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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Simulation of complex fluid systems has been attracting more and more attention. Though

theoretical analysis and scientific experiments are both powerful tools for unveiling secrets

hidden behind the phenomena or providing guidance to industrial design and manufacture,

computational study still shows its great advantages when the theoretical analysis is stuck

seeking an appropriate mathematical expression or the experimental investigation is restricted

by the lack of accuracy for a small scale observation. Complex fluid systems are commonly

described by coupled physical equations. For example, the flow past a heated object is governed

by both the fluid dynamic equations and the heat convection/diffusion equation. To be able

to simulate the motion of an air bubble in water, or the deformation of an oil droplet hitting a

surface, we need to solve both the fluid equation and the equation governing the motion of the

the interface between liquid and air. Thus to accurately simulate the behavior of the complex

fluid systems, it is crucial to have accurate/efficient equation solvers, and to think about the

strategy to handle the coupling of these equations.

Various numerical methods of solving partial differential equations have been developed,

for instance, finite difference method (FDM) (Morton and Mayers (2005); Rübenkönig (2006)),

finite volume method (FVM) (Versteeg and Malalasekera (2007); Anderson et al. (1995)), and

finite element method (FEM) (Hughes (2012); Brooks and Hughes (1982); Oden (1973)). In

this study, we adopt the finite element method for solving the physical equations for its ease

of implementation, convenience of parallelization, and flexibility for dealing with various phys-

ical problems. Brooks and Hughes (1982) introduced the streamline upwind/Petrov-Galerkin

(SUPG) terms to stabilize the velocity solution for convection dominated incompressible flows,
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where the spurious oscillations of the numerical solution is eliminated from the traditional

Petrov-Galerkin method. Tezduyar et al. (1992) improved this technique by adding the pressure

stabilization Petrov-Galerkin (PSPG) terms where velocity and pressure can be interpolated

on equal order elements.

Complex fluid systems involving coupled equations usually present more physical proper-

ties and behaviors than the ones governed by a single equation system. Taking the problem

of flow past a single cylinder as example, the vortex shedding behind the cylinder forms a

staggered pattern known as the “von Karman vortex street”, which is a result of the conflict

between the inertia and viscosity of the fluid. When a heat source is added to the cylinder,

the vortex shedding process presents more patterns as observed experimentally by Hu and

Koochesfahani (2011). A numerical analysis provides the first step of understanding how the

heat convection/diffusion influences the flow.

Though the investigation of complex/multi-physics systems leads us to a journey of explor-

ing more wonders in nature, numerical solutions for such systems face many challenges, coming

from both the physical side and the limitation of computational resources. A coupled equation

system not only introduces more unknown physical variables and controlling parameters into

the numeric scheme, but it also brings things like stability conditions and restrictions on grid

and time step sizes for all the equation sets under consideration. For example, when simulating

multiphase flows, we need to solve both the flow equations and interface dynamic equations.

Wodo and Ganapathysubramanian (2011) pointed out that there exists a minimal spatial res-

olution of the grid through the interface to maintain the accuracy of the numerical solution to

the interface motion. So when designing the numerical scheme for such a problem, we need to

meet this condition, which is not required by most numerical schemes for the flow equations.

However, reducing the grid size increases the consumption of computational resources, which is

an important factor that we hope to control at a low level most of the time. Similar opposing

requirements found when designing the numerical schemes motivate the need for smarter ways

to handle the coupling of the equation sets. Thus a well designed numerical scheme, or solution

algorithm, for handling the coupled equation systems becomes the key to success.
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Another problematic feature of complex fluid systems is that they usually present strong

nonlinearity and sensitivity to uncertainties. An outcome of this feature is that we often

observe multiple phases of a certain behavior in the complex systems. For example, flow past a

heated cylinder gives multiple vertex shedding patterns. Organic solar cell morphology is highly

affected by the ratio of components in the solvent and spinning speed of the fabrication base

(Wodo and Ganapathysubramanian (2012)). Velocity perturbation of the flow in the micro-

channel can have significant response to nano-level roughness on the channel bottom (Jaeger

et al. (2012)). Numerical simulations are performed on a large set of controlling parameters

can help us investigate the features of these phases and study their transitions, then categorize

their results based on their behaviors. One extension to this type of problem is the stochastic

analysis using the adaptive sparse grid collocation (ASGC) method, where a large set of input

parameters are a group of random variables. For all the above scenarios, the key requirement

is how to efficiently handle these high throughput numerical tasks and how to manage the

huge data set generated from these simulations. The ASGC method processes the stochastic

calculation in a hierarchical pattern, where the next level of iteration is related to the previous

ones. This implies that the numerical framework should be fault-tolerant to both machine

failures and software level incidents occurred for the scientific solvers. This numerical framework

should also be pluggable to various scientific solvers, and be flexible to a wide range of scales

of physical problems.

1.2 My contributions

The purpose of this study is to provide such a framework covering both the implementation

of the scientific solver for coupled equation systems and the development of a platform for

handling high throughput simulation tasks. The following is a list of my contributions towards

the design and implementation of such a framework.

(1) Derived the finite element formula for solving the coupled equation system, where the

SUPG stabilization term is incorporated to stabilize the velocity solution in the convection

dominant flows.
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(2) Improved the TalyFEM FEM solver package by developing the domain decomposition

technique, which partitions the whole grid into sub-domains distributed on multiple processors.

This feature allows the solver to handle very large scale (hundreds of millions of degrees of

freedoms) three dimensional problems.

(3) Treated the coupled equation sets in a semi-coupled way, where each equation set is

solved alone and the coupled unknown variables are updated in an iterative procedure. This

method reduces the number of degree of freedoms solved at the same time, which therefore

reduces the consumption of computational resources and allows the solution of very large scale

problems.

(4) Applied the coupled equation solver on simulating flow past a heated cylinder. The nu-

merical analysis helped us verify the multiple vortex shedding patterns observed in experiment.

We further investigated the conditions for the occurrence of these vortex shedding patterns for

various cylinder aspect ratios.

(5) Applied the coupled equation solver to numerically study multiphase flows. We found

that a minimum grid resolution is required through the interface to assure the accuracy of

the solution to the interface motion. We also numerically investigated the convergence of the

interface thickness for the diffuse interface model.

(6) Designed and developed a fault-tolerant framework for handling high throughput para-

metric driven scientific simulation tasks. This framework is designed with a friendly user

interface and provides scientific solvers covering most of engineering problems. This framework

is also scalable to any size of problem, where the numerical solutions are managed by a hard

drive storage database.

1.3 Outline of this thesis

In this thesis, we introduce the numerical solution strategy in several chapters. Chapter 1

gives the overall motivations and guidelines for deriving such a framework. Chapter 2 to Chap-

ter 4 comprise works modified from manuscripts to be submitted to journals, which discuss

the details of derivation of the finite element solvers on coupled equation systems, validations,

and their applications on various physical problems. These chapters also introduce the design
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and implementation of the high throughput scientific solver batch processing tool AdaGiO and

its applications on solving stochastic partial differential equations. At last, Chapter 5 summa-

rizes the conclusions of the findings discussed in this thesis and lists potential applications and

improvements could be extended from this study.
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CHAPTER 2. PHASE TRANSITIONS IN VORTEX SHEDDING IN

THE WAKE OF A HEATED CIRCULAR CYLINDER AT LOW

REYNOLDS NUMBER

Modified from a paper to be submitted to Physics of Fluids

Yu Xie, Hui Hu, and Baskar Ganapathysubramanian

2.1 Abstract

The present study describes our numerical investigation on two transitions observed in the

wake behind a horizontally placed heated circular cylinder in a closed channel with low Reynolds

number, where the incoming flow is in the direction of gravitational force. The thermally de-

duced buoyancy coupled with the convection and viscous diffusion introduces further instability

into the flow system. In this study, a finite element scheme is derived with inclusion of the

streamline upwind Petrov-Galerkin (SUPG) stabilization terms to provide accurate numerical

solution to the current hydraulic/thermal system. Our numerical method is validated by var-

ious comparisons with previous experimental studies. Our contributions include the provision

of further understanding to the mechanism of the flow transition and vortex shedding pattern

transition observed in previous experimental studies. Though the heat source on the cylinder

has the core function to influence the wake flow structure, we demonstrated that the existence

of a velocity gradient in the cylinder axis direction plays a crucial role on triggering both the

flow transition and vortex shedding pattern transition. The numerical method enables us to

mimic the situation where such velocity gradient is eliminated from the channel, and we found

that both the flow transition and vortex shedding pattern transition vanish in such case. Our
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hypothesis on the relation between the velocity gradient in the cylinder axis direction and the

two transitions is verified by quantitative analysis shown in this report.

2.2 Introduction

The instability of the wake behind a bluff obstacle has been investigated by fluid mechani-

cians for several decades. The most significant phenomenon in wake flow is the shedding of

vortices. These vortices can form the famous staggered pattern of vortex street which was first

studied by Von Karman and Rubach (1912). The pattern of the vortex street can be influenced

by external forces like the direction of gravity, angle of attack, and heating of cylinder. For the

last century, attention was focused on the study of an isothermal cylinder [Von Karman and

Rubach (1912); Green and Gerrard (1993); Roshko (1954); Williamson (1988)]. Characteristics

of flow past an unheated cylinder are relatively well understood after extensive experimen-

tal, theoretical and numerical analysis [Williamson (1996)]. However, the study of flow past

a heated body has not been extensively analyzed until recent years. Interest in this problem

has been primarily encouraged by improving experimental and sophisticated computational

techniques. Research on laminar flow past a heated circular cylinder leads to a better under-

standing of more complex flow, as well as to better serve industrial applications, particularly

in electronic packaging, cooling and manufacturing.

For the problem of flow past an unheated circular cylinder, Von Karman and Rubach (1912)

pointed out that the stability of the wake flow is only determined by the vortex street configu-

rations. The Reynolds number Re is a crucial factor that decides the behavior of the wake flow.

Green and Gerrard (1993) studied the bluff-body wake flow vortex shedding mechanism at low

Reynolds number using the particle streak method. They gave a quantitative description of the

vortex splitting phenomenon, and discovered that when the Reynolds number is small, shear

stress dominates the vortex splitting, while a higher Reynolds number contributes more to the

inertia shedding mechanism.

A representative feature of vortex shedding is a transition to three dimensional flow. Re-

searchers have been trying to understand the mechanisms of the flow transition to three-

dimensional flow. Roshko (1954) originally detected and analyzed the three-dimensional wake
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flow transition. Based on hot-wire techniques, spectrum and statistical measurements, he stud-

ied experimental data from a low-speed wind tunnel with the purpose of investigating wake

development behind circular cylinders. Laminar-turbulent transition occurs when the Reynolds

number is in the “irregular range” (Re=150 to 300). Williamson (1988) observed that in the

near wake of a circular cylinder the transition to three-dimensionality consists of two transition

modes, known as “Mode A” and “Mode B”. These two modes of instability have distinct wave-

lengths and frequencies. In another seminal paper, Williamson (1996) estimated the critical

Reynolds number for the occurrence of the three-dimensional flow transition by using laser-

induced fluorescence and Particle-Image-Velocimetry (PIV) techniques.

This vortex shedding process can be disturbed by external sources, like adding external force

on the cylinder, heating or cooling the cylinder, and varying the angle of attack. Karniadakis

and Triantafyllou (1989) employed the spectral-element method to study the response of wake

flow to an external force to the cylinder. They pointed out that a synchronized vortex shedding

occurs under vibration of the cylinder with large amplitudes. Slaouti and Gerrard (1981)

recognized that the end effect of the cylinder causes the three-dimensional vortex tubes to

slant with respect to the cylinder axis. Williamson (1989) later found methods to suppress the

oblique shedding of vortex tubes by modifying the cylinder ends with diameter thickening or

end plates.

Heating the cylinder is another aspect that influences the vortex shedding characteristics.

The study of flow past heated objects has not received enough attention, although this problem

has significant importance for both research and application [Kieft et al. (2003)]. Compared

with forced convection in the case of the unheated cylinder, mixed convection caused by heating

the cylinder involves viscous, inertial and buoyant forces which increase the difficulty of analysis

(both experimental and numerical). The effect of heat input on the cylinder has previously

been studied to determine the quantity of heat transfer between the heated cylinder and fluid

with the purpose of improving hot-wire performance [Hatton et al. (1970)]. For modern man-

ufacturing engineering, the study of the influence of heat input on the wake behind a circular

cylinder provides information to improve electronic device cooling techniques and designs for

heat exchange tubes [Varma et al. (2007)]. Both experimental and numerical studies reflect
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that heating the cylinder can significantly change vortex shedding characteristics. Michaux-

Leblond and Belorgey (1997) investigated ascendant flow passing a heated circular cylinder

experimentally with laser Doppler velocimetry. They found that above a critical input heat,

vortex shedding is gradually suppressed until the wake becomes a thermal plume. Lecordier

et al. (2000) obtained similar results in their numerical simulation. They concluded that the

sudden disappearance of vortex shedding is primarily due to the influence of input heat on vis-

cosity. Chang and Sa (1990) showed more details about the near wake behind a heated/cooled

circular cylinder with numerical methods. They observed the degeneration of the flow into a

“steady twin-vortex” pattern. Studies have revealed that the vortex structure behind a heated

circular cylinder can also be affected by changing the local features of the surrounding fluid

or the obstacle. Noto and Matsumoto (1991) investigated the influence of attack angle on the

stability of wake flow behind a heated circular cylinder. Kieft et al. (2003) studied the wake

flow behind a heated horizontal cylinder both experimentally and numerically. They pointed

out the difference of strength between the two rows of vortices is attributed to the downward

motion of the shed vortex structures. They concluded that the thermally induced baroclinic

vorticity production is the primary contribution for this phenomenon.

The aspect ratio of cylinder also plays an important role in determining the vortex shedding

pattern and wake instability. Mittal (2001) performed a computational study of comparing

vortex shedding modes of flow behind an unheated cylinder for various cylinder aspect ratios by

using Direct Numerical Simulation (DNS). To the best knowledge of the authors, there appears

to be no such analysis of vortex shedding modes for heated cylinder. We utilize numerical

techniques to understand the instability of wake behind a heated cylinder with different cylinder

aspect ratios. This study reveals that the behavior of wake flow near the heated cylinder

under different cylinder aspect ratios are more complex than expected. In complementary

experimental research [Hu and Koochesfahani (2005, 2011)] for flow past a heated cylinder,

a mode shift of average velocity distribution along the axis on the wake central surface was

found. This phenomenon is also detected in the present study.

This paper is organized as follows. In Section 2.3, problem description, governing equations

and boundary conditions will be discussed. The stabilized finite element formula for the sim-
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ulation is derived in Section 2.4, where the details of the simulations, such as solver package

and machine information is provided as well. Section 2.5 discusses the spatial and temporal

convergence behaviors of the present numerical method, and validates the solver by comparing

the numerical results with experimental measurements. The 3D flow transition and the vortex

shedding pattern transition caused by the heated cylinder will be investigated in Section 2.6

and 2.7, respectively, where the influence of the cylinder aspect ratio will be incorporated for

both studies.

2.3 Problem description and governing equations

In this study, we simulate the forced flow past a heated cylinder horizontally placed between

two lateral walls of a channel, as illustrated by the schematic in Figure 2.1. Denote the diameter

of the cylinder as D, and length as L, where D = 4.76 mm. The aspect ratio of the cylinder

is then noted as ar = L/D. The width of the channel is 10.5D, and length is 42D. The

cylinder locates at the center between the two side walls, and has a 10D distance to the

inlet. Incoming flow with uniform velocity comes into the channel from the inlet with velocity

U∞ = 0.0255 m/s, and has the same direction with the gravitational force. The incoming fluid

has temperature T0 of the surrounding environment. An equal or higher constant temperature

T1 (T1 ≥ T0) is applied on the surface of the cylinder. Here we assume that the cylinder surface

is made of highly thermal conductive material thus the surrounding water in touch with the

cylinder has the same temperature of the cylinder. When ar = 6.3, T0 = 24 ◦C (297K), and T1

varies from 24 ◦C (297K, unheated case) to 85 ◦C (358K), the geometrical and physical settings

of the computational model are the same as the experimental set-up performed by Hu and

Koochesfahani (2011).

Behavior of the fluid is governed by the transient incompressible Navier-Stokes equations

with an external bouncy force caused by the density change of fluid due to heterogeneous

temperature distribution:

ρ

[
∂u

∂t
+ (∇ · u)u

]
= ∇ · σ −∆ρg, (2.1)

∇ · u = 0, (2.2)
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Figure 2.1 Schematic diagram of the problem. The heated cylinder is horizontally placed in

a close channel between two lateral walls.

where ρ is the density of fluid, ∆ρ = ρ(T )−ρ(T0) is the change of density due to the difference

between local temperature T and reference temperature T0, u is the velocity vector, t is time,

g is the gravitational acceleration, and σ is the the stress tensor given as

σ = −pI + 2µε(u), (2.3)

with

ε(u) =
1

2

[
∇u+ (∇u)T

]
, (2.4)

and p, µ, and I being the pressure, the dynamic viscosity, and the identity tensor.

Evolution of temperature T is governed by the heat convection/diffusion equation:

∂T

∂t
+ (∇ · u)T −∇ · (α∇T ) = 0, (2.5)

where α = k/(ρCp) is the thermal diffusivity of water, with k and Cp being the thermal

conductivity and specific heat capacity, respectively.

Boundary conditions of the governing equations are now discussed. At the inlet, a uniform

velocity field is applied. The temperature is also fixed at T0. The uniform velocity inlet

condition is aimed to mimic the inlet condition of fluid entering the testing channel where

a honeycomb mesh structure is imposed at the upstream to regularize the approaching flow.

Denote the streamwise, transverse and perpendicular velocity components as u, v, and w,
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respectively. Then we have, at the inlet, the boundary conditions of velocity and temperature

are:

u = U∞, v = w = 0, T = T0. (2.6)

On the lateral walls and the cylinder surface, the “no-slip” boundary condition is employed for

all velocity components. On the surface of the cylinder, the temperature is fixed at T1. The

lateral walls are assumed to be adiabatic where temperature remains constant T0. Thus on the

cylinder and lateral walls of the channel, we have:

u = v = w = 0, T =

 T1 on the cylinder,

T0 on lateral walls.
(2.7)

Since that the problem is transient, and vortices form behind the cylinder then pass through

the channel to the outlet, the Neumann boundary conditions of velocity and temperature are

applied on the outflow boundary:

∂u

∂n
= 0,

∂T

∂n
= 0, (2.8)

where n is the normal vector on the outlet.

Notice that the problem is symmetric to the central plane of the channel perpendicular to

the cylinder. So the fluid flow is only simulated in the top half of the physical domain, which

requires only half of the computational resources without loss of accuracy. For this purpose,

a mirror boundary condition of velocity needs to be applied on the symmetry plane, which is

equivalent to restricting the w component of velocity as 0. The temperature distribution is

required to be normal to the symmetry plane as well. Thus the mirror boundary condition of

velocity and temperature on the central plane are given by:

w = 0,
∂T

∂nc
= 0, (2.9)

where nc is the normal vector on the central surface of the channel.

The thermal properties of water, density (ρ), dynamic viscosity (µ), thermal conductivity

(k), and specific heat capacity (Cp) all vary with temperature T . In a small range of change

of temperature, it is possible to assume a linear change of density with temperature while



13

Table 2.1 Coefficients of the polynomial fittings of the thermalphysical properties of water with tem-
perature.

Thermalphysical property a0 a1 a2 a3 a4
Density (kg/m3) -1.67E+03 3.14E+01 -1.38E-01 2.69E-04 -2.01E-07
Specific heat (kJ/kg ·K) 3.15E+01 -3.24E-01 1.45E-03 -2.88E-06 2.15E-09
Thermal conductivity (W/m ·K) 8.148E-02 8.28E-04 6.50E-06 -8.34E-09 -9.39E-12
Viscosity (N ·m/s2) 2.58E-01 -2.88E-03 1.22E-05 -2.30E-08 1.64E-11

keeping other three properties constants. This simplification is known as the Boussinesq ap-

proximation [Boussinesq (1897)], which then derives that the buoyancy force increases linearly

with temperature. The Boussinesq equation has been applied for analyzing the wake structure

behind a heated cylinder in cross-flow [Kieft et al. (2003)]. However, the largest temperature

difference considered in the present study is as high as 61 ◦C, which makes the Boussinesq

approximation invalid and thermally induced changes of the other three thermal properties

other than density of water need to be incorporated into the simulation. We found that a 4th

order polynomial (
∑4

i=0 aiT
i) serves as sufficiently accurate interpolation for all four thermal

properties of water with in the range of temperature from 285K to 370K, where temperature

T is in the unit of Kelvin (K). The coefficients ai’s for all four thermal properties are listed

in Table 2.1, and the plots of the interpolated curves versus the measurement data [Incropera

and DeWitt (2002)] are given in Figure 2.2.

2.4 Numerical Methods

In this section we discuss the numerical method employed to simulate the present problem.

Given numerical solutions un, pn, and Tn for velocity, pressure and temperature at time step

tn, we need to determine the solutions un+1, pn+1, and Tn+1 for time step tn+1. We adopt the

finite element method for solving the numerical solutions for both the hydraulic Equations (2.1),

(2.2), and the energy equation Equation (2.5). The streamline upwind Petrov-Galerkin (SUPG)

method [Brooks and Hughes (1982)] is incorporated to avoid spurious oscillations of the numer-

ical velocity solution field. However, Brooks and Hughes (1982) treated the pressure term with

the penalty method, where pressure is expressed by the divergence of velocity thus only the ve-

locity is actually being solved. This method requires the penalty term for pressure to be stored
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Figure 2.2 Thermalphysical properties of saturated water at different temperatures. ‘-’: poly-

nomial fitting; ‘◦’: measurements [Incropera and DeWitt (2002)].
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on a lower order element than that of velocity, which increases the difficulty in coding. Tez-

duyar et al. (1992) introduced the pressure stabilized Petrov-Galerkin (PSPG) method which

allows the use of equal-order-interpolation velocity-pressure elements. This method has been

successfully applied for solving fluid problems with various geometries [Jaeger et al. (2012);

Amini et al. (2013)]. The shortcoming of such strategy is that this velocity-pressure integrated

method is computationally inefficient in terms of computer memory and computing time, which

tends to overcome its advantages such as accuracy and ease of handling for solving 3D large

scale problems. A remedy for such issue is known as a family of velocity-pressure segregated

methods, where the pressure is solved separately from the momentum equation, and velocity

is then corrected by the updated pressure solution. In this study, we employ the four-step

fractional method [Choi et al. (1997)] for solving the incompressible Navier-Stokes equations.

The four-step fractional method decouples the pressure from the momentum equation, and

solves the pressure from a Poisson type equation. With this method, Equations (2.1) and (2.2)

are solved by the following equations sequentially at each time step:

ρ(Tn+1)

(
û− un

∆t
+

1

2
(û · ∇û+ un · ∇un)

)
+∇pn =

µ(Tn+1)

2
∇ ·
[(
∇un + (∇un)T

)
+
(
∇un+1 + (∇un+1)

T
)]
−
[
ρ(Tn+1)− ρ(T0)

]
g, (2.10)

ρ(Tn+1)
u∗ − û

∆t
= ∇pn, (2.11)

∇ · ∇pn+1 =
ρ(Tn+1)

∆t
∇ · u∗, (2.12)

ρ(Tn+1)
un+1 − u∗

∆t
= −∇pn+1. (2.13)

In the above equations, û and u∗ are the intermediate velocities which are solved based on

pressure pn from the previous time step. Pressure pn+1 is then updated by Equation (2.12)

with the intermediate velocities. Notice that the intermediate velocities do not satisfy the

incompressible condition, i.e. ∇ · u∗ 6= 0. So the last step corrects the velocity with the latest
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pressure field pn+1 to guarantee the incompressible condition. Here we also applied the Crank-

Nicolson scheme on the convective term and diffusive term in the momentum equation to obtain

second order accuracy in time discretization.

