
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

The development of carbon nanomaterials
enhanced potassium sensor and glucose sensor for
applications in wearable sweat-based sensing
Qing He
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
He, Qing, "The development of carbon nanomaterials enhanced potassium sensor and glucose sensor for applications in wearable
sweat-based sensing" (2017). Graduate Theses and Dissertations. 16101.
https://lib.dr.iastate.edu/etd/16101

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F16101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16101?utm_source=lib.dr.iastate.edu%2Fetd%2F16101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


  

 

 

The development of carbon nanomaterials enhanced potassium sensor and glucose 

sensor for applications in wearable sweat-based sensing 

 

 

by 

 

Qing He  

 

 

 

A thesis submitted to the graduate faculty 

 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Major: Mechanical Engineering 

 

Program of Study Committee: 

Jonathan C. Claussen, Major Professor 

Meng Lu 

Stuart J. Birrell 

 

 

 

 

 

 

 

Iowa State University 

 

Ames, Iowa 

 

2017 

 

 

Copyright © Qing He, 2017. All rights reserved.
 



ii 

 

TABLE OF CONTENTS 

              Page 

ABSTRACT………………………………. .............................................................. iv 

CHAPTER 1  INTRODUCTION .......................................................................... 1 

 References ......................................................................................................... 5 

CHAPTER 2  INKJET PRINTED GRAPEHNE ELECTRODE WITH  

 THERMAL ANNEALING .................................................................................. 8 

 

 Methodology ........................................................................................................ 8 

 Graphene electrode fabrication ............................................................................ 9 

 Reference  ......................................................................................................... 10 

CHAPTER 3 ION SELECTIVE SENSOR CHARACTERIZATION ................. 12 

 Background and theory ........................................................................................ 12 

 Traditional liquid junction ion selective electrode ............................................... 14  

 All solid state ion-selective electrodes ................................................................. 15  

 ISE characteristics ................................................................................................ 17  

  Linear sensing range and response slope ....................................................... 17 

  Detection limit  .............................................................................................. 18 

  Response time ................................................................................................ 19 

  Selectivity ...................................................................................................... 20 

  Stability and reproducibility .......................................................................... 21 

 References  ......................................................................................................... 23 

CHAPTER 4  ENABLING INKJET PRINTED GRAPHENE FOR ION  

SELECTIVE ELECTRODES WITH POST-PRINT THERMAL ANNEALING .... 25 

  

 Introduction  ......................................................................................................... 25 

 Experimental section  ........................................................................................... 26 

 Results and discussion  ........................................................................................ 30 

 Conclusions  ......................................................................................................... 42 

 References  .........................................................................................................     44 

CHAPTER 5  SUMMARY AND CONCLUSIONS ............................................. 47 

 References  ........................................................................................................... 49 

 



iii 

 

ACKNOWLEDGMENTS 

 

I would like to thank my major professor, Dr. Jonathan C. Claussen, and my committee 

members, Dr. Stuart J. Birrell and Dr. Meng Lu, for their guidance and support through the 

course of research. I am grateful for the opportunity to contribute such interesting research. 

Thanks for Dr. Jonathan C. Claussen’s help and support through my graduate study. 

Thanks for my friends and lab mates Suprem Das, Shaowei Ding, Allison Cargill, Nate 

Garland, Bolin Chen, John Hondred, Kshama Parate, and Loreen Stromberg who have 

encouraged me and assisted in the research during my graduate study.  

In addition, I would like to thank my family for their love and support through all those 

years. Thanks for my parents who are the constant source of love and support. Thanks for my 

cousins, aunt and uncle for giving me encouragement and advices through this endeavor. I 

would like to express my heart-felt gratitude to my family.  

 

 



iv 

 

ABSTRACT 

 

Inkjet printed graphene (IPG) has recently shown tremendous promise in reducing the 

cost and complexity of graphene circuit fabrication.  In this work, we fabricate an ion selective 

electrode (ISE) with IPG for the first time.  A thermal annealing process in a nitrogen ambient 

environment converts the IPG into a highly conductive electrode (sheet resistance changes 

from 52.8 ± 7.4 MΩ/☐  for unannealed graphene to 172.7 ± 33.3Ω/☐   for graphene annealed 

at 950°C).  Raman spectroscopy and field emission scanning electron microscopy (FESEM) 

analysis reveals that the printed graphene flakes begin to smooth at an annealing temperature 

of 500°C and then become more porous and more electrically conductive when annealed at 

temperatures of 650°C and above.  The resultant thermally annealed, IPG electrodes are 

converted into potassium ISEs via functionalization with a polyvinyl chloride (PVC) 

membrane and valinomycin ionophore.   The developed potassium ISE displays a wide linear 

sensing range (0.01mM to 100mM), a low detection limit (7 μM), minimal drift (8.6  10-6 

V/s), and a negligible interference during electrochemical potassium sensing against the 

backdrop of interfering ions [i.e., sodium (Na), magnesium (Mg), and calcium (Ca)] and 

artificial eccrine perspiration.  Thus, the IPG ISE shows potential for potassium detection in a 

wide variety of human fluids including plasma, serum, and sweat. 
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CHAPTER 1 

INTRODUCTION 

 

Optical, piezoelectric and electrochemical based sensors have been widely used for 

detecting  analytes in a wide variety of fluids1.Electrochemical sensing is a low cost and rapid 

sensing modality that is conducive to in field sensing or point-of-care sensing applications.2 Hand-

held electrochemical sensors have long since been developed and commercialized for blood 

glucose monitoring3. However, the intrusive sample collecting methods of blood which includes 

pricking the finger with a lancet has impeded some patients from properly and consistently 

monitoring their blood glucose levels.3-4  Wearable sensors have drawn considerable attention 

owning to their non-invasive nature and the capability of continuous monitoring of patients’ 

biological information.5-7  Recent research has shown promise in developing wearable sweat 

sensors for fluid analyte monitoring including analyzing electrolyte such as sodium8, chloride9, 

interleukin-610, cortisol11.  Such sweat-based biosensors could be used to improve athletes’ training 

efficiency by monitoring hydration and fatigue levels. Moreover, continuous sweat monitoring 

could provide valuable personalized information which would allow individuals to change their 

lifestyle and maintain an optimal heath status. However, unlike well-developed wearable physical 

sensors like strain sensors12, heart rate sensors13 and motion sensors14-15, biochemical analysis of 

sweat is still in its infancy and only limited commercialized wearable sweat sensors are available. 

Indeed, wearable chemical sensors have been developed for monitoring fluid analytes in 

tears16, saliva17, and sweat18. Among these sensors, electrochemical sensors are perhaps the most 

promising due to their ability to continuously monitor and quantify concentrations of target analyte 

even in turbid solutions19-21. Furthermore, human sweat can provide plentiful health status 
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information22. For example, abnormal sodium, lactate, ammonium, and/or calcium levels in sweat 

can indicate electrolyte imbalance18, cystic fibrosis23, physical stress24, osteoporosis25 and bone 

mineral loss26. Continuous monitoring of these biological target levels can help patients obtain 

physiological balance. However, continuous monitoring of sweat analytes requires the sensors to 

be small in size, lightweight and mechanically flexible27. Consequently, the challenges of properly 

designing and fabricating biosensors without comprising their electronic and electroactivity 

functionalities have impeded their implementation. Moreover, the fabrication of high resolution 

metal circuits is challenging and typically entails the development of meandering thin metal films 

on flexible substrates fabricated with cleanroom technology 28.  Such techniques and devices are 

costly and hence not appropriate for sweat sensors that need to be regularly replaced/disposed as 

the biorecognition agent denatures the sensor sensitivity diminishes.  Hence, a lost-cost, alternative 

to creating flexible electrical circuits with thin metal films is needed.  One solution to this 

conundrum is the use of printed carbon nanomaterials as the electrochemical, biosensor 

transduction element in lieu of metal circuits.29-31 

Printing technologies such as gravure and inkjet printing are providing revolutionary 

methods to manufacture cost-effective flexible sensors and electronics32-33. Compared to 

traditional labor extensive photolithography, printing technologies eliminate the need for 

photomasks or stencils and do not waste materials such as in spin coating.  Consequently, the 

printing technologies are well-suited for economical, scalable manufacturing of electronics on 

flexible surfaces and lager surfaces (e.g., sheets of polymers from roll-to-roll manufacturing 

equipment)34-35. Recent research has helped shown the promise of using printed nanomaterials in 

diverse applications including pressure sensors36-37, radio frequency identification tags (RFID)38-

39, solar cells40, light emitting diodes (LED)41 and transistors42, chemical sensors43, etc. 
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The contact printing methods such as gravure printing, gravure-offset printing, 

flexographic printing, micro-contact printing and roll to roll printing involve making pre-patterned 

molds that contact the substrate during the printing 41, 44-47. Each new pattern needs new pre-

patterned parts which makes it costly to change the pattern. Unlike traditional contact printing, 

non-contact printing (e.g., inkjet printing, dispense printing) deposits solutions via 

openings/nozzles from cartridges or syringes that are rastered across a surface in a programmed 

manner. The inkjet printing techniques have attracted much attention because of the simple 

fabrication processes, high speed, lower material wastage rate, and high resolution (~50 μm).35, 48-

51..  

The conducting materials are the core functional component of printed electronics. 

