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ABSTRACT

Feedback linearization is an effective controller-design methodology for nonlinear sys-

tems where it is difficult to obtain a finite number of operating points to linearize the

system for designing well-known linear robust controllers. Feedback linearization be-

comes one of very limited methodologies that can be used for control of such systems.

Traditional implementations of feedback linearization technique are not robust, which

means this control methodology does not account for system uncertainties. The rea-

son being that the control law methodology assumes accurate knowledge of nonlinear

dynamics of the system. Recently, in [1] a new methodology was proposed which adds

robustness to feedback linearization. The methodology uses sensitivity dynamics-based

control synthesis. The methodology was demonstrated on a simple proof-of-concept sin-

gle actuator mass-spring-damper model.

This research is focused on application of robust feedback linearization technique to

real life complex hydraulically actuated physical systems. In particular, the methodol-

ogy is applied to the problem of controlling mechanical linkage configuration in excava-

tor machines. The problem addressed is controlling of bucket angle of excavator such

that the bucket is always kept parallel to ground irrespective of boom motion to avoid

spilling of the load. The dynamics of systems such as excavator linkage actuated by

hydraulic actuator are often complex and application of robust feedback linearization

(RFL) methodology gets tedious and cumbersome. The work in this thesis is intended

for demonstrating the applicability of RFL methodology for such complex systems and

also to lay foundation for development of an automated user-friendly toolbox to enable

easy use of such control technique in day-to-day practice. The uncertain parameter con-
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sidered in the development in this thesis is the bulk modulus of the system as it is the

most common uncertainty in the system. The modeling process also considers portabil-

ity of models from some known commercial software tools such as SimHydraulics and

SimMechanics.

The results presented show that the RFL methodology is very effective in achieving

robust control of hydraulically actuated systems with uncertainties in hydraulic param-

eters.
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CHAPTER 1. INTRODUCTIOIN

This thesis presents the application of a new nonlinear system control methodology

to a complex real-life excavator system model. This control methodology namely, Robust

Feedback Linearization (RFL) was developed recently by Tulpule as a part of his doctoral

thesis work [1]. In his thesis [1], he proposed the RFL techniques and demonstrated this

theory using a proof-of-concept nonlinear hydraulic system with a simple linear mass

spring damper plant model. The results showed that RFL can improve the robustness of

the system. However, because of some assumptions and approximations used during the

derivation of equations of the motion of the system, the applicability of the methodology

to complex systems needed further exploration. One of the reasons being that not only

the hydraulic system models are highly complicated but also the methodology needs

tedious complex computation, which can become very challenging to implement it on

high fidelity physical models. This thesis uses an excavator system as an example to

develop systematic process to implement RFL methodology on real-life systems with

complex dynamics. With the advances in computer simulation technologies, several

physical systems simulation software have emerged over last few decades. Some examples

of software that are commonly used in industry for simulation of physical systems include

Simscape, SimMechanics, AMESim, SimHydraulics, etc. Software such as Easy5 and

SimHydraulics specialize in modeling of hydraulic systems in particular whereas others

like SimMechanics are focused primarily on multibody (multi-link) systems modeling.

For designing control system and verifying control performance in simulation the soft-

ware like Matlab/Simulink are widely used. Typically, user faces challenges in building
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high fidelity simulation of complex system such as agriculture or construction machines

which require use of multitude of different software which have to be combined to work

in co-simulation environment. In addition, if one has to implement new modeling and/or

control design strategies, compatibility of new methodology with existing simulation en-

vironment becomes a big hurdle.

In this work, an attempt is made to systematize the design of robust feedback lin-

earizing control of hydraulically actuated systems based on sensitivity theory. A user

friendly graphical user interface is also developed to facilitate the use of advanced control

design methodology by relatively less experienced designer.

The rest of this chapter presents some prerequisite background information on sensi-

tivity theory which is at the core of robust design methodology, its application to robust

feedback linearization, excavator system under consideration, and automatic bucket lev-

eling problem used for demonstrating control methodology developed.

1.1 Sensitivity

In the context of this research, sensitivity can be defined as the percentage change

in the performance objective as a result of unit perturbation in design variables. The

notion of sensitivity has been widely used in variety of engineering applications. Some

example usage of sensitivity include: performance optimization, sensitivity optimization

and robustness analysis [2]. Performance optimization using sensitivity is described in [3].

Another application of minimum sensitivity is quality control [4]. Sensitivity methods

are also used in optimal structure design [5].

One of the seminal papers that concern with sensitivity in control systems is listed in

reference [6]. A brief literature review about sensitivity research in the 1960s and 1970s is

compiled in [1]. There are two types of optimization using sensitivity analysis approaches:

deterministic approaches and probabilistic approaches [7]. These two approaches use
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different methods to measure sensitivity of a design. Based on these two approaches, a

handful of literature about single-objective optimization problem was reported [8]. In

practice, most of the optimization problems tend to be multi-objective and a large body

of research focused on multi-objective optimization [9].

It is to be noted that most of the optimization methodologies can help create robust

design over a range of uncertain parameters, where designers have to estimate the upper

bound of the uncertainty. A number of research studies provide robust optimal design

considering estimation of uncertainty bounds [10] [11]. In Chapter 2, additional back-

ground and related discussion on sensitivity analysis is provided. Next section presents

a prerequisite background material on robust feedback linearization.

1.2 Robust Feedback Linearization

Feedback linearization is a well known control design technique for nonlinear control

systems. Essentially, this methodology involves first canceling the nonlinear dynamics

of the system and rendering the system to be a set of pure integrators or in general a

linear system, for which standard controller can be designed in the outer loop using linear

techniques. For systems such as the one considered in this work, feedback linearization

approach is most appealing as it is not possible to obtain a representative linearized model

since there is no well defined operating point for servo controlled hydraulic actuators.

Another big issue in such systems is presence of hard nonlinearity such as dead-band.

Determining a practical operating point outside the dead band for hydraulic system is

not possible [1]. Over the last two decades, feedback linearization has been used in

many areas, including: power systems [12], helicopters [13], industry robots [14], [15],

vehicles [16], [17], etc. The basic concept of feedback linearization theory is to eliminate

the nonlinear part of the nonlinear system through inputs with proper structures and

a transformation which can transform the system to an equivalent linear system. The
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next step is to design a controller using linear techniques [18], like a PID controller or

pole placement controller.

In spite of advantages of feedback linearization-based control law, there exists some

shortcomings [19]: since feedback linearization methodology involves elimination of non-

linear dynamics using perfect known model of nonlinearity, it is inherently model de-

pendent and lack robustness. The robustness analysis of feedback linearization therefore

continues to be the topic of interest and presents interesting research challenges. There

are two main categories of nonlinear plant control – conventional and soft computing

methods. The conventional control theory uses the model-based method and the soft

computing control theory, like fuzzy logic, uses the artificial intelligence methods [19]. Re-

cently, a large body of research is concentrated on robustification of feedback linearization

using techniques based on artificial neural networks or fuzzy logic [1]. The advantages of

fuzzy uncetainty models and incorporating them into a feedback linearizing control design

are discussed in [18], [20], [21]. Neural networks is another method used with feedback

linearization [22], [23]. Some research also tries to combine feedback linearization with

sliding mode control [24]. Another approach is min-max control which is in the sense of

Lyapunov [25]. Adaptive feedback linearization is also a popular method to compensate

for a nonlinear system [26]. Since adaptive control needs to use a linearized model for

the plant, it can only provide local stability. In reviewing these literature above, some

limitations are revealed, some methodologies need to estimate the uncertainty bound of

systems, like fuzzy linearization and min-max apprach [18], [20], [25].

