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ABSTRACT 

 

 Tactile friction which occurs between the surfaces of hand-operated products and the 

user as well as the user’s perception of surface characteristics are both very important 

considerations for the function of engineering products.  While the use of surface texture is 

known to greatly influence these properties, the effect of the governing textural parameters 

on the friction mechanisms between a textured material and a deformable material is poorly 

understood making it difficult to design textures for specific tactile properties.  The ability to 

model the tactile outcomes for the interaction between a simple textured surface and 

deformable body would be very beneficial to understanding how friction coefficient and 

perception of textures are influenced. 

 Previous studies have measured friction between polymers and textures, obtained 

qualitative data of subject perceptions of surface topographies, and have used computational 

simulations to better understand the underlying friction and perception mechanisms.  It has 

previously been hypothesized that the penetration of the deformable material into the valleys 

of a surface texture drives friction behavior. Two dimensional profiles of simple textures are 

often examined to more easily isolate the effects of textural parameters.  In this investigation, 

an elastic mechanics based computational model was developed to predict the behavior 

between a cylindrical deformable material against a rigid body of rectangular grooves.  A 

non-dimensionalized similitude approach was used to investigate the dependence of groove 

penetration and the number of ridges in contact on groove and ridge dimension, as well as 

applied pressure and the elastic modulus.  The penetration computational results were 

verified by a macro-scale empirical investigation and groove contact computational results 



vii 

 

 

were compared to predictions based on Hertzian contact between a cylinder and a rigid flat 

plane.  It was found that groove and ridge dimensions have a very profound effect on the 

penetration behavior of the elastomeric body.  Smaller grooves and wider ridges resulted in a 

negligible difference on ridges in contact from the Hertzian contact prediction. However, as 

groove size increased and ridge width decreased, an empirical computational model was 

developed which accurately predicted ridges in contact.      
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CHAPTER I 

 INTRODUCTION  

 

 The interaction between the surface of a hand-operated product and the user can be 

essential to the functionality of the product.  The ability to design for such a response has gained 

a lot of recent interest with the development of new products with greater functionality.  

However, tactile perception and friction of various surface topographies is a complex 

phenomenon that is still poorly understood.  Rudimentary knowledge of this interaction allows 

engineers to design surfaces that generally serve their purpose, from grips on tools, electronics, 

bottles, and toiletries, to the textures of rails, sidewalk ramps, stairs, and shower floors.  Mobile 

phone buttons are now designed with different textures so that the user can tactually distinguish 

between their functions.  Other designs such as car interiors serve to elicit a positive emotional 

response such as having a leather-like feel.  The realization of the importance of surface qualities 

necessitates the ability to better quantify these interactions so that frictional characteristics can be 

more accurately obtained through engineering design.  Current investigations involve tracking 

the frictional response to skin-like rubbers under loading conditions with various counter 

surfaces as well as qualitative analyses testing subjects’ abilities to distinguish between different 

surfaces based on parameters such as average surface roughness or distance between surface 

asperities. More recently the use of finite element analysis (FEA) has been utilized to analyze 

stresses within the skin layers and determine how coefficient of friction (COF) or surface 

characteristics influence tactile perception based on the locations of high stress relative to tactile 

nerve receptors. 
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 It is hypothesized in this thesis that penetration of a deformable body into the valleys of a 

surface texture is a major driving force for frictional properties.  In addition, the possibility of 

adhesion between the deformable body and the bottom of grooves of the textured surface is of 

great interest.  The first investigation utilizes a series of computational simulations of a 

cylindrical deformable body being loaded against a two dimensional rigid rectangular-ridged 

texture.  Through the regression of the collected penetration data, a model was developed to 

predict penetration based on groove and ridge widths as well as applied pressure and elastic 

modulus.  The model was then verified using an empirical macro scale investigation of elastomer 

cylinders loaded against a constructed groove. 

 The dependence of adhesive friction on real contact area is well documented.  

