, 

resulting in discrete equations converting each quantity on a control-volume basis. In this 

approach, surface and volume integrals are approximated and values from cell centers are 

interpolated to cell faces [15, 16]. The governing equations for mass, momentum, and energy 

are solved sequentially [16]. 

With transient problems, the approach of obtaining the solution is by marching time; 

the time domain is broken into a finite number of time steps. In ANSYS FLUENT, 

discretization of the solution domain creates a computational mesh with finite number of 

control volumes, and discretized governing equations are solved [15, 16]. 

2.5 Cavitation Flow Modeling  

 Cavitating flows are sensitive to vapor bubble formation and transport, turbulent 

fluctuations of pressure and velocity, and the magnitude of non-condensable gases that are 

dissolved in the liquid [12, 14-20]. The numerical simulation of two-phase cavitating flows is 
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a research area still in exploration, for which the aspiring goal is to compute the unsteady 

evolution for the growth and collapse of cavities [18-24]. A set of practical computations 

used in industrial flows with Reynolds-averaged Navier-Stokes (RANS) code has been 

developed by the CFD community [21, 22, 25-29]. This code is used in different commercial 

code and software such as AUTODESK, COMSOL, FLUENT, etc. All numerical simulation 

in this study was conducted using FLUENT V17.1. 

The cavitation model in FLUENT V17.1 has the following capabilities: the cavitation 

models can be applied to any geometry, all grid types supported in FLUENT V17.1, non-

conformal sliding interfaces, and moving and/or deforming mesh. The models can be solved 

with mixture (mixture model) or phase (Eulerian multifluid) temperature equations [14, 28]. 

FLUENT V17.1 extends the models to multiphase and multi-species systems. All turbulence 

models are totally compatible in FLUENT, ranging from simple length scale models to large 

eddy simulation (LES) [7, 14, 28]. Both liquid and vapor phase can be incompressible or 

compressible. The input material properties (vaporization pressure, density, viscosity, and 

etc.) can be constants or functions of temperature. The mass transfer between the liquid and 

vapor phase is assumed to take place. Both bubble formation (evaporation) and collapse 

(condensation) are taken into account in the cavitation models. The positive mass transfer is 

from the liquid to the vapor. Lastly, the cavitation models are based on the Rayleigh-Plesset 

equation, describing the growth of a single vapor bubble in a liquid [14]. 

2.6 Vapor Generation Modeling 

 The Schnerr and Sauer [15] model is used to predict cavitation. The net mass transfer 

from liquid to vapor is governed by the equation for the vapor volume fraction:  

𝜕

𝜕𝑡
(𝛼𝜌𝑣) + ∇. (𝛼𝜌𝑣�⃗⃗�𝑣) =

𝜌𝑣𝜌𝑙

𝜌

𝐷𝛼

𝐷𝑡
       (8) 
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The net mass transfer is described as: 

𝑅 =
𝜌𝑉𝜌𝑙𝐷𝛼

𝜌 𝐷𝑡
          (9) 

Schnerr and Sauer [12] connects the vapor volume fraction to the number of bubbles, nb, per 

volume of liquid by the following expression: 

𝛼 =
𝑛𝑏

4

3
𝜋(ℜ3

𝐵)

1+𝑛𝑏
4

3
𝜋(ℜ3

𝐵)
         (10) 

ℜ𝐵 is the bubble radius. The final form of the mass source is described by the following 

equations: 

When Pv ≥ P 

𝑅𝑒 =
𝜌𝑣𝜌𝑙

𝜌
𝛼(1 − 𝛼)

3

ℜ𝐵
√

2 (𝑃𝑣−𝑃)

3 𝜌𝑙
       (11) 

and when Pv ≤ P 

𝑅𝑐 =
𝜌𝑣𝜌𝑙

𝜌
𝛼(1 − 𝛼)

3

ℜ𝐵
√

2 (𝑃𝑣−𝑃)

3 𝜌𝑙
       (12) 

Pv is the vapor pressure and P is the local static pressure. The bubble radius is described as: 

ℜ𝐵 = (
𝛼

1−𝛼
 

3

4𝜋
 

1

𝑛𝑏
)

1

3         (13) 

The FLUENT V17.1 model requires that the materials present in the simulation be defined as 

a liquid and vapor [7, 14]. The vapor was defined as the mixture of 2 species: water and 

vapor. The fluid phase properties are defined in Table 1. 
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Table 1: Fluid phase properties (liquid and vapor). 

Fluid phase Density  

(Kg/m3) 

Viscosity 

(Kg/m-s) 

Mass diffusivity 

(m2/s) 

Specific heat 

(J/Kg-K) 

Water-liquid 1000 1.0*10-3 ------------ 1006 

Water-vapor 0.554 1.34*10-5 2.88*10-5 ---------- 

 

3. Methodology 

3.1 Ball and Butterfly Valve Modeling 

Ball and butterfly valves are devices that control the flow by varying the size of the 

flow passage manually or when receiving a signal from a controller. Unlike sliding stem 

valves, they do not have many components such as stem, bonnet, cage, etc.  A ball valve 

typically has a metal disc, but unlike the butterfly valve, it does not have a shaft around 

which it can rotate. Figure 5 represents a ball valve, and Figure 6 represents its simplified 

geometry as used in this study. Figure 7 shows a butterfly valve, and the simplified geometry 

version shown on Figure 8 will be used for simulation. For the sake of saving computational 

time and resources, the simplified geometry of both the ball valve and butterfly valve were 

modeled in ANSYS design modeler as shown in Figure 6 and 7. Both valves have a disc 

which has an opening angle ranging from 0° to 90°. These valves are largely used in the 

industry, especially for controlling flow processes of both compressible and incompressible 

fluids [6, 7, 11, 30]. 
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Figure 5: Ball valve (left) and close of up view (right) of its interior. 

 

Figure 6: Simplified geometry of ball valve used to simulate cavitation. 
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Figure 7: Butterfly valve geometry.  

 

Figure 8: Simplified geometry of butterfly valve used to simulate cavitation. 
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3.2 Grid Resolution and Simulation  

3.2.1 Valve meshing technique 

 In order to numerically solve the phenomena being investigated in this study, it is 

necessary to discretize the continuous medium into discrete volumetric cells, consisting of 

vertices and cells. All areas considered in the flow domain must be captured to accurately 

model the valve geometry; these include the valve, upstream and downstream piping 

sections, and the flow physics [7, 15, 31-33]. The computational mesh process in ANSYS 

consists of selecting correct meshing models, changing the mesh sizing parameters locally 

and/or globally, setting volumetric controls, and running the surface and/or volume mesh 

controls. Failure of going through these steps will result in not getting convergence and/or 

inaccuracy of the simulation results [7, 15, 23]. Due to the limited computing resources and 

time available, a simplified geometry of each valve was modeled.   

3.2.2 Butterfly valve meshing 

The dimensions of the geometry were as follow: the inlet and outlet diameter was 7 

mm, the inlet to the valve disk was 42 mm (6D) and the outlet to the valve was 105 mm 

(15D), the distance between the valve disk with the top and bottom wall was 3mm (1.5 m on 

each side) the disk thickness was 3 mm, the vertical distance between the top and bottom 

wall was 7 mm, extruded at 5 mm, and the entire length of the computational domain (pipes 

length and valve) was 150 mm (21.5 D). The butterfly valve geometry offers the opportunity 

of taking advantage of its symmetry to reduce the simulation complexity and therefore, one-

half of the valve was modeled with the disk opened at 45°. The entire flow physics was 

capture in the meshing process. 

The meshing method used was sweeping, which consists of hexahedral elements used 

for the valve and piping sections of the model shown in Figure 8 and 9. Additional meshing 
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specifications included: element size of 0.25 mm (0.16% of the flow domain length), the total 

thickness option with 12 layers and a transition ratio of 0.272 was selected to capture the 

effect of the boundary layer on the walls, and a growth rate of 1.2. A high-quality mesh is 

required to simulate a multiphase cavitation flow and obtain a converged result. The program 

generated 220,259 computational cells and 246,232 nodes; the mesh quality used in this 

study had a maximum element skewness of 0.72 (less than 1 is good quality), a maximum 

orthogonal quality was 1 (best quality), and a maximum element of 1 [15].  

 

Figure 9: Simplified geometry of butterfly valve with hexahedral mesh and disk open at 45°. 

