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ABSTRACT 

 

 The main objectives of this work are: (1) to explore and improve the hybrid CO2 

laser/waterjet (LWJ) technique, developed by Iowa State University’s Laboratory for 

Lasers, MEMS and Nanotechnology, to machine thick polycrystalline cubic boron nitride 

(PCBN) tool blanks both in 1D and 2D with minimum energy consumption and good cut 

quality; (2) to examine the mechanism of crack separation in the cutting process, both 

experimentally and numerically to increase the consistency of laser performance and 

manufacturing feasibility. The LWJ process showed advantages over conventional 

methods such as wire-EDM and pulsed Nd:YAG laser. The wire-EDM is not applicable 

for electrically insulating solid form PCBN tools and the pulsed Nd:YAG laser suffers 

from poor cut quality and low cutting speed. In this work, a 4.8-mm-thick specimen in 

solid form was cut successfully, both in 1D and 2D using nitrogen as an assist gas. The 

cut quality and governing mechanism were studied by electrical microscopy (SEM/EDS), 

Raman spectroscopy and optical profilometer. Statistical design of experiment was 

applied to help design and optimize the consistency of the cutting experiment. Numerical 

model based upon finite element analysis was also used to validate the mechanism and 

predict the surface profiles and fracture behavior. There are good agreement between 

experimental measurements and modeling results. 
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CHAPTER 1 

 INTRODUCTION  

1.1 Background of Polycrystalline Cubic Boron Nitride (PCBN) tools 

Cubic boron nitride (cBN) is a super-hard material. It is harder than all other material 

except diamond. However, it is harder than diamond when temperature rises above 700 ˚C. Other 

intriguing properties include exceptional thermal and chemical stability as well as superior 

mechanical properties, such as high Young’s modulus, high thermal conductivity (50-200 

W/mK), extreme high wear resistance, and a low friction coefficient. cBN powders are 

synthesized with metallic binders (Co) or ceramic binders (AlN or TiN) under extremely high 

temperature and pressure conditions to form homogenous polycrystalline cubic boron nitride 

(PCBN) tool blanks [1]. It retains constant hardness in elevated temperature and inertness to iron. 

A PCBN tool is an ideal cutting tool for machining hardened ferrous material and takes the place 

of conventional grinding processes, especially for high speed cutting, milling or turning and 

finish machining on hard cast iron, high chrome alloy steel, high-strength nickel super-alloys and 

powder metal alloys [2]. 

PCBN tools are machined in two forms: a composite bonded to a cemented substrate or 

self- supported. Such tool blanks are usually machined into dies and index inserts. PCBN index 

inserts ranging from 1.6mm to 4.8mm in thickness are available in round, triangle, square and 

rhombus (55°, 80°, 35°) geometries with chamfered or unchamfered edges in order to fit 

standard negative rake angle tool holders. 
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1.2 State-of -the-art manufacturing methods for PCBN inserts 

PCBN tool inserts exhibit outstanding cutting performance with exceptional tool life; 

however, it is formidable to machine different shapes of dies or inserts due to its superhigh 

hardness and brittleness. In terms of tool production, speed, resolution and cost-effectiveness are 

the most important criteria required. Diamond sawing, electric discharge machining (EDM), 

electrical discharge grinding (EDG) and conventional Nd:YAG laser cutting are among the most 

popular techniques.  

Diamond sawing is rarely utilized in the current market due to its low efficiency, rapid 

tool wear and poor precision. Also, it is limited to straight cuts and large kerfs owing to the 

thickness of the blade. Wire-EDM and EDG are restricted to electrical conductive materials, and 

so are not feasible for those PCBN tools without Co or TiN binders. High energy consumption 

and slowness have limited its further development and application. Conventional pulsed 

Nd:YAG laser overcome some deficiencies of EDM/EDG processes; for instance, a Nd:YAG 

laser could cut ultra-hard materials like polycrystalline diamond (PCD) and PCBN at a speed of 

80-100 inch per minute[3].  However, it still suffers from low tolerance and velocity due to laser 

ablation mechanism such as multiple passes with fine feed each time required to cut through the 

whole thickness of tool blanks. In addition, particle formation, thermal damage and conical kerfs 

generation call for post treatment like polishing and brazing to meet finish requirements.   

Given the drawbacks of the conventional laser, Synova S. A. Switzerland pioneered and 

patented an extension of pulsed Nd:YAG laser cutting called Laser-Microjet® (LMJ®), where a 

waterjet is added to deliver the 532 nm Nd:YAG beam [4]. The high-pressure waterjet aids in 

reducing the spot size and thermal damage in the laser-cut zone while not changing the material 

removal mechanism. The LMJ for cutting 4.8 mm thick PCBN yielded improved cut quality with 
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little change in cutting speed. Approximately 70 to 90 laser passes were required at an overall 

speed of 6-6.85 mm/min [5]. 

 

1.3 Improved CO2 Laser/Waterjet (CO2-LWJ) mechanism and method 

Though LMJ® procedures good surface finish with negligible thermal damage, no burrs 

and post-processing free, the mechanism still remains as laser ablation, resulting in slow speed 

and calling for novel improvement. Lumely [6] first applied a controlled fracture mechanism in 

machining brittle material such as glasses by utilizing a single CO2 laser to scribe a substrate and 

propagate a fracture controllably. The laser power used was lower than past methods and cutting 

speed was also much faster. Tsai and Chen [7] extended the method to cutting aluminum oxide 

with one focused beam aimed at groove forming, another defocused beam to initiate the crack 

and propagate the crack through the thickness. Specimens of 10 mm thickness were cut through 

successfully both in a straight line and a curve. 

A non-traditional hybrid CO2 laser/waterjet process was developed by a group of 

researchers at Iowa State University to investigate the feasibility of applying a crack separation 

mechanism in machining superhard material such as polycrystalline diamond (PVD) and PCBN, 

that meets the manufacturing specifications and could become an alternative to current methods.  

Unlike conventional energy-intensive erosive wear or melting blow and subsequent evaporation, 

the group combined a 10.6 µm continuous wave CO2 laser with low-pressure abrasive free 

waterjet synergistically such that the material removed by thermal shock assisted fracturing the 

material into fine fragments. Fig. 1 shows the schematic of CO2-LWJ process. The workpiece 

first undergoes laser irradiating, groove forming, and water quenching and then causes crack 

propagation with material separation. Two main driving forces guide the whole process 



4 

 

 

according to our previous study: one is the thermal stress induced by rapid water cooling right 

after the laser is heated, another is the mechanical stress caused by phase transformation 

especially sp
3
 to sp

2
 (e.g. diamond to graphite phase), which will increase brittleness of the 

machined region and volumetric expansion which in turn facilitates the controlled fracture 

propagation. 

It has been successfully demonstrated that the ability of the LWJ process to machine PCD 

and cubic boron nitride (cBN) dies in one dimension. The relationship between machining 

parameters and fracture characteristics has been studied both experimentally and numerically. A 

two-dimensional contour cut performed well in thin PCBN both in a WC-supported form and a 

solid form. Different fluid media effects were also explored to identify the best candidate for 

machining PCBN material. Nitrogen provided high transition depth, less energy consumption 

and less thermal damage. The LWJ process made controllable crack separation, a smooth 

machined surface and negligible thermal defects. Given the benefits of two media, an improved 

extension of nitrogen-assisted the LWJ process was explored especially during two-dimensional 

cutting of thick PCBN. 

 

1.4 Thesis organization 

This thesis consists of four chapters: Chapter 1 is a brief introduction for the foundation 

process of LWJ technique and PCBN tools. Chapters 2 and 3 are in journal paper format. 

Chapter 2 focuses on identifying the effects of N2 and a water assisted process in one-

dimensional cutting. Statistical design of experiments is applied in experiment development and 

optimization. Chapter 3 explores a new method called N2-assisted LWJ during two-dimensional 

cutting. Numerical FEM analytical results are included to compare with the experimental 
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measurements. Chapter 4 presents the fundamental conclusions based upon the current research 

and tasks in the future. 