Additionally, friction has been seen to increase with surface roughness at higher roughness 

values due to an interlocking component.  With the hypothesis of penetration being a driving 

force for frictional characteristics, the number of grooves in which penetration exists is of great 

interest for the development of an interlocking model.  Predicting the number of ridges in contact 

with a deformable body is also useful for determining real contact area.  However, it remains 

unknown if Hertzian contact between a cylinder and a flat rigid plan is an adequate 

approximation to determining the number of ridges which come into contact with a deformable 

cylinder.  In the second investigation, computational simulations were conducted to model the 

contact between a parallel rectangular-grooved surface and a cylindrical deformable body. The 

Hertzian model for contact distance was modified to incorporate texture parameters and used to 

analytically predict the number of ridges in contact.  In the computational simulations, the load at 

which each addition ridge came into contact was noted for several ridge and groove dimensions. 
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A regression model was developed from the collected load data and the validity of the Hertzian 

contact approximation in reference to a grooved surface was addressed.   
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CHAPTER II 

PARAMETRIC INVESTIGATION OF SOFT-BODY PENETRATION INTO PARALLEL-

RIDGE TEXTURED SURFACES 

A paper to be submitted to the International Journal of Solids and Structures 

T.J. Wilde, C.J. Schwartz 

2.1 Introduction 

 

Tactile friction and perception are of great interest to engineers and product designers 

because of the number of products which are handled every day that require suitable surface 

characteristics to serve their function or to please the user.  Perception enables us to judge 

characteristics of materials that we interact with whether they are cosmetic or functional.  On the 

cosmetic side, tactile perception has been shown to influence our perception and feeling towards 

products [1-3].  On the other hand, the frictional components of tactile perception can allow us to 

distinguish between materials [4] and indicate to us if we need to apply more or less force when 

handling an object whether to influence grip or reduce abrasion.  Thus, engineered surfaces are 

often optimized for their frictional purposes.  For example, low friction surfaces such as the 

mouse pad of a laptop allow for ease of movement while high friction surfaces such as tool 

handles, phone cases, railing, and gym weights are all designed to give the user grip.    

It has been shown that tactile friction can be reasonably modeled as a summation of 

friction from adhesion and deformation [5],  adhesion being the dominant mechanism [5, 6].  

Experiments have shown that coefficient of friction decreases as surface roughness is increased 

from a nominally smooth surface [7, 8].  This has been attributed to a reduction in real contact 

area reducing the amount of adhesion between the two surfaces.  However, once a certain 
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roughness is achieved the friction increases sharply.  Tomlinson et al. [9] experimented with 

triangular ridged surfaces of varying sizes and showed that when the surface roughness was 

increased to a certain threshold, an increase in friction was seen.  This was attributed to an 

increase of the deformation component of friction by viscoelastic hysteresis and interlocking.  

They also noted that when groove depth was shallow, adhesion still occurred because the 

penetration of the finger into the grooves had reached the bottom of the groove channels.  

Darden et al. [10] hypothesized about the same phenomenon when testing the effect of sliding 

direction on friction against parallel-ridge textures. They investigated the sliding of a spherical 

neoprene probe parallel to and perpendicular to the orientation of ridges on a simple parallel-

ridge textured surface. When the textural ridges were below a certain height, the coefficient of 

friction did not exhibit a change with sliding orientation, whereas ridges above this height 

showed a marked sliding orientation effect.  Taylor and Lederman showed that the penetration of 

the finger into the groove is also an important factor in perception of roughness and developed a 

model to predict perceived surface roughness of parallel ridged surfaces as a function of 

penetration, groove width, and finger force [11].  Correlations have been found between 

perceived roughness and friction [1, 4, 12].  Numerous studies have also shown an increase in 

perceived roughness as groove width increases [12-14] which plays a crucial role in the amount 

of penetration that occurs.  

