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ABSTRACT

As software development has evolved, an increasing amount of collaboration and manage-

ment is done online. Open source software, in particular, has benefited greatly from commu-

nication and collaboration on the Internet. As software projects increase in size, the codebase

complexity and required communication between developers increases. The barriers of entry

for development participation are not only technical in nature but involve understanding the

changing dynamics of the community.

Social Technical Congruence (STC) attempts to understand and model the synergies be-

tween technical development and communication. Motivated by this theory, three algorithms

were developed that leverage data from version control history and email mailing list commu-

nication to help developers better understand the community. The “code impact” algorithm

identifies commits that are impactful to the overall technical structure of the source code. The

“developer knowledge” algorithm calculates the knowledge that a developer or developers have

for a particular section of code. Lastly, the “communication suggestions” algorithm provides

suggestions about who a developer could be increasing communication with on the mailing

list based on shared technical dependencies and recent communication. These algorithms were

implemented in an online website called “Jamii”. Through an interactive front-end, the web-

site provides relevant development-centric information to the community. The website was

evaluated with Mozilla and KDE, two large open source communities.

Quantitative and qualitative analysis provide details about the socialization process before

the website was developed through an initial survey as well as afterwards. The results from

the initial survey paint a primarily positive picture of socialization and inclusion for KDE and

a more complex process of socialization and inclusion for Mozilla because of the large size of

its community and codebase. In many cases for both communities, the ratings on a number of

factors regarding the socialization process and effective coordination were actually higher for



xi

the beginner participants as compared to the veterans. This suggests that new participants may

have an overly-inflated positive view than veteran members. This work provides fundamental

contributions to the field of STC and may generalize to other distributed online collaboration

efforts.
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CHAPTER 1. OVERVIEW

1.1 Introduction

Technology and global connectivity are driving economic growth throughout the world at

an increasing pace. The perception of the world as a “global village” is, in part, a conse-

quence of numerous technological advances in communication that have made the world feel

smaller (McLuhan, 1964). One area that has adapted and thrived as a result of these advances

is open source software (OSS). Based on the notion that a program’s source code should be

available and accessible to anyone, OSS has benefited greatly from advances in electronic com-

munications such as email and other text-based communications. As a result, developers from

all parts of the globe can participate in OSS development. OSS enables the saving of millions

of dollars for companies both small and large (Walli, Gynn, & Rotz, 2005) and the growth,

in terms of software produced and projects initiated and completed, is increasing exponen-

tially (Deshpande & Riehle, 2008). Of course, much like any other product, process or service,

the efficiency and productivity is only as good as its program structure and the communication

among its developers. The health of the project through retention of new contributors as well

as individual advancement in the online community are critical components. Communication

patterns of the individuals working on the design as well as dependencies between various

sub-parts of the product being designed are intricately entwined and affect the overall quality.

The field of Social Technical Congruence (STC) (Cataldo, Wagstrom, Herbsleb, & Carley,

2006) attempts to understand and model the synergies between technical development and

communication. OSS presents a unique test-bed to explore these synergies due to the social

and technical aspects of participation in the OSS community, as well as the vast repositories

of open data that are available. The overall community is incredibly diverse and combines
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philosophical, cultural, and a wide variety of different skill sets and abilities with community

participants supporting everything from privacy rights to low-level operating system design.

STC is uniquely positioned to provide the necessary analysis in order to help new users join

existing communities.

The following research explores the connections between the social and technical structures

that exist in large communities such as OSS and the health of the community as measured

using the core principles of STC. Algorithms have been created and tested through the use of

an online website that provides information relevant to new software developers.

The work is divided into the following sections. Chapter two outlines the history of open

source and the motivation for this work. Chapter three details the results of an initial sur-

vey of two large open source communities, Mozilla and KDE. The survey focuses on member

perception of the socialization process for bringing in new members. Chapter four provides

information about the development of an online website that parses and analyzes source code

version control and email mailing list communication to provide recommendations and rea-

soning for developers. Three algorithms are provided as part of the tool. First, source code

commits are processed to determine which commits have the highest change impact to the

overall technical structure of the source code. Second, users can select a source code file or a

portion of the file and calculate which developers have expertise in the file based on the recency

and number of commits. Lastly, a communication suggestions algorithm gives recommenda-

tions for who a developer should be increasing communication with on the mailing list based on

shared source code dependencies and the amount of current communication. Chapter five is the

application of this online tool to the two open source communities including a final survey and

interviews to determine their reaction and applicability for improving the socialization process.

Chapter six provides a summary and conclusion.

This tool and algorithms more precisely and efficiently allow new and existing open source

members the ability to understand the social structure and assist in the development process.

This work provides fundamental contributions to the field of STC and may generalize to other

distributed online collaboration efforts.
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CHAPTER 2. BACKGROUND

2.1 Open Source Software

The OSS model has grown significantly over the years from the academic world of sharing

small pieces of source code to large communities of developers creating full-fledged software

systems with substantial corporate sponsorship (e.g., IBM Eclipse, Mozilla, Red Hat Linux,

Ubuntu Linux, etc.). The main impetus behind the creation of the open source concept was the

philosophy that the source code of a program should be accessible to everyone. This accessibility

allows individuals to add features, fix bugs, and provide suggestions with the understanding

that the changes made must be available to the entire community at large. The Open Source

Initiative (OSI) defines open source as having among others the following properties (Open

Source Initiative, 2015):

• “The license shall not restrict any party from selling or giving away the software as a com-

ponent of an aggregate software distribution containing programs from several different

sources.”

• “The program must include source code, and must allow distribution in source code as

well as compiled form.”

• “The license must allow modifications and derived works...”

• “The license must not discriminate against any person or group of persons.”

• “The license must not place restrictions on other software that is distributed along with

the licensed software.”
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In this way, OSS evolves through the contributions and evolution of the developers as well

as the users. A prominent benefit from this type of community is that it takes advantage of

its size to create a quality product or service. The freedom resulting from an open code-base

can result in significant commercial (Spinellis & Giannikas, 2012) and grassroots communities

emerging around projects.

The core freedoms and principles of OSS transcend national borders. Open source software

projects often involve people who are geographically diverse and who may have different lan-

guages and social customs. The modification and availability of the source code helps them

communicate and collaborate. Creating an open source project and community involves not

only technical skills but recruiting users and trusting them. Contributors not only provide new

or different source code but also documentation, translations, bug reports, and other functions.

Power and control in these communities emerges quickly. This can often lead to a high barrier

of entry for a beginner developer or programmer looking to become a contributor to the project.

Understanding the communication and society behind open source projects are important not

only for examining the community as a whole but also for new users who wish to join.

2.1.1 History

Today, the widespread proliferation of computers and users is much different than it was in

the 1960’s and 1970’s. At that time, personal computers did not exist. Computers were huge

main frame systems that required large air conditioned and climate controlled rooms. Programs

were created on 80 column punch cards and manually fed into the main frame system. The

community of computer users was very small in comparison to the number of users today.

Source code, the underlying instructions of the computer, was often freely shared throughout

the community. Around the mid 1970’s, the Unix operating system was beginning to gain use

around the world (Ceruzzi, 2003). ARPANET, the Defense Advanced Projects Research Agency

(DARPA) funded precursor to the Internet was gaining in popularity (Leiner et al., 2009).

Academics was the area where these new emerging technologies were mostly being researched

and developed. Academia has always been a fairly open community of sharing information and

ideas due to the culture within higher education. In the United States in particular, the events
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and protests of the Vietnam War primarily on college campuses clearly had an impact on the

American psyche. This group who was heavily influenced by the culture and society of the time

which supported freedom of speech and the “hippie” culture included the same individuals who

advanced two new innovations, the Internet and the personal computer. These two technologies

would be interlaced and heavily dependent on one another in subsequent years. Through the

youth movement of the 1970’s and the culture that developed, these individuals then brought

this ethos to their work environments.

Corporations began to realize the potential profit center revolving around the development

and licensing of software. Protecting their intellectual property in the software through the

use of copyrights became more important. This source code was often closed in that users

who purchased a copy of the software were unable to see the underlying source code and could

only run the program as it was provided. This closed source code issue presented a variety of

problems for many users, particularly those in academia who wished to fix bugs or problems

with the code or even add new features. In the early academic research days of computing, it

was not uncommon to share code with others. At the MIT Media Lab, Richard Stallman would

become, in essence, the “father” of the open source movement. After becoming increasingly

frustrated with the inability to view the source code and understanding where this could lead

technology in the future, he left his job at MIT in 1984 and started the Free Software Foundation

(FSF) (Richard Stallman, 2015a). “Software for him was not just a tool to run computers. It

ultimately was a manifestation of human creativity and expression. Even more importantly,

software represented a key artifact of a community that existed to solve problems together for

the common good. It was as much about the kind of society you lived in as the technology you

used” (pg. 47) (Weber, 2004). The goal of this nonprofit organization was to create a free and

open operating system that anyone could use, modify, and share (Ceruzzi, 2003). At the time

given the popularity of the proprietary Unix operating system, this system would be technically

modeled in a similar fashion. Created in 1983, the project was entitled GNU (Richard Stallman,

2015b) which is a recursive acronym called GNU’s Not Unix which was envisioned to be a free

and open codebase and competitor to Unix (Williams, 2002). The GNU Manifesto was created

to articulate the purpose and goals of the project, as well as clarify the difference between “free”
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and “freedom”. As Stallman explains in a footnote, “I have learned to distinguish carefully

between ‘free’ in the sense of freedom and ‘free’ in the sense of price. Free software is software

that users have the freedom to distribute and change. Some users may obtain copies at no

charge, while others pay to obtain copies and if the funds help support improving the software,

so much the better. The important thing is that everyone who has a copy has the freedom to

cooperate with others in using it” (Stallman, 1985). A famous quotation by Richard Stallman

outlines this when he explains that, “you should think of ‘free’ as in ‘free speech’, not as in

‘free beer’” (Free Software Foundation, 2015).

Understanding the legal structure behind this, Stallman realized that users might take free

software, add something new, and spin it off into a proprietary product. Then, users would not

have these freedoms for this improved version. This led to the creation of the General Public

License (GPL) or “copyleft” license. It uses copyright laws to protect the source code and make

sure that derivative works from free software stay free.

“Software that is licensed under the GPL cannot be made proprietary. Derivative

works from free software must also remain free. The GPL goes further. It does

not allow the use of GPL’ed code in any proprietary implementation at all. It is

not permitted under the GPL to combine a free program with a nonfree program

unless the entire combination is then released as free software under the GPL” (pg.

48-49) (Weber, 2004).

In this way, if any user modifies a piece of GPL code, the license requires that any code

they release also fall under the GPL. While never realizing the full potential of creating an

entirely free operating system, the GNU project was monumental in shaping the open source

community as a whole and created a wide variety of important projects still in use today.

Everything from text editors, compilers, web-browsers, video editing software, and a multitude

of other software is now available. The GPL license is utilized by a significant number of open

source projects today.

In the early 1990’s in Helsinki Finland, Linus Torvalds started designing and implementing

a new operating system (Torvalds & Diamond, 2002). Torvalds was a graduate student in
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Computer Science at the University of Helsinki. He modeled his creation after an operating

system called Minix which was a clone of Unix. The GNU tools that Richard Stallman was

working hard to improve were used by Linus to program and compile the base Linux kernel.

After developing the initial software, he released the code under the GPL license and solicited

help from the Internet community at large. Suddenly, people all over the world were contribut-

ing bug fixes, code improvements, and new features. Unix was dying and Linux, as it was

called, was fast replacing it as the defacto standard. Torvalds licensed Linux under the GPL

which helped not only to protect it but spur development. It was at this point in time that

OSS gained in popularity and received worldwide recognition. No longer just a fad used by

technically savvy users, open source software was being used by companies and individuals all

over the world. Linux distributions sprung up offering different software configurations and

customization. One that particularly embodied the spirit of open source software was Debian.

As of 2015, Debian is a long running and popular Linux Operating System. The Debian Social

Contract was created to ensure that Debian remained open source and was accessible to any-

one (Debian, 2015). Many Linux distributions have been spun off Debian including Ubuntu,

one of the most popular distributions today. Open source software was transformed by these

key individuals as well as the hundreds (if not thousands) of contributors around the world.

One area of debate and contention in the community is the terminology and philosophy

espoused by supporters. Richard Stallman and others believe that the freedom granted to

individuals through free software is the most important value. Popular terms such as “open

source” are believed not to get at the heart of the issue which is the freedom of using technology.

Richard Stallman in particular, makes a point to correct people when they say “open source”

or “Linux” and not “GNU/Linux”. The term “open source” will be used in this paper.

From a business standpoint, the goal of developing proprietary software is to make a profit

for the company. The bottom line is selling the software to users at a profit. This business

model came out of traditional business models of creating, producing, and selling products. The

fact that source code is not a physical product did not matter. The process was a top-down

profit driven formula. However, for a business that does not rely on selling software, opening up

the code provided some real benefits. The cost of developing a proprietary software system for
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internal use may be higher than developing and managing an open source project. While not

having direct control over the project may seem dangerous, since the code is always available

to others, companies have the ability to fork projects if the direction of the community differs

from their goals.

The main philosophy behind open source software is heavily tied to how the system works.

“The key element of the open source process, as an ideal type, is voluntary partic-

ipation and voluntary selection of tasks. Anyone can join an open source project,

and anyone can leave at any time... Each person is free to choose what he [or she]

wishes to work on or to contribute. There is no consciously organized or enforced

division of labor” (pg. 62) (Weber, 2004).

Given this environment, it is amazing that complicated software can be produced in the

first place. Since there is no central authority making decisions on what goes into the software,

the system essentially evolves over time. The communication and power structure that emerges

in an open source community has a huge impact on shaping and creating the end product.

2.1.2 Communities

Differences in opinion and direction do occur in open source communities. If one person or

group does not like the direction the project is going, they can “fork” the project and split it

off into something separate and develop it the way they see fit. Forking a project refers to the

process of taking the source code and branching off and creating a new project and community.

The main benefit is that the source code is continuously available through all of the various

iterations of a project.

Open source communities are dynamic systems of both people and technical source code.

Developers often use version control software such as Git, Subversion, and CVS to keep track

of source code changes. The version control system monitors all changes as well as the author

of the change. Individual members are identified through their communication with other

members as well as through their contributions of code. This perception of skill and value

in the community takes place mostly through text-based communication. Becoming a senior
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member of the community takes time, effective written communication skills, and technical

expertise. The diversity of skill, social power differences, cultural differences between members,

and other diversities has been shown to have both positive and negative impacts on open source

communities (Daniel, Agarwal, & Stewart, 2012).

Online open source communities can be identified as cultures of participation and Fischer

(2011) outlines a set of properties of these broad online communities. First, contributors must

feel that they are capable of making changes to the system. In the open source realm, easy

access to source code via version control as well as instructions for building the software and the

necessary third-party libraries are important. Second, the benefits of the time and investment

by the individual must be visible. This ties heavily into the motivation of why individuals

participate in open source projects. Third, the online environment must support the tasks that

individuals will work on. Fourth, barriers to sharing must be low in order to facilitate the

sharing of the resulting change. And finally, that individuals must be open to change in the

system and open to new people joining the community.

In OSS, connections such as community structure and power play a key role. Unlike tradi-

tional software development where there is a rigid leadership structure and programmers are

assigned pieces of code to write, OSS relies heavily on volunteers. While companies do con-

tribute money and programmers to OSS projects like the Linux kernel, many projects have

only a handful of developers working in their spare time or for personal enjoyment. Since there

is no requirement to participate in the project, software developers often work on features that

they have an intrinsic interest in or want added to the program. This can sometimes make

it challenging to create a cohesive product since it can be difficult to come to a consensus.

Frequently, a kind of informal community structure arises. The people with the most experi-

ence and those who have substantially contributed to the project have the most influence or

power within the community. Since members are often geographically dispersed around the

world, communication through the Internet becomes critical for the group to function. This

communication network increases in complexity as the number of individuals in the community

increases (Crowston & Howison, 2005; Hinds & Mcgrath, 2006).
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2.1.3 Motivation

A significant amount of identity and drive can guide participation in these types of projects (Her-

tel, Niedner, & Herrmann, 2003; Shah, 2006). Intrinsic motivations consistent with identity

in the project, creativity, and social involvement have been found to be more important than

extrinsic motivations such as skill development or obtaining a better job (Lakhani & Wolf,

2003). Examples of intrinsic motivation are being a part of the community and the feeling of

accomplishment that comes with knowing the software is used by people all over the world.

Intrinsic motivation is more related to the intangible social and emotional factors that come

into play. Extrinsic motivation is more related to tangible benefits. Examples of extrinsic

motivation involve being able to include specific accomplishments on a resume, monetary com-

pensation, or increased technical experience. There are many types of contributors to open

source projects with developers having differing levels of personal involvement in the commu-

nity based on these intrinsic and extrinsic motivations. The extrinsic and intrinsic motivations

of open source developers have been shown to be interrelated (Roberts, Hann, & Slaughter,

2006).

Eric Raymond, an open source advocate and programmer believes that the structure of

OSS is essentially distributed in nature. This is in stark contrast to proprietary software that

is often developed in a hierarchical fashion where programmers work on sections as supervised

by their managers. His seminal paper entitled, The Cathedral and the Bazaar examined his

personal experience with open source software as well as his view of how the structure differs

from traditional development (Raymond, 1999). Traditional hierarchical software development

was deemed analogous to a cathedral. In this system, programmers were told what to work on

by those above them. This monolithic system is contrasted by the open and distributed bazaar

software development model. Similar to a crowded market where numerous people are selling

a wide variety of items, OSS is similar in that many projects are spun off from one another.

Over time, some become more popular while others diminish in popularity or die off.

The question then arises as to why people would want to contribute their time, energy,

and skill to a project in the first place. Raymond believes the primary reason that software
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developers like coding and working on software is because they like tinkering and the very act

of creating something. As he explains, “every good work of software starts by scratching a

developer’s personal itch” (Raymond, 1999). It is important to recognize that most of these

individuals are not being paid, therefore whatever enjoyment or benefit they are receiving is

mostly intrinsic in nature. For these developers, knowing that something they created is being

used by people all over the world is a gratifying feeling. To many, showcasing their technical

prowess at coding takes a backseat to the socialization and community aspect involved with

participating in an open source project. This happens in the same way that someone might

volunteer at a homeless shelter and become attached to the community as well as the people

being helped. Open source contributors feel a great sense of accomplishment that their product

is being used around the world. The core philosophy of open source helps bind these individuals

together in a way that they all share a common relationship and ethos.

Another reason people contribute to open source projects is that the experience is an ex-

cellent addition to a resume. The social and technical skills developed while contributing to

an open source project may help an individual gain recognition for a job or promotion. Many

companies that utilize OSS products try to employ key developers and contributors of that

project in order to help influence or sway the general direction of the project. Since develop-

ment is such a collaborative effort, these individuals can push the project towards the plans of

the company or at the very least work on features or additions that the company requires.

The success of OSS rests primarily in the fact that the underlying source code is open and

can be viewed and modified by anyone. This open development model is better than a closed

system because as Raymond explains, “given enough eyeballs, all bugs are shallow”. The more

people you have examining and scrutinizing the code, the faster issues will be identified and

fixed. In this way, it will be a more stable end product. Certainly, OSS would not have gained

in popularity without the Internet. The Internet has shaped not only the communication of

members in the community, but also provided a way to easily share code and information

around the entire world. Physical locality becomes irrelevant.
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2.1.3.1 Psychological theories related to motivation

One motivation to participant in OSS as proposed by researchers is learning (Ye & Kishida,

2003). They have based their work on the theory of Legitimate Peripheral Participation

(LPP) (Lave & Wenger, 1991). LPP revolves around the idea that learning is primarily a

social activity. Specifically, LPP describes how new developers become experienced members

in OSS communities. New developers become members of a community initially by participat-

ing in productive yet simple tasks that further the overall project. Through engaging in these

peripheral activities, new developers become acquainted with the task dependencies, language

and social/power structures of the community. In an OSS domain, LPP assumes that if new

developers can observe the practices of established core developers, they will learn how to be-

come productive community members. This implies that, conversely, new developers who are

separated from the knowledge and experience of the core developers will have limited access to

the tools and community, and therefore will have limited growth (Tuomi, 2000).

The interactants of an open source community and the software that is created is analogous

to an onion (see Figure 2.1) with various layers being peeled off to reveal core developers (Crow-

ston & Howison, 2005; Herraiz, Robles, Amor, Romera, & Gonzalez-barahona, 2006; Mockus,

Fielding, & Herbsleb, 2002; Moon & Sproull, 2008). The users of a project make up the bulk

of the community. The next level within the community are the bug reporters and coders

who identify and fix bugs. This is a fairly low level of contribution, however, it is extremely

important for the health of the project as a whole. The subsequent levels are developers who

spend varying amounts of time on the project. Finally, there is the project leader or leaders

who tries to tie everything within the scope of the project together. The interesting part in

all of this is that whenever a user makes some sort of contribution, their status and role in the

project changes. For example, as a bug fixer fixes more and more bugs, they gain the attention

of other developers as well as understand more of the codebase. In this way, they can become

a peripheral developer through their contributions.

As Ye and Kishida (2003) explain, “learning in [an open source] community should be

viewed as an integral constituent of participation in the community of practice, as a process
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Figure 2.1 Onion Model of OSS (Figure 1 of Crowston and Howison (2005))

of constructing knowing through social interaction with other members of the community, of

changing relationships with other members of the community, and of transforming roles and

establishing identities from a journeyman to a master in the community”. Communities of

practice (COP), “are groups of people who share a concern, set of problems, or a passion

about a topic, and who deepen their knowledge and expertise in this area by interacting on

an ongoing basis” (pg. 4) (Wenger, McDermott, & Snyder, 2002). It is through this quest for

information and creativity that the motivation resides. Open source project participants enjoy

tinkering and learning new things. This constant sharing of knowledge fuels the development

of the project through exploration. The highly social nature of the project and the constantly

changing dynamic of user roles in the community provide a big impact on the group culture

and power structure.

As part of this research, a variety of personality factors were examined as possible factors

that influence motivation and contributor engagement. Personological variables such as agree-

ableness and neuroticism may be important factors in how a person interacts with others in an

OSS community and the perceived quality of the community regarding entrance and retention

of new developers. Agreeableness refers to the extent to which an individual is pleasant and

accommodating in social situations (John & Srivastava, 1999). Individuals high in agreeable-

ness are empathetic, considerate, friendly, generous, and helpful. Neuroticism is the tendency

for individuals to experience negative emotional states in a social context (John & Srivastava,
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1999). Individuals high in neuroticism are more likely to interpret ordinary situations as threat-

ening, and minor frustrations as hopelessly difficult, thus making their interactions with others

negative.