Multiple conducting materials have been developed as inkjet printable ink, such as metal 

particles49, crystalline organic conducting materials52, conducting polymers53 and carbon 

nanomaterials54-55. Due to the its remarkable electron mobility at room temperature, high 

flexibility, and high tensile strength and  Young’s modulus and inkjet printed is being researched 

for potential use in flexible electronics or for use as a replacement for ITO33, 49, 53. Compared to 

the traditional graphene grown through chemical vapor deposition, inkjet printed graphene flakes 

provides a cost effective and simplified route to graphene circuit design. Furthermore, the graphene 

being inkjet printed could be rapidly produced in large batches via low cost solvent-exfoliation 

processes.31  

Herein we demonstrate a solid-state ion selective sensor on thermally annealed, inkjet 

printed graphene.  The developed ISE displays a wide linear sensing range, low detection limit 

minimal drift, and selectivity comparable with other potassium ISE sensor.   These results are 

discussed in the following sections of this manuscript.  Also, the data and writing from our 
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manuscript titled “Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Posttprint 

Thermal Annealing” published in the journal of ACS Applied Materials & Interfaces is used 

throughout the remaining portions of this thesis. 
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CHAPTER 2 

INKJET PRINTED GRAPHENE ELECTRODE WITH THERMAL ANNEALING 

 

Methodology 

Inkjet printing is increasingly being used to fabricate flexible electronics on large area 

surfaces. Inkjet printing is adaptable, involves less steps compare to other printing methods, is easy 

to change patterns for mass manufacturing, and can control the amount of material that deposit on 

the substrate. Different inks have been developed. Typically metal nanoparticle dispersions cannot 

keep stable in DI water and ordinary organic solvenst1-2. Consequently, stabilizers are needed to 

chemically modify the particles and disperse them1. However, the stabilizer usually degrades in a 

couple years, and the metal can oxidase after printing1-2. Graphene is a promising material for 

inkjet printable electronics due to its good electrical conductivity, stability, and dispersibility in 

organic solvents3-5. Moreover, inkjet printed graphene which is produced by liquid phase 

exfoliation provides a cost effective method for graphene processing,6unlike costly and complex 

conventional graphene processing methods that use chemical vapor deposition7, sublimation of Si 

atoms by heat treatment of silicon carbide8, or segregation from metal substrates.9  

The proper ink and jetting properties are critically important to proper inkjet printing1, 10. 

Factors such as ink viscosity, surface tension, density as well as nozzle diameter can affect the 

formatting of the liquid droplet10. The lack of properly dispersed molecules or nanoparticles in the 

ink can potentially cause issues as well. To improve the printing stability and eliminate 

agglomeration of particles within the nozzles, ink particles dispersed in the ink should be no larger 
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than 1/50 of the nozzle diameter11.  In our work, we used a 0.8 μm syringe filter to eliminate larger 

particles from the ink and to prevent nozzle clogging12. 

During the printing, the distance between the substrate and printing nozzles needs to be 

coordinated to ensure a homogenous and high resolution printed pattern. The distance from the 

substrate must be close to the substrate to eliminate the distribution from the environment and 

diversion of the drop ejection trace, while a substrate too close to the nozzles causes the secondary 

drops to scatter off due to the initial drop jetting pressure during the printing of the primary drop1, 

10.  

The “coffee ring effect”13 is among the crucial phenomena affecting the uniformity of the 

inkjet printed patterns1, 13. This phenomenon happens when ink droplet contains dispersed particles 

evaporates on a surface and leave a higher density of particles around the edge or perimeter of the 

droplet11, 14.   It is caused by the different evaporation rates between the edge and the center of the 

droplet. In other words,tThe ink solvent evaporates faster from the edge than the center, while the 

solvent that evaporates from the edge it be refilled by the solvent from the center1, 13. To eliminate 

the “coffee ring effect”, the droplet’s geometry need to be “frozen” after it forms a homogenous 

film on the substrate1. This can be accomplished by increasing the environmental temperature and 

using an ink solvent within a lower boiling point and heat of vaporization.  Consequently, a mixture 

of 85% cyclohexane and 15% Terpineol was used as the solvent to disperse the graphene. And the 

substrate temperature was set as 50°C to accelerate the evaporation and “freeze” the droplets on 

the substrate during the printing. 

Graphene electrode fabrication 

In our work, graphene electrodes were fabricated via inkjet printing with a Dimatix Materials 

Printer (DMP 2800, Fujifilm)12. Single layer graphene powder (ASC Material FN1P0005) was 
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mixed in solvent composite of 85% cyclohexanone (Sigma-Aldrich 398241) and 15% terpineol 

(Sigma-Aldrich T3407).  After mixing, probe sonication for thirty minutes followed by bath 

sonication for several hours to disperse the graphene. The ink was filtered using a 0.8 μm syringe 

filter (GE Whatman), loaded into a 10 pL Dimatix printer cartridge, and printed on silicon wafers 

(Silicon Quest International). Sixty layers were printed with drop spacing of 20 μm, substrate 

temperature of 50°C, and cartridge temperature of 30°C. Electrodes were then thermally annealed 

under flowing nitrogen at six different temperatures, 200°C, 350°C, 500°C, 650°C, 800°C, and 

950°C for 1 hour. Resistance measurements across the electrode after annealing at 950 °C were 

approximately 75 Ω.  
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CHAPTER 3 

SOLID STATE ION SELECTIVE SENSOR CHARACTERIZATION 

 
Background and theory 

Solid state ion selective sensors show their potential to be wearable sensors for sweat Ph1, 

ammonium2, sodium3, potassium4-5, calcium6 sensing due to their simple fabrication and test 

method, wide sensing range, fast response, high sensitivity and small size.  

Ion selective electrodes (ISEs) are electrochemical sensosr with a thin ion selective 

membrane as the recognition element. The principal component of ISEs is the potential difference 

response, which associated with permselective mass transfer of ions across a phase boundary. The 

selective membrane usually consists of a semi-permeable material which can control the ions 

passing through the membrane. The membrane separates the internal solution and the test solution 

and is responsible for the electromotive force (EMF) response and selectivity of the ISE. 

The potential of the individual ion selective electrode cannot be measured. An ISE is as a 

half-cell that must be used in conjunction with a reference electrode to form a complete 

electrochemical cell. The working electrode and reference electrode are immersed into a solution 

to make a galvanic cell. The potential response of the working electrode obeys the Nernstian 

equation while the reference electrode keeps the potential constant. Consequently, the measured 

result is the electromotive force (EMF), which is the potential difference between the working 

electrode (ion selective electrode) and reference electrode (Ag/AgCl electrode).  

The potential across the galvanic cell consists of a standard liquid junction ion selective 

electrode and a reference electrode with salt bridge can be considered as follows.  
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The EMF across the cell can be described by the equation shown below7.  

EMF = (E1 + E2 + E3 + E4 + E5) + EM + EJ = Econst + EM + EJ 

Since E1 to E5 are sample independent, the EMF is actually determined by the membrane 

potential and liquid junction potential at the interface between the salt bridge and sample solution. 

The liquid junction potential can be considered as the sum of integrals of all charged ions in the 

diffusion layer at the salt bridge and saturated KCl solution. The liquid junction potential can be 

minimized by filling the salt bridge with concentrated electrolytes of similar nobilities. Or, the EJ 

can be estimated by the Henderson equation. Consequently, the potential EMF is mainly 

determined by the EM and the EM can be further explained by the following equation  

EM = ESM+ED+EMI      ( 1 ) 

ESM represents the phase boundary potential at sample/membrane interface, ED represents the 

diffusion potential in the membrane and EMI is the membrane/inner filling solution interface phase 

boundary potential. Usually, EMI is constant since it is independent of sample solution and ED is 

zero. So it can be described as 

EM = ESM + Econst     ( 2 ) 

The ESM can be derived from the basic thermodynamic theory. The electrochemical 

potential of target ion I in solution phase is8 

𝜇𝐼̃ = 𝜇𝐼 + 𝑧𝐼𝐹𝛷      ( 3 ) 
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F is the Faraday constant, 𝑧𝐼 is the ion charge, 𝜇𝐼 is the chemical potential and 𝛷 is the 

electrical potential.  

𝜇𝐼 = 𝜇𝐼
0 + 𝑅𝑇 𝑙𝑛 𝑎𝐼      ( 4 ) 

The 𝜇𝐼
0 is the standard values of the chemical potential, R is the gas constant, and 𝑎𝐼 is the 

activity of target ion I. T is the temperature in Kelvins. The activity of target ion can be correlated 

to the concentration of target ion I 𝐶𝐼  through equation 𝑎𝐼 = 𝛾𝐼𝐶𝐼 . Consequently, the potential 

between membrane and solution 𝜑𝑆𝑀 can be derived from the electrochemical potential difference 

between solution and membrane as the following equation. 

𝜑𝑆𝑀 = 𝜙𝑀 − 𝜙𝑆 =
𝜇𝐼

𝑀−𝜇𝐼
𝑆

𝑧𝐼𝐹
=

𝜇𝐼
0,𝑀−𝜇𝐼

0,𝑆

𝑧𝐼𝐹
−

𝑅𝑇

𝑧𝐼𝐹
𝑙𝑛

𝑎𝐼
𝑀

𝑎𝐼
𝑆      ( 5 ) 

To make 
𝜇𝐼

0,𝑀−𝜇𝐼
0,𝑆

𝑧𝐼𝐹
−

𝑅𝑇

𝑧𝐼𝐹
ln 𝑎𝐼

𝑀 = 𝜑0The equation can be further simplified as below: 

𝜑𝑆𝑀 = 𝜑0 +
𝑅𝑇

𝑧𝐼𝐹
𝑙𝑛 𝑎𝐼

𝑆       ( 6 ) 

The equation shown above is the Nernst equation. The measured potential differences 

between ISE and reference electrode are linearly related to the logarithm of the target ion activity 

in solution.  