 

 

Fig.1 The schematic of CO2-LWJ process 
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CHAPTER 2 

CRACK SEPARATION MECHANISM IN CO2 LASER MACHINING OF THICK 

POLYCRYSTALLINE CUBIC BORON NITRIDE TOOL BLANKS  

A paper published in the International Journal of Advanced Manufacturing Technology, Feb, 

2014 

Yixian Wang, Pal Molian and Pranav Shrotriya 

 

Abstract 

An improved method for cutting thick polycrystalline cubic boron nitride (PCBN) tool 

blanks is explored because current methods of pulsed Nd:YAG laser cutting and wire electric 

discharge machining (EDM) are constrained by low speed and low precision.  We present a CO2 

laser/waterjet (LWJ) process to cut 4.8 mm thick PCBN tool inserts by a crack separation 

mechanism.  In LWJ, the PCBN blank is locally heated using a high-power continuous wave 

CO2 laser to cause phase transition from cubic to hexagonal followed by water quenching to 

generate thermal stresses and form boron oxide leading to increased brittleness, subsequent 

cracking, and material separation.  A 2
3
 factorial design of experiment (DOE) approach was 

employed to determine the factors of laser power, cutting speed and waterjet pressure on the 

responses of phase transformation depth, taper, and Ra. A numerical heat flow model, based on 

Green’s function, was used to calculate the temperature distributions along the depth.  Surface 

profilometer, scanning electron microscopy and Raman spectroscopy were utilized to analyze the 

phase transformation and crack zones. Results from LWJ compared with pulsed Nd:YAG laser 

and laser microjet
TM

 methods indicate LWJ cuts 30 times faster; this was attributed to a non-
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conventional material removal (crack separation) mechanism. When LWJ was compared against 

nitrogen-assisted CO2 laser cutting, improved cut quality (less taper and smaller heat affected 

zone) was observed due to a greater control on phase transformation and crack propagation. 

DOE analysis revealed laser power and waterjet pressure and the interactions among them are 

more significant factors than others. 

Keywords: Cubic boron nitride; CO2 laser; Waterjet; Crack separation mechanism; Design of 

experiment 

 

2.1 Introduction 

Polycrystalline cubic boron nitride (PCBN) ranks as the second hardest (30-45 GPa) tool 

material on earth.  It is a synthetic material composed of cubic boron nitride (cBN) particles in a 

ceramic matrix, like TiN or AlN, and produced under extreme pressure and temperature 

conditions [1]. It is an ideal tool material for efficient, precision machining of hardened ferrous 

and non-ferrous alloys, such as pearlitic grey cast irons, nickel and cobalt-based alloys, hardened 

steels, powder metal irons, hard facing alloys and superalloys [2] by virtue of excellent hardness, 

wear resistance and thermal stability.  There are two basic tool forms for PCBN: (1) brazed on 

tungsten carbide, and (2) solid form. The latter is advantageous because it can be used as a 

double edged tool.  A solid PCBN insert is also the best choice for rough machining of cast irons 

and steels.   

PCBN tool inserts in the solid form are traditionally produced by a sequence of processes 

(Fig.1) that involve powder metallurgy sintering of cBN powders with a binder to form a disc; 

cutting of the disc by wire electrical discharge machining (EDM) or pulsed Nd:YAG laser to 
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form inserts; and then finishing the inserts to obtain the desired surface finish and tolerance.  

Tool inserts can be made in different geometries, such as squares, diamonds and triangles. 

 

Fig. 1 Schematic diagram showing process flow for PCBN tool inserts 

Wire EDM is a slow process and is further limited by the electrical conductivity of 

PCBN.  Essentially the electrical conductivity of the binder material used for sintering PCBN 

discs dictates the ability of EDM to cut PCBN. On the other hand, EDM can reduce tooling cost 

and allow for more precise geometries generation.  Pulsed Nd:YAG laser is advantageous over 

wire EDM in faster cutting (about 30 times).  Yet pulsed Nd:YAG laser cutting of PCBN up to 6 

mm thick is accomplished at slow speeds (<10 mm/min) with low precision due to recast layer 

formation, taper, thermal damage, and rough surface [3].   

Pulsed Nd:YAG laser cutting of PCBN tool blanks involves evaporation and sublimation 

as the material removal mechanisms.  Pulse widths from nanoseconds to microseconds with an 

average power of 40 to 120 W in the speed range of 5 to 10 mm/min are generally used for a kerf 

width of about 0.1 mm [4].  Ablation rate in micrometers per pulse occurs; thus, hundreds of 

multiple passes are needed to cut through the entire thickness of the sample. The process often 

results in thermal damage and recast layer formation.  Figure 2 shows the morphology of a laser-

cut surface of 4.8 mm thick PCBN, showing non-uniform ablation on the microscale and the 

presence of microcracks in cBN particles.  Figure 3 shows the surface roughness profile recorded 
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by the optical profilometer. The average surface roughness is Ra 3 µm. Further analysis revealed 

that no phase transformation such as cBN hBN has occurred during cutting.  
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Fig. 2 SEM images of the cross-section of PCBN cut by conventional laser: (a) low 

magnification micrograph showing the pattern of non-uniform ablation; (b) high magnification 

micrograph showing the presence of microcrack in cBN particles. 

 

 

Fig. 3 3D topography and surface profile of conventional laser-cut PCBN 
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An extension of traditional pulsed Nd:YAG laser cutting is Laser-Microjet® (LMJ®), 

where a waterjet is added to deliver the 532 nm Nd:YAG beam [5]. The waterjet aids in reducing 

the spot size and thermal damage of laser-cut zone while not changing the material removal 

mechanism. The LMJ® for cutting 4.8 mm thick PCBN yielded improved cut quality with little 

change in cutting speed. Approximately 70 to 90 laser passes were required at an overall speed 

of 6 mm/min [6].                                           

Producing a precise and high-quality PCBN tool insert at high speeds still remains as a 

formidable challenge.  The desirable characteristics of tool inserts include small cutting width, 

parallel kerf, minimal heat affected zone, smooth surface, and little taper.  To meet these 

requirements, a low energy cutting process must be employed.  In this work, we have applied a 

continuous wave CO2 laser for cutting 4.8 mm thick PCBN samples in two different ways:  (1) 

use of nitrogen assist gas and (2) combine the laser beam with a waterjet (LWJ).  Previously we 

have applied such techniques to cut 1.6 mm thick PCBN samples in the solid form [7-9] and 

discovered some improvements in cutting speed and cut quality. However, this work was not 

comprehensive to establish the effects of laser parameters and to understand the various aspects 

such as phase transformation depth, taper and surface roughness.  Previous work was also limited 

to thin sections.  Hence, in this work, we made a detailed study of cutting 4.8 mm thick PCBN 

tool blanks and associated material removal mechanisms.  In addition, a 2
3 

factorial design 

methodology was applied to evaluate the effects of laser power, cutting speed, and nitrogen gas 

pressure or waterjet pressure on responses such as surface roughness, transformation depth and 

taper angle. Both main effects and interaction effects were determined. Such a DOE approach 

will facilitate eliminating numerous trial-and-error scenarios currently required to select and tune 

these parameters for industrial applications.  
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2.2 Experimental details 

2.2.1 Material 

PCBN tool blanks (BZN 7000S, electrically nonconductive) composed of 82% cBN and 

18% AlN were procured from Diamond Innovations, Inc. (Ohio) in 4.8 mm thick solid form.  

Surface roughness (Ra) for the polished blanks was measured by optical profilometer as 0.3 µm. 

Figure 4 shows the microstructure of BZN 7000S that exhibits a grain size of 15 µm.  The pulsed 

Nd:YAG laser is currently used to cut BZN 7000S blanks because wire EDM is not suitable.  

The thermal properties for BZN 7000S, estimated based on volume fractions cBN and AlN, are 

listed in Table 1. 

Table 1 Estimated thermal properties of BZN 7000S  

 

Thermal 

conductivity 

(W/mK) 

Specific heat capacity 

(J/kgK) 

Density (kg/m
3
) Thermal 

diffusivity (m/s
2
) 

189 871 3412 6.36 10
-5

 

 

2.2.2 Methods 

A continuous wave CO2 laser (Model 820 Spectra Physics) of 10.6 μm wavelength and 

1500 W rated power was utilized in all experiments. The laser power varied from 400 to 800 W, 

while the cutting speed was increased from 4 to 13 mm/sec. The beam was focused to a spot size 

of 0.2 mm, using a 127 mm focal length lens. Two experiments were conducted. The first 

experiment consisted of laser cutting the PCBN samples with nitrogen as the assist gas.  Nitrogen 

was chosen over oxygen or air to prevent oxide formation, uncontrolled fracture, and lower 
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groove depth. Nitrogen also facilitates material removal by momentum effects and minimizes 

heat damage by cooling effects.  The beam and gas were transmitted coaxially through a 1 mm 

diameter copper nozzle.  The sample was mounted on an X-Y positioning table guided by a 

computer numerical controller (CNC). The standoff distance between the specimen surface and 

the nozzle was set at about 1 mm.  The second experiment was achieved with the aid of a 

waterjet (LWJ). The details of LWJ are described elsewhere [7-9]. The beam was focused to a 

spot size of 0.2 mm as in the previous case.  A special cutting head with two holes (Fig.5), the 

central hole for the laser beam and the other hole for the waterjet, was used. The diameter of the 

waterjet was 0.33 mm. The distance between the two holes was 2 mm to eliminate the beam 

directly interacting with the water.  It may be noted that water absorbs nearly 70% laser energy at 

CO2 laser wavelength. Air was used coaxially with the laser beam to further prevent beam 

interaction with water and also splashing of water onto the lens. 