The theory proposed in thesis [1], provides the least conservative design, because

it does not require the knowledge of the uncertainty bound on the parameters [1], The

theory developed uses sensitivity-based dynamics of the system to ’robustify’ the feedback

linearization. There are two feedback linearizing controller design methodologies: input-

output linearization and state-space linearization [27]. In this thesis, an input-output

framework is used as the hydraulic system models are primarily in input-output form.
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Chapter 3 gives detailed development of robust feedback linearization for system under

consideration.

1.3 Application to Hydraulic System

Electro-hydraulic systems have been widely used in industrial applications because

of their high power-to-weight ratio, high stiffness, high payload capability, low cost,etc

[28], [29]. These features are attractive for some high power requirements in agriculture

machines and construction equipments, like combine harvester, tractor plough, hydraulic

excavator, wheel loader, etc. Hydraulic systems are also extensively used in robot ma-

nipulators [15], [30]. Wind power plants are another critical application of hydraulic

systems [31].

Although hydraulic systems are used extensively in practice, it is difficult to design an

effective controller for hydraulic system, since the dynamic behavior of hydraulic systems

is highly nonlinear [32]. These nonlinearities originate from two sources – the actuation

subsystem and the loading subsystem [29]. The actuation subsystem’s nonlinearities are

caused by nonlinear magnetic effects, chamber fluid compressibility [33], and nonlinear

servo valve flow-pressure characteristics [28], [34], etc. Moreover, normally, loading sys-

tems are also with high nonlinearities, such as the application example in this thesis –

hydraulic excavator, which consists of three main linkages. Also, there exist nonsmooth

and discontinuous nonlinearities in the systems. These are caused by control input sat-

uration, direction changes in the valve opening, and valve overlap [35]. In addition to

these nonlinearities sources, hydraulic systems have a large body of model uncertainties

caused by parameter uncertainties [35]; for example, bulk modulus, density, pump pres-

sure, control volume between a servo valve and a cylinder etc. There is a wide variation

in the effective bulk modulus [32], [36], which depends on the amount of air dissolved in

the fluid. 2% dissolved air by volume can cut the bulk modulus by over 50%, which has
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a significant impact on the system performance. Therefore, the excavator application

considered here, uncertain parameter considered is the bulk modulus of the hydraulic oil

and the control design objective is to ensure that the closed-loop system stability and

performance is robust to bulk modulus variation.

As stated previously, linearization of hydraulic system dynamics is difficult due to

continuum of operating points and one has to resort to effective nonlinear control design

techniques such as feedback linearization. [17], [37], [38] present applications of feed-

back linearization to control of hydraulic systems. However, since feedback linearization

is not inherently robust, the controller stability and performance is often affected by

uncertain parameters in hydraulic systems nonlinear dynamics. As a result, there has

been considerable research on intelligent control application to hydraulic system control.

Back-stepping is another useful nonlinear control technique that is based on the Lya-

punov theory and guarantees asymptotic tracking, but finding an appropriate candidate

Lyapunoe function can be challenging [15], [39]. Sliding mode control is another approach

that can be considered for controlling uncertain hydraulic systems [40], but it is discon-

tinuous. Another potential control approach is adaptive control [23], [28], [35], [41]. In

the work of this thesis the focus is on development of robust feedback linearizing control

strategy and its implementation on complex system - an excavator model. As stated

before, this methodology does not need uncertainty estimates and therefore becomes

attractive for excavator application. The computational platform used for this research

is Matlab/Simulink. SimHydraulics and AMESim toolboxes were also used to validate

the models and to determine the equations of motion needed for determining sensitivity

dynamics.

1.3.1 Excavator Bucket Angle Control

The problem that is used in this work to demonstrate the application of robust

feedback linearizing control approach is the bucket angle control in excavator machines.
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Figure 1.1 Excavator Linkage

The model used is the same as that in [1], which is obtained from AMESim excavator

demo. A picture of a typical excavator is shown in Fig. (1.1). As shown in the figure,

the excavator front linkage mechanism consists of three main linkages, which are boom,

tipping stick and bucket, and a rotating platform. The hydraulic system model used

in this work is for a double-acting cylinder and 4-ways directional valve. The hydraulic

fluid used is Skydrol LD-4 with system temperature at 60 degrees Fahrenheit. There

are several different sizes of excavators in practice. The smallest one produced by John

Deere weighs 4173 pounds and has 14.8 hp. On the contrary, the largest one weighs in

excess of 185876 pounds, has 532 hp.

Excavators are indispensable equipments in construction areas. Several tasks can be

executed through excavators very efficiently, for example, earth removal, level digging

work [42], [43] and straight line motion [44], [45]. Generally, skillful operators are re-

quired to operate fairly complex piece of machinery like excavators. Due to the time

needed for training a skillful operator, the risks they have to run in various high danger-

ous environment and the increasing labor price, it is very important to make hydraulic



8

excavator more automatic. Another advantage of autonomous excavators is machine

performance enhancement [46]. Level digging work and straight line motion are very

common works performed by excavators. There are a large amount of literature about

excavator dynamics and control.

In [47], fuzzy logic control is used for excavator system with the objective of better

energy distribution and higher fuel economy. Teleoperated excavators have also been de-

veloped to reduce the risks of working in dangerous environments [48]. A brief literature

review about excavator automation control is listed in [49]. In [1] integrated robust opti-

mal design (IROD) methodology was developed for a design of robust optimal controller

for planar mechanisms [1], [50], [51]. The result shows that IROD methodology performs

better in many aspects than the state of the art control synthesis methods. The IROD

methodology was demonstrated on nonlinear mechanical linkage systems and has been

proven to be very effective in improving robustness. This thesis extends the IROD design

methodology to include nonlinear hydraulic system by enabling sensitivity-based robust

feedback linearization control of hydraulic actuator.

Because of inherent hard nonlinearities in hydraulic systems, the equations of motion

are complex. Moreover, determining sensitivity dynamics for such systems becomes a

very tedious computation. In particular, computing sensitivities in numerical form can

lead to very slow computations and potential for errors. Even with good computers the

computational efficiency can be a hurdle to overcome. In the excavator bucket leveling

problem there are two hydraulic actuators. One pump was modeled which supplies fluid

to both actuators. The higher fidelity models were developed using SimHydraulics and

SimMechanics toolboxes in Matlab. The robust feedback linearization process developed

in this work was implemented for these models.
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CHAPTER 2. SENSITIVITY

This chapter gives an overview of sensitivity and basic formulation of sensitivity

dynamics for a general nonlinear system. The process of determining sensitivity equations

is then demonstrated by a simple numerical example. A particular focus is on the

sensitivity of system performance to change in parameter values.

2.1 Parametric Sensitivity

Parametric sensitivity describes how a system performance changes due to change in

system parameter. Mathematically, it is defined as the percentage change in performance

function caused by a unit change in the parameter. The basic idea behind robust control

design is to minimize the parametric sensitivity function so that system performance

variation due to change in parameter values is minimized. In order to achieve this

objective the control design process uses the dynamics of system combined with its

sensitivity dynamics and the performance function to be minimized contains some kind

of energy terms in system states which include sensitivity states as well. Given below is

basic formulation of sensitivity dynamics for a generic function.

Consider a generic function,

y = f(~x,~b) (2.1)

where, ~x is a vector of states, and ~b is a vector of uncertain variables. According to the

definition, the sensitivity y, with respect to the uncertain variables, ~b, can be defined as
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d~y

d~b
=
d~f

d~b
+
d~f

d~x

d~x

d~b
(2.2)

if f has dimension of nf , b has dimension of nb, and the length of x is nx. Then

Eq. (2.2) becomes

d~y

d~b
= [

d~f

d~b
]nf×nb + [

d~f

d~x
]nf×nx [

d~x

d~b
]nx×nb (2.3)

and thus, d~y

d~b
has dimension of nf × nb and it is the sensitivity of y with respect to b.