 

Figure 10: Hexahedral mesh close-up of butterfly valve with a disk open at 45°. 
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3.2.3 Ball valve meshing 

The dimensions of the ball valve geometry were as follow: the inlet and outlet 

diameter was 5 mm, the inlet to the valve was 61 mm (12D) and the outlet to the valve was 

106 mm (21D), the valve thickness was 3 mm, the vertical distance between the top and 

bottom wall was 5 mm, extruded at 5 mm, and the entire length the computational domain 

was 170 mm (34D). The ball valve geometry is symmetrical and thus, one-half of the valve 

was modeled with a disk opened at 45°. The entire flow physics was capture in the meshing 

process. 

The meshing method used was sweeping, which consists of hexahedral elements used 

for the valve and piping sections of the model shown in Figure 11 and 12. Additional 

meshing specifications included: element size of 0.25 mm (0.14% of the flow domain 

length), the total thickness option with 12 layers and a transition ratio of 0.272 was selected 

to capture the effect of the boundary layer on the walls, and a growth rate of 1.2. A high-

quality mesh is required to simulate a multiphase cavitation flow and obtain a converged 

result. The program generated 107,720 computational cells and 127,413 nodes; the mesh 

quality used in this study had a maximum element skewness of 0.54 (great quality), a 

maximum orthogonal quality was 1 (best quality), and a maximum element of 1 [15].  
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Figure 11: Simplified geometry of ball valve with hexahedral mesh and disk open at 45°. 

 

Figure 12: Hexahedral mesh closed up of ball valve with a disk 45°. 

3.3 Boundary conditions 

 The assumptions and conditions used in this study were similar for both types of 

valves. The fluid was at a fixed temperature of 300 K and the velocity profile was assumed 

uniform throughout the flow. The inlet pressure was varied at different values, while the 

outlet pressure remained at a fixed value. The no-slip condition was applied for the velocity 

at the wall (top and bottom) and other solid surfaces. The software requires material used in 

the simulation to be clearly defined in FLUENT V17.1. The phases are defined as liquid and 
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vapor, and Table 2 shows the boundary conditions, fluid properties, and cavitation models 

used in this study. Table 3 shows the scheme selection and monitors values used in this 

simulation.  

Table 2: Boundary conditions, fluid properties, and cavitation model 

Boundary type Interface 

Multiphase model Mixture with 2 eulerian phases 

Viscous Realizable K-e, standard wall functions 

Velocity  Uniform 

Pressure inlet 3, 6 bar 

Pressure outlet 1  bar 

Water-liquid @ 300 K 

Water-vapor @ 298 K 

Specification method  (inlet & outlet) k-ε 

Turbulent Kinetic energy (inlet & outlet) 0.02 m2/s2 

Relaxation factor 0.95 

Turbulent dissipation rate (inlet & outlet) 1 m2/s3 

Water-liquid density  1000 kg/m3 

Water-liquid viscosity 0.001 kg/ms 

Water-vapor density 0.02558 kg/m3 

Water-vapor viscosity 1.26*10-°6 kg/ms 

Wall conditions No slip 

Thermal conductivity 0.0261 W/mK 

Cavitation model Schnerr-Sauer 

 

Table 3: Scheme selection and residual monitors’ values 

Scheme Coupled 

Pressure Presto 

Momentum Quick 

Volume fraction Quick 

Turbulent kinetic energy  First Order Upwind 

Turbulent dissipation rate First Order Upwind 

Continuity 3e-07 

X-Velocity 1e-05 

Y-Velocity 1e-05 

Z-Velocity 1e-05 

k 1e-05 

ε 1e-05 

Vf-vapor 0.001 
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3.4 Numerical Procedure for Solution 

 For a rigorous computation, the transient calculation is required for the simulation of 

the irregular cyclic process of bubble formation, growth and collapse, and water jet-re-entry. 

Initial attempts of performing steady state calculations were unsuccessful. Different 

adjustments were made with the purpose of getting a converged solution. They included 

increasing the length of the flow domain from 120 mm to 150 mm, changing the meshing 

method originally tetrahedral to hexahedral, and varying the relaxation factor from 0.75 to 

0.95. The adjustments slightly improved the simulation but did not result in a converged 

solution. Additional changes in the simulation were made by changing the solver time from 

steady state to transient solution. A time step size of 2.5*10-5 seconds was introduced in the 

simulation and a maximum number of iterations per time step. These adjustments resulted in 

getting a converged solution of the flow simulation. 

 

4. Results and Discussion 

4.1 Cavitation Flow Simulation and Analysis 

Two main simulations cases were completed for both valves with the same flow 

conditions. Under both flow conditions, the pressure outlet was kept fixed at 1 bar, while the 

inlet pressure values used were 3 and 6 bar. These conditions provided two different pressure 

drop values, which under the first scenario was 2 bar and 5 bar on the second. The ratio of 

the pressure drop of more than 1:2 is intended to clearly identify the turbulence effects on the 

cavitation flow. Additionally, the temperature of the fluid in the flow was 300 K (27° C). 

Greater turbulence and vapor volume fraction were observed at higher pressure, while the 

inlet pressure was at 6 bar. 
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4.2 Butterfly design  

The butterfly valve design consisted of different considerations under which the 

expected outcome is an optimal design. The first consideration was the pressure used for the 

investigation. Figure 13 is the pressure contour showing location of low and high pressure in 

the butterfly valve. Since cavitation flow is an unsteady phenomenon, it is important to 

observe the influence of turbulent effects, then account for it in design optimization [2, 36-

40]. Figure 14 is the turbulent kinetic energy contour, showing the location of high 

turbulence in the flow. Figure 15 and 16, respectively, shows the vapor volume fraction 

occurring at the disk edge in and the highest velocity is observed in the vena contracta region 

at the edge of the valve disk.  

  

       

  Figure 13: Butterfly valve pressure inlet contour at 3 bar. 
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 The fluid passage in the vena contracta causes the local pressure to fall below the 

vapor pressure and the velocity to increase. This resulted in stronger turbulence effects and 

vapor volume fraction (cavitation) at the disk edge. 

 

 Figure 14: Butterfly valve turbulent kinetic energy contour at 3 bar. 
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Figure 15: Butterfly valve vapor volume fraction (cavitation) region in the flow at 3 bar. 

   

  Figure 16: Butterfly valve velocity streamlines contour in the vena contracta. 
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4.2.1 Butterfly design set up and optimization 

In order to achieve a decent butterfly valve design, the above observations and design 

consideration must be accounted for during the design of the experiment. The first step was 

to determine which parameters had the greatest influence on the design. ANSYS FLUENT 

V17.1 provides different options for generating a robust design without having experimental 

data [29]. It consists of examining all the parameters involved in the design, then setting a 

design of experiment, getting a response surface, and a response surface optimization. Figure 

17 shows a schematic of all the design process and different tabs for each design step used in 

FLUENT.  

 

Figure 17: Project schematic to determine parameter correlation, design of experiment 

(DOE), response surface, and response surface optimization (RSO). 
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 Figure 18 shows which parameters have the most influence on the design, which are 

determined based on the input and output parameters, and how they affect the design. Based 

on this information, a design of experiments can be set up within a fixed range, where both 

the lower and upper value of a parameter is determined. Parameter correlation (Figure 18) 

generates a heat map assessing how inputs affect outputs. Dark (red) color signifies any 

change in the input directly affect the output, while blue shows an inverse relationship; 

parameters in the gray area have no effect and the numerical value associated with them is 

almost zero. Therefore, the major parameters of interests are position (input) and mass flow 

rate (output), followed by pressure inlet and pressure drop. The mass flow rate is inversely 

proportional to the position (valve and pipes length), meaning an increase in position will 

decrease the mass flow rate.

Figure 18: Parameters correlation for Butterfly valve design improvement. 
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 The design of experiment takes inputs from parameter correlation results and 

distributes sample points bounded within a design space. The lower and upper bounds of 

input parameters are defined and optimize the sampling of the design space. When the DOE 

is completed, the response surface is used to predict results at any point within the chosen 

design. ANSYS uses a system of stars to check the validity of both a response surface and 

design optimization. 3stars signify that the design meet all the criteria, 2stars meaning about 

2/3 of the criteria are met, and 1 star for a poor design. Additionally, a gray bar means it is 

neutral, and XXX attributed to the worst design.  

Table 4 shows the response surface of the design of experiment conducted on the 

butterfly valve. With the current response surface, the butterfly valve design is poor and 

therefore needs optimization. In order to improve this design, FLUENT requires selecting at 

least 3 parameters (input and output), seeking a target, minimizing or maximizing a given 

parameter for getting different design options. A Multiple-Objective Genetic Algorithm 

(MOGA) is used to address weaknesses of the current design and improve other parameters. 

