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ABSTRACT 

 

Plant phenotyping is important for genetic enhancements and plant biology research. 

There is a lot of work done to improve yield of crop plants, by selecting good genotypes to 

cross-breed in an effort to curb diseases or genetic deficiencies in these crops. In order to 

select these genotypes, one would have to perform phenotyping. Currently, plant 

phenotyping is based on visual assessment, where a breeder or researcher would have to 

visually inspect each plant and visually rate them. Visual rating is inefficient and can be 

inconsistent due to intra-rater repeatability or inter-rater reliability issues leading to incorrect 

visual scores. Not only that, it is also labor intensive and time consuming. Hence, there is a 

need to develop new tools amenable to high throughput phenotyping (HTP) for large scale 

plant genotype assessments. This requirement for high throughput phenotyping is applicable 

in a variety abiotic and biotic stresses.  

We developed a HTP framework which utilizes digital images in an effort for disease 

detection. This framework enabled us to accurately assign disease ratings to soybean plants 

that were affected by iron deficiency chlorosis (IDC). Utilizing image analysis techniques, 

we successfully extracted features pertaining to IDC and trained classification models on 

these features. A hierarchical classifier, based on linear discriminant analysis and support 

vector machine classifiers, produced the highest accuracy of 96%. Also, this framework was 

successfully implemented as a cellphone app. We envision to utilize hyperspectral imaging in 

the future for more accurate disease detection, prior to symptoms being visible. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Background 

 Detection and diagnosis of diseases is an important aspect to plant breeders and 

pathologists. Plant diseases have a profound effect on harvested yield, and subsequently 

the economy. There have been various efforts to breed different crop plant genotypes 

with improved disease tolerance to curb the impact of diseases. To identify the right 

genotypes, one would have to perform phenotyping. In addition, plant phenotyping is 

important for genetic enhancements and plant biology research.  

 Currently, common plant phenotyping is based on visual assessment, where a 

breeder or researcher would have to visually inspect individual plants and assign disease 

ratings. While visual rating may be the current standard, it has it shortcomings. Visual 

rating is not only time consuming, where one would have to spend days visually rating a 

plot of land, but is also labor intensive and inefficient. To add to that, visual rating can be 

inconsistent due to intra-rater repeatability or inter-rater reliability issues, leading to 

incorrect or varying visual scores, less accuracy and reproducibility. Also, it is crucial to 

rate hundreds or thousands of plots within a short time frame to minimize plant stage 

variability. 

 Hence, there is a need to develop new tools amenable to high throughput 

phenotyping (HTP) for large scale plant genotype assessments that is rapid, cheap, 

accurate, and unbiased. Since phenotyping are done at different stages of a plant’s 

growth, repeated measurements with high accuracy can help in identifying right genes 

controlling disease in soybeans.  
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Driven by these requirements, we proposed a simple framework that extracts features that 

are known to quantify the extent of specific diseases from digital images. There are 

several advantages of using digital images compared to visual rating. Digital images can 

store significantly more information compared to simple numerical ratings, while also 

allowing for plant breeders and pathologists to better allocate their time, by spending 

more time analyzing data instead of using the bulk of their time for data collection. Also, 

digital image collection need not be done by professionals in the field, hence allowing for 

collection to be done simultaneously by multiple individuals.  

 The primary goal of the present study is to develop a disease detection framework 

that is applicable on soybeans using machine learning and image analysis techniques. 

Soybeans are a very important part of the economy, with annual revenue of $40 billion in 

the USA alone. Hundreds of millions of dollars are being lost due to diseases in 

soybeans, hence the motivation for this study. Utilizing machine learning and image 

analysis techniques, disease detection frameworks can be developed for a variety of 

diseases through digital images. Chapter 2 of this thesis describes how we utilized these 

methods to develop a disease detection framework for iron deficiency chlorosis in 

soybeans. Future targets for this study would be to utilize hyperspectral imaging, which 

enables for disease to be detected even before visible symptoms appear on the surface of 

leaves, and allows for rapid, high throughput phenotyping.  
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Thesis Organization 

This thesis follows the journal paper format. Chapter 1 includes the general introduction 

to the thesis. Chapter 2 is a modified version of the paper that was submitted to Plant 

Methods. Chapter 3 comprises general conclusions from the journal paper. 
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CHAPTER 2 

A REAL-TIME PHENOTYPING FRAMEWORK USING MACHINE LEARNING 

FOR PLANT STRESS SEVERITY RATING IN SOYBEAN 

 

Modified from a paper submitted to Plant Methods 

 

Hsiang Sing Naik, Jiaoping Zhang, Alec Lofquist, Teshale Assefa, Soumik Sarkar, David 