The temporal discretization of the energy Equation (2.5) is written as following,

Tn+1 − Tn

∆t
+

1

2
(∇ · un)Tn +

1

2

(
∇ · un+1

)
Tn+1 =

α(Tn+1)

2
∇ ·
[
∇Tn +∇Tn+1

]
, (2.14)

where similarly, the Crank-Nicolson scheme is adopted on the convective and diffusive terms.

At each time step, Equations (2.10)-(2.14) are solved sequentially. However, notice that in

Equation (2.10), temperature Tn+1 is still unknown until being updated by Equation (2.14). To

cope with this problem, we first start solving Equation (2.10) by using the temperature Tn from

the previous time step. Then the intermediate velocity is obtained from Equations (2.10) and

(2.11). With this intermediate velocity, pressure pn+1 is obtained from Equation (2.12). After

this, velocity un+1 is corrected from the pressure solution pn+1. Finally, Equation (2.14) gives

the temperature field Tn+1 at time step tn+1. The latest temperature solution Tn+1 might be

different with the guessed solution used for starting Equation (2.10). So it is necessary to repeat

the above process for solving Equations (2.10)-(2.14) by starting with the latest solution to

temperature, until the solution converges. The details of this iterative procedure is given by the

flowchart shown in Figure 2.3. In the flowchart we see that the iteration stops when the relative

change of temperature reaches below ε, where ε is a threshold controlling the convergence.

Notice at least two iterations are required to perform this comparison. This method is also

known as the “block-iterative” approach for solving coupled equations [Tezduyar and Sathe

(2007)]. There is no general theory on the convergence condition for such method [Cervera

et al. (1996)]. Considering the iteration is required at each time step, the value of ε should be

within the order of ∆x2 to avoid introducing more numerical error from this scheme, regarding

the second order spatial convergence rate of the finite element formula, e.g. take ε = 1× 10−3

when ∆x has characteristic value of 1×10−1. We have observed that the convergence is typically

reached within two or three iterations, which demonstrates that this strategy is computationally

efficient. Also, without loss of accuracy, we evaluate the term α(Tn+1) in Equation (2.14) by
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Given solution un, pn, and Tn

Initialize interations: i = 0;
un+1

(0) = un, pn+1
(0) = pn, and Tn+1

(0) = Tn

i = i+ 1

Solve Navier-Stokes Equations (2.10)-(2.13) with Tn+1
(i−1);

Obtain un+1
(i) and pn+1

(i)

Solve energy Equation (2.14) with un+1
(i) and pn+1

(i) ;

Obtain Tn+1
(i)

‖Tn+1
(i)
−Tn+1

(i−1)
‖2

‖Tn+1
(i−1)

‖2
> ε, or i < 2?

Obtain solution:
un+1 = un+1

(i) , pn+1 = pn+1
(i) , and Tn+1 = Tn+1

(i)

yes

no

Figure 2.3 Flowchart of the iteration solver for the semi-coupled Navier-Stokes and heat con-

vection/diffusion equation system.

using the latest temperature solution instead of treating it as an unknown parameter, to avoid

the unnecessary effort of introducing a nonlinear term in the energy equation.

The weak form of equations are obtained from multiplying the governing equations with a

weighting function w and integrating over the physical domain Ω, where w ∈ H1, H1 is the

Soblev space of vector functions on Ω. In this study, we also incorporate the SUPG terms into

the weak form equations to stabilize the solution. Then the finite element method tends to give

the approximate solutions to velocity and pressure in a finite dimensional subspace Hh of space

H1. Then the numerical procedure can be described as follows: given approximate solutions,

unh, pnh, and Tnh at time step n, for any test functions wh ∈ Hh, qh ∈ Hh, and sh ∈ Hh, find the
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approximate solutions un+1
h , pn+1

h , and Tn+1
h at time step tn+1 satisfying the following weak

form of equations:

∫
Ω
wh ·

{
ρ(Tn+1

h )

(
ûh − unh

∆t
+

1

2
unh · ∇unh +

1

2
ûh · ∇ûh

)
+∇pnh +

[
ρ(Tn+1

h )− ρ(T0)
]
g

}
dΩ

+

∫
Ω

µ(Tn+1
h )

2
∇wh :

[(
∇unh + (∇unh)T

)
+
(
∇ûh + (∇ûh)T

)]
dΩ

+

nel∑
e=1

∫
Ωe

δ(wh) ·

{
ρ(Tn+1

h )

(
ûh − unh

∆t
+

1

2
unh · ∇unh +

1

2
ûh · ∇ûh

)
+∇pnh

+
[
ρ(Tn+1

h )− ρ(T0)
]
g

}
dΩ−

∫
Γ2

wh · hdΩ = 0, (2.15)

∫
Ω
wh ·

[
ρ(Tn+1

h )
u∗h − ûh

∆t
−∇pnh

]
dΩ = 0, (2.16)

∆t

ρ(Tn+1
h )

∫
Ω
∇qh · ∇pn+1

h dΩ−
∫

Ω
∇qh · u∗hdΩ +

∫
Γ
qhûh · ndΓ = 0, (2.17)

∫
Ω
wh ·

[
ρ(Tn+1

h )
un+1
h − u∗h

∆t
+∇pn+1

h

]
dΩ = 0, (2.18)

and the stabilized finite element formula of the energy equation:∫
Ω
sh ·

(
Tn+1
h − Tnh

∆t
+

1

2
(∇ · unh)Tinh +

1

2
(∇ · un+1

h )Tn+1
h

)
dΩ

+

∫
Ω

α(Tn+1
h )

2
∇sh ·

(
∇Tnh +∇Tn+1

h

)
dΩ

+

nel∑
e=1

∫
Ωe

δ(sh) ·

(
Tn+1
h − Tnh

∆t
+

1

2
(∇ · unh)Tinh +

1

2
(∇ · un+1

h )Tn+1
h

)
dΩ = 0, (2.19)

where (·)h denotes the approximate solution in the finite dimensional subspace Hh, Ωe’s, e=1,

. . ., nel, are the elements with nel being the total number of spatial discretization. Vector δh(·)

is the SUPG stabilization term [Brooks and Hughes (1982)], which is applied on both Equa-

tion (2.15) of momentum and Equation (2.19) of energy. Equation (2.17) is the finite element

formula for the pressure Equation (2.12), which contains the integration of the approximate

intermediate velocity vector ûh on the Neumann boundary Γ (i.e. the outlet of the channel) of

domain Ω. Since that Equation (2.15) does not ensure that ûh is divergence free, it is necessary
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to add restriction to ûh to satisfy the incompressibility condition. Here at each solution iter-

ation, we calculate the mass flow rate of the fluid on the outlet Γ, and compare this quantity

with the inlet mass flow rate, then calibrate the intermediate velocity vectors on the outlet to

make the two flow rates equal. We have found that this method is very easy to operate and

successfully guarantees that the final velocity solution is divergence free.

The 3D mesh for the simulation is generated by stretching an unstructured 2D grid along

the direction of the cylinder, where the 2D grid is created using the CUBIT mesh generation

toolkit [Shepherd et al. (2000)]. Details of the mesh are shown in Figure 2.4. The 2D grid

is divided into three sub-domains as shown in Figure 2.4(a), where different element sizes are

assigned. In sub-domain (1), within the half diameter distance surrounding the cylinder, we

assign the smallest element size, since this section contains the boundary layer and largest

temperature gradient. Denote the element size on the outer circular boundary of sub-domain

(1) as ∆x. Extend sub-domain (1) by 1D distance and backwards by 10D distance, we get sub-

domain (2), where elements have average size 2∆x, aimed at accurately capturing the behavior

of the shedding vortices and evolution of temperature field. In the outer region, sub-domain (3),

element size is further doubled to help reduce the total computational cost, since this section

has relatively less effect on the near wake behavior. The element size is reduced further along

the axial direction in sub-domain (1), and is clustered towards the cylinder (Figure 2.4(b)),

to ensure the accuracy of solution inside and around the boundary layer. Comparison of the

element sizes in these three sub-domains is clearly shown by Figure 2.4(c). Then the 3D mesh

can be easily formed by stretching the 2D grid along the direction of the cylinder (only the top

half of channel is required due to symmetry in geometry), as seen in Figure 2.4(d).

Notice that Equation (2.15) is a non-linear equation. Non-linear equation can be solved by

the exact Newton-Raphson method. For this study we use the SNES C++ toolkit provided by

the open source package PETSc [Balay et al. (2013b,a, 1997)], which contains convenient and

powerful tools to solve nonlinear equations. At each iteration, the linear equation is solved by

the BCGS solver and basic ASM pre-conditioner which are available in PETSc. The simulations

in this paper are performed on CyEnce at Iowa State University and on TACC Stampede.
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Figure 2.4 3D mesh used for simulations and related details. (a) Sections of the 2D slice of the

geometry with different spatial resolutions; (b) detail of the spatial discretization

around the cylinder; (c) 2D spatial discretizations in the three sections on the 2D

slice of geometry; (3) the 3D mesh stretched from the 2D mesh.
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2.5 Convergence tests and validation

In this section we report the convergence tests on the numerical method, as well as the

validation of our methodology by comparing with previous experimental results. Both the

spatial and temporal convergence tests are obtained from 2D simulations.

To perform the spatial convergence tests, we assign four values to the mesh size ∆x, ∆x/D =

2π/45 (≈ 0.14), 2π/90 (≈ 0.07), 2π/180 (≈ 0.035), and 2π/360 (≈ 0.017), as giving the coarse

mesh, the medium mesh, the fine mesh, and a reference mesh with highest resolution for

calculating the relative errors of spatial convergence. The above choices of ∆x’s are obtained

by dividing sub-domain (1) circumferentially into equal parts by every 8,4, 2, and1. The time

step increment is kept at ∆t = 0.0125 dimensionless time scaled by D/U∞.

Spatial convergence test results are given by Figure 2.5. Figure 2.5(a) plots the ensemble-

averaged streamwise velocity profiles along the wake centerline segment in the range of [0, 10D]

for all spatial resolutions. Each velocity profile is average for all time steps from dimensionless

time 100 to 200, along the centerline pointed out in Figure 2.1. The ensemble-averaged stream-

wise velocity profiles along the wake centerline reflects the flow structure in the wake behind

the cylinder, where the negative part of the profile implies a recirculation region in the wake.

We see in Figure 2.5(a), as the spatial resolution increases, the profile clearly converges. To

quantitatively investigate the convergence rate of the numerical method on this problem, we

plot the relative error of spatial resolution as a function of ∆x in Figure 2.5(b). The relative

error of each spatial resolution ∆x reflects the relative difference of the velocity profile under

∆x from the reference case with highest spatial resolution in Figure 2.5(a), and is defined as:

err∆x
uC

=
‖u∆x

C − uref
C ‖2

‖uref
C ‖2

=

[∫ 10D
0

(
u∆x
C (x)− uref

C (x)
)2

dx
]1/2

[∫ 10D
0

(
uref
C (x)

)2
dx
]1/2

, (2.20)

where ‖ · ‖2 indicates the L2 norm, u∆x
C (·) denotes the velocity profile for spatial resolution

∆x, and uref
C (·) refers to the reference case. Figure 2.5(b) clearly shows a second order spatial

convergence rate of the current numerical method.

The temporal convergence behavior is studied by applying the simulation on the fine mesh

(∆x/D = 2π/180) by varying the dimensionless time step increment ∆t. Here we still adopt
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Figure 2.5 Spatial convergence results. (a) ensemble-averaged centerline velocity plotted for

all spatial resolutions; (b) convergence errors plotted in log-log format.

the ensemble-averaged streamwise velocity profiles along the wake centerline to perform the

investigation on the temporal convergence. As for the study on the spatial convergence, the

velocity profile is considered on the line segment between 0 to 10D. However, here the velocity

profile is averaged by all the time steps between dimensionless time 0 and 200 to incorporating

all the accumulated errors from temporal discretization. In this study, we consider four dimen-

sion less time step increment ∆t, ∆t = 0.1, 0.05, 0.025, and 0.0125 as the reference case for

calculating the relative error.

Figure 2.6 gives the results of the temporal convergence tests. Figure 2.6(a) plots the

ensemble-averaged streamwise velocity profiles for all the four temporal resolutions. As clearly

shown by the figure, we see the curves approach a limit as ∆t decreases. Figure 2.6(b) shows the

relative error evolution with temporal resolution, where the relative error of the ∆t is defined

in the same way as that given by Equation (2.20) by replacing ∆x with ∆t. From the figure we

see an obvious second order convergence rate with ∆t, which demonstrates the second order

temporal discretization scheme deployed in Equation (2.10).

The validation of the 3D solver is also performed by comparing the numerical results with

the experimental measurements [Hu and Koochesfahani (2011)]. The aspect ratio ar is kept

as 6.3, which gives the same geometrical configuration of the test section as used in the ex-
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Figure 2.6 Temporal convergence results. (a) ensemble-averaged centerline velocity plotted

for all temporal resolutions; (b) convergence errors plotted in log-log format.

periment. Three temperatures on the wall of the cylinder are considered for the validation,

T1 = 24 ◦C (297 K), 66 ◦C (339 K), and 85 ◦C (358 K), where the channel wall temperature T0 is

always fixed at 24 ◦C (297 K) thus the first test case corresponds to the flow past an unheated

cylinder. The corresponding Richardson numbers Ri’s for these three cases are 0, 0.72, and

1.04. Comparison between the simulations and experimental data is given by Figure 2.7. The

comparison of the ensemble-averaged streamwise velocity profiles is shown in Figure 2.7(a). The

figure clearly shows that flows pasted heated cylinder has quite different behaviors compared

with those of the flow pasted unheated cylinder. The most significant difference is that the

heated cylinder extends the recirculation region farther downstream, which is reflected by the

velocity profile with a wider negative part for the heated cylinder. This phenomenon has been

accurately captured by the simulations. The wake closure length lC of the recirculation region

is a characteristic quantity for describing the near wake structure behind the cylinder, which

can be read from the centerline velocity profile as the distance from the cylinder center to the

point where the curve changes its sign. For the unheated cylinder, both the experiment and

simulation give lC/D ≈ 3. However, for the heated cases (both Ri = 0.72 and 1.04), the wake

closure length lC/D jumps to about 9, which is also captured by the simulations but with some

slight shifts. This jump of lC with cylinder wall temperature is not observed for 2D simulations.
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(a) (b)

Figure 2.7 Comparisons between the numerical results and the experimental measurements.

(a) comparison between our numerical results with experimental data on the en-

semble-averaged centerline velocity on the symmetric plane at different Richardson

numbers; (b) The comparison of wake closure length at different Richardson num-

bers.

It is also noticeable that the numerical results give stronger streamwise recirculation velocity

compared with the experiment. To better understand how the wake structure responses to the

cylinder wall temperature, the relation between lC and Ri is plotted in Figure 2.7(b). The plot

reveals that the evolution of the wake closure length with increasing cylinder wall temperature

is very well captured by the numerical simulation when comparing with the experimental data,

where both the simulation and experiment show that lC stays around 3D for relatively smaller

Ri’s and jump to about 9D when Ri reaches above 0.5.

Another major effect caused by the 3D heated cylinder is the change of the vortex shedding

pattern in the near wake behind the cylinder. This effect has been observed in the experiment

and very well described [Hu and Koochesfahani (2011)]. When relatively lower temperature

(Ri 6 0.3) is applied on the cylinder, the vortex shedding pattern is more like a “von-Karman”

vortex street. As the temperature increases but not too high (Ri ∼ 0.5), a “dead flow” zone

appears behind the cylinder where the flow is almost quiescent inside. However, for very

high temperature on the cylinder (Ri ∼ 1.0), the vortex shedding pattern adapts a “Kelvin-

Helmholtz” like structure, with a more widely opened zone behind the cylinder. All these
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(a) Ri = 0.19 (experi-
ment)

(b) Ri = 0.50 (experi-
ment)

(c) Ri = 1.04 (experi-
ment)

(d) Ri = 0.19 (simulation) (e) Ri = 0.50 (simulation) (f) Ri = 1.04 (simulation)

Figure 2.8 Comparison of the vortex shedding patterns under different temperatures between

experimental observations [Hu and Koochesfahani (2011)] (top) and numerical

simulations (bottom).

characteristic vortex shedding patters have been captured by our simulations, which give very

good agreement to experimental snapshots, as shown by Figure 2.8. Later part in this paper,

we will provide more details on the investigation of the flow transition and the vortex shedding

pattern change, especially when considering the effect of cylinder aspect ratio ar.

2.6 3D flow transition

One significant feature of the flow behind a heated cylinder is the existence of a flow transi-

tion. This phenomenon has been observed in previous studies. Flow transition always happens

with some discontinuous shift in the measurement of some parameters as the controlling pa-

rameter smoothly changes. Williamson (1988) first found there is a discontinuity in the curve
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of Strouhal-Reynoulds relationship (in his work on flow past an unheated cylinder). When the

cylinder is imposed as a heat source, as mentioned before, Hu and Koochesfahani (2011) figured

out that the discontinuity appearing in the distribution of ensemble-averaged centerline mean

velocities clear reflects the existence of three dimensional flow transition as cylinder tempera-

ture changes. Our numerical method has also accurately captured this behavior (Figure 2.7).

In Figure 2.9(a), we reconsider the same situation as shown in the validation, but plot the mean

centerline velocities at denser sampling points of the Richardson number Ri. From the plot,

we find that the transition is discontinuous, which is saying, as cylinder temperature increases,

the recirculation zone of the mean velocity curve does not gradually move from very near wake

(∼ 3D) to far wake (∼ 9D), instead is distinguished by two groups. The flow transition is

triggered by the heat source on the cylinder, which has very different behavior compared with

the unheated case.

The flow is performed in a closed channel where the cylinder aspect ratio is relatively small.

The “no-slip” flow condition applied on the channel walls gives a significant uneven, parabolic

shaped velocity profile on the channel cross-section, which generates a velocity gradient along

the cylinder axis direction. In this part, we investigate if this velocity gradient is another

prerequisite condition along with the cylinder temperature for the occurrence of the flow tran-

sition. If yes, we hope to understand how the cylinder aspect ratio ar affects the wake behind

the cylinder. For this purpose, we performed the simulations for cylinder aspect ratios ar = 5.0

and ar = 4.0, and repeated the analysis as we did for the ar = 6.3 case. The simulation

was also performed on the case with “no-velocity-gradient” condition, where “slip” condition

is applied on the upper and central surface of the channel (“no-slip” condition is still valid for

the other two lateral walls, and here the geometry ar is 6.3 for the mesh), to mimic the flow

past an infinitely long cylinder, defined as ar = ∞. The centerline velocity curves for these

cases are listed in Figure 2.9.

From Figure 2.9, we find that the flow transition exists for all the finite aspect ratios (i.e.

ar = 4.0, 5.0, and 6.3). Before the flow transition is triggered (for low Ri’s), the cylinder

aspect ratio has very limited effect on the flow wake structure for all the three cases with

finite ar’s. This implies that the velocity gradient along the cylinder axis direction does not
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influence the flow wake structure before the flow transition is triggered. However, the cylinder

aspect ratio does influence the wake structure when the flow transition is triggered. For ar = 6.3

(Figure 2.9(a)), the mean velocity curves for the transited flows give a wake closure length about

9D. As ar drops to 5.0 (Figure 2.9(b)), the velocity gradient along the cylinder axis direction

increases, and the recirculation region of the transited flow is slightly pushed downstream.

When ar decreases to 4.0 (Figure 2.9(c)), the recirculation zone for the transited flow grows

even longer with the wake closure length about 14D. This reflects a trend, that the cylinder

aspect ratio ar (as well as the induced velocity gradient along the cylinder axis direction) has

less effect on the wake structure for the transited flow as ar increases. It also implies that as

ar → ∞, the flow transition will eventually disappear, where the transited flows have similar

wake structure as the untransited flows do. This hypothesis is verified by the Figure 2.9(d),

where we see that all the mean velocity curves gather in one group with a wake closure length

of about 2D. Thus we conclude that the flow transition is triggered by the increasing heat

input into the flow system, but needs the existence of a velocity gradient along the cylinder

axis direction to show significant difference with the regular wake structure.

This trend of flow transition with different cylinder aspect ratios is also illustrated by the

wake closure length plot with Richardson number at all ar’s in Figure 2.10. Shown clearly in

the plot, there exists a jump of the wake closure length lC for relatively small ar (ar = 4.0),

where on the other hand the velocity gradient along the cylinder axis direction is very large.

As ar decreases to 5.0, we find from the plot that the jump of the wake closure curve still

exists, but is less significant than that of ar = 4.0, with entirely smaller lC ’s for large Ri’s. The

situation of ar = 6.3 is similar to that of ar = 5.0, but with a even lower position of the curve

shown in the plot. We also see that as ar increases, the flow transition tends to disappear in an

increasing rate. When the velocity gradient is totally removed by increasing the aspect ratio to

infinity, the lC is eventually reaches its limit as a flat position, which indicates the vanishing of

flow transition. This analysis further supports our hypothesis that velocity gradient long the

cylinder axis direction is a crucial influencing factor for the occurrence of flow transition.
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(a) (b)

(c) (d)

Figure 2.9 Ensemble-averaged centerline velocity plots at different Richardson numbers for

aspect ratios of 6.3, 5.0, 4.0 and ∞.
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Figure 2.10 Wake closure length plotted for all Richardson numbers at aspect ratio of 4.0,

5.0, 6.3 and ∞.

2.7 Vortex shedding pattern transition

Another major feature found for the 3D flow past a heated cylinder is that there exists a

transition in the vortex shedding patterns, which has been pointed out in Section 2.5. Briefly

recall the facts, as ar = 6.3, that a smaller Richardson number tends to give a staggered vortex

shedding pattern, while very large Richardson number forms a simultaneous vortex shedding

patter, where in between, a extended wake behind the cylinder with almost quiescent flow

inside formed in a very short range of Richardson number. As introduced before, Hu and

Koochesfahani (2011) category these modes as “vor-Karman” typed, “dead-flow zone” typed,

and “Kelvin-Helmholtz” typed patterns. Since we have verified that the velocity gradient

crucially affects the flow transition in the wake behind the flow past a heated cylinder, it will be

interesting to demonstrate if the vortex shedding pattern transition also requires the existence

of such a velocity gradient. To answer this question, we investigate the vortex shedding patterns

for ar = 5.0, ar = 4.0, as well as ar =∞.