Traditional liquid junction ion selective electrodes 

Traditional liquid junction ion selective electrodes usually contain an internal solution or 

gel. The structure of the ion selective electrode is shown in Figure 1 a. In order to obtain a 

reproducible and stable electrical potential at the interface between the membrane and the internal 

solution, the internal solution contains an ion to which the membrane is selective. In this ISE 

system, the membrane and internal solution are responsible to conduct the ion from the test 

solution. An Ag/AgCl internal electrode is applied between the conductive wire and the internal 

solution in the working electrode to obtain the reversible transduction from the ionic conductivity 
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to the electronic conductivity. In a conventional ISE, charge transfer is realized by ion transfer 

across the membrane into the internal solution, charge is carried by ions in test solution and internal 

solution. Between the interface of internal solution and Ag/AgCl electrodes, revisable redox 

reaction happens between Ag atoms and Ag+ cations which produce electrons. In this way, when 

all charge transfer processes are fast enough, no “blocking” between interfaces happens and the 

electrode is non-polarized. 

 

Figure 1. The diagram shows the structure of traditional liquid junction ion selective electrodes and solid 

state ion selective electrode.  

All-solid-state ion-elective electrodes 

Since it is difficult to minimize the traditional liquid junction ISEs, the solid state ISEs are 

developed which replace the inner Ag/AgCl reference electrode and inner electrolyte solution with 

an electronic conductor which is shown in figure 1 b.  The electrodes are functionalized by directly 

depositing the ion selective membrane to the solid transducer layer of the electrode. The charge 

transfer is accomplished by both ionic and electronic conductivities. The solid-state ion selective 

electrode replaces the internal solution and internal reference electrode in the liquid junction ion 

selective electrode with a solid-state transducer layer.  

The first all-solid-state ion selective electrode had been introduced as a coated wire 

electrode (CWE) which was functionalized by directly drop coating the ion selective membrane 

a b 
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on the metal wire electrode9. The CWEs show poor long-term reproducibility and stability. The 

instability was caused by the “blocking” between the metal wire and membrane interface. The 

“blocking” is attributed to  the polarized electrode with a low transduction rate from ionic 

conductivity to electronic  conductivity between the interface10. Therefore, materials such as 

hydrogels and conductive polymers have been explored as the transducer layers between the 

interface. Hydrogel materials as the transducer layers have shown smaller drifts than CWE 

sensors11. However, the hydrogel based ISEs can’t be considered as the true SC-ISE since the 

hydrogel shrink or swell when the environment humidity changes12. Conductive polymers, such 

as poly(pyrrole) (PPy)13-14, poly(aniline)(PANI)15-16, poly(thiophene) (PT)17-19, 

poly(benzopyrene)20, polyacrylate21 , and their derivatives, have been commonly used as the 

transducer layers due to their suitable redox and ion exchange capabilities which lead to high 

stability of the ISE and minimized the polarizability of the solid contact. However, the polymer 

transducers sensitive to oxygen, CO2, pH and light, which introduce interferences and decrease the 

shelve life of the electrodes22.  

Carbon based materials have been investigated as the transduction layer on the ISE to 

improve the sensing performance. Graphite with surface-confined redox buffer systems have been 

used in SC-ISEs . Moreover, recently carbon based nanomaterials with high surface area such as, 

graphene, carbon nanotubes (CNTs)23-24, three dimensionally ordered macroporous carbon 

(3DOM carbon)25-26, and fullerenes27, have been used as the transduction layer. These electrodes 

exhibited Nerstain slope, good selectivity, low detection limit, short response time and stability 

that are comparable to other SC-ISEs. Moreover, unlike their conductive polymer counterparts, 

these electrodes provide better stability for infield applications due to their insensitivity to the 

oxygen, CO2, pH and light28. 
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ISE characteristics 

For practical use of ISEs, the sensing range, response slope, selectivity, response time, 

stability, and reproducibility of the electrodes are crucial indexes to estimate the sensing 

performance of electrodes. By spiking the DI water with the target ion, the potential response 

verses time, and, consequently, the calibration curve (potential verse logarithm of potassium ion 

concentration) could be obtained as shown in Figure 2.  

 

Figure 2. (a) Potential response of a potassium ISE verses time. Calibration curve of a ISE potential 

response verses logarithm potassium concentration of target ion.   

Linear sensing range and response slope 

The Linear sensing range and response slope can be obtained from the curve of the cell 

EMF verses the logarithm of the single ionic activity of a given species (calibration curve). As 

shown in figure 3, the linear sensing range is the linear part of the calibration curve. The response 

slope follows the Nerstain equatio as shown above. 

 



18 
 

 

 

Figure 3. (a) The linear sensing range of the potassium ISE was shown the in the calibration curve where 

the potential response the linearly corresponds to the logarithm concentration of potassium concentration 

in the test solution.  (b) The response slope is the slope of the linear sensing range which indicates the 

sensitivity of the sensor. The response slope obeys the Nerstain equation, ideally, at 25 °C the response 

slope is 59.18mV/decade.  

Detection limit 

As shown in the figure 4, detection limit is taken as the intersection of final low 

concentration level segments (region 1) and the extrapolated linear range of the calibration curve 

(region 2).  

 

Figure 4. Detection limit that is determined from the calibration curve.  
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To ensure the reliability of the calculated detection limit, three measurements are required 

to provide the calibrating curve and calculate the detection limit. Last five data points in both low 

concentration level segment (region 1) and linear sensing segment (region 2) should be taken to 

determine the parameters. The determined detection limit should be provided with a standard 

deviation.  

Response time 

The response time of an ISE shows the time an ISE takes to reach the steady value of the 

EMF when the sample composite or concertation is changed.  The characteristic is an important 

parameter to indicate the throughput of an ISE. The response time is defined as the time which is 

sufficient for 90% of the full potential changes. Figure 5 shows the determination of the response 

time.  

 

Figure 5. the response time is defined as the time from the target ion concentration begin to change to the 

sensor response reaches 90% of the full potential change.  
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Selectivity 

The selectivity of an ISE is defined by the ability of electrode to distinguish the primary 

ion from other interference ions. The selectivity for each interference ion can be characterized with 

the thermodynamically founded selectivity coefficient KI,J
pot . The selectivity coefficient KI,J

pot  was 

originally derived from the empirical Nicolsky-Eisenman equation.  

𝐸𝑀𝐹 = 𝐸𝐼
0 + (𝑅𝑇/𝑧𝐼𝐹) 𝑙𝑛(𝑎𝐼 + ∑ 𝐾𝐼𝐽

𝑝𝑜𝑡𝑎𝐽

𝑧𝐼/𝑧𝐽 )   ( 7 ) 

Where EMF the ion selective sensor’ sensing response to the tested solution. 𝐸𝐼
0 is the 

initial potential of the sensor, R is the gas constant, F is the Faraday constant, and T is the 

temperature in Kelvins. And 𝑎𝐼 is the activity of target ion I, 𝑎𝐽 is the activity of target ion J, 𝑧𝐼 is 

the ion I charge, 𝑧𝐽 is the ion J charge. 

 

Fixed interference method and separation solution method are commonly used to the obtain 

the selectivity coefficient KI,J
pot  29. By using separation solution methods, the electrode’s potential 

response to ion I and J are measured in 0.1 M solution I and J separately in our work5. Each method 

is schematically outlined in Figure 6 a. The obtained potential responses to ion I, EI, and potential 

response to ion J, EJ, are used to calculate the selectivity coefficients based on the 

thermodynamically founded equation shown below. Then, the selectivity coefficient can be used 

to predict the response function in mixed samples.  

𝐾𝐼𝐽
𝑝𝑜𝑡 = 𝑒𝑥𝑝[(𝐸𝐽

0 − 𝐸𝐼
0)𝑧𝐼𝐹/𝑅𝑇]      ( 8 ) 
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Figure 6. (a) Separation solution method to test the selectivity coefficient. In our work the ISE’s potential 

responses in 0.1 M primary ion I and interference ion J are measured and the interference coefficient was 

calculated. (b) Fixed interference method to test the selectivity coefficient. The ISE’s detection limits to 

primary ion in DI water and in 0.1M interference ion I are tested, and the selectivity coefficient can be 

calculated.  

Fixed interference methods is also based on the determination of EI and EJ from the 

measurement. The experiment steps are shown is Figure 6b. In practice, solution with constant 

concentration of an interference ion is spiked with primary ion until a Nerstian response to the 

primary ion is shown. By analysis the primary ion activity 𝑎𝐼 at this detection limit (𝑎𝐼(𝐷𝐿)) and 

the interfering ion activity in the background 𝑎𝐽 (𝑎𝐽(𝐷𝐿)), selectivity coefficient can be calculated 

by the equation listed below.  