 

Fig. 5 Laser/waterjet cutting head 
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2.2.3 Design of experiments 

Although not an optimization tool, the factorial design of experiment offers identification 

of the main and interaction effects of the input variables on responses with a minimum number 

of experiments.  The purpose of DOE in this work was to identify the significance of the factors 

that affect cut quality. Three factors of interest were investigated in this study: (1) laser power, (2) 

cutting speed and (3) nitrogen gas or waterjet pressure. A 2
3 

factorial design was set up with two 

levels for each factor, listed in Tables 2 and 3. The remaining factors, such as beam diameter, 

focal length of lens, beam mode, standoff distance, and focus position were kept constant.  The 

response of cut quality is expressed in terms of Ra, taper and phase transformation depth. To 

keep the number of experiments and subsequent analysis manageable, two replications for each 

experiment were performed. Ra was quantified with the help of a profilometer and converted into 

a rating scale of 1 to 5 (Table 4). Taper was also measured and converted into a rating scale 

(Table 4).  

 

Table 2 Factors and their levels of nitrogen-assisted CO2 laser cutting experiment  

 

Factors of interest Low level (-) High level (+) 

Laser power (W) 400 800 

Cutting speed (mm/sec)  4 13 

Gas pressure (kPa) 68.9 137.9 

 

 

Table 3 Factors and their levels of waterjet-assisted CO2 laser cutting experiment  

 

Factors of interest Low level (-) High level (+) 

Laser power (W) 400 800 

Cutting speed (mm/sec) 4 13 

Waterjet pressure (kPa) 413.7 6895 
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Table 4 Scale for Ra and taper ratings 

 

Scale Surface Roughness Taper 

1 Surface roughness in Ra < 1 µm Zero degree 

2 Surface roughness in Ra 1-3 µm 1 to 5 degrees 

3 Surface roughness in Ra 4-7 µm 5 to 10 degrees 

4 Surface roughness in Ra 7-10 µm 10 to 15 degrees 

5 Surface roughness in Ra > 10 µm >15 degrees 

 

2.2.4 Analysis 

An optical profilometer (Zygo NewView 7100) with 5  and 20  magnifications was 

utilized to measure and analyze the kerf profile, groove depth and surface roughness.   Groove 

depth was basically the phase transformation depth. An optical microscope was used to 

accurately measure the transformation depth in through-cut samples with a resolution of 1 µm.  

Scanning electron microscopy (SEM Model JOEL JSM-606LV at 20kV) was used to examine 

the phase transformation and crack propagation zones. Raman spectroscopy (532 nm using Ar-

ion laser) was utilized to identify the phase signatures. 

 

2.3 Results and discussion 

2.3.1 Nitrogen-assisted CO2 laser cutting 

Figure 6 is a plot of line energy against type of cutting categorized, such as scribing, 

cutting, and uncontrolled fracture.  Line energy in laser cutting is defined as P/V
m

, where P = 

laser power, V = cutting speed, and m ≤ 1. Experiments with two different powers and cutting 
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speeds indicated m=0.63 for our case. Threshold line energies required for cut-through and 

uncontrolled fracture were approximately 12,000 and 14,000 J/m, respectively.  Higher gas 

pressure causes uncontrolled fracture at higher line energy due to additional stress effects. The 

kerf width in all cases was about 0.2 mm (same as spot size). Figures 7 and 8 show the secondary 

electron images of the cross sections of through-cuts in PCBN at 400 and 800 W, respectively.  

Two zones may be noted: (1) phase transformation zone with a depth the same as the groove 

depth produced by thermal evaporation or decomposition of PCBN and (2) fracture zone caused 

by crack separation. It may be noted the boundary between these two zones is non-uniform.  

Furthermore the fracture zone had a surface roughness of Ra 4 µm, as measured by the 

mechanical probe profilometer.  It was difficult to use the optical profilometer, due to 

considerable waviness in the fracture zone.  

 

Fig. 6 Effect of line energy on the type of cutting mechanism in nitrogen-assisted laser cutting 
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Fig. 7 SEM images of 137.9 kPa nitrogen-assisted laser machined cross section at 400W, 4mm/s 

(×100) 

100 μm 
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Fig. 8 SEM images of 137.9 kPa nitrogen-assisted laser machined cross section at 800W, 

13mm/s (×100) 

 

Figure 9 shows the Raman spectra of phase transformation and fracture regions.  Before 

we analyze the Raman data, the phases corresponding to different peaks must be recognized. 

Table 5 lists the positions of Raman peaks for various allotropes of BN.  The fracture zone is 

similar to as-received material with peaks characteristic of cBN phase.  However, the phase 

transformation zone is composed of cBN (1055 cm
-1

), hBN (1365 cm
-1

) and eBN (1555 cm
-1

), 

suggesting a phase transition from cBN to hBN and eBN.  Explosive BN (eBN) is a metastable, 

100 μm 
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octahedral phase with a typical particle size of 30 to 120 nm, formed during the transformation 

between cBN and hBN under high pressures and high temperatures [10]. It was reported cBN 

undergoes phase transition to hBN at about 1800 K in the nitrogen atmosphere [11-12]. During 

laser heating, cBN transforms to hBN and then hBN gradually decomposes into gaseous nitrogen 

and gaseous boron at 2400 to 2600 K [13-14], leading to groove formation.  Finally crack 

initiation occurred at the transition zone, primarily due to thermal expansion mismatch stresses 

of BN phases.  The temperature history of laser heating is useful to support the phase changes 

discussed above and also to predict the phase transformation depth. A Green’s function based 

approach was utilized to estimate the temperature distribution along the depth. The laser was 

assumed a rectangular heat source. The temperature distribution during heating was obtained by 

the solution to heat diffusion equations as described [7]. Laser energy absorption by the PCBN at 

10.6 µm was modeled, based on the optical absorption spectra of cBN and AlN (constituents of 

PCBN) [15-16]. The reflectivity is approximated as 0.30, while the absorption coefficient is 

taken as 133 cm
-1

.  Figure 10 shows the temperature profile obtained for a laser power of 800 W 

and a speed of 13 mm/s. It predicts a phase transformation depth of 0.5 mm, based on 

equilibrium 1800 K. However, the experimental data show a depth of 1 mm suggesting phase 

change can occur under non-equilibrium conditions at lower temperatures. Support for phase 

change at about 1000 K in non-equilibrium situations is provided [17]. 
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Fig. 9 Raman spectrum of the transformation region in laser cut PCBN with nitrogen gas 

Table 5 Raman peaks (cm
-1

) for various forms of BN 

 

cBN hBN rBN *wBN eBN 

1056 (TO),  

1305 (LO) 

1357 790,1370 1015, 1108,  

1253, 1295 

1555-1590 

* It is difficult to obtain good Raman spectra of w-BN because of the powder form 
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Fig. 10 Surface temperature plot across the thickness for nitrogen-assisted laser cutting 

(power=800 W, speed=13 mm/s) 

 

To acquire a full understanding of the influence of laser and other process parameters, a 

2
3
 factorial DOE was pursued and the experimental data were analyzed with JMP® software.  