Figure 2.11 shows the snapshots of the temperature fields on the central plane at Ri = 0.19,

Ri = 0.50, and Ri = 1.04 for the case of ar = 5.0. The figure clearly illustrates the three typical

vortex shedding patterns as those exist in the case of ar = 6.0. Here we see, for a very small Ri

(e.g. Ri = 0.19, representing lower temperature difference between the cylinder and incoming



30

(a) Ri = 0.19 (b) Ri = 0.50 (c) Ri = 1.04

Figure 2.11 Vortex shedding patterns illustrated by the snapshots of the thermal fields for

Richardson number of 0.19, 0.50 and 1.04 at ar = 5.0.

flow), the wake presents a clear staggered shedding pattern as that of the case with unheated

cylinder. For a medium Ri (e.g. Ri = 0.50), the staggered pattern in the near wake vanishes

and is replaced by a “dead flow” zone similar to that of ar = 6.3. However, compared to the

case of ar = 6.3, the “dead flow” zone appears much longer in the current scenario, which has

a steeper velocity gradient along the cylinder axis direction. For a large Ri (e.g. Ri = 1.04), the

simultaneous vortex shedding pattern turns to be significant, where we see symmetric small

side vortices pairs along the widely opened near wake behind the cylinder.

Figure 2.12 plots the snapshots of the temperature field on the central plane at the same

sampled Ri’s (0.19, 0.50 and 1.04) for ar = 4.0, which gives a even steeper velocity gradient

along the cylinder axis direction. In this scenario, the vortex shedding pattern of a very small

Ri shows no difference with the staggered ones behind the cylinder with no heat and very small

Ri’s in other scenarios. Notice that both the width and length of the recirculation zone appear

no difference compared with those of very small Ri’s in other scenarios. However, for a medium

Ri, e.g. 0.50 in the figure, though the width of the wake does not differ from those of ar = 0.50



31

(a) Ri = 0.19 (b) Ri = 0.50 (c) Ri = 1.04

Figure 2.12 Vortex shedding patterns illustrated by the snapshots of the thermal fields for

Richardson number of 0.19, 0.50 and 1.04 at ar = 4.0.

and ar = 6.3, the recirculation zone is extremely extended streamwise. This phenomenon is

similarly found for the very large Ri, e.g. Ri = 1.04, where the simultaneous shedding pattern

appears with almost the same width as other scenarios but with an extended recirculation zone.

To investigate the effect of velocity gradient on the vortex shedding pattern transition,

we performed the analysis on the case of ar = ∞. From the previous analysis on ar = 4.0,

5.0, and 6.3, we have observed that as ar increases (where the velocity gradient along the

cylinder axis direction decreases), the recirculation regions in both the “dead-flow zone” typed

pattern and the “Kelvin-Helmholtz” typed pattern become shorter. This indicates a trend that

as the velocity gradient along the cylinder axis direction vanishes, the “dead-flow zone” and

the simultaneous pattern will eventually be eliminated. This hypothesis is demonstrated by

Figure 2.13. In the plot we clearly see that as Ri increases (from 0.19 to 1.04), the wake behind

the cylinder gains an increasing width, but neither the “dead-flow” zone nor the vortex pattern

changes. In all the three illustrations, we observe very typical staggered vortex shedding pattern
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(a) Ri = 0.19 (b) Ri = 0.50 (c) Ri = 1.04

Figure 2.13 Vortex shedding patterns illustrated by the snapshots of the thermal fields for

Richardson number of 0.19, 0.50 and 1.04 at ar =∞.

only, as noted as the ”von-Karman” vortex street. This finding indicates that the existence of

the velocity gradient along the cylinder axis direction is a prerequisite for the occurrence of the

vortex shedding pattern transition, where the larger the gradient is, the bigger the “dead-flow”

zone.

We have visually analyzed the vortex shedding pattern transition, where the wake behind

the cylinder opens up as cylinder temperature increases, and the vortex shedding pattern

changes from staggered mode to simultaneous mode. These observed vortex shedding patterns

have obvious different vortex structures presented on the central plane of the channel, which

implies that it is possible to quantitatively detect the vortex shedding patterns by measuring the

vorticity level on the central plane. Here we define the vorticity level, |VC |, by the integration

of the magnitude of vorticity in the cylinder axis direction (perpendicular to the central plain)

over the whole central plane ΩC :

|VC | =
∫

ΩC

|∂v
∂x
− ∂u

∂y
|dΩ. (2.21)
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The central plane vorticity levels at all simulated Ri for each ar are given in Figure 2.14. For

very small ar, e.g. ar = 4.0, we clearly see that VC forms into two segments with different slopes.

The segment for lower Ri’s represents the state of the staggered vortex shedding pattern; the

segment for higher Ri’s represents the state of the simultaneous vortex shedding pattern. The

discontinuous transiting region in between represents the state of the “dead-flow” zone typed

shedding pattern. We see that the transiting state exists only in a narrow range of Ri, which

indicates a quick transition between the staggered pattern and the simultaneous pattern. The

situations for ar = 5.0 and ar = 6.3 are similar to the case of ar = 4.0. But we can observe

the trend that the two segments in each vorticity level plot gradually gradually converge to

the same slope as ar increases, but still stay in two disconnecting lines when ar is still finite.

However, the two segments of vorticity level curves fall into a single linear curve in the case of

ar =∞, which indicates the vanishing of the vortex shedding pattern transition. This analysis

of central plane vorticity level gives strong agreement with our visual observations discussed

before.

2.8 Conclusions

In this paper we have investigated features of the wake in flow past a heated cylinder. The

traditional Boussinesq approach has been replaced with an exact fluid-thermal coupled equation

system to obtain more accurate simulation results for a wide range of temperature difference

between the cylinder surface and the incoming flow. We derived the finite element scheme for

the numerical solution of the coupling system. To couple with the difficulty of strong convective

flow in the simulation, the SUPG term is included in the scheme to obtain numerical stability

as well as accuracy. The coupled numerical equation system is solve in a semi-coupled way,

where the hydraulic equations and the thermal equation are solved sequentially by updating

their solutions in an iterative pattern. A detailed convergence study for both the spatial and

temporal convergence behaviors was discussed in this paper. Various comparisons between the

numerical solutions and previous experimental results validate the accuracy of our numerical

methods.
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(a) (b)

(c) (d)

Figure 2.14 Central surface vortex strength levels plotted for all Richardson numbers at

ar = 4.0, 5.0, 6.3 and ∞.
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We focused on investigating the transitions of the flow in the wake behind the heated cylin-

der. One is the existence of a flow transition in the wake. When the Richardson number reaches

beyond a critical value, the ensemble-averaged centerline velocity curve significantly shifts to

a position downstream. We observed from our numerical results that this flow transition is

a discontinuous change of the wake flow, where the transition occurs in a very short range of

Richardson number. Then we discussed the effect of the velocity gradient along the cylinder

axis direction on the flow transition by varying the cylinder aspect ratio. We confirmed that

the flow transition exists in all range of finite cylinder aspect ratios. However, the flow tran-

sition appears less obvious as the velocity gradient along the cylinder axis direction vanishes.

The flow transition eventually disappears as such velocity gradient is eliminated. Another is

the transition of the vortex shedding patterns with change of Richardson number. We numer-

ically confirmed that two stable vortex shedding pattern exist in the wake behind the heated

cylinder, the staggered shedding pattern and the simultaneous shedding pattern. In between

a “dead-flow” zone typed pattern was also captured, but was found existing only in a very

short range of Richardson number. All these observations of the vortex shedding patterns from

our numerical study formed good agreement with previous experimental results. We then con-

firmed that the vortex shedding pattern exists where there is a nonzero velocity gradient along

the cylinder axis direction. The “dead-flow” zone behind the cylinder becomes shorter, and

the simultaneous shedding pattern turns less obvious as such velocity gradient tends to zero.

Eventually the vortex shedding pattern converges to a unit staggered pattern as this velocity

gradient is totally removed. The discussions and analysis on the relation between the velocity

gradient along the cylinder axis direction with the flow transition and then vortex shedding

pattern transition broaden our understanding of the mechanisms of the convection/diffusion

contraflow behind the heated cylinder with low Reynolds number.
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CHAPTER 3. A DIFFUSE INTERFACE MODEL FOR

INCOMPRESSIBLE TWO-PHASE FLOW: STABILIZED FINITE

ELEMENT METHOD FOR LARGE DENSITY RATIOS, GRID

RESOLUTION STUDY, AND 3D PATTERNED SUBSTRATE WETTING

PROBLEM

Modified from a paper to be submitted to

Computer Methods in Applied Mechanics and Engineering

Yu Xie, Olga Wodo, and Baskar Ganapathysubramanian

3.1 Abstract

Flows involving interface between fluid components have been widely investigated both

experimentally and numerically due to their important theoretical and engineering features.

Diffuse interface model has shown its success in simulating multiphase flows. In this paper, a

stabilized finite element method is formulated based on the diffuse interface model to simulate

incompressible and immiscible two-phase flows. The phase field function, velocity, and pressure

are governed by a coupled Cahn-Hilliard Navier-Stokes equation system. A conservative form of

the convective term in the Cahn-Hilliard equation is used which guarantees the conservation of

mass of both fluid components. A continuous formula is used to compute the surface tension of

the interface, which puts lower requirements on the resolution of the spatial discretization of the

interface. A four-step fractional scheme is employed to decouple the pressure from the Navier-

Stokes equation, which provides an efficient and second order accurate time discretization on

velocity. The streamline-upwind Petrov-Galerkin (SUPG) stabilization term is added to avoid

spurious oscillations. Special treatments on the approximations of density and viscosity terms
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towards dealing with large density ratios are discussed. We also perform exhaustive tests to

determine the minimal spatial discretization resolution in this study. Finally we apply this

framework to both 2D and 3D simulations to validate the capability of the solver. Specifically,

we explored the effects of surface patterns on the droplet spreading process. Formations of

wetting spots and air entrapment are studied on both grooved and checker-patterned surfaces.

It is found that the droplet is able to stay on top of the grooves or the cubic pillars in the

spreading stage, but merges into the grooves or space among the cubic pillars during the

receding stage. We also found that the grooved surface tends to reduce the size of the wetting

spot but almost has no effect on the height of the droplet when receding reaches steady state,

while the checkered pattern maintains the size of the wetting spot but reduces the droplet

height, compared with the non-patterned solid surface case.

3.2 Introduction

Simulation of multiphase flows involving an interface has long been an interesting and

challenging topic. Numerical study of such problems not only requires answers to the basic

questions like what are the appropriate governing equations and whether physical properties

like mass and energy conservation laws are preserved, but also faces the challenges of increasing

demand of accuracy and efficiency for simulating large scale problems under complex circum-

stances such as strong convective effects and large density difference between fluid components.

An accurate and efficient method of computing the position and simulating the motion of the

interface between fluid components is always a focus of discussion, particularly in cases when

surface tension drives fluid flow. There are mainly two families of methods for simulating mul-

tiphase fluid systems. The two methods have different philosophies of treating the interface to

compute the surface tension.

One is the family of techniques involving tracking/capturing the exact location and shape

of the interface between the two components. This family includes marker (or front-tracking)

methods [Tryggvason et al. (2001)], which interpolate the interface with a set of connected

marker points; volume of fluid (VOF) methods [Gueyffier et al. (1999)], which represent the

fluid portion in a natural way with a color function; level set methods [Osher and Sethian
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(1988)], which captures the interface as the zero level curve of a continuous function defined by

the algebraic distance between the current position and the interface; and many other variants

based on this idea. This family of methods with interface reconstruction is known for its

accuracy of resolving the interface and the surface tension calculation.

Though the interface reconstruction methods are well known for their accuracy in capturing

the interface, they also have drawbacks and difficulties in tracking complex topological changes

and extra computational resources spent on reconstructing the interface. An alternative way

is trying to avoid recording the exact position of interface, which leads to the family of diffuse

interface model. The idea of the diffuse interface model can be found in several studies reviewed

by Anderson et al. (1998). Different from the point of view of sharp interface models which

consider the two immiscible components being connected with an interface with zero thickness,

the diffuse interface model represents the interface as a smooth transition with non-zero thick-

ness, specifically a phase field function on the whole domain. The surface tension is directly

computed from the phase field function without reconstructing the interface first.

Numerical algorithms for implementing the diffuse interface model have been the focus of

several recent reports. Hohenberg and Halperin (1977) derived an abstract model for simulat-

ing interfacial flows of incompressible fluids with matched densities by coupling the hydraulic

equation with Cahn-Hilliard diffusion, which is well known as “model H.” Lowengrub and

Truskinovsky (1998) pointed out that binary fluids with incomprehensible components may ac-

tually be compressible, and they derived a quasi-incompressible formula for the flows of binary

mixtures with a density contrast. Yue et al. (2006) gave a 2D fully adaptive finite element

model for simulating interfacial dynamics in incompressible viscoelastic fluids. A 3D numerical

scheme was later developed by Zhou et al. (2010) based on the 2D model. Ceniceros et al.

(2010) decoupled the discrete model H system with a semi-implicit time discretization, and

solved the linear system with a multigrid method combining a mesh refinement algorithm.

Ding et al. (2007) derived a finite volume scheme for simulating binary mixture flows with

large density ratios. Researchers are also curious about the accuracy of the diffuse interface

model. Caginalp and Chen (1998) mathematically verified the existence of the sharp interface

limit for the phase field model. Numerical investigations of the convergence of the phase field
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model to sharp interface limit can be found in Lowengrub and Truskinovsky (1998) and Yue

et al. (2006). Yue et al. (2010) and Yue and Feng (2011) later extended the study of the sharp

interface limit on the moving contact line problem. There are still interesting open questions

on the diffuse interface model. On the theory for this model, researchers questioned whether

the model preserves the mass conservation of fluid components regardless of the density ratio,

how the surface tension can be accurately but also conveniently evaluated from the phase field,

and whether the thin interface limit exists for this model with unmatched densities of fluid

components. On the aspect of computation, researchers question whether the discretized nu-

merical scheme preserves the mass conservation ensured by the theoretical model, whether the

diffuse interface model has a requirement on the spatial resolution of elements through the in-

terface, how the interfacial thickness affects the accuracy of the model with unmatched density

ratios, and if the numerical scheme scales with the size of the problem. Our work attempts to

understand and answer these questions.

The most frequently utilized model to describe phase field evolution is the Cahn-Hilliard

model, which requires a fourth order derivative of the phase field function. The Cahn-Hilliard

equation theoretically guarantees the mass conservation law of fluid components.1 Based on

this model, the solution procedure of the multiphase system requires solving a coupled equation

system of Navier-Stokes equation and Cahn-Hilliard equation. The finite element method is

employed in this paper to obtain the numerical solution to such an equation system. Com-

pared with the finite volume method, the finite element method does not require reconstruc-

tion of cell quantities and flux terms from neighbor cells, making it more easily parallelized.

To cope with the stability issue of the traditional Petrov-Galerkin scheme for applying the

finite element method on fluid dynamics, Brooks and Hughes (1982) introduced the streamline

upwind/Petrov-Galerkin (SUPG) term in the traditional weak form of Navier-Stokes equations.

This method significantly reduced the spurious oscillations in the numerical solution of velocity,

thus providing more accurate approximation. Their method treated the pressure with a penalty

method, which was later improved [Tezduyar et al. (1992)] with a more robust method by incor-

1Feng et al. (2007) also solved the phase field function based on an Allen-Cahn model containing the phase
field function and its second order derivative, which however does not promise the mass conservation of fluid
components [Feng (2006)].
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porating the pressure-stabilizing/Petrov-Galerkin (PSPG) term into the continuity equation.

A finite element scheme combined with these two terms has been applied to simulate microscale

flows with complex geometry [Jaeger et al. (2012)] and flows under a wide range of Reynolds

numbers and situations [Amini et al. (2013)]. However, when flow with a large density ratio

was considered, it was observed that the fully implicit finite element scheme with the PSPG

method led the linear solver to encounter more with divergence issues. Thus for the current

study, a four-step fractional method [Chorin (1968); Choi et al. (1997)] is utilized to decou-

ple the pressure equation from the momentum equation, which performs efficiently in solving

large problems without losing accuracy of the velocity field solution. Details of this scheme

with the finite element method stabilized by the SUPG term will be introduced in section 3.4.

Ceniceros et al. (2010) employed a similar projection method based pressure correction scheme

to decouple the pressure from the momentum equation for density matched flows (“model H”),

and numerically demonstrated the spatial convergence of this scheme. However, how well the

scheme performs in parallelization, especially for the flows with unmatched densities, is not an-

swered by previous literature. In this study, we numerically investigate the parallel capability

of the four-step fractional method when coupled with the Cahn-Hilliard equation for flows with

unmatched densities.

This paper is aimed at providing an efficient and robust framework for applying the sta-

bilized finite element method to simulate incompressible and immiscible two-phase flows. Our

contributions include: (1) gave a semi-coupled mass-conserved Cahn-Hilliard Navier-Stokes

equation system with an accurate continuous approximation of the surface tension for govern-

ing two-phase flows, and verified its capability of simulating flows with a large density ratio; (2)

discretized the governing equation using the four-step fractional scheme with SUPG stabilized

finite element method, where the pressure is decoupled from the momentum equation, ensuring

the capability of solving large scale problems; (3) provided a guidance on the minimal grid

resolution of the diffuse interface for the combined Cahn-Hilliard and Navier-Stokes system to

ensure physical correctness of the phase field model; (4) studied the convergence behavior of

interface thickness, or alternatively, the Cahn number Cn at different density ratios of fluid

components; (5) performed detailed scalability tests of our numerical framework for simulating
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3D problems on different machines; (6) verified the accuracy of the current framework with

various benchmark numerical tests, and utilized this framework on investigating the wetting

process of 3D droplet impact on solid substrate with different kinds of surface patterns.

Structure of this work is organized as follows. In section 3.3, we will introduce the governing

equations, evaluation of surface tension, and a strategy for dealing with large density ratios.

Then the numerical schemes are discussed in section 3.4. Validation of our numerical schemes

as compared with previous experimental and numerical results will be completed in section 3.5,

where readers will also find various other applications with potential engineering value. Finally,

a series of detailed scalability tests are performed and will be reported in section 3.6.

3.3 Governing equations

The diffusive interface model represents the incompressible binary mixture by a phase field

function φ, as a measure of the volume fraction of the immiscible fluid components, where

φ = φ(x) is a smooth function of the spatial coordinates x, x ∈ Ω, and Ω ⊂ Rnsd is the nsd

dimensional (nsd = 2, 3) physical domain. The value of φ varies between -1 and 1, with each

of these end points representing one fluid component. Thus the physical properties of the fluid

components, i.e. density ρ and viscosity η, are expressed as function of φ

ρ(φ) = ρ−
1− φ

2
+ ρ+

1 + φ

2
, η(φ) = η−

1− φ
2

+ η+
1 + φ

2
, (3.1)

where (·)− and (·)+ represent the parameters of the negative φ (φ = −1) and the positive φ

(φ = 1) components, respectively.

Motion of the two fluids is governed by the transient incompressible Navier-Stokes equation

with an additional surface tension fs determined by the phase field function φ

ρ

[
∂u

∂t
+ (∇ · u)u

]
= ∇ · σ + ρg + fs, (3.2)

∇ · u = 0, (3.3)

where g is the gravitational acceleration, σ is the the stress tensor given as

σ = −pI + 2ηε(u), (3.4)
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ε(u) =
1

2

[
∇u+ (∇u)T

]
, (3.5)

and I being the identity tensor. There have been various discussions on the form of the

continuity Equation (3.3) for the fluids with a density contrast. Lowengrub and Truskinovsky

(1998) mentioned in their approach that the mass-averaged velocity field is not solenoidal,

i.e. does not satisfy Equation (3.3). So they introduced a quasi-incompressible model as a

modification of model H. However, numerical instability was observed for topology change of

the interface as mentioned by Ding et al. (2007). Ding et al. (2007) also further discussed

the verification of Equation (3.3) and suggested that Equation (3.3) serves as an accurate

approximation for binary flows with a density contrast, where such equation gives simulation

results with good agreement to the ones obtained from level-set model based methods.

The boundary conditions for Equations (3.3) are given as

u = g(x), x ∈ Γ1, (3.6)

σ · n = h(x), x ∈ Γ2, (3.7)

where Γ1 and Γ2 are the essential boundary (or Dirichlet boundary) and natural boundary

(or Neumann boundary), respectively, and Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅. Function g(x) are

prescribed velocity vectors on Γ1, h(x) is the traction vectors prescribed on Γ2, with n the

outward normal vectors.

The diffuse interface model assumes a non-zero thickness of the interface as a smooth

transition between the two fluid components. Evolution of the interface is described by the

Cahn-Hilliard equation Cahn and Hilliard (1958), which is derived by minimizing the free

energy of the system given as the GinzburgLandau form

H(φ) =

∫
Ω

[
f(φ) + ε2|∇φ|2

]
dΩ, (3.8)

where ε is a constant defined as the interfacial parameter. The expression in the integral

represents the summation of bulk energy density f(φ) and surface energy ε2|∇φ|2. Usually

f(φ) is chosen as a double-well function

f(φ) =
1

4
(1− φ2)

2
. (3.9)
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The double-well function has two minima for φ ∈ [−1, 1], corresponding to the two equilibrium

states of the binary fluid components. Then the Cahn-Hilliad equation is represented as

∂φ

∂t
+∇ · (φu) = ∇ · [M(φ)∇µ(φ)] , (3.10)

µ(φ) =
δH(φ)

δφ
= φ3 − φ− ε2∆φ, (3.11)

where u is the flow velocity, M(φ) is the mobility, and µ(φ) is the chemical potential. Here we

set M as a constant over the whole domain.2

The boundary conditions for Cahn-Hilliard Equations (3.11) are written as follows

n · ∇µ = 0 x ∈ ∂Ω, (3.12)

n · ∇φ =
1
√

2ε
cos(θS)(1− φ2) x ∈ ∂Ω, (3.13)

where θS is the static contact angle. The boundary condition for µ acts as a no-flux restriction

for the fluid components in the control volume. Equation (3.13) determines the direction of

the interface contacting the boundary surface given static contact angle θS [Li et al. (2009)].

The Navier-Stokes and Cahn-Hilliard equations are coupled by introducing the convective

term ∇ · (φu) into the Cahn-Hilliard equation and by including the surface tension fs = fs(φ)

into the Navier-Stokes equation. Sometimes the convective term ∇ · (φu) is also written as

φ∇·u. However, it has been discussed by Minjeaud (2012) that this form cannot guarantee the

conservation of mass of the fluid components. Thus we keep the form used in Equation (3.11),

which preserves the mass conservation of fluid components within domain Ω.