Also, we can express the derivative as d~y

d~b
= ~y~b.

Now, consider another third-order nonlinear dynamic system,

ẋ1 = −ax1

ẋ2 = −bx2 + k − cx1x2

ẋ3 = θx1x2

y = x3 (2.4)

where, a, b, c, k are known parameters, and let θ be an uncertain parameter. The

sensitivity of output y with respect to θ, is denoted as yθ and is given by

yθ = x3θ (2.5)

As shown in the equation above, in order to get yθ, we have to solve the sensitivity

of states, which is

˙x1θ = −ax1θ

˙x2θ = −bx2θ − cx1θx2 − cx1x2θ

˙x3θ = x1x2 + θx1θx2 + θx1x2θ (2.6)
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where x1, x2, x3 are state solutions and the only unknowns are the sensitivity dynamics

states x1θ, x2θ, x3θ.

Now, the system dynamics Eq. (2.4) can be augmented by sensitivity dynamics

Eq. (2.6) to obtain the following set of state equations.

ẋ1 = −ax1

ẋ2 = −bx2 + k − cx1x2

ẋ3 = θx1x2

˙x1θ = −ax1θ

˙x2θ = −bx2θ − cx1θx2 − cx1x2θ

˙x3θ = x1x2 + θx1θx2 + θx1x2θ

y = x3

yθ = x3θ (2.7)

The above set of equations can be solved simultaneously for x and xθ.

In this case, the number of system states is 3 and there is only 1 uncertain parameter,

thus the number of sensitivity states is 3× 1 = 3. In general, if the system has n states

and m uncertain parameters, the number of total states of the system augmented by

sensitivity states is n+ n×m.

2.2 Initial Condition of Sensitivity States

To solve the state equations for sensitivity dynamics, one needs initial condition for

sensitivity states. But question is how to define initial conditions of sensitivity states?

For example, for the system of Eq. (2.4), the initial conditions denoted as [x1(0), x2(0), x3(0)]

would be some constants. The initial conditions for the corresponding sensitivity states

are derivatives of x(0) with respect to θ, which is [dx1(0)
dθ

, dx2(0)
dθ

, dx3(0)
dθ

]. Since x(0) is con-
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stant, its derivative equals zero. And thus, the initial conditions of sensitivity states are

zeros.

Intuitively, it seems logical that initial condition for sensitivity states would be zero

since prior to start of any motion of the system change in the value of any parameter

of the system would be not have any relevance and hence the sensitivity will be always

zero at t=0.
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CHAPTER 3. SENSITIVITY BASED ROBUST

FEEDBACK LINEARIZATION

The sensitivity theory that was briefly reviewed in the previous chapter can be used

to design feedback linearizing control, that is robust to uncertainties and/or modeling

errors. The basic theoretical foundation for this extension was laid in [1]. This chapter re-

views the development of sensitivity-based robust feedback linearization formulation and

control system architecture for implementing such control design. Section 3.1 presents

traditional feedback linearization formulation followed by sensitivity dynamics equations

and combined augmented system dynamics in Section 3.2. Following augmented system

dynamics selected relevant theorems related to system properties and stability are also

presented for the purpose of completeness. The robust control problem structure is then

discussed and the control system block diagram is provided.

3.1 Feedback Linearization

Consider a single-input single-output nonlinear system affine in control as follows:

ẋ = f(x) + g(x)u

y = h(x) (3.1)

where, x ⊂ <n is the state vector, u ⊂ <p is the vector of inputs, and y ⊂ <m is the

vector of output. If the system Eq. (3.1) can be transformed into the structure :
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ẋ = Ax+Bγ(x)[u− α(x)] (3.2)

where A is n×n, B is n×p, the pair of (A,B) is controllable, the functions α : <n → <p

and γ : <n → <p×p are defined in a domain D ⊂ <n that contains the origin, and the

matrix γ(x) is nonsingular for every x ∈ D [27]. The system is defined as feedback

linearizable. And the feedback linearizing control law is given by

u = α(x) + β(x)v (3.3)

where, β(x) = γ−1(x) and then the resulting linear system is

ẋ = Ax+Bv (3.4)

Once the system is rendered linear by feedback linearizing control law, one can use

variety of control law designs available for linear systems. Note that, since state space

model of a system is not unique, the transformation that transfers the original system

model into Eq. (3.2) is not distinct. However, the transformation has to be invertible

and continuously differentiable. Some more details about transformation requirments

are introduced in [27].

Feedback linearization approach can be classified as full-state linearization and input-

output linearization. Full-state linearization results in the system that has relative degree

of n, which is same as the order of the system. On the contrary, input-output linearization

results in a system that has relative degree smaller than the order of the system n. Since

for the application of interest in this work input-output linearization is more suited, the

next section presents formulation of input-output linearization.
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3.1.1 Input-Output Linearization

Consider the system 3.1, and differentiate the output y with respect to time to yield

ẏ =
dh(x)

dt
=
dh(x)

dx

dx

dt
=
dh(x)

dx
× [f(x) + g(x)u] = Lfh(x) + Lgh(x)u (3.5)

where, Lfh(x) = dh(x)
dx

f(x), is called the Lie Derivative of h with respect to f , and

Lgh(x) = dh(x)
dx

g(x). If Lgh(x) is zero, the output time derivative, ẏ, will not depend on

input u. Taking time derivative again one gets,

ÿ =
d(Lfh(x))

dx
× [f(x) + g(x)u] = L2

fh(x) + LgLfh(x)u (3.6)

If ÿ is still independent of u, one has to keep differentiating the output until the coefficient

of u is not zero. That is,

y(ρ) = L
(ρ)
f h(x) + LgL

(ρ−1)
f h(x)u (3.7)

Let us define ν = y(ρ), then the linearizing feedback control u can be calculated as

follows:

u =
1

LgLf
ρ−1h(x)

[−Lf ρh(x) + ν] (3.8)

The control law of Eq. (3.8) reduces the closed-loop system into a series of ρ integrators:

y(ρ) = v (3.9)

Thus, the original nonlinear system is transformed into a simple linear system. Once

linearized as in Eq. (3.9), one can use any linear control techniques. The choice of

controller could be as simple as classical PID type controller or pole placement controller.

For the hydraulic system application under consideration a simple proportional controller

is used to minimize the tracking error which is the performance of interest for a linearized

bucket leveling excavator system. The closed loop system dynamics becomes:
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ẋ = f(x) + g(x)[
1

LgLf
ρ−1h(x)

[−Lf ρh(x) +K(w − y]]

y = h(x) (3.10)

ν = K(w − y) (3.11)

where, w is the reference signal and K is a high gain. The control system block

diagram is shown below:

Figure 3.1 Feedback Linearization with Controller Block Diagram

3.2 Sensitivity Dynamics of Nonlinear System

As stated earlier, the feedback linearizing control law presented in previous section

lacks in robustness as the control law is dependent on the accurate knowledge of the

system for linearization to be valid. This section presents an approach developed in [1] to

use sensitivity dynamics to improve the robustness of traditional feedback linearization.

In the development presented next an uncertain parameter considered is a scalar but

the methodology is not restricted to only scalar parameter. The approach can be used

for a vector of uncertain parameter as well, however, for the sake of algebraic simplicity

a scalar example is used. Consider a system of Eq. (3.1) with uncertain parameter b and

assume that the system is minimum phase:
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ẋ = f(x, b) + g(x, b)u

y = h(x, b) (3.12)

According to the definition of sensitivity dynamics which is given in previous chapter,

the sensitivity dynamics of system Eq. (3.12) is given by,

ẋb = fb(x, xb, b) + gb(x, xb, b)u

yb = hb(x, xb, b) (3.13)

where, xb ⊂ <n is sensitivity dynamics states and yb is output sensitivity.