Table 4 and 5, respectively, shows the response surface and the response surface 

optimization with constraints and target. 
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Table 4: Response surface of butterfly valve design 
 

P12 - Mass 

flow rate 

P12 - 

Vapor 

volume 

fraction 

P14 - 

Velocity 

P15 - 

Density 

Nume

rical 

value 

(star) 

Coefficient of Determination (Best Value = 1)   

Learning Points 1 1 1 1 3 

Cross-Validation on 

Learning Points 

0 1 1 1 
 

Root Mean Square Error (Best Value = 0) 

Learning Points 0 8.62*10
-15

 5.83*10
-21

 1.63*10
-3

 0 

Verification Points 0 1.06*10
-14

 6.77*10
-21

 1.3*10-3 0 

Cross-Validation on 

Learning Points 

0 10
-3

 7.79*10
6
 7*10

-3
 0 

Relative Maximum Absolute Error (Best Value = 0%) 

Learning Points 0 0 0 0 XXX 

(P12) 

Verification Points 0 0 0 412.3 Neutra

l 

Cross-Validation on 

Learning Points 

417.3 0 0 412.3 XXX 

(P12) 

Relative Average Absolute Error (Best Value = 0%) 

Learning Points 0 12.5 12.5 12.5 Neutra

l (P12) 

Verification Points 0 7.74 7.74 7.74 2 

(P12) 

Cross-Validation on 

Learning Points 
4.16*10

-13
 

(XX) 

63.6 63.6 63.6 XX 
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     Table 5: Design parameter optimization from response surface of butterfly design 

Optimization study 

Maximize P14 Goal, maximize P14 

Seek P12= 

2.01*10-5 

Goal, seek P13  

Minimize P16 Goal, minimize P16 

Optimization method 

MOGA The MOGA method (Multi-Objective Genetic Algorithm) supports 

multiple objectives and constraints and aims at finding the global 

optimum 

Configuration Generate 1000 samples initially, 100 samples and find 5 candidates 

in maximum of 20 iterations 

Status   Converged after 1504 evaluations 

Candidate points 

 Candidate 

point 1 

Candidate 

point 2 

Candidate 

point 3 

Candidate 

point 4 

Candidate 

point 5 

P1 position 

(mm) 
145 142.1 147.8 139.3 146.9 

P4 Pressure 

drop ( bar) 

3.74  bar  

 

3.32  bar 

 

2.40  bar 

 

4.43  bar 4.58  bar 

P14 Pressure 

inlet ( bar) 

5.96  bar 

(3 star) 

5.92  bar 

 (3 star) 

5.90  bar  

(3 star) 

5.89  bar 

 (3 star) 

5.79  bar  

(3 star) 

P16 Mass flow 

rate (kg/s) 

0.292 kg/s 

 (3 star) 

0.292 kg/s  

(3 star) 

0.289 kg/s 

(2 star) 

0.289 kg/s 

(2 star) 

0.291 kg/s 

(3 star) 

P12 Vapor 

volume 

fraction 

2.01*10-5 

(neutral) 

2.01*10-5 

(neutral) 

2.01*10-5 

(neutral) 

2.01*10-5 

(neutral) 

2.01*10-5 

(neutral) 

 

4.2.2 Butterfly valve design results 

The main goal was reducing the vapor volume fraction (cavitation) from 2.01*10-5 to 

2.0*10-5, maximize the mass flow rate and pressure inlet. With pressure inlet at 5.79 bar, 

pressure drop at 4.58 bar, mass flow rate at 0.291 kg/s, vapor volume fraction at 2.01*10-5, 

and flow domain length at 146.9 mm, candidate design 5 meets most of the parameter criteria 

although it does not meet all the conditions. 
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4.3 Ball design  

Similar design considerations used for the butterfly valve were applied for the ball 

valve. Figure 20 is the pressure contour showing location of low and high pressure in the ball 

valve. From those constraints, the following observations are seen: velocity increase in the 

vena contracta with pressure drop, turbulence and cavitation effects are taking place at the 

same location [40-50]. Figures 21, 22 and 23, respectively, shows the location of higher 

velocity, higher turbulence, and vapor volume fraction in the flow occurring in the vena 

contracta region. 

      

Figure 20: Ball valve pressure inlet contour at 3 bar 
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Figure 21: Ball valve velocity streamlines contour in the vena contracta  

       

Figure 22: Ball valve turbulent kinetic energy contour at 3 bar 
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Figure 23: Ball vapor volume fraction (cavitation) region in the flow at 3 bar 

4.3.1 Ball valve design set up and optimization 

Achieving a decent ball valve design requires accounting for the observed results and 

design consideration during the DOE. As in the previous design (butterfly), similar steps will 

be followed for determining sensitive design parameters: design of experiment, response 

surface, and design optimization. Figure 24 and 25, respectively, show a schematic of the 

design process and different tabs for each design step used in FLUENT, and the parameters 

of greater influence in the ball valve design. 
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Figure 24: Project schematic to determine parameter correlation, design of experiment 

(DOE), response surface, and response surface optimization (RSO). 



36 

 

 

 

Figure 25: Parameters correlation for ball valve design improvement 

As with the previous section (butterfly valve), the design parameters of interest are 

determined based on input and outputs. The design of experiment is set up, where each 

parameter selected has a specified bound with a lower and upper value. The parameters of 

interest in this design are pressure inlet and drop (input) and mass flow rate (output). The 

DOE is set as follow: Inputs (pressure inlet and drop) and outputs (mass flow rate, density, 

velocity, and vapor volume fraction). The following outcomes were observed: Pressure drop 

is directly proportional to mass flow rate, meaning an increase in pressure drop will also 
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increase the mass flow rate. Pressure inlet is inversely proportional to mass flow rate, 

meaning an increase in pressure inlet will cause mass flow rate to decrease. 

The response surface of the current design is shown in Figure 27. With the current 

response surface, the ball valve design is poor and requires further optimization. Three 

parameters (input and output) are selected based on the design objective for optimization. 

MOGA is used to address design limitations and parameter improvement. Tables 6 and 7, 

respectively, show the response surface and the response surface optimization with 

constraints and target. 

Table 6: Response surface of ball design 

 

P12 - 
Mass 
flow 
rate 

P13 - 
Vapor 
volume 
fraction 

P14 - 
Velocity 

P15 - 
Density 

Numerical 
value 
(star) 

Coefficient of Determination (Best Value = 1)  

Learning Points 0.96 0.96 0.96 0.96 1 

Cross-Validation on Learning 
Points 0 0 0 0 

XXX 

Root Mean Square Error (Best Value = 0) 

Learning Points 1*10-4 1.28*10-6 2*10-3 --------- 

Verification Points 7.73*10-5 5.01*10-7 
9*10-4 --------- 

Cross-Validation on Learning Points 1*10-3 7.79*106 7*10-3 --------- 

Relative Maximum Absolute Error (Best Value = 0%) 

Learning Points 42.05 42.05 42.05 XXX 

Verification Points 7.74 7.74 412.3 Neutral 

Cross-Validation on Learning Points 412.3 412.3 412.3 XXX 

Relative Average Absolute Error (Best Value = 0%) 

Learning Points 12.5 12.5 12.5 X 

Verification Points 7.74 7.74 7.74 Neutral 

Cross-Validation on Learning Points 63.6 63.6 63.6 XXX 
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     Table 7: Design parameter optimization from response surface of ball valve design 

Optimization study 

Maximize P12 Goal, minimize P12; strict constraint, P12 values < 0.288 kg/s 

Seek P13= 

8.464*10-5 

Goal, seek P13  

Minimize P11 Goal, minimize P11 

Optimization method 

MOGA The MOGA method (Multi-Objective Genetic Algorithm) supports 

multiple objectives and constraints and aims at finding the global 

optimum 

Configuration Generate 1000 samples initially, 100 samples and find 5 candidates in 

maximum of 20 iterations 

Status   Converged after 1073 evaluations 

Candidate points 

 Candidate 

point 1 

Candidate 

point 2 

Candidate 

point 3 

Candidate 

point 4 

Candidate 

point 5 

P16 Pressure 

drop ( bar) 

2.00  bar 2.06  bar 2.03  bar 2.01  bar 2.04  bar 

P11 Pressure 

Inlet ( bar) 

3.00  

(3 star) 

3.003  

(3 star) 

3.010 

 (3 star) 

3.011   

(3 star) 

3.013   

(3 star) 

P12 Mass flow 

rate (kg/s) 

0.287 

(neutral) 

0.285  

(2 star) 

0.286  

(1 star) 

0.286  

(1 star) 

0.285  

(2 star) 

P13 Vapor 

volume 

fraction 

8.749*10-5 

(neutral) 

1.039*10-5 

(X) 

9.668*10-5 

(neutral) 

9.363*10-5 

(1 star) 

1.016*10-5 

( neutral) 

    

4.3.2 Ball valve design results 

The main goal was reducing the vapor volume fraction (cavitation) from 8.87*10-5 to 

1.01*10-5, minimize the pressure inlet, and keep the mass flow rate around 0.288 kg/s. With 

pressure inlet at 3 bar, pressure drop at 2  bar, mass flow rate at 0.287 kg/s and vapor volume 

fraction at 8.87*10-5, candidate design 5 meets most of the parameter criteria although it does 

not meet all the conditions. 
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5. Conclusions 

Ball and butterfly valves opened at 45° open were used to investigate cavitation flow 

of a mixture model using the commercial software FLUENT. The vapor volume fraction was 

examined at two different pressures to determine its magnitude and influence on the design. 