The surface tension fs in the momentum Equation (3.3) is a numerical approximation of

the surface tension using the continuum surface force (CSF) formula [Brackbill et al. (1992)],

which converts the surface tension into a continuous body force as a function of φ. There are

multiple expressions for fs. Lowengrub and Truskinovsky (1998) represented fs as

f1
s = σεα∇ · (|∇φ|2I −∇φ⊗∇φ), (3.14)

2Wodo and Ganapathysubramanian (2011) also suggest a degenerated form of M , M = D(1 − φ2), where
D is the diffusivity, when assuming that the diffusion process mainly occurs in a small neighbourhood of the
thin interface. However, we observed that the linear solver is more flexibly controlled for convergence without
loss of accuracy when constant mobility is used. Thus in the current paper, we use constant mobility without
mentioning it separately.
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where σ is the surface tension coefficient. The parameter α matches the body force of the

diffusive interface model with the surface tension of a sharp interface, which will be evaluated

later in Equation (3.18). The operator ⊗ is the tensor product operator, i.e. (∇φ⊗∇φ)ij =

∂φ
∂xi

∂φ
∂xj

. Boyer (2002) introduced the form of fs as the product of the chemical potential M

and the gradient of φ

f2
s =

σα

ε
µ∇φ. (3.15)

Another similar expression can be found in the work of Jacqmin (1999) with an exchange of

the derivative:

f3
s = −σα

ε
φ∇µ. (3.16)

Kim (2005) gave another continuous formula for fs as an approximation of the force term used

in the level set method [Chang et al. (1996)]:

f4
s = −σ∇ ·

(
∇φ
|∇φ|

)
εα|∇φ|2 ∇φ

|∇φ|
, (3.17)

where ∇ ·
(
∇φ
|∇φ|

)
represents the interface curvature κ, εα|∇φ|2 approximates the Dirac delta

function δ(φ), and ∇φ
|∇φ| is the normalized gradient of φ. Force f1

s usually requires a modification

of pressure to an effective value as shown in the paper of Dong and Shen (2012). Kim also

recommended the usage of f4
s by comparing its performance against the other three expressions

with various numerical experiments. Additionally, the curvature κ can be easily solved from

a Poisson type equation, without introducing higher order derivatives of φ, which is easily

implemented by the finite element method with linear basis function. Thus in the present

paper, we use the surface tension form f4
s .

The parameter α relates the diffusive model with the sharp interface model, and can be

derived from the equilibrium state solution. Parameter α should satisfy the equation

εα

∫ ∞
−∞

(φeqx )2dx = 1, (3.18)

where φeqx is the equilibrium state solution [Kim (2005)]. In the one dimension case, the

equilibrium state has an analytical solution, φeqx (x) = tanh
(

x√
2ε

)
[Bray (1994)], when φ of the

two stable uniform states are φ(x) = ±1, and chemical potential is given by Equation (3.11).



45

Substituting the equilibrium state solution into Equation (3.18), we get α = 2
√

2
3 . Then we get

the Cahn-Hilliard Navier-Stokes governing equation system from the above analysis as following

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p−∇ ·

[
η
(
∇u+ (∇u)T

)]
= ρg − σ∇ ·

(
∇φ
|∇φ|

)
εα|∇φ|2 ∇φ

|∇φ|
, (3.19)

∇ · u = 0, (3.20)

∂φ

∂t
+∇ · (φu) = ∇ · [M∇µ(φ)] , (3.21)

µ(φ) = φ3 − φ− ε2∆φ. (3.22)

The governing Equations (3.21)-(3.20) can be written in a dimensionless form by scaling

variables with characteristic velocity magnitude U , length L, density ρ+:

u∗ =
u

U
, x∗ = x/L, t∗ =

t

L/U
, p∗ =

p

ρ+U2
. (3.23)

Then the dimensionless governing equations are given by dropping the superscript “∗”

ρ̃

(
∂u

∂t
+ u · ∇u

)
+∇p− 1

Re
∇ ·
[
η̃
(
∇u+ (∇u)T

)]
=
ρ̃g0

Fr
− 2
√

2

3

Cn

We
∇ ·
(
∇φ
|∇φ|

)
|∇φ|2 ∇φ

|∇φ|
, (3.24)

∇ · u = 0, (3.25)

∂φ

∂t
+∇ · (φu) =

1

Pe
∇ · [M(φ)∇µ(φ)] , (3.26)

µ(φ) = φ3 − φ− Cn2∆φ, (3.27)

where ρ̃ = ρ−/ρ+ is the density ratio, η̃ = η−/η+ is the viscosity ratio, and g0 indicates

the gravitational direction unit vector. In the above equation, parameter Re is the Reynolds

number, defined as Re = ρ+UL/(µ+), representing ratio between inertia force and viscous

force. Relative gravity is represented by the Froude number Fr , defined as Fr = U2/(gL),

where g is the magnitude of gravitational acceleration. The Weber number, We, takes the

form We = ρ+U
2L/σ, representing the ratio between inertial force and surface tension. The
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Cahn number Cn is given by Cn = ε/L, representing the relative interface thickness and

affects the accuracy of the solution to the diffusive interface model. Parameter Pe is the Péclet

number, Pe = LU/(Mµ), where M and µ are characteristic mobility and chemical potential.

Commonly, the Péclet number is taken as a number proportional to the inverse of the Cahn

number [Ceniceros et al. (2010); Ding et al. (2007)], i.e. Pe = O(1/Cn). In this paper, we take

Pe = 1/Cn.

3.4 Numerical Schemes

In this section, we discuss the numerical algorithms for solving the governing equations.

Given the solutions at time step tn as un, pn, φn, and µn, which represent the velocity, pressure,

phase field function and chemical potential respectively, we solve for the solution at time step

tn+1 successively with the time discretization schemes introduced below.

The phase field function and chemical potential at time step tn+1 are obtained by solving

the Cahn-Hilliard equation with a Crank-Nicolson scheme

φn+1 − φn

∆t
+

1

2
∇ · (φnun) +

1

2
∇ ·
(
φn+1un+1

)
=

1

2

1

Pe
∇ · ∇µn +

1

2

1

Pe
∇ · ∇µn+1, (3.28)

µn+1 = φn+13 − φn+1 − Cn2∇ · ∇φn+1. (3.29)

The curvature κn+1 is then calculated based on the phase field function φn+1 by the following

equation

κn+1 = ∇ ·
(
∇φn+1

|∇φn+1|

)
. (3.30)

Velocity and pressure are solved by a four-step fractional step method [Choi et al. (1997)],

where pressure is decoupled from the momentum equation and solved by a Poisson type equa-

tion. The four-step fractional method incorporated with surface tension and varying den-

sity/viscosity is given as following equations

ρ̃n+1

(
û− un

∆t
+

1

2
(û · ∇û+ un · ∇un)

)
+∇pn − 1

2

1

Re
∇ ·
[
η̃
(
∇un + (∇un)T

)]
−1

2

1

Re
∇ ·
[
η̃
(
∇un+1 + (∇un+1)

T
)]

=
ρ̃n+1

Fr
g0 −

2
√

2

3

Cn

We
κn+1|∇φn+1|∇φn+1, (3.31)
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ρ̃n+1u
∗ − û
∆t

= ∇pn, (3.32)

∇ · ∇pn+1 =
ρ̃n+1

∆t
∇ · u∗, (3.33)

ρ̃n+1u
n+1 − u∗

∆t
= −∇pn+1. (3.34)

In the above equations, û and u∗ are the intermediate velocities which are solved based on

pressure pn from the previous time step. Pressure pn+1 is then updated by Equation (3.33)

with the intermediate velocities. Notice that the intermediate velocities do not satisfy the

incompressible condition, i.e. ∇ · u∗ 6= 0. So the last step corrects the velocity with the latest

pressure field pn+1 to guarantee the incompressible condition. Here we also applied the Crank-

Nicolson scheme on the convective and diffusive terms in the momentum equation to obtain

second order accuracy in the time discretization.

Equations (3.28)-(3.34) form a coupled system of φn+1, µn+1, un+1 and pn+1. Instead of

directly solving the whole system in one step, we perform an iterative algorithm to solve a

semi-decoupled equation system, shown by the flowchart in Figure 3.1. The Cahn-Hilliard

Equations (3.28) and (3.29) are solved first at each time step. Notice that in Equation (3.28),

velocity un+1 is still unknown at the current stage. So we assign the solution at previous time

step, un, as its initial value. After obtaining the solution of φ, curvature κ is evaluated from

Equation (3.30) with the latest phase field function. Velocity and pressure are then updated

with the latest phase field function and curvature by solving the Equations (3.31)-(3.34). After

this one cycle of iteration, we compare the current phase field function φn+1 with the one at

the previous iteration, if the L2-norm of the relative error is above a threshold ε, then we

continue the iteration using the latest solution, until the stop condition is satisfied. Notice at

least two iterations are required to perform this comparison. This method is also known as

the “block-iterative” approach for solving coupled equations Tezduyar and Sathe (2007). No

general theory is available on the convergence condition for such method Cervera et al. (1996).

Considering the iteration is required at each time step, the value of ε should be within the
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Given solution un, pn, φn, and µn

Initialize interations: i = 0;
un+1

(0) = un, pn+1
(0) = pn, φn+1

(0) = φn, and µn+1
(0) = µn

i = i+ 1

Solve Cahn-Hilliard equation with un+1
(i−1) and pn+1

(i−1);

Obtain φn+1
(i) and µn+1

(i) ; Evaluate curvature κn+1
(i)

Solve Navier-Stokes equation with φn+1
(i) and κn+1

(i) ;

Obtain un+1
(i) and pn+1

(i)

‖φn+1
(i)
−φn+1

(i−1)
‖2

‖φn+1
(i−1)

‖2
> ε, or i < 2?

Obtain solution:
un+1 = un+1

(i) , pn+1 = pn+1
(i) , φn+1 = φn+1

(i) , and µn+1 = µn+1
(i)

yes

no

Figure 3.1 Flow chart of the iteration solver for the semi-coupled Cahn-Hilliard Navier-Stokes

equation system.

order of ∆x2 to avoid introducing more numerical error from this scheme, regarding the second

order spatial convergence rate of the finite element formula, e.g. take ε = 1× 10−3 when mesh

size ∆x has characteristic value of 1× 10−1. Usually the convergence is acquired within two or

three iterations, which is highly efficient.

Denote the spatial discretization of the physical domain Ω as Ωe, e = 1, 2, · · · , nel, where

nel is the total number of elements in Ω. Associated with the spatial discretization, the fol-

lowing finite element interpolation function spaces are defined for φh as the finite dimensional

approximations of the phase field function φ, µh as the finite dimensional approximations of

chemical potential µ, uh as the finite dimensional approximations of velocity u, and ph as the

finite dimensional approximations of pressure p:
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Sφh = Vφh = {φh|φh ∈ H1(Ω)}, (3.35)

Sµh = Vµh = {µh|µh ∈ H1(Ω)}, (3.36)

Suh = {uh|uh ∈ H1(Ω),uh = gh(x),x ∈ Γ1}, (3.37)

Vuh,0 = {wh|wh ∈ H1(Ω),wh = 0 on Γ1}, (3.38)

Sph = Vph = {qh|qh ∈ H1(Ω)}, (3.39)

whereH1(Ω) represents the Sobolev space of vector functions defined on Ωe. Thus the stabilized

Galerkin formulation of the strong form of the equation system (3.21)-(3.20) can be written.

Given φnh ∈ S
φ
h , µnh ∈ S

µ
h , unh ∈ Suh , and pnh ∈ S

p
h, find φn+1

h ∈ Sφh , µn+1
h ∈ Sµh , un+1

h ∈ Suh ,

and pn+1
h ∈ Sph, such that, ∀ψh ∈ Vφh , ∀wh ∈ Vuh,0, and ∀qh ∈ Vph, the following weak form of

equations are satisfied:∫
Ω
ψh ·

(
φn+1
h − φnh

∆t
+

1

2
∇ · (φnhunh) +

1

2
∇ · (φn+1

h un+1
h )

)
dΩ

+

∫
Ω

(
1

2

1

Pe
∇ψh · ∇µnh +

1

2

1

Pe
∇ψh · ∇µn+1

h

)
dΩ

+

nel∑
e=1

∫
Ω
δ(ψh) ·

(
φn+1
h − φnh

∆t
+

1

2
∇ · (φnhunh) +

1

2
∇ · (φn+1

h un+1
h )

)
dΩ

= 0, (3.40)

∫
Ω
ψh ·

(
(φn+1
h )3 − φn+1

h − µn+1
h

)
dΩ +

∫
Ω

Cn2∇ψh · ∇φn+1dΩ

+

nel∑
e=1

δ(ψ) ·
(
(φn+1)3 − φn+1 − µn+1

)
dΩ = 0, (3.41)

with the curvature equation in the weak form of formula

∫
Ω
whκ

n+1
h dΩ +

∫
Ω

(∇wh) ·

(
∇φn+1

h

|∇φn+1
h |

)
dΩ = 0, (3.42)

and the four-step fractional method for the Navier-Stokes equation in the weak form of formula

as follows
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∫
Ω
wh ·

{
ρ̃n+1
h

(
ûh − unh

∆t
+

1

2
unh · ∇unh +

1

2
ûh · ∇ûh

)
+∇pnh −

ρ̃n+1
h

Fr
g0

+
2
√

2

3

Cn

We
κn+1
h |∇φn+1

h |∇φn+1
h

}
dΩ

+

∫
Ω

1

Re
∇w :

[
1

2
η̃
(
∇unh + (∇unh)T

)
+

1

2
η̃
(
∇ûh + (∇ûh)T

)]
dΩ

+

nel∑
e=1

∫
Ωe

δ(w) ·

{
ρ̃n+1
h

(
ûh − unh

∆t
+

1

2
unh · ∇unh +

1

2
ûh · ∇ûh

)
+∇pnh

−
ρ̃n+1
h

Fr
g0 +

2
√

2

3

Cn

We
κn+1
h |∇φn+1

h |∇φn+1
h

}
dΩ−

∫
Γ2

wh · hdΩ = 0, (3.43)

∫
Ω
wh ·

[
ρ̃n+1
h

u∗h − ûh
∆t

−∇pnh
]

dΩ = 0, (3.44)

∆t

ρn+1
h

∫
Ω
∇qh · ∇pn+1

h dΩ−
∫

Ω
∇qh · u∗hdΩ +

∫
Γ
qhûh · ndΓ = 0, (3.45)

∫
Ω
wh ·

[
ρ̃n+1
h

un+1
h − u∗h

∆t
+∇pn+1

h

]
dΩ = 0, (3.46)

where δh(·) is the SUPG term introduced by Brooks and Hughes (1982), aimed at stabilizing

the convective flow to avoid spurious oscillations in solution field of velocity.

Remark. Evaluation of the density and viscosity given by Equation (3.1) is valid with the

assumption that φ is a scalar function with value in [−1, 1]. However, the numerical scheme

does not restrict φ strictly between -1 and 1. Notice that Equation (3.1) gives a negative ρ when

a lower bound of φ is reached, i.e. φ < −(1 + ρ̃)/(1− ρ̃). A negative density usually results in

severe convergence issues for numerical methods. Consider two examples to see how the lower

bound of φ changes with the density ratio ρ̃:

1. ρ̃ = 0.9: Here the density ratio is very close to 1, i.e. the fluid components have almost

matched densities. This gives the lower bound of φ as −(1 + 0.9)/(1− 0.9) = −19. This

lower bound is extremely far from -1, thus is almost impossible to reach by numerical solu-

tion of φ. Therefore, Equation (3.1) is a safe evaluation for the case of fluid components

with almost matched densities.
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2. ρ̃ = 0.001: In this example, the two fluid components have very large density ratios, e.g.

between water and air. The lower bound of φ is evaluated as −(1 + 0.001)/(1− 0.001) =

−1.002, which is very close to -1. This value can be easily reached by small perturbation

of φ coming from numerical errors, which will lead to negative value for the density using

Equation (3.1). Therefore, Equation (3.1) is not an appropriate evaluation for the density

when the density difference is very large between the fluid components.

The examples show us that for very large density difference between the fluid components,

small numerical errors can make the system unstable, making the lower bound of φ much easier

to break. Evaluation for viscosity η has similar implications. Therefore, to ensure the positive

signs of density and viscosity, a normalization procedure is applied on φ [Dong and Shen (2012)]

φ̂ =

 φ |φ| 6 1

sign(φ) otherwise,
(3.47)

where φ̂ is the normalized value of φ to be used for evaluating density ρ and viscosity η

ρ = ρ−
1− φ̂

2
+ ρ+

1 + φ̂

2
, η = η−

1− φ̂
2

+ η+
1 + φ̂

2
. (3.48)

Notice that formula (3.47) is employed only for calculating the physical properties, ρ and µ,

appearing in the Navier-Stokes equation to avoid numerical instability. The phase field solution

φ obtained from Cahn-Hilliard equation is actually not modified by (3.47), and is stored as it is.

Therefore applying Equation (3.47) will not break the mass conservation of fluid components.

Both Equations (3.40), (3.41) and Equation (3.43) are non-linear equations. Linearization

is required to apply the numerical procedures. For both the Cahn-Hilliard equation and the

Navier-Stokes equation, the nonlinear terms are treated by the Newton-Raphson method. Here

we used the SNES APIs provided by the open source package PETSc [Balay et al. (2013b,a,

1997)], which provides users convenient and powerful tools to solve nonlinear equations. The

simulations in this paper are performed on TACC Stampede, and on CyEnce at Iowa State

University.
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3.5 Validations and examples

3.5.1 Convergence tests

In this section, we perform a validation of the numerical method by using a manufactured

solution suggested by Dong and Shen (2012)

u = sinπx cosπy sin t,

v = − cosπx sinπy sin t,

p = sinπx sinπy cos t,

φ = cosπx cosπy sin t.

(3.49)

Though the above expressions of the variables satisfy the continuity Equation (3.26), they do

not satisfy the the momentum Equation (3.25) and Cahn-Hilliard Equation (3.27). A remedy is

to add an artificial source term to the right hand side of both Equations (3.25) and (3.27) such

the above functions are analytical solution to the modified ones. The dimensionless parameters

in the governing Equations (3.25)-(3.27) are set to

Re = 100, Cn = 0.1, Pe = 10, We = 100, and Fr = 0. (3.50)

The simulation is performed in a rectangular domain, Ω = [0, 2]× [−1, 1]. Dirichlet conditions

for velocity components u and v are determined from the analytical solution (3.49) and are

applied on all boundaries. Initial conditions for u, v, p, and φ are also described by the

analytical solution by setting t = 0.

Figure 3.2(a) shows the convergence test on spatial descritization. When applying the

spatial convergence test, time step ∆t is fixed at 1× 10−4, which is small enough to satisfy the

CFL condition. The error is computed as

erroru =
‖unumeric − uanalytical‖2

‖uanalytical‖2
, (3.51)

errorp =
‖pnumeric − panalytical‖2

‖panalytical‖2
, (3.52)

errorφ =
‖φnumeric − φanalytical‖2

‖φanalytical‖2
, (3.53)

which indicates the relative error of numeric solution to the analytical solution. The log-log plot

of spatial convergence test shows the slopes of the linear trends of all three lines are around 2,
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Figure 3.2 Temporal and spatial convergence tests. Dashed lines reflect the estimated con-

vergence rates. (a) Convergence of element numbers on one edge; (b) Convergence

of time step ∆t.

which indicates a second order spatial convergence rate. The drop of the slope for large spatial

discretization is due the the saturation of temporal error from constant ∆t.

Figure 3.2(b) plots the temporal convergence test results. In this test, grids for all time

steps are fixed at 300 × 300, which give very fine spatial discretization. Similar to the spatial

convergence tests, the log-log plot shows clear linear trends for all three variables. The linear

parts of all the three lines have slope close to 1. Since the error is integrated at t = 1, the unit

slope indicates a second order truncated accuracy for each time step.

3.5.2 Capillary wave

Here we use the damped oscillation of an interface between two superposed incompressible

viscous fluids with the lighter fluid laying on top to test the accuracy of our numerical scheme

and approximation of the surface tension. This problem is also a good test case for flows with

large density contrast.

Assume the two fluids have same kinematic viscosity ν. Denote g as the magnitude of

gravity, and σ as the surface tension coefficient. The two fluids are imposed with an initial

perturbation of a sinusoidal function at the interface with a small amplitude H0 and wave
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number k. No initial velocity is applied at the interface. Then the evolution of the amplitude

of the interface, H(t), has an analytical form given by Prosperetti (1981):

H(t)

H0
=

4(1− 4β)ν2k4

8(1− 4β)ν2k4 + ω2
0

erfc
(√

νk2t
)

+
4∑
i=1

zi
Zi

ω2
0

z2
i − νk2

e(z2i−νk2)terfc
(
zi
√
t
)
, (3.54)

where

ω2
0 =

(ρ+ − ρ−)gk + σk3

ρ+ + ρ−
, β =

ρ+ρ−

(ρ+ + ρ−)2 , (3.55)

and erfc(·) is the complementary error function. The variables zi, i = 1, · · · , 4, are the four

complex roots of equation

z4 − 4β
√
νk2z3 + 2(1− 6β)νk2z2 + 4(1− 3β)(νk2)3/2z + (1− 4β)ν2k4 + ω2

0 = 0, (3.56)

where

Zi =
∏

16j64,j 6=i
(zj − zi), i = 1, · · · , 4. (3.57)

The motion of the interface is simulated in a rectangular domain, where the top and bottom

boundaries are far enough from the interface to eliminate end effects. Taking the wave length

of the interface oscillation as the characteristic length, and imposing the initial shape of the

interface as a sinusoidal function, yc = 0.01 cos(2πx), the rectangular domain is chosen as

[0, 0.5] × [−1, 1] due to periodicity and symmetry of motion, which is the right half of the

domain in one period. Notice that the distance from the interface to the top or bottom end is

100 times of the amplitude of oscillation. A no-slip boundary condition for velocity components

is applied on the top and bottom boundaries. A no-flux condition is applied on the two side

walls. Reynolds number Re, Weber number We and Froude number Fr are chosen as 100, 1

and 1, respectively.

Effect of interface discretization

Spatial discretization plays an important role in determining the accuracy of the diffusive

interface model. Wodo and Ganapathysubramanian (2011) computationally validated that at

least four elements across the interface (where φ is approximately between -0.9 to 0.9) should

be maintained to ensure that the diffusive model performs correctly. However, they performed
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the tests only on the Cahn-Hilliard equation without the convective term nor coupled with the

Navier-Stokes equation. We perform a spatial discretization convergence test to investigate

how the diffuse interface model is affected by the element size. We fix the time step increment

∆t to a small value, i.e. ∆t = 1 × 10−4, to satisfy the CFL condition. Density and viscosity

ratios are both set to unit 1 to simplify the tests. Cahn number Cn is selected as 0.005, which

suggests a value of 200 for the Péclet number Pe as the inverse of Cn. We distinguish the

resolutions of spatial discretization by counting the number of elements through the interface

(i.e. φ ∈ [−0.9, 0.9]), where there are 4 cases studied here, 3, 4, 5, and 6 elements per interface.

Figure 3.3 shows the evolution of amplitude H(t) related to different spatial resolutions,

where the theoretical solution given by Equation (3.54) is also given for comparison. The plot

clearly shows that three elements per interface is not enough for the diffuse interface model

to capture the physical properties. At least four elements per interface is required to persist

the damping oscillation features and to match with the theoretical frequency, and increasing

numbers of elements give a more accurate solution. Table 3.1 lists the details of the errors

all four cases. The absolute L∞ (L2) error is the L∞ (L2) norm of the difference between

the numerical solution and the theoretical solution over the whole time range. The relative

L∞ (L2) error is the ratio between the absolute L∞ (L2) error and the L∞ (L2) norm of the

theoretical solution. The numbers clearly show that the simulations with at least four elements

per interface have significantly smaller errors than the simulation with only three elements per

interface. This test reveals that the resolution of spatial discretization has crucial influence on

the correctness and accuracy of the governing equation system (3.25) - (3.27), where we need at

least four element through the interface. This agrees very well with the conclusion obtained by

Wodo and Ganapathysubramanian (2011), where the authors analyzed the mesh size influence

on the accuracy of coupled phase separation and coarsening process for the Cahn-Hilliard

equation.