Rigby and Hassan (2007) wrote one of the few papers examining personality traits of de-

velopers in an open source community (the Apache server mailing list). The researchers ran

the Linguistic Inquiry and Word Count Tool (Pennebaker, Chung, Ireland, Gonzales, & Booth,

2007) which predicts and classifies words using a known corpus of data. Using sentiment analy-

sis, each word in the corpus is assigned a numerical value corresponding to a positive or negative

valence. By creating a baseline on the big five personality traits on the entire mailing list, they

found that the top two developers in terms of code commits differed from the baseline on the

traits of extroversion and openness.

The prevalence of narcissism and its effects on the community is another factor that could

be examined by using the Hypersensitive Narcissism Scale (Hendin & Cheek, 1997). This

measure assesses possibly counter-productive individuals in the community. Developers with

relatively high scores on this scale could be identified as difficult to work with and more harmful

or negative to the community at both the technical and social level.

All human beings have a feeling that they need to “belong” to specific social groups based

on their own core identity. In order to assess the extent to which developers use OSS community

participation to fulfill this need, assessment of individuals using the Need to Belong Scale (Leary,

Kelly, Cottrell, & Schreindorfer, 2007) could be utilized. This measure contains items that

assess the general extent to which people feel the need to be included in groups.

Need for cognition is the extent to which individuals are motivated to thoughtfully consider

information and it has been shown to be an important factor in social influence processes (Ca-

cioppo, Petty, Feinstein, & Jarvis, 1996). Specifically, Shestowsky, Wegener, and Fabrigar

(1998) found that individuals high in need for cognition were better able to influence their

dyadic partner than those low in need for cognition. For new developers in an OSS community,

need for cognition may help predict how well the existing community accepts their ideas, in

part because individuals who are high in need for cognition are better able to influence others.
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McCroskey (1992) developed the Willingness to Communicate (WTC) scale that measures

how willing or unwilling someone is at communicating. Subscales measure more specific situ-

ations such as group meetings or public speaking, as well as smaller settings such as talking

with a friend or acquaintance. The survey assumes that participants are aware of how will-

ing or not they are to communicate and contrasts with personality methods that attempt to

assess introspective or extroverted individuals. A potential downside of this survey is that all

the questions are related to in-person communication with no questions tailored to Internet

communication.

Variability in subjective amounts of perceived investment and commitment in the OSS

project may help predict how successful the project is, and how efficient the community is.

Previous research has found that people who are highly committed and invested in an organi-

zation are less likely to quit an organization (Pfeffer, 1983). New developers who are committed

and invested in the community should be more likely to be a member through the project’s

completion. Commitment and investment in both the project and community could be assessed.

Communication is in part determined by the memory interactants need for relevant infor-

mation (Holtgraves, 2010). The more similar the information one has about a topic or object,

concepts related to the topic are more easily transferred across interactants (Horton & Ger-

rig, 2005). In other words, communication plays a decisive role in the development of shared

or transactive memory systems (Palazzolo, Serb, She, Su, & Contractor, 2006). Transactive

memory is a specific type of memory where one’s memory is influenced by knowledge about the

memory system of another person (Wegner, Erber, & Raymond, 1991). Members working on

interdependent tasks may communicate effectively in part because they have similar memory

systems (Espinosa, Slaughter, Kraut, & Herbsleb, 2007b). While much of the work on the util-

ity of transactive memory has been conducted on small face-to-face groups (Ilgen, Hollenbeck,

Johnson, & Jundt, 2005), a number of studies have demonstrated a positive influence of trans-

active memory systems on large and geographically distributed groups (Espinosa, Slaughter,

Kraut, & Herbsleb, 2007a).
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2.1.4 Tools

Open source projects currently utilize a wide variety of technical tools to propel their

projects forward. Many tools such as source code version control focus on working on source

code in a decentralized manner. Other online tools take suggestions and comments from users.

The most important tool is the primarily text based communication that takes place over the

Internet.

2.1.4.1 Source Code Version Control

Source code version control software helps keep track and manage source code across a group

of developers. When developers make changes to files, these changes are then made available

to other developers in the community. In this way, multiple developers can be working on

different parts of the project all at the same time. Source code version control also keeps track

of the history of all changes made which allows developers to experiment with new code and

return to working code if their new code does not work as intended. Other tools allow merging

source code together as well as dealing with conflicts if two developers are working on the same

file at the same time.

Examples of source code control software are Subversion (SVN), Concurrent Version System

(CVS), Bazaar, Mercurial, and Git. There are two main types of version control software,

centralized and decentralized. Centralized version control such as SVN or CVS has a central

server that all code is “checked-in” to and saved. Any commits that are saved have to be

checked against this central server. Decentralized, also called distributed version control, allows

commits to be made locally and then pushed to one or more remote servers. This distributed

nature of the software makes it easy for individuals to try and test code before it goes through a

group review process. Bazaar, Mercurial, and Git are all examples of distributed version control

systems. Git in particular was created by Linus Torvalds to be used specifically for Linux kernel

development but has since expanded to become one of the more widely used version control

systems by software developers.
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The website Github (Github, 2015) has become incredibly large and influential in hosting

source code repositories of open source projects. Traditionally, in software development, forking

has been considered poor practice because you are splitting away and not pooling effort. Github

turns this idea around and makes it incredibly easy to view other people’s code and fork it

into your own repository. You can then make the changes or bug fixes that you identify. The

benefit is that everyone can see this fork and other developers can then merge the changes that

you have made back into their projects. Along with a code review process for managing pull

requests, commenting, and other social communication features, Github provides substantial

value.

2.1.4.2 Bug Tracking

Bug tracking software handles reporting and management of bugs within software. A bug is

an error or mistake in the source code that is often difficult to detect without actually running

the program. There can be syntactic bugs such as a programmer missing a semicolon. This type

of bug results in a compiler error or run-time error if the programming language is interpreted.

Usually these types of bugs are easier to fix because the compiler or interpreter provides a

line number indicating roughly where the fault exists. Run-time errors are more difficult to

diagnose. For example, if a user inputs something unexpected by the programmer, this could

result in an error or issue later on. Run-time errors are not caught by compilers and thus are

more difficult to debug and diagnose. Developers and users of the software find problems and

then report them using a bug tracker. This then helps the developers understand the issue and

the severity of the problem. With this information, they can attempt to determine where the

bug is within the code and resolve the issue. After repairing the bug, the issue is considered

resolved and archived so that other developers and users can see that the issue was fixed.

Some examples of bug tracking systems are Bugzilla, Mantis, Trac, Redmine, and Jira.

These require a webserver and a database for setup and use. Various online systems provide

pre-configured systems for bug tracking and overall project management such as Canonical’s

Launchpad, Github, Sourceforge, and Assembla.
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2.1.4.3 Continuous Integration

Continuous integration is the process of building and testing the source code of a project

to identify compile errors and run unit tests. For projects that provide rapid deployment of

new versions of their software to users, this can be incredibly valuable. A server is setup

that runs continuous integration software that can either be triggered manually by developers

or automatically based on version control commits. When the server is triggered, a build is

started and the program is compiled and unit tests are run. If there is a compile error, this

then alerts the developers that there is a problem with the source code. Unit tests are source

code that test the functionality and assumptions of the source code. As part of test-driven

development, they provide a way for developers to ensure that future changes won’t break

the overall system. Starting with writing unit tests helps developers understand the product

requirements and think about how the piece of code fits into the larger system. Subsequently,

developers will write the source code, and then run the unit tests to ensure the test passes.

Through iteration of the unit tests and source code, they can add new functionality to the

overall system. Successful unit tests can help alleviate potential run-time errors before they

get to the end user.

2.1.4.4 Communication

Without the Internet, it is clear that OSS would be vastly different, if it even existed at

all. The Internet has provided the ability to communicate cheaply, quickly, and effectively with

large numbers of users in geographically diverse locations. Most open source projects utilize

text based communication messages. Email mailing lists and forum message boards are two

of the most popular Internet communication mediums. Through these mediums, discussions

take place on the direction and scope of the project. Internet Relay Chat (IRC) and instant

messaging also provide immediate real-time chat and availability. Instead of reading through a

mailing list and trying to find the answer to a question, users can directly communicate with

developers of the project in a group setting online. Most of the communication methods chosen

by OSS developers are text based. This leads to both problems and benefits. The richness of
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text based communication as a message passing medium is not as strong as other communication

methods. As McLuhan proposed in a famous phrase, “the medium is the message” (McLuhan,

1964). This infers that the medium itself, and not the content of the message is important and

should be studied. Upon inspection, text based communication has an interesting advantage.

Since users in a mailing list are composing a message that many people will see, they tend to

think very carefully about the message and the content before sending it. They are often very

focused on the task at hand and the technical details are precise. Messages are concise and to

the point. The developer sending the email wants to make sure other developers are reading

this email. By taking time and thinking carefully about the message before hitting the send

button, the developer is able to use this text-based communication medium effectively.

There is also a possibility that the type of feedback (positive vs. negative) might be inter-

preted or used differently by beginners versus veteran members. In a study comparing novices

and experts in a variety of fields (none were software development), researchers found novices

responded more to positive feedback whereas experts responded more to negative feedback.

“We predict an increase in negative feedback as people gain expertise, because the

meaning people derive from feedback changes such that negative feedback increases

the motivation to adhere to a goal. In support of our prediction, we find that novices

infer from feedback whether their goals are valuable (commitment), whereas experts

infer from feedback whether their pace of pursuing already valuable goals is sufficient

(progress) (pg. 15) (Finkelstein & Fishbach, 2012).”

The researchers appear to be arguing that negative feedback can be beneficial or at least

stimulate more feedback in certain situations.

2.2 Social Technical Congruence (STC)

Understanding the organization and structure of open source projects is helpful in under-

standing group dynamics at work, as well as how these systems can produce effective end

results. As stated earlier, the traditional model of software development is hierarchical. In

the traditional model, the work is mostly distributed to low level coders. These coders receive
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instructions and support from developers higher up in the system. This progresses upward to

the top similar to a tree structure where the head of the project makes all high level decisions.

This traditional software development practice is still predominantly used today. In contrast,

distributed development is where there is no set hierarchy of reporting. All users interact and

share information with one another. In this way, all users can contribute to different sections

and provide insight to various parts of the project.

2.2.1 Classical Hierarchy

While many people have come up with explanations to hierarchical systems, Max Weber

was probably the first to examine a traditional hierarchy. A German sociologist, Weber created

the Theory of Bureaucracy to help managers run the organizations under them. His writing

on the subject can be broken down into the following six categories (pg. 11- 12) (Miller, 1998).

• An organization needs to have a clearly defined hierarchy.

• The organization has a clearly defined division of labor.

• There is a centralization of decision making and power within the system.

• These organizations are closed systems that are not influenced by outside forces or the

environment.

• Rules need to be established to help keep the organization functioning and in correct

order.

• The system is based on the functioning of an authority of power and discipline of which

there are three possible types:

– Traditional authority is power based on long standing beliefs about who should have

control.

– Charismatic authority is power based on an individual’s personality and ability to

attract and interact with followers.
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– Rational-legal authority is power based on the rational application of rules developed

through a reliance on information and expertise.

Most companies that develop proprietary software products follow the majority of Weber’s

principles. They follow the hierarchical model as it relates to power and software development

organization.

2.2.2 Distributed Structure

Open source software is often described to be distributed in nature with little or no hierarchy

of structure. This viewpoint was taken by Eric Raymond in his Cathedral and the Bazaar

paper (Raymond, 1999). However, after examining open source projects, the relationships

and power structure between users is dynamic and constantly changing (Mcgrew, Bilotta,

& Deeney, 1999). OSS is clearly different than traditional software development with the

primary difference being developers can work on whatever section interests them. This should

be considered the “distributed” aspect of open source software.

Some researchers have tried to combine a variety of aspects of OSS development into one

framework. Sack et al. (2006) looked at the, “social, technical, and cognitive aspects of OSS

development”. By using a variety of methodologies, they found that their work supported a

theory of the relationship between the social structure of the group and the underlying struc-

ture of the development process. Dubbed, “Conway’s Law” (Conway, 1968), “the governance

structure of the project (e.g., who manages whom, who communicates with whom, etc.) has

a direct influence on the structure of the software itself (e.g., its division into modules). [It]

was the first explicit recognition that the communication patterns left an indelible mark upon

the product built” (Sack et al., 2006). The authors contend that open source projects might

have a reverse Conway’s Law where, “the technical structure of the software might directly

influence the social and governance structure of the project” (Sack et al., 2006). While this is

something that requires further analysis, it appears that the communication and modularity of

the project are correlated. Strohmaier and Wermelinger (2009) found that software artifacts
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that were highly connected to other software artifacts required more developers to look at bug

reports and feature requests thus supporting the concept of Conway’s Law.

Modularizing a project into sections is a critical component of collaborative efforts and can

result in shorter development time (Parnas, 1972). Open source projects exhibit the, “small

world” phenomenon (Amrit, Hillegersberg, & Kumar, 2004) pioneered by Milgram (1967). Pop-

ularized through the phrase, “six degrees of separation”, the phenomenon contends that human

society is highly connected with individuals needing only a few connections to reach a known

person. Open source development can be seen as analogous to a living and evolving entity.

The constant development means small changes over time shape the overarching structure of

the entire software system as well as the community.

Open source projects also seem to follow the pareto principle, also known as the 80-20 rule.

This means that 20% of the developers are doing roughly 80% of the work coding (Robles &

Gonzalez-Barahona, 2006; Robles, Koch, & González-Barahona, 2004). The 80-20 rule relates

to a power law or long tail distribution where the distribution has high numbers of occurrences

in the tail of the distribution.

“F/OSS [free and open source software] systems seem to evolve through minor

improvements or mutations that are expressed, recombined, and redistributed across

many releases with short duration life cycles. Foss end users who act as developers

or maintainers continually produce these mutations... As a result, these mutations

articulate and adapt an F/OSS system to what its user-developers want it to do

while reinventing the system... F/OSS system co-evolve with their development

communities; one’s evolution depends on the other’s” (Scacchi, 2004).

The actual development is not a strict hierarchy or a completely decentralized system. It is a

hybrid that seems to merge the two systems together. Scacchi (2004) dubbed it an, “interlinked

layered meritocracy”.

“FOSS development teams can take the organizational form of interlinked layered

meritocracies operating as dynamically organized but loosely coupled virtual enter-

prise. A layered meritocracy is a hierarchical organizational form that centralizes
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and concentrates certain kinds of authority, trust, and respect for experience and

accomplishment within the team. [M]eritocracies tend to embrace incremental in-

novations, such as evolutionary mutations to an existing software code base, over

radical ones” (Scacchi, 2004).

The lowest level in the pyramid and the most numerous are the regular users. The next

level are the bug fixers and main developers. Finally, at the top layer are the core developers.

Often, these core developers are the individuals that started the project. In this way, as a

contributor increases time and commitment to the project, their status also increases and they

have more say in the community.

2.2.2.1 Social Technical Congruence (STC)

In software development, the structure and dependencies of source code as well as the re-

lationships and communications between developers has been shown to be inextricably tied.

The term, Social Technical Congruence (STC), emphasizes the relationship between the code

structure and communication structure. STC represents the overlap between social commu-

nication and an organization’s coordination of tasks (Cataldo et al., 2006). Even before STC

was coined, researchers were understanding the importance of dependencies in complex sys-

tems (Krackhardt & Carley, 1998). Understanding these relationships aids in understanding a

group’s productivity (i.e., task efficiency, overall time developing a project, etc.).

Consistent with the STC perspective, when the congruence or “fit” between the task depen-

dencies and the coordination activities of group members is high, then the project is healthier

and has a shorter development time (Cataldo, Herbsleb, & Carley, 2008; Cataldo et al., 2006).

In test driven development, high congruence has been positively correlated with continuous

build success rate (Kwan, Schröter, & Damian, 2011). However, for integration builds in which

code from multiple sites is merged together and tested, congruence was found to be negatively

correlated with build success.

Although intuitive, there are a number of variables that have to be considered when cal-

culating congruence (Sarma & Herbsleb, 2008a). There can be costs associated with changing
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source code or communication structure to increase congruence (Valetto, Jose, & Williams,

2008). Sifting through large amounts of email to understand overall code changes as well as

the design goals going forward takes time and diverts attention away from the overall project.

Thus, developers need to be able to communicate effectively with the right people, while at the

same time discouraging communication overload.

In addition, the modularity of the code structure is one of the driving forces behind the need

for STC in software development. As developers work to modularize the project as a whole,

one consequence is that dependencies between modules are created. This understanding of the

overall dependency structure of the project is critically important. Some pieces of code may be

crucial for the entire project while others may be less important. As developers make changes

to the code base, they need to understand how these changes affect dependent modules, as well

as effectively communicate these changes to the correct developers. If communication is missing

and developers are not interacting with one another but are both working on modules that are

dependent on one another, serious problems can arise (see Figure 2.2). The same scenario can

be applied to complex system design.

Figure 2.2 Communication Between Developers of Dependent Modules

Open source projects provide excellent test-beds for understanding the social and technical

aspects of complex system design because of the large amount of historic and real time informa-

tion that is available. Text-based communication among developers and elaborate source code

changes available through version control systems make OSS communities a popular choice for

researchers studying social and structural elements of communication (Sack et al., 2006), es-
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pecially in improving existing STC algorithms (Herbsleb, Roberts, & Mockus, 2006; Herbsleb,

Sarma, Mockus, & Cataldo, 2008; Kwan, 2011; Kwan, Schr, & Damian, 2009; Sarma & Herb-

sleb, 2008c). This research leverages this rich accessible data set to develop STC methods and

apply those methods to facilitate effective integration of new members into OSS communities.

2.2.3 STC Algorithm Example

The following is a simple example to show how congruence is quantified and calculated.

Figure 2.3 shows three developers and four code artifacts. The arrows represent communication

between developers, code artifacts that developers are working on, and dependencies between

code artifacts. Developers are denoted by alphabet characters and code artifacts are denoted

by numerical values.

Figure 2.3 Network Structure Between Developers and Source Code

Given n developers and s code artifacts, coordination can be defined as:

Coordination = A xD x AT (2.1)
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A is an n x s matrix assigning developers to code artifacts.

D is an s x s matrix assigning technical dependencies between code artifacts.

Coordination is an n x n matrix of developers representing who should be coordinating given

shared artifact dependencies.

By taking the difference between this coordination result and the actual communication

that is occurring, the result is the missing communication between developers. Congruence is

represented as the ratio of actual communication over the amount that should be occurring

and has a range from 0 to 1. Calculation of congruence using this simple example is provided

below.

First, a developer by code artifact matrix is created, this represents the artifacts developers

are working on.

1 2 3 4

A

B

C


1 0 0 0

0 1 1 0

0 0 0 1


Next, a code artifact by code artifact matrix is created, this represents the dependencies

between these sections of code.

1 2 3 4

1

2

3

4



1 1 0 0

1 1 1 1

0 1 1 0

0 1 0 1


By multiplying the two matrices, a developer by code artifact matrix is created which

represents code that developers should be aware of.
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1 2 3 4

A

B

C


1 0 0 0

0 1 1 0

0 0 0 1


x

1 2 3 4

1

2

3

4



1 1 0 0

1 1 1 1

0 1 1 0

0 1 0 1


=

1 2 3 4

A

B

C


1 1 0 0

1 1 1 1

0 1 0 1


This result is then multiplied by the developer by code artifact (task assignment) trans-

pose. This gives the coordination requirements matrix which shows developers who should be

communicating based on shared dependencies.

1 2 3 4

A

B

C


1 1 0 0

1 1 1 1

0 1 0 1


x

A B C

1

2

3

4



1 0 0

0 1 0

0 1 0

0 0 1


=

A B C

A

B

C


1 1 0

1 1 1

0 1 1


At this point, the difference between this result and the actual communication that is

occurring is the missing communication between developers.

A B C

A

B

C


1 1 0

1 1 1

0 1 1


−

A B C

A

B

C


1 1 0

1 1 0

0 0 1


=

A B C

A

B

C


0 0 0

0 0 1

0 1 0


Based on this result, developers B and C should be communicating because of shared de-

pendencies in code artifacts #2 and #4, but they are not. A single global value of congruence

can be calculated as a ratio. In the above example, two pairs of developers (A and B, B and

C) should be communicating and of those only one pair (A and B) are actually communi-

cating. The ratio would be 1/2 = 0.5. It is the proportion of communication that occurred

relative to the amount that should take place. High congruence values show that the necessary

communication is taking place and research has shown that they yield a shorter development
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time (Cataldo et al., 2006). Low congruence values suggest people are not communicating

enough.

In the above example, the edges or dependencies in the graph are denoted as binary, the

edge is either present or absent. Weighted edges have also been successfully applied to the

calculation of congruence which can lead to a more granular and detailed representation of the

data (Kwan et al., 2009).

The idea of leadership has also been applied to the calculation of congruence (Dubinsky &

Hazzan, 2008). In this work, the idea of a Methodology Change Leader (MCL) is posited. This

person serves as a knowledge center and is aware of the availability of information and current

problems. They are also the leadership center in that they delegate team members to different

tasks. And finally, they are a communication relay, especially between different groups of people

(developers and software users for example). Based on the communication and knowledge that

a leader has, they are aptly fit to be considered in the calculation of congruence. While the

authors do not go into detail into how this would be accomplished, it is certainly something

that can be applied as part of the model.

Development experience is another factor that has been applied to the idea of STC (Sarma

& Herbsleb, 2008c). In this work, researchers use the concept of a shared mental model to

identify coordination level. A shared mental model matrix is created where elements represent

the amount developers have worked together in the past. In addition, expertise congruence is

identified as the match between the expertise and knowledge necessary for the project versus

the amount of expertise that is actually available.

Congruence has also been framed as a distributed constraint satisfaction problem (DCSP) (Herb-

sleb et al., 2006, 2008). The construction of a piece of software is completed by making en-

gineering decisions. Constraints limit the decisions that can be made. “Successfully com-

pleting a project is equivalent to finding an assignment for all variables that satisfies all con-

straints” (Herbsleb et al., 2008). While theoretically feasible, this framework may be more

difficult to apply practically to communities in the real world.

Valetto et al. (2007) explain a similar system of calculating congruence as Cataldo et al.

(2006), however their method uses digraphs and sets as definitions. Another method of congru-
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ence calculation is able to calculate an individualized congruence value (Wagstrom & Herbsleb,

2008). In this way, each developer can have a specific congruence value that is relative to

them. They found that higher individual congruence lead to higher performance in terms of

bug fixes and the time required to resolve the bug. Developers who had higher levels of required

communication took longer in resolving bugs.