This study evaluated the possibility of obtaining different candidates for an optimal design of 

both ball and butterfly by using a special feature of the software ANSYS FLUENT. A 

parameter correlation determined parameters of interest, a design of experiment provided a 

response surface that was optimized by using the multiple-objective genetic algorithm.  

The best candidate for these designs was found although they did not meet all the 

constraints. Further studies should be devoted to improving the design optimization method 

and/or process for both valves; finding a candidate that will substantially reduce cavitation, 

meet all the constraints, before an industrial production scale.  

 

 

References 

 

[1] B. Lipták, “Cavitation in control valves,” Control (Chicago, Ill), vol. 21, no. 5, pp. 

81–82, 2008. 

[2] A. Ferrari, “Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic 

power systems,” 2017. 

[3] Flowserve, “Flowserve Cavitation Control,” pp. 1–20, 2006. 

[4] M. J. Chern, C. C. Wang, and C. H. Ma, “Performance test and flow visualization of 

ball valve,” Exp. Therm. Fluid Sci., vol. 31, no. 6, pp. 505–512, 2007. 



40 

 

 

[5] K. Tani, Y. Ito, R. Oba, M. Iwasaki, and Y. Hirata, “Studies on Low-Erosion 

Butterfly Valves,” JSME Int. J., vol. 37, no. 4, pp. 746–751, 1994. 

[6] S. Bernad, R. F. Susan-Resiga, S. Muntean, and I. Anton, “Cavitation phenomena in 

hydraulic valves - Numerical modelling,” Proc. Rom. Acad. Ser. A, vol. 8, no. 2, 

2007. 

[7] G. Brett, M. Riveland, T. C. Jensen, and T. J. Heindel, “Cavitation from a Butterfly 

Valve: Comparing 3D Simulations to 3D X-Ray Computed Tomography Flow 

Visualization,” Jt. fluids Eng. Conf., pp. 1–9, 2011. 

[8] E. Winklhofer, E. Kull, E. Kelz, and A. Morozov, “Comprehensive hydraulic and 

flow field documentation in model throttle experiments under cavitation conditions,” 

Proc. ILASS-Europe Conf. Zurich, no. SEPTEMBER, p. 574 – 579, 2001. 

[9] E. Christopher, Brennen, Cavitation and bubble dynamics, vol. 9, no. 1. 1977. 

[10] B. Ji, X. W. Luo, R. E. A. Arndt, X. Peng, and Y. Wu, “International Journal of 

Multiphase Flow Large Eddy Simulation and theoretical investigations of the 

transient cavitating vortical flow structure around a NACA66 hydrofoil,” vol. 68, pp. 

121–134, 2015. 

[11] S. I. Bernad and R. Susan-Resiga, “Numerical model for cavitational flow in 

hydraulic poppet valves,” Model. Simul. Eng., vol. 2012, 2012. 

[12] W. Wienken, J. Stiller, and A. Keller, “A method to predict cavitation inception using 

large-eddy simulation and its application to the flow past a square cylinder,” J. Fluids 

Eng. Asme, vol. 128, no. 2, pp. 316–325, 2006. 



41 

 

 

[13]  a Fluent, “Ansys Fluent 15.0 Tutorial Guide,” Ansys INC, vol. 15317, no. 

November, pp. 891–920, 2013 

[14] ANSYS, “ANSYS Fluent Theory Guide,” vol. 15317, no. November, p. 514, 2013. 

[15] T. D. Canonsburg, “ANSYS Fluent Meshing User’s Guide,” vol. 15317, no. 

November, pp. 724–746, 2013. 

[16] J. D. Anderson Jr., “Computational fluid dynamics- The basics with applications,” 

McGraw-Hill, Inc., vol. 27, no. 6. pp. 1661–71, 1995. 

[17] M. A. R. Cunha and H. F. V. Nova, “Cavitation modeling of a centrifugal pump 

impeller,” 22nd Int. Congr. Mech. Eng., vol. m, no. November, pp. 1633–1644, 2013. 

[18] B. Ji, X. Luo, X. Peng, Y. Wu, and H. Xu, “International Journal of Multiphase Flow 

Numerical analysis of cavitation evolution and excited pressure fluctuation around a 

propeller in non-uniform wake,” Int. J. Multiphase. FLOW, vol. 43, pp. 13–21, 2012. 

[19] M. S. Plesset and R. B. Chapman, “Collapse of an initially spherical Vapor Cavity in 

the Neighborhood of a solid Boundary,” J. Fluid Mech., vol. 47, no. 2, pp. 283–290, 

1971. 

[20] E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of 

a cavitation bubble close to a rigid boundary,” Phys. Fluids, vol. 14, no. 1, pp. 85–92, 

2002. 

[21] P. G.-A. and J. A.-V. G. Palau-Salvador, “Introduction,” Spanish J. Agric. Res., vol. 5, 

no. 4, pp. 460–469, 2007. 

[22] A. Iannetti, M. T. Stickland, and W. M. Dempster, “A CFD and experimental study 

on cavitation in positive displacement pump: benefits and drawbacks of the ‘full’ cavitation 

model,” Eng. Appl. Computational. Fluid Mech., vol. 10, no. 1, pp. 57–71, 2015. 



42 

 

 

 [23] A. Karimi and J. L. Martin, “Cavitation erosion of materials,” Int. Mater. Rev., vol. 31, 

no. 1, pp. 1–26, 1986. 

[24] A. Del Toro, “Computational Fluid Dynamics Analysis of Butterfly Valve. 

Performance factors.” 2012. 

[25] M. Morgut and E. Nobile, “Influence of the Mass Transfer Model on the Numerical 

Prediction of the Cavitating flow around a Marine Propeller,” Second Int. Symposium. 

Mar. Propulsors smp’11, no. June, pp. 1–8, 2011. 

[26] A. Adamkowski and M. Lewandowski, “Consideration of the cavitation characteristics 

of shut-off valves in numerical modeling of hydraulic transients in pipelines with 

column separation,” Procedia Eng., vol. 70, pp. 1027–1036, 2014. 

27] Z. Yao, L. Xian-Wu, L. Shu-Hong, W. Yu-Lin, and X. Hong-Yuan, “A 

Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of 

Water Temperatures,” Chinese Phys. Lett., vol. 27, no. 1, p. 16401, 2010. 

[28] M. Morgut and E. Nobile, “Numerical predictions of the cavitating and non-cavitating 

flow around the model scale propeller pptc,” … Work. Cavitation Propeller, no. June, 

2011. 

[29] T. D. Canonsburg, “Design Exploration User’s Guide,” vol. 15317, no. November, pp. 

724–746, 2013. 2 

[30] D. Odhiambo and H. Soyama, “Cavitation shotless peening for improvement of 

fatigue strength of carbonized steel,” Int. J. Fatigue, vol. 25, no. 9–11, pp. 1217–1222, 

2003. 

[31] Z. Li and T. Van Terwisga, “On the Capability of Multiphase RANS Codes to Predict 

Cavitation Erosion,” Second Int. Symp. Mar. Propulsors, no. June, 2011. 



43 

 

 

[32] S. Rammohan and S. Kumaraswamy, “Numerical prediction and experimental 

verification of cavitation in butterfly valves,” Symp. A Q. J. Mod. Foreign Lit., no. 

September, pp. 8–13, 2006. 