Ackerman, Arti Singh, Asheesh K Singh, Baskar Ganapathysubramanian 

 

Abstract 

Background: Phenotyping is a critical component of plant research. Accurate and 

precise trait collection, when integrated with genetic tools, can greatly accelerate the rate 

of genetic gain in crop improvement. However, efficient and automatic phenotyping of 

traits across large populations is a challenge; which is further exacerbated by the 

necessity of sampling multiple environments and growing replicated trials. A promising 

approach is to leverage current advances in imaging technology, data analytics and 

machine learning to enable automated and fast phenotyping and subsequent decision 

support. In this context, the workflow for phenotyping (image capture → data storage and 

curation → trait extraction → machine learning/ classification → models/apps for 

decision support) has to be carefully designed and efficiently executed to minimize 

resource usage and maximize utility. We illustrate such an end-to-end phenotyping 

workflow for the case of plant stress severity phenotyping in soybean, with a specific 

focus on the rapid and automatic assessment of Iron Deficiency Chlorosis (IDC) severity 
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on thousands of field plots. We showcase this analytics framework by extracting IDC 

features from a set of ~ 4500 unique canopies representing a diverse germplasm base that 

have different levels of IDC, and subsequently training a variety of classification models 

to predict plant stress severity. The best classifier is then deployed as a smartphone app 

for rapid and real time severity rating in the field. 

Results: We investigated 10 different classification approaches, with the best 

classifier being a hierarchical classifier with a mean per-class accuracy of ~96%. We 

construct a phenotypically meaningful ‘Population Canopy Graph (PCG)’, connecting the 

automatically extracted canopy trait features with plant stress severity rating. We 

incorporated this image capture → image processing → classification workflow into a 

smartphone app that enables automated real-time evaluation of IDC scores using digital 

images of the canopy.  

Conclusion: We expect this high-throughput framework to help increase the rate 

of genetic gain by providing a robust extendable framework for other abiotic and biotic 

stresses. We further envision this workflow embedded onto a high throughput 

phenotyping ground vehicle and unmanned aerial system (UAS) that will allow real-time, 

automated stress trait detection and quantification for plant research, breeding and stress 

scouting applications. 

Introduction 

Soybean (Glycine max (L.) Merr.) is a huge source of revenue for the United 

States, with production of approximately USD 40 billion in 2014[1]. There are various 

factors that affect soybean yield, such as nutrient availability, weed management, 
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genetics, row configuration, stress (biotic and abiotic) and soil fertility [2]. Iron 

Deficiency Chlorosis (IDC) is a yield-limiting abiotic stress which affects plants that 

usually grow on calcareous soil with high pH. Soybean plants growing in calcareous soils 

(soils with free calcium carbonate and high pH) are unable to uptake iron from the soil 

leading to iron deficiency in plants. IDC causes reduced plant growth leading to a 

reduction in yield potential and quality of the crop. In the mid-west USA, IDC is one of 

the major problems reducing soybean yield, by as much as 20% for each visual rating 

point [3]. This causes an estimated economic loss of $ 260 million in 2012 alone[4]. IDC 

symptoms are observed at early plant growth stages on newly grown leaf tissue where 

chlorosis (yellowing) occurs in between the veins of the leaves, while the veins 

themselves remain green [5]. The extent of the problem varies depending on the cultivar, 

field and the year.  

Soybean breeders in US breed for genotypes with improved IDC tolerance by 

selecting for genes that help make the plant more iron uptake efficient [6]. Selection for 

desirable soybean genotype (with IDC tolerance) is done either through phenotyping in 

the field or in greenhouses [7], or genotyping with molecular markers linked to genes that 

improve IDC tolerance. More than 10 genes have been reported to be associated with 

improving IDC tolerance [8,9] making genotyping approaches onerous where a breeding 

program may be working to select for several other traits. Phenotyping is most suitable as 

it allows identification of soybean genotypes that have an acceptable IDC tolerance. 

Furthermore, this method is cost effective and potentially requires little access to 

specialized labs.   
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Current methods for phenotypically measuring IDC are completely visual and 

labor-intensive. Cianzo et al.[3] and Froehlich and Fehr[7] reported that visual scoring is 

the simplest, subjective measurement that requires relatively less labor. However, it has 

reduced accuracy if the evaluation is made in diverse environments and by different 

raters [10]. In addition, there can be intra-rater repeatability or inter-rater reliability [11] 

issues leading to incorrect visual scores. It also depends on the subjectivity (and its 

variability) of the IDC rater. Specifically, the human eye can get tired after long hours of 

scoring plants for various traits, which can produce large intra-rater variability in rating 

scores, thus resulting in diminished accuracy and reproducibility. In a breeding program, 

hundreds or thousands of plots are rated in a short time frame. A short time frame is 

crucial because one has to minimize plant stage variability, i.e., variability that is 

introduced if genotypes are rated over a longer time frame. It is therefore essential to 

develop methods that allow for unbiased, accurate, cost effective and rapid assessment 

for IDC in particular, and plant biotic (e.g., diseases) and abiotic stresses in general. 