Analysis of variance (ANOVA) was then conducted to identify the significance of main and 

interactions effects for all factors.  The objective here was to determine the factors that minimize 

the transformation depth, Ra, and taper. The three inputs (factors) considered important to the 

operation are laser power, speed, and gas pressure. The relative importance of each of these 

factors on each of the responses is ascertained below. The eight different combinations of factors 

were attempted to establish the best way to cut 4.8 mm thick PCBN.  
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Table 6 ANOVA results on phase transformation depth of nitrogen-assisted CO2 laser 

experiment  

 

Source Sum of squares Mean square DF F Ratio P-value 

A-laser power 3.43176 3.43176 1 734.3928 <0.0001 

B-cutting speed 1.27126 1.27126 1 272.0477 <0.0001 

C-gas pressure 0.19141 0.19141 1 40.9608 0.0001 

AB 0.09766 0.09766 1 20.8984 0.0013 

AC 0.00006 0.00006 1 0.012 0.915 

BC 0.04101 0.04101 1 8.7753 0.0016 

Error 0.04206 0.00467 9 - - 

Corrected Total 5.35866 - 15 - - 

 

 

Fig.11 Significant main effects of (a) laser power, (b) cutting speed, and (c) gas pressure and 

interaction effects of (d) laser power and cutting speed, (e) cutting speed and gas pressure on 

transformation depth  
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Table 6 and Figure 11 provide the results on the phase transformation depth.  For a 

confidence level of 95% (α=0.05), all three main effects and two of the three interaction effects 

(interaction effects between laser power and cutting speed, and between cutting speed and gas 

pressure) were significant. Transformation depth increases with an increase in laser power and 

gas pressure, and a decrease in cutting speed. The effects of cutting speed are stronger at high 

levels of laser power and gas pressure.  Ignoring higher-order interactions, a standard model 

fitted to ANOVA data is given by:  

Transformation depth (μm) = 3.082 A-44.273 B -0.087 A B-0.326 B C-163.347           (1) 

The results of Eq. (1) also conform to the physical understanding for this process. For instance, 

when the laser power (A) increased, the depth of transformation ascended. This could be 

explained by increasingly more energy was injected to promote the phase change from sp
3
 cBN 

to sp
2
 phases like hBN.  

Table 7 and Figure 12 show the results of significant main and interaction effects of DOE 

on Ra.  Higher-order interaction effects were not significant.  Two main effects (power and 

speed) and one interaction (between power and speed) effect were statistically significant at the 

significance level of α=0.05.  Table 8 and Figure 13 show the results of significant main and 

interaction effects of DOE on taper rating.   Laser power, cutting speed, and interaction between 

them are found to exhibit the most significant effects.  
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Table 7 ANOVA results on Ra rating of nitrogen-assisted CO2 laser experiment  

 

Source Sum of squares Mean square DF F Ratio P-value 

A-laser power 5.0625 5.0625 1 22.0909 0.0011 

B-cutting speed 5.0625 5.0625 1 22.0909 0.0011 

C-gas pressure 0.0625 0.0625 1 2.4545 0.1516 

AB 14.0625 14.0625 1 61.3636 <0.0001 

AC 0.0625 0.0625 1 0.2727 0.6141 

BC 0.0625 0.0625 1 0.2727 0.6141 

Error 2.0625 0.2292 9 - - 

Corrected Total 26.9375 - 15 - - 

 

 

 

Fig. 12 Significant main effects of (a) laser power, (b) cutting speed and interaction effect (c) 

laser power and cutting speed on Ra rating 
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Table 8 ANOVA results on taper rating of nitrogen-assisted CO2 laser experiment  

 

Source Sum of squares Mean square DF F Ratio P-value 

A-laser power 3.0625 3.0625 1 25.9412 0.0007 

B-cutting speed 3.0625 3.0625 1 25.9412 0.0007 

C-gas pressure 0.5625 0.5625 1 4.7647 0.0569 

AB 22.5625 22.5625 1 191.1176 <0.0001 

AC 0.0625 0.0625 1 0.5294 0.4854 

BC 0.0625 0.0625 1 0.5294 0.4854 

Error 1.0625 0.1186 9 - - 

Corrected Total 30.4375 - 15 - - 
 

 

Fig. 13 Significant main effects of (a) laser power, (b) cutting speed and interaction effect (c) 

laser power and cutting speed on taper rating 
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2.3.2 Waterjet-assisted CO2 laser cutting 

Figure 14 shows a plot of line energy against type of cut.  Here line energy is defined as 

P/V in contrast to the previous case. Threshold energy (P/V) for cutting is 1.33 times higher than 

that for nitrogen-assisted cutting, which could be explained as follows. When the laser beam 

impinges on PCBN at a point, groove formation occurs during, as well as after, laser irradiation 

due to heat conduction.   Unlike nitrogen, the succeeding waterjet has a severe cooling effect that 

can counteract “after laser irradiation” heating effect, limiting the depth of groove and 

subsequent crack initiation. In addition, the water vapor cloud present in the cutting zone can 

absorb laser radiation. Thus, more line energy is required to cause cutting for the LWJ case. 

Another observation in Fig. 14 is it does not cut PCBN in high waterjet pressure (6895 kPa) at 

the same laser power and speed as in low waterjet pressure (413.7 kPa); this further supports the 

above hypothesis. Another interesting feature noted is no uncontrolled fracture was determined 

within the limits of the process parameters investigated.   

 

Fig. 14 Effect of line energy on the type of cutting mechanism in LWJ cutting 
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Figures 15 and 16 show the scanning electron micrographs for the cross sections of 

through-cut PCBN tool blanks at  4 mm/s (800W,  413.7 kPa) and  6 mm/s (800W, 413.7 kPa), 

respectively since 13 mm/s was ineffective.  Unlike the nitrogen-assisted process, the boundary 

between the fracture and the phase transformation zone is more horizontal (parallel to the 

surface). In addition, the fracture zone exhibited a finer structure.   Figure 17 shows the Raman 

spectra of fracture and phase transformation zone. Two peaks (1055 and 1302 cm
-1

) 

characteristic of cBN are noted in the fracture zone.  On the other hand, two new phases with 

peaks at 808 and 1355 cm
-1

 are seen in the phase transformation zone, representing boron oxide 

(B2O3) and hBN respectively.  Thus, during laser cutting, a series of mechanisms, such as phase 

transition to hBN, decomposition of hBN to B and N, chemical reaction of boron with water and 

crack separation, have occurred.  Further evidence on the formation of B2O3 is the observation of 

presence of a white glassy layer along the cutting path.   
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Fig. 15 SEM images of 413.7 kPa waterjet-assisted machined cross section at 800W and 4mm/s 

(×100) 

100 μm 
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Fig. 16 SEM images of 413.7 kPa waterjet-assisted machined cross section at 800 W and 6mm/s 

(×100) 

 

100 μm 
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Fig. 17 Raman spectrum of transformation region in LWJ cut PCBN 

 

The factorial DOE results on phase transformation depth are presented in Table 9 and 

Figure 18. The main effects of laser power and waterjet pressure were significant while the 

interaction effects are insignificant. A comparison with nitrogen-assisted laser cutting showed 

smaller phase transformation depth. A standard model can approximate the transformation depth, 

such as:  

Transformation depth (μm) = 1.694 A-0.059 C -126.696                                                 (2) 
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Table 9 ANOVA results on phase transformation depth of waterjet-assisted CO2 laser 

experiment  

 

Source Sum of squares Mean square DF F Ratio P-value 

A-laser power 0.9180 0.9180 1 606.950 0.0258 

B-cutting speed 0.0351 0.0351 1 22.215 0.1303 

C-waterjet 

pressure 

0.2926 0.2926 1 193.462 0.0457 

AB 0.0406 0.0406 1 26.851 0.1214 

AC 0.2346 0.2346 1 155.116 0.0510 

BC 0.000013 0.000013 1 0.0083 0.942 

Error 0.013608 0.0015 9 - - 

Corrected Total 1.5523 - 15 - - 

 

 

Fig. 18 Significant main effects of (a) laser power and (b) waterjet pressure on transformation 

depth 
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Table 10 ANOVA results on Ra rating of waterjet-assisted CO2 laser experiment  

 

Source Sum of squares Mean square DF F Ratio P-value 

A-laser power 4 4 1 28.8 0.0005 

B-cutting speed 0.25 0.25 1 1.8 0.2126 

C-waterjet 

pressure 

4 4 1 28.8 0.0005 

AB 0.25 0.25 1 1.8 0.2126 

AC 4 4 1 28.8 0.0005 

BC 0.25 0.25 1 1.8 0.2126 

Error 1.25 0.1389 9 - - 

Corrected Total 14 - 15 - - 

 

Table 11 ANOVA results on taper rating of waterjet-assisted CO2 laser experiment  

 

Source Sum of squares Mean square DF F Ratio P-value 

A-laser power 1.0000 1.0000 1 7.2 0.0251 

B-cutting speed 0.2500 0.2500 1 1.8 0.2126 

C-waterjet 

pressure 

1.0000 1.0000 1 7.2 0.0251 

AB 0.2500 0.2500 1 1.8 0.2126 

AC 1.0000 1.0000 1 7.2 0.0251 

BC 0.2500 0.2500 1 1.8 0.2126 

Error 1.2500 0.1389 9 - - 

Corrected Total 5.0000 - 15 - - 
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Fig. 19 Significant main effects of (a) laser power, (b) waterjet pressure and interaction effect of 