One of the open questions of social technical congruence is what communication gaps rep-

resent. Does the identification of a communication gap mean that people are using different

informal channels of communication to transmit relevant knowledge? Perhaps the communi-

cation medium being used does not exist in the model. Do they simply not feel the need to

communicate because they have all the necessary information? What about extra communica-

tion? Is communication between individuals who are not working on dependent code artifacts

unnecessary? One research group analyzed congruence gaps and found that developers who

were identified as having gaps in communication were associated with increased amounts of

code changes as measured by the commit history (Ehrlich, Helander, Valetto, Williams, &

Davies, 2008). They also found that information brokers played a key role. Brokers are people

who are highly connected in the graph network and are often connected with other highly con-

nected individuals. In this way, they act as information hubs and are able to pass on relevant

information to other groups. In online communities, this can be incredibly important because

these are the people that have the social and political power in the community. They might

even spend more time managing people and the direction of the community than they do coding

on the software. Valetto et al. (2008) discuss various options available regarding how to close

congruence gaps between developers as well as the side effects that crop up as a result of these

actions. Obviously closing communication gaps is meant to ameliorate a problem, however,

forcing communication costs time and energy. As they explain, “eliminating a congruence gap

by closing it may produce a net benefit in terms of project value only when the value gained

due to the increased congruence is likely to offset all the additional costs sustained because of

that communication channel” (Valetto et al., 2008).

A critical aspect of congruence and modeling these dynamic online communities is under-

standing how the passage of time changes the community. For source code, it can “decay” in the
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sense that developers feel it is more difficult to maintain and manage as time progresses (Ohls-

son, Mayrhauser, Mcguire, & Wohlin, 1999). Eick, Graves, Karr, Marron, and Mockus (2001)

outline various properties to take into account when measuring code decay such as the number

of changes and what the change constitutes to the file, the date, and the size of the codebase.

Through an analysis of a large codebase they found that code does indeed seem to decay over

time.

Another concept of time and decay has been applied to communication and coordination.

Wagstrom, Herbsleb, and Carley (2009) tweaked the model of STC such that links and depen-

dencies in the graph are adjusted through a decay factor over time. Thus older communication

and dependencies are removed from the graph as time passes. Validation was done by running

the algorithm against projects in the Gnome community.

2.3 Socialization of New Developers

Despite the utility of creating products and services from an open source format, this type

of model is not without its weaknesses. One drawback in particular that can affect a project’s

effectiveness is the existence of a significant barrier to entry for new developers wishing to join

the community (von Krogh, Spaeth, & Lakhani, 2003). New developers can provide ideas,

skills, and suggestions, and could eventually become core developers. However, new developers

need to also have an understanding of the social community in order to communicate their

skills and ideas effectively (Ducheneaut, 2003).

Examining newcomer socialization (Burke, Kraut, & Joyce, 2010; Kraut, Burke, & Riedl,

2011) and group dynamics in online communities other than OSS have been fruitful. For exam-

ple, topics such as leadership behavior on Wikipedia (Collier, Burke, Kittur, & Kraut, 2010);

social capital and well-being (Burke, Marlow, & Lento, 2010), and motivation (Burke, Marlow,

& Lento, 2009, 2010) on social network sites such as Facebook; and even politeness in online

community forums (Burke & Kraut, 2008) have emphasized the importance of communication

in group harmony and the health and well-being of the community. In a traditional for-profit

software development company, new developers were examined and it was found that the three

factors that impacted their successful integration into the community were: early experimenta-
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tion, internalizing structures and cultures, and progress validation (Dagenais, Ossher, Bellamy,

Robillard, & de Vries, 2010). The proposed research builds upon this previous work by exam-

ining socialization in the development and evolution of an OSS community and its influence on

new developer retention and community effectiveness.

New developers are different than existing members of the community in a number of ways.

For one, new developers do not possess the knowledge regarding the historical development of

the social structure of the community prior to their entrance into the group. To help increase

socialization in joining the group (Berger & Calabrese, 1975), new developers will watch or

“lurk” on the email lists to monitor what the community is discussing as well as understand who

has power and influence in the community. The downside of this, rather indirect, assessment of

community dynamics is that it can take a long time to learn the community structure (Lave &

Wenger, 1991), and only those who are willing to communicate (Sllinen-Kuparinen, McCroskey,

& Richmond, 1991) may reach out to this new environment. Given that social exchanges among

new and existing members can lead to an increase in a new developer’s performance (Chen &

Klimoski, 2003) and the likely impact these have on the health of the project, it seems prudent

to help understand the social-communicative aspect of new and existing members.

Most communication in an OSS community is conducted through email, mailing lists, fo-

rums, live chat, or other text-based communication services. Text-based communication is used

more than voice-chat or live video streams because developers are not always online at the same

time. Asynchronous methods of collaboration are used. In addition, text-based communica-

tion yields a record of the conversation which is easily search-able. One of the downsides of

this informal communication process for new developers is the difficulty in determining who

to contact as well as a potential lack of trust or openness (Herbsleb & Grinter, 1999). Since

there is limited face-to-face physical interaction, knowledge of other members is primarily re-

flected in the quality of their code submissions and their commitment to the project as a whole

(Ducheneaut, 2005). Knowledge of the group members’ social customs, emotionality, actions,

and goals are important indicators of group cohesion and effectiveness (McGrath, 1997), but

are virtually nonexistent in these text-based communication contexts. On the other hand, this

reliance on text-based communication levels the playing field for power and dominance in the
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group (Dubrovsky, Kiesler, & Sethna, 1991; McGuire, Kiesler, & Siegel, 1987; Sproull & Kiesler,

1986). Who a member communicates with, the tone of the message, their coding skills, what

they are working on, and their expertise in certain areas are all considerations that influence

the perception of that member to the group (Fogel, 2005). The culture and reliance on email

also results in the community being highly rational in the design making process (Dubrovsky et

al., 1991; Yamauchi, Yokozawa, Shinohara, & Ishida, 2000). Since there are diminished social

cues, the only criteria for making a decision is in whether or not it is faster/smaller/easier from

a technical perspective.

Email lists provide a vast amount of quantitative information that some researchers have

examined. Researchers devised a study where they examined two large open source project

email lists and categorized the emails into five different groupings (Yamauchi et al., 2000).

• Asking for information

• Responding to messages / Giving information

• Proposing an idea

• Reporting results of action

• Other

They found that giving information accounted for about half of all email messages. Re-

porting results and asking for information were next with about 20% and 15% of the messages

falling into these respective categories. It was interesting to note that only around 7% of the

messages dealt with proposing ideas. These mailing lists seem to rely more on contributors

coming forward and showing their progress as opposed to talking about something that could

be built or added. In this way, they are “biased towards action rather than coordination”.

“The report of action triggers discussion more frequently than discussion initiates action” (Ya-

mauchi et al., 2000). The researchers found that about 75% of tasks were started without being

declared and about 58% were finished without the contributor even declaring he or she was

working on it. This is interesting because it seems to be contrary to the social and collaborative
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nature of OSS. The act of coding appears to be a very private a solitary affair but once the

code is finished and shown to the community at large, the social aspect of the community arises

by examining and scrutinizing the code.

The source code itself can also be seen as a message. Source code often contain comments

which are messages to source code readers that are not actually part of the program itself.

These comment notes are written by the programmer to explain certain sections of code. An

examination of who is contributing code and where the contribution is can communicate the

interest level of each developer. In addition, since the source code is open and can be examined

by other developers, the technical prowess of a developer can be ascertained.

Some larger projects have yearly meetings to bring key project contributors together to dis-

cuss the project, however, this is often limited to projects with corporate backing. The Ubuntu

Linux distribution for example has an annual meeting where key developers and contributors

select a location to meet and discuss the future of Ubuntu. Text based communication is effec-

tive, however, being physically present provides an added benefit both in terms of getting the

message across, fostering collaboration, and providing non-verbal physical communication.

New developers often lack the communication skills to effectively pitch their ideas. If a new

developer posts a message requesting to completely change the system with no regard for the

current structure, this new idea will likely be rejected. Members who are able to communicate

effectively, to rally support for issues they feel are important, and to show their expertise,

are able to influence the perception of the group. Successful changes or modifications in the

community require both fitting in with the existing project scope and timeline, as well as allies

within the community who are powerful enough to support the change. Thus, the successful

socialization of a new developer is a process (Hollander, 1958). OSS development can be a

political process and new developers need to understand how to effectively navigate this in

order to be successful.

New developers also present challenges to the community because they take away time from

other members who could be working on code. Collins-Sussman and Fitzpatrick (2007) explain

various ways in which individuals wishing to join a community can go about this in the wrong

way and become, “poisonous people” that may slow down or derail a project. New developers
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need to be humble and courteous and realize that they are joining an existing community

with a power structure they know little about (Fogel, 2005). Being brash or asking too many

questions early on will alienate them from the community and be a black mark on any future

participation they may have. These actions can either be intentional or unintentional but the

end result is still negative for the health of the project as a whole. The most important resource

the project has is the attention and focus of the developers. New users are often considered

poisonous because the time investment of developers on new users does not guarantee that

they will become core contributing members of the community. There is a certain level of trust

required when a new member says they are going to implement something or work on a feature.

The community has to trust that they are actually going to proceed with the work.

Running a successful open source project can be a challenging task. The complexity of the

system means that small changes can have big impacts. Karl Fogel created a document to help

people understand how open source works, as well as his suggestions for managing a successful

open source project. When examining the health of a project, one has to make sure that the

project is able to accept new users, contributions, and bug reports. In addition, it needs to be

able to survive if key members of the project leave.

As Fogel explains, “there are various ways to achieve this kind of success. Some

involve a formal governance structure, by which debates are resolved, new developers

are invited in (and sometimes out), new features planned, and so on. Others involve

less formal structure, but more conscious self-restraint, to produce an atmosphere

of fairness that people can rely on as a de facto form of governance. Both ways lead

to the same result: a sense of institutional permanence, supported by habits and

procedures that are well understood by everyone who participates. These features

are even more important in self-organizing systems than in centrally-controlled ones,

because in self-organizing systems, everyone is conscious that a few bad apples can

spoil the whole barrel, at least for awhile” (pg. 56) (Fogel, 2005).

Those in the community need to have faith that the project is stable and willing to take

their input into consideration. If not, they may leave the project entirely or fork the project.
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Many times if there is a heated disagreement within the community about a planned feature

or change to the project, a group of people will disband from the community and create their

own separate group. In some situations this is negative, and in others, it is positive. This is

just one way that the project can change and evolve. The community climate and culture is

extremely important in gauging the health of an open source community.

2.3.1 Climate and Culture

There is a significant difference between the climate of a community versus the culture of

a community. The climate of a community is more volatile and often changes day by day. It

represents the overall mood of the constituents. The culture of a community is much more

stable and long term. It is highly influenced by the past, especially the founding members of

the community. The culture can represent the commonality between members both in terms

of their viewpoint on a matter, as well as the skills they bring to that community.

The communication in an open source project can change the climate of the project very

quickly. A particularly disgruntled user can negatively sour the mood in an email list or a recent

development by a coder can positively solve a problem that has been plaguing the project for

weeks. Since there are usually no deadlines or consequences for not providing something to the

project, the pressure is relatively low. As one developer put it, “I’m always relaxed. I can fail

because I don’t tell others what I do” (Yamauchi et al., 2000). One interesting element about

the culture of open source projects is that logical decisions seem to take precedence.

“Members try to make their behavior logically plausible and technologically supe-

rior options are always chosen in decision-making... The reduction of social context

cues by electronic media equalizes the participants: Even a CEO and a high school

student can have the same presence. The authority does not work in this situa-

tion. In addition, computer-mediated communication is inherently impersonal and

prompts task-oriented and focused exchanges” (Yamauchi et al., 2000).

Developers are focused on the task at hand when sending emails and this helps by keeping

communication concise. Arriving at a rational decision by examining the technical details of
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a new feature or change means that in some cases, decision making is fairly straight forward.

Most of the discussion and indecision stems from areas such as usability, interface design, or

the future direction of the project.

When communicating with others, it is important to realize that a person may be technically

competent but if they do not have sufficient communication skills, their contributions may

not be as well received or adopted. Since almost all communication through the Internet is

done via text-based messaging, writing properly and effectively is incredibly important. “You

may be brilliant, perceptive, and charismatic in person- but if your emails are rambling and

unstructured, people will assume that’s the real you” (pg. 77) (Fogel, 2005). Fogel gives a

fantastic example where a developer in an FSF project was posting great code and was really

able to effectively communicate issues and changes in the code. None of the other developers

had met this person. There were legal issues with taking code from strangers so the FSF

contacted this developer to sign some legal documents. As it turned out, the developer was a

thirteen year old living with his parents. This equalization of participants through electronic

communication meant his highly detailed and eloquent posts did not give away his age.

In using text-based communication, it is important to consider the structure of the message.

The message needs to flow easily as well as be precise. The tone of the message is also very

important. Since messages are often very technical and short in nature, this leaves little room

for pleasantries or feelings. Depending on the individual, some community members may think

the messages are rather rude. When writing a message, the writer has to take into account

past experiences with the recipient of the message to gauge the best way to broach the subject.

Being able to effectively read and communicate with others helps a developer understand the

climate and culture of the community and overall project.

The culture of an open source project is also tied to the open source movement in a more

general sense. These users often have an understanding of the history surrounding OSS and

its key philosophies. While some are more vocal and staunch than others with regard to

core principles, this commonality helps bind them together. This communication and shared

viewpoints influence the overall culture of a project, as well as the day to day climate. The



37

structure, culture, and communication come together to form relationships between project

members and establish power in selected members.

2.3.2 Relationships and Influence

Through this large amount of communication, relationships will inevitably form and a

power structure will emerge. The more time and energy a person invests in a project, the

higher the influence. Core developers will become highly connected with other core developers

through email interactions and code contributions relative to other roles. “These intangible

resources (or social capital) arise in many forms. They include (a) assuming ownership or

responsibility of a community software module, (b) voting on the approval of individual action

or contribution to ongoing project software, (c) shared peer reviewing, and (d) contributing

gifts that are reusable and modifiable common goods. They also exist through the project’s

recognition of core developer’s status, reputation, and geek fame” (Scacchi, 2007). By building

up relationships and thus power with other members, this can help an individual developer

spread his or her ideas about the project and future code. This “geek fame” that Scacchi

mentions is interesting because it is highly related to the intrinsic rewards that motivate a

developer to contribute to an open source project. For many people, recognition and fame can

come from participation in OSS. The project receives a high level of support and time from

the developer and the developer is positively rewarded for participating. There are benefits for

both parties.

The beauty of the entire system is that these relationships and power levels between users are

constantly changing. A developer in a project needs to have technical abilities as well as clearly

developed communication skills to interact with others. “In online communities, control over

artifacts is a central source of power and influence, and textual resources are manipulated to

project a participant’s ‘virtual’ identity. Contributing to the creation of an artifact is, therefore,

as much a concrete activity of production as a social act of identity building” (Ducheneaut,

2005). An artifact in this case might be a piece of code or an idea for the future direction of the

project. Being a successful communicator means not only conveying an idea to the community

but gaining the support of other members in that community. By aligning their interests with
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that of a developer, a contributor can increase their influence. Becoming a core member of the

community does not happen overnight. Given the ever changing relationships, new users who

want to help contribute to the project can have a difficult time joining the community.

2.3.3 Socializing New Members

Helping new users become socialized into the project community is an important facet of

open source development. There is often constant turnaround as developers come and go,

working on the project in an irregular fashion. New members can provide new ideas, skills,

suggestions, bug fixes, and features. In a general sense, socialization refers to the process of

assimilating someone new through cognitive and behavioral processes into a community. The

community as a whole is shaping this new user over time. In addition, this new user is having

an impact on the community as a whole. There are a variety of phases to socialization as a

new developer enters an open source community.

Before joining the community, an individual has anticipatory socialization in which they

have certain assumptions regarding how they will fit into a specific community, as well as what

efforts are required to gain this status and their role. This is also the stage where they learn

more about the community by reading about it and often “lurking” in email lists. The potential

member does not post messages but rather reads messages by others to understand the climate,

culture, and relationships between users. At some point, the individual will decide whether or

not to enter the open source community. As Miller explains, this can be a difficult point for

someone new.

“In order to interpret life in the new organization, the newcomer relies on predisposi-

tions, past experience, and the interpretations of others. This phase of socialization

can cause a great deal of stress for the newcomer, especially if he or she has ideas

about what an organization ‘should’ be like that are contrary to current practices

and as a result experiences ‘reality shock’. Thus, the encounter phase encompasses

both learning about a new organization and role and letting go of old values, ex-

pectations, and behaviors” (pg. 136) (Miller, 1998).
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All of this can be related to how the individual approaches the community and communi-

cates as well as the communication of members already in the community. The final stage of

socialization is the metamorphosis stage. In this stage, a user becomes an accepted member of

the community. At this point they understand the structure as well as their own role in the

community.

When a user is looking to join an open source project, there are a variety of properties of

the socialization process that are unique to open source. Van Maanen and Schein believe there

are six dimensions of socialization tactics (pg. 139) (Miller, 1998).

• Collective versus Individual

• Formal versus Informal

• Sequential versus Random

• Fixed versus Variable

• Serial versus Disjunctive

• Investiture versus Divestiture

“Collective socialization refers to taking a group of recruits and putting them through a

set of experiences together. Individual socialization refers to the processing of recruits singly

in isolation from each other” (pg. 139) (Miller, 1998). Open source communities are unique

as in most cases there is a hybrid form of this dimension used. New participants are certainly

socialized individually, however, they have the ability to communicate and see the socializa-

tion process of everyone else in the community at the same time through email messages and

communication. In the next dimension, open source communities use a process of information

socialization in that new participants are not differentiated from other members. However,

because the relationships and power structure are already established between members, spot-

ting a new participant is fairly easy. Open source socialization is also quite random in that

there are no discrete steps to becoming socialized. This may be different for each user based on

what the user wishes to accomplish or contribute. In similar fashion, the timing of socialization
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is unknown so there is a significant amount of variability involved. Open source projects are

seen as using serial socialization because, “experienced organizational members serve as role

models” (pg. 139) (Miller, 1998). The new participant is able to watch the behavior of others

as well as ask for help from veterans of the community. Lastly, a form of investiture social-

ization is prevalent in open source communities because the individual characteristics of the

new participant are valued. These skills of communication and technical aptitude are improved

through the process of participating in the community.

An individual wishing to join an open source community has a significant number of hurdles

to clear before they are even considered a low level developer. There is a gap in the knowledge

between new developers and core developers in differing areas such as the community, codebase,

and potentially technical knowledge (e.g. programming languages).

These hurdles result in a high barrier to entry for newcomers wishing to join the project.

A newcomer must have the necessary technical skills to join the project. They must also read

and understand portions of the existing codebase. Given the size and complexity of some open

source projects, this in itself can be daunting. The individual must also join and watch the

mailing list and communication channels of the project to start to piece together the social

power status of the other members and ascertain where the project is going as a whole. At

this point, a huge amount of time and energy has been consumed by the individual and they

are not even in the project yet. Finally, after coding some small features and successfully

persuading other members in the community that these features are important additions, the

user will probably get write access to the source code control and be able to submit the code.

At this point, the individual has become a low level developer in the project. This is usually

how the process is successfully navigated, however, not everyone who wishes to join an open

source project does so in a manner that is healthy for the project as a whole.

Many new participants of an open source project just want to give an idea for a feature. If

it is a small feature, this is acceptable but some users want to change the entire direction and

scope of the project. By not taking the time to understand the long term goals of the project

as well as not having any code, their idea is often considered useless by the community at large.

This new participant then gets discouraged by the lack of positive response and then leaves.
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This can negatively affect the community. It is much better for a new participant to arrive at

the group with a solution to a problem or a new feature already coded so that the community

can examine the code and determine how it fits within the overall scope of the project.

New participants will surely ask questions but asking the right kind of questions is impor-

tant. A user asking questions that can be found on the website or that are available in the

mailing list archive is wasting the time of the developers. In addition, if a user is arguing over

minute details and constantly wanting perfection, it again wastes the time of the developers.

The topic in question can also influence the amount of responses that are generated. For a basic

feature or general change to the code, everyone in the community can have an opinion because

it is so broad. On the other hand, something very specific or technically complex will yield far

fewer responses and communication in the community. This means picking appropriate topics

to discuss and wording them carefully is important. If the topic is sufficiently broad, be pre-

pared for a large amount of discussion that may waste time and not yield a conclusive answer.

Many of these tips have to be learned through experience, but they provide interesting insight

into things new entrants should abstain from when joining an open source project. Successful

members of a project understand their role in the community, as well as understand that the

community as a whole is more important than one individual. Since these relationships and

power between members is such a crucial aspect of open source projects, academic research on

open source communities over the last few years has concentrated heavily on using a network

analysis approach.

2.3.4 Data Mining and Network Analysis

The availability of large information datasets in open source projects such as email lists

and source code commits has resulted in many researchers collecting this data and performing

network analyses. A network by definition is a collection of nodes and edges. Edges represent

the connections between nodes. These edges can be weighted to signify the strength of the

connection between the nodes. A network provides common properties that can be used to

explain relationships between nodes as well as the dynamics of the network as a whole. Any

open source community with more than one member can be mapped as a network. Properties
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such as relationships and power between members become very important. Since open source

communities are constantly changing, understanding the group dynamics can be helpful not

only for researchers but for participants in that community.

“FOSS [free and open source software] project participants self-organize around the

expertise, reputation, and accomplishments of core developers, secondary contribu-

tors, and tertiary reviewers and other peripheral volunteers. This in turn serves to

help create an easily assimilated basis for their collective action in developing FOSS.

Thus, there is no assumption of communal or egalitarian authority nor utopian

spirit. Instead what can be seen is a pragmatic, continuously negotiated order that

tries to minimize the time and effort expended in mitigating decision-making con-

flicts while encouraging cooperation through reiterated and shared beliefs, values,

norms, and other mental models” (Scacchi, 2007).

The structure, climate, culture, and all other properties of an open source project influence

this dynamically changing structure so that the best participants and contributions have the

most impact on the future of the project.

One network analysis paper explored the relationships between code modules (Gonzalez-

Barahona, López, Robles, Sistemas, & Juan Carlos, 2004). By taking snapshots of the network

over time, the images showed new modules being created as well as sub-communities forming

using colored nodes. The Girvan-Newman algorithm was used which takes large highly con-

nected networks and converts it into a smaller network. This simplification process yields less

detailed information but is easier to visualize. Another paper examined developers partici-

pating in one or more open source projects. The number of projects per developer is shown

to be a power-law distribution (Madey, Freech, & Tynan, 2004). In addition, the researchers

use agent-based modeling to examine the system. “Agent-based modeling is a technique for

understanding the temporal dynamics and emergent properties of self-organizing system by

simulating the behavior of individual components of the network over time” (Madey et al.,

2004). In this case, Madey et al. (2004) were using a simulation of agents to represent open

source developers working on projects. While fitting this simulation data to the true data
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gathered was difficult, the use of agent-based modeling to explore open source communities is

an important contribution.