There has been recent work in this regard to design, develop and deploy high efficiency 

methods/tools to quantify leaf surface damage [12] as well as plants response to 

pathogens [13].  Additionally, a number of approaches using imaging methods for 

phenotyping, such as fluorescence and spectroscopic imaging have been successful for 

stress-based phenotyping [14], high throughput machine vision systems that use image 

analysis for phenotyping Arabidopsis thaliana seedlings [15] and barley [16], 

hyperspectral imaging for drought stress identification in cereal [17], and a combination 

of digital and thermal imaging for detecting regions in spinach canopies that respond to 

soil moisture deficit [18] which have proven to be successful. However, a simple, user 
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friendly framework is unavailable for the public to phenotype for IDC in soybean plants. 

The availability of a simple modular approach could potentially be generalized for 

phenotyping of multiple stresses.  

Motivated by these reasons, we developed a simple framework (image capture → 

data storage and curation → trait extraction → machine learning/ classification → 

models/ smartphone apps for decision support) that extracts features that are known to 

quantify the extent of IDC (amount of yellowing, amount of browning) from digital 

images. To determine a relationship between these features and their respective ratings, 

we employed a host of machine learning techniques, further elaborated in the latter stages 

of this paper, to perform supervised classification. Subsequently, using information 

obtained from these classifiers, a physically meaningful population canopy graph (PCG) 

connecting the features with the visual IDC rating was constructed for a diverse soybean 

germplasm. This complete framework, which is based on fast feature extraction and 

classification, can then be used as a high throughput phenotyping (HTP) system for real 

time classification of IDC. We enable real time phenotyping by implementing the 

software framework as a GUI-based, user-friendly software that is also deployed on 

smartphones. This step successfully abstracts the end-user from the mathematical 

intricacies involved, thus enabling widespread use. We showcase this software 

framework by extracting IDC features (amount of yellowing, amount of browning) from 

a set of 4366 plants that have different IDC resistances.  

We envision our classifier based framework as a modular, extensible and accurate 

phenotyping platform for plant researchers including breeders and biologists. 
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Materials and Methods 

Genetic material and field phenotyping 

A total of 478 soybean genotypes, including 3 maturity checks and 475 soybean 

plant introduction (PI) lines acquired from the USDA soybean germplasm collection, 

were planted in the Bruner farm in Ames, IA, 2015, where soybean IDC was present in 

previous years. The design for this field experiment follows a randomized complete block 

design, with a total of four replications. Each PI line was planted once per replication, 

while the IDC checks (two) and maturity checks (three) were repeated at regular intervals 

in the field with four plots per replication. At two soybean growth stages [19]: the second 

to third trifoliate (V2-V3) and fifth to sixth trifoliate (V5-V6) leaf stages, the soil pH was 

tested in the Soil and Plant Analysis Laboratory, Iowa State University. At each stage, 

eight soil samples were randomly collected from each replication and were mixed as one 

test sample. The soil pH values ranged at 7.80 - 7.95 and 7.75 - 7.85 at V2-V3 and V5-

V6 growth stages, respectively. Field visual ratings (FVR) of IDC severity by expert 

phenotypers were collected at V2-V3 and V5-V6 growth stages, as well as two weeks 

after the V5-V6 stage to obtain soybean canopies with a variety of IDC expression. FVR 

was done on a scale of 1 to 5 described by Lin et al., where 1 indicates no chlorosis and 

plants were normal green; 2 indicates plants with modest yellowing of upper leaves; 3 

indicates plants with interveinal chlorosis in the upper leaves but no stunting growth; 4 

indicates plants are showing interveinal chlorosis with stunting growth; and 5 indicates 

plants show severe chlorosis plus stunted growth and necrosis in the new youngest leaves 

and growing points [20]. 
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Image acquisition 

We utilized a Canon EOS REBEL T5i camera for image acquisition. Images were 

stored in the native RAW format. Substantial effort was put in to develop a standard 

imaging protocol (SIP) (Additional file 1) to ensure imaging consistency and quality. The 

flash function was kept off and an umbrella was always used to shade the area under the 

camera view in order to minimize illumination discrepancies between images. A 

light/color calibration protocol was also followed. An image of an X-Rite ColorChecker 

Color Rendition Chart was taken at the beginning of imaging operations, and every 20 

min thereafter or whenever light condition changes (cloud cover, etc.). As the appearance 

of color is affected by lighting conditions, using the X-Rite ColorChecker Color 

Rendition Chart enables color correction to be applied to ensure that colors are uniform 

throughout all the plant canopy images collected at that moment. When taking pictures, 

the whole canopy was fit in the field of view of the camera. Whenever possible, weeds 

and other plant residuals that connect to the plant canopy in the view of camera were 

removed for enhanced efficiency of subsequent image processing.  