(c) laser power and waterjet pressure on Ra rating 
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Fig. 20 Significant main effects of (a) laser power, (b) waterjet pressure and interaction effect of 

(c) laser power and waterjet pressure on taper rating 

 

The factorial DOE results on Ra and taper ratings are presented in Tables 10 and 11 as 

well as Figures 19 and 20. The main effects (laser power and waterjet pressure) as well as the 

interaction between laser power and waterjet pressure have statistical significance at the 

significance level of α=0.05.   
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2.4 Conclusions 

CO2 laser cutting experiments were conducted on 4.8 mm thick solid PCBN tool blanks 

with the assistance of nitrogen and waterjet.  A 2
3 

factorial design of experiments was performed 

to determine the main effects and interaction effects of laser power, cutting speed, and 

gas/waterjet pressure on phase transformation depth, Ra, and taper angle.  Results showed 

material removal occurred beginning with the phase transformation of cBN to hBN, followed by 

the decomposition of hBN and chemical reactions with water, and ending with crack separation. 

Waterjet improved the cut quality by a smaller phase transformation depth, less taper, and finer 

fracture zone compared to nitrogen although the latter required less energy for cutting and did 

not undergo any chemical reaction.  The statistical analysis revealed laser power followed by 

waterjet pressure had the most significant effects among all the factors. 
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CHAPTER 3 

NOVEL CRACK SEPARATION MECHANISM IN TWO-DIMENSIONAL CO2 LASER 

MACHINING THICK POLYCRYSTALLINE CUBIC BORON NITRIDE  

A paper prepared for International Journal of Machine Tools and Manufacture 

Yixian Wang, Pal Molian and Pranav Shrotriya 

Abstract 

Polycrystalline Cubic Boron Nitride (PCBN) is widely utilized in material removal 

operations but difficult-to-machine material for almost 40 years, which is fabricated by state-of-

the-art techniques such as wire EDM and Nd:YAG laser, restricted by slow material removal rate 

and poor cut quality. Our group previously used a hybrid CO2 Laser/Waterjet (CO2-LWJ) that 

performed well when machining PCBN in one and two dimensions with limited thickness (no 

more than 1.6 mm). A superior controlled crack separation mechanism was explored in two-

dimensional cutting 4.8 mm thick PCBN tools in solid form. Both laser alone and LWJ methods 

with nitrogen as an assist gas examined and successful in performing a 120 ˚ contour cut. Both 

the phase transition zone and fracture zone were characterized and analyzed by means of 

scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Raman 

spectroscopy and optical profilometer. A finite element analysis (FEA) computed stress field was 

compared with surface profiles measured by a surface profilometer. Fracture energy release rate 

based upon phase change from sp
3
 cubic Boron Nitride (cBN) to sp

2
-bonded structure such as 

hexagonal Boron Nitride (hBN) was calculated in order to predict the fracture behaviors. 

Superior cut quality in terms of controlled cracking path, surface roughness, taper angle was 
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observed in LWJ in contrast of laser alone method and the phenomena was also fully explained 

by a crack path stability model. 

KEYWORDS: Cubic boron nitride; Two-dimensional cutting; CO2 laser; Waterjet; Controlled 

crack separation mechanism 

 

3.1 Introduction 

Polycrystalline Cubic Boron Nitride (PCBN) is one of the most demanding tooling 

materials due to its superb hardness, resistance to plastic deformation, abrasive and thermal 

shock resistance. For example, it is an obvious choice for machining hardened ferrous material 

because of its exceptional heat resistance (retains constant hardness at elevated temperature), 

sufficient toughness and chemical stability (inert to metals such as iron and titanium). PCBN 

homogeneous blanks are synthesized from cubic boron nitride whose hardness is only excelled 

by diamond and metallic binders such as Co or ceramic binders such as AlN and TiN under 

extreme high temperatures (1300-1600 ˚C) and high pressures (4-6 GPa)[1].  

PCBN tool blanks are usually machined into three different forms: baked full-face form 

and brazed form by depositing sintered layer on tungsten carbide; solid form which is self-

supported. The first two forms require less PCBN materials and possess composite properties. 

The inserts in solid form provide two available sides for double-edge cutting and are used for 

drawing dies. The tool inserts in the thickness such as 1.6 mm, 3.2 mm and 4.8 mm, are available 

as index geometries such as round, triangle, square and rhombus to fit standard negative rake 

tool holders. The most common angles of rhombic tools include 35 ˚, 55 ˚ and 80 ˚. 

The super-high hardness, thermal and chemical inertness limit the manufacturing of 

PCBN tool inserts. Currently used methods include diamond sawing, electric discharge 

machining (EDM), and conventional Nd:YAG laser. However, all of them suffer from 
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deficiencies such as low cutting speed and cut quality and required post treatment. Swiss Federal 

Institute of Technology Lausanne established a hybrid technique called Laser Microjet
®
 (LMJ

®
), 

which combines the pulsed Nd:YAG laser with water[2]. LMJ
® 

succeeded to cut 4.8 mm pure 

CBN into different custom shapes at the speed of 6-6.85 mm/min with 70-90 passes[3]. 

However, LMJ
®
 still suffers from a slow machining rate due to the multiple passes. 

Lumely[4] first attempted to separate brittle material such as alumina with a single CO2 

laser. The crack propagation followed the beam path and the energy consumption was much less 

than the standard method. Tsai and Chen[5] established an approach using a dual laser, one is 

focused to generate a groove and the other to generate tensile stress to guide the crack propagate 

through the thickness. Curved lines and a right angle were performed successfully on the thick 

alumina substrate. Our group developed a hybrid technique called CO2-Laser/Waterjet (CO2-

LWJ) to cut PCBN both in one and two dimensions. Previously obtuse angles (120 ˚ and 135 ˚) 

were performed successfully on both the solid-form and full-face form of 1.6 mm thickness[6]. 

Thick PCBN tool blanks (4.8 mm) were cut through in one dimension with both nitrogen and 

LWJ[7]. 

In this paper, we explored an improved technique utilizing waterjet plus nitrogen as assist 

gas to cut thick PCBN in solid form at 90 ˚ and 120 ˚ angle. Cut quality including phase 

transformation depth, surface roughness and taper were characterized and the transiting process 

was examined. The controlled crack separation mechanism was also examined based upon 

formulated FEM models to help predict the cutting characteristics and fracture energy. 
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3.2 Experimental details 

3.2.1 Material 

Experiments conducted on electrically insulating PCBN tool blanks (BZN 7000S, 

Diamond Innovations, Inc., Worthington, OH) with average grain size of 15 µm, The sample is 

4.8-mm-thick in solid form, composed of 82% cBN and 18% secondary ceramic binder phase 

such as AlN and other impurities including aluminum boride. The Ra of BZN 7000S on the 

polished facade and on the side is 0.3 and 3 µm, respectively.  

 

3.2.2 Experimental methods 

The CO2-Laser/Waterjet (CO2-LWJ) system, schematically shown in Fig. 1, is comprised 

of a continuous CO2 laser, a computer numerical controller (CNC), an X-Y positioning table, a 

water pump, assist gas bottles and a unique laser head. All experiments were carried out by a 

continuous wave, 10.6 µm CO2 laser at rated power of 1.5 kW. The laser beam was launched 

through a circular polarizer and then transmitted on a 127-mm (5-in) focal length lens. The spot 

size of the focus beam is 0.2 mm. Both laser and assist gas went coaxially through a brass nozzle 

with a 1 mm diameter orifice. The beam was focused on the PCBN sample, which was mounted 

on an X-Y positioning, by setting the standoff spacing between specimen surface and nozzle at 1 

to 2 mm.  
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Fig. 1 Schematic presentation of CO2-Laser/Waterjet system 

Two sets of two-dimensional (2D) cutting experiments were conducted in total. The first 

set of experiments was carried out by a laser alone with nitrogen at pressure of 68.9 kPa (10 psi) 

as the assist gas. The second set of experiments was performed by combining LWJ with 34.5 kPa 

(5 psi) nitrogen as an assist gas to identify the combination effect of nitrogen and water 

quenching. It is shown from Figure 1 that the LWJ nozzle contained two outlets: one is for both 

laser and assist gas and the other is for a low-pressure waterjet at 413.7 kPa (60 psi). The spacing 

between the two holes is 6 mm in order to prevent the direct interaction of laser beam and water. 