While a lot of research has gone into studying OSS communities, there are still many areas

that could be improved. Understanding the communities as well as improving the health of the

communities can be refined.

2.4 Current Problems in OSS

The stark reality is that most OSS projects fail. There are hundreds of abandoned projects

out there that have ceased development. Whether due to time constraints, lack of interest, or

other issues, these projects may just be a byproduct of the open source system as a whole. The

constant evolution of projects and contributors means there is a high turnover rate both in

projects and community members. Increasing understanding of OSS communities would assist

us in determining if this is just part of the system or if it is something that can be addressed

and minimized.

Researchers have found that large numbers of new developers motivated to contribute to

a project do not gain access to the project because they simply are not allowed into the

group. von Krogh et al. (2003) found that of the participants in the open source Freenet

community who posted on the mailing list, 10.5% did not receive any reply to their initial

posting and subsequently did not appear on the list again. These results do not include the

number of individuals who received one or two responses and then never contributed code or

left the community. These examples represent a large number of individuals who could benefit

from tools or services to help them more rapidly become integrated or developer a greater

understanding of the community. In addition, von Krogh et al. (2003) found that there was

a substantial amount of time (from a few weeks to several months) spent watching email lists

to understand the community before posting. Shortening this time would hasten the addition

and socialization of new members and could allow for more members by preventing them from

dropping out.

In addition to barriers to entry, another area of OSS that needs significant attention is

gender inequality (Holliger, 2007; Nafus, Leach, & Krieger, 2006; Powell, Hunsinger, & Medlin,
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2010). Discrimination, harassment, stereotypes, and few female role models in OSS seem to

create a self-perpetuating problem. In one study of 2784 OSS developers, only 1.1% were

female (Ghosh, Glott, Krieger, & Robles, 2002). This substantial gender gap is a problem not

only for OSS but all science, technology, engineering, and math (STEM) fields. The percentage

of women in STEM fields in the US is only 25% (Beede et al., 2011). The percentage of women

who graduate in undergraduate Computer Information and Sciences is even lower at around

18% (National Center for Education Statistics, 2015). Other problems such as income disparity

also exist. Improving the retention and easing the entry to OSS projects would hopefully

increase the number of women who participate. Various groups have tried to rectify this by

supporting women in OSS. Support channels such as the Ada Initiative (Ada Initiative, 2015),

Girl Develop It (Girl Develop It, 2015), Linux chix (Linux Chix, 2015), Debian Women (Debian

Women, 2015), Ubuntu Women (Ubuntu Women, 2015), Drupal chix (Women in Drupal, 2015),

and DevChix (Dev Chix, 2015) have all been created to improve this inequality. However, more

work needs to be done. While increasing the number of women in OSS is not a direct goal of

this work, it is hopeful as an indirect result that can be obtained.

2.5 Existing STC Tools

There are a fair number of tools in both the research and commercial realm that help de-

velopers visualize communication patterns and code changes as well as collaborate. Sack et al.

(2006) created a tool called the Open Source Browser which assists developers visualize STC.

Using this software, they identified trajectories of participation in the Python community that

resulted in success by utilizing the tool as well as ethnographic analysis (Ducheneaut, 2005).

Sack et al. (2006) tracked a participant who became integrated into the community over a 10

month time frame. Over this time period, this member progressed from peripheral activities

such as reporting bugs and submitting patches to more central ones such as taking charge of

code artifacts and developing new code. Other tools such as CodeSaw (Gilbert & Karahalios,

2007) and Augur (de Souza, Froehlich, & Dourish, 2005), allow developers to visualize the

amount of code commits and communication through time, whereas Tesseract shows missing

communication links between developers, source code dependencies, and a timeline (Sarma &
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Herbsleb, 2008b; Sarma, Maccherone, Wagstrom, & Herbsleb, 2009); while Ariadne (de Souza,

Quirk, Trainer, & Redmiles, 2007) matches similar developers based on the socio-technical

dependencies. Ensemble (Xiang et al., 2008) is a recommendation tool that matches develop-

ers to artifacts while Palantir (Sarma, Noroozi, & van der Hoek, 2003; Sarma, Redmiles, &

van der Hoek, 2008, 2012) and Hipikat (Cubranic & Murphy, 2003; Cubranic, Murphy, Singer,

& Booth, 2005) can be used to understand workspace awareness. ProxiScientia can be used

for real-time visualization of coordination needs (Borici, Blincoe, Schröter, Valetto, & Damian,

2012). It provides developer-centric and task-centric graphics in an ego-centered visualization.

Codebook crawls source code, work items, people, and other information to create a corpus

of data (Begel, Phang, & Zimmermann, 2010). This data can then be searched and filtered

using regular expressions. Expertise browser (Mockus & Herbsleb, 2002) and expertise recom-

mender (Mcdonald & Ackerman, 2000) both provide recommendations regarding who to contact

given their expertise. By combining source code information and mining who has worked on

which section, individuals can be identified who have specific as well as broad knowledge of the

project. ALERT is an ambitious upcoming project that seeks to combine data-mining, recom-

mendation systems, visualization, and more into one succinct program (ALERT, 2015). Wolf

is a tool that identifies people who are impacted by changes in the codebase (Figueiredo & de

Souza, 2012). This is also known as impact analysis. PIVoT (Project Insights and Visualization

Toolkit) provides data collection and analysis on topics such as code quality, unit testing effort,

development efficiency, code churn, and team analysis (Sharma & Kaulgud, 2012). Syde shows

real-time changes in the system and identifies merge conflicts immediately allowing developers

to do better planning (Hattori & Lanza, 2010). Tukan defines different modes of collaboration

that a developer can be utilizing during code development (Schümmer & Haake, 2001). In

this way, it focuses the attention of the developer and prevents unnecessary distractions. In

addition, the tool provides tightly-coupled collaboration. IBM’s Jazz software is a large project

that integrates various plugins into the Eclipse IDE (Frost, 2007). Some of the features Jazz

includes are automatic notifications so developers can keep up-to-date, communication and

messaging, extensible plugins, and integration of version control systems (Rodŕıguez, Ebert, &

Vizcaino, 2010). ProjectWatcher is a prototype that mines local repository information before
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it is checked into a central version control (Schneider, Gutwin, Penner, & Paquette, 2004).

The tool shows a visual model of what developers are currently working on in the source code.

Lighthouse is an Eclipse plugin that alerts developers immediately to a merge conflict (da

Silva, Chen, der Westhuizen, Ripley, & van der Hoek, 2006). FASTDash is a code awareness

tool that shows source code activity and information on who is currently looking at specific

files (Biehl, Czerwinski, Smith, & Robertson, 2007). CollabVS (Dewan & Hegde, 2007) is a

merge conflict resolution system for Visual Studio that informs developers before they commit

the code that a conflict has occurred. Boa is a language and framework for querying SVN

repositories of large datasets such as Sourceforge and providing counts and other statistical

information (Dyer, Nguyen, Rajan, & Nguyen, 2012). Maispion allows for visualizing email

communication as well as source code repositories (Stephany, Mens, & Gı̂rba, 2009).

Although these tools are helpful, most are more research focused and have not been tested

and evaluated over time in existing communities. In addition, there are significant usability

questions surrounding how to present this data effectively. Most of the tools appear to be

geared towards only technical code development.

2.6 Contributions

This research has a number of contributions, the details of which are covered in the following

chapters. The first contribution is a survey that examined two existing open source commu-

nities, KDE and Mozilla. The purpose of the survey was to gauge the potential difference

in perceptions between new members and existing members of the community on the topic

of socialization. Both groups provided quantitative and qualitative data on their respective

community.

The three major academic contributions in this work are in the algorithms used to assess

communities and provide information. A processing tool and website called Jamii was developed

that analyzes source code and email communication through the use of three new algorithms.

The impactful commits algorithm identifies commits that have had a substantial impact to the

technical dependency structure of the source code. The developer knowledge algorithm selects

developers who have knowledge or expertise on a file based on the commit history. Finally, the
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communication suggestions algorithm provides suggestions regarding who a developer should

increase communication with on the mailing list based on shared technical dependencies.

Subsequently, the Jamii tool was provided to the KDE and Mozilla communities to use.

During this process, a survey and interview identified the utility of the tool for improving the

socialization process in these communities. This contribution shows the advantage of using a

tool like Jamii to improve the congruence and health of open source communities. While these

algorithms and results were tested on open source communities, they could also be applied to

other fields where large scale collaboration is needed. The results are fundamental contributions

to the field of STC.
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CHAPTER 3. SURVEY OF COMMUNITIES

This research focuses on two potentially significant barriers to entry for new developers

wishing to join an OSS project that can influence STC and the quality of the project: under-

standing the source code, and the communication structure of the group. From a code structure

standpoint, inexperienced developers may have difficulty grasping the structure of the code-

base. With regard to the communication structure, understanding the power structure and

general organizational climate of the community as well as understanding who is working on

which sections of code that are interdependent with new developers is important. Consistent

with the STC perspective, understanding both technical and social processes will lead to the

effective development of productive and efficient OSS communities.

3.1 Communities

As part of this research, Mozilla R© and KDE R©, two open source communities were selected

to survey and analyze. They were selected because the barriers to successful socialization are

more pronounced in large communities where it becomes increasingly more difficult to know

everyone in the community, understand the entire codebase, and keep track of all the current

development changes.

Mozilla is most famously known for being the guiding entity behind the web-browser

Firefox R©. Firefox includes 10 million lines of code and receives 3000 commits from 350 unique

developer contributors each month1. The Mozilla Foundation (Mozilla Foundation, 2015) is

the registered nonprofit organization that supports the community and development.

KDE is one of the largest open source communities. KDE is an extremely popular win-

dow manager and suite of applications for Linux. KDE has roughly 6 million lines of code,

1http://www.ohloh.net/p/firefox

http://www.ohloh.net/p/firefox
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1800 unique contributor accounts, and 20 new developers who contribute their first code each

month2. KDE e.V. (KDE e.V., 2015) is the registered nonprofit organization that supports

this community.

Meetings with community managers and representatives from Mozilla through video con-

ferencing helped brainstorm what information would be useful in guiding new users. Email

exchanges with developers and leaders in KDE communicated their thoughts on the impor-

tance of the socialization process. Both communities were receptive to the idea of the website.

For Mozilla specifically, one member commented that community management needs to trans-

form from an “art” to a science through the use of data and the creation of tools.

3.2 Survey

A multi-faceted user study examining the two OSS communities gathered quantitative and

qualitative self-report data from core developers as well as new/lurking developers. The surveys

and analysis were split into two phases. First, an exploratory survey examined the demograph-

ics, technical profile, and socialization process through self-report data in an online survey. The

results from this survey influenced the development of the Jamii website. After the Jamii web-

site was developed, a final survey and set of interviews were distributed to the two communities

to assess the utility of the Jamii website and the potential improvement in the socialization

process. The exploratory initial survey is detailed in this chapter while the final survey is

presented in chapter five. An outline of the survey process can be seen in Figure 3.1.

Figure 3.1 Survey Development and Order

For the initial survey, core members were defined as developers who have coordinated the

development of the project and have made significant contributions (Ye & Kishida, 2003).

Consistent with research (Nonnecke & Preece, 2000; Ridings, Gefen, & Arinze, 2006; von Krogh

2http://www.kde.org/presspage/

http://www.kde.org/presspage/
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et al., 2003), lurking individuals were defined as those who have registered for the project

mailing list but who have not committed any code. In order to gain a comprehensive analysis

of core developers and new/lurking developers from a social perspective, this research assessed

multiple components through a variety of primarily Likert questions.

Unfortunately, there has been minimal research examining key demographic characteristics

of OSS communities. Ghosh et al. (2002), David, Waterman, and Arora (2003), and Ridings et

al. (2006) are examples of surveys that examined demographic as well as motivational factors of

OSS communities. This survey builds upon the previous research by asking general questions

such as member’s age, gender identity, technical skills items such as educational and program-

ming experience, previous experience with other communities, and occupation. Items assessing

each member’s role in the current project, how they first contributed, length of time involved in

the community, current role, and motivational aspects of community participation (paid or un-

paid) were also included. The primary focus was on subjective assessments of issues/concerns

within the project and the community member’s perception of the overall socialization process.

3.3 Characteristics of Core Developers and New/Lurking Individuals

Understanding the background and perceptions of a project’s core developers and their

relationship with the online community is important in understanding the community’s cul-

ture (Ducheneaut, 2005). This work assessed core developers’ perceptions of how they joined

the community and how they felt new developers should join the community. Of particular

interest were core developers’ beliefs about socializing new developers. Specific items of interest

included the assessment of perceived barriers of entry for new developers (social, technical, etc.),

the community’s ability to successfully socialize new developers, and the subsequent ability to

integrate new developers into the existing community.

By comparing the viewpoints of core developers in the community and their acceptance of

new developers, the survey examined whether both groups have similar perceptions. A differ-

ence in perceptions between existing and new developers may suggest a disconnect that may

prevent the successful integration of new developers. This social comparison of demographics

and beliefs between groups is important because it demonstrates how each group views the
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socialization process. Any differences or dissimilarity in opinions and experiences may suggest

that the socialization process may be more complex than initially considered and may highlight

new barriers not yet considered.

A variety of personality factor measures were available as possibilities to include in the

survey. The breakdown of measures and associated questionnaires can be seen in Table 3.1.

Table 3.1 Measures and Associated Questionnaires

Measures Reference

Agreeableness and Neuroticism (John & Srivastava, 1999) (The Big Five)

Benevolence in the community (Ridings et al., 2006)

Transactive memory (Lewis, 2003)

Investment and commitment (Rusbult, Martz, & Agnew, 1998)

Functional communication (Leathers, 1972)

Need for cognition (Cacioppo et al., 1996)

Willingness to communicate (McCroskey, 1992)

Need to belong (Leary et al., 2007)

Hypersensitive narcissism scale (Hendin & Cheek, 1997)

Transactive memory is the process by which members in a group obtain and store knowl-

edge (Wegner et al., 1991). Members understand what they know and importantly under-

stand what others know. Transactive memory and the associated scale was chosen because it

best measures the expertise and understanding of members which could be directly improved

through the development of the Jamii tool and website.

3.4 Survey Results

The survey ran for just over a month from June 21, 2013 to August 26, 2013. The survey

questions can be seen in Appendix A. All analysis was done using the R software version 3.1.1

and supporting packages (R Project, 2015). After removing empty submissions, there were a

total of 42 responses across Mozilla (n = 19) and KDE (n = 23). The Mozilla respondents self-

reported gender as 15 male and 3 female. Similarly, the KDE gender demographics were 20 male

and 1 female. No participants selected the fill-in-the-blank entry for “other identification” or

“prefer not to specify” for gender. Each community was analyzed separately and no statistical

comparison was made to examine the differences in responses between the two communities.
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The country distribution showed that over half of the participants were from the United

States and Europe (see Table 3.2). GeoIP lookups on the IP address participants used to

complete the survey matched the countries that they reported. The Mozilla Foundation is

based in the United States while KDE e.V. is based in Germany. This is reflected in the

distribution of countries in Table 3.2.

Table 3.2 Country Distribution

Country Mozilla KDE Total

Austria 2 0 2

Brazil 1 0 1

Canada 2 0 2

Switzerland 0 1 1

Czech Republic 0 1 1

Germany 3 4 7

Spain 0 2 2

France 1 1 2

United Kingdom 0 2 2

Greece 0 1 1

India 0 1 1

Italy 0 1 1

Netherlands 1 0 1

Romania 0 1 1

Russia 0 1 1

Turkey 0 1 1

Taiwan 1 1 2

United States 7 3 10

Many participants identified as being bilingual in both Mozilla (n = 18,M = 2.05, SD =

0.72) and KDE (n = 21,M = 2.42, SD = 1.02) as can be seen in in Figure 3.2. English was most

often listed as a first or second language. When asked about their highest level of schooling or

education, the survey showed that half of participants have a bachelor’s degree (see Table 3.3).

The amount of time in years participants have spent in Mozilla (n = 14,M = 5.61, SD = 4.91)

and KDE (n = 15,M = 4.72, SD = 3.44) hovers around approximately 5 years (see Figure 3.3).
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Figure 3.2 Spoken/Written Languages

Table 3.3 Highest Education/Schooling

Education Level Mozilla KDE Total

High School/Secondary School 1 4 5

Undergraduate/Post-Secondary 8 11 19

Professional Degree 1 1 2

Master’s Degree 5 4 9

Doctorate Degree 2 1 3
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Figure 3.3 Number of Years in Community

3.4.1 Overall Responses

Experience contributing to FLOSS communities was measured using a Likert question

(1=None, 5=A Lot). The results for Mozilla (n = 17,M = 3.76, SD = 1.30) and KDE

(n = 19,M = 3.73, SD = 0.99) were similar and can be seen in Figure 3.4.

Experience in computer programming relative to the average Open Source contributor was

measured using a Likert question (1=None, 5=A Lot). The results for Mozilla (n = 17,M =

3.35, SD = 1.16) and KDE (n = 19,M = 3.10, SD = 0.80) show participants felt they have a

roughly average level of computer programming experience in both communities. These results

can be seen in Figure 3.5.

Participants noted current involvement in approximately two FLOSS communities: Mozilla

(n = 17,M = 1.76, SD = 2.25) and KDE (n = 18,M = 2.11, SD = 1.23).

When asked how they spend their time in each of the respective communities each week,

participants responded that much of the time was spent communicating and programming

(see Table 3.4). One participant entry was removed because the number of minutes entered

was more than possible for one week. One question asked participants how long they spend
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responding to existing bug reports. For KDE specifically, this had a particularly high standard

deviation due to an extreme outlier. This participant spends 2000 minutes a week (roughly

75% of their time) on bug reports.

Table 3.4 Time Spent in Community Each Week

Mozilla (n = 15) KDE (n = 17)

Time in minutes

M (SD)

Relative

Percentage

Time in minutes

M (SD)

Relative

Percentage

Programming New

Features

164 (267.20) 13% 107.94 (193.70) 16%

Programming to Fix

Bugs

171 (282.11) 13% 87.64 (222.50) 13%

Filing New Bug Re-

ports

74.66 (110.94) 6% 16.58 (27.47) 3%

Responding to Exist-

ing Bug Reports

135 (183.43) 11% 122.47 (484.05) 19%

Reading Code Written

By Others

149 (255.54) 12% 86.47 (156.27) 13%

Writing Documenta-

tion

31.67 (41.48) 3% 15.58 (48.18) 2%

Communication

(email, IRC, etc.)

406.66 (419.82) 32% 171.76 (211.99) 26%

Other 133.33 (288.63) 10% 49.11 (132.43) 8%

Total 1265.33

(1012.18)

100% 657.6 (854.9) 100%

The time spent on “other” activities also had a high standard deviation for both Mozilla

and KDE. One explanation for this is participants used this category to indicate work in

localization or other areas. Localization is the process of translating text from one language

to another. This is important in ensuring applications can be understood by users all over the

world. Some of the respondents spent 50% or more of their time in these “other” activities

indicating contributions to areas outside programming.

Not all people who contribute to open source projects are volunteers. Some receive monetary

compensation for their efforts. In this study, 65% of the Mozilla participants indicated they

receive monetary compensation for their open source efforts; whereas, almost 90% of the KDE
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participants were unpaid volunteers (Table 3.5). This reflects a larger grass-roots influence in

the KDE community as compared to Mozilla.

Table 3.5 Paid Compensation (Employees)

Unpaid Paid

Mozilla 6 11

KDE 17 2

Quite a few participants in the survey self-identified as being at a relatively beginner level

in their respective communities. The Likert question assessed both their current level as well as

what level they want to obtain (1=An Outsider, 7=A Core Member) (see Figure 3.6). A high

number of participants in both Mozilla and KDE indicated they wanted to be substantially

involved in the community at a core level.

Current Integration Level

Wanted Integration Level

KDE

Mozilla

KDE

Mozilla

100 50 0 50 100
Percentage

Response

An Outsider

A Beginner

Somewhat Integrated

Reasonably Integrated

An Expert Member

A Veteran Member

A Core Member

How integrated are you into the community
now and where do you want to end up?

Figure 3.6 Integration Level: Current and Future

When examining the difference between their wanted integration level in the community

and their current integration level, all participants in both communities wanted to either stay

at their current integration level or increase. The results for Mozilla (n = 17,M = 1.35, SD =

1.22) and KDE (n = 23,M = 1.39, SD = 1.67) were similar and can be seen in Figure 3.7.



58

In general, participants wanted to increase their integration by one or two levels in the Likert

response categories. This indicates a substantial number wanted to increase their participation

and level of involvement.
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Figure 3.7 Delta Difference: Wanted Integration vs. Current Integration

When asked how many days they spent watching and reading the mailing list before posting,

there was a wide range of responses for both Mozilla (n = 12,M = 304.91,Mdn = 39.5, SD =

829.76) and KDE (n = 17,M = 319.70,Mdn = 60, SD = 649.20).

Participants were asked via a Likert scale how easy it is for a new member to join the

community (1=Very Difficult, 7=Very Easy). Responses for Mozilla indicate participants feel

it is more difficult as compared to KDE (see Figure 3.8).

Most participants in KDE feel new members are quickly integrated into the community.

For Mozilla approximately 50% felt new members are not quickly integrated (see Figure 3.9).

Both Mozilla and KDE participants felt the community treats new members with respect

(see Figure 3.10). These responses were gathered via a Likert scale (1=Strongly Disagree,

7=Strongly Agree).
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Figure 3.10 New Member Respect

Participants rated social communication as one of the more important skills that new mem-

bers should possess when joining the community. This was gathered via a Likert scale (1=Not

at all important, 7=Extremely Important) (see Figure 3.11).

Participants were asked via a Likert scale (1=Very Ineffective, 7=Very Effective) how well

they were able to track various processes as part of the community (see Figure 3.12).

Transactive memory was measured using the Transactive Memory System Scale which asks

questions on a Likert scale (1=Strongly Disagree, 5=Strongly Agree) (Lewis, 2003). Two

questions were selected from each of the three categories, specialization, credibility, and coor-

dination. These two questions were averaged into a single latent variable score, the results of

which can be seen in Figure 3.13. For the most part, participants felt that community mem-

bers had specialized knowledge in different areas of the project and that the members were

knowledgeable and confident in their abilities. There was a little more ambivalence regarding

coordination however. In particular for Mozilla, some participants disagreed or were unsure

about how the community accomplishes tasks and how they are completed.
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Figure 3.11 Rating of Skills for New Members
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Figure 3.12 Keep Track Processes
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Figure 3.13 Transactive Memory

3.4.2 Qualitative Results

Qualitative results as expressed by open-ended written comments from participants paint

a predominantly positive picture of the two communities. When asked, “are there ways the

community can support new/potential members in their desire to join?”, participants suggested

increased personalized outreach, interaction, and mentoring. In addition, technical challenges

such as understanding the build process and version control were mentioned. While no single

comment theme emerged in this question, the variety of different suggestions indicates that the

socialization process is a complicated and multi-faceted process. All comments were corrected

for small spelling mistakes. The comments for Mozilla can be seen in Table 3.6 and the

comments for KDE can be seen in Table 3.7.