[33] D. Rossinelli, P. Koumoutsakos, B. Hejazialhosseini, P. Hadjidoukas, C. Bekas, a. 

Curioni, a. Bertsch, S. Futral, S. J. Schmidt, and N. a. Adams, “11 PFLOP/s 

simulations of cloud cavitation collapse,” Proc. Int. Conf. High Perform. Comput. 

Networking, Storage Anal. - SC ’13, pp. 1–13, 2013. 

[34] M. Turesson, “Dynamic simulation of check valve using CFD and evaluation of check 

valve model in RELAP5,” 2011. 

[35] G. H. Schneer and J. Sauer, “Physical and Numerical modelling of unsteady cavitation 

dynamics.” Int. Conf. Multiphase. Flow, vol. 11, no. 4, pp. 391–400, 2001. 

[36] E. Koyunbaba, “Graduate School Of Natural And Applied Sciences Computational 

Fluid Dynamics Application For Determining Flow Computational Fluid Dynamics 

Application For Determining Flow,” 2008. 

 [37] Val-Matic Valve And Manufacturing Corp, “Cavitation in Valves,” Val-Matic, no. 

630, pp. 1–5, 2011. 

[38] Y. Xu, Y. Chen, J. He, and H. Yan, “Detection of Cavitation in a Venturi Injector 

With a Combined Method of Strain Gauges and Numerical Simulation,” J. Fluids 

Eng., vol. 136, no. 8, p. 81302, 2014. 

[39] W. Li, “Validating Full Cavitation Model With an Experimental Centrifugal Pump,” 

TASK Q., vol. 18, no. 1, pp. 81–100, 2014. 

[40] R. Bosch and G. Bosch, “Experimental and CFD technology for preventive reduction 

of diesel engine emissions caused by cavitation erosion,” 2002. 



44 

 

 

[41] S. Rammohan and S. Kumaraswamy, “Numerical prediction and experimental 

verification of cavitation in butterfly valves,” Symp. A Q. J. Mod. Foreign Lit., no. 

September, pp. 8–13, 2006. 

[42] H. Soyama, K. Saito, and M. Saka, “Improvement of fatigue strength of aluminum 

alloy by cavitation shotless peening,” J. Eng. Mater. Technol. Asme, vol. 124, no. 2, 

pp. 135–139, 2002. 

 [43] D.-Q. Li, M. Grekula, and P. Lindell, “A modified SST k-\omega turbulence model to  

predict the steady and unsteady sheet cavitation on 2D and 3D hydrofoils, 

” Int. Symp. Cavitation, no. 107, pp. 1–13, 2009. 

[44] B. J. Solomon, “Engineering Model to Calculate Mass Flow Rate of a Two-Phase 

Saturated Fluid Through An Injector Orifice,” 2011. 

[45] B. S. Waxman, J. E. Zimmerman, B. J. Cantwell, and N. Ames, “Mass Flow Rate and 

Isolation Characteristics of Injectors for Use with Self-Pressurizing Oxidizers in 

Hybrid Rockets,” pp. 1–32, 2013. 

[46] D. Q. J. D. Kljxr and K. D. Xh, “Numerical Simulation of Fluid Flow inside the 

Valve,” vol. 23, no. 1, pp. 543–550, 2011 

[47] D. Rossinelli, P. Koumoutsakos, B. Hejazialhosseini, P. Hadjidoukas, C. Bekas, a. 

Curioni, a. Bertsch, S. Futral, S. J. Schmidt, and N. a. Adams, “11 PFLOP/s 

simulations of cloud cavitation collapse,” Proc. Int. Conf. High Perform. Comput. 

Networking, Storage Anal. - SC ’13, pp. 1–13, 2013. 

[48] J. Necker and T. Aschenbrenner, “Model test and CFD calculation of a cavitating bulb 

turbine,” IOP Conf. Ser. Earth Environ. Sci., vol. 12, p. 12064, 2010. 



45 

 

 

[49] Kounbaba, E., “Computational Fluid Dynamics application for characteristics of 

valves,” 2008. 

[50] H. Li, F. J. Kelecy, A. Egelja-maruszewski, and S. A. Vasquez, “Paper No . 

IMECE2008-67450 Advanced computational modeling of steady and unsteady,” pp. 

1–11, 2008. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

 

CHAPTER 3. TECHNO-ECONOMIC ANALYSIS OF TRANSPORTATION FUELS 

FROM PINEWOOD VIA HYDROTHERMAL LIQUEFACTION 

 

Nzombo, D., Li W., Brown R., Wright M. manuscript in preparation 

Abstract 

 

The purpose of this study is to develop a techno-economic analysis model to evaluate 

the economic feasibility of transportation fuel production by solvent liquefaction (SL) of pine 

wood in a novel hydrocarbon solvent, followed by hydroprocessing of medium wood oil 

(MWO) and heavy wood oil (HWO). A 2000 dry tonne per day biorefinery produces 364 

dam3 of MWO and 76 dam3 per year. The total project investment is estimated at $331 M and 

the annual operating cost is $110 M. The minimum fuel selling price (MFSP) is $0.94/gallon 

assuming a 10% internal rate of return and a 30-year plant life. A sensitivity analysis shows 

that the MFSP is most sensitive to the product fuel yield showing the respective importance 

of SL conversion performance. Feedstock cost also has a strong and significant influence on 

the MFSP, which respectively varied between $0.80/gallon to $1.19/gallon for feedstock cost 

of $33 and $132 dry tonne-1.  
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1. Introduction 

Greenhouse gases (GHG) have contributed to global warming and raised 

environmental concerns over energy use, and prompted renewed interest in clean energy 

resources such as biomass. Biomass is defined as biodegradable and renewable organic 

matter. Clean and renewable transportation fuels based on biomass have been getting more 

attention as an alternative to fossil fuels. The Energy Independence and Security Act (EISA) 

of 2007 require blending biofuels for transportation purposes under the revised Renewable 

Fuel Standard (RFS2). This study will evaluate the techno-economic cost of using Pinewood 

as biomass feedstock with a hydrocarbon solvent and its conversion into transportation fuels.  

Pinewood has great potential as a biomass resource for the production of biofuels with 

reduced land use and low CO2 emissions [1, 2].  

Pinewood presents a great advantage as it is largely available in the southeastern part 

of the United States (US), covering a land area of 13 million ha, and could be sustainably 

used for bio-oil production [3, 4]. Pinewood is essentially composed of cellulose, lignin, and 

extractives [5]. Their unique composition makes them appropriate for several applications.  

Pinewood can be employed in different thermochemical pathways such as catalytic 

liquefaction, gasification and fast pyrolysis [2, 7-8]. However, there are some disadvantages 

of using pyrolysis liquid for chemical and fuel applications. These include its high moisture 

content (15-30 wt. %), oxygen content (35-40 wt. %), and a low heating value compared to 

fossil fuels [2, 8]. The disadvantage of gasification is tar formation, which reduces the 

efficiency of gas production and restricts equipment operation [8]. With direct liquefaction, a 

simple direct conversion of biomass to liquid fuel results in high liquid yields [9]. Direct 

liquefaction is a process that includes fast pyrolysis and high-pressure SL [9]. Bio-oil from 
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the SL process results in lower oxygen content (10-20 wt. %) and a higher heating value of 

35 MJ/kg compared to fast pyrolysis, which has twice as much oxygen content ( about 40 %) 

and lower heating value (16-19 MJ/kg)  [9]. In rural and urban areas, wood is often burned in 

cooking, heating, fireplace, campfire, and waste disposal [6]. The volatiles, which accounts 

for as much as 82.6 wt. % of the whole pinewood [11], could be used for biofuel production 

based on its hydrogen and carbon content [8]. 

Past studies clearly identify different applications for pinewood including char and 

biofuel [2, 12] via pyrolysis and gasification. Pinewood could be converted into liquid fuels 

compatible with the existing transportation fuel infrastructure [14, 15]. However, the costs of 

producing transportation fuels from petroleum remain too low for biofuels to be 

economically competitive in US markets. Thus, technologies that can recover higher valued 

fuels and chemicals need to be identified to improve the profitability of biorefineries.  

Phenolic monomers are lignin compounds with large oxygen content [16]. Due to its 

large oxygen content, phenolic monomers require hydrodeoxygenation to convert into 

regular and conventional transportation alkane fuels [16, 17]. Phenolic are considered an 

important compound for bio-oil, and hydrodeoxygenation is a crucial process for its upgrade 

into bio-oil [18, 19]; generally, the upgrade is completed by using a catalyst [16]. They can 

also be used differently in solvent liquefaction. Phenolic monomers would be mixed with a 

hydrocarbon solvent to help convert pinewood into liquid [11] in the front process and will 

be followed by the hydroprocessing and upgrading of heavy bio-oil products into gasoline 

and diesel fuels [11]. 