Table 1 shows the main parameters used in both sets of experiments. 
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Table 1 Main parameters of 2D experiment 

Experimental 

methods 

Laser power (W) Cutting speed (mm/s) 

Line energy P/v 

(kJ/m) 

N2-assisted laser 

alone 

400 4.23 94.5 

Air-assisted LWJ 850 4.23 200.9 

N2-assisted LWJ 850 4.23 200.9 

 

Two sets of one-dimensional (1D) cutting experiments were conducted to establish a 

finite element model to simulate and predict the dimensions of the phase transformation zone 

based upon expansion strain compared with measured surface profiles by phase transformation. 

The main parameters used in the trials are shown in Table 2. 

Table 2 Main parameters of 1D experiment 

Experimental 

methods 

Laser power (W) 

Cutting speed 

(mm/s) 

Line energy P/v (kJ/m) 

N2-assisted laser alone 

400 4.23 94.5 

400 6.35 63.0 

Air-assisted LWJ 

800 6.35 126.0 

800 8.46 94.5 
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3.2.3 Characterization and analysis 

An optical profilometer (Zygo NewView 7100) with 5  and 20  magnifications was 

utilized to measure and analyze the kerf profile, taper angle and surface roughness etc. An 

optical microscope (Eclipse E-600FN, Nikon Inc., resolution = 1 µm) was used to measure both 

the width of groove and Heat Affected Zone (HAZ), and the depth of groove with the aid of a 

remote focus accessory (600FN, Nikon Inc.). A scanning electron microscope (SEM Model 

JOEL JSM-606LV at 20 kV) was used to characterize the microstructure and topography such as 

transformation depth and analyze the phase transformation and crack propagation regions before 

and after turn. Energy Dispersive X-ray Spectroscope (SEM FEI Quanta FEG 250 at 10 kV) was 

used to acquire the element mapping in the phase transformation and crack propagation regions. 

A Raman visual spectroscope (Renishaw-inVia Raman Microscopy) with a wavelength of 532 

nm and power of 4 mW was utilized to identify the phase signatures ranging from 200 to 1800 

cm
-1

.  

 

3.3 Numerical modeling 

3.3.1 FEA simulation of phase transformation induced deformation and stress field 

Finite element analysis (FEA) was utilized to simulate and predict the surface profiles 

that underwent phase transformation induced expansion, in order to compare them with the 

measured deformation results. It is hypothesized that the laser irradiated the workpiece and the 

transition from cBN to hBN took place, consequently leading to volumetric expansion due to 

phase transition (sp
3
-bonded phase to sp

2
-bonded phase). The volumetric mismatch in the 

transformation region then generated a tensile stress field that initiated the crack tip and 

propagated it in the thickness direction. Deformation induced by phase transformation could be 
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measured by optical profilometer and validated with the simulation results from numerical 

modeling. The schematic of phase transformation induced crack propagation is presented in 

Figure 2.  

 

Fig. 2 Hypothesis for phase transformation induced crack propagation 

The ABAQUS package (Simulia, Providence, RI) was utilized to formulate the finite 

element model and predict the possible expansion stress field along the phase transformation 

region. A half sample based model was formulated due to the symmetry to determine the plane 

strain deformation in both laser alone and LWJ conditions. Thermal effect is neglected because 

the temperature stress is much smaller due to high thermal conductivity of PCBN compared to 

the phase transformation stress. To simplify, we assumed the irradiated region transformed 

entirely from homogeneous sp
3
 cBN to sp

2
 hBN. The governing properties of cBN and hBN are 

shown in Table 3 and used to input in the model. As shown in Figure 2, the transformation 

region is modeled as a semi-ellipse according to the Gaussian profile of the CO2 laser beam. The 

fixed boundary condition along the vertical direction is simulated as the fixture used in the 

experiment. The dimension of workpiece is 10 mm, considerably larger than the cutting path. 
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The FEA model is composed of eight-noded quadratic modified axis-symmetric 

elements. The model partitioned the cutting edge in the perpendicular direction and the mesh was 

refined until the computed stress was independent of the mesh size. Numerical simulation was 

performed in two steps for both laser alone and LWJ. The first step used the transformation 

depth of through-cut case measured from SEM to find the best fit with the experimental 

measurements and estimate corresponding parameters such as width and expansion strain. In the  

second step the approximate transformation depth was computed for the scribing case in order to 

match the experimental measurements based on the surface profiles. 

Table 3 Properties of cBN and hBN 

Phase of BN Density (kg/m
3
) 

Young’s 

modulus (GPa) 

Poisson ratio 

Fracture toughness 

(MPa ) 

cBN 3400 710 0.15 5-7.7 

hBN 2010 70 0.2 - 

 

3.3.2 Crack propagation analysis based upon fracture mechanics 

 Crack propagation behavior of CO2 laser cutting PCBN could be regarded as a three-

dimensional channeling crack initiating from the edge, including two kinds of crack: (1) plane 

strain crack; (2) channeling crack (See Figure 3). A continuous laser beam started to irradiate 

from outside the sample edge, initiating a crack tip as a plane strain crack. It is assumed that the 

plane strain crack could extend along the beam path at a fixed crack depth and constant tip shape 

in a steady crack growth state. Thus, the driving force for controlled propagation of the crack is 

determined by the Griffith critical energy release rate at the crack front depth.  
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Fig. 3 (a): plane strain crack; (b): channeling crack 

The energy release rate for a channeling crack at different crack depths was calculated by 

the following procedures. First energy release rate in a plane strain crack was computed based 

upon the J-integral method in mode I loading using the ABAQUS package. PCBN is super 

brittle, which could be treated as a linear elastic material. Thus, the J-integral is equal to plane 

energy release rate and was computed as: 

                                                    (1)                                 

Where  and  are the energy release rate and stress intensity factor for specific crack 

length , respectively.  refers to the plane strain modulus and . Therefore, the 

energy release rate of channeling crack was computed by: 

                                                         (2)                           

 

3.4 Results and discussion 

3.4.1 Experimental and quality results 

In laser alone cutting experiment, a focused laser beam at line energy of 94.6 kJ/m made 

a through 120 ˚ angle cut with one single pass. The input line energy is the same as that for the 

straight line cut. However, the crack trajectory deviated from the laser beam path and attempted 

(a) (b)  
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to make a shorter path around the corner. The lagging distance at the turning point measured by 

an optical microscope was approximately 2 mm. Figure 4 shows the crack trajectory in the 

backside which did not follow the laser beam path at the top. However, the trial of cutting 90 ˚ 

with the same parameter merely generated a shallow groove. The crack did not propagate 

through the thickness since there was not enough thermal stress to break apart the sample. The 

depth of groove measured was roughly 150 µm before and after the turn. 

 
 

  

Fig. 4 Photographs of cutting trajectory on both top and bottom surface underwent laser alone 

and LWJ machining (arrows show the direction of 2D cutting) 

   

In the air-assisted LWJ cutting, the attempt to cut 120 ˚ with a single focused beam was 

unsuccessful. It was still unreachable even after multiple passes of defocused beam. Spalling 

cracks began to generate along the groove path, however not reach the threshold value for 

snapping along the whole thickness. Same results were found for the right angel cut by virtue of 

LWJ machining. 

In the nitrogen-assisted LWJ cutting, a single focused laser beam at line energy of 200.9 

kJ/m only scribed the sample. Water possesses a high absorption rate of CO2 laser energy [], 

leaving a groove with limited crack propagation in the third direction. In order to help break 

through the sample, a defocused beam with the same parameter except larger spot size (0.5 mm) 
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was introduced to cut through. Three defocused-mode passes were utilized to cut through the 

PCBN sample with negligible surface damage such as lateral or spalling cracking. Based upon 

our previous experimentation and analysis, the defocused beam enlarged the phase transition 

region around the groove. Grove depth increased vertically leading to more expansion stress and 

in turn propagated the crack. 

The crack trajectory almost followed the laser beam path within control, especially at the 

corner of the turning point. Figure 5 shows the cutting trajectory on both the top and bottom 

surface for a specimen that underwent LWJ machining. It should be noted that there was less 

laser energy input into the cutting because some energy was absorbed by the water. Yang and 

Chandar[9] observed and studied the transition from straight to oscillatory crack growth of a 

thermally quenched glass flask at a dramatic temperature jump. In contrast, a lower temperature 

gradient induced less driving force, which stabilized the crack separation in control. The 

formulated model of crack path stability based upon Cotterell and Rice’s theory[8] can be 

utilized to explain this phenomena.  