An additional question attempted to solicit what kinds of new features or functionality tools

could assist in the contribution process. This question was primarily aimed at attempting to

identify features that could be developed as part of Jamii. The question asked, “what tools

or functionality (new or existing) would help you contribute?”. Participants indicated existing

tools such as development applications, bug tracking, and localization. For possible future tools
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Table 3.6 Qualitative Comments Mozilla

Are there ways the community can support new/potential members in their

desire to join?

• “yes- onboarding and enculturation and exposure to ‘how things get done‘ plus most

common ways of being open for people new to open culture who are non-technical.”

• “mozilla.org/contribute, local community portal site, mozilla reps everywhere.”

• “Better documentation. Better outreach. Better follow-through. Better follow-up.

More personalized interactions.”

• “Find better ways to match new contributors to areas of interest. http://www

.whatcanidoformozilla.org is a good first step, but misses many areas of the

project.”

• “we have a couple websites to make it easy to find something to work on http://

www.whatcanidoformozilla.org, http://www.joshmatthews.net/bugsahoy”

• “Learning the code base is extremely challenging. I think there needs to be people

whose sole task is to help new people on the team. More documentation describing key

areas would be very helpful. The documentation is severely lacking, though firefox is

an extremely fast moving code base, so it’s extremely difficult to keep documentation

up to date. What would be nice is to have some individuals assigned as go to people

for specific modules.”

• “For programming members, pull/build process is really the biggest hurdle I think. I

wonder if there are ways we could simplify that process. Maybe help users who just

want to contribute javascript/java code skip the libxul building process entirely.”

• “Easy to solve bugs, welcome tasks, Onboarding package”

• “If there would be open issue lists for each mozilla group, then, new members can

easily find [an] area to help. I noticed one case where such issue lists spread to

multiple sites, which might seem difficult for new members to understand which site

is the latest and/or helps from new people would be helpful.”

http://www.whatcanidoformozilla.org
http://www.whatcanidoformozilla.org
http://www.whatcanidoformozilla.org
http://www.whatcanidoformozilla.org
http://www.joshmatthews.net/bugsahoy
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Table 3.7 Qualitative Comments KDE

Are there ways the community can support new/potential members in their

desire to join?

• “We fail to turn people who are not proactive into contributors (might also be a good

thing because we keep a proactive working culture this way). We could also do better

at attracting non-programmers like artist/designers. I have no idea how to solve this.”

• “The documentation needs to be up to date. KDE is quite good in that with the

beginner’s manual.”

• “Make more beginner tutorials/junior tasks and make those that already exist easier

to find.”

• “Mentoring newcomers should be better organized”

• “More actively advertising junior jobs and having more people able and willing to

mentor the new members”

• “Video tutorials and interactive courses.”

• “There is documentation on the wiki, and on mailing lists which I read, there is

generally a helpful response to new people.”
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or functionality, there was a wide range of responses such as finding expertise of members for

non-technical areas, better review tools for source code, and changes to bug tracking software.

The comments for Mozilla can be seen in Table 3.8 and the comments for KDE can be seen in

Table 3.9.

Table 3.8 Qualitative Comments Mozilla

What tools or functionality (new or existing) would help you contribute?

• “Ways to find specific expertise in other members- not just in category but something

more granular. A tool that tells me that someone is really good at curriculum design

and facilitation. This would be especially good for non-technical functional areas that

do not live in Bugzilla.”

• “reps portal sute, reps.mozilla.org, community region mailing list”

• “My tool needs as a long-term contributor are much different than those that new

contributors would need, but in general, the recent improvements to bugzilla to make

it easier to file and work with bugs. On the technical side: tools to automate the

landing of patches from bugzilla, possibly with the ability to uplift those patches to

different branches. Automatic bisection tools for failed builds”

• “Better review tools / easier to grasp build system (this is being worked on) / maybe

more documentation, depending on the area”

• “One thing that would be extremely nice is a script that goes through patches and

picks lines that clash with the coding style.”

• “More time!”

The final qualitative question seemed to show the most stark difference between the two

communities. The question asked participants, “what were your experiences in joining?”. KDE

participants in particular seemed to express a high amount of intrinsic motivation as opposed

to extrinsic motivation which was consistent with other FLOSS communities (Lakhani & Wolf,

2003). All of the responses for KDE indicated a warm and welcoming community when joining.

Mozilla on the other hand seemed to have comments that were not quite as positive and showed

the challenges of the size and scale of Mozilla’s large community. Difficulty with understanding

the codebase and difficulty with understanding what was going on within the community were
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Table 3.9 Qualitative Comments KDE

What tools or functionality (new or existing) would help you contribute?

• “Our bugtracker/ticket system could be better. I really like the way redmine can

associate tickets (bugs and features) with milestones/releases and how it displays

them and how it is very easy to build your own todo queue out of it, I would love

to see our bugzilla offer a similar feature or a switch to redmine. The actual impact

on productivity would probably not justify the work it takes to switch to a different

bugtracker.”

• “Lokalize / svn”

• “better bug tracking software (client side software)”

• “I guess any improvements to Lokalize may speed up my contributions as a translator.”

• “More developer tutorials are always helpful.”

• “IRC, mailing lists / new: a mentoring group would be nice”

• “Kdevelop, Kompare, git, Konversation, Kate, Emacs, KDE Techbase, Mail list”

• “Something that would make git easier to use (especially when doing anything at all

different from the usual) would probably help people to cope with it better. Its lack

of user friendliness may well put some contributors off.”
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both mentioned by Mozilla participants. The comments for Mozilla can be seen in Table 3.10

and the comments for KDE can be seen in Table 3.11.

Table 3.10 Qualitative Comments Mozilla

What were your experiences in joining?

• “Mozilla was a consulting client of mine who turned into a full time role.”

• “I was thrown in the deep end, but it worked out ok.”

• “*Much* smaller when I joined, still possible to know everyone and keep up with what

was going on. New community members (and old ones too) really need to pick and

choose where to focus now because there’s just too much going on now.”

• “Smooth, since I was an intern”

• “It’s extremely challenging at first. The code is difficult to pick up, not because of its

quality - it’s some of the best code I’ve read in my life, but because it’s just complex.

I live on the east coast, so sometimes it’s challenging to find people to help out on

irc. The most difficult part at first is figuring out how to find out how to do things

the right way. IRC is the key, but also MXR and searching the code base are helpful

too. The challenge there is knowing what to search for. Usually, I ask on IRC what I

need to search for to accomplish my task, then use MXR + grep + find to find what

I’m looking for.”

• “I tried to help out from outside for years and always felt a bit daunted/scared. My

experiences asking questions in IRC never went well. Maintaining a build environment

on a less than stellar PC was hard. I mostly just wrote addons and prototypes. Lurked

bugzilla. Being hired (obviously) made it all much easier.”

• “It’s a ‘do-ocracy’.”

3.4.3 Comparing New and Veteran Developers

For all subsequent Likert data, frequency count data, as well as some measures of central

tendency are reported. There is a fair amount of disagreement in the statistics community about

how to report and analyze Likert responses. Therefore, results from single Likert items utilize

Fisher’s exact test. Fisher’s exact test is used when one or more of the cells in the resulting

table of responses has a value less than five. When possible, Likert items were combined into a
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Table 3.11 Qualitative Comments KDE

What were your experiences in joining?

• “More than awesome. I felt welcome from the start. Everything went better then I

imagined. / It had a positive impact on my life, I simply feel happier and fulfilled.”

• “Welcoming”

• “Not difficult.”

• “It was very easy to join KDE - one just becomes a member without noticing it.”

• “Excellent community feedback and quick induction into the community.”

• “I switched to KDE from GNOME after being fed up of the latter design choices and

found that not only the software was great, but the community was friendly too.”

• “Quite welcoming, nobody expected me to be a pro”

• “It feels great being a part of this community, even tiny. I only wish I had the time

to contribute more.”

• “Very warm welcome for anyone willing to contribute.”

• “I asked a technical question on a mailing list, and following that I was taken by

surprise to be asked to contribute my application into the KDE repository.”

• “Very nice and welcoming community.”
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single score and analyzed using the parametric Welch Two Sample t-test which does not require

equal sample sizes.

In order to compare differences in experience, participants were split into two groups, be-

ginner and veteran, based on their response to the question: “How integrated are you into

the community?”. All participants who selected, “an outsider”, “a beginner”, or “somewhat

integrated” were placed in the beginner category (Mozilla n = 4, KDE n = 11). All oth-

ers were placed in the veteran category (Mozilla n = 13, KDE n = 8). The number of

years spent in the community between beginners (Mozilla n = 4,M = 0.26, SD = 0.23, KDE

n = 7,M = 2.83, SD = 2.5) and veterans (Mozilla n = 10,M = 7.75, SD = 4.14, KDE

n = 8,M = 6.37, SD = 3.42) shows a large difference and supports the splitting of participants

into these two groups.

3.4.3.1 Skills and Characteristics of New Developers

One set of questions asked participants how they would rate various skills and characteristics

of new members wishing to join the community on a 7 level Likert scale from, “not at all

important” to “extremely important”. Based on correlation results as seen in Table 3.12 the

technical, programming, and software management skills are all fairly correlated. Given this,

they were averaged into a single numeric value representing general technical skills.

Table 3.12 Correlation Table for Skills/Characteristics for New Members

Technical

Skills

Programming

Skills

Social Commu-

nication Skills

Technical Skills

Programming Skills 0.72***

Social Communication Skills 0.05 0.12

Software Management 0.44** 0.45** 0.35*

*p<.05, **p<.01, ***p<.001

This technical skills average was analyzed using a Welch Two Sample t-test. For Mozilla,

beginners rated technical skills slightly lower (n = 4,M = 4.08, SD = 1.25) as compared to

veterans (n = 13,M = 4.33, SD = 0.75). There was no significant difference between beginner

and veteran developers for Mozilla on the rating of needed technical skills, t(3.69) = -0.37, p
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= 0.72. For KDE, beginners rated technical skills higher (n = 10,M = 4.23, SD = 0.99) than

veterans (n = 8,M = 3.12, SD = 1.35). There was no significant difference between beginner

and veteran developers for KDE on the rating of needed technical skills, t(12.51) = 1.93, p =

0.07. However, this was quite close to being statistically significant.

3.4.3.2 New Member Joining

Three questions asked participants about the socialization process and joining the commu-

nity on a 7 level Likert scale. The questions are listed below.

• “How easy is it for new members to join the community?”

• “New members are quickly and easily integrated into the community.”

• “The community treats new members with respect.”

Based on correlation results as seen in Table 3.13 the joining the community and easy

integration questions were correlated. Given this, they were averaged into a single numeric

value representing the socialization process.

Table 3.13 Correlation Table for Member Joining and Socialization

Join Easy Quick Integra-

tion

Join Easy

Quick Integration 0.74***

Respect 0.10 0.37*

*p<.05, **p<.01, ***p<.001

This socialization score average was analyzed using a Welch Two Sample t-test. For

Mozilla, beginners rated the socialization score slightly higher (n = 4,M = 4.12, SD = 1.43)

as compared to veterans (n = 13,M = 4.00, SD = 1.11). There was no significant dif-

ference between beginner and veteran developers for Mozilla on the rating of socialization,

t(4.18) = 0.15, p = 0.88. For KDE, beginners rated the socialization score slightly higher

(n = 10,M = 5.75, SD = 0.75) than veterans (n = 8,M = 5.43, SD = 1.08). There was
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no significant difference between beginner and veteran developers for KDE on the rating of

socialization, t(12.07) = 0.69, p = 0.50.

3.4.3.3 Member Respect

The question asking participants if they feel the community treats members with respect

was analyzed as an individual item. For Mozilla, Fisher’s exact test did not show a significant

difference between beginners (n = 4,M = 6.50, SD = 0.57) and veterans (n = 13,M =

5.84, SD = 0.98), p = 0.69. For KDE, Fisher’s exact test did show a significant difference

between beginners (n = 10,M = 6.60, SD = 0.69) and veterans (n = 8,M = 5.87, SD = 0.64),

p = 0.04. Interestingly, in both cases, beginners rated the respect level as higher than veterans.

3.4.3.4 Transactive Memory

The transactive memory questions were on a 5 level Likert scale (1=Strongly Disagree,

5=Strongly Agree) (Lewis, 2003). Two questions were selected from each of the three categories,

specialization, credibility, and coordination as seen below.

• Specialization

– “TS1: Each community member has specialized knowledge of some aspect of the

project.”

– “TS2: I know which community members have expertise in specific areas.”

• Credibility

– “TS3: I trust other community members’ knowledge about the project is credible.”

– “TS4: I am confident relying on the information that other community members

bring to the discussion.”

• Coordination

– “TS5: The community accomplishes tasks smoothly and efficiently.”

– “TS6: There is a lot of confusion about how the community accomplishes tasks.”
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The last question, TS6 was inverted in the coding. The transactive memory data surpris-

ingly was not very correlated as can be seen in Table 3.14. For each of the three categories,

the paired questions were averaged into a single score.

Table 3.14 Correlation Table for Transactive Memory

TS1 TS2 TS3 TS4 TS5

TS1

TS2 0.14

TS3 0.14 0.20

TS4 -0.07 0.20 0.40*

TS5 0.09 0.19 0.25 0.30

TS6 0.09 -0.07 0.00 0.21 0.28

*p<.05, **p<.01, ***p<.001

For specialization, there was no significant difference between Mozilla beginners (n = 4,M =

3.00, SD = 0.91) as compared to veterans (n = 13,M = 3.88, SD = 0.58), t(3.78) = -1.82, p =

0.14. For KDE, there was no significant difference between beginners (n = 10,M = 3.85, SD =

0.41) and veterans (n = 8,M = 3.81, SD = 0.59), t(12.03) = 0.15, p = 0.88.

For credibility, there was no significant difference between Mozilla beginners (n = 4,M =

4.12, SD = 0.85) as compared to veterans (n = 13,M = 4.07, SD = 0.49), t(3.63) = 0.10, p =

0.92. For KDE, there was no significant difference between beginners (n = 10,M = 4.30, SD =

0.42) and veterans (n = 8,M = 4.12, SD = 0.23), t(14.42) = 1.11, p = 0.28.

Lastly for coordination, there was no significant difference between Mozilla beginners (n =

4,M = 3.62, SD = 0.47) as compared to veterans (n = 13,M = 2.96, SD = 0.47), t(4.99) =

2.42, p = 0.05. However, it was very close to significant. For KDE, there was a significant

difference between beginners (n = 10,M = 3.95, SD = 0.36) and veterans (n = 8,M =

3.43, SD = 0.41), t(14.18) = 2.72, p = 0.01 with beginners rating the coordination process as

smoother than veterans.

3.5 Conclusion

The gender imbalance results match previous work in identifying a gap in the number

of women to men in FLOSS communities (Ghosh et al., 2002). This is certainly an area for
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improvement and hopefully can be examined through further study of the socialization process.

Worldwide distribution shows that over half of the respondents were from the United States

and Europe. These results could be skewed slightly since the solicitation for participation and

the survey itself were in English. For those not fluent in reading English they may not have

been able to respond to the survey.

Most of the participants in both communities have a reasonably high level of experience

contributing to FLOSS communities and possess technical expertise in programming. The

amount of time spent each week in various areas such as programming, fixing bugs, commu-

nication, and other areas indicates that in general for those who responded, people in Mozilla

spend more total time than KDE. This may be reflected by the fact that there were a large

number of participants responding that receive monetary compensation to work at Mozilla as

opposed to KDE. When examining the relative percentages of time spent in various activities,

they are overall roughly similar. Communication takes up a large amount of time for Mozilla

participants and to a lesser extent KDE participants. The amount of time participants spend

fixing and responding to bugs is consistent with the maturity and stability of both Mozilla and

KDE projects.

Many of the participants self-identified as being at the beginner stages of integration into

the community for KDE and to a lesser extent Mozilla. The integration level that participants

would like to have in the future showed that a large number of participants in both commu-

nities would like to be expert and core members of the community. This indicates that these

participants do not want to be at the edge of the community but rather be active and high level

members after their socialization. Understanding wanted integration levels might help project

members focus attention and resource on the appropriate people.

The large variance in the amount of time participants spent watching the mailing list before

posting matches previous research by von Krogh et al. (2003). This emphasizes the importance

of understanding the social fabric of a community before engaging with it.

In the survey areas related to gauging new members and the socialization process, approxi-

mately 50% of respondents for Mozilla indicated some level of difficulty in how easy it is for new

members to join the community. This suggests a potential area for improvement. The actual
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skills that participants felt new members should possess again show some importance for tech-

nical and programming skills however also suggests a high importance in social communication

skills. For Mozilla, approximately half of the participants disagreed and felt new members are

not easily integrated into the community echoing the results of the previous Likert question.

In both communities, participants felt new members are treated with respect.

Participants in both Mozilla and KDE felt that keeping track of various processes in the

community such as mailing lists, bug reports, source code changes, and other areas were fairly

effective. However, roughly one quarter felt that there could be some improvement in many of

these areas. Tools focusing on these particular areas could help in these processes, particularly

for new members.

The results from the quantitative and qualitative data seem to paint a primarily positive

picture of socialization and inclusion for KDE and perhaps a slightly larger, more complex

process of socialization and inclusion for Mozilla because of the daunting size of its community

and codebase. Interestingly, in many cases for both communities, the ratings for the community

on a number of factors relating to the socialization process and the ability for the community

to effectively coordinate tasks were actually higher for the beginner participants as compared

to the veterans. This indicates that perhaps the beginners have a slightly rosier view or outlook

on the community while those that are veterans know the “true” state of the community. This

suggests that new participants may have an over-inflated view of the overall ease of joining,

participating, and contributing to the community than veteran members. Ensuring realistic

expectations for beginners, while at the same time keeping tasks simple to ease the transition

process, may be an important step in this socialization process to ensure new members don’t

leave the community early.

The results of this study are subject to the following threats to validity. External validity

is defined as how well the findings generalize to other populations or groups. In this case, there

appeared to be some overall differences in perception between Mozilla and KDE. This suggests

the skewed difference in perception between beginner and veteran community members perhaps

may not generalize to other large FLOSS projects. Obviously, projects vary in terms of how

they’re organized and developed, especially as their size increases.
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The survey data was gathered via convenience sampling. Not all members of the commu-

nity participated. The survey may have pulled participants from more technical backgrounds

and missed people in other areas of the community such as localization, advocacy, writing, and

other areas. A larger sample size pulling participants from more areas of the community would

address this issue. In general, the small sample size obtained for each of the two communities

means these results should be taken with that under consideration. Increased participation in

the survey would increase the validity, however overall, the trends of the data suggest a pre-

dominantly positive health of both communities with potential for improvement in socialization

of new participants. The results of this initial survey and ideas suggested were considered and

evaluated during the brainstorming and development of the algorithms and Jamii website.
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CHAPTER 4. ALGORITHM AND WEBSITE DEVELOPMENT

Overview

In efforts to provide relevant information and analysis to open source project contributors,

an online website was developed called Jamii. The name “Jamii” comes from Swahili meaning

“community”. Leveraging a distributed version control system Git (Git, 2015) as well as an

email mailing list, the data is parsed and processed. The website has three sections: impactful

commits, developer knowledge, and communication suggestions. The specifics of the develop-

ment of the Jamii website and description of the details of the three algorithms are covered in

the following chapter.

4.1 Jamii Online Website

The Jamii website has both a backend processing side as well as a user-facing frontend (see

Figure 4.1). The source code of Jamii is available on the Github website (Jamii Github, 2015).

Figure 4.1 Data Mining Sources
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Jamii was built on top of a wide variety of libraries and software. All of the backend

processing as well as the frontend use Python (Python, 2015) as the programming language.

Jamii processes email mailing lists exported to flat text-files in Mbox format as well as source

code version control stored in Git (Git, 2015). Identifying technical dependencies between

source code files are limited to the C++ language. This is accomplished using the Python

Clang bindings in LibClang as part of the Clang project (Clang, 2015). Clang is a compiler

and set of tools which is part of the overarching LLVM project (LLVM, 2015). Once the data

is processed through the backend, it is stored in a Neo4j (Neo4j, 2015) graph database.

Graphs are a collection of nodes and edges (also referred to as vertices). An edge connects

two nodes and can either be directed meaning there is a directionality between the two nodes

and a connecting edge or it can be undirected. An example of a directed graph can be seen in

Figure 4.2.

Figure 4.2 Example Graph with Nodes and Edges

Graph databases are relatively new in the realm of databases and data storage. They are

categorized as so-called “Not Only SQL” or NoSQL databases. NoSQL databases contrast with

more traditional relational SQL databases that use tables to store the information. Querying

of the data uses some form of SQL. An example reading the entirety of a specific table in a

relational database is as follows:

SELECT * FROM tablename
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Tables can be combined and filtered in a wide variety of ways using SQL queries. One

disadvantage of relational databases is that as the number of tables increase the complexity of

SQL statements grows. NoSQL databases often have simpler storage of information resulting

in potentially faster queries than relational databases. Key-value storage and document stores

are two of the more popular types of NoSQL databases. Titan (Titan, 2015), MongoDB (Mon-

goDB, 2015), and many other NoSQL databases were compared as possibilities for data storage.

The graph database Neo4j was selected over other NoSQL databases and relational databases

because it fits the overall use of graphs as data in the STC framework. Neo4j uses nodes and

edges with both being able to have named properties with values.

Neo4j uses its own query language called Cypher (Neo4j Cypher Refcard, 2015) which is

similar in concept and functionality to SQL queries. An example Cypher statement that queries

all nodes and returns them if they have a property set to 1 can be seen below:

start a=node(*) where a.property = ‘1’ return a;

Through the backend processing stages; nodes, edges, and properties are added and re-

moved. The final database structure that is queried and returns information to the users can

be seen in Figure 4.3. The squares are nodes and the edges are arrows with example properties

listed after the equal sign.

Access to Neo4j through Python can be done two ways. The first way is to use a representa-

tional state transfer (REST) (Fielding & Taylor, 2002) web application programming interface

(API) to access the data in Javascript object notation (JSON) format. The second way is

to use the python-embedded driver which makes a direct straight connection. The embedded

driver version is faster and allows more reads and writes and so therefore was used mostly for

the backend processing. For the frontend accessing of data, the REST API was utilized.