Various thermochemical technologies such as gasification, catalytic and fast 

pyrolysis, and solvent liquefaction (SL) [15, 20] can convert biomass into biofuels and 
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chemicals. Pyrolysis and gasification are not ideal for producing phenolic monomers in 

addition to bio-oil. SL offers the opportunity of producing phenolic monomers by using a 

hydrocarbon solvent [11]. SL involves processing biomass in pressurized water temperature 

between 250 and 550°C, and pressures of 5-50 bar. SL products include a heavy or crude oil 

phase, an aqueous fraction, and a gaseous fraction [21, 22]. The crude oil produced by SL is 

often called bio-crude, which has a relatively high heating value (>30 MJ Kg-1) [9, 22]. SL 

has been employed to process lignocellulosic biomass in the presence of a catalyst and/or 

solvents in various studies [23, 24].  

SL, compared to other thermochemical technologies, has the advantage of producing 

bio-crude with lower oxygen content and higher heating value. These bio-crude 

characteristics make it more suitable for upgrading in crude-oil refineries [2, 8]. SL can 

effectively utilize biomass feedstock with high moisture content, which avoids the energy 

consumption for biomass drying [9]. Additionally, SL may not result in water evaporation, as 

in gasification and pyrolysis. Instead, SL can maintain hot compressed water in the liquid 

phase [9]. Biomass SL has only been demonstrated and studied up on the pilot scale, unlike 

gasification and pyrolysis whose systems have been commercially available [25-26].  

However, a substantial downside of SL is the severe operating conditions required (high 

temperature and high pressure) incurring high investment and operating costs [27-28].  

To our knowledge, there is very limited number of public studies that have 

investigated the techno-economic analysis (TEA) feasibility of biofuel production from 

pinewood. Liquefaction and SL were examined as potential routes to convert pinewood into 

bio-crude [9], and the bio-crude could be hydroprocessed and upgraded to gasoline and diesel 
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fuel. Previous research has shown that SL has a better energy balance compared to slow 

pyrolysis [6, 9, 22].  

In this study, a TEA is conducted to determine the potential for producing 

transportation liquid fuels from pinewood and hydrocarbon solvent via SL to obtain Medium 

Wood Oil (MWO) and Heavy Wood Oil (HWO). A commercial-scale 2000 dry tonne per 

day SL and a hydroprocessing facility is modeled to estimate the total project investment and 

annual operating costs. The process model assumes that the facility (plant) is mature, and all 

the technical challenges have been overcome and the materials are commercially available.  

The potential commercialization is conditioned by the competitiveness of the minimum fuel 

selling price (MFSP) relative to market alternatives. The MFSP is determined based on a 

10% internal rate of return (IRR) and a 30 year lifetime of the facility. 

2. Materials and Methods 

The TEA uses chemical process modeling and economic cost analysis to determine 

the process profitability.  Aspen PlusTM was the software employed in this study for process 

modeling. Cost estimation and purchase of equipment such as compressors, heat exchangers, 

and pumps were estimated in Aspen Process Economic Analyzer and from public literature. 

Cost estimation and purchase of engineered equipment such as the SL reactor and hydrogen 

plant are projected based on a power law frequently employed with a scaling factor of 0.6 for 

chemical processing equipment [28-30], which is represented by: 

𝐶𝑜𝑠𝑡𝑛𝑒𝑤 = 𝐶𝑜𝑠𝑡𝑏𝑎𝑠𝑒 (
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑛𝑒𝑤

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑠𝑒
)

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟

                                                                  (1) 

The return on investment is estimated with a 30 year discounted cash flow rate of return 

(DCFROR) spreadsheet. There are five major assumptions made in this study: (1) Plant 

capacity is 2000 dry tonne per day of pinewood, (2) the feedstock contains 82.6 % of 
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volatiles, (3) liquid effluent and recycled medium wood oil from SL reactor are directed in 

overhead separation unit, then to a phase separator, and to a waste water treatment plant, (4) 

dry char and non-condensable gases (NCG) are used to heat the NCG stream for heating and 

the liquefaction reactor and fuel gas for the furnace, and (5) the cost analysis represents an nth 

plant design, meaning all the major technical obstacles have been overcome and required 

equipment is commercially available. 

2.1 Process modeling 

The chemical process model has 4 areas: Solvent liquefaction (SL), hydroprocessing, 

product refining, and a combined heat and power (CHP) plant. Figures 1 and 2, respectively, 

show a simplified and a detailed version of the flow diagram of SL, and product refining 

processes. As shown, the hydrocarbon solvent and pinewood feedstock enter the liquefaction 

section along with a recycled stream of MWO and solvent. SL products leave the 

liquefaction section and are separated into streams of NCG, biochar, LWO and acids, and 

HWO and MWO (bio-crude). The HWO and MWO stream are stabilized and stored before 

shipping for upgrading at an external facility such as a refinery. The process generates steam 

on-site for liquefaction by combusting the NCG and off-gas. Requisite hydrogen is generated 

via steam reforming of LWO and acids and supplemental natural gas. The hydrogen is 

employed to stabilize the bio-crude product. Waste handling and disposal were not included 

in the model. SL wastewater will be treated by a third party at a fixed price per unit volume 

($0.89 m-3) [31], and solid waste can be disposed at a fixed price per unit mass ($36.98  

tonne-1) [32].  
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Figure 1: Schematic of the pinewood solvent liquefaction process for gasoline and diesel  

2.1.1 Biomass feedstock 

The feedstock was composed of 0.63 centimeter size particles. The moisture content 

is about 5 wt. %, and volatiles accounts for 82.6 wt. % of the pinewood [11]. Table 1 shows 

the elemental composition of pinewood in atomic mass fraction (AF) of dry material and 

mass fraction (MF) of dry feed. 

Table 1: Pinewood proximate and ultimate analysis 

Proximate Analysis  (wt. %) Ultimate Analysis (wt. %, AF/MF) 

Moisture ~5 C 52.0 

Volatiles (MF) 82.6 H 5.37 

Fixed Carbon (MF) 13.3 O 42.6 

Ash (MF) 0.55 N 0.05 

----------------------------- ---------------------------- S 0.02 
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Biomass availability in the US is estimated to be around 370 million to 1.3 billion dry 

tons/year of biomass, which could theoretically replace about 60 billion gallons of the US 

annual petroleum consumption [33]. Woody biomass is largely available and estimated to 

account for about 39% (368 million tons) of the total biomass in the US [4]. Its abundance 

makes it one of the most affordable feedstocks on the market for biofuel production [33]. 

Due to its use for other applications, a large amount of leftover and wood waste is available 

[3, 4, 33]. Resulting in lower cost and availability of pinewood as a feedstock for SL.  

2.2 Solvent liquefaction process 

2.2.1 Conversion 

First, 7,000 tonne/day of solvent, composed of 75 wt. % of heavy aromatic solvent 

(HAS) and 25 wt. % of hydrogenated light cycle oil (HLCO) are co-fed to the extruder 

(reactor) with 2,000 tonne/day dry biomass. The mixture is liquefied at 400° C and 41 bar in 

the extruder. The resulting mixture of gas/liquid/solids is then fed to the flash separator unit 

(SEP-1). The mixture is cooled from 400° C to 288° C under constant pressure during its 

transition between the extruder and flash separator. Meanwhile, the heavy liquid products 

and bio-char remain in the liquid pool in SEP-1, while the lighter liquid products and non-

condensable gases are sent to the overheads section. 
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Figure 2: Process flow diagram for pinewood solvent liquefaction and product refining. 

 

SEP-2 acts as a second flash separator where a single liquid phase is collected and the 

NCG leave as the overhead. After leaving SEP-1, the lighter liquid products and NCG are 

cooled down close to 21° C before entering SEP-2. The NCG exit SEP-2 through a valve 

where its pressure is reduced from 41 bar to 1 bar. The liquid products in SEP-2 leave the 
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unit through a valve at the bottom into another flash separator (SEP-3). After going through 

the valve, the pressure of the liquid drops from 41 bar to 1 bar and temperature from 33° C to 

nearly 25° C. The resulting liquid products are an organic phase and an aqueous phase.  