Note that the feedback linearizing control law is dependent on system parameters.

The original system augmented by sensitivity dynamics with parameter dependent con-

trol input becomes:

ẋ = f(x, b) + g(x, b)u

ẋb = fb(x, xb, b) + gb(x, xb, b)ub

y = h(x, b)

yb = hb(x, xb, b) (3.14)

where, ub is sensitivity of control input. Now, the augmented system has states [xT , xTb ]T ,

outputs [y, yb]
T and two inputs [u, ub]

T .

Some of the characteristics of the sensitivity dynamics and related stability properties

presented in [1] are reviewed next in selected few theorems.

Theorem 1. If the nonlinear system in Eq. (3.1) has relative degree r then the relative

degree of sensitivity augmented system in Eq. (3.14) is [r, r].
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Theorem 2. Consider the system in Eq. (3.14) and it has relative degree [r, r], where

r < n in D ∈ <2n, then ∀ X ∈ D, there exists a neighborhood N = N ⊕ Nb of X0 and

smooth functions φ1(x, b), φ2(x, b), φ3(x, b), . . . , φn−r(x, b) such that

Lgφi(x, b) = 0, ∀ 1 ≤ i ≤ n ∃[x, xb] ∈ N

and the mapping

T =

 TN

Tb

 (3.15)

restricted to N is a deffeomorphism on N where,

TN(x, xb, b) =



φ1(x, b)

φ2(x, b)

...

φn−r(x, b)

h

...

Lr−1f h



=

 η

ζ

 (3.16)

and

Tb(x, xb, b) =



φ1b(x, b)

φ2b(x, b)

...

φ(n−r)b(x, b)

hb
...

dLr−1
f h

db



=

 ηb

ζb

 (3.17)
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Theorem 3. If the zero dynamics given by f0(η, 0) is asymptotically stable in a neigh-

borhood Dη of operating point η0 then the sensitivity zero dynamics f0b(η, 0, ηb, 0) is also

asymptotically stable at in a neighborhood of operating point [ηT , ηTb ]T = [ηT0 , η
T
b0

]T where

ηb0 =
∂f0(η0, 0)

∂b

[
∂f0(η, 0)

∂η

∣∣∣∣
η=η0

]−1
(3.18)

In other words if system in Eq. (3.1) is minimum phase in domain Dη then the

sensitivity augmented system in Eq. (3.14) is also minimum phase in domain Dη ⊕Dηb.

According to these 3 theorems, the sensitivity dynamics is linearized:

νb =
d

db
Lρfh(x) +

d

db
(LgL

ρ−1
f h(x)ub) (3.19)

Thus, ub can be calculated by Eq. (3.19), which is essentially same as equation

Eq. (3.8). The same gain K can track the desired sensitivity dynamics efficiently, since

as shown in above mentioned those 3 theorems, linearized sensitivity dynamics is also a

set of ρ integrators. The desired sensitivity is zero, thus:

νb = K(0− yb) = −Kyb (3.20)

3.3 Robust Control Design

The last section discussed sensitivity augmented nonlinear system with feedback lin-

earizing control and the objective is to minimize the system sensitivity so that the system

is robust, i. e., and less sensitive to variation in parameters. Thus, the problem becomes

an optimization problem. Unlike traditional optimization problem, the objective function

in this case would be

J(u) =
1

2

(u(b0)− u(b))2

b0 − b
(3.21)
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The square term in the equation above keeps the function continuous and convex and

also makes sure it has a global minimum. From Eq. (3.8) and Eq. (3.11), we can conclude

that input u depends on output y. Therefore, when the input error is minimized, the

output error is also minimized.

In the equation above, if b goes to b0, then the objective function becomes

lim
(b0−b)→0

∇uJ(u) = −ub (3.22)

The control input of sensitivity dynamics ub is in the direction towards minimum

sensitivity and a proper fixed step size K2 can be designed to stabilize the close system.

Now, the term K2ub becomes a control input correction and the sensitivity dynamics con-

verges. The block diagram for the whole system with sensitivity dynamics and feedback

linearizing control is shown in Fig. (3.2):

Figure 3.2 Robust Feedback Linearizing Control Structure
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CHAPTER 4. APPLICATION TO HYDRAULIC

ACTUATORS

This chapter deals with the application of robust feedback linearization methodology

to excavator bucket leveling control problem. The design objective is to keep the bucket

leveled to the ground when the boom is moved up and down, so that the load in the

bucket does not spill. The model of the hydraulic system is built using SimHydraulics

toolbox in Matlab to be compatible with industry practice. For complex dynamic sys-

tem under consideration a methodology is presented to circumvent the tedious algebraic

computation and also describes how to connect the hydraulic actuator system dynamics

with linkage system and design the hydraulic control system.

4.1 Excavator Robust Design Process

The robust design process flow is shown in Fig. (4.1). The first step is to build the

excavator mechanical linkage system in SimMechanics. The next step is to accomplish

integrated design with IROD, which generates optimal forces needed to be produced by

the hydraulic actuators. IROD provides the reference for robust feedback linearizing con-

trol. Then, hydraulic system is built in SimHydraulics for the excavator. The next step

in the design is the design of controller for hydraulic servo. In order to accomplish that

a traditional feedback linearization is done and system is augmented with the sensitivity

dynamics to enable robust design. The objective is to design a controller such that the

control input follows closely the optimal input resulted from IROD design of linkage.
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Figure 4.1 Robust Design Process

4.2 Excavator Mechanical Linkage System Design with IROD

The mathematical model excavator linkage mechanism used for integrated robust de-

sign was taken from AMESim. AMESim is another mechanical system modeling software

widely used by industry. While AMESim and SimMechanics are competing software they

have their own strengths and weaknesses and both are used in industry. In AMESIm’s

excavator model there is no actuator model. This chapter focuses on development of

hydraulic actuator models followed by robust feedback linearizing controller design and

integration of linkage control system with hydraulic actuator control system to yield a

complete closed-loop system. Furthermore, the process of robust feedback linearization

design is systematized by developing a matlab based toolbox. Toolbox is described in

more detail in the next chapter.
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4.2.1 IROD

IROD combines the traditional sensitivity theory with relatively new advancements

in Bilinear Matrix Inequality constrained optimization problems [1]. The problem con-

sidered is to obtain optimal control input concurrently with the optimal length of one of

the links of the linkage to maintain the bucket levelled during commanded maneuver of

the linkage. The IROD toolbox was used to accomplished this integrated design. The

outcome of this result was determination of the optimal control input, i.e., hydraulic

cylinder force profiles.

The optimal force profiles obtained from IROD are then used as the reference for

the design of robust feedback linearizing controller. The high control system level block

diagram is shown in Fig. (4.2). IROD’s linearization utility was used to obtain linearized

model of the excavator system.

Figure 4.2 Excavator System Block Diagram
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4.2.2 Mechanical Linkage System

The schematic diagram of the excavator model is shown in Fig. (4.3). Typically, in

most excavator systems the operation of loading or unloading the bucket and digging

are performed in manual mode. If one considers a typical task sequence, the operator

digs and loads the bucket as much as possible then tilts the bucket following by lifting

the boom, travelling to other location and then dumping the load. During all these

motions operator tries to keep the bucket levelled to the ground to avoid spilling of the

load. Intuitively, operator tends to not load the bucket fully to avoid spilling the load

since the bucket tilt angle is controlled manually by the operator. This leads to loss of

productivity longer times for the task and increased fuel cost.