Effect of relative interfacial thickness

The interface thickness also controls the accuracy of simulation. Ceniceros et al. (2010)

proved that the solution to the diffusive model converges to the true solution as interface
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Figure 3.3 Evolution of interface oscillation magnitude with various number of elements per

interface. The Cahn number Cn is fixed at 0.005 for this test.

Table 3.1 Relative L∞ and relative L2 errors for the interface discretization tests.

elements per interface relative L∞ error relative L2 error

3 0.677 0.983

4 0.0729 0.110

5 0.0266 0.0423

6 0.0132 0.0203
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Figure 3.4 Effect of Cahn number Cn on the evolution of interface oscillation magnitude.

These cases share the same element density as 6 elements per interface.

thickness ε tends to 0, though it is possible that a thin interface limit exists for the diffusive

interface model [Yue et al. (2010)]. Therefore a convergence test on interface thickness is

necessary to understand the performance of the diffusive interface model on a given problem.

The interface thickness is linearly proportional to the Cahn number. Here we collected solutions

from simulations with three different Cahn numbers, Cn = 0.02, Cn = 0.01, and Cn = 0.005,

while fixing six elements per interface to reduce the element size effect. Other parameters are

the same as above spatial convergence test. Comparison is given in Figure 3.4. The comparison

clearly shows that the numerical results are approaching the theoretical solution as the Cahn

number reduces. Details of the errors are listed in Table 3.2, where we see the error smoothly

dropping as we reduce the Cahn number. We oberve no evidence of the existence of a minimum

requirement on Cahn number to ensure the physical correctness, as was seen in the interface

discretization test (3.3). This further verifies that the diffuse interface model converges towards

the thin interface limit as the interface thickness reduces. Figure 3.4 and Table 3.2 together also

numerically reveal that an interfacial thickness around 1% of the characteristic length provides

very good agreement between the diffuse interface model and the sharp interface solution (where

we see that the relative errors go below 0.05 when Cn ≤ 0.01), when fluid components have

matched densities.
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Table 3.2 Relative L∞ and relative L2 errors for the convergence tests of Cahn number Cn.

Cn relative L∞ error relative L2 error

0.02 0.113 0.193

0.01 0.0231 0.0365

0.005 0.0131 0.0202

Effect of large density ratio

A highlight of the current numerical scheme is its ability to simulate flows of fluids with

large density and viscosity ratios. To verify this feature, simulations of an interface with two

fluids of different densities and viscosity are studied in this section. One assumption required

for the solution (3.54)is that kinematic viscosity should be the same for the two fluids; we keep

it at 0.01 here. Here we consider three density ratios, 10, 100, and 1000. Six elements per

interface is imposed for the simulation to obtain accurate solutions. The time step increment

is still kept as a small constant, ∆t = 1 × 10−4. Results are shown in Figure 3.6. From the

figure we see that the oscillation with larger density ratio has reduced damping effect with a

longer oscillating period and slower damping rate. These features are accurately captured by

the model.

The Cahn number affects the accuracy of numerical solution. However, when the Cahn-

Hilliard equation is coupled with the hydraulic equation, the involvement of the density differ-

ence affects the behavior of the convergence rate with respect to the Cahn number Cn. The

capillary wave simulation is performed with different Cahn numbers at various density ratios

to reveal the effect of the density ratio on the convergence. We keep the grid resolution six

elements through the interface, and keep ∆t = 1 × 10−4, to control the numerical error from

spatial and temporal discretizations. Figure 3.6(a) plots the relative L2 error of the numerical

solutions with Cn in the rage of 0.005 to 0.02 at relative small density ratios. The plot shows

that the convergence rate with increasing Cn (seen as the slope of a curve in the log-log plot)

drops as the density ratio increases, but still has a significant absolute value for the small den-

sity ratios (i.e. ρ̃ < 40). Figure 3.6(b) gives the convergence as a function of Cn for the fluids

with relatively larger density ratios (i.e. ρ̃ ≥ 40). We see from the figure that the convergence
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Figure 3.5 Evolution of interface oscillation with different density and viscosity ratios.

(a) Same density/viscosity ratio; (b) ρ+ : ρ− = µ+ : µ− = 10 : 1; (c)

ρ+ : ρ− = µ+ : µ− = 100 : 1; (d) ρ+ : ρ− = µ+ : µ− = 1000 : 1;
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with respect to Cn significantly slows down compared with the cases with smaller density ra-

tios. Combining the two plots, we see that the convergence rate as a function of Cn has an

exponentially decreasing trend with increasing density ratio.

To quantitatively understand how the density ratio affects convergence as a function of

Cn, the exponential convergence rates are fitted from the curves seen in figures 3.6(a) and

3.6(b) at all density ratios, and are plotted as the “dots” in Figure 3.6(c). As the density ratio

increases (ρ̃ > 10), the convergence rate changes nearly along an exponential trend. Fitting the

data with an exponential curve (“power-fit”), we obtain that the order of the convergence rate

reduction is about 1.41 with density ratio. This result is not surprising, since larger density

ratio implies stronger inertial effects, which is governed more by the Navier-Stokes equation.

Thus the numerical error from the hydraulic equation overtakes the one from the Cahn-Hilliard

equation, which is mainly controlled by the interfacial thickness for the diffuse interface model.

This result provides us with a heuristic suggestion for simulations using the diffuse interface

model, that the Cahn number Cn may be chosen from a relatively wider range of values for

the fluids with large density ratios, which will help reduce the computational resources without

sacrificing the accuracy.

We next consider cases when interfacial effects become weak compared with the inertial

effects.

3.5.3 Rayleigh-Taylor instability

Rayleigh-Taylor instability reflects the instability between two fluids when heavier fluid lays

on top of lighter fluid. Driven by the gravity, the top heavier fluid dives down and the lighter

fluid rises up. Tryggvason (1988) investigates this problem but with an assumption of zero

viscosity. Guermond and Quartapelle (2000) later extended the simulation with viscous flow.

Since the problem is more interesting for macro-scale flows where the effect of surface tension

becomes less important than the convective and gravitational effects, the surface tension in the

momentum Equation (3.25) can be neglected. A dimensionless parameter, the Atwood ratio,

defines the density ratio between the two fluids as At = (ρ+ − ρ−)/(ρ+ + ρ−), e.g. At = 0.50

when density ratio ρ̃ = ρ−/ρ+ = 1/3.
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(a) (b)

(c)

Figure 3.6 (a) Curves reflect the convergence of Cn in the range of [0.005, 0.02] for small

density ratios (ρ̃ < 40); (b) Curves reflect the convergence of Cn in the range of

[0.005, 0.02] for relative large density ratios (ρ̃ ≥ 40); (c) Trend of the convergence

rate of Cn with density ratio is fitted with a power law curve. The fitted curve

matches very well with the density ratio between 10 and 100, which shows an

exponentially reducing trend of the convergence rate with density ratio by an

order of 1.41.
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In this paper, we first illustrate the Rayleigh-Taylor instability by simulating the two fluids

with At = 0.50. The physical domain is set as Ω = [−d/2, d/2] × [0, 4d], where d is channel

width as the characteristic length. Because of the symmetry of the flow, the simulation is

applied in the right half of Ω, i.e. [0, d/2]× [0, 4d]. The top and bottom boundaries are applied

with no-slip boundary conditions, while the two vertical ones are set as slip boundaries. An

initial perturbation is applied on the interface between the two fluids, where the initial position

of the interface is represented as yc = 2d + 0.1d cos(2πx/d). There is no initial velocity set

for the simulation. The Reynolds number Re is fixed at 3000 to compare with the previous

simulation results [Guermond and Quartapelle (2000)]. The interface thickness is 0.0025d,

which corresponds to a very small Cahn number Cn = 0.0025 to capture the details of the

interface motion. The computational domain is discretized into 200 × 1600 elements, which

gives four elements across the interface. Time step increment is fixed at ∆t = 1 × 10−4.

However, when illustrating the results, we convert the dimensionless time to the Tryggvason

form [Tryggvason (1988)] defined as tTryg = t
√

At , where t is the conventional dimensionless

time given above.

Snapshots of the interface positions are shown in Figure 3.7, at dimensionless time t = 0.00,

0.43, 0.86, 1.29, 1.71, 2.14, 2.57 and 3. From the plots we see that as the front of the heavier

fluid sinks downward, the lighter fluid rises up on the sides. As the sinking process accelerates,

the two sides of the front curve squeeze inward due to the shear flows generated from the

convection between the two fluids. When the convective effect continues, small vertices grow

into larger ones and essentially shed and form vortex street patterns in the wake. Figure 3.8(a)

records the evolution of the vertical positions of the top of the rising fluid and the bottom of

the sinking fluid. The accuracy of the current solver is quantitatively verified by matching with

previous results [Tryggvason (1988); Guermond and Quartapelle (2000); Ding et al. (2007)].

We also performed the simulation for two more density ratios, ρ̃ = 0.1, i.e. At = 0.82, and

ρ̃ = 0.01, i.e. At = 0.98. The initial conditions and other numerical settings are kept the same

as the first case At = 0.50. The dynamic viscosities of the two fluid components are still fixed

the same for these two cases. Figure 3.9 shows snapshots of the case At = 0.82, using the

Traggvason dimensionless time. Compared with the case At = 0.50 (3.8(a)), the larger density
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Figure 3.7 Rayleigh-Taylor instability. Snapshots of the interface at different time for the

case At = 0.50. Tryggvason form [Tryggvason (1988)] of dimensionless time,

tTryg = t
√

At , is used in the plots where t is the conventional dimensionless time.
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Figure 3.8 (a) Rayleigh-Taylor instability. The upper part and the lower part record the

evolution of the peak of the rising fluid and the bottom of the falling fluid, re-

spectively. The present study is compared with Tryggvason (1988), Guermond

and Quartapelle (2000), and Ding et al. (2007). The Tryggvason form [Tryggva-

son (1988)] of dimensionless time, tTryg = t
√

At , is used in the plots where t is

the conventional dimensionless time; (b) Comparison of the evolution of the rising

and falling parts for different density ratios, where At = 0.50, At = 0.82, and

At = 0.98.

ratio induces a relatively narrower falling column and a smaller front of the heavier fluid (e.g.

at t = 1.45). There are also a pair of vortices formed right behind the falling front (e.g. at

t = 1.81), which do not curve inward as significantly as they do for the At = 0.50 case. As At

increases to 0.98, snapshots plotted in Figure 3.10 show a quite different scenario. In this case,

the falling fluid forms a very narrow spike all the way down until touching the bottom. The

front of the falling part preserves a round shape and there are no vortices pair observed for this

flow with very large density ratio. Both these two simulations give very good agreement with

the results in Tryggvason (1988) for flows with large At ’s. The comparison of the positions of

the falling and rising fronts for these three cases (At = 0.50, At = 0.82, and At = 0.98) are

given in Figure 3.8(b).

3.5.4 Droplet impact on liquid surface

The impact of a droplet on a liquid surface has long been an interesting problem, and

challenging due to the complicated mechanism of interaction between the droplet and liquid
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(e) t = 1.45 (f) t = 1.81 (g) t = 2.17 (h) t = 2.53

Figure 3.9 Rayleigh-Taylor instability. Snapshots of the interface at different time for the case

At = 0.82 (ρ̃ = 0.1). Tryggvason form [Tryggvason (1988)] of dimensionless time,

tTryg = t
√

At , is used in the plots where t is the conventional dimensionless time.
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Figure 3.10 Rayleigh-Taylor instability. Snapshots of the interface at different time for the

case At = 0.98 (ρ̃ = 0.01). Tryggvason form [Tryggvason (1988)] of dimensionless

time, tTryg = t
√

At , is used in the plots where t is the conventional dimensionless

time.
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surface. Yarin (2006) reviewed and described most of the phenomena observed during impact,

like spreading, recoiling, jetting, splashing (crowning formation), and etc. Shapes and behaviors

of the liquid surface resulting from the impact are strongly affected by the physical properties

of the involved liquids. Deng et al. (2007) experimentally studied the importance of viscosity

and surface tension during the impact process. Hasan and Prosperetti (1990) numerically

investigated the influence of droplet size and impacting velocity on the air bubble entrapment

process. A good approximation of surface tension is essential for obtaining accurate numerical

results. However, few studies used the diffuse interface model to simulate such liquid-liquid

impact processes. In this paper, we simulate the impact of a glycerine droplet on the surface

of the same liquid exposed to air.

Here we illustrate the droplet impact on the liquid surface in the 2D case. Simulation is

carried out in a rectangular domain, Ω = [−8D, 8D]× [0, 8D], where D is the initial diameter

of the droplet, which is selected as the characteristic length. But as before, only the right half

of the domain, [0, 8D]× [0, 8D] is actually simulated, due to symmetry. The flat, free surface is

imposed at the position where yl = 3.5D. Experimentally, the droplet usually free falls to the

liquid surface from a higher position, and the droplet is accelerated by gravitational force. We

start the simulation at the moment when the droplet is right above the liquid surface assuming

it maintains a spherical shape. This initial state is different from the typical droplet impact on

a solid surface where the initial condition is usually taken as the moment the droplet touches

the surface. The reason we choose the moment when there is still a small gap between the

droplet and the free surface is that the air cushion below the droplet will be squeezed down

and push the free surface inward, which will influence the formation of the jet generated from

the impact. We take the initial gap as 0.1D for this simulation.

The impact velocity of the droplet is set as the characteristic velocity U , where U=3m/s in

this paper. Droplet initial diameter D is selected as the characteristic length, and D=2.45mm.

Given the thermal properties of glycerine and air, and gravitational acceleration g = 9.8m/s2,

the dimensionless parameters are the Reynolds number Re = 80, the Weber number We = 512,

and the Froude number Fr = 800. The Cahn number Cn is chosen as Cn = 0.01, and the
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Figure 3.11 2D Droplet impact on a liquid surface. The 2D glycerin droplet has a spherical

shape with diameter of 2.45mm, and impact velocity of 3m/s. Snapshots are

plotted at different times.

Péclet number Pe is then Pe = 100. The corresponding grid size is 800× 800, which gives four

elements per interface, satisfying the requirement of diffuse interface model.

Snapshots of the impact process are shown in Figure 3.11. As revealed by the plots, the

small jets of liquid-liquid impact form in a very short period during the initial stage of the

impact process. Then under inertia, the droplet totally merges into the lower liquid and pushes

the free surface down. The two sided jets grow taller and wider then form round tips on top

under the effect of surface tension. These jet shapes are typically seen for the impact of more

viscous fluids, well known because of the very famous photo of the “milk crown,” taken by

Edgerton and Killian (1954), which has been further investigated with other shapes of crowns

experimentally in Krechetnikov and Homsy (2009).

3.5.5 3D droplet impact on solid surface

Droplet impact on a solid surface is the prototype of many engineering applications, e.g.

surface coating, spray drying and ink-jet printing. Spreading is mainly determined by material

properties, impact velocity, substrate inclination, and surface characteristics like contact angle

and roughness [Lunkad et al. (2007)]. The contact angle is commonly represented by the static

contact angle (SCA). Later research [Šikalo et al. (2005); Bussmann et al. (1999)] developed
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the dynamic contact angle (DCA) model and reported its accuracy in capturing the droplet

spreading on solid surfaces. However, Lunkad et al. (2007) compared the SCA and DCA

models and found that both models give very good agreement with experiment for non-wetting

surface, i.e. SCA > 90◦. In this paper, we focus only on non-wetting surfaces and apply the

static contact angle model.

We simulate a 3D glycerine droplet impact on a solid surface in a box domain. The physical

domain Ω is Ω = [−2D, 2D]×[−2D×2D]×[0, 2D], where D is the diameter of the initial droplet

assuming a spheric shape. Axial symmetry allows the simulation to run in the first quarter of

the domain, i.e. [0, 2D]× [0× 2D]× [0, 2D]. The initial position of the falling sphere is taken

as the moment when the droplet touches the solid surface. The Reynolds and Weber numbers

are 26.7 and 51, respectively. The Froude number is 43.8. The Cahn number is fixed as 0.01,

which gives a 200× 200× 200 discretization of the computational domain. In this example, we

consider the case where the static contact angle θS = 93.5◦. The time step increment is set as

a constant, ∆t = 1× 10−3.

Snapshots of the droplet spreading at different times are showcased in Figure 3.12. Seen from

the result, the wetting spot diameter grows quickly in the initial stage of impact. The widest

part is not at the contact line of the droplet, but at a position just above the contact surface.

This phenomenon is also observed by Lunkad et al. (2007). Then the spreading process slows,

and the shape of the droplet reaches a steady hemispheric form under surface tension where

the system has minimum energy. A comparison of the evolution of the wetting spot diameter

between the current numerical result and previous experiments is given in Figure 3.13, where

the evolution of the droplet height from our simulation is also shown, though there are no

available experimental data. The droplet spreading is very well resolved by our method.

3.5.6 3D droplet impact on patterned substrate

The surface topology also plays an important role on the droplet impact process. The surface

wetability can be significantly affected by the surface structures thus giving different spreading

and receding patterns of droplets. There are manny types of this phenomenon in nature. The

most famous are the “lotus effect” and “shark skin effect.” The lotus leaf has a nano-scale
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(a) t = 0.1 (b) t = 0.2 (c) t = 0.4

(d) t = 0.8 (e) t = 1.5 (f) t = 3.0

Figure 3.12 Droplet impact on a solid surface. Snapshots at different time.
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Figure 3.13 Droplet impact on a solid surface. Evolution of droplet wetting spot and droplet

height by time, compared with experimental data in Šikalo et al. (2005).
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structure which is extremely hydrophobic and gives the leaf a self-cleaning property. The shark

skin is cover with “dermal denticles,” which are teeth-like small scales, which can significantly

reduce the drag. Liu and Li (2012) experimentally studied these two effects by replicating

the shark skin structure with artificial materials. Structured surfaces are also significant in

industrial coating and painting processes. Ahmed and Rangel (2002) numerically investigated

the metal droplet impact and solidification on a wavy surface using a 2D axially symmetric

model, for the droplet size around 100 µm and impact velocity of 100m/s. They observed that

increasing the surface roughness improves droplet spreading and solidification. Parizi et al.

(2007) simulated droplet impact on a patterned surface with VOF method and compared how

surface patterns and roughness influence the final shape of droplet splat. However, the conclu-

sions obtained from above simulations are more appropriate for very small droplet with very

high impacting velocity. Kannan and Sivakumar (2008) experimentally studied droplet impact

on grooved surface with droplet diameter about 3mm and impacting velocity within 10m/s.

They measured how the droplet diameter evolves in parallel and perpendicular to the micro

groove directions with various impacting velocities. Xu (2007) experimentally investigated the

droplet splashing process on a surface with square lattice texture with droplet diameter of

3.4mm and impacting velocity of 4.3m/s. The author found that the prompt splashing forms

a clear four-fold symmetry mostly in the diagonal directions of the square lattice.

Few studies have simulated droplet impact on patterned surfaces with the diffuse interface

model. Here we showcase how our model can be applied to droplet impact simulation on surfaces

with complex geometries. Two types of substrate patterns are illustrated here, grooved pattern

and checkered pattern. The grooved pattern is formed by placing periodic grooves on the

substrate with width and depth 0.1D and distance 0.1D to each other. The checkered pattern

is formed by placing 0.1D× 0.1D× 0.1D micro cube pillars at a distance of 0.1D next to each

other. The numerical configurations and dimensionless parameters for this problem are the

same as the ones for the above 3D droplet impact on a smooth solid surface. As before, the

simulations are carried out only in the first quadrant of the domain due to symmetry.

Figure 3.14 gives the 3D snapshots of the spreading process taken at different times, where

the front interface facing the readers is made transparent so we are able to investigate the details
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(a) t = 0.1 (b) t = 0.5 (c) t = 1.0

(d) t = 2.0 (e) t = 4.0 (f) t = 8.0

Figure 3.14 Droplet impact on a groove patterned solid surface. Snapshots at different di-

mensionless time. It is clearly seen that the lower interface in the grooves formed

during the spreading process breaks into several arches with air trapped inside.

of the interface propagation occurring inside and above the patterned substrate. Similar to the

case of spreading on a flat surface, the droplet deforms dramatically from spherical shape to

flat shape in the beginning stage of spreading, and gradually reforms to a hemispherical shape

in the receding stage. In the spreading stage, the lower interface of the droplet slightly sinks

into the grooves and paves along the direction of the grooves without touching the bottom.

However, in the receding stage, the parallel lower interface is broken due to instability related

to surface tension and the dimension of grooves. The lower interface curves downwards and

breaks into small segments with air trapped inside. We see that those air cells form in a

semicircle arch shape, which minimizes the interface surface energy. It is possible to form

various air entrapment patterns inside the grooves by changing the size of groove. We postpone

this investigation to further study.

To better understand the droplet wetting process on the groove-patterned surface, we plot

the details of the propagation of wetting spots in Figure 3.15. Each plot in Figure 3.15 forms

a top-view of the patterned bottom surface in the first quadrant (x > 0, y > 0), where the



73

positions of grooves and ridges are indicated in Figure 3.15 (a). Curves in the plots record the

snapshots of the borders of the droplet impacting the bottom. The solid line is the intersection

between the droplet interface and the plane right on top of the grooves (with the same level

of the top surface of the ridges), indicating the shape of the droplet right above the grooves.

The dashed line is the intersection between the droplet interface and the bottom surfaces of

the grooves, reflecting the impacting situation inside the grooves. The regions marked with the

“+” signs surrounded by the dashed lines and edges of grooves point out the wetting areas on

the bottom surfaces of the grooves, where the droplet touches the lower bottom. The regions

without the “+” signs among the dashed lines and the edges of grooves indicate the positions

where air bubbles are entrapped.

From 3.15 we clearly see how the droplet wets the groove-patterned surface. During the

spreading stage (Figure 3.15 (a) - (c)), there is no dashed line appeared in the plots, which

indicates that the droplet has not reached the bottom of the grooves due to its high inertia

during this stage. When the spreading process slows down (figure3.15 (d)), the wetting spots

begin to appear on the bottom of the grooves. Figure 3.15 (d) clearly present the formation

of wetting spots in the grooves. The semicircle region marked with a “+” sign shows that the

droplet creeps down to the bottom of the groove from one side, and reaches towards the other

side and eventually forms a rectangular zone. The receding stage takes much longer than the

spreading stage, where we see that the droplet wetting region above the grooves shrinks towards

a hemispherical shape. It is interesting to notice that the grooves drag the droplet towards the

direction of the grooves and gives the droplet a elliptic wetting spot. We also notice that the

entrapped air stays in the grooves and the wetting spots on the bottoms of the grooves keep a

rectangular shape.