The mechanics at the finger-on-texture interface are very complex. However, finite 

element analysis (FEA) has been utilized to model the interaction between fingers and surfaces 

to account for the complexities of the interaction and to analyze the stresses produced within the 

finger.  Xydas et. al [15] utilized FEA to determine the effect of adhesive friction on contact area 

of a finger on a flat surface using experimental friction measurements.  Maeno et. al [16] utilized 
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FEA to model the internal stresses within the finger during movement along a flat surface taking 

into account the epidermal ridges, papillae, and bone and found that tactile receptors are 

appropriately located in areas of maximum von Mises stress produced by the shearing of the 

epidermal ridges.  Shao et al. [17] conducted a similar FEA study analyzing the effect of 

epidermal ridges on the oscillation of friction force and location of maximum von Mises stress 

when the finger interacts with a textured surface. 

 Because of the observed impact on friction coefficient of fingertip penetration into 

textural features, this investigation sought to better understand the mechanics of the penetration 

of the finger into textural grooves because of its importance in designing textures with desired 

levels of friction or perceived roughness.  Accurately predicting the amount of penetration into 

textural grooves would help to predict the likelihood of micro-adhesion at the bottom of the 

groove channels, provide insight into the perception of surface roughness, and possibly provide 

insight into predicting the amount of friction due to deformation.  There currently lacks an 

analytical solution, such as those presented by Hertz for the contact distance of a cylinder against 

a rigid plane, for the penetration of a cylinder as it’s compressed against a rigid grooved surface.  

The objective of this study was to develop a model to predict the amount of penetration 

of a soft cylindrical body into a rigid parallel rectangular grooved surface to simulate finger-on-

texture contact.  The parameters considered in this interaction included the widths of the surface 

grooves and ridges as well as the radius of the cylinder, elastic modulus, and applied pressure.  

Parameters of similitude were non-dimensionalized with one another as input variables to make 

the model applicable to both the micro and macro scale.  An analytical mechanical approach was 

taken as a basis of the relationship between applied load and penetration. A computational model 

was developed by the regression of the penetration results of numerous FE simulations which 
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varied the groove width in a particular range of interest applicable to the surface textures used in 

experiments of Darden et al. [10].  The effect of multiple grooves on penetration was also 

analyzed in order to better model realistic textures.  

2.2 Methods 

 

The methodology of this investigation was to develop a model to predict penetration of 

an elastomeric cylindrical body into rectangular rigid grooves based on textural geometry 

parameters and elastomer stiffness. To attain this goal, an FE model of both the cylinder and 

texture were developed and studied. FE results were compared to data collected from an 

experimental apparatus in order to validate the FE model, and finally the effects of additional 

grooves were studied using the model.  The dimensionless parameters of the model were 

determined by dimensional analysis (Buckingham Pi theorem) and the structure of the model 

was determined both by an analytical technique and using a least squares regression to several 

data resulting from numerous FEA simulations.   

 

2.2.1 Texture parameters and similitude approach 

The modelled textures were two-dimensional parallel ridges with rectangular cross 

section.  The space between the ridges (referred to as ‘grooves’) is referred to as ‘b’, while ridge 

width is referred to as ‘a’.  The cylinder, which was loaded into the texture, is defined by its 

radius, R, elastic modulus, E, and Poisson ratio,  ν.  A load was applied to a rigid horizontal plate 

which rested above the cylinder.  The applied load per unit length, divided by the cylinders 

diameter is denoted by ‘p’. The output parameter of interest is the total penetration of the 
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cylinder into the central groove, δtot.. The total penetration is a combination of the initial 

penetration, δi, as the cylinder rests atop the central groove without any external loading, and the 

forced penetration, δf, which is the penetration caused from the applied loading.  The initial 

penetration (based solely on cylinder radius and groove width) was calculated using 

trigonometry of a circle of radius, R, resting atop two ridges with a fillet radius, r, spaced a 

distance, b.  This initial penetration, δi, can be calculated by 

 
2

2

2
i

b
R r R r r

 
      

 
     (1) 

While the fillet radius affects δi, for the purpose of this experiment, it is assumed to be small 

enough to have a negligible effect on δf.  Fig. 1 shows both the uncompressed and compressed 

state of a cylinder interacting with a grooved surface.  Dimensionless parameters of similitude 

were selected as input parameters for the model through the use of Buckingham Pi theorem.  