Figure 4.3 Excavator Schematic

The excavator parameters are shown in table 4.1. The length of linkage 4 is the

design variable. Its original value was 1.45m and its optimal length turned out to be

1.97m. The control design challenge is how to design a controller that is robust to mass

perturbations of the bucket as the load in the bucket is changing during operation. It

was shown in [1] that IROD designs tend to perform better and are more robust over

operating regime of the system than state-of-the-art H∞controller.
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Table 4.1 Excavator Parameters

Component Variable Description Value
Boom mboom Mass 8000 Kg
— Iboom Inertia 38500 Kg m2

Tipping mtip Mass 2920 Kg
— Itip Inertia 3600 Kg m2

Bucket mbuc Mass 4935 Kg
— Ibuc Inertia 1900 Kg m2

Linkage3 mlin3 Mass 168 Kg
— Ilin3 Inertia 10 Kg m2

Linkage4 mlin4 Mass 225 Kg
— Ilin4 Inertia 13 Kg m2

4.3 Hydraulic Actuators

This section introduces hydraulic actuators applied on the excavator system men-

tioned in the previous section. The hydraulic actuator consists of a double-acting cylin-

der, one 4-way directional valve, one pressure relief valve and one pump, which are all

very common components. Thus, hydraulic actuators in this thesis are very general.

The schematic of hydraulic actuator is shown in Fig. (4.4). In this case, there are two

controlled hydraulic actuators: the bucket and the tipping stick. They have different

sizes of cylinders and cylinder parameters are provided in table 4.2. Both of these two

4-way directional valves have the same parameters, which are shown in table 4.3. Since

the force capacity of the hydraulic actuator is based on diameters of piston and rod, and

the pump pressure, designers can select feasible sizes of hydraulic actuators according to

reference handbooks.

Table 4.2 Double-Acting Hydraulic Cylinder Parameters

Piston
Area A(Ai)

Piston Area
B (Ao)

Piston
Stroke(L)

Dead
volume(V0)

Contact
Stiffness

Contact
Damping

Bucket 0.0346m2 0.0213m2 1.33m 5−5m3 109N/m 150N/(m/s)
Tipping 0.0254m2 0.0131m2 1.7m 5−5m3 109N/m 150N/(m/s)
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Figure 4.4 Hydraulic Actuator Schematic

4.4 Robust Feedback Linearization

After excavator mechanical system and hydraulic actuators are designed, the next

step is to design robust feedback linearizatioin for hydraulic sub-system. Firstly, we need

to obtain the equation of motion for hydraulic systems. Then with the mathematical

model, the next step is to design a traditional feedback linearizing control and test it on

SimHydraulics model. Once the uncertain parameter of interest is chosen a sensitivity

dynamics is derived and augmented plant is obtained. This section will go through a

step-by-step process of the design.

4.4.1 Equation of Motion for Hydraulic System

The hydraulic actuator used in the excavator model consists of one 4-way directional

valve and one double-acting cylinder, which are very widely used in industry. There
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Table 4.3 Spool Valve and Fluid Parameters

Piston position (X) −−m

Piston velociy (Ẋ) −−m/s
Spool valve position(control input)(Xsp) −−m
Valve Passage Maximum Area (Amax) 0.0001m2

Valve Maximum Opening (hmax) 0.005m
Flow Discharge Coefficient(Cd) 0.7
Critical Reynolds Number 12
Hydraulic Fluid Skydrol LD-4
Density (ρ) 961.873Kg/m3

Pump Pressure (Ps) 3.2*107Pa
Tank Pressure (Pt) 0Pa
Bulk Modulus (β) 1.243×109Pa

are different types of combinations of valve and cylinder system used for actuation on

agriculture and construction machines. One challenge with the commercially available

modeling software like SimHydraulics or Easy5, etc. is that user has no access to dynamic

model of the hydraulic components used in the system. As such, it is difficult to develop

sensitivity dynamics without having analytical model. In this work analytical models of

hydraulic system were developed along with its sensitivity dynamics.

For simplification, those terms that account for leakage are ignored. Given below are

the equations describing the hydraulic actuators under consideration.

Ṗi =
β

(AiX + V0)
× (qi − AiẊ)

Ṗo =
β

(Ao(L−X) + V0)
× (−q0 + AoẊ) (4.1)

and,

qi = Cd
Xsp

hmax
Amax

√
2

ρ
(
√
Ps − Pi × sg(Xsp)−

√
Pi − Pt × sg(Xsp))

qo = Cd
Xsp

hmax
Amax

√
2

ρ
(
√
Po − Pt × sg(Xsp)−

√
Ps − Po × sg(Xsp)) (4.2)
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where,

sg(Xsp) =

 1, Xsp > 0

0, Xsp ≤ 0
(4.3)

The equations above are normal format for hydraulic actuators. Eq. (4.2) is about

spool-valve dynamics and cylinder dynamics is Eq. (4.1). After plug Eq. (4.2) into

Eq. (4.1), the state equations are obtained:

For, Xsp > 0

Ṗi =
−β(AiẊ −

√
2
ρ
AmaxCdXsp

√
Ps−Pi

hmax
)

V0 + AiX

Ṗo =
β(AoẊ −

√
2
ρ
AmaxCdXsp

√
Po−Pt

hmax
)

V0 + Ao(L−X)
(4.4)

Xsp ≤ 0

Ṗi =
−β(AiẊ −

√
2
ρ
AmaxCdXsp

√
Pi−Pt

hmax
)

V0 + AiX

Ṗo =
β(AoẊ −

√
2
ρ
AmaxCdXsp

√
Ps−Po

hmax
)

V0 + Ao(L−X)
(4.5)

In order to validate the accuracy of the analytical models developed these models

were compared with SimHydraulics in simulation. For validation exercise a simple mass-

spring-damper system was connected with the hydraulic actuator and test signals were

given to compare the output of the system. The parameters of mass-spring-damper

system is shown in 4.4.

The force applied on mechanical system is given by Eq. (4.6), which is also the system

output equation. In this application, we assume there is no friction.

F = Pi × Ai − Po × Ao (4.6)

and,

ma = F − kx− bẋ (4.7)
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Table 4.4 Mass-Spring-Damper Parameters

Mass(m) Spring Constant (k) Damping Ratio(d)
Value 100 kg 100 N/m 100 N/(m/s)

As shown in Fig. (4.5) and Fig. (4.6), the plots, indicating piston displacement and

forces applied on mechanical system, obtained from the derived analytical model are

and those obtained from SimHydraulics model are almost identical. This verifies the

accuracy of the analytical models developed.

Figure 4.5 Piston Displacement Plots of EOM and SimHydraulics

4.4.2 Design of Feedback Linearizing Control for Hydraulic Actuators

After developing the equations of motion for the hydraulic system, the next step is

to design a traditional feedback linearizing control. Following the process of Chapter 3,

the first step is to get the derivative of the output with respect to time:
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Figure 4.6 Force Plots of EOM and SimHydraulics

Ḟ = Ṗi × Ai − Ṗo × Ao (4.8)

If we plug state equations Eq. (4.4) or Eq. (4.5) (based on the sign of Xsp) into

Eq. (4.8), we can get:

for, Xsp > 0

ν = Ḟ =

−Aiβ(AiẊ −
√

2
ρ
AmaxCdXsp

√
Ps−Pi

hmax
)

V0 + AiX
−
Aoβ(AoẊ −

√
2
ρ
AmaxCdXsp

√
Po−Pt

hmax
)

V0 + Ao(L−X)

= −β((Ai
2 + Ao

2)V0 + AiAoX(Ai − Ao) + Ai
2AoL)

(V0 + AiX)(V0 + AoL− AoX)︸ ︷︷ ︸
Lfh(x)