Figure 3.16 illustrates the droplet impact on a checker patterned substrate, by showing

snapshots of the interface at different times. As above, the interface is made transparent on

the front side. The lower interface paves among the cube pillars and forms a parallel layer above

the solid bottom in the spreading process. When the droplet top interface begins to recede, the

bottom layer curves downward as happens in the case of the grooved pattern. However, unlike

the grooved pattern, the breaking bottom interface pieces are able to rejoin with other parts



74

(a) t = 0.1 (b) t = 0.5 (c) t = 1.0

(d) t = 2.0 (e) t = 4.0 (f) t = 8.0

Figure 3.15 Formation of the wetting spots above and inside the grooves during the impacting

process. Positions of grooves and ridges are pointed out in (a). Solid line indi-

cates the intersection between the droplet interface and solid surface above the

grooves. The dashed line indicates the intersection between the droplet interface

and the bottom surfaces of the grooves. The regions marked with the “+” signs

surrounded by the dashed lines and edges of grooves indicate the wetting areas

on the bottom surfaces of the grooves, while the areas in between indicate air

entrapment.
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(a) t = 0.1 (b) t = 0.5 (c) t = 1.0

(d) t = 2.0 (e) t = 4.0 (f) t = 8.0

Figure 3.16 Droplet impact on a checker patterned solid surface. Snapshots at different dimen-

sionless time. Plots illustrate the process how the bottom layer curves downwards

the solid bottom and rejoins an integral hemispherical shaped inner interface with

air trapped inside.

through the channels between the cube pillars and reform an integral layer. The rejoined sub-

layer moves towards the center and arches up in a hemispherical shape to release the surface

energy. Finally we see an air entrapment form at the center of the droplet on the bottom. The

upper interface performs similarly in the spreading and receding stages as the above cases.

Figure 3.17 gives the details of the wetting process of the droplet impacting on checker-

patterned surface. As the grooved surface, the solid lines and dashed lines indicate the interface

positions on the plane tangent to the top surfaces of the cube pillars and the bottom surface,

respectively. The closed regions marked with the “+” indicate the wetting areas as well. Similar

to the case of grooved pattern, the droplet does not wet the bottom surface during the fast

spreading stage. The wetting spots begin to appear when spreading slows down. However,

we notice here that the wetting spots show up earlier that they do on the grooved surface.

Moreover, Figure 3.17 (c) reveals that the wetting spots appear away from the center, which is

different from the case of the grooved surface where wetting spots appear first near the center.

As seen in Figure 3.16, here we have a better view of how the wetting spots join together and
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(a) t = 0.1 (b) t = 0.5 (c) t = 1.0

(d) t = 2.0 (e) t = 4.0 (f) t = 8.0

Figure 3.17 Formation of the wetting spots above and on the checkered surface during the

impacting process. Solid line indicates the intersection between the droplet inter-

face and the plane tangent to the top of the cube pillar. The dashed line indicates

the intersection between the droplet interface and the bottom surfaces below the

cube pillars. The closed regions marked with the “+” signs indicate the wetting

areas on the bottom surface, while the areas without the “+” signs indicate air

entrapment.

entrap an air bubble at the center. Eventually, the droplet and the entrapped air bubble both

tend to form a hemispherical shape. But cube pillars drag the interface to form a straight

shape connecting the pillar vertices diagonally, instead of a smooth surface perpendicularly

contacting with the pillar side walls.

Figure 3.18 quantitatively compares the evolution of the wetting diameter and height for the

droplet impact on the two patterned surfaces. Figure 3.18(a) plots the evolution of the wetting

diameter. The wetting diameter is measured on the plane tangent to the top surfaces of the

grooves and the cube pillars (as where the solid curves locate in Figure 3.15 and Figure 3.17).

The wetting diameter for the grooved surface is defined as the square root of the multiplication

of the two main diameters of the elliptic wetting spot. The solid line is for the grooved surface
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and the dashed line is for the checkered surface. To compare with the case of a non-patterned

flat surface, the wetting diameter evolution of droplet impact on non-patterned surface is plotted

as the dotted line in the plot. From the figure we see that during the initial spreading stage,

the three curves almost overlap with each other, indicating that the patterned surface has less

effect on the fast spreading process. As the spreading process slows down where the wetting

diameter reaches the peak value, the three types of surfaces begin to show differences in the

wetting diameter sizes. We see that the checkered pattern gives a wetting diameter larger than

the flat surface does. The grooved pattern has almost the same wetting size as the flat surface,

but the wetting diameter reaches its peak value later than on the flat surface. During the

receding stage, we see that both the grooved surface and the checkered surface give relatively

smaller wetting diameters than the flat surface, which partly results from the volume of the

droplet sinking below the plane into the grooves or among the cube pillars. It is interesting to

notice that the wetting diameter on the checkered surface gradually approaches to the size of

wetting spot on flat surface, but the one on the grooved surface does not. This indicates that

the wetting spot on the grooves surface has smaller area than the one on the flat or checkered

surface.

Evolution of the height of the droplet is given in Figure 3.18(b). The height of the droplet

is measure as the distance from the center on the top interface to the plane tangent to the

top surfaces of the grooves and the cube pillars (as where in solid curves locate in Figure 3.15

and Figure 3.17). Similar to the behavior of the wetting diameter, the height of droplet shows

no difference among the three types of surfaces during the fast spreading stage. During the

receding stage, the droplet height does not differ much from the one on the flat surface at

beginning, but goes lower at a much later time, due to the sinking of the droplet below the

upper plane. However, though the grooved surface reduces the wetting diameter, it does not

change the droplet height much compared to the flat surface. From the two figures, we see that

the grooved surface considered in this study has a more significant effect on the wetting spot

size, but has much less effect on the droplet height. However, the checkered surface considered

in this study has almost no effect on the wetting spot size, but has more effect on the droplet

height.
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(a) (b)

Figure 3.18 Evolution of the wetting diameter and height of a 3D droplet impacting on pat-

terned surfaces. (a) wetting diameter; (b) droplet height.

3.6 Scalability test on the numerical framework

A scalability test is performed for our numerical framework to test its parallelization capa-

bility on 3D problems. We use the 3D droplet impact on solid surface simulation as the test

problem, and solve for 10 time steps. Then the run time Tp for each iteration at each time

step (during which the Cahn-Hilliard and Navier-Stokes equations are both solved for just one

step) is estimated by dividing the total run time for the 10 steps with the total number of

iterations, where p is the number of CPUs employed. The relative speedup Sp reflects how

much faster a parallel algorithm can be by employing more processors, which is defined as

the ratio between the execution time of the sequential algorithm and the execution time of

the parallel algorithm with p processors, Sp = T1/Tp. Because of the memory restriction of

the machines where we perform the simulations, it is difficult to run such a large 3D problem

on only one processor. Thus we estimate the relative speedup Sp using the minimum possible

number of processors pmin and its related run time Tpmin for the simulation on a given machine,

as Sp = pminTpmin/Tp.

Figure 3.19(a) represents the execution time and the relative speedup obtained from the

scalability tests for a small size problem. This test consists of 1603 elements, which gives

12.5M degrees of freedom (DOF). The DOF is estimated by the maximum number of unknown
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variables involved in a single linear system, e.g. the number of total nodes as 1613 by the

number of velocity components 3 for 3D simulation. The test is performed on both TACC

Stampede and CyEnce at Iowa State University. From the plot, we see that our algorithm has

almost linear speedup for a relatively smaller number of processors compared with the ideal

linear speedup shown by the dotted line. However, the speedup slows down as the number of

processors increases to larger values. This is not surprising since the total DOF is not changed

but more time is spent on communication among processors when more processors are involved

in the simulation. Moreover, the speedup is also restricted by the design of the cluster, where

a machine with better communication strategy and advanced hardware/software can improve

the speedup. We see in the plot that Stampede has better speedup than CyEnce.

Figure 3.19(b) shows the scalability test for a large size problem, where there are 2523

elements giving 48.6M DOF. Because of the restriction on maximum number of processors

a user can use for a single run on CyEnce, the large size test is performed only on TACC

Stampede. From this plot, we see that the speedup significantly drops when a very large number

of processors are employed for large size problems. This indicates that the communication

among processors become dominant and becomes the bottleneck of run time when employing

more processors.

Another way to perform the scalability test is to increase the number of processors while

maintaining the DOF on each processor, known as the weak scalability test. Figure 3.19(c)

shows the weak scalability test performed on Stampede. In this test, three sizes of grids are

considered. The smallest size grid has 1603 elements (12.5M DOF). The medium size grid has

2003 elements (24.4M DOF). The largest size grid has 2523 elements (48.6M DOF). The Cahn

number Cn is adjusted for each test to ensure that there are at least four elements through

the interface. From the plot we see that our framework scales when the DOF per CPU varies

between 10K and 50K. This guarantees the that our framework is appropriate for very large

scale 3D simulations.
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Figure 3.19 (a) Results obtained from the scalability tests for a small size problem (12.5M

DOF) performed on TACC Stampede and CyEnce at Iowa State University, where

Tp measures the execution time of the simulation with p processors, and Sp repre-

sents the relative speedup of run time with p processors compared with the serial

execution; (b) Results obtained from the scalability test for a large size problem

(48.6M DOF) performed on TACC Stampede; (c) Results for the weak scalability

test on Stampede, where three sizes of meshes are considered here with DOFs of

12.5M, 24.4M, and 48.6M for each of them. The diagonal lines in (a) and (b)

indicate the ideal speedup.
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3.7 Conclusion

In this paper, we introduced a finite element scheme for solving two-phase flows by utiliz-

ing the diffuse interface model. To stabilize the numerical solution for velocity and pressure,

the SUPG stabilization term is added to the traditional Petrov-Galerkin scheme. The four-

step fractional temporal discretization is employed to decoupled the pressure and momentum

equations. Coupling terms between the Navier-Stokes equation and Cahn-Hilliard equation are

carefully investigated to guarantee that our numerical method preserves physical properties as

conservation of mass and accurate approximation of surface tension, especially when a large

density ratio is involved in the simulation. Coupling between the two equations is treated iter-

atively, which has been verified as an efficient and easy-to-implement method without reducing

the accuracy. Within each iteration, the nonlinear Cahn-Hilliard and Navier-Stokes equations

are both linearized by a Newton-Raphson scheme and solved by the Petsc SNES solver. Vali-

dations are then performed to test the accuracy of the current numerical scheme by comparing

the numerical results with theoretical solutions. A useful result provided by the validations is

that we verified that the minimum requirement of element density though the interface should

be satisfied for the coupled system to guarantee the physical correctness of numerical solution.

Various numerical examples are studied to test the performance of our method. Some of these

illustrations will be further investigated in our future research based on this framework. Finally

a series of scalability tests are performed on our numerical framework. From the tests we see

that this framework is very scalable even for very large 3D simulations on different machines,

which demonstrates the efficiency of our methods.
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CHAPTER 4. FAULT TOLERANT ADAPTIVE SPARSE GRID

COLLOCATION OVER HETEROGENEOUS COMPUTING

ARCHITECTURES

Modified from a paper to be submitted to Computer Methods in Applied Mechanics and Engineering

Yu Xie, Jaroslaw Zola, and Baskar Ganapathysubramanian

4.1 Abstract

Sparse grid collocation and its adaptive variants have emerged as one of the versatile tech-

niques to seamlessly augment legacy deterministic software to incorporate uncertainty quan-

tification. Adaptive Sparse grid collocation (ASGC) frameworks invoke multiple calls to the

deterministic solver to construct a stochastic representation of the output quantities of interest.

Current implementations efficiently manage data and deploy deterministic simulation. How-

ever, for stochastic multi-scale and multi-physics problems with complicated random inputs,

the number of deterministic equations to be solved is considerable. Large heterogeneous com-

puting clusters become the best choice as the computational tools for solving such problems.

However, a serious problem is that the stability of these machines cannot be guaranteed over

the long time intervals involved, thus making fault tolerance a critical issue when solving high

dimensional complex problems.

We develop a fault tolerant adaptive sparse grid collocation framework, which has both

high immunity to hardware exceptions and high flexibility to computational scale-up. This

fault-tolerant framework follows basic rules for fault-tolerant systems in terms of axiomatic ap-

proaches. This framework deploys multi-thread communicating tools to optimally parallelize

the executions of the deterministic solvers. This fault-tolerant framework allows ASGC method
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to deal with high stochastic dimensions and to use large scale deterministic solvers, which are

impossible for previous framework because of lack of ability to operate large dataset. Perfor-

mances of this fault tolerant framework are tested by showcasing illustrations in solving very

high dimensional stochastic problems over thousands of processors.

4.2 Introduction

Various methods for solving stochastic differential equations, and simulating the often com-

plex distribution of such solutions, have been developed during the past decades. There are

mainly two categories of such methods: statistical and non-statistical methods. The most fa-

mous representative of the statistical approaches is the Monte-Carlo (MC) method. It is widely

used for its ease in implementation. Of the non-statistical approaches, one important method is

known as generalized polynomial chaos (gPC) expansion [Xiu and Karniadakis (2002)], which

represents the unknown process with a set of complete orthogonal polynomials in random

space. This method belongs to a family of methods known as spectral stochastic finite element

methods (SSFEM) [Ghanem and Spanos (1991)]. Another widely used technique in the non-

statistical family is the sparse grid collocation (SGC), with its adaptive variant as the adaptive

sparse grid collocation (ASGC) method [Ganapathysubramanian and Zabaras (2007); Zabaras

and Ganapathysubramanian (2008); Ganapathysubramanian and Zabaras (2008))].

The SCG method uses the Smolyak algorithm [Smolyak (1963)] and tensor products to

selectively generate grid points in the sampling space. ASGC deduces the number of sampling

points by defining a criterion for accepting new grid points for next interpolating level. This

method is viewed as the easiest method to implement and utilize in solving stochastic equations

for the following reasons. Firstly, it relies only on multiple calls to deterministic solvers, without

effort to develop new stochastic routines in the code. Secondly, it allows the incorporation of

multiple sources of uncertainty in a very straightforward manner. Thirdly, it is a highly scalable

method because of the independence calls of the deterministic solvers, which can be completely

parallelized.

Implementation of the ASGC method is also one important field of study. The conventional

way of implementation is to declare the scientific solver as a subroutine of the ASGC collocation
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point allocator [Ma and Zabaras (2009)], which we refer as the “one-program” design in this

study. Although the ASGC method does not require users to derive additional equations for the

governing equations, users still have to hardcode their scientific solvers into the conventional

implementation framework and compile before performing the simulations. The conventional

design supports parallel execution, for instance on a super computer, where collocation points

are distributed on multiple processors. However, the scientific solver on each collocation point

is restricted to using only a single processor due to the design of the conventional framework.

This significantly limits the capability of such a framework for solving large scale problems

which require multiple processors to execute.

When the stochastic dimension becomes very high, the number of collocation points can

be considerable. Consequently, the “one-program design has to use more and more proces-

sors at the same time to preserve efficiency when the stochastic dimension increases. These

many processors usually distribute on multiple computational nodes (machines which form

the cluster), where each node lies a certain possibility of failure. So when a large number of

nodes get involved to perform a collective task, the chance of the occurrence of machine failure

increases during execution of the program. Thus it is necessary to think of a new design in

implementation which is well scalable to the size and dimension of the stochastic problem.

The ASGC method solves stochastic equations in a hierarchical way, which requires the

completion of all evaluation jobs at one level to start the next level. As mentioned before,

the conventional “one-program” framework is distributed on multiple processors and is im-

plemented by the message passing interface (MPI) for inter-processor communication. One

consequence of the MPI based “one-program” architecture is that any failure, either software

or hardware caused, on any single processor will lead to the abnormal termination of the whole

solving process. This brings the necessity of designing a fault-tolerant implementation of the

ASGC method, which is capable to restart only the failed sub-processes to ensure the comple-

tion of the current level.

There have been some discussions on designing a fault-tolerant system in previous literature.

Schlichting and Schneider (1983) discussed the key features to design a fault-tolerant systems

and provided a minimum set of criterion which a fault-tolerant system should satisfy. These
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rules in their paper were written in an axiomatic form with the language invented by Hoare

(1969). The key ideas for designing a fault-tolerant system include keeping some important

contents on stable storage, and equipping the programs with some recovery protocols to recover

failed processes. Following but not limited to these rules, we will introduce a fault-tolerant

implementation of the ASGC method in this study, where we use some monitoring units to

periodically access the statuses of active jobs and to restart failed ones. This design breaks

the “one-program” design into independent processes and uses an inter-process method for

communication between the scientific solver and a managing controller.

Another issue caused by the increasing of stochastic dimension when implementing the

ASGC method is the huge data generated at each level. In the conventional “one-program”

design, the implementation utilizes the random-access memory (RAM) as the storage medium.

However, as the stochastic dimension and the scale of the problem increase, the data size

quickly exceeds the capacities of RAM on most computers or clusters. A remedy of this issue

is to store data on the hard drive. The ASGC algorithm has a hierarchical structure, where

the execution of current level is based on the results from all previous levels. Therefore a very

typical data operation is searching and retrieving from the data set stored for previous levels.

Though the hard disk has less limit on its storage capacity, the reading and writing speed is

much slower compared with RAM. However, a better structured and designed database can

significantly improves the performance of data operation. So in our design, we transform the

data storage from RAM to hard drive, and incorporate the hierarchical data format version 5

(HDF5, The HDF Group (2014)) database library, which organizes data in a hierarchical way

and provides advanced data manipulation algorithms.

Following these requirements and logics, we designed a well scalable framework which sepa-

rates the deterministic solver away from the sparse grid allocator. Thus both the allocator and

the deterministic solver work independently as individual jobs on cluster, without letting one

program employing many processors. We also design this framework as fault-tolerant to imple-

ment large scale and high dimension stochastic problems satisfying the fault-tolerant systems

design criterion mentioned earlier. We also developed a series of implementation techniques

and codes to realize such a framework, using some file system structures and operations tech-
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niques in Linux. Real simulations showed that this framework is suitable for high dimension

stochastic simulations.

The detailed features of this framework are introduced in this paper. We will define the

stochastic problems in section 4.3, then briefly introduce the theory of adaptive sparse grid

collocation in section 4.4. After this, the fault-tolerant system design criterion will be briefly

reviewed in section 4.5. In section 4.6, our fault-tolerant sparse grid collocation framework

will be developed step by step following the criterion towards fault-tolerant systems design. In

section 4.7, implementation strategies and detailed techniques will be developed to realize the

framework developed in section 4.6. Later in section 4.8, various numerical examples, especially

problems with high stochastic dimensions, will be used to test the performance of the fault-

tolerant framework. At last, the main contents of this paper will be summarized and potential

future work will be discussed in the conclusion section, section 4.9.

4.3 Problem definition

4.3.1 Governing stochastic equations

In this section we describe some definitions and mathematical preliminaries used in stochas-

tic modeling following the notions introduced by Ganapathysubramanian and Zabaras (2007).

Define a complete probability space as (Ω,F ,P), where Ω is the set of outcomes, F is a σ-

algebra of Ω, and P : F → [0, 1] defines a probability measure. Denote the spacial domain of

interest as D, where D ∈ Rd, is a d dimensional space, e.g. d = 1, 2 or 3. Denote the boundary

of the physical domain as ∂D. The variable of interest is a stochastic function, denoted as

u : D × Ω → R. By applying Karhunen-Loève expansion (KLE), the random field can be

approximated by a finite number of random variables, ξi. Then the governing equation of u

can be written as:

L(u;x, ξi) = f(x, ξi), ∀x ∈ D, ξi ∈ Γ, (4.1)

with the boundary condition:

B(u;x, ξi) = g(x, ξi), ∀x ∈ ∂D, ξi ∈ Γ, (4.2)
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where N is the stochastic dimension and Γ = [0, 1]N . The operator L is a differential operator,

and f(·) : D×Ω→ R is the source term, which is a known stochastic function. The boundary

operator B and the boundary excitation term g(·) define the boundary condition of u on ∂D.

So the purpose is seeking an approximation of u satisfying equation (4.1) and its boundary

condition (4.2).

4.4 Adaptive sparse grid collocation method

The SGC method represents the unknown stochastic process as a polynomial approxima-

tion. This method interpolates the stochastic process by generating collocation points in the

random space on which deterministic differential equation is solved. An intuitive but inefficient

way of constructing the grid is using the full-tensor product of 1D interpolation. The short-

coming of the method is known as the “curse-of-dimensionality” [Clarkson (1994)]: utilizing

k points per dimension in a N -dimensional space results in O(kN ) points. This magnitude

of number of points quickly explodes as dimension increases. In contrast, SGC employs a

Smolyak’s algorithm [Smolyak (1963)] based method to selectively construct the grid which

can significantly reduced the number of points without loss of accuracy. Compared the O(kN )

complexity of construction of grid, SGC use O(klog(k)N−1) points to construct the same accu-

rate interpolation as proved in Bungartz and Griebel (2004). Because of this advantage, SGC

and its variants become more and more popular in uncertainty quantification.

The key feature of SGC is the hierarchical structure of interpolation, for which the inter-

polation propagates level by level. Consider a smooth function f : [0, 1]N → R. By using the

notion of tensor product, the interpolation formula of f is:

(U i1 ⊗ · · · ⊗ U iN )(f) =

m1∑
j1=1

· · ·
mN∑
jN=1

f(Y i1

j1 , · · · , Y
iN

jN
) · (ai1j1 ⊗ · · · ⊗ a

iN

jN
), (4.3)

where ik ∈ N is the level of interpolation on the k-th dimension, U(·)ik denotes the interpolation

of f on the k-th dimension at level ik, a
ik
jk

are the nodal basis functions on the k-th dimension

at level ik, mk are the number of elements on the k-th dimension. For all dimensions, at the

initial level, ik = 0, ∀k = 1, 2, . . . , N , U0 = 0. If the interpolation of all dimensions are i1, i2,
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. . . , iN , then denote the set of support nodes at this stage as (Xi1 ×Xi2 × · · · ×XiN ), where

Xik = {Y ik
jk
| Y ik

jk
∈ [0, 1], jk = 1, 2, . . . ,mk}.

By using the notion of equation (4.3), the conventional Smolyak algorithm for constructing

the sparse grid interpolation Aq,N of f can be written as [Ganapathysubramanian and Zabaras

(2007)]:

Aq,N (f) =
∑

q−N+16|i|6q

(−1)q−|i| ·
(
N − 1

q − |i|

)
· (U i1 ⊗ · · · ⊗ U iN )(f), (4.4)

where q > N , i = (i1, i2, . . . , in) is the muli-index of levels at all dimensions with |i| = i1 +

i2 + . . . + in as the normal definition of 1-norm of |i|. Define the increment of interpolation

between two levels for the k-th dimension as ∆ik = U ik − U ik−1 . Then with the incremental

notion, equation (4.4) can be written as:

Aq,N (f) =
∑
|i|6q

(∆i1 ⊗ · · ·∆iN )(f). (4.5)

Recursively, the following hierarchical interpolation structure of Aq,N holds:

Aq,N (f) = Aq−1,N (f) + ∆Aq,N (f), (4.6)

∆Aq,N (f) ≡
∑
|i|=q

(∆i1 ⊗ · · ·∆iN )(f), (4.7)

where AN−1,N (f) = 0. To compute Aq,N (f), one needs to evaluate the function values at the

sparse grid points given by Hq,N =
⋃
q−N+16|i|6q(X

i1 ×Xi2 × · · · ×XiN ).

Equation (4.6) gives the way that ASGC improves the accuracy of interpolation by gener-

ating more sampling points. Thus the selection of the sparse grid points set Xi is made in a

nested fashion, Xi ⊂ Xi+1. So when interpolation jumps from level i − 1 to level i, one only

needs to evaluate function values at new generated grid points set ∆Xi, ∆Xi ≡ Xi \ Xi−1.

Furthermore, the increment of the whole sparse grid points set from order q− 1 to order q can

be denoted as ∆Hq,N =
⋃
|i|=q(∆X

i1 ×∆Xi2 × · · · ×∆XiN ).