From these parameters, there were two dimensions including length and force.  This left the 

unique variables in each  term to be δf, p, and b, respectively.  The use of dimensional analysis  

 

Fig. 1. Depiction of the parameters which govern the penetration of a soft cylinder into a rigid grooved surface. 
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yielded the output dimensionless parameter involving penetration, δf/R, and the input parameters 

p/E and b/R which depend on load, geometry and material properties.  The contribution from 

each input parameter was determined by the analytical and FEA methods in the following 

sections. 

 

2.2.2 Mechanics basis for finite element approach 

In an attempt to determine an analogous phenomenon that possessed a closed-form 

analytical solution to serve as the basis of a regression model, the penetration of the cylinder into 

the grooved rigid body was modeled by the compression of parallel infinitesimal springs that 

made up the body of the cylinder between a rigid plate and a single rigid groove.  Although this 

one-dimensional simplification ignored the transverse behavior due to shear and Poisson effects, 

it provided a useful overarching conceptual framework. Fig. 2 illustrates this parallel-spring 

model.  The total compression of the cylinder, c, is equal to the distance the center spring 

penetrates into the groove.  The compression of an individual spring, cs, is equal to the difference 

in length between the length of the spring, Ls, and the center spring, Lcs, subtracted from 2c or 

 2s cs sc c L L         (2) 

Lcs is equal to 2R, and Ls was determined by geometry and the spring’s horizontal distance from 

the center, xs.  Equation 2 then becomes 

 2 22 2 2s sc c R R x           (3) 

Assuming the same spring constant for each spring, the resulting force for a given compression is 

a function of the summation of the compressions of all springs in contact with the rigid plates 

and normalized by the number of finite springs.  This can be seen by 
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2 22 2 2
~

#

d

b

s s
s

s s

c R R x
force

Springs





  
       (4) 

where sb is the first spring in contact with the base plate located at half the groove width from the 

center of the circle and sd is the last spring in contact with both the pressing plate and base.  Each 

spring’s position, xs, was determined by the even distribution of springs along the diameter of the 

circle.  The spring was considered to be in contact if the absolute value of its position was greater 

than half of the groove width and within the half-contact distance, dh, which is determined by 

geometry and c to be 

22hd Rc c         (5) 

 

 
Fig. 2. The compressive force of a cylinder can be modelled as a summation of springs. Five springs are displayed (two are 

infinitely small at the sides of the cylinder).  Contact distance is calculated using Pythagorean theorem.   
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This approach is shown in the figure, but with only three springs displayed for simplicity.  

Solutions to (4) were determined by using a computational algorithm, and a least squares 

regression was used to determine the direct relationship between the compression of a cylinder 

and the resulting force. 

 

2.2.3 Finite element model 

A two-dimensional FEA model (Abaqus/CAE v6.12) was constructed to investigate the 

relationship between the applied load on a cylindrical body resting on a single grooved rigid 

body and the resultant forced penetration, δf, into the groove as seen by Fig. 3.  An 8-node 

biquadratic plain strain quadrilateral element was used with full integration.  Plain strain 

elements were chosen because deformation outside of the plane was assumed to be negligible for 

both tactile studies and the experimental apparatus consisting of a long polyurethane cylinder.   