𝑙𝑜𝑔 𝐾𝐼𝐽
𝑝𝑜𝑡 = 𝑙𝑜𝑔 𝑎𝐼(𝐷𝐿)/𝑎𝐽(𝐷𝐿)𝑧𝐼/𝑧𝐽     ( 9 ) 

 

Stability and reproducibility 

Drift is the slow non-random change in EMF of an ISE over time in a solution with constant 

composition and temperature.  Drift happens occurring over time indicates the initial potential or 

the sensing slope changes during the calibration. Drift hinders the converting of measured EMF to 

the ion concentration, which will put the reliability of the sensing result in question. The potential 
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stability of the SC-ISE is usually studied using constant-current chronopotentiometric 

measurements as noted by Bobacka17. In short, a constant current (e.g., 1nA) is applied to the 

electrode for a short time (e.g., 60s) and then a constant current of 1nA is applied to the electrode. 

The drift can be derived from the potential change during the time the constant current be applied.  

  



23 
 

 

References 

1. Bandodkar, A. J.; Hung, V. W.; Jia, W.; Valdés-Ramírez, G.; Windmiller, J. R.; Martinez, A. G.; 

Ramírez, J.; Chan, G.; Kerman, K.; Wang, J., Tattoo-based potentiometric ion-selective sensors for 

epidermal pH monitoring. Analyst 2013, 138 (1), 123-128. 

2. Guinovart, T.; Bandodkar, A. J.; Windmiller, J. R.; Andrade, F. J.; Wang, J., A potentiometric 

tattoo sensor for monitoring ammonium in sweat. Analyst 2013, 138 (22), 7031-7038. 

3. Bandodkar, A. J.; Molinnus, D.; Mirza, O.; Guinovart, T.; Windmiller, J. R.; Valdés-Ramírez, G.; 

Andrade, F. J.; Schöning, M. J.; Wang, J., Epidermal tattoo potentiometric sodium sensors with wireless 

signal transduction for continuous non-invasive sweat monitoring. Biosensors and bioelectronics 2014, 54, 

603-609. 

4. Guinovart, T.; Parrilla, M.; Crespo, G. A.; Rius, F. X.; Andrade, F. J., Potentiometric Sensors Using 

Cotton Yarns, Carbon Nanotubes and Polymeric Membranes. Analyst 2013, 138 (18), 5208-5215. 

5. He, Q.; Das, S. R.; Garland, N. T.; Jing, D.; Hondred, J. A.; Cargill, A. A.; Ding, S.; Karunakaran, 

C.; Claussen, J. C., Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Post-Print Thermal 

Annealing. ACS Applied Materials & Interfaces 2017. 

6. Bergeron, M. F., Heat cramps: fluid and electrolyte challenges during tennis in the heat. Journal of 

science and medicine in sport 2003, 6 (1), 19-27. 

7. Bakker, E.; Bühlmann, P.; Pretsch, E., Carrier-based ion-selective electrodes and bulk optodes. 1. 

General characteristics. Chemical Reviews 1997, 97 (8), 3083-3132. 

8. Mikhelson, K. N., Ion-selective electrodes. Springer: 2013. 

9. Cattrall, R.; Freiser, H., Coated wire ion-selective electrodes. Analytical Chemistry 1971, 43 (13), 

1905-1906. 

10. Freiser, H., Ion-selective electrodes in analytical chemistry. Springer Science & Business Media: 

2012. 

11. Cosofret, V. V.; Erdösy, M.; Johnson, T. A.; Buck, R. P.; Ash, R. B.; Neuman, M. R., 

Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating 

heart. Analytical Chemistry 1995, 67 (10), 1647-1653. 

12. Bobacka, J., Conducting Polymer‐Based Solid‐State Ion‐Selective Electrodes. Electroanalysis 

2006, 18 (1), 7-18. 

13. Cadogan, A.; Gao, Z.; Lewenstam, A.; Ivaska, A.; Diamond, D., All-solid-state sodium-selective 

electrode based on a calixarene ionophore in a poly (vinyl chloride) membrane with a polypyrrole solid 

contact. ANALYTICAL CHEMISTRY-WASHINGTON DC- 1992, 64, 2496-2496. 

14. Kisiel, A.; Mazur, M.; Kuśnieruk, S.; Kijewska, K.; Krysiński, P.; Michalska, A., Polypyrrole 

microcapsules as a transducer for ion-selective electrodes. Electrochemistry Communications 2010, 12 

(11), 1568-1571. 

15. Evtugyn, G.; Belyakova, S.; Shamagsumova, R.; Saveliev, A.; Ivanov, A.; Stoikova, E.; Dolgova, 

N.; Stoikov, I.; Antipin, I.; Budnikov, H., Discrimination of apple juice and herbal liqueur brands with 

solid-state electrodes covered with polyaniline and thiacalixarenes. Talanta 2010, 82 (2), 613-619. 

16. Lindfors, T.; Szucs, J.; Sundfors, F.; Gyurcsanyi, R. E., Polyaniline nanoparticle-based solid-

contact silicone rubber ion-selective electrodes for ultratrace measurements. Analytical chemistry 2010, 82 

(22), 9425-9432. 

17. Bobacka, J., Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting 

Polymers as Ion-To-Electron Transducers. Anal. Chem. 1999, 71 (21), 4932-4937. 

18. Chumbimuni-Torres, K. Y.; Rubinova, N.; Radu, A.; Kubota, L. T.; Bakker, E., Solid contact 

potentiometric sensors for trace level measurements. Analytical chemistry 2006, 78 (4), 1318. 

19. Bobacka, J.; McCarrick, M.; Lewenstam, A.; Ivaska, A., All solid-state poly (vinyl chloride) 

membrane ion-selective electrodes with poly (3-octylthiophene) solid internal contact. Analyst 1994, 119 

(9), 1985-1991. 



24 
 

 

20. Lisak, G.; Wagner, M.; Kvarnström, C.; Bobacka, J.; Ivaska, A.; Lewenstam, A., Electrochemical 

Behaviour of Poly (benzopyrene) Films Doped with Eriochrome Black T as a Pb2+‐Sensitive Sensors. 

Electroanalysis 2010, 22 (23), 2794-2800. 

21. Jaworska, E.; Kisiel, A.; Maksymiuk, K.; Michalska, A., Lowering the resistivity of polyacrylate 

ion-selective membranes by platinum nanoparticles addition. Analytical chemistry 2010, 83 (1), 438-445. 

22. Lindfors, T., Light sensitivity and potential stability of electrically conducting polymers commonly 

used in solid contact ion-selective electrodes. Journal of Solid State Electrochemistry 2009, 13 (1), 77-89. 

23. Düzgün, A.; Maroto, A.; Mairal, T.; O'Sullivan, C.; Rius, F. X., Solid-contact potentiometric 

aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins. 

Analyst 2010, 135 (5), 1037-1041. 

24. Hernández, R.; Riu, J.; Rius, F. X., Determination of calcium ion in sap using carbon nanotube-

based ion-selective electrodes. Analyst 2010, 135 (8), 1979-1985. 

25. Fierke, M. A.; Lai, C.-Z.; Bühlmann, P.; Stein, A., Effects of architecture and surface chemistry of 

three-dimensionally ordered macroporous carbon solid contacts on performance of ion-selective electrodes. 

Analytical chemistry 2010, 82 (2), 680. 

26. Lai, C.-Z.; Fierke, M. A.; Stein, A.; Bühlmann, P., Ion-selective electrodes with three-

dimensionally ordered macroporous carbon as the solid contact. Analytical chemistry 2007, 79 (12), 4621-

4626. 

27. Fouskaki, M.; Chaniotakis, N., Fullerene-Based Electrochemical Buffer Layer for Ion-Selective 

Electrodes. Analyst 2008, 133 (8), 1072-1075. 

28. Crespo, G. A.; Macho, S.; Rius, F. X., Ion-Selective Electrodes Using Carbon Nanotubes as Ion-

To-Electron Transducers. Anal. Chem. 2008, 80 (4), 1316-1322. 

29. Bakker, E.; Pretsch, E.; Bühlmann, P., Selectivity of potentiometric ion sensors. Analytical 

chemistry 2000, 72 (6), 1127-1133. 

 



25 
 

 

 

 

CHAPTER 4 

ENABLING INKJET PRINTED GRAPHENE FOR ION SELECTIVE ELECTRODES WITH 

POST-PRINT THERMAL ANNEALING ENABLING INKJET PRINTED GRAPHENE FOR 

ION SELECTIVE ELECTRODES WITH POST-PRINT THERMAL ANNEALING 

This thesis culminates in the results and discussion presented in this chapter.  This chapter 

was published in the journal of ACS Applied Materials & Interfaces under the title “Enabling 

Inkjet Printed Graphene for Ion Selective Electrodes with Post-print Thermal Annealing”. 

 

Introduction  

The incorporation of both single-layer and multi-layer graphene into electrodes has 

significantly improved the sensitivity, detection limit, response time, and biocompatibility of 

electrochemical sensors and biosensors.1-2 The enhanced performance of graphene-based 

sensors/biosensors3-7 are attributed to the unique and advantageous material properties of graphene 

including high electron mobility of up to 200,000 cm2 V−1 s−1, high nominal surface area of 2630 

m2 g−1, and high tensile strength of 42 N m−1 as well as the relative ease or conduciveness to 

functionalize graphene with biorecognition agents. Furthermore, the electrochemical properties of 

graphene and other graphitic materials in general (e.g., highly ordered pyrolytic graphite (HOPG), 

graphene oxide (GO), carbon nanotubes (CNTs) and graphite) can be enhanced by inducing edge 

plane like-sites/defects and defect site functional groups onto the carbon surface through a variety 

of techniques (e.g., plasma etching, ion bombardment, and wet etching) to increase heterogeneous 

electron transfer rates and hence improve sensitivity/detection limits of electrochemical sensors.8-

12 Additional graphene modification techniques such as nitrogen doping 13-14 and metallic 
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nanoparticle integration15-16 have also been developed to improve graphene sensor performance. 