The heavier liquid products and solids are transferred from SEP-1 into a mixing tank 

through batch valves. This results in a pressure reduction of the heavy liquid products/solids 

to 1 bar, while dissolved gases are released during this process and combined with the 

overheads gas products. During the transfer from SEP-1 to the mixing tank, the temperature 

of the mixture drops to 21 °C. The liquid and solids products are removed from the SEP-2 

using a pump and filter (F-C). The liquid product is then held in a collection vessel (SEP-4) 

at 50 °C and 1 bar.  

The liquid product from the filtration unit is pumped through a heat exchanger and 

heated to a temperature of 147 °C. The heated heavy liquid products are then fed to a 

stripping column (SEP-6) operating at 232 °C and 1 bar. The stripping gas used is N2 at a 

flow rate of 4,000 tonne/day and a temperature of 232 °C. The lighter components exit the 

stripping column overhead and are cooled down to almost 25 °C. They are then collected in 

another flash separator (SEP-7), and the non-condensable gases (mainly N2) exit through the 

top of SEP-7. The heavy products are collected from the bottom of SEP-6. The process 

conditions and functions are summarized in Table 2.  

Table 2: Pinewood solvent SL process key operating units and conditions 

 SL 

Reactor 

Overheads 

Separator 

Filtration Fractionati

on 

Unit EX-1 SEP-1 SEP-2 SEP-3 SEP-4 SEP-6 SEP-7 

Function Reactor Flash 

 

Flash 

 

Flash ------ ------- -------- 

Temperature (°C) 400 288 21 50 25 232 25 

Pressure  ( bar) 41 41 41 1 1 1 1 
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The aqueous phase is to be sent to a water treatment facility. Minor compounds in this 

stream include light acids and lighter phenolic products. The gaseous phase, which consists 

of NCG (mainly stripping N2) and light products, is sent to the combustor area to be 

combusted for supply process heat. The bio-crude is sent to the hydroprocessing process to 

be deoxygenated via hydrotreating using a cobalt molybdenum catalysts [29]. The medium 

wood oil (MWO) is recycled to the front of the system, minimizing fresh solvent input. Table 

3 shows the main components of the key process streams. 

Table 3: Key process streams and concentration of phenols (P), Light Acids (LA), Water (W), 

Undetermined (U), and solvent 

 Conversion Overheads Filtration Fractionation Extra 

Stream Biom

ass 

Solvent LWO Aqueou

s phase 

S HWO MWO NCG 

Mass 

Flow 

(tonne/

day) 

0.054

5 

dry/0.

00115 

H2O 

37.9 

(75 wt. 

% 

HAS/2

5 wt. % 

HLCO) 

0.430 2.68 2.08 10.7 32.1 1.56 

Compo

nent  

Conce

ntratio

n (Wt. 

%) 

P — — 2.48 3.05 — 10.7 1.93 — 

LA — — 0.777 8.12 — 10.9 0.175 — 

W — — 0.822 82.3 — 0.043

3 

0.862 — 

U — — — — — 0.796 — — 

Solvent  100 95.9 6.53 — 37.3 97.0 — 

 

2.2.2 Combined heat and power plant 

In this area, off-gas streams are combined and combusted to recover process heat. 

Flue gas from the combustor is used to preheat air fed to the combustor and heat exchanger. 



57 

 

 

The primary heat consumers in this process are the SL reactor, steam reformer, and natural 

gas heater. Superheated steam (449° C, 6 bar) [24] is split into 2 streams. The first stream 

provides dedicated heat to the SL reactor. The second provides both heat and power by going 

through a multistage turbine and power generator. Steam is extracted at three different 

conditions for use in this process. High-pressure steam at 4.2 bar, medium pressure steam at 

1.1 bar and low-pressure steam at 0.6 bar [30] are also extracted. Part of the high-pressure 

steam is used to preheat the boiler feed water. Low-pressure steam is sent to the flash 

separator to dissolve gases from the boiler [24]. In the final stage of the turbine, the expanded 

steam is cooled and condensed to 0.01 bar and 46° C [35]. Boiler blowdown is assumed to be 

3% of the steam production [24]. The generated electricity is supplied to users of the plant. 

Purchased electricity supplies the remainder of the plant power demand.  

 

3. Economic analysis 

A process model is built in Aspen Plus to obtain material and energy balance of the 

pinewood SL pathway. Process equipment units are sized based on the material, energy 

balances, and operating costs. Purchased costs of common equipment such as pumps, 

compressors, and vessels are estimated using Aspen PlusTM. The cost of complex equipment 

such as reactors and distillation columns are estimated by scaling up publicly available data 

for similar equipment [29, 36]. Once the Total Purchased Equipment Cost (TPEC) is 

obtained, Fixed Capital Investment (FCI) and Total Project Investment (TPI) can be 

determined from Peters and Timmerhaus [34, 37] factors. All the parameters used for the 

estimation of FCI and TPI from TPEC are listed in Table 4. The results were used as input 

information into a modified DCFROR analysis spreadsheet to calculate the MFSP.  
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Table 4: Total project investment cost factors (all results in 2011 dollars) [35] 

Direct cost                                                                                                                          M$ 

     Total purchased equipment cost (TPEC)                                                                      65 

     Purchased equipment installation                                                                                 26 

     Instrumentation and controls (installed)                                                                       16 

     Piping (installed)                                                                                                           16 

     Electrical systems (installed)                                                                                         7 

     Buildings (including services)                                                                                      18 

     Yard improvements                                                                                                       9 

     Service facilities (installed)                                                                                           39 

     Total installed cost (TIC)                                                                                              196 

Indirect costs 

     Engineering and supervision                                                                                         21 

     Construction expenses                                                                                                   22 

     Legal expenses                                                                                                               4 

     Contractor’s fee                                                                                                             15 

     Contingency                                                                                                                  24 

          Total indirect cost                                                                                                     86 

     Fixed capital investment (TIC + indirect plant costs)                                                   282 

     Working capital (15% of total capital investment)                                                       49 

     Total project investment                                                                                             331 

(Fixed capital investment + working capital) 

 

Table 5 shows the main assumptions of the economic analysis. The plant life is 30 

years, and it operates for 7884 hours per year. The facility is financed through 100% equity. 

The general and steam plant depreciation follows a double declining balance (DDB) schedule 

with a 7-year period for the general plant and 20 year period for the steam plant. The project 

investment schedule during construction has 32%, 60%, and 8% spent over the course of 3 

years [35]. Once completed, the facility startup time is half a year. During the startup time, 

the facility generates 50% of its full capacity revenue but incurs 75% of variable and 100% 

of fixed costs. The internal rate of return (IRR) is set at 10%, and the income tax rate is 39%. 

A standard 15% contingency factor was included to consider any unexpected and unforeseen 

expenses during the startup period [29, 39].  
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Table 5: Major biorefinery economic analysis assumptions [28] 

Plant life (years)                                                                                                              30 

Operating hours per year                                                                                                7884 

Equity                                                                                                                             100% 

General/Steam plant depreciation                                        double declining balance (DDB)                                

Depreciation period (years) 

General plant                                                                                                                   7 

Steam/electricity                                                                                                             20 

Construction period (years)                                                                                         2.5 

     Fraction of investment in year -3(%)                                                                         8.00 

     Fraction of investment in year -2(%)                                                                         60.00 

     Fraction of investment in year -1(%)                                                                         32.00 

Start-up time (years)                                                                                                       0.5 

Revenues (% of normal)                                                                                                 50% 

Variable costs (% of normal)                                                                                          75% 

Fixed cost (% of normal)                                                                                                100% 

Internal Rate of Return                                                                                                    10% 

Income tax rate                                                                                                                 39% 

 

 Annual operating costs include the cost for feedstock, natural gas, solvent, and waste 

utilities. Fixed costs include labor, equipment maintenance, and capital depreciation. 

Feedstock could have a great influence on the MFSP. In this analysis, the feedstock cost is 

assumed to be $66 dry tonne -1 [9]. Prices of natural gas and electricity ($5.59 GJ-1 and $79 

MWh-1) are obtained from the Energy Information Administration (EIA) database [40]. 

Prices of other raw materials are obtained from previously published literature [9, 41-43]. 

3.1 Sensitivity analysis 

 Some process parameters might vary during operation of the SL plant and facility. 

Therefore, a sensitivity analysis is employed to evaluate any impact of parameter changes on 

the MSFP. In this analysis, the parameters considered are product fuel yield, fixed capital 

investment, IRR, feedstock cost, income tax rate, working capital, and hydrotreating cost. 