Dataset Description 

A total of 5916 RGB (493 plots including PI accessions and checks x 4 

replications x 3 time points) images were acquired, along with subsequent FVR. Each 

time point consists of four repetitions for a total of 1972 (493x4) images, with 493 

images per repetition. Image acquisition at each of these time points was vital to obtain a 

large variety of IDC symptoms, as IDC symptoms progress in time. The idea was to 

develop a dataset with similar number of observations per IDC rating. This was, however, 
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not possible simply due to the fact that a large fraction of plants remained healthy (FVR = 

1) throughout the image acquisition period. Following image acquisition, for quality 

control, each image was inspected visually, and those that did not adhere to the SIP were 

removed, which resulted in 4366 images in the remaining image set.  

Variables Description 

Preprocessing 

Segmentation: Each image was converted from native Red, Green, Blue (RGB) 

format to HSV (Hue, Saturation, Value) format to efficiently perform background 

removal, leaving only the plant canopy (foreground). Hue is defined as the color or tint of 

an object, with values ranging from 0° to 359°, whereas saturation is defined as the range 

of gray in the color space (0% to 100%) [21]. The background of an image (soil, debris) 

contains more gray pixels compared to the foreground (plant), and lacks green and yellow 

hue values; therefore, most of the background was removed by excluding pixels that had 

saturation value below a predefined threshold and hue values outside of a predefined 

range. The saturation threshold value was obtained by identifying the saturation values of 

the background in 148 diverse images. The hue range was simply obtained from the hue 

color wheel, removing pixels that were neither green nor brown. This combined 

thresholding based on incorporating hue thresholding with saturation thresholding 

ensured a reliable and robust segmentation process. 

Noise and outlier removal: Once segmentation was done, the connected 

components method [22] was used on the processed image to remove spurious outliers 

and noise from the image, (for example, plant debris on soil). This was accomplished by 



 

12 

 

identifying clusters of pixels which are connected to one another, labelling them, and 

identifying the largest connected component. Since the imaging protocol was designed to 

ensure that the plant was centered in the imaging window and in the foreground, it 

follows that the largest connected component is invariably the plant. Cleaning was done 

by removing any other connected components that contain fewer pixels than the largest 

connected component. Then, a mask of the isolated plant was applied onto the original 

RGB image in order to display the isolated plant in color. No significant pixel loss was 

observed which is common in other thresholding methods [23]. The use of the connected 

components approach to isolate plants from background is extremely fast and accurate. In 

conjunction with a SIP, using connected components for preprocessing is very promising, 

especially for near real time phenotyping applications.  The preprocessing sequence is 

illustrated in Figure 1. 

   
Figure 1. Image preprocessing sequence from original image of canopy to completed 

automated pre-processed field soybean canopies. 
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Feature extraction from expert elicitation 

Field visual ratings are assigned based on the extent of chlorosis (yellowing) and 

necrosis (browning) expressed on the canopy, as described earlier and illustrated in 

Figure 2. Elicitation from domain knowledge experts (i.e., phenotypers) suggested that 

color signatures (green to yellow to brown), specifically extent of (dis)coloration 

(chlorosis → yellowing, and necrosis → browning) were viable predictors to quantify 

IDC expression. Each pixel of the processed image belonging to the canopy was 

identified as either green, yellow, or brown through respective hue values, and the extent 

of discoloration from green was represented in the form of the percentage of canopy area 

that experience these visual changes (Y% and B%), as seen in Figure 3.  

 

Figure 2. Iron Deficiency Chlorosis severity description using a field visual 

rating scale of 1 – 5. 

 

Equation 1 
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Figure 3. Feature extraction from plant canopies (top image) for Iron Deficiency 

Chlorosis. The bottom left box depicts % yellow and bottom right box depicts % brown. 

 

 

This expert elicitation informed processes resulted in each image being 

represented by a quantitative measure of yellowing (Y%) and browning (B%), as shown 

in Equation 1. 

Classification 

In order to map these quantitative variables to the visually rated IDC ratings, we 

utilize several state of the art machine learning algorithms to construct classification 

models. The field visual rating served as the categorical output variable (classes) while 

the inputs were the 2-tuple (Y%, B%). The classification models are then eventually used 

to generate IDC ratings given different input variables.  