Indeed the use of graphene and ‘modified’ graphene have shown tremendous promise for 

electrochemical sensing, but the high cost and complexity of graphene electrode fabrication 

(fabrication that often requires lithographic patterning and high temperature chemical vapor 

deposition in a vacuum chamber reactor) and subsequent chemical modification steps has impeded 

their implementation and commercialization in a wide variety of in-field and point-of-care 

applications.17 

  IPG has recently shown tremendous promise in reducing the cost and complexity of 

graphene circuit fabrication.18-19  Graphene used in inkjet printing can be synthesized via low cost 

solvent-exfoliation processes to rapidly produce large batches of graphene or graphene oxide 

flakes that can be subsequently solubilized and formulated into a printable ink.20  Furthermore, the 

ink jet printing process can be used to make microcircuits with line resolution of approximately 

60 μm—thus eliminating the need for UV lithographic techniques that utilize a pre-fabricated 

photomask with subsequent dry etching of active materials or screen printing techniques that use 

a pre-fabricated metal stencil to pattern surfaces with defined circuit geometries.21-22 Subsequently 

inkjet printing has been used for a wide variety of functional devices including thin film 

transistors,19, 23 acoustic actuators,24  dipole antennas,25 and sensors such as a NO2, Cl2 vapor 

sensor26 and a temperature sensor27.  Herein we develop, for the first time, a solid-contact ISE 

(potassium selective) with IPG. We further demonstrate how the thermal annealing in a nitrogen 

ambient can increase/enhance the electrical conductivity, porosity, and nitrogen doping of the IPG 

electrode parameters to improve the potassium sensing capability of the resultant ISE. 
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Experimental section  

Reagents 

Valinomycin (90%), Bis(2-ethylhexyl) sebacate (DOS), potassium tetrakis(4-chlorophenyl) borate 

(KTClPB), polyvinyl chloride PVC, tetrahydrofuran (THF, 99.8%), sodium chloride (NaCl), 

sodium sulfate (Na2SO4), sodium bicarbonate (NaHCO3), potassium chloride (KCl), magnesium 

chloride (MgCl2), sodium phosphate anhydrous monobasic (NaH2PO4), calcium carbonate 

(CaCO3) and ammonium hydroxide (NH4Cl) were procured from Sigma Aldrich (St. Louis, MO). 

Spiked sweat containing potential interfering electrolytes, including NaCl, Na2SO4, NaHCO3, 

KCl, MgCl2, NaH2PO4, CaCO3 and NH4Cl at physiological concentrations 28 were used in the 

experiments and spiked with potassium concentrations as stated. Artificial eccrine perspiration 

(stabilized at pH 4.5) was purchased from Pickering Laboratory with a listed concentration of ~ 

33 mM.  The artificial perspiration contains the following metabolites (uric acid, lactic acid, urea, 

ammonia), minerals (sodium, iron, nitrate, calcium, copper, sulfate, magnesium, potassium, zinc, 

chloride) and amino acids (glycine, L-histidine, L-serine, L-alanine, L-isoleucine, L-threonine, L-

arginine, L-leucine, L-tyrosine, L-asparagine, L-lysine, L-valine, L-aspartic acid, L-methionine, 

Taurine, L-citrulline, L-ornithine, L-glutamic, L-phenylalanine) in concentration levels found in 

real eccrine perspiration. 

Graphene ink formulation 

Inkjet printable, graphene-based ink was produced from exfoliated graphene powder, solvents, and 

the stabilizing polymer ethyl cellulose by modifying previously described methods.20, 22  Briefly, 

graphene ink batches (20 mL) were synthesized by vortex mixing single layer dispersible graphene 

(ACS Materials, “completely” reduced graphene oxidase obtained via the Hummer’s Methods) in 

a mixture of 85% cyclohexanone (Sigma-aldrich 398241) with 15% Terpineol (Sigma-Aldrich 
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T3407) for 1 min at high speed in a 25 mL falcon vortex tube. The initial concentration of graphene 

to solvent was set to 3.5 mg/ml ratio. Ethyl cellulose (Sigma-Aldrich 433837) was subsequently 

added to the mixture at a ratio of 3.5 mg/mL and the subsequent solution was vortex mixed for 5 

minutes.  The graphene ink was then poured into a 50-mL beaker and probe sonicated (Sonics 

Vibra-cell VCX-750 ultrasonic processor) at 50% amplitude 3 times for 30 min, bath sonicated for 

6 hours at high power, and finally filtered through a 0.45 µm syringe filter to break up and filter 

out large graphene particles and ensure a consistently smooth, jettable ink with a measured 

viscosity of 10 cP with a microVISC RheoSense viscometer. 

IPG electrode fabrication 

Graphene ink was inkjet printed via a Dimatrix Materials Printer (Model DMP 2800, Fujifilm) 

while the electrode patterns were designed in AutoCAD (Auto- desk, San Rafael, CA).  To print 

the ink, 3 mL of the formulated graphene ink was loaded into a Diamatrix printer cartridge with 

10 pL nominal drop volume nozzles. Printing was conducted on a 6” silicon wafer placed on the 

printer plate that was maintained at a temperature of 60C.  The printing speed (8 m/s as verified 

by the dropwatcher) was set by adjusting the nominal drop spacing (40μm) as well as the nozzle 

temperature (60°C), waveform, and voltage.  The total printed graphene ink layer thickness (i.e., 

50 printer passes) on the silicon was measured to be 3.5 µm per a surface profilometer 

measurement.   

Thermal annealing and characterization of printed graphene 

The IPG electrodes were subsequently annealed in a nitrogen environment at varying temperatures 

(200C, 350C, 500C, 650C, 800C and 950C) within a 2” compact split tube furnace (MTI 

Corp.) for 1 hour. Subsequent Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field 

emission scanning electron microscopy (FESEM), and electrical sheet resistance data were 
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acquired for unannealed and thermally annealed samples.  Raman spectroscopy was acquired with 

a Renishaw spectrometer microscope using a 488-nm excitation source (argon ion laser), a total 

acquisition time of 30 s (i.e., three acquisition times of 10 s each), and a 200 µW laser power 

illumination. The spectrometer was calibrated using an internal silicon reference prior to the 

measurements.  FESEM micrographs were obtained via a FEI Quanta 250 FE-SEM with an 

electron beam voltage of 10kV.  Electrical sheet resistance data were obtained from a signatone 

four-point probe. The measurements were taken at multiple spots (four different spots) on the 

sample surface and the average value of these measurements were plotted.  The XPS spectra were 

collected using a Kratos Amicus X-ray Photoelectron Spectrometer using an Al K excitation 

source (1486.7 eV). The corresponding photoelectron energies from the constituent elements were 

measured by subtracting the excitation energy from the scan and subsequently obtaining the 

binding energy survey scan. The N1s spectrum was analyzed for each distinctly annealed IPG 

electrodes.  A Shirley background fitting and Gaussian Lorentzian line peak fitting on the N1s 

peak spectrum was performed with a CasaXPS software package. 

Potassium ISE synthesis 

IPG electrodes were converted into potassium ISEs by depositing a potassium selective membrane 

onto the graphene.  The potassium selective membrane cocktail consisted of 1.0 wt% valinomycin, 

66wt% DOS, and 33wt% PVC. The components were dissolved in 1mL THF with concentration 

of 15wt%. Next, 10μL of cocktail was drop coated onto the IPG electrodes and subsequently dried 

in air for 6 hours.  

Potentiometric analysis 

The potentiometric measurements were performed using a CHI6273E electrochemical workstation 

(CHI Instruments, USA). An Ag/AgCl electrode (saturated in 3M KCl) was used as the reference 
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electrode.  The electrodes were conditioned in 0.01M KCl solution for 24 hours before 

electrochemical testing and dry stored at room temperature between testing experiments. The 

analytical performance of the potassium ISEs was analyzed in the concentration range of 10-8 to 

10-2 M via a KCl salt solution. The interfering tests were conducted by following similar protocols 

28 where DI water was first spiked with 0.001M KCl, next with  0.01 M KCl, and finally with 

artificial eccrine perspiration.  IPG ISE drift analysis was performed by constant current 

chronopotentiometry where the potential was recorded by applying a positive 1 nA current for 100 

s followed by a negative current of 1 nA for 100 s in a test vial containing 0.1M KCl solution.  The 

drift of the IPG ISE was derived  from the potential change during the recording time (ΔE/Δt) 

when the fixed current applied to the IPG ISE.29. 

Results and discussion 

Potassium IPG ISE fabrication strategy  

The potassium ISEs were developed on thermally annealed IPG per the process steps 

displayed in Figure 1.  First, graphene ink was formulated with single layer graphene dispersed in 

solvent (85% cyclohexanone / 15% terpineol) and stabilized with an ethyl cellulose polymer by 

both bath and probe sonication as noted in the Experimental Section and by modifying existing 

graphene ink recipes (Figure 1a).20, 22  The formulated graphene ink (viscosity of 10 cP) was inkjet 

printed via a Dimatrix Materials Printer onto a silicon wafer (with 300 nm silicon oxide) (Figure 

1b-d & Experimental Section).  Next, a split tube furnace was used to anneal the IPG at 200°C, 

350°C, 500°C, 650°C, 800°C and 950°C in a nitrogen environment (i.e., without oxygen) to 

prevent graphene oxidation during the annealing process (Figure 1e).  As shown in subsequent 

electrical and optical characterization experiments this annealing process is conducted to improve 

the electrical conductivity of the printed graphene and improve its electrochemical sensing 
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performance.  Finally, a potassium ion-selective cocktail (see Experimental section for details) is 

drop coated onto the circular working electrode comprised of IPG to complete the potassium ISE 

fabrication protocol.   