Sensitivity analysis is conducted by assuming some key range process parameters. A fairly 

large range is taken into account for a potential variation on the feedstock price. The range 
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employed is (-50% to 100%). For all other parameters, a ±20% range is used. MFSP is 

estimated for the base case, the high-end, and the low-end values for each parameter.  

 The sensitivity analysis is conducted by evaluating the MSFP after changing one 

parameter, while the rest remain fixed. This approach is necessary for giving a clear 

understanding of the impact of each individual parameter. In practice, several parameter 

values would vary simultaneously but a multivariate sensitivity analysis is not evaluated in 

this study.  

 

4. Results and discussion 

4.1 Mass and energy balances 

 The process model estimates that a 2000 dry tonne feedstock per day plant produces 

439 dam3 of liquid fuel per day, for which 364 dam3 of MWO and 76 dam3 of HWO. These 

results translate to a fuel yield of 0.691 dam3 dry tonne-1 feedstock. The simulation also 

provides estimates for utility usage. Cooling make-up water and boiler feed water are the 

major uses of water in the plant, totaling 23.3 tonne h-1. Process off-gases are combusted to 

provide process heat with excess heat used for superheated steam generation. Most of the 

process heat is consumed by the SL reactor [43-47]. Generated steam is mainly used for two 

different purposes, which includes heating source in the process and electricity generation. 

Even though electricity is being produced in the steam plant, the process is not self-sufficient 

in electricity. Therefore, the facility imports electricity. The largest portion of the electricity 

is used for SL since pumping Pinewood into the reactor requires a great amount of energy. 

Table 6 shows a summary of the process modeling results. 
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Table 6: Summary of process modeling results 

PineMarwood rate (dry tonne day-1)                                                                                       2000 

Overall process yields 

    MWO (dam3 year-1)                                                                                                              364        

    HWO (dam3 year-1)                                                                                                               76 

Water usage                                                                                                                                

     Boiler feed water (tonne day-1)                                                                                           323 

     Cooling water makeup (tonne day-1)                                                                                  730 

Electricity usage                                                                                

      Electricity required (MW)                                                                                                 9.1 

      Electricity generated (MW)                                                                                               3.0 

      Purchased electricity (MW)                                                                                               6.1 

 

4.2 Cost analysis 

Major economic results are shown in Table 6 and 7. The MFSP of both MWO 

(MWO) and HWO is estimated to be $ 0.94/gallon. The 2000 dry tonne day-1 plant requires a 

TPEC of $65 M and a TIC of $196 M. The major contributor to this cost is the SL plant, 

accounting for 62% of the fixed capital cost, which is mainly due to the higher cost of 

pressure vessels for the SL reactor. Steam generation accounts for 25% of the capital cost. 

The flow separation accounts for 13%. SL is still in an early development stage, and the 

technology employed in future plant construction could require a significantly different 

capital investment than estimated in this analysis. The FCI was varied in the sensitivity 

analysis to better estimate any potential risk and impacts on the MFSP.  
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Table 7: Economic analysis results (all results in 2011 dollars) 

Total purchased equipment cost (TPEC)                                    100% TPEC                   65M$                                                                                                  

Direct installed cost (DIC)                                                          302% TPEC                 196M$                                                                                                  

Indirect installed cost (TIC)                                                        126% TPEC                   82M$                                                                                                  

Fixed capital investment (FCI)                                                   428% TPEC                 282M$                                                                                                  

Working capital                                                                           15% TPEC                    50M$                                                                                                  

Land                                                                                               6% TPEC                      6M$                                                                                                  

Total project investment (TPI)                                                    510% TPEC                331M$                                                                                                  

 

The total annual operating costs are evaluated at $110 M, and the feedstock accounts 

for 37% of operating cost, followed by fixed costs (14%) and capital depreciation (12%). 

Electricity and other utilities account for 3% of the annual operating costs. The operating cost 

constitutes 56% of the cost while the capital cost constitutes about 44%. SL constitutes about 

33% of the conversion cost. Different areas of contributions to operating costs are shown in 

Figure 3. This result is in agreement with the high capital cost of the SL reactor. Bio-crude 

upgrading and refining also contribute to more than 21% of conversion cost.  
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Figure 3: Annual operating cost for producing MWO and HWO from pinewood with 

hydrocarbon solvent via SL 

 

Table 8: Major economic analysis results (all results are in 2011 dollars) 

                                                                                                                                               

M$ 

Fixed capital investment                                                                                                  

    Solvent liquefaction                                                                                                   209                                           

    Steam generation                                                                                                       66 

    Fractionation                                                                                                              45 

    Auxiliaries                                                                                                                  23 

Total fixed capital investment                                                                                        343 

Annual operating cost 

    Feedstock                                                                                                                    43.4 

    Natural gas                                                                                                                  6.7 

    Waste disposal                                                                                                            4.1 

     Electricity and other utilities                                                                                      3.9 

Fixed costs                                                                                                                      17 

Average income tax                                                                                                        8 

Average return on investment                                                                                         25.6 

Total annual operating cost                                                                                             110 

MFSP, $/gallon                                                                                                               0.94 
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 4.3 Sensitivity analysis results 

Results of the sensitivity analysis are shown in Figure 4. The results obtained are 

based on ±20% changes to the parameter values except for the feedstock cost for which a 

larger range (-50% to +100%) is used to account for its price uncertainty. Figure 4 illustrates 

that product yields and feedstock cost have the greatest impact on MFSP. The ± 20% 

variation in fuel yields result in a MSFP range of $0.80/gallon to $1.19/gallon. Different 

factors could impact the final product yield, including bio-crude yield and separation 

efficiencies. In this analysis, the yield of hydroprocessing is calculated based on experimental 

data rather than assumptions. The results obtained from the sensitivity analysis showed the 

necessity of conducting further experiments to better understand the yields of bio-crude 

production [48-55].  

 

Figure 4: Sensitivity analysis of the minimum fuel selling price to select technical and 

economic parameters.  
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Pinewood prices could vary significantly based on availability and demand. If the 

feedstock can be purchased at a cost of $33 dry tonne-1, the sensitivity analysis demonstrates 

that the MFSP can be as low as $0.80/gallon. On the other hand, if the feedstock was 

purchased at $132 dry tonne-1, the MFSP would increase to $1.19/gallon. The next sensitive 

parameters in terms of impact to the MSFP are the fixed capital investment and IRR. A 20% 

increase in fixed capital investment and IRR will result in 8% and 7% increase in MFSP 

respectively. 

5. Conclusions 

This techno-economic analysis investigated the minimum fuel selling price for 

medium wood oil and heavy wood oil fuels from SL of pinewood based on an experimental 

study conducted on a pilot scale. It is concluded that SL of pinewood for future upgrading to 

bio-oil is a promising pathway for the production of biofuels. The minimum fuel selling price 

for medium wood oil and heavy wood oil produced from SL is economically viable and 

competitive with petroleum-derived transportation fuels. The sensitivity analysis 

demonstrated that the MFSP is the most sensitive to product fuel yield. Parameters like fixed 

capital investment, IRR, and feedstock also have great influence on the MFSP.  
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CHAPTER 4. GENERAL CONCLUSION 

 

Cavitation phenomena were investigated in both ball and butterfly valves using the 

commercial software ANSYS FLUENT. This study evaluated the possibility of reducing 

vapor volume fraction (cavitation) in both valves by respectively setting design constraint for 

each one. The major design parameters were determined, a design of experiments provided a 

response surface, which was optimized for an optimal design. An adaptive multiple-objective 

design was used in FLUENT to determine the optimal design. The best candidate for the 

optimal design of each valve was found although they did not meet all the constraints set by 

the designer. This study is a good foundation and a promising route for producing an optimal 

design to reduce cavitation using computational fluid dynamics techniques.  

The techno-economic analysis of solvent liquefaction of pinewood for medium wood 

and heavy wood oil fuels was investigated. The minimum fuel selling price was estimated for 

both medium wood oil and heavy wood oil; different parameters influencing the fuel price 

such as product fuel yield, feedstock, fixed capital investment, and internal rate of return 

were examined. Solvent liquefaction of pinewood for future upgrade to bio-oil is could be a 

promising pathway to produce biofuels. The minimum fuel selling price for medium oil and 

heavy wood oil produced via solvent liquefaction is economically viable and competitive 

with petroleum-derived transportation fuels.  

 

 


	2017
	A numerical investigation of cavitation in valves and techno-economic analysis of Pinewood solvent liquefaction
	Daudet Nsabengo Nzombo
	Recommended Citation


	tmp.1510777811.pdf.NUgnr