Neo4j is ACID (Atomicity, Consistency, Isolation, Durability) compliant, meaning that all

read and write operations are guaranteed. The formal definition and details of ACID can be

found in the ISO standard1.

1ISO/IEC 9804 1998
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Figure 4.3 Neo4j Database Structure
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• Atomicity: “A property of a set of related operations such that the operations are either

all performed, or none of them are performed.”

• Consistency: “A property of a set of related operations such that the effects of the oper-

ations are performed accurately, correctly, and with validity, with respect to application

semantics.”

• Isolation: “A property of a set of related operations such that partial results of the set of

operations are not accessible, except by operations of the set. This definition implies that

different sets of related operations that have this property and that share bound data are

serializable.”

• Durability: “A property of a completed set of related operations such that all the effects

of the operations are not altered by any sort of failure.”

The downside of this is that the database locks whenever an operation needs to be per-

formed and only one connection can acquire this lock at a time. This resulted in substantial

performance challenges in the development and use of the database.

The frontend user facing web portion of Jamii uses Django (Django, 2015) which is a web

framework that utilizes Python. Django allows for the creation and management of webpages

through a template system. Bootstrap was used to provide the theming of color and style

using cascading stylesheets (CSS) (Bootstrap, 2015). Live updating of website content is done

through jQuery (jQuery, 2015), Datatables (Datatables, 2015), and typeahead.js (typeahead.js,

2015). Pygments is used for source code color highlighting (Pygments, 2015). Visualization and

graphics are generated using jqPlot (jqPlot, 2015) and d3.js (D3.js, 2015). User profile images

are pulled from the Gravatar website (Gravatar, 2015) which ties an image to a unique email

address. Some images and icons were provided by the Tango Desktop Project (Tango Desktop

Project, 2015). An image of the front page of the Jamii website can be seen in Figure 4.4.

4.1.1 Formative Usability Testing

The Jamii website was pilot tested with three graduate students who had not seen the

website prior to the testing. Each participant was asked to explore the website and use a
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Figure 4.4 Front Page of Jamii Website
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think-aloud protocol to narrate their thought process throughout the experience. After viewing

the entire website, participants were interviewed about the experience. Participants offered a

number of suggestions as to the usability of the website. Many of these suggestions were

features or improvements that were incorporated before the website was released to the two

communities, KDE and Mozilla. The details of the algorithms used in the Jamii website are

outlined in the rest of this chapter.

4.2 Impactful Commits Algorithm

The impactful commits section of the website provides information about which commits

have been identified as being impactful to changing the overall technical dependency structure

of the source code. An example showcasing the impactful commits section for the KDE project

can be seen in Figure 4.5. When the user clicks on a specific commit, the website drills down

into the details of the impact calculation for that commit. This provides information as to the

files and or functions and the calculated impact change for each one. An example of this can be

seen in Figure 4.6. In these figures and other screenshots of the webpages in subsequent sections,

developer names, profile images, and email addresses are blurred out to ensure confidentiality.

The impactful commits algorithm employs the original version of the pagerank algorithm

to determine the relative importance of files and functions in the source code (Page, Brin,

Motwani, & Winograd, 1998). This algorithm was utilized and popularized by the Google

search engine. The concept of determining the importance of nodes in a network has multiple

possible algorithms and solutions. One alternative that was examined is the calculation of an

accessibility index as presented by Gould (1967). For each node in a network, a numerical value

can be calculated identifying how accessible it is from all other nodes in the network (Straffin,

1980). This uses the calculation of eigenvalues and eigenvectors which is similar in structure

to how pagerank can be calculated. Pagerank was selected over these other methods because

the iterative calculation was easier to compute for large graphs.

A commit is a single set of changes to source code files. A commit contains the addition and

deletion of the lines of source code text. A commit also has the name, email address, date, and
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Figure 4.5 Code Impact Section of Jamii Website
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Figure 4.6 Code Impact Details
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time of the developer who made the commit. Commits are part of the version control process

and are similar in concept across version control systems and software.

Once the importance of the files and functions is determined for an individual commit, the

next commit in the history is selected and the pagerank algorithm is run again. Changes to the

source code could add or remove files or functions and adjust function calls. This then changes

the technical structure of the overall graph resulting in different values when pagerank is run

again. The delta difference between the previous page rank value and the new page rank value

is calculated for each node. The sum of these delta differences becomes the final code impact

value for that commit.

An example calculating pagerank for a small graph (see Figure 4.7) is shown below.

Figure 4.7 PageRank Graph Example

The variables and a definition can be seen in the following list.

• PR(x): the pagerank of node x

• N : the set of nodes in the graph

• x: the node to calculate pagerank, x ∈ N

• d: a constant (usually set to 0.85), this will adjust what the minimum pagerank value

can be

• Wi: the set of all nodes linking to x

• L(i): the number of outgoing edges on node i, an integer value
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PR(x) = (1− d) + d(
∑
p∈Wi

PR(p)

L(p)
) (4.1)

The calculation of pagerank values for each of the four nodes in the example graph is as

follows.

PR(A) = (1− d) + d(
PR(C)

L(C)
)

PR(B) = (1− d) + d(
PR(A)

L(A)
)

PR(C) = (1− d) + d(
PR(A)

L(A)
+

PR(B)

L(B)
+

PR(D)

L(D)
)

PR(D) = (1− d) + d(0)

Since the calculation of pagerank is iterative, the starting pagerank value is set to 1 for all

nodes.

Iteration 1:

PR(A) = (1− 0.85) + 0.85(
1

1
) = 1

PR(B) = (1− 0.85) + 0.85(
1

2
) = 0.57

PR(C) = (1− 0.85) + 0.85(
1

2
+

1

1
+

1

1
) = 2.27

PR(D) = (1− 0.85) + 0.85(0) = 0.15

Iteration 2:

PR(A) = (1− 0.85) + 0.85(
2.27

1
) = 2.08

PR(B) = (1− 0.85) + 0.85(
1

2
) = 0.57

PR(C) = (1− 0.85) + 0.85(
1

2
+

0.57

1
+

0.15

1
) = 1.19

PR(D) = (1− 0.85) + 0.85(0) = 0.15

Iteration 3:
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PR(A) = (1− 0.85) + 0.85(
1.19

1
) = 1.16

PR(B) = (1− 0.85) + 0.85(
2.08

2
) = 1.03

PR(C) = (1− 0.85) + 0.85(
2.08

2
+

0.57

1
+

0.15

1
) = 1.64

PR(D) = (1− 0.85) + 0.85(0) = 0.15

As the iterations of pagerank calculations continue, the values slowly converge. These are

the final pagerank values for each node.

PR(A) = 1.49

PR(B) = 0.78

PR(C) = 1.58

PR(D) = 0.15

The same pagerank values can be seen in Figure 4.8. As can be seen, the pagerank has

identified node C as the most important node. The impactful commits algorithm pseudocode

can be seen in Algorithm 1.

Figure 4.8 PageRank Graph Example With Values

The end result is a summed code impact value for each commit. The individual impact

calculations per node are also stored in the Neo4j database. This makes it easy to show not

only the summed total impact but also details as to which file or function nodes contributed

the most to the impact calculation.
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for each commit in history, starting at oldest do

totalImpact = 0

if calculating for first commit then

set each node’s pagerank to 1

calculate and save pagerank for each node

else

calculate and update pageranks for each node

for each node where the new pagerank 6= old pagerank do

delta impact = |newPR− oldPR|
totalImpact = totalImpact + delta impact

end for

end if

return totalImpact

end for

Algorithm 1 Calculation of Code Impact

Using the original pagerank graph shown previously in Figure 4.7, the following example

shows how changes to the structure of the graph impact the pagerank and the subsequent

calculation of code impact. The original graph and changes to the graph via a simulated code

commit can be seen in Figure 4.9. From the commit, the edge from node C to A is removed.

In addition, a new node E is added and connected to node D.

Figure 4.9 Code Impact Example

The resulting pagerank calculations for each graph are shown in Figure 4.10. As can be

seen, the pagerank value for node C decreases dramatically because of the removed edge. This

has wide ranging repercussions for not only that node but nodes that it’s connected to. This is

one of the main strengths of the pagerank calculation, it is able to take into account the entire

structure of the graph and dependencies when calculating a value.
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Figure 4.10 Code Impact Example Page Rank Values

Using Algorithm 1 above, we calculate the delta impact difference for each node. The sum

of these delta impact values is the total code impact for this commit.

delta(A) = |1.49− 0.15| = 1.34

delta(B) = |0.78− 0.21| = 0.57

delta(C) = |1.58− 0.63| = 0.95

delta(D) = |0.15− 0.27| = 0.12

delta(E) = |0− 0.15| = 0.15

total code impact = 1.34 + 0.57 + 0.95 + 0.12 = 2.98

By walking the history of the commits through time, the pagerank values of the new de-

pendency graph are compared against the past pagerank values to determine what influence

the commit had on the overall dependency structure.

4.3 Degree of Knowledge Algorithm

Degree of knowledge (DOK) represents the knowledge that a developer or set of developers

have for a particular section of code. As developers work on a project the code changes over

time. Knowledge can fluctuate based on the time spent by the developer, their technical

expertise, and overall understanding of the codebase. The utility of quantifying developer

expertise is especially important for new developers because it can provide a suggested contact



90

if there are questions about the code. Early research in knowledge recommendation systems

considered knowledge as binary where only one developer has knowledge of a file. However,

in reality this is a major over simplification. Multiple developers can have varying levels of

experience and expertise with different sections of code in a file and this knowledge can change

over time.

Previous research on identifying degree of knowledge has primarily examined changes to

source code as the main factor for calculation (Mcdonald & Ackerman, 2000; Mockus &

Herbsleb, 2002). One method that was developed to quantify knowledge was the “Exper-

tise Browser” tool (Mockus & Herbsleb, 2002). The authors define, “experience atoms” (EA)

which are small units of experience activity that developers contribute to a project. The ex-

perience of an object is the total combination of all experience atoms related to that object.

As an example, changes in the source code could be considered experience atoms in that they

apply to a specific object and are tied to the developer who initiated the change.

Mcdonald and Ackerman (2000) developed the “Expertise Recommender” tool. It uses two

identification heuristics: change history and tech support. The change history heuristic is de-

fined by the “Line 10” rule. This rule states that the person who last modified a module has the

most expertise with that module. The authors contend that this developer has the “freshest”

view of that module and thus would be the best person to ask when it comes to a question.

The tech support heuristic identifies the importance of social interaction, communication, and

identification data that is relevant in determining expertise.

More recent approaches have utilized the idea of Social Technical Congruence (Cataldo et

al., 2006). The Emergent Expertise Locator (EEL) considers the importance of dependencies

between files in calculating expertise (Minto & Murphy, 2007). This approach accounts for

situations when a developer may use features from other files or modules but does not contribute

code to them. The developer still has expertise about these modules through usage, such as in

the case of an API.

Another recommendation tool is xFinder which plugs into Eclipse (Kagdi, Hammad, &

Maletic, 2008). Through evaluating three pieces of information, it provides a ranked list of

developers who can provide help related to a source code file. The inputs to infer developers are
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commit contribution, recency of activity, and the number of active workdays. The researchers

took two snapshots in time of various open source projects. The first snapshot was used for

training and the second snapshot was used for validation. Through the use of these snapshots,

the researchers found the accuracy of the algorithm to be between 43% and 82%.

Additional research has mined changes to the code-base that have not yet been commit-

ted (Hattori & Lanza, 2009). Syde uses a client-server architecture where local development

changes are compiled and tested against the server source code. Merge conflicts can then be

identified before they are pushed to the central version control. While local activity is an im-

portant facet of determining expertise, it may not be appropriate in all situations due to the

need for a central server as well as potential privacy and security concerns. In large corporate

environments where the platform is standardized around a particular integrated development

environment (IDE), this may be feasible. However, in OSS, this may be more difficult and

relying on available version control data may be more realistic.

Ownership of source code has also been tied to defects (Bird, Nagappan, Murphy, Gall,

& Devanbu, 2011). In a study examining contributions to Windows Vista R© and Windows

7 R© binary DLL files, the researchers found that sections with many minor contributors had

more defects. In some cases, having a component with high ownership of a few individuals

resulted in less defects as well. This study shows that the application of developer knowledge

and expertise on systems can play a role in forecasting, identifying, and fixing bugs. For Open

Source projects, this could mean targeting developers with high ownership to a particular area

with information and having them fix bugs when they are identified. Developer expertise has

also been identified through analysis of bug reports by identifying how long it takes developers

to resolve bugs (Nguyen, Nguyen, Duesterwald, Klinger, & Santhanam, 2012).

While authorship is primarily used in recommendation and expertise identification systems,

interaction with the source code is another important factor as highlighted by Fritz, Murphy,

and Hill (2007). Through running an experiment, the researchers asked programmers ques-

tions regarding the elements that they had worked with. Using quantitative and qualitative

methods, they found that the frequency and recency of interaction with the elements in the

source code influenced knowledge. The same research group has also combined authorship and
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interaction data in calculating degree of knowledge (Fritz, Ou, Murphy, & Murphy-Hill, 2010).

Interestingly, researchers found that the most influential factor in determining DOK to be if

the developer was the first author of the file. A case study and comparison to existing expertise

recommenders was performed.

The idea of measuring historical changes to source code has also been applied to identifying

classes for reverse engineering or refactoring. In an algorithm called, “Yesterday’s Weather”,

researchers use the concept that predicting tomorrow’s weather can be influenced a fair amount

by the weather pattern of today. These predictive methods were used to find classes that were

good candidates as a first step for reverse engineering (Gı̂rba, Stéphane, & Lanza, 2004).

The line authorship expertise calculation as proposed by Gı̂rba, Kuhn, Seeberger, and

Stéphane (2005) most closely resembles the degree of knowledge calculation proposed here. In

their work, the author of each line of source code in a file was identified and the developer with

the highest ratio of lines over the total lines in the file was determined to be the developer with

the most expertise. The benefit of using this algorithm is that it can be calculated at multiple

granularity levels. The downside is that it does not consider historical changes to the file.

Decay of expertise is something that has been examined in research throughout different

areas. With regard to Social Technical Congruence, a decay factor has been proposed that

reduces dependencies over time to slowly phase them out (Wagstrom et al., 2009). Other

research has defined code decay as the increasing amount of effort and time necessary to make

changes to the code (Eick et al., 2001; Ohlsson et al., 1999). Causes identified were inappropriate

architecture, time pressure, programmer variability, and a number of other issues (Eick et al.,

2001). This definition was broader in identifying causes and symptoms of code decay. In

examining small group dynamics, the idea of decay has also been applied to teams showing

among other things, a decline in communication as the team ages (Mcgrew et al., 1999).

The following proposed algorithm expands upon the work of Gı̂rba et al. (2005) in two

ways. First, the algorithm takes into account past commits by developers. Second, the algo-

rithm calculates knowledge based on an exponential decay of knowledge. As time passes, the

developer’s memory about code they have written fluctuates. By combining this with historical
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source code revision information, the algorithm calculates a model of developer knowledge. The

algorithm implementation is described mathematically below.

A description of variables used in the algorithm are as follows:

• D: the set of all developers who have worked on a file.

• i: a single developer, i ∈ D.

• t: defines an integer index on the number of revisions made to a file.

• j: an integer defining a single line in a source code file.

• Sjp: the set of developers who have authored commits at line j from t = 1 to p, p ≤ t.

• Sjt: the developer at line j and revision t of the source code who authored the line,

Sjt ∈ D.

• Wt: the number of days between revision t and the current date.

• b: the exponential decay factor, ranges from [0−1], higher values represent a higher decay

amount, user specified parameter.

• x to y: a range of lines in the source code file, 0 < x ≤ y.

• Oitxy: the total authorship amount of developer i for a range of lines x to y at revision t

in the source code file adjusted by the decay of knowledge.

• Rijt: the authorship amount of developer i for a single line j in the source code file at

revision t adjusted by decay of knowledge, ranges from [0− 1], see Algorithm 2.

• Ztxy: an integer value denoting the total potential authorship amount of all developers

at revision t for a range of lines x to y in the source code.

• Eitxy: the percentage of knowledge for developer i at revision t for a range of lines x to

y in the source code, defined as a ratio, values range from [0− 1].
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As developers make commits to source code, these revisions are captured in version control.

Additions, deletions, and modifications of lines of source code are applied. When a commit is

made, the t value keeping track of the number of revisions increases by one.

The end goal for the algorithm is calculating developer knowledge as defined as a ratio

percentage.

Eitxy =
Oitxy

Ztxy
(4.2)

Oitxy has a minimum value of 0 and a maximum value of (y − x) + 1. Ztxy has a minimum

value of (y−x)+1 and a maximum value of ((y−x)+1)∗|D| where |D| denotes the cardinality

or number of elements in D. To determine the numerator of the knowledge ratio, the sum of

the authorship amounts for a developer is calculated for each line in the source code based on

the range is calculated.

Oitxy =

y∑
j=x

Rijt (4.3)

The knowledge algorithm presented here differs from previous work (Gı̂rba et al., 2005)

by stepping back through the revisions for each line and determining the last time the author

made a commit to that specific line.

while t > 0 do

if i = Sjt then

return (1− b)Wt

end if

t = t− 1

end while

return 0

Algorithm 2 Calculation of Rijt

If the developer never authored any content for that particular line, 0 is returned. If

the developer is found to have authored content for the line, the exponential decay adjusts

the knowledge value that is returned. The developer’s memory decays over time and this is

reflected by the exponential decay calculation. This weighting value adjusts the return result
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appropriately. The DOK calculation only takes into account the last commit an author made

for a line. Multiple commits by the same author throughout the history of the source code line

are not summed.

The denominator of the knowledge ratio is defined as the sum of the cardinality of the

intersection between the list of developers and the lines of source code from the initial revision

up to a certain revision point. This value increases through modification commits by developers.

In this case, multiple developers now have an authorship claim over a single line in the source

code.

Ztxy =

y∑
j=x

f(j, t) (4.4)

f(j, t) = |D ∩ Sjp|

An example that goes through the calculation for a small file is presented. There are three

developers and knowledge will be calculated for developer A at the most recent revision 4.

Overall developer knowledge will be calculated for the entire file as defined by x and y.

• D = A,B,C

• i = A

• t = 4

• x = 1

• y = 4

• b = 0.01

There were 4 revisions to the file as can be seen in Table 4.1.

The authorship information for each line in the source code file over the revisions is shown

in Table 4.2. The number of days from revision t to the current date is at the top of the table

at Wt.
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Table 4.1 Revisions to the File

t Operation

1 The initial commit by author A, lines 1 through 3

2 Developer B adds lines 4 and 5

3 Developer C modifies lines 1 and 2

4 One developer deletes the last line, 5

Table 4.2 Authorship Information for Source Code File

Wt 15 10 4 2

t 1 2 3 4

Sjt

j = 1 A C

j = 2 A C

j = 3 A

j = 4 B

j = 5 B X

The deletion operation of revision t = 4 only has an impact on reducing the value of Ztxy.

It has no impact which developer does the deletion. It removes that line from the knowledge

calculation.

Z4,1,4 = 2 + 2 + 1 + 1 = 6 (4.5)

At this point, the denominator of the knowledge ratio has been calculated for EA,4,1,4. Next

the numerator of the knowledge ratio needs to be calculated.

OA,4,1,4 = RA,1,4 + RA,2,4 + RA,3,4 + RA,4,4 (4.6)

RA,1,4 = (1− 0.01)15 = 0.9915 = 0.86

RA,2,4 = (1− 0.01)15 = 0.9915 = 0.86

RA,3,4 = (1− 0.01)15 = 0.9915 = 0.86
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RA,4,4 = 0

Then the values for each line are summed to yield the final value.

OA,4,1,4 = 0.86 + 0.86 + 0.86 + 0 = 2.58 (4.7)

The ratio is finalized and the knowledge for developer A is complete.

EA,4,1,4 =
OA,4,1,4

Z4,1,4
=

2.58

6
= 0.43 (4.8)

In this example, developer A has a calculated knowledge of approximately 43%. Note that

because of the exponential decay, the knowledge sum of all developers will not usually be 100%.

As time progresses and developers leave the code untouched, the knowledge calculation needs

to be recomputed. This allows the user to compare across the files to see relative to others

what developers have been working on. This example shows the past history of authorship on

the part of developer A in determining knowledge. The influence of the increasing number of

days since the authorship reduces the knowledge through exponential decay.

This algorithm is integrated into the Jamii website in the developer knowledge section.

The initial screen allows the user to navigate the files and folders of the source code as seen

in Figure 4.11. Once the user selects a file, they are presented with another page that allows

them to select the lines in the file that they wish to calculate knowledge for. This can be seen

in Figure 4.12.

4.4 Communication Suggestions Algorithm

The “communication suggestions” algorithm provides suggestions about who a developer

could be increasing communication with on the mailing list based on shared technical de-

pendencies and recent communication. Using the basic tenet of STC, the algorithm tries to

identify gaps in congruence between the current communication structure and the ownership

or knowledge between developers on files.
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Figure 4.11 Developer Knowledge Section of Jamii Website
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Figure 4.12 Developer Knowledge Details
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On the Jamii website, the user first selects their name, or the name of someone of whom they

would like to view communication suggestions. This can be seen in Figure 4.13. The next page

provides the details and the top five people that it has deemed most important for increasing

communication on the email mailing list. An example of this can be seen in Figure 4.14.

Figure 4.13 Communication Suggestions of Jamii Website

First, the backend processing identifies the email communication that has occurred via

various email threads on the mailing lists. Each developer or author may have contributed one

or more emails to the thread. In addition, the knowledge each developer has for each line of

source code is available from the previous knowledge calculation algorithm. An example can

be seen in Figure 4.15.

The next step is to break these multiple links down to a single value between author →

email thread and author → file. The same knowledge algorithm that was described earlier in

this chapter is used to calculate the knowledge of the author for the entire file.



101

Figure 4.14 Communication Suggestions Details

Figure 4.15 Communication Suggestions Initial Data
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• b: the exponential decay factor, ranges from [0− 1], set to 0.01

• x: the first line in the file, set to 1

• y: the last line in the file, must be ≥ 1

Oitxy =

y∑
j=x

Rijt

Using the same method of exponential decay, a communication score is generated between

an author and each email thread where they have been a contributor. This singular score

accounts for the recency of the email(s) as well as the number that are sent. It uses the

same concepts as seen in the knowledge calculation. The final calculated communication score

is defined as Ciq and can be seen in Algorithm 3. This is done for all developers and the

corresponding email communications.