 
Figure 1. Schematic fabrication diagram of the IPG potassium ISE showing: (a) graphene ink 

formulation including bath sonication and probe sonication of the graphene powder mixed with 

the ethyl cellulose binder and solvents cyclohexanone and terpineol; (b) a syringe (0.45 µm mesh 

size) is used to filter the ink prior to cartridge loading; (c) loading of cartridge with graphene ink 

onto the inkjet printer; (d) inkjet printing of the graphene electrodes on a Si/SiO2 (300nm) wafer; 

(e) thermal annealing of the as-fabricated Si/SiO2/graphene electrodes in a nitrogen environment; 

and (f) integration of ion selective membranes on to the circular head of the annealed graphene 

electrode to form a potassium ISE on the printed graphene. 

 

Characterization of IPG electrodes 

Before potassium ISE immobilization, the IPG was thermally annealed and characterized 

via electrical measurements, Raman spectroscopy, and FESEM (Figure 2).  First, the electrical 

sheet resistances of the IPG electrodes annealed at six distinct temperatures, viz., 200°C, 350°C, 

500°C, 650°C, 800°C and 950°C were compared with the sheet resistance of the unannealed 

graphene electrode (Figure 2a). Figure 2a displays an unannealed IPG sheet resistance of 52.8 ± 
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7.4 MΩ/☐ (± 1 stdev.; n=4) that decreases with increasing annealing temperature until a plateau 

of approximately 147.7 ± 14.9Ω/☐ (± 1 stdev.; n=3) at 800°C is reached. The sheet resistance 

slightly increases to 172.7 ± 33.3Ω/☐ (± 1 stdev.; n=3) when the annealing temperature is raised 

to 950°C.  Thus, there is more than five orders of magnitude increase in the electrical conductivity 

as the graphene is annealed to a temperature of 800°C. This significant increase in electrical 

conductivity (equivalently, decrease in the sheet resistance) is most likely due to the further 

reduction of the reduced graphene oxide flakes, graphitic crystal formation, and nitrogen doping 

as verified in subsequent FESEM, Raman spectroscopy, and XPS analysis. 

 
Figure 2. Post-printing thermal annealing in a nitrogen ambient was used to process the 

graphene IDEs; (a) Electrical sheet resistance vs. annealing temperature of the graphene ISEs. 

(b) Raman spectra of unannealed and annealed IPG electrodes at distinct temperatures [200°C 

(red), 350°C (blue), 500°C (pink), 650°C (green), 800°C (dark blue) and 950°C (purple)].  The 

D, G, as well as 2D peaks are noted in each IPG electrode. FESEM images (lower row, c-i) show 

the microstructures of the unannealed and thermally annealed printed graphene (color coded 

boxes around FESEMs correspond to the annealing temperature color legend in Figure 2a and 

2b).  
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Raman spectroscopy was performed on both annealed and unannealed IPG samples (Figure 

2b).  Raman spectroscopy was employed to analyze the printed graphene as it is has been 

extensively used to characterize both graphene and graphitic materials.30  Single crystal micro-

mechanically exfoliated graphene possesses two characteristic peaks, namely a G peak and 2D 

peak that correspond to wave numbers of approximately 1580 cm-1 and 2700 cm-1 respectively.  

Furthermore, edge defect, grain boundary, and/or topological defects in the graphene gives rise to 

the D peak observed at ~ 1350 cm-1 as often portrayed in jagged petal-like growth of CVD grown 

multilayered graphene.15, 31   In the IPG presented here, the D, G, and 2D peaks are observed at 

wave numbers of approximately 1350 cm-1, 1590 cm-1 and 2700 cm-1 respectively. Overall, these 

three graphene characteristic peaks can be attributed to a defect-rich multilayer graphene stack (the 

reduced intensity of the 2D peak intensity compared to that of the G peak reveals a multilayer 

structure, while the D peak intensity reveals a high degree of defects).32 Also, the D and G peaks 

are red shifted by several tens of wave numbers (the D and G peaks red shifts by 10-20 cm-1) as 

compared to the typical Raman spectrum for single-layer, single-crystal graphene.  This red shift 

can be attributed to the combination of defects and thermally induced tensile strain in the printed 

graphene structure as the red shift of the D peak increases with increasing annealing temperature 

and the red shift of the G and 2D peaks remains stable and temperature independent.  Such 

increasing strain could originate from movement in the defect sites and flake/flake junctions of the 

printed graphene layers during thermal annealing.   In addition to one phonon defect-assisted 

process, there were also multi-phonon defect-assisted processes such as D+D peak present in all 

the electrodes (Figure S1 in the Supplemental Information).32 

The microstructure of the IPG electrodes was also characterized via FESEM (Figure 2c) 

for both unnanealed IPG and IPG annealed at distinct temperatures (200°C, 350°C, 500°C, 650°C, 
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800°C and 950°C). The FESEM micrographs reveal the relative roughness of the graphene 

microstructure of the unannealed IPG.  This microstructure does not noticeably change during 

thermal annealing at 200°C and 350°C (Figure 2d & 2e).  However, upon reaching an annealing 

temperature of 500°C, the graphene microstructure is noticeably more smooth with less exposed 

graphene flake edges (Figure 2f). At these higher annealing temperatures (500°C), the individual 

flakes appear to merge together making a smooth microstructure. This ‘thermally induced 

smoothening’ of the microstructure of the IPG electrode exhibits more than four orders of 

conductivity enhancement compared to the unannealed electrode as the physical boundaries 

between individual graphene flakes becomes “welded” together and the defects are minimized. 

Further increase in the annealing temperature (650°C or greater, Figure 2g – 2i) displays a more 

porous microstructure in the electrode (see Figure S2 in the Supplemental Section).  At these higher 

annealing temperatures, the D peak of the IPG Raman spectra increases and the sheet resistance 

further decreases. As the IPG annealing temperature is further increased (800°C or greater) the 

IPG achieves both a relatively high electrical conductivity and high number of defects that are 

necessary for fast heterogeneous charge transport which can subsequently lead to highly sensitive 

electrochemical sensing/biosensing.  The presence of more defects at higher temperatures, relating 

to the porous micro/nano structure, is further evidenced from the Raman spectra at higher 

temperature (increasing trend of the ratio of D peak intensity to G peak intensity).    

To further probe the local electronic structure, the N 1s photoelectron spectra of all the 

annealed electrodes under consideration were analyzed via XPS (Figure 3). Note that an 

unannealed sample does not have a nitrogen peak as shown previously.33 However, all the annealed 

electrodes, including the IPG annealed at 200°C, contain nitrogen (Figure 3). Figure 3d shows the 

total nitrogen atomic percentage doped in graphene with minimum of 0.4 at. % at 200 C and 
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maximum of 1.1 at. % at 350 C. Such N 1s peaks at 400 eV (blue lines/points in Figure 3) are 

consistent with nitrogen bonded with graphene lattice defects (nitrogen atom substitutional doped 

in graphene lattice)34-35. It is interesting to note that the formation of nitrogen doping within the 

graphene lattice (alternatively called ‘quaternary nitrogen’)  has been realized before in reduced 

graphene oxide matrices using ammonia annealing at a temperature of 900C, however in this 

work the IPG electrodes exhibits nitrogen doped graphene (NG) at much lower temperatures 

(200C) in a nitrogen annealed ambient. A higher binding energy N 1s component can also be 

found at 402 eV (red lines/points in Figure 3) in the thermally annealed IPG which is consistent 

with nitrogen that contains a higher coordination number.  Such higher binding energy N 1s 

components are presumably formed via substitution with the carbon atoms in the graphene lattice 

(this type of coordination has been reported to be an ‘oxidized nitrogen’ phase34, 36). The higher 

binding energy component gains more intensity as annealing temperature increases, however, the 

relative nitrogen doping in graphene displays a decreasing graphitic coordination with increasing 

temperature (Figure 3c).  Finally, to collectively understand the role of nitrogen annealing at 

various temperatures from a defect generation standpoint the (ID/IG) intensity ratio from the Raman 

spectroscopy data originally displayed in Figure 2b was plotted versus total atomic nitrogen 

concentration (see Figure 3d).  The IPG defects, as denoted in the ID/IG ratio plot (greater ID/IG 

signifies more defects and vice versa), continue to rise with an increasing rate according to 

annealing temperature while the total nitrogen doping increases to a maximum (350C) and then 

decreases with higher annealing temperatures.  Thus, the concomitance of increasing superficial 

defects and a lower level of overall nitrogen composition, i.e., a more graphitic surface, may have 

led to higher electrical conductivity in high temperature annealed IPG (800C or higher) as well 

as to the higher electrochemical potassium sensing capability (see subsequent sections). 
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Figure 3. (a) X-ray photoelectron spectroscopy of IPG annealed at various temperatures show 

emergence of two peaks, a N 1s peak  at 400 eV (blue line, peak 1) and a higher order N1 s peak 

at 402 eV (red line, peak 2); (b) the position of the N 1s peak 1 and peak 2 with respect to annealing 

temperature; (c) the relative atomic percentage of nitrogen doping on the IPG with respect to 

annealing temperature and (d) variation of Raman intensity ratio (ID/IG) and total nitrogen doping 

(atomic percentage) with respect to temperature.  
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Electrochemical analysis of potassium ISE  

The IPG was converted into a potassium ion selective electrode by drop coating a 

potassium selective membrane cocktail (containing valinomycin as the potassium ionophore) onto 

the graphene electrodes that were thermally annealed at 200°C, 350°C, 500°C, 650°C, 800°C and 

950°C (see Experimental Section, also note the unannealed IPG electrodes were not sufficiently 

conductive for electrochemical sensing and hence were not tested in these experiments).  The 

electrochemical ionic response to potassium of the IPG ISE was measured in DI water with various 

concentrations of KCl solutions vs. an Ag/AgCl reference electrode (Experimental Section).  