The total dataset consisted of 4366 images following quality control as detailed in 

the Dataset Description section. The images were sorted into 5 groups which correspond 
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to their respective FVR, with majority of the observations falling into group 1 (FVR = 1). 

The remaining groups (FVR = 2/3/4/5) meanwhile contained a balanced distribution of 

observations amongst themselves. 

Due to the imbalanced nature of the dataset with a preponderance of images 

belonging to FVR 1, two variations of the dataset were used to develop classification 

models: a) Using observations from time point 2 and b) for a combination of time point 1, 

2, and 3. Time point 2 served as a standalone dataset due to the fact that it has the largest 

distribution of observations containing each of the FVRs. We utilized several 

classification algorithms, namely classification trees (CT), random forests (RF), Naïve 

Bayes (NB), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), 

multi-class support vector machines (SVM), k-nearest neighbors (KNN), and Gaussian 

mixture models (GMM). Building upon the results, we subsequently utilized the concept 

of hierarchical classification to develop two additional models using a combination of 

LDA and SVM algorithms.  

The dataset was randomly sampled into two subsets in a 75%-25% ratio. The 

larger subset (75%) served as the training set, while the remaining subset served as the 

testing dataset (25%). The training dataset is used to train the classifier, by learning a 

mapping of the Y% and B% with their expected IDC ratings. Subsequently, the testing 

dataset is used to estimate the performance of the classification model, by applying it on 

the testing dataset to classify each observation. The performance of the classifier can be 

interpreted from the confusion matrix (Table 1). The diagonals on a confusion matrix 

show the number of observations where, the predicted rating is equal to the actual rating, 

whereas the off-diagonal elements are observations that have been misclassified. 
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An example confusion matrix for a binary classification problem is shown below: 

Table 1: Confusion matrix 

 Predicted Positive 

(Class 1) 

Predicted Negative 

(Class 2) 

Actual Positive 

(Class 1) 

True Positive (TP) False Negative (FN) 

Actual Negative 

(Class 2) 

False Positive (FP) True Negative (TN) 

Three measures of accuracy of the classifier are reported from the confusion matrix: 

a) Accuracy which quantifies the fraction of the training dataset that is correctly 

predicted. 

Equation 2 

  

b) Per-class accuracy is a more refined metric which calculates how the classifier 

performs for each of the classes. This is useful when the instances in each class 

vary a lot, i.e., when the classes are imbalanced (as is the case in this work), since 

accuracy is usually overestimated due to the impact of the class with the most 

instances dominating the accuracy statistic.  

Equation 3 

 i = 1,…,n,  

where n = number of classes.  

c) Mean per-class accuracy (MPCA) is the mean per-class accuracy over these 

classes. 

Equation 4 
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In addition, we compute the misclassification costs in order to quantify the cost of 

the misclassification errors – i.e., if an observation in rating 1 were to be classified as 

rating 5, it would have a higher misclassification cost than if it were to be classified as 

rating 2. Essentially, calculating the misclassification cost enables us to know, if errors 

are made, how bad the errors are. To do so, we defined a misclassification cost matrix, as 

detailed in Table 2. The off-diagonals of the matrix are the misclassification cost for each 

of the ratings, which are finite, real values [24]. For example, if the actual rating of an 

observation is rating 1, the error of misclassifying the observation to rating 5 is 4 times as 

costly as misclassifying the observation to rating 2, and so on. Then, misclassification 

cost is computed using Equation 5.  

Table 2: Cost matrix, wij 

 

Predicted Ratings 

A
ct

u
al

 R
at

in
gs

 

0 1 2 3 4 

1 0 1 2 3 

2 1 0 1 2 

3 2 1 0 1 

4 3 2 1 0 
 

 

 

 

Equation 5 

, 
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 = confusion matrix 

 = cost matrix 

 = number of observations 

Lastly, we employ cross-validation to estimate the average generalization error 

for each classifier. Cross-validation essentially is a method of assessing the accuracy and 

validity of a statistical model for generalization on future datasets. From a 

generalizability standpoint, the absolute accuracy of a classifier is less important as it 

could be subject to bias and overfitting. Hence, cross-validation is a method of 

performance estimation based on the variance. The ideal estimation method would have 

low bias and low variance [25]. We used k-fold cross-validation, with k = 10 which is a 

good compromise between variance and bias[25]. K-fold CV was repeated 10 times to 

compute the mean cross-validation misclassification error for each model. While 

accuracy and MPCA detail the performance of a classifier on essentially the same dataset, 

mean cross-validation misclassification error provides information on how well the 

classifier performs on other datasets. 