+ (

√
2
ρ
AiAmaxβCd

√
Ps − Pi

hmax(V0 + AiX)
+

√
2
ρ
AoAmaxβCd

√
Po − Pt

hmax(V0 + Ao(L−X))
)Xsp︸ ︷︷ ︸

Lgh(x)Q

,

(4.9)
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and, Xsp ≤ 0

ν = Ḟ =

−Aiβ(AiẊ −
√

2
ρ
AmaxCdXsp

√
Pi−Pt

hmax
)

V0 + AiX
−
Aoβ(AoẊ −

√
2
ρ
AmaxCdXsp

√
Ps−Po

hmax
)

V0 + Ao(L−X)

= −β((Ai
2 + Ao

2)V0 + AiAoX(Ai − Ao) + Ai
2AoL)

(V0 + AiX)(V0 + AoL− AoX)︸ ︷︷ ︸
Lfh(x)

+ (

√
2
ρ
AiAmaxβCd

√
Pi − Pt

hmax(V0 + AiX)
+

√
2
ρ
AoAmaxβCd

√
Ps − Po

hmax(V0 + Ao(L−X))
)Xsp︸ ︷︷ ︸

Lgh(x)Q

,

(4.10)

In Eq. (4.9) and Eq. (4.10), we can see that the coefficient of input Xsp is not zero,

which means the derivative of the output is dependent on the input Xsp. The relative

degree of this system is 1 and the system is an input-output feedback system. According

to Eq. (3.8), the feedback linearizing control in standard format is obtained,

Xsp =
ν − Lfh(x)

Lgh(x)
(4.11)

and for the specific excavator system, it would be

Xsp =

ν + ( Ai
2β

AiX+V0
+ Ao2β

Ao(L−X)+V0
)Ẋ

βCd
Xsp
hmax

Amax
√

2
ρ
( Ai
AiX+V0

√
Ps − Pi + Ao

Ao(L−X)+V0

√
Po − Pt)

, Xsp > 0

or,

ν + ( Ai
2β

AiX+V0
+ Ao2β

Ao(L−X)+V0
)Ẋ

βCd
Xsp
hmax

Amax
√

2
ρ
( Ai
AiX+V0

√
Pi − Pt + Ao

Ao(L−X)+V0

√
Ps − Po)

, Xsp ≤ 0

(4.12)

From Eq. (4.12), we can see that there is discontinuity caused by the sign of Xsp.

In Simulink, the switch block is able to make this discontinuity a continuity and thus

we need to set one criterion for the switch block. The denominators of Eq. (4.12) are

always positive. Therefore, Xsp has the same sign with the numerator ν + ( Ai
2β

AiX+V0
+

Ao2β
Ao(L−X)+V0

)Ẋ, which can be the criterion for the switch block.
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The feedback linearizing control linearized the original nonlinear system as one inte-

grator. Since one integrator is simple, we can design one proportional controller for it.

Theoretically, the higher valve of the controller gain, the faster controller can track the

reference. But hydraulic actuators, especially large ones, can not work at high frequency.

Therefore, the controller gain should match the capacity of the hydraulic system. The

gain selected was K = 105, in this case.

Controller designed using robust feedback linearization was tested in Simulink and

Simscape. Simulink has a limitation on placing a Simscape physical network within a

Simulink algebraic loop. Documentation about this issue is available in [52]. Since the

control input Xsp is directly connected to the input of SimHydraulic model, there is an

internal algebraic loop. SImulink’s iterative algorithm to solve for constraint equations

fails to find initial conditions with acceptable tolerance.

There are 3 possible ways to solve this problem according to [52]. The first approach

is to replace the controller block by one Simscape network. But the control may not

always be exactly represented by an exact physical system. Another solution is to add

a unit delay block between the input single and the SimHydraulics system. However,

this method slows down the program significantly. Instead of adding a unit delay block,

the most preferred way is to add one first order transfer function with a very slow time

constant. The transfer function is in essence a continuous time delay which lets the

variable solver take variable time steps unlike the discrete delay which has a sample

time. Besides, it is able to filter out some noise. The transfer function is set up as

1

0.0001s+ 1
(4.13)

with time constant as 0.0001s.

The desired control forces for tipping and bucket are shown in Fig. (4.7). Figures (4.8

and 4.9) show tracking error between desired forces and the actual forces. The tracking

error is 3 orders of magnitude smaller than the force.
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Figure 4.7 Forces Applied on Excavator

4.4.3 Sensitivity Dynamics of Feedback Linearizing Control

Although, feedback linearization has good tracking performance, it is known that

feedback linearization does not have robustness to parametric variations. In the follow-

ing subsections, the sensitivity equations are derived for infinitesimal variations in bulk

modulus of the hydraulic fluid. These equations are subsequently used to add robustness

to the controller designed in previous sections.

Robustness to bulk modulus is is important for hydraulic systems because bulk mod-

ulus is affected by many factors and has a wide range of variation. Bulk modulus is most

sensitive to dissolved air. A small change of entrapped air can lead to a huge reduc-

tion in bulk modulus [32]. Besides dissolved air, liquid pressure, temperature and pipe

rigidity can change bulk modulus significantly [53]. The variation of bulk modulus can

reduce the system performance efficiency, increase disturbance and reduce machine life

span [54]. In light of these adverse effects, it is significant to consider bulk modulus as

the uncertain parameter in the design of robust feedback linearizing control. In present
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Figure 4.8 Bucket Force Tracking Error

study we have assumed single uncertain parameter, but the method can be extended for

multiple uncertain parameters.

Sensitivity dynamics is obtained by differentiating state equations Eq. (4.4) and

Eq. (4.5) with respect to bulk modulus. From hereon subscript b represents full derivative

with respect to bulk modulus.

when Xsp > 0

Ṗib =
AiβXb(AiẊ −

√
2
ρ
AmaxCdXsp

√
Ps−Pi

hmax
)

(V0 + AiX)2
− AiβẊb
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−
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√
2
ρ
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√
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hmax

V0 + AiX
+

√
2
ρ
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√
Ps − Pi

hmax(V0 + AiX)

−

√
2
ρ
AmaxβCdPibXsp

2hmax
√
Ps − Pi(V0 + AiX)

(4.14)
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Figure 4.9 Tipping Force Tracking Error

Ṗob =
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(4.15)

Xsp ≤ 0,

Ṗib =
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(4.16)
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Ṗob =
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ρ
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(4.17)

The sensitivity of force Fb is obtained by differentiating the output Eq. (4.6) with

respect to bulk modulus.

Fb = Pib × Ai − Pob × Ao (4.18)

Note here, because the objective is to reduce the sensitivity to the variation of bulk

modulus, the desired ouptut sensitivity Fb is zero.

Eq. (4.14) to Eq. (4.18) are sensitivity dynamics of the system. The method explained

in Chapter 3 Eq. (3.14) is used to obtain sensitivity of spool position Xspb .