Experimental results show that with increasing annealing temperature, the IPG ISE sensors achieve 

lower detection limits (Figure 4a) and increased sensitivity (Figure 4b). More specifically, the 

detection limit of the IPG ISE sensor steadily decreases from 22 μM (Log10K
+=10-4.6) to 7 μM 

(Log10K
+=10-5.2) as the annealing temperature increases to 950°C. The sensitivity values of IPG 

ISEs also increase and display less variability from 48.6 mV to 57.6 mV with increasing annealing 

temperature. Thus, when the annealing temperature of IPG electrodes reaches 800°C, the ISE 

sensors begin to exhibit a sensitivity value close to that predicted by the Nernstian equation. 

Furthermore the overall sensor drift (Figure 4c), as measured via chronopotentiometry37, continued 

to decrease to 8.6  10-6 V/s as the annealing temperature increased to 800°C.  
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Figure 4. Potassium ion sensing with the IPG ISEs annealed at distinct temperatures (200C, 

350C, 500C, 650C, 800C, and 950C).  Graphs depicting the average sensor characteristics 

i.e., (a) detection limit, (b) sensitivity (slope of sensing range) and (c) the drift with standard 

error (n=3).  

 

The decreases in the IPG ISE detection limit and drift with higher annealing temperature 

could be explained in part by the smoother thermal annealed IPG surface minimizing the 

spontaneous formation of a water layer between the ISE membrane and IPG electrode. Such a 

water layer acts as an electrolyte reservoir which re-equilibrates on each sample composition 

change, consequently introducing potential instability and higher detection limits38. At annealing 

temperatures of 200°C and 350°C, the rough IPG microstructured surface me more conducive to 

water layer formation within the more rugged graphene flake topology. This water layer formation 

could explain the higher variation of sensitivity value for IPG ISEs annealed at the lower 

temperatures of 200°C and 350°C.  However, as the annealing temperature increases, the 

microstructure of the graphene flakes becomes much more smooth which in turn could reduce the 

formation of water layer build-up and hence lower the drift and detection limit of the ISE.  

Based on the electrochemical characterization, the ISE based on IPG thermally annealed 

at 950°C were chosen for further characterization. This graphene potassium ISE exhibited a 

Nernstian response to KCl corresponding to a sensitivity value of 57.6 mV per decade of K+ 
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concentration, a characteristic that is predicted by the theory for solvent polymeric membranes 

doped with valinomycin as the potassium ionophore.39 As shown in Figure 4a, the ISE displayed 

a linear response to K+ concentration (in logarithmic scale) within the KCl concentration range of 

0.01mM to 10 mM.  The small standard deviation even between the lowest concentrations of 

potassium (i.e., R.S.D.: 2.27%, n=3:  see Figure 4a) yielded a reliable and repeatable observable 

detection limit of 7 μM (Log10 K
+=-5.2). The potential versus log10K

+ plot reveals that the sensing 

response is nearly instantaneous and reaches the stability within 10s, a response time faster than 

that of a liquid-contact ion-selective electrode, especially at lower concentrations.40 (Figure 5a 

inset). Such a fast response is important for the real time monitoring of rapid changes in potassium 

concentration in the sweat that can fluctuate quickly according to perspiration rates.41 Furthermore, 

the IPG ISE was also tested for repeatability by subjecting the sensor to successive changes in KCl 

solutions with potassium concentrations alternating from 1 mM, 10 mM, and 100 mM, using four 

oscillation cycles (see Figure S3 in Supporting Information).  This improvement in potassium 

sensitivity and detection limit is most likely due to reduced water layer formation as previously 

described, put also do to the increasing porosity of the graphene with higher annealing 

temperatures (see Figure S2 in the Supporting Information).  Such higher porosity or edge defects 

in graphene render the surface more electroactive than pristine basal plane graphene,15 and 

subsequently most likely led to improvements in the capacitance and charge storage capability of 

the electrodes and the near Nernstian slope/sensitivity.57-58 
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Figure 5.  (a) Potassium calibration plot for the IPG electrodes annealed at a temperature of 950°C 

portraying potential response changes for successive increases in potassium concentration (10-8 M, 

10-7.5 M,   10-7 M,   10-6.5 M,   10-6 M,   10-5.5 M,   10-5 M,   10-4.5 M,   10-4 M,   10-3.5 M,   10-3 M,   

10-2.5 M,   and 10-2 M) in DI water (b) and successive increases in potassium concentration (10-3 

M,   10-2.8 M,   10-2.6 M,   10-2.4 M,   10-2.2 M,   10-2 M,   10-1.8 M, 10-1.6 M,   10-1.4 M,   10-1.2 M ) in 

sweat.  Corresponding potential vs. concentration profiles for potassium concentration sensing in 

(c) DI water and (d) in artificial perspiration showing sensor reproducibility for three distinct 

potassium calibration plots performed with the same graphene ISE.  

 

The developed potassium ISE was also tested against the backdrop of common ion 

interferences that are typically found in sweat28. These initial selectivity experiments were 

conducted in by spiking DI water with said interferents (at concentration levels typically found in 

sweat) while the potassium concentration was varied over the sweat potassium physiological range 

of 1 mM to 63 mM (Figure 5b)41.  The potassium ISE sensor showed a Nernstian response with 

the sensitivity value of 54.5 mV per decade of potassium ion concentration (R.S.D.: 0.91%, n=3).  

The obtained potassium sensitivity obtained was also similar to the sensitivity of K+ ions 
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previously demonstrated in the KCl solution. The small standard deviation of sensitivity value 

between experiments conducted in KCl solution (R.S.D.: 2.27%, n=3:  see Figure 5c) and KCl 

solution with multiple additive ions (R.S.D.: 0.91%, n=3:  see Figure 5d) showed both experiments 

contained a high-level of repeatability. The selectivity of the ISE is mainly determined by the 

composition of the membrane and not directly influenced by the type of solid contact used.42 The 

selectivity coefficients, log 𝐾𝐾𝐽
𝑝𝑜𝑡 ± standard deviation (n=3), of common interfering ions [i.e., 

sodium (Na), magnesium (Mg), and calcium (Ca)]  were also obtained, according to previously 

reported protocols42,39 as follows: log 𝐾KNa
pot

= 3.57 ± 0.12 , log 𝐾KMg
pot

= 3.90 ± 0.08 , log 

𝐾KCa
pot

= 3.39 ± 0.21. The obtained selectivity coefficient is comparable to other carbon based solid 

contact ISE.43-46 Furthermore, the IPG ISE was capable of accurately detecting the amount of 

potassium found within artificial eccrine perspiration (Figure S3 in Supplemental Information) 

where the measured potentiometric response correlated to a potassium concentration of 33.9 ± 

2.4mM—a potassium concentration that is close to the listed value of 33 mM (see Figure S4 in 

Supplemental Information & the Experimental Section). This result demonstrates that the IPG ISE 

is capable of selectively detecting potassium within a complex matrix containing a combination of 

33 metabolites, minerals, and amino acids (see Experimental Section).  

Finally, the potassium sensing results of the IPG ISE was compared with similar carbon-

based electrodes that have been recently published in the research literature (Table 1).  For 

example, the potassium detection limit of the IPG ISE reached Log10K
+=10-5.2, which is lower than 

similar ISEs comprised with nanostructured with carbon fullerene (Log10K
+=10-5.0) and graphene 

on glassy carbon (Log10K
+=10-4.5)44.  The recorded drift (8.6× 10−6V/s) of the IPG ISE is lower 

than similar ISEs nanostructured with CNTs (1.7× 10−5V/s) and graphene on glassy carbon (1.2×

10−5V/s) 44-45. The linear sensing range (0.01mM to 10 mM) of the developed IPG ISE is also on 
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par with similar solid-state potassium ISE that use nanocarbon-based materials as the transduction 

element 43-47.  

Table 1. Performance comparison table of nanocarbon-based, solid-state ISEs 

Electrode 
Detection Limit 

(M) 

Slope 

(mV/decade) 

Linear Range 

(M) 

Drift 

(V/s) 
Ref 

IPG 10-5.2 57.2 10-5~10-2 *8.6 × 10-6 This work 

Fullerene 10-5.0 55 10-5~10-2 - 46 
CNT 10-5.5 58.4 10-5.5~10-2.5 *1.7 × 10-5 45 

Graphene/GC 10-5 59.2 10-4.5~10-1 *1.2 × 10-5 44 
CIM carbon 10-5.6 59.5 10-5.2~10-1 Ψ4.7 × 10-3 47 

Porous carbon 10-5.7 57.8 10-5~10-1 ζ14.9 × 10-3 43, 48 

*This reported drift was obtained via chronopotentiometric means (see Experimental Section). 
Ψ Long range drift test acquired by monitoring the open circuit potential over a timeframe of 70hrs. 
ζ Long range drift test acquired by monitoring the open circuit potential over a timeframe of 20hrs. 