Overview of classification algorithms 

We briefly describe each of the classification algorithms [26]. We refer the 

interested reader to a more detailed description of these methods in [27, 28,29]. 

Decision Trees: It is based on the construction of predictive models with a tree-

like structure that correlates observations to their corresponding categories such as 

classes (for classification) and rewards (for decision-making problems). These 

observations are sorted down the tree from the root to a leaf node, which in turn classifies 
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the observation. Decision Trees perform well on lower dimensional classification 

problems, but tend to falter when the dimension of the classes increases. 

Random Forests: An ensemble method employed to regularize the greedy, 

heuristics nature of the decision tree training which sometimes causes overfitting. This 

method combines results and structures from a number of trees prior to coming to a 

conclusion. Multiple trees are grown from random sampling of the data. Nodes and 

branch choices of a tree are also determined through a non-deterministic manner. These 

models are more robust to uncertainties.  

Naïve Bayes: A supervised classification technique for constructing classifiers of 

a probabilistic graphical model. It is based on the assumption that each feature is 

independent of each other. Naïve Bayes have been used in a variety of fields, and is a 

popular method for text categorization.  

Linear Discriminant Analysis (LDA): A linear classification technique based on 

the idea of Fisher’s Metric, with an aim to maximize between class variance, while 

minimizing within-class variance. This allows the linear combination of features to 

improve separability among two or more classes. This requires an assumption of equal 

variance-covariance matrices of the classes. 

Quadratic Discriminant Analysis (QDA): A modification of Linear 

Discriminant Analysis, except a covariance matrix must be estimated for each class. This 

allows overcoming the problem where the variance-covariance differs substantially, 

where LDA will not perform well. 

Support Vector Machine (SVM): The most popular among supervised, 

discriminative kernel-based methods for classification. SVM uses kernel functions to 
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project data into a higher dimensional space in order to separate data from different 

classes which cannot be linearly separated. A hyperplane is constructed to determine the 

bounds in which each class is separated, to maximize class separability.  

K-Nearest Neighbors (KNN): A non-parametric classification method. This 

algorithm assigns the same class label to data samples as its k nearest neighbors based on 

a similarity metric defined on the feature space, where k is an integer. This nonlinear 

algorithm works reasonably well for multi-class classification problems.  

Gaussian Mixture Model (GMM): A generative, unsupervised data model that 

aims to identify a set of Gaussian distributions mixtures which best describe the data. 

GMM is a probabilistic technique where every data example is expressed as a sample of 

the distribution which is a weighted sum of k Gaussian distribution. Once this model is 

created, a Bayes classifier is applied in attempt to solve classification problems.  

Hierarchical classification 

We subsequently pursued a hierarchical classification strategy that is motivated 

by expert elicitation of information about IDC susceptibility. Hierarchical classification is 

known to work well on datasets with a larger number of classes but with fewer 

observations. The IDC data set fell into this category. Also, the task of designing the 

hierarchy in this classification strategy enables the inclusion of expert knowledge. Here, 

the hierarchical structure is predefined, based on insight and existing knowledge of class 

hierarchies, which then contributes to improving classification accuracy.  

In this case, the hierarchies were identified based on the susceptibility of the 

genotypes to IDC. Specifically, rating 1 and 2 are usually taken together as low 
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susceptibility genotypes, while rating 4 and 5 are taken together as high susceptibility 

genotypes. We thus designed a two-step classification strategy: In Step A, a classifier is 

learnt that can separate the data into low, medium and high susceptibility groups. Step B 

then further classifies these groups into rating 1 or 2 (for the low susceptibility group), 

and rating 4 or 5 (for the high susceptibility group). 

For Step A, we deploy both LDA and multi-class SVMs. The learnt classifier is 

called Model 0, to classify the dataset into three groups (low, medium and high 

susceptibility) based on their yellow and brown percentage. For Step B, we deploy 

Support Vector Machine as the classification is binary. Figure 4 displays a flowchart of 

this hierarchical classifier. 
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Figure 4. Hierarchical classification workflow 
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Results and Discussion 

A number of classification algorithms were capable of achieving high mean per class 

accuracy, more than 90%, for classification on the time point 2 data set. Hierarchical models 

performed relatively well, with a mean per class accuracy at 95.9%. More importantly, when 

the classifier made incorrect predictions, the results were predominantly within the same 

susceptibility class - i.e., an error in rating 1 typically falls to rating 2, and not into rating 5 

etc. This is illustrated in the misclassification cost metric for each classifier, as detailed in 

Equation 5. The best performing classifier, classification trees, were able to correctly predict 

new observations 100% of the time.   