According to the hierarchical nature of Smolyak algorithm, SGC can be improved with

adaptivity which further reduced the number of sparse grid points as mathematically described

in Griebel (1998). The basic idea towards ASGC method is to use the hierarchical surplus as
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an error indicator and only refine the grid points whose hierarchical surplus is larger than a

pre-defined threshold. From equation (4.6), we obtain

∆Aq,N (f) =
∑
|i|=q,
j∈Bi

(ai
1

j1 ⊗ · · · ⊗ a
iN

jN
) · (f −Aq−1,N (f))(Y i1

j1 , · · · , Y
iN

jN
)︸ ︷︷ ︸

wi
j

, (4.8)

where Bi is the multi-index set, Bi ≡ {j ∈ NN | Y ik
jk
∈ ∆Xik ,∀jk = 1, . . . ,mik −mik−1

, k =

1, . . . , N}, and wi
j is the hierarchical surplus, which is the difference between the value of f

and the interpolation value from the previous levels at the newly generated grid point. For

continuous functions, the hierarchical surpluses tend to zero as the interpolation level tends to

infinity. Furthermore, for non-smooth functions, details about the singularities are indicated by

the magnitude of the hierarchical surplus. By ASGC, at each level, the surplus wi
j is computed

at each new generated point in ∆Hq,N . If ‖wi
j‖ < ε, where ε is the prescribed threshold, then

this point will be accepted at current level, otherwise it will be removed from ∆Hq,N . By

applying this adaptive strategy, the number of sparse grid points can be significantly deduced.

4.5 Basic requirements of designing fault-tolerant systems

4.5.1 Definition of campaign

From the definitions of ASGC in section 4.4, it can be concluded that the structure of

the sparse grid propagates hierarchically level by level. At a certain level, new sample grid

points are generated on which values of the function should be evaluated separately. Should

the evaluation procedure at current level be completely done, necessity of creating more sample

points for next level can be decided. This procedure continues until no sample points being

created or the interpolation level reaches a bounded depth. We can describe this process more

rigorously using the following notions. The whole modelling procedure consists of a number of

campaigns J = {J1,J2, . . . ,JN}, where N is a positive integer. Each campaign Ji is composed

of mi independent jobs Ji,j , 0 6 j 6 mi. These mi jobs can be executed in parallel.

Step 1. The modelling begins with a initializing campaign, J0, which contains only one job J0,

J0 = {J0};
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Step 2. For the campaign Ji, job Ji,j , i > 0, j 6 mi, is a deterministic problem at a unique

grid point Yi,j . These jobs run in parallel and the output of job Ji,j is the solution to

the deterministic solver at point Yi,j ;

Step 3. Only when all the jobs in campaign Ji are complete, a sparse grid allocator 1 analyzes

the results of campaign Ji, then generates a new sparse grid points set ∆Hi+1 =

{Yi+1,1,Yi+1,2, . . . ,Yi+1,mi+1}. The corresponding jobs Ji+1,1, Ji+1,2, . . . Ji+1,mi+1 form

the next campaign Ji+1
2;

Step 4. Repeat the above steps until ∆Hi+1 = ∅, or i > N .

4.5.2 A brief introduction to the axiomatic approach

Consequently, there comes the question how to design a framework that links the sparse

grid allocator and jobs in the campaigns together. One can never prevent the occurrence of

exceptions on a computational machine, but it is able to recover the failed program at the

point where it was interrupted. So it is necessary to clarify the conditions to characterize the

beginning and ending of a program. Most of the executions of programs can be described with

the syntactic notion called a ”triple”, {P}S{Q}, as the Floyd-Hoare axiomatic approach Hoare

(1969). Here S is a programming statement, or part of a program. The variables P and Q

are assertions, which consist of programs and logical values, and usually be judged for true or

false, say, by a Boolean value. P is the assertion containing the variables being valued before

the initialization of S. The assertion P is called the precondition of S, denoted as P = pre(S).

When S is terminated, some results can be obtained base on the termination of S. These

variables are contained in the assertion Q, which is called the postcondition of S, denoted

as Q = post(S). The notion of triple provides a rigorous and convenient way to prove the

correctness of a program in a literature way.

1A sparse grid allocator can only generates points in the normalized random space, U = [0, 1]d, where d is the
stochastic dimension. This is sufficient since that it is possible to map U to any random space using topology
methods.

2This is called the “barrier” property of hierarchical interpolation. Campaign Jn+1 cannot be started until
its previous campaign Jn is finished.
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4.5.3 Recovery protocol

In classical fault-tolerant system, an action statement is associated with a recovery protocol.

When a failed job is restarted, the internal state and the contents of its volatile storage cannot

be automatically restored to the state of the moment when failure occurs. So a program should

be associated with a routine which completes the state transformation and restores storage to

a safe place when failure occurs. Such a routine is called a recovery protocol [Schlichting and

Schneider (1983)]. Obviously, a recovery protocol should be stored and run on a stable storage,

and only uses contents stored on this stable storage. A recovery protocol should always be

“available” to make correct execution without being interrupted. Notice that this assumption

of existence of stable storage is reasonable for most of the computer clusters. There is usually

a host node on a computer cluster as users home directories. Such a host node is protected

by strict rules. No parallel jobs are allowed to run on the host node, so hardware exceptions

rarely happen on the host node. The storage related to the host node is also well maintained,

which can be viewed as stable.

Compared with classic fault-tolerant systems, fewer requirements of our new fault-tolerant

framework bring us possibility to simplify the functions of the recovery protocol. The main

function of our recovery routine is to guarantee the completion of executions of all jobs in a

campaign. It is not necessary to let this recovery routine work for the whole campaign, since

that only a very few number of jobs of a campaign may get failed. So an efficient choice

is to associate the recovery routine with each job. Thus the requirement of this recovery is

clear: monitoring the status of a single job, whenever failure is detected, immediately restart

the failed job (might be restarted on the same nodes if previous failure is caused by software

issues or if a hardware exception has been fixed at restarting moment). What is different with

classical definition of recovery protocol is that in the current framework the recovery operations

are simply substituted by restarting operations, to avoid the complex data transformations

between unstable storage and stable one. For the consistency of the framework, we still use

the term recoverable protocol for the simplified version used in the current framework.
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4.5.4 Basic rules of a fault-tolerant system

Schlichting and Schneider (1983) also derived a series of axiom logics based criterions which

can help programmers to design fault-tolerant programs and can be used to prove the cor-

rectness of the fault-tolerant actions. Instead of going into details of the theorems, here we

just briefly described the important rules towards designing the fault-tolerant ASGC solver

without giving demonstrations. Interested readers may refer to the original paper. A fault-

tolerant action, denoted as FTA is a sequence of statements A associated with a recovery

protocol R. When the action A is failed, the recovery protocol R will recover (restart) this

failed job. The triple of FTA is written as {P}FTA{Q}, where P and Q are the precondition

and postcondition, respectively. It is able to separate this triple into two triples, {P ′}A{Q′}

and {P ′′}R{Q′′}, where P ′ and Q′ are precondition and postcondition for program A, P ′′ and

Q′′ are precondition and postcondition for the recovery protocol R. Correct execution of A

can directly lead to Q, when the recovery protocol is not activated. The recovery protocol

can lead to the final postcondition Q when it is activated and invoked. To ensure that the

recovery protocol can continue the execution of the program, all program variables named in

P ′′ must be in stable storage, which cannot be interrupted by any failure of unstable processors.

Besides, as mentioned before, the recovery protocol itself is also running on the stable storage

with stable processors. Certain types of key conditions in {P ′}A{Q′} and {P ′′}R{Q′′} need

also lead to P ′′ for recovery purpose. Finally, variables stored in volatile storage may not be

named in assertions appearing in programs executing on other processors. It is seen that his

rule is automatically satisfied by the new framework, since that all jobs are independent and

variables named in assertions are kept on stable storage.

4.6 Design a fault-tolerant implementation framework for sparse grid

collocation method

4.6.1 Conventional “static” linking strategy

The conventional framework combines the function evaluating operator with the allocator.

This strategy can be easily realized with most of the programming languages using Object
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Oriented Programming (OOP) architecture, like C++. For example, using C++, one can define

the allocator as a class, and include one function evaluation subroutine in such class as a

member function, which returns function value at a given sparse grid point. This linking

strategy between allocator and campaigns is named as “static” linking in this paper. At level

i, when the allocator has created all sparse grid points for the current level, campaign Ji is

claimed immediately by all these points. Then within the same program, the jobs are started on

the same processors where the allocator was running. Typically with the “static” linking, each

job takes only one processor. One processor may need to run more than one job, sequentially.

Each job performs as an evaluation program A for a single sparse grid point. The termination

of program A generates a postcondition Q′ as the realization of the stochastic problem at this

grid point. Notice that no variables in Q′ are stored on the stable storage (they are stored

in the RAM on volatile computational nodes), once exceptions fail program A, information

of A will be immediately lost. Furthermore, Q′ leads the program to nowhere since A is not

equipped with a recovery protocol. Therefore the “static” linking framework is not fault-

tolerant. When the stochastic dimension is low where only a small number of processors are

employed, the static linking strategy shows its advantages as fast executing. Besides, there

needs no data transmission between allocator and jobs in the campaign. However, for high

stochastic dimensional simulations which involves large amount of computational resources

working simultaneously and huge dataset operations, this old framework cannot guarantee the

successful execution of ASGC method.

More hidden problems of the “static” linking appear as the stochastic dimension become

high and scale of simulations increase. Firstly, “static” linking has low flexibility to the im-

plementation of the function evaluation operator. Since the function evaluation operator is

defined as a subroutine in the allocator class, every time users want to change this operator

they have to modify the source files where the function is defined. For users who are not famil-

iar with the source code, this modification process brings too much inconvenience. Secondly,

“static” linking restricts the scalability to the function evaluation operator. Recall that using

the “static” linking strategy, each processor only handles one job. Even it is possible to break

this restriction to let a job run in parallel, this requires more coding work which makes the pro-
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gram more complicated and less readable. The last but not the least, notice that a successful

run of “static” linking framework requires that all the generated points are correctly evaluated.

According to the scalability restriction of “static” linking, number of processors employed for

computing increases fast as stochastic dimension increases. For a program running on a large

number of processors, it is impossible to guarantee all the processors run normally. This is a

fatal danger to sparse grid collocation according to the barrier property between two consec-

utive campaigns: campaign Jk may never proceed to campaign Jk+1 if not all the processors

for campaign Jk work correctly.

4.6.2 Desired properties of the fault-tolerant framework

The above problems require us to seek for a new linking strategy for the sparse grid col-

location framework. There are mainly two properties that the new linking strategy to satisfy

according to previous analysis. First, to cope with the problem of fast increasing number of

processors and scalability of jobs, it is necessary to free the function evaluation subroutine out

from the allocator as an individual program. Thus the number of processors employed can be

kept at a limited and controlled level during execution. Moreover, it is possible to assign more

processors to run a single job without restriction due to design issue. The new problem in-

volved is that there needs one more process to communicate the allocator and the jobs. Second,

although the number of collective processors is controlled, it is still not wise to rely on the luck

of exception not occurring. The risk of processor failure always exists. The barrier property of

between campaigns requires the framework to guarantee the successful executions of all jobs at

each level. This implies that the new framework should be “fault-tolerant”, or say, whenever

processor failure occurs, the new framework should be able to protect all the running jobs on

failed processors to recover to normal running status on other healthful resources.

A recovery protocol is necessary for a fault-tolerant system. The number of jobs in a

campaign can be extremely large for high stochastic dimension. According to the previous

analysis, these jobs will be run individually on a computer cluster. A computing cluster is a

group of computational nodes connected to each other through a network. A parallel job can be

assigned to one or more computational nodes by a scheduler, like PBS, or SGE scheduler. It is



95

very possible that a job terminates abnormally due to various reasons, such as memory overflow,

or hardware exceptions. When failure occurs for a job, its related processes will be simply

halted, and the volatility connected storage on its running nodes will be irretrievably lost. So

the computational nodes and their connected storage can be viewed as unstable. Fortunately,

the status of all running jobs can be monitored by the scheduler. The scheduler can tell whether

their jobs are queuing, running, or being terminated, etc. Whenever failures of jobs have been

detected by querying jobs status, the fault-tolerant framework should immediately recover the

failed jobs. Thus each job should be equipped with a monitoring process to protect its execution

on computational nodes.

4.6.3 Fault-tolerant framework for ASGC

We can modify the “static” linking logic to give a restartable fault-tolerant action. Ac-

cording to the criterion, key variables should be stored on stable storage. At level i when

the evaluation procedure of job Ji,j is done, we store the evaluated value in a result file on

the stable storage. This result file will be loaded by the allocator to generate the new grid

points set ∆Hi+1,N for next level. When ∆Hi+1,N is ready, the coordinates of all the points in

∆Hi+1,N will also be stored in another file, which will be used to define campaign Ji+1 at level

i + 1. Each job Ji,j , 0 6 j 6 mi, is an individual job running on one or more computational

nodes. So we need a script file to submit job Ji,j to the scheduler. Once a job is submitted,

a unique job ID will be assigned to this job by the scheduler to check the job running status.

Assume that it is always available to use this job ID to query the status of job Ji,j from the

scheduler. Most of the clusters use various symbols to indicate the job status which can be

checked interactively by the users.

The strategy used here to form a fault-tolerant framework is that design a recoverable

program R to execute an evaluating program E for each job on the cluster, and design another

process M running on a stable machine to repeatedly call R simultaneously with different

inputs. Since R only relates to an individual job, once the job submitting script file is ready, R

should be able to start the evaluation job E on the cluster. Notice that the evaluating program

E itself is not recoverable. It is R that provides the recovery protocol for each job. Program M
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runs on the stable storage with stable processors. All the key conditions and variables related

to the evaluating jobs are stored on the stable storage. Once a certain evaluation job E is

failed, R can immediately detect the failed conditions and restart this job. The termination

condition for M at each interpolation level is the set of all the termination conditions of all the

running evaluation jobs. This means that when all the evaluation jobs are successfully finished,

new interpolation level shall be started. Since program R plays crucial role in protecting a

individual job running on the cluster, we call R a “monitoring unit”, which also separates the

deterministic solver apart from the allocator to let it run as individual job. Here we name

this separated framework as “dynamic” linking strategy, to be distinguished with the “static”

linking strategy. Here the program M is called the “manager process”, which links the allocator

and the deterministic solver in a dynamic way. There should be another important part in the

“static” linking framework to serve for the communication between the manager process M and

the monitoring process R. Details about the design and the implementation of such “dynamic”

framework will be introduced in section 4.7 as following.

4.7 Fault-tolerant framework implementation methods

4.7.1 Architecture of the “dynamic” linking ASGC framework

Figure 4.1 presents the architecture of the “dynamic” linking ASGC framework on a com-

putational cluster. A cluster, or a supercomputer, consists of many computational nodes, which

are connected by an inner network. These computational nodes serve for performing the regu-

lar computation jobs. Both the ASGC allocator and the scientific solver are submitted to and

run on these computational nodes through some cluster job submission protocols. However, as

discussed in section 4.6.3, the manager process needs to be running on a stable storage. Most

modern clusters have at least one host node, where the users build the executable and store

the data. The host node can been viewed as a stable storage where there is no computational

job being performed, and such node only serves for some light tasks. So the manager process is

executed on the host node, which is indicated by the dashed box in figure 4.1. Besides with the

manager process, the monitoring units also stay on the host node, since they do not monitor
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themselves. There is also a database on the host node, storing the hierarchical surplus data for

each level, which will be retrieved by the allocator for generating the collocation points for the

next interpolation level. The database is developed using HDF5, of which the implementation

details will be given later in this paper.

At beginning of each level, the manager process starts the ASGC allocator to generate the

collocation points at this level which serve as the parametric inputs for the scientific solvers.

This allocator is also submitted to be running on a computational node. To ensure the successful

completion of the allocator, we also employ a monitoring unit, as a protection layer, between the

manager and the allocator. There is no direct communication between the manager process

and the allocator existed on a separate computational node. Once the manager starts the

monitoring unit with the allocator, it only hears from the signal from the monitoring unit

on the completion of the execution before starting next step of actions. The monitoring unit

repeatedly queries the status of the scientific solver under its monitoring, then reports a success

signal back to the manager if the job is completed, or restarts the job if it detected as failed.

The detailed monitoring logics will be discussed later in this section. The allocator reads the

surplus data from the database and prepare the allocation points set for the next level. These

newly generated points are stored in a file on the host node, and will be read by the manager

process to create evaluation jobs for next level.

Once the manager process has detected the completion of the allocator, it starts the next

level of interpolation using the file containing the collocation points generated by the allocator.

Each collocation point is related to one single evaluation job, which is running on the computa-

tional nodes. Notice that there is no restriction on the number of processors than can be used

by an individual job, which provides the possibility to run very large scale simulations, and is

a big improvement compared with the “static” linking framework. Starting next interpolation

level requires the completion of all evaluation jobs at current level. Therefore, each evaluation

job is equipped with a monitoring unit. This design is more efficient than making the manager

process itself to monitor all running jobs. The monitoring unit stays with the scientific solver

for its whole life cycle. The monitoring unit restarts the failed job if any sign of failure is

detected. After the completion of the evaluation procedure, the scientific solver stores data
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Figure 4.1 Architecture of the “dynamic” linking framework for implementing the ASGC

method.

back to a data pool on the host node, which is bound with the HDF5 database to be later

retrieved by the allocator for preparing next interpolation level.

4.7.2 Communication between manager process and sub-processes

Notice that the manager process and the monitoring units run in parallel as independent

processes on the host node. We need to have a communication channel through which the man-

ager process can hear from the monitoring processes and the monitoring processes can report

to the manager process. On the other hand, the number of evaluation jobs can be considerable

at each level, especially for high dimensional (very large N) stochastic system. However, the

total number of processors that can be used at the same time is usually restricted for most

clusters, which means that the number of evaluation jobs can be executed simultaneously is

limited. These two problems can be resolved by using the “first-in-first-out” (FIFO) pipe (also

known as named pipe), which is a system-persistent tool serving for inter-process communica-

tion (IPC) and being available on most operation systems. Such pipe also supports two-way

writing and reading, and will hold the reading attempt if the pipe is empty until contents being
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available again in the pipe. We can use this feature to control the number of simultaneously

running jobs on a cluster.

The communication process between the manager process and the monitoring units is de-

scribed in Figure 4.2. (1) At beginning of an interpolation level, a pipe is created with m tokens

placed inside, where m is the number of scientific solvers that can be executed at the same

time. (2) The manager process M keeps taking the tokens out from the pipe, and starts one

monitoring unit R as well as a related evaluation job E once a token is taken. After m tokens

being taken, the pipe becomes empty, and the reading process from the manager process will

be held. At this moment, there are exactly m scientific solvers running on the computational

nodes. (3) When the monitoring process detects the successful completion of the evaluation

job, it will place the token back into the pipe and terminate itself. (4) Once a token is returned

back to the pipe, the held reading action from the manager process is immediately released.

Then the manager takes the token again from the pipe to start a new evaluation job, which

makes the pipe empty once more and will hold the next reading action from the manager pro-

cess. This process repeats until all evaluation jobs are submitted. At the end, the manager

waits for collecting m tokens back from the pipe then call a completion of this interpolation

level.

4.7.3 Functions of the monitoring unit

In this section we introduce the working logic of the monitoring unit. It is difficult to build

direct communication between the monitoring unit and the scientific solver, since they exist

on different nodes. However, modern clusters always provide commands to query the status

of jobs, though the commands may vary due to the type of scheduler installed on the cluster.

After a querying command is sent, the scheduler prints detailed information to the request.

A scheduler also uses some symbols to express the status of a job. For instance, a PBS type

scheduler usually uses the following symbols for related status: “Q” for queuing jobs, “R”

for running jobs, “E” for exiting jobs, “C” for cancelled jobs, etc. Then the monitoring unit

utilizes these querying commands with the information returned by the scheduler to monitor

the status of a scientific solver. The working logic of a monitoring cycle is shown in Figure 4.3.
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Figure 4.2 Communication between the manager process and the monitoring units, where M

represents the manager process, R represents the monitoring unit, and E represents

the scientific solver. (1) The pipe is filled with tokens; (2) The manager process

takes tokens from the pipe and starts independent monitoring units as well as

the scientific solvers. The monitoring units take away all tokens and then the

pipe becomes empty, which holds the reading action from the manager process;

(3) When a monitoring unit detects the completion of its evaluation job, it places

the token back to the pipe and terminates itself; (4) The manager process takes

the token and starts a new job, which empties the pipe again and holds the next

reading action from the manager.
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We introduce the action for each status made by the monitoring unit in the following. Without

loss of generality, here we use the PBS scheduler symbols set mentioned above for example.

Checking for completion. To simplify the design of the deterministic solver, it is not required

to output any check point during its run-time. The most convenient way to check whether a

job has been finished is by checking whether the result file has been generated on the hard disk.

It is assumed that outputting the result file is the last step during a jobs execution period. The

first step of a monitoring period is checking whether such a result file has been generated. For

the first time the monitor detecting the existence of the result file of its monitored job, it will

start a timer to wait for a short period, Tc, to let the whole job finish writing to the result file

and completely quit. If during Tc, the job normally quits and the job status turns to be “C”,

then the monitor considers this execution as a successful run and places the token back into

the pipe. Otherwise, the monitor views this execution as a failed run and will restart it.

If the job is in the waiting list (status “Q”). At the moment when a job is submitted

on the cluster, the scheduler may put the job in a waiting list if the load of a queue exceeds

its capacity. Assume that the waiting period, TW , of a job depends on the conditions of the

running jobs in the queue, and also on the required running time of this job. It is difficult to

accurately predict TW since the scheduler may use various protocols. However, the worst case

is that a job has to wait until the completion of all the running jobs in the queue before its

submission. At the moment when a job is submitted, note the number of running jobs in the

queue as mQ, and their corresponding required running time as T jR, j = 1, 2, . . . ,mQ. Then the

worst case gives an estimation of the upper bound TW of TW as TW ≈
∑mq

j=1 T
j
R. By giving an

elastic waiting time TE , e.g. TE = 5 min, if the real waiting time TW exceeds this upper bound

plus the elastic time, TW +TE , then the monitoring unit regards this job as a failed submission

and will resubmit the job.

If the job is running (status “R”). All schedulers require users to provide a maximum

run-time (usually called “wall-time”) for each job. The real run-time of a job cannot exceed

this maximum run-time. If a job fails to complete when the maximum run-time is reached,

the scheduler will force this job to quit. So users should give a good prediction of this max

run-time, not too short or too long, otherwise the job may not finish running or will be waiting
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for too long time to be started, respectively. However, sometimes when a job crashes but the

scheduler fails to kill this job, then the job will still show a running state “R” but actually has

become a defunct process. Thus the monitoring unit should be able to detect this failure and

restart a failed job. To do this, the monitoring unit also creates a maximum run-time timer

when a job is started, which can be viewed as a backup aid of the scheduler in case the scheduler

itself fails. Then if a job crashes and its run-time has exceeded the maximum run-time but the

scheduler fails to detect this case, the monitoring unit is still able to detect this failure, then

marks this job with an ill-state and restarts it.