 

IPG:  Inkjet Printed Graphene 

CNT: Carbon Nanotube 

GC: Glassy Carbon 

CIM carbon: Colloid-Imprinted Mesoporous Carbon 

 

Conclusions  

In summary, we have developed a scalable inkjet printing process for graphene-based ion 

selective electrodes or IPG ISEs.  Before functionalization with a potassium detecting ionophore, 

the IPG was thermally annealed in a nitrogen environment to improve both the electrical 

conductivity and electrochemical sensing capability of the resultant IPG ISE.  This annealing 

process improved the electrical sheet resistance of the IPG by several orders of magnitude from 

52.8 ± 7.4 MΩ/☐ for unannealed IPG to 147.7± 14.9 Ω/☐   172.7 ± 33.3 Ω/☐  for IPG annealed 

at temperatures of 800°C and 950°C respectively.  Furthermore, the thermal annealing process 

created a highly conductive graphene surface that is well-suited for electrochemical sensing as the 
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“welded porous” surface is sufficiently “electroactive” without the need for graphene chemical 

modification steps such as metallic nanoparticle integration which is often used to increase the 

electroactive nature of carbon-based electrochemical electrodes.49-53  The IPG electrodes were 

subsequently converted into potassium ISEs by functionalizing the graphene surface with the 

potassium ionophore, valinomycin, drop coated within a PVC matrix.  The resultant IPG ISE, 

thermally annealed at 950°C, displayed a wide linear sensing range (0.01mM to 10 mM) and low 

detection limit (7 μM) that faired favorably to other potassium ISEs that used a nanocarbon-based 

transduction element (e.g., graphene on glassy carbon electrodes, carbon nanotubes and 

mesoporous carbon; see Table 1). Furthermore, the inkjet printing process developed herein 

presents a scalable nonmanufacturing route for nanostructured ISEs that eliminates the need for 

both the costly fabrication of graphene through chemical or physical vapor deposition, the need 

for costly electrode patterning through clean room process such as photolithography, and the need 

to fabricate metal stencils for each new pattern design such as performed in screen printing. The 

developed potassium IPG ISE was capable of measuring potassium in a complex artificial eccrine 

perspiration solution that contained a combination of 33 metabolites, minerals, and amino acids 

and displays a potassium linear sensing range.  The IPG ISE is also capable of sensing 

physiologically relevant concentrations of potassium including those found in plasma and serum 

where potassium concentrations can range between 3.1 and 4.6 mM and 0.3–0.4 mM respectively 

54.  Also, the developed IPG ISE could potentially be used to detect plant available potassium 

levels in soil (1.1-2.2% of the 10 – 20 g of potassium found in a typical kg of soil is plant 

available55) where a typical soil slurry dilution (1kg of soil per 2 L of water) would yield a 

potassium concentration range from 1.4 mM to 5.7 mM.  Due to the potential to print graphene on 

flexible, curvilinear surfaces32 as well as the ability to detect concentrations of potassium found in 
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sweat [~1mM56], the developed potassium ISEs may also be well-suited for wearable epidermal 

sensors that monitor potassium levels from eccrine sweat glands.  Of course, in all of these 

potassium sensing examples, rigorous testing within field conditions will need to be conducted to 

prove the viability of the IPG ISE in these various environments where temperature, humidity, and 

interfering species may vary widely.  Such rigorous testing is reserved for future work. In 

summary, the developed potassium IPG ISEs represent a potential scalable, low-cost 

manufacturing protocol for monitoring potassium in a variety of biomedical and environmental 

applications. 
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47. Hu, J.; Zou, X. U.; Stein, A.; Bühlmann, P., Ion-Selective Electrodes with Colloid-Imprinted 

Mesoporous Carbon as Solid Contact. Anal. Chem. 2014, 86 (14), 7111-7118. 

48. Paczosa-Bator, B., All-Solid-State Selective Electrodes Using Carbon Black. Talanta 2012, 93, 

424-427. 

49. Claussen, J. C.; Kumar, A.; Jaroch, D. B.; Khawaja, M. H.; Hibbard, A. B.; Porterfield, D. M.; 

Fisher, T. S., Nanostructuring Platinum Nanoparticles on Multilayered Graphene Petal Nanosheets for 

Electrochemical Biosensing. Adv. Funct. Mater. 2012, 22 (16), 3399-3405. 

50. Marr, K. M.; Chen, B.; Mootz, E. J.; Geder, J.; Pruessner, M.; Melde, B. J.; Vanfleet, R. R.; 

Medintz, I. L.; Iverson, B. D.; Claussen, J. C., High Aspect Ratio Carbon Nanotube Membranes Decorated 

with Pt Nanoparticle Urchins for Micro Underwater Vehicle Propulsion via H2O2 Decomposition. ACS 

nano 2015, 9 (8), 7791-7803. 

51. Daniele, M. A.; Pedrero, M.; Burrs, S.; Chaturvedi, P.; Salim, W. W. A. W.; Kuralay, F.; 

Campuzano, S.; McLamore, E.; Cargill, A. A.; Ding, S., Hybrid Metallic Nanoparticles: Enhanced 

Bioanalysis and Biosensing via Carbon Nanotubes, Graphene, and Organic Conjugation. In 

Nanobiosensors and Nanobioanalyses, 1st ed.; Springer: Japan, 2015, pp 137-166. 

52. Taguchi, M.; Schwalb, N.; Rong, Y.; Vanegas, D.; Garland, N.; Tan, M.; Yamaguchi, H.; Claussen, 

J.; McLamore, E., PulSED: Pulsed Sonoelectrodeposition of Fractal Nanoplatinum for Enhancing 

Amperometric Biosensor Performance. Analyst 2016, 141 (11), 3367-3378. 



47 
 

 

53. Claussen, J. C.; Hengenius, J. B.; Wickner, M. M.; Fisher, T. S.; Umulis, D. M.; Porterfield, D. M., 

Effects of Carbon Nanotube-tethered Nanosphere Density on Amperometric Biosensing: Simulation and 

Experiment. J. Phys. Chem. C 2011, 115 (43), 20896-20904. 

54. Penney, M., Sodium, Water and Potassium. In Clinical biochemistry, metabolic and clinical 

aspects. , 1st ed.; Churchill Livingstone: Edinburgh, 1995, pp 25-60. 

55. Zörb, C.; Senbayram, M.; Peiter, E., Potassium in Agriculture–Status and Perspectives. J. Plant 

Physiol. 2014, 171 (9), 656-669. 

56. Guinovart, T.; Parrilla, M.; Crespo, G. A.; Rius, F. X.; Andrade, F. J., Potentiometric Sensors Using 

Cotton Yarns, Carbon Nanotubes and Polymeric Membranes. Analyst 2013, 138 (18), 5208-5215. 

 

 



48 
 

 

 

CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

In this work, development of an ion selective electrodes functionalized on inkjet printed 

graphene that was thermally annealing was presented. This project combined the inkjet printing 

techniques, carbon based nanomaterials, and wearable technology to fabricate a sensor that could 

help enable the continuous monitoring of patient’s sweat potassium concentration. 

Inkjet printing technique provides a scalable and cost effective methods to fabricate the 

graphene electrodes. The thermally annealing process significantly improved the electrical 

conductivity by 5 orders of magnitude. The sensors functionalized on graphene electrodes with 

post thermally annealing shows good sensing performance and minimized drift compare to sensors 

with other carbon based materials. The current electrode fabrication requires post-processing under 

inert gas environment. To further simplify the fabrication process, Claussen lab is working on 

replacing thermally annealing process with laser annealing process1. By applying laser annealing 

process, the graphene electrodes can be fabricated on flexible substrates that are not suited for high 

temperature furnace annealing such as polymers, cellulose papers, papers or even fabrics. Since 

the inkjet printing technology is well-suited for scale manufacturing, an all inkjet printable 

working electrode and inkjet printable solid state reference electrode could be further developed.  

While in this work, the basic characterization of our ISE on IPG electrodes has been 

conducted, more tests could be done to further understand the sensors’ sensing performance. The 

selectivity tests were conducted to obtain the selectivity coefficient against other ions and test the 

sensing performance in artificial sweat2. However, the proteins in real sweat, the body temperature 
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fluctuation of human body surface may affect the sensing performance3. Consequently, the sensing 

performance of the ISE sensor on the human body need to be further tested.  

Multiple reasons can cause the sweat potassium level to fluctuate, the potassium sensor can 

only provide very limited information and ambiguous hint about patients’ health status4-5. The 

further integration of potassium sensors with sensors that can monitor sodium, glucose, lactate, 

temperature, and pH could help provide real time monitoring of athletes’ sports performance4, 

patients physical and psychological stress levels, and/or health status6-7. The data collected by 

sensors could also be sent to mobile devices such as cellphones for real time data storage and 

analysis for integration into the wireless technologies with appropriate electronics3, 8-9.  The 

information collected by continuous monitoring could also help provide timely and accurately 

treatment for patients with chronic disease such as diabetes and hypertension by integrating drug 

delivery devices to the sensing systems. In conclusion, the inkjet printing technique is a promising 

method to produce low cost, wearable sensors. The further development of wearable sensors is 

anticipated to significantly improve people’s quality of life.  
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