When data from all time points were used to train and test a classifier, the hierarchical 

model performed the best, with 91% accuracy. Other classifiers fell short of the 90% mark. 

The decrease in accuracy was expected simply because combining all three time points 

caused the data set to be more imbalanced that before.  

While being able to have high classification accuracy is important, the capability of a 

classifier to produce an interpretable PCG was extremely vital. This is quantified by the 

interpretability of the PCG, and is further discussed in the PCG and Model Selection 

sections. The results of each of the classification models are displayed in Tables 3 and 4.  
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Table 3: Results for machine learning algorithm model accuracies developed using a sub-set 

of Iron Deficiency Chlorosis data on a diverse set of soybean accessions.  

Algorithm Accuracy MPCA3 
Cross Validated 

MPCA 
Interpretability Cost Metric 

CT 100.0 100.0 96.0 Medium 0.0000 

KNN 99.7 96.7 95.0 Low 0.0031 

RF 99.7 96.0 85.0 Low 0.0031 

Hierarchy2
 99.4 95.9 79.8 High 0.0062 

QDA 99.4 92.0 98.9 Medium 0.0620 

Hierarchy1 98.5 86.6 70.8 High 0.0155 

GMMB 99.1 82.0 87.0 Medium 0.0093 

NB 99.1 82.0 93.8 Medium 0.0093 

LDA 98.8 79.3 84.3 High 0.0124 

SVM 93.8 39.8 50.0 Low 0.1084 

 

Table 4: Results for machine learning algorithm model accuracies developed using the 

complete set of Iron Deficiency Chlorosis data on a diverse set of soybean accessions. 

Algorithm Accuracy MPCA3 
Cross Validated 

MPCA 
Interpretability Cost Metric 

CT 99.7 91.7 78.4 Low 0.0027 

Hierarchy2
 99.2 90.7 79.2 High 0.0082 

Hierarchy1
 98.3 84.0 79.0 High 0.0201 

QDA 98.5 83.2 77.9 Medium 0.0201 

NB 98.4 79.0 78.5 Medium 0.0284 

KNN 99.5 75.8 84.3 Low 0.0073 

RF 99.1 75.0 81.1 Low 0.0092 

GMMB 99.4 74.2 82.7 Low 0.0064 

LDA 98.5 71.7 76.9 High 0.0156 

SVM 97.3 45.8 45.3 Low 0.0458 

 

                                                 
1 LDA and SVM 
2 SVM and SVM 
3 Mean per class accuracy 
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Population Canopy Graph 

It was interesting to note that the learnt classifier revealed insightful phenotypic 

intuition. Specifically, we queried the classifier to predict ratings for a uniform sampling of 

the Y% and B% range. This data is then used to construct a 2D plot that depicts decision 

boundaries that separate various IDC classes, referred to as a PCG. This graph, shown in 

Figure 5 which displays the PCG output from Hierarchy2 classification results on the test set, 

correlates very well with expert intuition. For example, Ratings 1-3 exhibit low brown values 

(corresponding to minimal to no necrosis), while ratings 4 and 5 have much higher brown 

values (corresponding to significant necrosis and/or chlorosis and necrosis). Moreover, PCGs 

with linear decision boundaries were preferred owing to better interpretability (see Model 

Selection section).     

 

Figure 5: Population Canopy Graph of predicted data using a testing set with images and 

visual rating for IDC in soybean.  
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Model selection 

Based on information about accuracy, MPCA, cross-validated MPCA, and 

interpretability of the PCG, a model selection table was constructed to summarize each 

model. Interpretability of the model is based on whether the decision boundaries made 

physical sense to the plant researcher, and was scored either ‘Low’, ‘Medium’, or ‘High’; 

‘Low’ for models that did not correlate with expert intuition (e.g.: individual islands, 

quadratic boundaries that appear to be biased), ‘Medium’ for models that partially correlates 

with expert intuition, and ‘High’ for models that correlated well with expert intuition.  

The ideal model would: 1) Have high MPCA, 2) High cross-validated MPCA, and 3) 

High interpretability. Interpretability was the criteria with the highest importance; hence 

models with high MPCA and cross-validated MPCA but with subpar interpretability were not 

taken into consideration. The hierarchical model Hierarchy2 had the best trade-offs amongst 

these criterions, as shown in Tables 3 & 4, and was chosen as the best model. 

 

Cellphone App and PC Software 

To enable high throughput phenotyping using the developed classifier, we embed the 

preprocessing stage as well as the classifier into an easy to use GUI that is deployable as a 

smartphone app. This app is supported on all Android-based devices, such as tablets and 

smartphones and has the full functionality of the desktop-based version. The Android-based 

app allows users to take pictures with their devices and extract the IDC rating in real time. 