The cylinder was modeled to be linearly elastic and inertial effects were neglected.  The 

Poisson ratio, ν, was set to 0.49 to model nearly incompressible behavior.  The ratio of groove 

width to cylinder radius (b/R) was varied from 0.01 to 0.1 in increments of 0.01. The ratio of 

load per unit area to elastic modulus (p/E) was varied from 0 to 0.03 in a total of 1000 

increments or until excessive deformation occurred at which point model solution iteration could 

not proceed.  The selected b/R range was of particular interest because it incorporated the range 

of groove sizes used in tactile friction experiments used by Darden et al.  Moreover, this 

particular range targeted the hypothesized threshold of the human ability to discriminate gaps as 

indicated by Johnson et al. [18] assuming the finger is modelled as a cylinder with a diameter 

equal to the short axis of the finger as measured by Maeno et al. [16]. 
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Fig. 3. Overview of assembly with detail of refined mesh near groove with b⁄R equal to 0.1. 
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A static implicit step was used in the FE approach with a history output tracking the 

location of the center node of the bottom surface of the cylinder.  This history output enforced a 

penetration calculation at 1000 intervals of the total load.  A constraint was placed on the vertical 

centerline of the circle to prevent movement in the x direction which both kept the object stable 

and allowed for accurate penetration calculations.  The adhesive coefficient of friction between 

the interacting surfaces was set to 0 to focus solely on the effect of geometry and load. After the 

FE model was physically validated (see below), simulations were run with additional grooves to 

determine their effect on penetration.  These simulations were run on all combinations of 3, 5, 

and 7 grooves with b/R values of 0.01, 0.02, 0.03 and a/R values of 0.012, 0.022, and 0.032. 

 

2.2.4 Physical validation of numerical model  

An experimental apparatus was built in order to collect penetration data to validate the FE 

model results.  Because the FEA model used dimensionless parameters of similitude, the 

physical apparatus was able to be constructed on the macro scale, allowing the penetration to be 

easily measured.  The apparatus consisted of a steel plate which was mounted on four rods with 

linear bearings which allowed for displacement in the vertical direction as shown by Fig. 4, and 

three different polyurethane cylinders with varying elastic moduli.  The polyurethane cylinder 

rested atop two aluminum blocks which were displaced a desired distance and fixed in order to 

model two ridges separated by a groove.  The area on the top of the pressing plate allowed for 

the use of calibration weights to be stacked for load application.  Once loaded, a digital 

microscope (AM2111 Dino-Lite Basic) was used to acquire images of the front face of the 

polyurethane cylinder.  These images were then analyzed using image analysis software (ImageJ 

1.48) to determine total penetration into the groove. 
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Fig. 4. The apparatus consists of a steel plate mounted on four rods and a polyurethane cylinder which rests on two 

aluminum bars.  Load was applied by setting calibration weights on the top steel plate which moves freely in the vertical 

direction. 

 

The elastic modulus was determined for each of the polyurethane cylinders using an 

analytical solution which describes the compression of a cylinder onto a plane [19] given by  

 
 

2

1 2

1 2

8
1 ln

a
P V V

V V P D

   
       

      

    (6) 

21 v
V

E


        (7) 

where 2α is the total compressed distance when loaded between two planes, �̅� is the load per unit 

length, 2a is the length of the cylinder, D is the diameter, and V is a material constant.  Because 
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the steel plates have a much higher elastic modulus than the polyurethane, 𝑉2 was assumed to 

have a negligible effect and is ignored.  Compression tests were conducted on each of the 

polyurethane cylinders using the experimental apparatus without the blocks present.  An image 

was taken of each cylinder before compression to calibrate the ImageJ software followed by an 

image of each cylinder compressed with a known load.  The elastic moduli for the three 

polyurethane cylinders were calculated to be 1.1 ksi, 2.0 ksi, and 2.7 ksi, each having a Poisson 

ratio of 0.49.  Fig. 5 shows the penetration being measured of a sample in ImageJ.  The images 

were then calibrated using the known distance between the two aluminum blocks.  Because each 

of the three cylinders had some warping, the penetration was measured for each trial four times 

at rotational angles of 0°, 90°, 180°, 270°.  The order of data collection was randomized to 

address stochastic variation and potential anisotropy in the cylinder behavior. 