• Eq: the number of days between the email thread q and the current date

• b: the exponential decay factor, ranges from [0− 1], set to 0.01

• i: a single developer, i ∈ D

• q: a single email thread

• Ciq: the final communication score from developer i to email thread q

Ciq = 0

for each communication edge from developer i to email thread q do

Ciq = Ciq + (1− b)Eq

end for

return Ciq

Algorithm 3 Calculation of Ciq

At this point, the knowledge and communication edges have been consolidated to single

scores as can be seen in Figure 4.16.
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Figure 4.16 Consolidation of Knowledge and Communication Scores

The next step is to calculate two different summed scores. The interpersonal score repre-

sents the amount of directed communication between one person and another. The file score

represents the amount of shared technical dependencies between two developers. The usage of

these two scores is similar in concept to the idea of calculating congruence. Two developers

with a high file score show that they should be communicating a fair amount about their work.

If the interpersonal score between these two developers low, this represents low communication

and thus low congruence.

The interpersonal score is calculated by summing the communication scores that run be-

tween the authors and can be seen in Algorithm 4.

for each developer v do

for each developer p do

interpersonalscorev,p = 0

for each email communication exchange between

v and p via an email thread do

interpersonalscorev,p = interpersonalscorev,p + communicationscorev
end for

return interpersonalscorev,p
end for

end for

Algorithm 4 Calculation of interpersonal score for each developer

In the database, the interpersonal score is a directed edge between two developers. The

interpersonal scores between v → p versus p→ v may be, and often are, different.
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The file score is calculated by summing the knowledge values from one author to another

modified by a weighting factor and can be seen in Algorithm 5. The weighting factor varies

depending on whether two developers are working on the same file, files that are dependent

on one another, or files that share a common dependent file. The weighting means that longer

chains of files linking two authors will be modified lower in score because there is less of a

dependency relationship between those two people. An example of the three possible conditions

on which the file score is used and modified by the weighting can be seen in Figure 4.17.

for each developer v in the database do

for each developer p in the database do

filescorev,p = 0

for each knowledge link between v and p via a file(s) do

if there is direct knowledge between v and p via a file then

filescorev,p = filescorev,p + knowledgev
else if there is an knowledge connection between

v and p through dependent files then

filescorev,p = filescorev,p + (knowledgev ∗ 0.5)

else if there is an knowledge connection between

v and p through three dependent files then

filescorev,p = filescorev,p + (knowledgev ∗ 0.25)

end if

end for

return filescorev,p
end for

end for

Algorithm 5 Calculation of file score for each developer

Figure 4.17 Weighting File Scores
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In the database, the file score is a directed edge between two developers. The file scores

between v → p versus p→ v may be (and often are) different.

At this point, the interpersonal scores and file scores have been tabulated for all the devel-

opers. The scores are then normalized as can be seen in Algorithm 6. Since the interpersonal

scores and file scores are calculated differently and are based on different data, comparing the

raw values cannot be done. Normalizing the scores ensures that comparisons between the two

can be made.

for each developer v do

IPmin = minimum interpersonal score for v

IPmax = maximum interpersonal score for v

FSmin = minimum file score for v

FSmax = maximum file score for v

for each interpersonal score g of developer v do

normalizedinterpersonalscore = g−IPmin
IPmax−IPmin

end for

for each file score h of developer v do

normalizedfilescore = h−FSmin
FSmax−FSmin

end for

end for

Algorithm 6 Calculation of normalized interpersonal and file scores

The resulting normalized interpersonal and file scores have a range from [0 − 1]. In the

database, the normalized interpersonal and file scores are directed edges between two develop-

ers. The normalized interpersonal and file scores between v → p versus p → v may be, and

often are, different.

By normalizing the scores, they can now be compared against one another. The normalized

interpersonal score from one developer to another represents how much that developer has been

communicating with the other developer relative to their total communication. The normalized

file score from one developer to another represents how much that developer works on similar

files as the other developer relative to other developers.

After the scores are normalized, communication suggestions can be determined. Considering

the main tenet of STC is that the congruence between the technical dependencies and the
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communication between developers should be high, direct comparisons can be made between

the two normalized scores. As an example, assume the normalized interpersonal score for

developer v to p is 0.2. This means that of all the communication that developer v has done,

there has been overall very little communication to developer p. Next assume the normalized file

score for developer v to p is 0.9. This indicates a high amount of shared programming through

files and file dependencies between the two developers. The Jamii website shows the difference

between these two normalized scores and displays the top five largest differences where the file

score is larger than the interpersonal score. This shows where increased communication could

help developers by increasing their interpersonal score.
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CHAPTER 5. WEBSITE ANALYSIS

Overview

The Jamii website was tested with data from two large open source communities, Mozilla

and KDE. The processing and calculations took a series of days for both communities. Sub-

stantial work and testing was done to speed up the calculation process. Some of this effort

involved running some of the processing on faster department computers while other efforts

involved parallelizing portions of the calculation process.

After the data was processed and the Jamii website went online, the survey and interviewing

process started. The objective of this data collection was to assess the perceived usefulness of

the website by community members as well as the potential for improving the socialization

process for new members. Overall survey and interview data collection started on March 30,

2015 and ended April 28, 2015 resulting in time period of around one month.

5.1 Jamii Data

The Mozilla version control data was pulled from the gecko-dev repository on Github1

covering the master branch from December 10, 20142 to January 9, 20153. The gecko-dev

repository contains various applications and libraries such as the web-browser Firefox, Netscape

Portable Runtime (NPR), extensions, xulrunner, and many others. The email mailing list data

was pulled from archives from the Gmane website (Gmane, 2015). Limitations of processing

time were encountered because the knowledge calculations need to run on every line of a file

going back through the source code history. Therefore, the developer knowledge processing

1https://github.com/mozilla/gecko-dev.git
2Git Hash: 437abd21eec991a1fd8d0ac8ee85bde4749e3a71
3Git Hash: c4485f2b8f28eae3ee50c82d6f35cad125478cae
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was limited to the “browser” source code folder. Developer knowledge was also limited to files

with the following file extension (.cpp, .h, .c, .hpp, .hh, .inl, .in).

• gmane.comp.mozilla.devel.builds

• gmane.comp.mozilla.devel.firefox

• gmane.comp.mozilla.devel.gaia

• gmane.comp.mozilla.devel.mobile

• gmane.comp.mozilla.devel.platform

• gmane.comp.mozilla.firefox.devel

The KDE version control data was pulled from the KDE baseapps repository4 covering the

master branch from Jan. 1, 20145 to Jan. 5, 20156. The kde-baseapps repository contains

various applications such as the file manager Dolphin, web-browser Konqueror, utility tools

such as KFind, and others. The email mailing list data was pulled from archives from the

Gmane website (Gmane, 2015). Developer knowledge was limited to files with the following

file extension (.lua, .cpp, .h, .xml, .py, .txt, .mkd, .sh, .js, .c, .hpp, .hh, .inl, .in).

• gmane.comp.kde.devel.core

• gmane.comp.kde.devel.core.bugs

• gmane.comp.kde.devel.general

• gmane.comp.kde.general

The resulting finalized Neo4j databases for Mozilla and KDE ended up having almost 60,000

nodes each and hundreds of thousands of edges. The details of which can be seen in Table 5.1.

The resulting database size for KDE is slightly misleading as being small compared to the overall

size of the community because of how the source code repositories are organized. Mozilla for

4git://anongit.kde.org/kde-baseapps
5Git Hash: ce040ab74f812cca04ed6f7dae02e8a13cfcfc04
6Git Hash: c78c6104bfcaf507a5a0915eec12e4ba05fc3ba0
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example has the source code for most of their projects in a single repository called “gecko-

dev”. This “gecko-dev” repository was the one analyzed and presented through the Jamii

website. KDE on the other hand has decided to split up their source code into many different

repositories. This analysis was run on the “kde-baseapps” repository but there are others such

as “kdelibs”, “kdegames”, “kdenetwork” and a wide variety of others (KDE Getting Started,

2015).

Table 5.1 Neo4j Database Statistics

Nodes/Edges Mozilla KDE Total

Mailing List Threads 6710 45729 52439

Functions 26626 850 27476

Files 20913 895 21808

People 2483 12346 14829

Commit Hashes 826 109 935

Total Nodes 57559 59930 117489

Expertise 1199 5417 6616

Knowledge Lines 81624 232311 313935

Depends 81846 1296 83142

Has 25511 813 26324

Calls 30556 908 31464

Include 60301 1296 61597

Communication 27156 203686 230842

FileScore 234572 70796 305368

InterpersonalScore 51223 286096 337319

Impact 50735 1962 52697

Total Edges 644723 804581 1449304

Analysis of the two source code repositories using the Count Lines of Code (CLOC) program

version 1.60 (CLOC, 2015) was performed. The results for Mozilla can be seen in Table 5.2

and the results for KDE can be seen in Table 5.3. These results were used to check against the

Neo4j database statistics to ensure a rough match in terms of the number of files.

The Mozilla codebase has a large number of C/C++ files, but also a large number of

Javascript files. One downside is that the technical dependencies were not identified for files

besides C++. Adding additional dependency checks for other programming languages is one
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Table 5.2 CLOC Mozilla Statistics

Language Files Blank Comment Code

C++ 7819 560777 448802 3038699
Javascript 19853 406474 386086 2273592
C 3053 246768 345311 1426339
HTML 31452 164787 37507 1424489
C/C++ Header 10894 316974 620420 1406972
Python 1783 62228 74484 241480
Java 1991 48222 88496 226315
Bourne Shell 377 26239 30624 172131
Assembly 364 24277 18377 136513
JavaServer Faces 2323 10190 3111 98017
IDL 1208 13272 0 95107
XML 1783 10828 5661 88929
CSS 826 17555 6766 76242
m4 91 5143 894 45094
Objective C++ 169 9981 7491 43257
NAnt scripts 729 4864 0 30032
Perl 98 3276 5004 17130
YAML 11 1421 116 11719
DTD 197 2210 2927 7617
make 128 2193 2524 7258
Teamcenter def 39 35 12 4781
SKILL 4 68 2 2419
DOS Batch 30 322 109 1973
yacc 3 203 164 1956
Objective C 16 420 523 1864
MATLAB 14 348 346 1825
XSD 3 143 1129 1587
XSLT 19 130 115 1108
CMake 7 208 498 953
lex 4 209 74 937
Pascal 5 245 500 775
Korn Shell 5 83 165 526
Bourne Again Shell 18 118 211 511
Expect 6 105 164 506
Ant 2 27 109 401
Lisp 2 40 37 228
SASS 3 39 0 217
awk 2 41 8 154
PowerShell 2 29 110 110
Ruby 3 22 6 83
sed 6 16 25 63
C Shell 2 13 9 32
Ada 1 5 0 16
CoffeeScript 2 7 4 13
D 2 7 40 10
PHP 1 0 0 2
Total 85350 1940562 2088961 10889982
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area for future improvement on the processing side of Jamii. CLOC also identified a wide

number of other supporting file types in a range of programming languages.

Table 5.3 CLOC KDE Statistics

Language Files Blank Comment Code

C++ 379 20246 13951 91218
C/C++ Header 369 7639 15131 18996
CMake 92 712 219 1505
XML 16 13 14 1112
Python 2 66 174 943
C 1 116 50 605
HTML 8 63 120 449
Bourne Shell 29 24 5 166
Ruby 2 0 12 114
CSS 2 24 12 60
Total 900 28903 29688 115168

The kde-baseapps codebase is mostly comprised of C/C++ files which made it ideal for

identifying the technical dependencies. There are a few other supporting scripts and file-types.

5.1.1 Website Analytics

Website analytics were calculated using Awstats (Awstats, 2015). Awstats is a program

that parses webserver access logs to identify when and what files were served to visitors. There

were over 250 visits to the Jamii website over approximately a one month time period. Four

different values were calculated by Awstats, the definitions of which are seen below (Awstats

Documentation, 2015). The number of unique visitors, visits, pages, and hits can be seen in

Table 5.4. The number of visits over the one month time period can be seen graphically in

Figure 5.1. The graph shows high usage the first few days that gradually tapers off. These

aggregate statistics are the combined results for both Mozilla and KDE.

• Unique Visitors: This is a unique person or host that has made at least one hit on the

website. The uniqueness is determined by the IP address of the visitor.

• Visits: A visit can be thought of as analogous to a session. A unique visitor could visit

the website and then come back later in the day. This would be counted as two separate

visits. One visit usually results in multiple pages and hits.
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• Pages: A page is an HTML or overall aggregate viewable page rendered to the visitor.

Images or other types of supporting files such as Javascript, CSS, and other files are not

included in this calculation.

• Hits: Hits are any files requested from the server. This includes files that are counted

as pages. Images and any other supporting files such as Javascript, CSS, or others are

included in this calculation.

Table 5.4 Total Analytics Results

Unique Visitors Visits Pages Hits

225 258 1779 4753
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Figure 5.1 Number of Visits to the Jamii Website
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5.2 Quantitative Survey Results

Solicitation messages to participate in the survey and/or participate in an interview were

sent out through community mailing lists and IRC. In addition, posts were made in subreddits

on the popular social media and news aggregation website Reddit (Reddit, 2015).

The development of the survey was focused mainly on identifying how the three algorithms

and subsequent sections on the website could help them in improving their understanding of

the community and codebase. In addition, multiple questions were created to identify the

impact Jamii could have on the socialization process. These Likert responses were planned

to be combined into a single factor. An additional question asked participants to rate their

experience level in the community. Participants would then be grouped into beginners and

veterans, similar to what was done in the initial survey. An analysis could then be performed

to see if there were perceptual differences between beginners and veterans on these factors.

The survey sent out to participants can be seen in Appendix B. Unfortunately, the response

rate on the surveys for both communities was low, hampering the ability to run analysis. After

around two weeks of gathering quantitative and qualitative results, the decision was made to

focus primarily on performing interviews and gathering qualitative results. The additional

detail and depth of the survey responses was felt to be the most helpful in assessing the

usefulness of the tool and the potential impact on socialization.

5.3 Qualitative Interview Results

A semi-structured survey was developed to gather more specific data as to the perceived

usefulness of the Jamii website by community members in Mozilla and KDE. A semi-structured

interview meant participants were mostly asked questions from a set list, however, the inter-

viewer was able to ask additional questions based on the responses of the participant. All

interviews were done using text-based chat on IRC and took approximately twenty minutes.

Solicitation to participate in the interview was done through community mailing lists, IRC,

gathering email addresses from the survey results, and directly emailing members of commu-

nity engagement efforts. The set of predefined questions are listed below.
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• “Can you go over your involvement with {KDE, Mozilla}? How did it get started?”

• “Would you discuss how you joined the community. Were there any challenges in joining?

If so, what were they?”

• “How long did you use Jamii and over what period of time?”

• “Was there anything you liked about Jamii? If so, what?”

• “Was there anything you disliked about Jamii? If so, what?”

• “Do you think Jamii could improve the socialization process for new developers? If so,

in what ways?”

• “Is there anything you would add or change in Jamii to improve the socialization process

for new developers? If so, in what ways?”

• “Jamii has three different sections: ‘impactful commits’, ‘developer knowledge’, and ‘com-

munication suggestions’. Can you discuss your thoughts on each of these three sections.”

• “Of the three sections listed in the previous question, which one is most helpful or would

be most helpful for new members wishing to join {KDE, Mozilla} and why?”

• “Has Jamii changed your perception of your involvement in the community? Or the

involvement of others?”

The development of these questions was done with consultation with other researchers to

try to ensure a minimal level of bias in the questions themselves. The questions were meant

to be fairly open ended in order to enable the interviewee the flexibility to answer as they

saw fit. Interview bias covers the interviewer who may ask biased or leading question and the

interviewee who may respond in ways that they feel the interviewer expects as opposed to their

true feelings.

Five interviews were collected over the one month period. Three people from KDE and two

people from Mozilla were interviewed. The interviewee’s name, username, and any identifying

comments have been removed in order to protect confidentiality. Interviewees from KDE are
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designated as K1, K2, and K3. Interviewees from Mozilla are designated as M1 and M2. A

selection of questions, associated responses, and discussion of the responses are listed below.

Some corrections were made to the spelling and grammar of responses to ease readability. Not

all questions were asked of every participant because of time constraints.

• Can you go over your involvement with {KDE, Mozilla}? How did it get started?

– K1: [Worked on various KDE projects. Participated in a Google Summer of Code

(GSOC) project.]

– K2: [Started hanging out in IRC and then worked on various KDE applications.]

– K3: [C/C++ developer. Works on various KDE applications.]

– M1: [Worked on development of a Firefox extension before being hired by Mozilla.]

– M2: [Works in a non-software development role for Mozilla.]

Details and direct quotes from interviewees are not presented here in order to protect confi-

dentiality. However, many of the respondents work on the project in some sort of development

fashion. All interviewees had at least one year in their respective community and many had

eight or more years of participation.

• Were there any challenges in joining? If so, what were they?

– K1: “Not really, it was as smooth as possible. I respected a lot the teams and they

were very encouraging and open.”

– K3: “Yes and no: I am a person that teaches himself the stuff he needs to do or want

to do - in this case it was the development for KDE. This was more or less quite easy.

The more complex and difficult topics were these areas that weren’t documented, for

example release management and translation stuff. For many people, these workflows

are normal, so there is no need to document them, but for me this was the most

difficult stuff. But all in all it was just a matter of asking people/have discussions

with them.”
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These comments reflect similar results from the initial survey on KDE socialization. The

KDE community socialization is smooth and people are knowledgeable. The comment by

K3 about improving documentation of workflows and processes especially for non-traditional

software development areas such as release management and translation is an area that KDE

may want to consider examining.

• Was there anything you liked about Jamii? If so, what?

– K1: “The ‘impactful commits’ section can be curious to figure out what the project

is about, I’m unsure about the metrics it used though, so it’s hard to tell if it makes

sense.”

– K2: “The web design is quite modern and it’s easy to use.”

– K3: “Yes. I use git quite heavily. In git there is a command called ’git blame’ - with

this command you can see who worked on a specific piece/lines of code (History

management). Jamii provides something similar - but with a nice graphical view.”

– M1: “I liked the developer knowledge section, although when I tried it, I couldn’t

find any files that it actually showed information about. But from the video [a short

introductory video on the main page] (of the kde version), it looked useful.”

– M2: “I really like the impact points and the way you can filter bugs according to

impact. I’m not sure how that is calculated but I think it is really cool to see how

much of an impact your work had.”

The impactful commits section was a feature that many interviewees mentioned as being

helpful or potentially helpful. Comments by K3 as well as comments by an individual on

IRC who did not participate in the interview process mentioned the similarity to “git blame”.

There are certainly many similarities to this command and the information that is provided.

The intent was that the website would be faster and more precise with the ability to see the

code and select the appropriate section than having to manually do this through “git blame”.

M2 appears to be talking about the “impactful commits” section, however, incorrectly refers

to the commits as bugs.
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• Was there anything you disliked about Jamii? If so, what?

– K1: “Developer knowledge is quite bare. It’s already a common thing to git

blame/log a file and checked who worked on what it could be interesting to get

a project-global outlook, but this is not what this one is about.”

– K2: “A couple of things, I tried to look at developer knowledge, which worked fine

for source files, but complained that the .docbook files are binary, though they are

plain xml. [Interviewee provides link to a specific Jamii page.] The button at the

top here says ”Unknown Name” though the name is known, it’s just not an ascii

letter so probably should say ‘Non-Ascii letters’ or ‘Unknown Letter’.”

– K3: “Not liked - no. I would call it more ‘not perfect’. As a person with a technical

background, the tab ‘Impactful commits’ was quite interesting. Sadly I saw no

reason why a specific commit was marked as important (aka why did the algorithm

mark it as important - important dev? large patch? etc. ). reason = information”

Interviewer: OK, so if the algorithm was clarified, do you think it would be a useful

feature?

“Yes. Personally I could better classify/rank the patch for myself. Sometimes there

are really long (several weeks) discussions about a patch that changes 4 lines - so

how should someone handle this? If Jamii gives more information, it would be more

clear.”

– M1: “Maybe it’s just me as a not-really-development person, but the communication

suggestions section doesn’t seem all that useful to me. It also shows pretty much

the same information for every person I’ve checked. It also doesn’t really say *why*

one should communicate more with these people.”

– M2: “Sorry I was just looking around, but there’s nothing that I dislike in particu-

lar.”

Similar to the previous question responses, K1 mentioned “git blame” as an alternative. K2

had trouble analyzing developer knowledge for certain types of files. The reason all files were

not analyzed was it would have taken longer from a computational time standpoint. Therefore,
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primarily file extensions associated with C/C++ were selected for analysis. Multiple comments

by interviewees mentioned that they wanted additional details as to how the calculation was

done and/or how the analysis was coming up with these results. During the development of

the Jamii website, a fair amount of thought was put into deciding how much information and

what information should be presented via the website. Providing large amounts of details would

have resulted in a deluge of information and cluttered the clean design of the website. However,

having more details and information might have increased the trust level of developers. The

decision was made to go with a very minimal presentation and try to abstract away the details

of the calculations, however, based on the interview responses, this will probably be something

that will be changed in future versions of the website.

• Do you think Jamii could improve the socialization process for new developers? If so, in

what ways?

– K1: “‘communication suggestions’ again is quite obscure, also probably disregards

quite some mailing lists, so it’s hard to take seriously the results. I don’t think it

could, as it is right now. Community analysis is a good tool but it needs lots of love.

We’ve tried to use Bitergia stuff in the past (which is a bit more advanced) and even

there we couldn’t use it like we would have wanted because we need to make sure

all of the information is actually in there.”

– K2: “Also, I’m not sure what the use of pages like this are, after clicking on a

commit hash. [Interviewee provides a link to the impactful commits details of a

specific commit on the Jamii website.] It shows filenames and function names, but

has no links to the actual sources on cgit or such. It could help new developers see

who works on code, but the same could really be seen in git blame also to be honest,

or git log or whatnot.”

Interviewer: Do you think software developers in particular want to know more of

the details and analysis behind the calculations?

“Yeah, definitely.”
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– K3: “I am not sure if I am the right person to answer this question. I can just speak

for myself: Developers and many person in a techy-environment are ‘lazy’ people -

means they like the fastest and most efficient way. Most of the times, websites are

outranked by command line programs like git, cli review board. Also we don’t like

to change our workflow. So to give you an answer: I don’t think so. Not because

your project is bad or missing functionality. It’s more because we live in our ‘now’

ecosystem. Maybe if you can provide it as command line application or something

it would be really interesting.”

– M1: “If it could tie in to bugzilla’s ‘good first bugs’ classification to find good bugs

for new developers to work on, and then from there figure out which files need to be

touched to fix the bug, and from there find relevant developers for them to talk to

about any problems they encounter, that’d be helpful, I think.”

– M2: “Yes I do. I really like the part about finding who are the experts. I think

that really facilitates communication. Also communication suggestions are pretty

cool. Although something like a way to contact directly the people who are listed

in your suggested communication would be nice. I’m not sure if that’s the intent of

the website though.”