If the job is abnormally canceled (status “C” without output). During one monitoring period,

if the output file has not been generated yet but the job status turns to be “C”, it means that the

job has been abnormally terminated. This failure may result from either a software exception

or a hardware issue, or both. If this situation is detected, the monitoring unit will immediately

restart the failed job. However, sometimes this failure might be caused by some bugs or wrong

configurations of the scientific solver itself. If this is true, even if the job is restarted, the failure

will occur repeatedly. To prevent this, we use a maximum resubmission counts to restrict the

number of attempts of resubmission of a single job, e.g. 5 times at most to resubmit a single

job. If any job has been resubmitted for such number of counts, it is very possible that bugs

or wrong configurations exist within the scientific solver, and the monitoring unit will refuse

the next submission attempt for this job and reports a failure signal to the manager process.

When the manager process receives this signal, it will force to terminate all related processes

and inform the user to check the scientific solver and its configurations.

Otherwise. If no ill-status is detected during one monitoring period, the monitoring unit

will do nothing but just simply wait for a certain period, then starts the next monitoring period

until an ill-status is found or the job successfully completes.

4.7.4 Data storage optimization

A frequent operation for the ASGC method is checking whether a newly generated sparse

grid point has already been generated by other parent points from upper level according to

the algorithm introduced in section 4.4. Each grid point can been represented by two integer
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Figure 4.3 Flowcahrt of the monitoring unit working procedure.

vectors, i and j, where i represents the interpolation depth in each dimension and j indicates

the grid point position in each dimension. All the newly generated points are unique at current

level, which form a set. In the “static” design, the C++ data structure “set” was utilized

as a natural container for the storage purpose, which hosts in RAM. The C++ set container

automatically checks the existence of a given point before the inserting operation. However,

when the stochastic dimension becomes considerable, the RAM based data structure cannot be

used due to the limited capacity of RAM. Then we need a well organized database to support

stable data storage and efficient data inquiry operations. The i-j indices couple serves as the

key in the database for the simulation result from the scientific solver at each sparse grid point.

The key issue focuses on searching the existence of a given index, i-j, for a newly generated

sparse grid point. For a given i, there can be multiple j indices. So one searching strategy is:

search the existence of i first, if this i does not exist, then we are sure that this is a new point,

so stop searching and insert this new point, otherwise search for the existence of j under the

found i. This means that all the j’s related to the same i should be piled together as a group,

and the index i is the key to access this group. Notice that the number of j’s for a certain i is
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at most 2N , where N is the stochastic dimension. So the searching inside the “bucket” of such

i can be trivial: looping over all the j’s in the bucket to check the existence. The complexity

of looping the bucket can be viewed as O(1). Unfortunately, this looped searching cannot be

applied on searching the i indices for the large quantity at deeper interpolation level. The

looped searching has complexity of O(N2), which cannot be accepted for high performance of

simulations. Thus a smarter searching strategy needs to be designed to manage and search for

the i indices.

The HDF5 library is utilized to manage the indices on hard disk. The HDF5 library

manage data in a similar way as the operation systems manage files. The HDF5 organizes

data on hard disk into groups. Each group has a unique name, as the key to access to the

data in this group. HDF5 builds a separate index for all the names, which is organized using

tree data structure providing almost O(Nlog(N)) searching complexity. This is a significant

improvement compared with O(N2). The way HDF5 organizing data is suitable for organizing

the indices of sparse grid points, where each group contains all the j’s of a certain i, of which the

group name is a representation of i. Each i index is an N integers vector, i = (i1, i2, · · · , iN ).

It is inappropriate that using i directly as the group name, since that the string can be rather

lengthy for high stochastic dimensions. However, the sparse structure of i indices provides the

possibility to compress the name string.

Notice that all the i indices are grew from the staring index (1, 1, · · · , 1) (N 1’s in the

vector). As the interpolation depth increases by 1, a certain position among the N elements

in this vector also obtains one unit increment. If i is subtracted by the identity vector, then

most of the elements are zeros. The number of left non-zero digits in the vector is less than

the interpolation depth, which is a relatively small number. Thus the expression of group

name can be compressed by using these non-zero digits in the vector. For the non-zero digit

im = k, k 6 L, where m is the position of this non-zero digit in the vector and k is the

interpolation depth, it means k 1’s have been added to such position m. So the name can

be represented in such a way as how many 1s have been added to a certain position. For

the indexi, denote i′ = (i′1, i
′
2, · · · , i′N ) = (i1, i2, · · · , iN ) − (1, 1, · · · , 1), which forms a sparse

vector. Create a set I = {(m1, k1), (m2, k2), · · · , (mp, kp)}, where mi represents the non-zero
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positions, and ki represents the value of imi , imi = ki, i = 1, 2, · · · , p, p is the number of

non-zero digits in i′, and we have k1 +k2 + · · ·+kp = L. The name string of i can be expressed

as m1 · · ·m1m2 · · ·m2 · · ·mp · · ·mp, where there are k1 m1’s, k2 m2’s, ..., and kp mp’s. For

example, if N = 5, i = (1, 2, 1, 3, 1), then i′ = (0, 1, 0, 2, 0). This gives that I = {(2, 1), (4, 2)}.

Then the name string becomes “244”. it is seen that when the stochastic dimension is very

high (∼ 100), and the interpolation depth is at regular level (∼ 10), the name string is quite

compressed in such a way.

4.8 Numerical examples

4.8.1 Stochastic elliptic problem

As an example of utilizing the ASGC method with the above fault-tolerant framework

to solve stochastic partial differential equations, here we consider a stochastic elliptic problem

which has been discussed by Nobile et al. (2008); Ma and Zabaras (2009). This equation governs

a heat diffusion process on a closed domain where the thermal diffusivity is a stochastic field.

The governing equation with the boundary condition is given as:

−∇ · (aN (ω,x)∇u(ω,x)) = fN (ω,x) x ∈ D,ω ∈ Ω, (4.9)

u(ω,x) = 0 x ∈ ∂D, ω ∈ Ω, (4.10)

where the physical domain D = [0, 1] × [0, 1] is a 2D square domain, u(ω,x) is the tempera-

ture field, aN (ω,x) is the stochastic thermal diffusivity with N the stochastic dimension, and

fN (ω,x) is a source term taking the form fN (ω, x, y) = cos(x) sin(y). Notice that the source

term is selected as a deterministic equation inside the physical domain, which avoids introduc-

ing extra errors from domain discretization. The stochastic field aN (ω,x) can be expressed by

a series of random variables {Yn(ω)}Nn=1:

log(aN (ω, x)− 0.5) = 1 +
N∑
n=1

(√
πL

2

)1/2

exp

(
−(n− 1)2π2L2

8

)
cos(2πx(n− 1))Yn(ω),(4.11)

where Yn(·) are independent uniformly distributed random variables on [−
√

3,
√

3]. Notice that

this expansion is simplified as a 1D equation. This expansion makes the random field aN similar
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to the random field with exponential covariance kernel. In this expansion, L is the correlation

length, for which smaller value gives a slower convergence rate.

One significant feature of our fault-tolerant framework is its capability of solving stochastic

partial equations with large physical scales, which requires more computational resources to

numerically solve each deterministic equation. Ma and Zabaras (2009) solved the deterministic

problem using finite element method, where the physical domain is discretized into 30 × 30

bilinear quadrilateral elements, where the size of discretization is quite small. According to

the static linking between the allocator and the scientific solver in their “one-program” design,

the deterministic solver is restricted to execute only on a single processor, which does meet

the requirements of most of large scale engineering problems. Besides, the scientific solver has

to be hard-coded in to the executable before compiling and executing, which increases the

difficulty of applying such a framework as an agile toolkit for stochastic analysis. By defining

the dynamic linking strategy, this restriction of computational resources on the deterministic

solver is removed. The size of the solver is user defined and theoretically can be any large,

as long as there is enough computational resources. Besides, by employing the fault-tolerant

method, successful execution of the stochastic interpolation is guaranteed.

To showcase the performance of the fault-tolerant framework, we increase the number of

elements to 300 by 300, and use 4 processors to solve one deterministic equation. To simplify

the problem, here we run this problem for low stochastic dimension, N = 5, and pick L = 1

and L = 1/8 to illustrate the propagation of sparse grid points and evolution of interpolation

errors with levels. Figure 4.4 plots the mean and variance of the temperature fields for the case

of L = 1. Here we see that both the mean and variance of the temperature fields have a higher

distribution around the center of the domain. Figure 4.5 gives the mean and temperature

distributions over the physical domain, which show similar structure as those of the case of

L = 1. The convergence histories of both L = 1 and L = 1/8 are plotted in Figure 4.6.

Another feature of the fault-tolerant framework is that it is appropriate for solving stochastic

partial differential equations with very high stochastic dimensions (large N). First, as the

stochastic dimension is high, the number of sparse grid collocation points can be extremely

considerable, which requires using more computational resources to solve these deterministic
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Figure 4.4 Mean and variance of temperature field for stochastic elliptic problem with corre-

lation length L = 1. Stochastic dimension N = 5, discretization with 300 × 300

elements.

Figure 4.5 Mean and variance of temperature field for stochastic elliptic problem with corre-

lation length L = 1/8. Stochastic dimension N = 5, discretization with 300× 300

elements.
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Figure 4.6 Convergence histories for the stochastic elliptic problems with large physical scales.

Stochastic dimension N = 5, 300× 300 elements. Left:L = 1; right: L = 1/8.

problems. By the dynamic linking strategy, since that the deterministic solver is separated from

the sparse grid allocator, the number of processors can be kept at a constant level. Second, for

high stochastic dimension interpolations, the quickly increased solutions to these deterministic

equations bring the necessity for safe and efficient large data manipulations. This challenge is

successfully resolved by utilizing the HDF5 data library with its hard disk based database and

our index related fast searching algorithm.

In previous studies, Ma and Zabaras (2009) chose the highest stochastic dimension N

for equations (4.9) as 75, and solved the problem with their “one-program” static linking

framework. Even higher stochastic dimension may bring the potential risk as memory over

flow for their RAM based storage strategy. Here we showcase the capability of our design by

increasing the dimension to 100, and even higher, to 200 to showcase the capability of dealing

with very high throughput simulations using our framework. For such high dimension, the

number of collocation points can be considerable at each level, which increases the chance

of the occurrence of failed jobs. This makes the fault-tolerability necessary to ensure the

completion of the hierarchical process. To focus on the high dimensionality, we reduce the

number of elements to 30× 30, to save run-time for a single execution. For making the load of

the two tests comparable, we select L = 1/2 for N = 100, and L = 1 for N = 200. Besides, we

only showcase the capability by using the first 4 interpolation levels for both cases.
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Figure 4.7 Mean and variance of temperature for stochastic elliptic problem with high stochas-

tic dimensions, N = 100.

Mean and variance of the stochastic solution for N = 100 are plotted in Figure 4.7, and

mean and variance of the case of N = 200 are shown in Figure 4.8. Figure 4.9 shows the

convergence histories of these two high stochastic dimension simulations. As seen from the plots,

the mean and variance fields have similar structure as those of the lower stochastic dimension

cases. However, the convergence histories clearly tell that the numbers of interpolation points

at level 4 for both the two cases have already exceeded the ones at the highest levels of the

lower stochastic dimension cases. Thus the results demonstrate that our fault-tolerant ASGC

framework has no difficulty in handling the simulations with high throughput interpolations,

as stochastic dimensional safe.

As a highlight of the current framework, its fault-tolerability is investigated in this paper.

The tested problem is chosen as the above stochastic elliptic equation with small physical

scale (30 × 30 elements), low stochastic dimension (N = 2 and N = 3) with 5 interpolation

levels. The programs are run on a stable local computer with four cores. The purpose of using

small problems and stable machine is to reduce the probability of natural processor failure to

a negligible level. Thus the processor exceptions can be imitated by adding artificial failure

to the running processors, which makes the strength of processor exceptions controllable. The

strength of processor exceptions of a given machine can be described by the probability p of the

occurrence of processor failures on a given processor, assuming all the nodes are identical. In
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Figure 4.8 Mean and variance of temperature for stochastic elliptic problem with high stochas-

tic dimensions, N = 200.
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this test, p is chosen as 0.0625 to 0.75, to represent relatively stable machine and very unstable

machine. As a mimic of the natural processor failure, at the beginning of the execution of each

job, a random number r is assigned to the processor where the job is running. In each test,

p is fixed. The situation r < p represents a failure occur on the processor and the job will be

forced to quit. Then the monitor process is able to detect this failure and restarts the job. For

each p, three simulations are run and the average run time E[T ] is recorded. This E[T ] is then

scaled by the run time recorded for the case p = 0, as the stable machine average run time

E[T0].

The evolution of run-time with p is shown in Figure 4.10. The tests are parallelized in both

2 jobs running simultaneously and 4 jobs running simultaneously, to investigate the effect of

parallelization on the tolerability. As seen in the figure, the average run time grows fast as the

instability of machine increase. However, even for the most unstable condition, the increase

of run time is able to be controlled in a limited bound, compared with E[T0]. Thus the fault-

tolerability of the current framework is guaranteed. The figure also reflects that the increase

of run time is almost independent with the stochastic dimension and the parallelization level.

These curves can be approximated by the expression of p, ̂E[T ]/E[T0] = 1/(1− p)α, where the

parameter α reflects the strength of the tolerability. For the current problem, α = 1.75 gives a

good approximation. This interpolation of the run time with machine failure probability p is

plotted as the dashed curve in Figure 4.10, where very good agreement is obtained. Therefore,

once the condition of a real cluster is known, the plot in Figure 4.10 can be used to estimate

the run time of the simulations.

4.8.2 High discontinuity interpolation

The dynamic linking strategy provides our framework with the flexibility of handling almost

all the parametric driven high throughput simulations, which is saying, as a versatile tool, this

framework has not to be restricted on its primary usage for stochastic analysis, but is able to

be linked to various types of engineering solvers. The fault-tolerant framework defines clear

input-output format for users. The input to the framework at each interpolation level is a list of

parameters for the scientific solvers, and the output can be any type generated by the scientific
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Figure 4.10 Increase of average run time with the probability of the occurrence of artificial

processor exceptions. The dashed curve is the interpolation of the run time with

machine failure probability p.

solver according to its design. Besides, the scientific solver is soft linked to the framework,

not hard coded, which provides convenience for most types of engineering solvers - either user

implemented or commercial solvers. One can also use this framework as a batch processing tool

to manage large number of simulations to save a lot of manual work. Currently our framework

support local mode, cluster mode and hybrid mode for selecting the way of executing. Local

mode allows users to run all jobs on a local computer. Cluster mode allows users to run the

simulations on a cluster, but each job has to be executed on at least node (a node may have

multiple processors). The hybrid mode allows users to run the simulations on a cluster where

each node can run a bunch of jobs. The local mode is appropriate for light scientific solvers

with small number of jobs. The cluster mode is suitable for relatively heavy duty scientific

solvers requires multiple processors to perform. The hybrid mode is designed for very large

number of light scientific solvers which requires about one or two processors to run.

In this paper we illustrate the flexibility of this framework with an interesting problem.

Remind that the sparse grid collocation method is appropriate for high discontinuity for which

more grid points will be located around the discontinuity curves [Ganapathysubramanian and

Zabaras (2007)]. Here we impose a “color map” on a square domain and use the ASGC method
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Figure 4.11 A five-colored map in a square domain. Each block is assigned with a color of

unique gray scale.

to detect the boundaries between two blocks with different gray scales. Figure 4.11 shows the

color map with 5 blocks with different gray scales. At each given point on the map, the gray

scale can be extracted from the image with any image handling library, as the scientific solver

for this problem. Thus we can use ASGC method to interpolate this map. As interpolation level

goes deeper, more grid points will be located around the discontinuity borders to form clear

boundaries between two blocks. Figure 4.12 shows the growth of the grid points as interpolation

level increases. We see that more collocation points are placed along the borders between two

blocks. On the other hand, the number of grid points almost stops increasing inside each block

away from the borders at higher interpolation levels.

4.9 Conclusions

From the analysis and discussion shown in this paper, we see that the fault-tolerant frame-

work improve the use of sparse grid collocation method on stochastic interpolation. We first

discussed the several shortcomings of the previous static linking framework, to show that it is

not scalable to large scale deterministic problems, and is vulnerable or fragile to high stochas-

tic dimensions. To cope with these difficulties, we introduced the fault-tolerant system design

theories. A series of criterion conduct the design of a fault-tolerant framework. Then to im-

plement this fault-tolerant framework, we defined the dynamic linking strategy. For the sparse
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Figure 4.12 Growth of the ASGC collocation points for detecting the discontinuity in the

five-colored map at different interpolation levels. More collocations points are

placed along the borders between two blocks.



115

grid allocator, to avoid the risk of memory overflow as size of problem increases, the simulation

results are stored on hard disk and organized using HDF5 data structures. The fault-tolerant

functionality is implemented by a monitoring unit equipped for each deterministic solver. All

possible failures have been defined in the monitoring unit. Whenever a failure occurs, the mon-

itoring unit is able to detect the failure by actively querying the job status and immediately

restarts the failed job on a healthful node. This guarantees the simulation process being able

to complete for any level of stochastic simulations. At the end of this paper, several numerical

examples were introduced to validate the performance of the fault-tolerant framework. These

examples illustrated that: 1) the current framework is competent for large scale simulations; 2)

it is capable to deal with high stochastic dimension; 3) it provides high flexibility for any other

types of scientific solvers for not only stochastic analyzing usage. Furthermore, the allocator

can also be designed with different sampling strategies, e.g. using Monte Carlo sampling points

generator. The current framework can link between the input parameters generator and the

deterministic solver in a very convenient way, as a versatile tool, to serve for various engineering

problems
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CHAPTER 5. GENERAL CONCLUSION

5.1 General discussions

In this thesis, we have discussed the details of deriving the finite element formula for solving

coupled equation systems, especially for the complex fluid systems. We have provided solutions

to both the numerical scheme to each equation set and the coupling between the two physical

systems. For the Navier-Stokes equation, after comparing the accuracy and efficiency of several

finite element implementations, we finally adopt the four-step fractional method which separates

the pressure equation from the momentum equation thus reduces the degree of freedoms for

solving the flow equations. The SUPG term is incorporated in all the convection dominant

equations to eliminate the spurious oscillations of velocity in the solutions, which enables us to

treat wider range of Reynolds numbers for laminar flows. Each nonlinear equation is linearized

by the Newton-Raphson scheme at each time step and is then solved by PETSc SNES solver.

The coupled equation sets are then treated in a semi-coupled way, where each equation set is

solved solely and sequentially, and then the solution is updated in an iterative pattern at each

time step until convergence of all unknown variables has been reached.

We applied this finite element numerical scheme on investigating the behaviors of two cou-

pled equation systems. For the problem of flow past a heated cylinder, we numerically verified

the existence of three vortex shedding patterns behind a heated cylinder, as the staggered

shedding pattern (also named as the “von Karman vortex street”) for lower cylinder surface

temperature, the simultaneous shedding pattern (also known as the “Kelvin-Helmholtz vortex

pattern”) for higher cylinder surface temperature, and a transition state where a long quies-

cent wake zone is formed behind the cylinder (also called the “dead-flow zone” pattern) which

exists in a short intermediate range of cylinder surface temperature. We further studied the
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relation between the vortex shedding pattern and the cylinder aspect ratio, and found that

the velocity gradient along the cylinder axis direction plays important role on affecting the

formation of vortex shedding patterns behind the heated cylinder. We further demonstrated

the capability of this numerical scheme on solving coupled equation systems by showcasing

its application on simulating the multiphase flows. We verified that there should be at least

four elements through the interface to guarantee the accuracy of the numerical solution to the

interface motion. We also proved the capability of the numerical framework on solving 3D flows

on complicated geometries.

Finally we introduced the design and implementation of the fault-tolerant framework for

handling high throughput simulation tasks, especially its usage on the stochastic analysis on

complex systems. The key idea of the design of this framework is separating the scientific solver

apart from the input parameters generator (the allocator) as an independent process, which

enables the scientific solver to use multiple processors for large scale problems. This “dynamic

linking” design (between the scientific solver and the allocator) also breaks the direct risk

escalation path from the scientific solver to the whole project as in the old-fashioned “static

linking” strategy - where the failure of a single process will cause the termination of the whole

project according to the MPI based design. This means that in the new design, the failed

scientific solver is recoverable. This recovery feature is enabled by incorporating the monitoring

unit into the framework. The challenge of large data set management is resolved by utilizing the

HDF5 database and its managing library, which provides us efficient data storing and retrieving

functionality. This batch processing framework also has a user friendly interface through which

users are able to link their own solvers without knowing the details inside this tool. This feature

greatly extends its potential usage on various engineering problems.

Before the completion of this thesis, our numerical framework as well as the finite element

solvers have been widely used on analyzing cutting-edge scientific and engineering problems.

Our framework helped Amini et al. (2013) exploring a new way of controlling the fluid streams

in a microfluidic channel by simply placing a sequence of cylindrical pillars within the channel.

The researchers found that the fluid particles are able to form several patterns after passing a

single pillar under different controlling conditions. Our numerical analysis expanded the sim-
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ulations on a wide range of these controlling parameters then found more streaming patterns

and obtained a phase portrait of the pattern transition map. Guo (2013) applied the stochastic

analysis toolkit AdaGiO on investigating the reliability of wind turbine blade designs affected

by the uncertainties from the wind turbulence and the fabrication process of blade composite

layers. Jaeger et al. (2012) numerically investigated the effect of nano-scaled surface roughness

on the perturbation of the velocity of the low Reynolds number laminar flows in the microflu-

idic channels. They found that velocity profile can be significantly perturbed by the surface

roughness as deep to the central position inside the channel. It is difficult to obtain these

velocity profiles only from experimental observations for such small length scales. Other suc-

cessful examples of utilizing our framework include, but not limited to, studying the stochastic

behavior of air flow in the buildings and obtaining a phase portrait of morphology patterns of

organic solar cells during fabrication process. Interested readers may refer to these papers for

further details.

5.2 Potential future work

(1) Simulations of non-Newtonian fluids have attracted more and more attentions. Human

blood is a typical non-Newtonian fluid. It is usually very difficult to experimentally observe the

behavior of blood flow due to its small scale and its nontransparent color. Thus incorporating

the capability of simulating non-Newtonian fluid flow into the current framework is highly

valuable and has many engineering potentials.

(2) From the study of simulating multiphase flows we have seen that we usually need to

face the challenging from the requirement of very fine resolution of the computational grid,

since it significantly increases the consumption of computational resources. However, most of

time we don’t require such fine spatial resolution over the whole domain. For example, only

the interface between two fluid components of multiphase flow needs to be discretized finely,

but the far outer region does not. Therefore it will be great to incorporate the adaptive mesh

refinement (AMR) technique into the current finite element solver where we can dynamically

adjust the spatial grid resolution according to local requirement of accuracy.
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(3) Amini et al. (2013) have pointed out an exciting direction for flow manipulation in

microfluidic channels. It is possible to form complicated streaming configurations by just simply

placing sequential cylindrical pillars in the channel. Thanks to our finite element solver and

the high throughput batch processing tool, we have accumulated a huge number of simulation

data for the flow deformation under various controlling conditions, such as Reynolds number,

pillar position, pillar size, and channel cross-section aspect ratio. With these data, we can

better understand how the fluid particles react to these control parameters, and we are aiming

at establishing a data library for mapping the flow deformation to the control parameters.

It is possible to build the inverse engineering to such problem where we are able to find the

appropriate control parameter given an arbitrary desired flow pattern. Stoecklein et al. (2014)

have taken the first step out onto this exciting journey.
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