This allows for portability and instant acquisition of data. Figure 6 shows a flowchart of 

illustrating the app. When the app is launched, the user has a choice between taking a new 

picture, and analyzing a picture already contained in the device. Once a picture has been 

selected, it is processed and the IDC score evaluated and displayed on the screen. The user 
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can export single or multiple images in tabular form through various methods, such as 

Dropbox, Bluetooth, Google Drive, and through email. This app allows untrained personnel 

and/or unmanned ground vehicles to extract and transmit IDC ratings without the need for a 

trained plant researcher/phenotyper looking at every plant. This is a tremendous enabler in 

terms of dramatically increasing the number of plants that can be accessed. In addition to the 

smartphone based app, a desktop based GUI will also be released to enable batch processing 

of a large number of images. This allows offline (or off site) analysis of images that are either 

captured manually or in an automated fashion. 

 

Figure 6: Smartphone app flowchart demonstrating the integration of pre-processing, 

machine learning enabled classification and iron deficiency chlorosis visual rating in real 

time. 

 

Conclusion 
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We designed, developed and deployed an end-to-end integrated phenotyping work-

flow that enables fast, accurate and efficient plant stress phenotyping. We show how image 

processing and machine learning can be deployed to construct classifiers that can 

automatically evaluate stress severity from image data. We emphasize that expert knowledge 

is crucial in designing appropriate classifiers. This is clearly seen in the markedly superior 

performance of the hierarchical classifier over single stage classifiers. The classifier is 

additionally used to produce a phenotypically meaningful population canopy graph. 

Subsequently, we deploy the developed classifier onto smartphones that serves as a high-

throughput framework that can be utilized cross-platform for evaluating IDC ratings of 

soybean using only digital images. It is clear that image based analysis is more reliable and 

consistent than visual scoring as it removes the human error aspect involved in visual rating 

when repeated IDC measurements are needed at different growth stages. We compared the 

computed IDC ratings with provided visual scores from domain experts, and observed a close 

similarity, supporting accurate measurements and the accuracy of this HTP framework. We 

envision that such systems will help the plant researchers and breeders increase the efficiency 

and accuracy of selecting genotypes compared to visual scoring to enable fast phenotyping 

and reduce researcher bias. It is also relatively low cost and has the potential to speed up and 

improve crop development. The newly developed software framework is being embedded 

onto a high throughput phenotyping ground vehicle and unmanned aerial system (UAS) that 

will allow real-time, automated stress trait detection and quantification for plant breeding and 

stress scouting applications. This framework is also currently under further development by 

our group for numerous biotic stresses in soybean. 
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Standard imaging protocol 

 

1. Always take a picture of the X-Rite Color Checker Color Rendition Chart first. 

a. Ensure that the lighting does not change after taking a picture of the chart. 

b. Should the lighting change, take a picture of the chart again. 

c. Do not touch the colored squares on the chart. 

2. Ensure that no weeds, other plants, or large objects (e.g., shoes, paper, and so forth) 

merge with the plant(s) canopy in the image. 

3. If taking pictures of greenhouse plants, ensure that the background of the image is 

one flat color; black is preferred. Use a black cloth to cover the background. 

4. Take pictures of the entire plant(s) canopy.  

5. Ensure that light is not reflected by the leaves; in this case, leaves appear white. Try 

not to use flash. If using a flash is essential, use a diffuser on the flash to have even 

lighting. 

6. Always take images from a top-down view. 
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GENERAL CONCLUSION 

 The goal of the study was to develop a disease detection framework that is applicable 

on soybeans using machine learning and image analysis techniques. Over 4000 images were 

analyzed and their features extracted. Then, using the extracted features, a classification 

model was trained, in order to accurately assign IDC ratings to images. Then, a standard 

canopy diagram was developed, and the framework implemented into a cellphone app. The 

hierarchical classification method was used to produce the standard canopy diagram and 

assign IDC ratings, with 96% accuracy, supporting accurate measurements and the accuracy 

of this HTP framework.  

 For soybean disease rating in the field, image analysis is more reliable and consistent 

that visual scoring as it removes the human error aspect involved in visual rating when 

repeated measurements are needed at different growth stages. 

The methods described in this thesis provides quick way to identify disease tolerant 

or susceptible genotypes. It helps the breeder to increase the efficiency and accuracy of 

selecting genotypes compared to visual scoring so it permits for phenotyping and reduces 

researcher bias. It is also relatively low cost and has the potential to speed up and improve 

soybean cultivar development, thereby contributing to better/high yield production on 

calcareous soil in USA.  
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