K1 references Bitergia, a company that is doing data analysis on open source projects and

creating online dashboards (Bitergia, 2015). K1 and other interviewees via other questions

mention some of the challenges of using these types of tools to analyze data. Ensuring all of

the information has been parsed and analyzed can be difficult from a wide variety of technical

standpoints. Making decisions or conclusions based on incomplete data analysis could result in

inaccurate adjustments by community members or the community as a whole. One question

then arises, is the use of incomplete or partial data to provide suggestions at least better than

having no suggestions in the first place?

K3 provides some interesting insight into the possible thought processes of developers and

technically savvy individuals. In the comment, K3 says that developers want to take the most
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efficient route and usually this is through direct access of the information. This seems to be a

very telling comment and may explain some of the low turnout by developers to use Jamii.

• Is there anything you would add or change in Jamii to improve the socialization process

for new developers? If so, in what ways?

– K1: “I’m unsure about that one, having metrics is mostly important for the com-

munity managers, to see what parts of the project are aching more than newcomers,

but then I’m missing something.”

– K2: “Making it integrated with cgit, i.e. make hash urls go to the git web interface

of the respective project would be useful in my opinion. And also possibly tying it’s

name lookup to any upstream name services, like the names could be links to the

user’s accounts on identiy.kde.org or similar for other projects.”

– K3: “I would try to embed it into an existing system/eco system, so people can use

it ‘on the fly’. But this is really my own impression/idea and takes much time.”

– M1: “Maybe Jamii could expose sections of code that are frequently worked on so

that new developers can know that there’s lots of people with the ability to help

them out?”

– M2: “Definitely something like add a button next to one’s profile through which

you can ping them on IRC or email them. And that can be recorded and calculated

towards your communication level. Otherwise people need to make an extra effort

to socialize outside the tool and that is sometimes hard.”

Many of the interviewees mentioned integration with existing websites and tools as part of

the ecosystem of the respective projects. While this certainly would help, the programming

and design of the Jamii website and processing side was meant to be generic for any project

that can provide source code and email data. One option would be to refactor the code to

allow plugins and customization from the base analysis. This would allow projects to tailor

the analysis and display to their respective ecosystems while keeping the base analysis project

agnostic.
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• Jamii has three different sections: “impactful commits”, “developer knowledge”, and

“communication suggestions”. Can you discuss your thoughts on each of these three

sections.

– K2: “The ‘communication suggestions’ is a bit confusing, it seems to just list any-

one who ever committed to the project. Impactful commits uses some metric to

determine impact, but doesn’t say what that metric is measuring that I could tell.

Otherwise it seems to work. Developer knowledge seems to be just an aggregation

of git blame. With the name ‘developer knowledge’ I was expecting it to contain api

documentation or something.”

– M1: “The Impactful Commits section should probably provide links to the actual

commits in the repository so users of Jamii can see what actually changed. Can’t

comment too much on Developer Knowledge as I’ve not found many files that it

actually exposed any information. Communication suggestions seems to show the

same five people no matter who I select, and doesn’t really give any information

about why we should talk with these people.”

As mentioned previously, more details as to how the calculations are performed could be

helpful. The preference between providing a minimal interface to the data analysis and pro-

viding all the details relevant to the calculation is an area that could use additional scrutiny

through testing.

• Of the three sections: “impactful commits”, “developer knowledge”, and “communication

suggestions”, which one is most helpful or would be most helpful for new members wishing

to join {KDE, Mozilla} and why?

– K1: “Probably the impactful commits, to have an overview of where things are

going.”

– K2: “Probably impactful commits, since it helps find the person most involved with

the project.”
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– K3: “I have to give you an answer that contains two ‘answers’: 1.) The ‘impactful

commits’ tab, because new person can see what drives/controls a community (What

are the hot topics etc.) 2.) The communication suggestion, because it serves as ‘git

blame’. If you are working on a piece of code and need information about the author

of the code, this is really useful.”

– M1: “Developer Knowledge probably exposes the most useful information for new

contributors. New contributors are likely going to be coming from bugzilla where

there’s usually information provided (at least in the ‘good first bug’ case) about

what files need to be touched to fix the bug. If the new contributor could then look

up those files in Jamii’s Developer Knowledge section to see who knows about those

file, they could then take that information and reach out to those developers with

any questions they have.”

– M2: “Developer knowledge because you can find experts in certain fields that can

help show you around. It is very important to have some point of contacts if you’re

new.”

K3 mentions “communication suggestions” as being tied to “git blame” but it’s assumed

this is in reference to developer knowledge. Overall, the verdict for the section that would be

most helpful for new developers is fairly split between the impactful commits and developer

knowledge sections.

The overall message seems to be that the website was helpful and the interviewees felt the

features were useful. The general participation rates for both the survey and interviews were

lower than expected. Therefore, some of the focus on questions was on improvements that

could be made. After looking through the responses, there appear to be two major important

points.

The first point is that many of the interviewees, especially those in developer roles want more

details as to how the calculations were done. The challenge of presenting all the information

and overloading users versus having a very clean and minimal presentation was something that

was debated during the development of Jamii. More work could be done to display additional
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detail of the meaning behind the calculation while at the same time trying not to burden the

user with content to read. By providing these additional details, the trust in the results should

hopefully rise.

The second point that may have influenced low trust or adoption of the Jamii website is

developer workflow and direct access to information. As mentioned directly by one of the

interviewees and indirectly by others via their explanation of the use of “git blame”, developers

have existing tools and workflows in place for finding information. Developers may feel that

their current direct access method is the most efficient and may be less willing to try alternative

methods. It’s possible that community members, in particular software developers, who have

direct access to the source code and a variety of version control tools to manage, it may trust

methods that they know work and are reliable as opposed to looking at a website where the

methods are not as transparent. The hesitation or perhaps reluctance to use these types of

aggregation websites and dashboards to present information comes across in these interviews

as well as through comments by people on IRC.

One of the challenges in the future development and deployment of source code and commu-

nity analysis tools for software development is balancing the presentation of the detail involved

in the calculation of results with simplicity and ease-of-use of the website. These improvements,

and others will need to be studied in order to increase adoption of these types of websites/tools

by open source communities and developers in general. There is still tremendous future po-

tential in the analysis of the wide variety of data sources created as part of the software

development process to improve understanding.
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CHAPTER 6. SUMMARY AND DISCUSSION

A variety of research contributions have been developed as part of this work. Mozilla

and KDE, two large open source communities were surveyed and analyzed. While the two

communities seem to be doing a reasonable job of managing the community and ensuring new

users and developers get the attention they need, there are always areas for improvement.

The results suggest community members spend around a quarter to a third of their time

communicating. Less experienced members of the community seem to have a more positive

outlook than veteran members on factors such as member respect, the socialization process,

and some measures of Transactive memory. This is important for ensuring new developers

have realistic expectations which might otherwise make them leave. Qualitative comments

from survey participants indicated a wide variety of possibilities for improving the socialization

process as well as expanding or improving available tools. Practically all of the comments by

community members for how they joined the community were positive for KDE. However, for

Mozilla, the socialization process seemed to be more difficult.

Both open source communities have large numbers of developers, a large codebase, and an

extensive amount of communication occurs. This can make the socialization process harder

because there are potentially additional hurdles on the technical and social fronts. However,

this also makes these communities ripe for the use and adoption of tools to better understand

the technical and social structure.

As part of this effort, three algorithms were created and an online website called Jamii was

developed that displays the results from the algorithms. The website helps developers track

important recent commits. These “impactful commits” are identified based on the technical

dependency structure of the C++ files and their relative importance in the entire network.

The website provides the ability to identify developers with a high amount of knowledge for
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a given file or even a small section of a file. This means developers have a starting point for

who to contact if they have a question. And lastly developers can identify potential gaps in

their communication based on commits to shared or dependent source code files. Ensuring

that developers keep the right people up-to-date with changes that they make will increase the

overall congruence of the community and result in a healthier project.

Interviews and the resulting qualitative data showed that in general participants felt the

Jamii website was helpful. While overall adoption and usage of the website was fairly low,

two factors were identified through the interviews that may help improve the website in the

future. The first is that developers wanted more detail and background on how the calculations

and analysis were performed. Presenting sufficient information for developers through the

website to ensure they trust and understand the algorithm results while at the same time not

overloading users with details is challenging and may require more development iterations. The

second factor revolves around developer workflow and their knowledge of existing tools. Some

developers may be unwilling to use new tools and websites to help them if they feel that current

tools are more efficient. Ensuring that these types of analytical dashboard websites are helpful

not only at a high level for community managers but also for the average developer will be

important.

6.1 Algorithm Limitations and Assumptions

As with any algorithm, there are some limitations and assumptions with each of the three

that were developed. For the “impactful commits” algorithm, the technical structure was only

defined through includes and calls for C++ files. This means other types of dependencies from

other programming languages were not included. This is not so much a problem of the algorithm

as it is a challenge in the implementation. The algorithm needs the technical structure as input

and it is up to the backend processing to provide this. Support for additional programming

languages could be provided in the future.

The developer knowledge algorithm uses the history of individual lines of source code as

a measurement of knowledge. It’s possible for a commit to change a large number of source

code lines by automated means. For example, a commit could change the line endings or the
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indentation of files and would result in a high calculation of knowledge for that individual but

in reality, this change was purely automatic. This would result in an incorrect calculation of

knowledge.

The knowledge algorithm also does not understand the substance of the change. This would

require a much more nuanced understanding of the commit. For example, if a commit only

changes one line, the calculation of knowledge will be only adjusted for that line resulting in

a minimal adjustment of overall knowledge. However, the one change may have been linked

to a deep understanding of the entire file and dependent technical files if it was a bug fix.

Understanding the magnitude of a change could provide a more detailed picture as to developer

knowledge.

The communication suggestions algorithm assumes two developers with a high degree of

shared technical files should be communicating a great deal. The algorithm does not know the

contents of the emails and is only considering emails in the analysis. Live IRC chat or other

methods of communication are not utilized. Because of this, these suggestions could potentially

be inaccurate. Adding additional sources and methods of communication could increase this

accuracy.

6.2 Future Work

In addition to programming and presentation improvements to the website, there are a wide

variety of improvements and research that could be done at a higher level to answer important

research questions. Algorithm improvements could include changing the decay amount b to

vary based on the developer. For example, developers who have recently committed changes

or who have looked at the code recently could have less exponential decay applied. In the

algorithm, a developer who commits multiple changes to the same line will only be counted

for the most recent change. This could be altered to apply the calculation for all edits the

developer made through the life of the file. Structural changes of the source code are also not

considered. For instance, identifying if there is a modification on an interface or if a conditional

is adjusted would influence the gravity of the change and its effect on dependent systems. This
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would be a particularly challenging item to address because of the difficulty of identifying the

change.

Another area of improvement is the display of data already captured and processed by the

existing three algorithms. The file scores and interpersonal scores that are calculated as part

of the communication suggestions algorithm could be presented and visualized to developers.

This could give an indication of what source code files a developer works on at a high level. In

addition, it could provide an indication of who the developer talks to.

One more area for future work is to add in data on bug fixes. This could be correlated with

existing processed data to see if developer knowledge can be used as a prediction for where bugs

might be occurring. Source code commits that have a large technical structure impact could

also be more likely to result in bugs. Flagging these or other areas for additional review could

be helpful in reducing the number of bugs in the software and ensuring stability and security

of the product.

The concept of congruence itself could also be calculated and examined over time. Since

the communication and technical structure are both always changing, the resulting high level

aggregated congruence value for the entire community as well as individual levels are constantly

changing. By showing developers how these values change, they can see the impact of their

own efforts to improve congruence. In addition, prediction could be done to attempt to predict

future congruence values. By doing so, this prediction could provide a glimpse into the future

state of the software and community.

One other possibility is to turn the Jamii website and analysis into a service that is provided

not only to software developers but anyone doing large scale collaborative projects. The com-

pany or organization would provide the data and all the analysis work would be done through

the service. This could form the basis for future performance metrics to help managers have

a better understanding of the collaboration that is occurring as well as what areas might need

improvement. These and other items could be worked on in the future to provide additional

information through the Jamii website and to better understand the development process.
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6.3 Conclusion

While there are some limitations and assumptions that went into the creation of these

algorithms, they are still a good starting point for educating developers about the core impor-

tance of STC and the relationship between work on source code files, technical dependencies,

and communication. The results indicated that participants felt the displayed information and

knowledge was helpful but that the presentation through the website could use some iterations

and improvement. The design of the algorithms was done such that they can be applied not

just to open source software development, but to any collaborative effort. As long as there are

people working together on artifacts that have dependencies, the overall core idea of congruence

still holds.

The aim of the Jamii website was not to be targeted at a high level to community managers,

but directly to the developers themselves. This research aims to provide not aggregated statis-

tics of the number of commits or emails sent but to give developers actionable information.

These algorithms increase developer understanding by showing them what’s important as well

as help them recognize their importance in the overall community. Large scale data analysis

like this is most helpful when it can provide small and direct personalized suggestions that are

targeted to the needs of the individual.

This research will hopefully serve as a starting point for the adoption of increasingly powerful

online dashboards and analysis tools not only for open source projects where access to data is

easy, but other collaborative efforts. The development of these algorithms and testing provide

contributions and broader implications that are valuable to the STC community of researchers,

the open source community, and comprehensive efforts to understand group collaboration.
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APPENDIX A. COMMUNITY SURVEY

Mozilla Community Survey



Privacy & Terms

Male

Female

Other identification

Prefer not to specify

Introduction

The information obtained through this survey will be used to model the demographics, technical profile, and culture of individuals
associated with the Mozilla community. Any information you provide will be used anonymously and referenced using only an
identification number during publication. If you do not wish to answer a question, simply leave it blank. The email address(es) you
provide will be used to link this survey data to publicly available data regarding Mozilla such as mailing list posts, bug reports, and source
code commits.  In addition, the email address will be used to communicate possible future surveys or results.

You must be 18 years of age or older to participate in this survey.

What is your age (years)?  You must be 18 years or older to participate in this survey.

What is the email address that you use for Mozilla?  Please enter the email address or addresses that you use for the mailing list, bug
reports, and/or source code commits.  If you use multiple email addresses, please list all of them.  We will NOT distribute this email
address to any other group.

Spambot check...

Demographic

What is your gender identity?

Where do you live? / Country of residence

How many spoken/written languages are you proficient in?

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...

1 of 6 05/21/2013 10:45 AM
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No schooling

Elementary School / Primary School

High School / Secondary School

Associate Degree

Professional Degree

Undergraduate / Bachelor's Degree / Post-Secondary

Master's Degree

Doctorate Degree

List the top three spoken/written languages that you are most proficient in.

Language #1

Language #2

Language #3

Indicate the highest degree or level of school/education that you have completed.  If currently enrolled, mark the previous entry.

OSS Experience

How long have you been a member of the Mozilla community?  Make sure to indicate whether your response is in days, weeks, months,
or years.

How often do you use Free/Libre Open Source software?

Never Rarely Sometimes Often Always

How much experience do you have contributing in Free/Libre Open Source communities?

None A Little Some Quite a Bit A Lot

How much computer programming experience do you have in comparison to the average Open Source contributor?

None Less Than Average An Average Amount More Then Average A Lot

How many Free/Libre Open Source communities are you currently involved in?

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...

2 of 6 05/21/2013 10:45 AM
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Yes

No

Yes

No

How many minutes per week do you spend on the following activities as part of the Mozilla community?

Programming New Features

Programming to Fix Bugs

Filing New Bug Reports

Responding to Existing Bug Reports

Reading Code Written By Others

Writing Documentation

Communication (email, IRC, etc.)

Other

Do you receive significant monetary compensation to contribute to Mozilla?  (For example as part of your employment.)

How integrated are you into the Mozilla community?

An Outsider A Beginner
Somewhat
Integrated

Reasonably
Integrated An Expert Member A Veteran Member A Core Member

Where would you like to end up in the Mozilla community?

An Outsider A Beginner
Somewhat
Integrated

Reasonably
Integrated An Expert Member A Veteran Member A Core Member

Have you posted to one or more of the Mozilla mailing lists?

How long did you watch the mailing list and read email posts before your first email post?  Make sure to indicate whether your response
is in days, weeks, months, or years.

Barriers

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...

3 of 6 05/21/2013 10:45 AM
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How easy is it for a new members to join the Mozilla community?

Very Difficult Difficult Somewhat Difficult Neutral Somewhat Easy Easy Very Easy

How would you rate the following skills/characteristics of a new member wishing to join the Mozilla community?

Not at all
Important

Very
Unimportant

Somewhat
Unimportant

Neither
Important

nor
Unimportant

Somewhat
Important

Very
Important

Extremely
Important

Technical Skills

Programming Skills

Social Communication Skills

Software Management

New members are quickly and easily integrated into the Mozilla community.

Strongly Disagree Disagree
Somewhat
Disagree

Neither Agree nor
Disagree Somewhat Agree Agree Strongly Agree

The Mozilla community treats new members with respect.

Strongly Disagree Disagree
Somewhat
Disagree

Neither Agree nor
Disagree Somewhat Agree Agree Strongly Agree

How well are you able to effectively track the following Mozilla processes?

Very
Ineffective Ineffective

Somewhat
Ineffective

Neither
Effective

nor
Ineffective

Somewhat
Effective Effective

Very
Effective

Mailing Lists

Bug Reports

Source Code Changes

Events

Software Releases

Milestones

Transactive Memory

Each community member has specialized knowledge of some aspect of the project.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...
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I know which community members have expertise in specific areas.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

I trust that other community members' knowledge about the project is credible.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

I am confident relying on the information that other community members bring to the discussion.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

The community accomplishes tasks smoothly and efficiently.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

There is a lot of confusion about how the community accomplishes tasks.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

Comments

Are there ways that Mozilla can support new/potential members in their desire to join?

What tools or functionality (new or existing) would help you contribute to Mozilla?

What were your experiences in joining Mozilla?

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...

5 of 6 05/21/2013 10:45 AM
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Please enter any comments, questions, or suggestions below.

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...

6 of 6 05/21/2013 10:45 AM
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KDE Community Survey



Privacy & Terms

Male

Female

Other identification

Prefer not to specify

Introduction

The information obtained through this survey will be used to model the demographics, technical profile, and culture of individuals
associated with the KDE community. Any information you provide will be used anonymously and referenced using only an identification
number during publication. If you do not wish to answer a question, simply leave it blank. The email address(es) you provide will be used
to link this survey data to publicly available data regarding KDE such as mailing list posts, bug reports, and source code commits.  In
addition, the email address will be used to communicate possible future surveys or results.

You must be 18 years of age or older to participate in this survey.

What is your age (years)?  You must be 18 years or older to participate in this survey.

What is the email address that you use for KDE?  Please enter the email address or addresses that you use for the mailing list, bug
reports, and/or source code commits.  If you use multiple email addresses, please list all of them.  We will NOT distribute this email
address to any other group.

Spambot check...

Demographic

What is your gender identity?

Where do you live? / Country of residence

How many spoken/written languages are you proficient in?

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...

1 of 6 05/21/2013 10:46 AM
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No schooling

Elementary School / Primary School

High School / Secondary School

Associate Degree

Professional Degree

Undergraduate / Bachelor's Degree / Post-Secondary

Master's Degree

Doctorate Degree

List the top three spoken/written languages that you are most proficient in.

Language #1

Language #2

Language #3

Indicate the highest degree or level of school/education that you have completed.  If currently enrolled, mark the previous entry.

OSS Experience

How long have you been a member of the KDE community?  Make sure to indicate whether your response is in days, weeks, months, or
years.

How often do you use Free/Libre Open Source software?

Never Rarely Sometimes Often Always

How much experience do you have contributing in Free/Libre Open Source communities?

None A Little Some Quite a Bit A Lot

How much computer programming experience do you have in comparison to the average Open Source contributor?

None Less Than Average An Average Amount More Then Average A Lot

How many Free/Libre Open Source communities are you currently involved in?

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...

2 of 6 05/21/2013 10:46 AM
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Yes

No

Yes

No

How many minutes per week do you spend on the following activities as part of the KDE community?

Programming New Features

Programming to Fix Bugs

Filing New Bug Reports

Responding to Existing Bug Reports

Reading Code Written By Others

Writing Documentation

Communication (email, IRC, etc.)

Other

Do you receive significant monetary compensation to contribute to KDE?  (For example as part of your employment.)

How integrated are you into the KDE community?

An Outsider A Beginner
Somewhat
Integrated

Reasonably
Integrated An Expert Member A Veteran Member A Core Member

Where would you like to end up in the KDE community?

An Outsider A Beginner
Somewhat
Integrated

Reasonably
Integrated An Expert Member A Veteran Member A Core Member

Have you posted to one or more of the KDE mailing lists?

How long did you watch the mailing list and read email posts before your first email post?  Make sure to indicate whether your response
is in days, weeks, months, or years.

Barriers

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...
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How easy is it for a new members to join the KDE community?

Very Difficult Difficult Somewhat Difficult Neutral Somewhat Easy Easy Very Easy

How would you rate the following skills/characteristics of a new member wishing to join the KDE community?

Not at all
Important

Very
Unimportant

Somewhat
Unimportant

Neither
Important

nor
Unimportant

Somewhat
Important

Very
Important

Extremely
Important

Technical Skills

Programming Skills

Social Communication Skills

Software Management

New members are quickly and easily integrated into the KDE community.

Strongly Disagree Disagree
Somewhat
Disagree

Neither Agree nor
Disagree Somewhat Agree Agree Strongly Agree

The KDE community treats new members with respect.

Strongly Disagree Disagree
Somewhat
Disagree

Neither Agree nor
Disagree Somewhat Agree Agree Strongly Agree

How well are you able to effectively track the following KDE processes?

Very
Ineffective Ineffective

Somewhat
Ineffective

Neither
Effective

nor
Ineffective

Somewhat
Effective Effective

Very
Effective

Mailing Lists

Bug Reports

Source Code Changes

Events

Software Releases

Milestones

Transactive Memory

Each community member has specialized knowledge of some aspect of the project.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...
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I know which community members have expertise in specific areas.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

I trust that other community members' knowledge about the project is credible.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

I am confident relying on the information that other community members bring to the discussion.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

The community accomplishes tasks smoothly and efficiently.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

There is a lot of confusion about how the community accomplishes tasks.

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

Comments

Are there ways that KDE can support new/potential members in their desire to join?

What tools or functionality (new or existing) would help you contribute to KDE?

What were your experiences in joining KDE?

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...
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Please enter any comments, questions, or suggestions below.

Qualtrics Survey Software https://vrac.co1.qualtrics.com/ControlPanel/Ajax.php?act...

6 of 6 05/21/2013 10:46 AM
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APPENDIX B. JAMII SURVEY

Mozilla: Jamii Survey
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KDE: Jamii Survey
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