  
Fig. 5 Photographs of cutting trajectory on both top (left) and bottom (right) surface underwent 

LWJ machining (arrows show the direction of cutting) 

Surface roughness and taper angle of through-cut samples were measured using an 

optical profilometer. The surface roughness, including arithmetic average (Ra) and root mean 
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square (RMS), of both transformation zone and fracture zone was measured. It may be noted that 

the surface roughness either before or after the turn was almost equal and hence only one set of 

values was examined. The taper angle was measured both before and after the turning point. The 

cut quality of LWJ is better compared to laser alone with respect to surface roughness and taper 

angle as shown in Table 4.  

Average surface roughness in the transformation region shows that LWJ machining is 

better than laser alone, mostly owing to oxidation and recast layer prevention by water cooling 

effect. Average surface roughness in the fracture region of both methods shows no noticeable 

difference between the two methods due to no phase transition. Taper angle results also indicate 

the superiority of LWJ techniques, either before or after the turn. The reason was explored before 

in the crack path stability model.  

Table 4 Cut quality of LWJ versus laser alone machining PCBN tool blanks 

Methods 

Line energy 

(kJ/m) 

Ra (µm) RMS (µm) 

Taper angle 

(degree) 

laser alone 

machining 

94.6 

Transformation 

zone: 11.6 

Transformation 

zone: 13.7 

Before turn: 

12 

Fracture zone: 4 Fracture zone: 5 After turn: 8 

LWJ 

machining 

200.9 

Transformation 

zone: 8 

Transformation 

zone: 9.9 

Before turn: 

4.1 

Fracture zone: 4 Fracture zone: 5 

After turn: 

4.9 

 

 



52 

 

 

3.4.2 Effect of assisted fluid media 

 To understand the mechanism of the contour cutting in two dimensions, the transverse 

sections of both laser alone and LWJ cutting along the beam path was investigated. Scanning 

electron microscope was taken for three different representative points: (1) after the turn; (2) at 

the turning point; and (3) before the turn.  

Figure 6 shows SEM images of the laser alone machined sample. Two regions with a 

non-uniform boundary could be distinguished in all images: the shallow machined region near 

the top surface resulted from phase transformation and chemical reaction; the lower fracture 

region due to crack initiation and propagation. The microstructures and features were also 

different before and after the turn. Depths of the transformation region before and after the 

turning point are approximately 1050 µm and 1000 µm, respectively. Before the turn, recast 

layer formation resulted in zigzag profiles along the cutting surface. There are minor cracks 

generating at the transformation region of the turning point. The formation of minor cracks is due 

to the mismatch of stress fields in the transformation and fracture regions. After the turn, the 

surface became smoother and depth of transformation was lower than before because the high 

laser power input led to material evaporation directly rather than melting within a short time. 
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Fig. 6 SEM images of transverse section of laser alone machined sample after the turn (left), at 

the turning point (middle) and before the turn (right) 

 

Figure 7 shows SEM images of transverse section of LWJ cut samples. There are 

different microstructures and topography before and after the turn. Unlike laser alone machining, 

the depth of phase transformation region increase from 750 µm to 1000 µm after passing the 120 

˚ angle. Voids exist in the transformation region both before and after the turn. This can be 

attributed to the severe quenching effect of water, consequently leading to the evaporation 

bubbles not escaping to the environment. No obvious minor cracks are observed at the turning 

point. 
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Fig. 7 SEM images of transverse sections of LWJ machined sample after the turn (left), at the 

turning point (middle) and before the turn (right) 

In order to identify the chemical compositions around the cut surface to understand the 

reactions happened during the process, EDS was conducted to acquire element mapping for the 

transverse section for through-cut samples that underwent laser alone cutting.    

Figure 8(a) shows the secondary image of the transverse section of laser alone cutting at 

the turning point (corresponds to Figure 5). Figures 8(b)-(e) represent the contour maps of three 

main elements (B, N and Al). It could be noted that Al largely presents in the transformation 

region. Possible formation of aluminum oxide in the transformation region was also confirmed 

by X-ray photoelectron spectroscopy (XPS) in our previous study[10]. Whilst little B or N was 

found on the surface of the transformation area. The presence of aluminum oxide indicated the 
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oxidation of binders (AlN) other than the bulk material (BN). It should be mentioned that 

aluminum oxide possesses 2.4 times to 3.1 times as high a volume as AlN depending on the 

lattice size of AlN[11, 12]. The volumetric mismatch of AlN and aluminum oxide was also in 

agreement with the crack separation mechanism. In contrast, the fracture region shows mainly B 

and N elements, representing the existence of boron nitride (BN) as the as-received material.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

  

  

Fig. 8 (a) SEM image of transverse section of laser alone cutting at the turning point and (b)-(d) 

shows element mapping of B, N and Al (bright dots show presence of elements based upon the 

intensity of X-ray) 

Figure 9 shows the Raman spectra taken from the transverse sections of both nitrogen-

assisted laser and LWJ, including both phase transformation and fracture regions. The fracture 

zone has two peaks at 1053 and 1304 cm
-1

, evolving from cBN in TO and LO. These two peaks 

downshift from the values corresponding to the cBN in single crystalline form, which 

representatively possesses 1056 cm
-1 

(TO) and 1305 cm
-1

 (LO), respectively. The downshift of 

peaks could be due to grain size, binders, impurities, residual stress and plastic deformation 

extent. It is hypothesized that no phase transformation took place in the fracture region due to the 
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same phase signatures in as-received material. In the phase transformation region, two new 

phases with different peaks (1361 and 1562 cm
-1

) are seen. The 1361 cm
-1 

peak corresponded to 

the hBN phase, which typically possesses a 1366 cm
-1 

peak. The existence of cBN demonstrated 

the transformation between sp
3
 to sp

2
 phase in phase transformation region. 

 

Fig. 9 Raman spectrum for transverse section of laser alone and LWJ cutting 

 

Nitrogen was selected in the trial to cut thick PCBN due to larger depth of phase change 

and MMR by momentum effect. Based upon EDS and Raman spectroscopy results, our 

understanding of nitrogen-assisted LWJ process is divided into three stages. First is the initiation 

stage, where the groove was initiated by phase transformation and chemical reaction after laser 

irradiation. It was reported cBN undergoes phase transition to hBN at about 1800 K in the 
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nitrogen atmosphere[13, 14]. It is also mentioned that AlN began to oxidize at 1073 K and 

transformed entirely above 1273 K. Second is the groove formation stage, where hBN 

decomposed and the binder (AlN) reacted in air atmosphere simultaneously. As the laser passed 

and continuously heated up, cBN transformed into hBN and gradually decomposed into gaseous 

nitrogen and gaseous boron at 2400 to 2600 K[15, 16]. However the binder oxidation product 

(aluminum oxide) still existed at the transition zone due to the extreme high boiling point (3250 

K) and inertness. Aluminum oxide acted as the main composition of the groove layer.  Finally 

crack initiation and nucleation occurred at the transition zone, primarily due to thermal 

expansion mismatch stresses of BN phases and oxides. The great mismatch stresses act as the 

driving force to promote crack propagation and then to yield material separation.    

 

3.4.3 FEA results  

In the second set of experiments, trials at different line energies were conducted in laser 

alone and LWJ to predict the surface deformation and fracture characteristics by finite element 

analysis. Numerical modeling of surface deformation of both laser alone and LWJ process was 

formulated and compared to the experimental results in order to predict the transformation depth 

and expansion strain of the phase transformation zone. Both scribing and through cutting results 

were examined in laser alone and LWJ, and surface profiles are measured normal to the cutting 

path by an optical profilometer. The width of those grooved samples, measured by microscope 

was about 0.3 mm, slightly larger than the spot size of laser beam (0.2 mm). Figure 10 shows the 

fitting of average surface profile measurement with numerical results in both laser alone and 

LWJ experiment. At line energy of 94.5 kJ/m, a straight through cut was made and formed a 

larger deformation. In contrast, only a groove was produced at line energy of 63 kJ/m, and the 
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deformation induced by phase transformation was lower. The FEA results based upon numerical 

modeling are plotted with best fitting experimental data. In laser alone at P/v = 94.5 kJ/m, the 

depth of transformation used in the model is 1 mm, determined according to the measured depth 

of 950 µm from the SEM image. In laser alone at P/v = 63 kJ/m, predicted depth of 

transformation equal to 0.5 mm was found to best fit the measured surface profiles. LWJ cut 

through at line energy of 126 kJ/m, however only scribing was found in line energy of 94.5 kJ/m. 