The derivative of force sensitivity given in Eq. (4.18) with respect to time is:

Ḟb = Ṗib × Ai − Ṗob × Ao (4.19)

We need to plug Eq. (4.14) and Eq. (4.15) (or Eq. (4.16) and Eq. (4.17)) into Eq. (4.19)

and define ν = Ḟb. According to Eq. (3.19), we can get:
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for Xsp > 0,
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(4.20)

for Xsp ≤ 0,
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i ẊXbβ

(V0 + AiX)2
−
AmaxAoCdXsp

√
Ps − Po

√
2
ρ

hmax(V0 + Ao(L−X))
−

AmaxAiCdXspβPib

√
2
ρ

2hmax(V0 + AiX)
√
Pi − Pt

+
AmaxAoCdXspβPob

√
2
ρ

2hmax(V0 + Ao(L−X))
√
Ps − Po

−
AmaxAiCdXsp

√
Pi − Pt

√
2
ρ

hmax(V0 + AiX)

−
AmaxAo

2CdXbXspβ
√
Ps − Po

√
2
ρ

hmax(V0 + Ao(L−X))2
+
AmaxAi

2CdXbXspβ
√
Pi − Pt

√
2
ρ

hmax(V0 + AiX)2
}

(4.21)

If we rearrange Eq. (4.20) and Eq. (4.21), the expression of Xspb can be obtained as

follows,
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for Xsp > 0,
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for Xsp ≤ 0,
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V0 + Ao(L−X)
+
A2
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(4.23)

Since the desired Fb is zero and based on Eq. (3.20),

νb = K(0− Factualb) = −KFactualb (4.24)

Here, K is the control gain used in feedback linearization. Note that sign of X − sp (not

xspb) determines the switching in the spool valve equations.
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In Eq. (4.22) and Eq. (4.23), the equation states are Pi, Pib, Po, Pob, Xsp, Xspb which

can be obtained by solving system and sensitivity equitation. X, Ẋ can be measured on-

board from the excavator multibody system. In order to design controller for excavator

multibody linkage (without hydraulics) we need to linearize the system at operating

point. IROD toolbox was used to calculate the operating point for for one set of angles

of boom bucket and tipping. With this operating point, we can use Simulink linearization

tool to obtain linear system. The linearized system is then differentiated with respect to

the parameter β to get sensitivity augmented linear system and get Xb, Ẋb.

As discussed in the previous chapter, Xspb gives direction towards minimum sensitiv-

ity. The step size K2 is selected such that the closed loop system remains stable, and

the system converges to minimum sensitivity fast enough. Generally, larger K2 results in

faster convergence, but if K2 is greater than a certain threshold the closed loop system

becomes unstable. For these reasons K2 was chosen to be 100. This value was chosen

based on experience because, as of now, there is no method to find optimal value of K2.

In order to implement the sensitivity equations into Simulink environment, first the

equations were derived using symbolic math toolbox. This toolbox facilitates automatic

differentiation which removes the necessity of hand derived equations. Another advantage

of symbolic computation is the analytic expression of equations reduces numerical errors.

MATLAB provides one command ’matlabFunctionBlock ’, which converts the sym-

bolic expression or function into a MATLAB function block in Simulink model. The

equations are derived keeping symbolic variables for all parameters as well as states

and inputs, and then numerical values for known parameters are substituted. Now, the

equations have only state and input variables in symbolic form. These equations are

then converted into MATLAB function block in Simulink model. This approach reduces

human errors and facilitates automation of robust feedback linearization process.

Now, we need to connect SimHydraulics systems with the SimMechanical system of

the excavator. The Fig. (4.10) shows the control signal flow diagram and Fig. (4.11) is
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a Simulink layout about the hydraulic systems with robust feedback linearizing control,

which we need to follow.

Figure 4.10 Excavator with Hydraulic Actuator Block Diagram

As shown in the excavator schematic diagram Fig. (4.3), 2 hydraulic actuators need

to be controlled simultaneously. Both these actuators get power from one pump. The

pump has to be able to satisfy the pressure requirements for both the actuators. In this

study, a constant pressure source (P = 3.2 ∗ 107Pa) is used as pump. In the future,

pressure variations can also be considered as uncertain parameter

4.4.4 Results

The input signal of the excavator system is the angle of boom, and it is selected as a

sinusoidal one with frequency as 1 rad/sec and amplitude as 0.2m, which is very close to

the actual conditions. The robust feedback linearizing control can track the optimized

forces which are obtained from IROD, and also minimize sensitivity with respect bulk

modulus.

Fig. (4.12) and Fig. (4.13) show the tracking errors comparison between robust design

and nominal design for the bucket and the tipping stick respectively. The sensitivity with

respect to bulk modulus for nominal design and robust feedback design are shown in
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Figure 4.11 Hydraulic Systems with Robust Feedback Linearizing Control Simulink
Diagram

Fig. (4.14) and Fig. (4.15) respectively. The plots show that robust feedback linearizing

control makes the system less sensitive than normal feedback linearizing control. More

importantly, higher robustness is achieved without any sacrifice in performance.

The RMS error in tracking performance and RMS force sensitivity to variation in

bulk modulus are shown in Table 4.5 for both, nominal and robust design.

Table 4.5 Comparison between Robust and Nominal Feedback Linearization

Robust Nominal Improvement
Bucket RMS Force Tracking Error 27.3892 N 27.3690 N -0.05%
Bucket RMS Force Sensitivity 4.0750e−6 200.2318 99.9%
Tipping RMS Force Tracking Error 96.51 N 96.42 N -0.02%
Tipping RMS Force Sensitivity 3.4599e−6 229.3474 99.9%
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Figure 4.12 Tracking Error Comparison for Bucket Hydraulic Actuator

Figure 4.13 Tracking Error Comparison for Tipping Hydraulic Actuator
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Figure 4.14 Force Sensitivity to Change in Bulk Modulus for Bucket Hydraulic Actua-
tor

Figure 4.15 Force Sensitivity to Change in Bulk Modulus for Tipping Hydraulic Actu-
ator
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CHAPTER 5. ROBUST FEEDBACK LINEARIZING

CONTROL TOOLBOX

The process of designing robust feedback linearization requires thorough understand-

ing of non-linear systems theory and investment of man hours to derive equations. In

industrial applications, this may not be efficient method and hence a MATLAB based

toolbox with user interface is developed to facilitate robust and efficient implementation

of this approach. Robust feedback linearizing control toolbox (RFLC in short) is com-

piled into one MATLAB app to simplify the design process. The inputs from user are –

equations of motion for the nonlinear system, definitions of inputs and outputs, values of

parameters and uncertain parameter. The toolbox provides Simulink blocks which can

be put into feedback linearization framework if same model is developed in Simulink.

In this chapter features of this toolbox are discussed and a tutorial is provided.

The toolbox is demonstrated using excavator bucket level control problem. The sake of

simplicity, only the case of Xsp > 0 is shown here, but the process is repeated similarly

for other case.

5.1 RFLC Tutorial

5.1.1 Installation

Users can install the RFLC package into a Matlab app by following matlab user

guide. After successful installation, RFLC app will appear in the apps gallery Fig. (5.1).
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Figure 5.1 The MATLAB Apps Gallery with RFLC Installed in ”My Apps”

5.1.2 RFLC Layout

The user interface developed for this toolbox is shown in Fig. (5.2). The layout

consists of three main parts: system information, equation of motion and controller

design.

• System Information: this section is used to input system data, for example input,

output and parameters.

– Enter the number of states: order of the system

– Enter the name of inputs: input name

– Enter the name of outputs: output name

– Enter the known parameter names separated by commas: parameter names.

– Enter the corresponding parameter values separated by commas: parameter

values. The values should be listed in the same order as parameter names.

– Clear button: clear all information of all of these 3 sections from memory.
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• Equation of Motion: users need to type in the system state equations for this

section.

– Enter the name of state 1: do not type in the derivative of the state name,

like if the state equation is Ẋ1 = A ∗X +B ∗ U , the state name is X1 rather

than Ẋ1.

– Enter the state equation of state 1: for the example Ẋ1 = A ∗X +B ∗U , the

equation should be A ∗X +B ∗ U .

– Add State button: Let’s the users add new state variables and equations until

the number of state variables isequation to the order of the system provided

into ’System Information’.

– Clear State Equations button: clear all state names and equations from mem-

ory.

• Controller Design: this section is used to design controllers. Users need to define

output equations, uncertain parameters and block names and paths.

– Enter the output equation: the format is the same as ’Enter the state equation

of state 1’ in last section

– Enter the new FLC block name: users need to define a name for the Simulink

block generated by the program. This block is used to calculate feedback

linearizing control.

– Enter the new FLC block path: define the directory for the Simulink block.

– Run FLC button: It starts the control design process. First, System’s relative

degree is displayed in the command window. Also, the program saves the

controller in symbolic format and the controller’s default name is ’inputComp’,

in case that users want to check if the calculation is correct. An additional

block is generated and saved into the user defined directory and its default
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name is ’SiglTest’, which is used to check the sign of the input signal. If the

sign of input does not cause discontinuity, the ’SigTest’ block can be ignored.

– Enter the uncertain parameter: the name of uncertain parameter

– Enter sensitivity dynamics block name: this block is the sensitivity dynamics

of the system.

– Enter sensitivity dynamics block path: define the directory for the sensitivity

dynamics block.

– Enter input sensitivity block name: the sensitivity of the input with respect

to the uncertain parameter.

– Enter input sensitivity block path: define the directory for the input sensitivity

block.

– Run SenDynmaics button: get the system sensitivity dynamics block and also

the input sensitivity block. Like the button ’Run FLC’, it saves the equations

in these blocks in symbolic format and the default names are ’equStateSen’

and ’InCompSen’ respectively. ’equStateSen’ has the same dimension with

the system dynamics.

Some level of error handing is included in the program. So that relevant errors are

fired when unexpected inputs are entered. For example, error message is fired when

’path’ is not valid or does not exist.

5.1.3 Example: Excavator Bucket Hydraulic Actuator

The excavator bucket level control problem with hydraulic actuators is taken as an

example to illustrate the effectiveness of the app in robust feedback linearization con-

trol design. The state equations for Excavator Bucket Hydraulic Actuator are given in

Eq. (4.4) and Eq. (4.5). For simplification, we only consider Eq. (4.4).
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• Import System Basic Information

In Eq. (4.4), there are 2 states: Pi and Po. The system input is Xsp and out-

put is F . The known parameters are: Ai, Ao, L, Ps, Pt, V0, Cd, rho, Amax, hmax and

the corresponding known parameter values are: 0.0346, 0.0213, 1.33, 3.2 ∗ 107, 0, 5 ∗

10−5, 0.7, 961.87, 2 ∗ 10−4, 0.005. Fig. (5.3) shows the user interface with values

entered in respected fields.

• Import System State Equations

Since the order of the system is 2, first step is to enter first state and corresponding

state expression. Then, press the ’Add state’ button. This clears the test typed in

’State name’ and ’equations’ fields, (but the equation is stored in the memory). In

second step enter the second state and corresponding expression. Click add state

2 button to save the equation. The program detects that number of equations are

same as order of the system defined previously, and does not allow entering further

states. The ’Add states’ button is now changed to ’Over’.

In case of any typos, the user has an option to clear the equations and start entering

equations again.

• Feedback Linearization

Based on Eq. (4.6), the output equation is Pi ∗Ai−Po ∗Ao. I named the new FLC

block name as ’CompU0’ and the block path is ’Temp/Feedback Linearization’.

Note that Simulink model path has to be in matlabs path. Then RFLC generates

two blocks ’CompU0’ and ’SigTest’ and also saves the equations that these two

blocks represent.

• Obtain Sensitivity Dynamics of the system

The uncertain parameter is ’Beta’ which represents bulk modulus. The block names

and paths are shown in Fig. (5.6). After run the program, as shown in Fig. (5.7),
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there are 2 states in the sensitivity dynamics block – ’SenDy1’ and ’SenDy2’. Also,

the program saves the equations of these 3 blocks. After RFLC generates all of

these blocks, users need to connect them together according to Fig. (4.11).

5.2 Discussion

As shown in the previous excavator bucket hydraulic actuator example, RFLC app

makes the controller design process easier and more accurate. Users do not have to have

much background about feedback linearization and sensitivity analysis. also RFLC can

design robust nonlinear controllers for any nonlinear system, that is, this program is not

restricted to hydraulic systems.

RFLC can only work on the systems which have the specific structure Eq. (3.2),

because the system transformation is not unique. Mean while, the system has to be

SISO and have only one uncertain parameter. In the future, RFLC app will be used for

more general systems.



50

Figure 5.2 RFLC App Layout
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Figure 5.3 System Information of Excavator Bucket Hydraulic System

Figure 5.4 Equation of Motion of Excavator Bucket Hydraulic System

Figure 5.5 Save the Equation of Blocks Dialog
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Figure 5.6 Sensitivity Dynamics of Excavator Bucket Hydraulic System

Figure 5.7 Sensitivity Dynamics Block of Excavator Bucket Hydraulic System
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

This chapter summaries the contribution of this thesis and discusses possible future

work.

6.1 Conclusions

The primary focus of the work in this thesis has been on: (a) application of robust

feedback linearization methodology based on sensitivity dynamics of the system; (b) de-

velopment of system process for integrating robust feedback linearizing control design of

hydraulic actuator subsystem with robustly designed linkage system using IROD method-

ology; and (c) development of Matlab-based user friendly toolbox to enable efficient

design of robust feedback linearizing control for a class of systems driven by hydraulic

actuators and having multi-link mechanisms. An example system used throughout this

work is the excavator system and the specific problem considered is that of automatic

bucket leveling. The Matlab toolbox has been developed with friendly user interface so

that complex tedious computational details are handled automatically behind the scene

and user merely has to input the basic data.

While through out the thesis the example of excavator has been presented the method-

ology and toolbox developed is applicable for any generic system in a similar class of dy-

namic systems. The results presented in previous chapters clearly demonstrate that the

robust feedback linearizing control methodology can be effectively used with high-fidelity

models obtained from SimHydraulic, AMESim, and SimMechanics software. It is shown
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that the novel method can improve the system robustness and performance efficiently.

The work also presented how to integrate RFLC with IROD which is critical for dealing

with complex hydraulically driven systems such as ag and construction machinery.

The key contribution of this thesis include:

1. Demonstration of a methodology to achieve robust control of hydraulically driven

nonlinear multilink system.

2. Process and architecture to integrate RFLC with IROD to achieve integrated robust

optimal design of complex system, and

3. Development of user-friendly Matlab based toolbox for designing of RFLC.

6.2 Future Work

The work presented here has laid a good foundation for integrated robust design and

control of complex nonlinear multibody systems. This work has also opened several new

doors for enhancement and/or improvement of methodology for efficient adoption into

industrial community. Specifically, following are some key research directions that can

be pursued in advancing the state-of-the-art:

1. Extension of validation effort of RFLC methodology to multiple uncertain parame-

ters which will increase the computational complexity. However, the methodology

presented in this work will remain the same. In this thesis, only bulk modulus was

considered as an uncertain parameter, which is the most commonly uncertain in hy-

draulic systems. However, the methodology can be used for multitude of uncertain

parameters and future work can validate this generalization.

2. Extend applicability of RFLC by developing interfaces to AMESim, ADAMS, etc.

so that one can achieve robust design of systems already modeled inside these

environment. In industry, different companies have different preferences in software.
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The benefits of RFLC are demonstrated in this work however for its wide acceptance

its integration with already existing commercial codes is necessary.

3. Implement on actual hardware, rather than software simulation. The RFLC method-

ology was demonstrated on high fidelity dynamic model but for complete validation

the implementation on actual physical hardware is important. Future work should

address the practical implementation aspect.

4. Develop interfaces in collaboration with hydraulic modeling software companies to

enable generation of analytical representation of hydraulic dynamics so that RFLC

toolbox can directly import these equations and perform the design automatically.
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