The measured results of deformation due to phase transformation are also in good agreement 

with the observations. The larger slope for 126 kJ/m demonstrates more area next to cut path was 

transforming to hBN, however the material along the cut path were transformed entirely because 

overlapping part was found in both two cases. The transformation depth of through-cut used in 

the model is 1.2 mm, corresponding to the transverse section measurement (1100 µm) from 

measurement. The half width is chosen as 0.2 mm, slightly larger than the measured groove 

width (0.15 mm). All the solutions correspond to a constant expansion strain of 0.35%. 

 

Fig. 12 Comparison of measured surface deformation and numerical prediction 

The Griffith energy (G) of the plane strain crack and channeling crack were computed by the 

ABAQUS package (Providence, RI) and are plotted as a function of a/w (crack length to material 
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thickness ratio) of four series with different methods and line energies in Figure 13. Numerical 

calculations of energy release rates are also compared to the PCBN critical energy release rate in 

both cases. It has been reported that the fracture toughness (critical G) of BZN 7000S is 5-7.7 

MPa  [17, 18]. Hence, the computed critical energy release rate ranges from 34.4 to 81.6 

Pa·m. Figure 13 shows only two lines (laser alone at 94.5 kJ/m and LWJ at 126 kJ/m) exceed the 

critical G that possibly have the tendency to propagate the crack through, while the other two 

below the critical G only show scribing characteristics, which are also in agreement with the 

experimental results. N2-assisted laser alone (94.5 kJ/m) and LWJ (126 kJ/m) performed through 

cut which also went over the critical G. In N2-assisted laser alone (94.5 kJ/m), the energy release 

rate was greater than critical G for crack to 0.25 times thickness. In LWJ (126 kJ/m), the energy 

release rate was greater than critical G for crack to 0.35 times whole thickness. However the 

crack growth did not terminate, rather it extended through the whole thickness from our 

experimental observation. A large thermal gradient resulting in thermal shock could cause the 

crack initiation and separation under the critical fracture energy. Carolan et al.[19] observed that 

the flexural strength of PCBN with large grain size decreases rapidly accompanied by unstable 

crack propagation after thermal shock. This phenomenon may explain the channeling crack 

propagating through the cutting path under low energy release rate based upon our computation.  
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Fig. 13 Energy release rate for channeling crack 

 

 

 

3.4.4 Process mapping of LWJ and laser alone machining 

The data collected from laser alone and LWJ in both 1D and 2D cutting represented 

consistent results depending on cut angle and line energy (Figure 14). The critical line energy for 

laser alone cutting almost retained at 94.5 kJ/m from 180 ˚ to 120 ˚. However, to cut through 

becomes difficult at the same line energy as the cut angle decreases from 120 ˚ to 90 ˚. Given the 

cooling effect of waterjet, the critical line energy started to rise when LWJ cutting at the turn 

from 180 ˚ to 120 ˚. Only scribing was found for the 90 ˚ contour cut even at the line energy of 

200.9 kJ/m. The increase of critical line energy in smaller cut angle could account for the extent 

of overlapping by heat affected zones in two sides which could inhibit the crack propagation at 

the turning point.  
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Fig. 14 Process map based upon line energy and cut angle for both laser alone and LWJ 

 

 

3.5 Conclusions 

Two-dimensional CO2 laser cutting with 120 ˚ was conducted successfully at a relatively 

high speed (4.23 mm/s) in 4.8 mm thick solid PCBN tool blanks by means of nitrogen and 

waterjet. Cut quality of LWJ exhibited advantages over dry laser machining such as controlled 

crack trajectory at the turning point, smooth surface, small kerf width and less taper. T-stress 

based upon a crack path stability model was used to explain the controlled crack trajectory. 

Results from both EDS and Raman spectroscopy showed phase transformation such as sp
3
 cBN 

phase to sp
2
 phase like hBN and oxidation of binder material such as AlN to aluminum oxide, 

both leading to volumetric expansion which in turn promoted crack propagation.  

Finite element analysis based computations of stress field and energy release rate were 

applied to help understand the mechanism of straight cut in laser alone and LWJ cutting and 

90˚ 
120˚ 

180˚ 

Scribing 

Laser alone cut 

through 

LWJ cut through 
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predict the fracture characteristics in the experiment. Numerical modeling of surface profiles 

based on an expansion rate of 0.35% compared with experimental measurements was able to 

estimate the depth of phase transformation and region dimensions. FEA calculations of energy 

release rate in both plane strain and channeling crack agree well with observational results. The 

decrease of PCBN strength underwent severe thermal shock was introduced to explain the lower 

energy release rate from our calculation. FEA numerical methods can be used to predict the 

surface profiles as well as fracture characteristics based upon the energy release rate computation 

in LWJ technique. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

The purpose of this work is to investigate the feasibility of using CO2-LWJ techniques to 

cut thick PCBN at higher speed with better quality.  Due to the non-conductivity and super 

hardness, cutting thick PCBN in solid form remains challenging. In this work, we studied the 

technique feasibility both experimentally and numerically. Continuous CO2 laser with the help 

of nitrogen as assist gas was able to cut through PCBN both one and two dimensionally. In 

addition, LWJ was found to cut through in higher line energy but better cut quality. 

One dimensional CO2 laser cutting experiments were conducted on 4.8 mm thick solid 

PCBN tool blanks with the assistance of nitrogen and waterjet. The 2
3 

factorial design of 

experiments (DOE) was applied to determine the main effects and interaction effects of laser 

power, cutting speed, and gas/waterjet pressure on phase transformation depth, Ra, and taper 

angle.  Results showed material removal occurred beginning with the phase transformation of 

cBN to hBN, followed by the decomposition of hBN and chemical reactions with water, and 

ending with crack separation. Waterjet improved the cut quality by a smaller phase 

transformation depth, less taper, and finer fracture zone compared to nitrogen although the latter 

required less line energy for cutting.  The statistical analysis revealed laser power followed by 

waterjet pressure had the most significant effects among all the factors. 

Two-dimensional CO2 laser cutting with 120˚ was conducted successfully at a relatively 

high speed (4.23 mm/s) in 4.8 mm thick solid PCBN tool blanks with the combination of 

nitrogen and waterjet. Cut quality of LWJ exhibited advantages over dry laser machining such as 

controlled crack trajectory at the turning point, smooth surface, small kerf width and less taper. 
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Results from both EDS and Raman spectroscopy shown phase transformation including sp
3
 cBN 

phase to sp
2
 phase like hBN and oxidation of binder material such as AlN to aluminum oxide, 

both leading to volumetric expansion caused crack initiation and propagation.  

Finite element analysis based computations of stress field and energy release rate were 

applied to help understand the mechanism of straight cut in laser alone and LWJ cutting and 

predict the fracture characteristics in the experiment. Numerical modeling of surface profiles 

based on expansion rate of 0.35% compared with experimental measurements was able to 

estimate depth of phase transformation and region dimensions. FEA calculations of energy 

release rate in both plane strain and channeling crack agree well with observational results. The 

decrease of PCBN strength underwent severe thermal shock was introduced to explain the lower 

energy release rate from our calculation. FEA numerical methods could provide an essential 

guide for predicting the surface profiles as well as fracture characteristics based upon the energy 

release rate computation in LWJ technique. 

 

4.2 Future works 

N2-assisted LWJ cutting thick PCBN in acute angle 

One of the limitations of this work is merely cutting acute angle contour. There is still 

further exploration to overcome the bottle neck, both in technique and in mechanism. The 

solution we will perform includes separating 2D machining into two 1D cut separately. 

  

Study the effects of variables in two dimensional cutting 

The statistical study of both main and interaction effects was helpful to predict and design 

the experiment. There are also several factors of interest to be determined in the 2D machining 



67 

 

 

experiments. For example, laser power, cutting speed, cut angle, fluid media and waterjet 

pressure could affect the cut quality and fracture characteristics. The study will help us figure out 

the experimental parameters and understand the mechanism of 2D cutting. 

CO2-LWJ cutting thick PCD material 

Diamond is the hardest material as known, superior to cBN. It is meaningful to 

investigate the feasibility of applying hybrid CO2-LWJ in cutting thick PCD blank. The higher 

hardness and thermal conductivity remains to be a challenge in our future work. 
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