 

 

 

Fig. 5. Cylinder 3 loaded with 7 lb on gap size b/R = 1.0 as measured by ImageJ. 
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2.3 Results and Discussion 

 

The computational algorithm developed for the infinitesimal spring concept was 

implemented with several combinations of R and b.  Using a least squares regression on the 

results from the algorithm, the relationship between load, P, and penetration, δ, was determined 

to be   

2/3m P n          (8) 

where m and n are fit parameters which depend on cylinder radius and groove width.  The 

penetration data for each combination of R and b resulted in a very high correlation (R2 > 0.99) 

to (8) as seen by Fig. 6.  

 

 

Fig. 6. The algorithm which implements (4)  was tested with R=100 and b/R=0.03 and the results are denoted by ‘x’.  The 

regression shown by (8) represents this data with high accuracy (R2 = 1). 

 

When examining the penetration data from the FE simulations, the relationship between 

load and penetration was isolated by examining each b/R case individually.  By conducting a 
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least squares regression of each b/R case, a power relationship was determined between loading 

and penetration with the best fit (R2 = 1) case resulting with an exponent varying between 0.6 

and 0.7.  Because the parallel-infinitesimal spring concept resulted in an exponent of  2 3⁄ , the 

following relationship was applied to each b/R case from the FE simulations. 

 
2/3

f p
K

R E


        (9) 

This resulted in a correlation coefficient of over 0.99 for each b/R case.  The parameter 𝐾 varied 

linearly between groove sizes.  The effect of b/R on forced penetration was isolated by using a 

constant load to cause the cylinder to penetrate into grooves of varying b/R values.  Fig. 7 shows 

that the forced penetration is linearly dependent on b/R . Incorporating this linear relationship 

into (9) results in 

 
2 3

f pbK
R R E


        (10)  

The value of K was found to be 1.282 using a least squares regression resulting in the following 

model for the overall cylinder penetration into the central groove: 

 
2 3

1.282tot ipb
R R E R

 
        (11)  

Fig. 8 shows the results from the model overlaid with the data collected from each FE simulation 

and indicates a strong correlation (R2 = 0.992). 

Fig. 9 shows the penetration results of the physical validation experiment using a b/R 

value of 0.5 compared with the predictions from the FE penetration model as a function of load.  

When loading is kept constant, the penetration can be seen as a function of b/R as seen by Fig. 

10. 
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Fig. 7. The total penetration, as recorded by computational simulation,  with respect to groove size when p/E is kept 

constant at 0.017. There is a highly linear relationship between groove size and penetration due to load.  

 

 

 

 

Fig. 8. Penetration as a function of p/E and b/R.  Data from individual simulations are represented by data points and 

overlaid with results from the model. 
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Fig. 9. Model prediction for normalized penetration compared with experimental penetration results of three 

polyurethane samples of varying elastic modulus into a gap of b/R = 0.5.     

 

The correlation factor calculated between the model and the experimental data for b/R 

values of 0.12, 0.5, and 1.0 are 0.83, 0.91, and 0.91, respectively, showing that the model 

predicted penetration with high accuracy.  The simulations with the smallest groove-to-radius 

ratio (b/R = 0.12) was likely the least accurate because of a higher sensitively to both the 

tolerance of parallelism between the two blocks and the slight warping of the polyurethane 

cylinders.  Another important point to consider is the relatively high elastic modulus of the 

polyurethanes.  This caused the forced penetration to be relatively small compared to the extent 

of penetration seen in the FE simulations.  Fig. 10 clearly shows that the total penetration of the 

experiment is dominated by the initial penetration.  Future experiments with increased p/E values 

would be useful in validating the model further so that there would be a greater amount of forced 

penetration. 
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Fig. 10. The experimental penetration as a function of b/R with a constant p/E.  The total penetration of the experiment is 

dependent mostly the initial penetration due to the relatively high values elastic modulus. 

 

Geometrically, the initial penetration is dependent on the groove width to the power of 2 

which led to the hypothesis that forced penetration would follow a similar trend.  However, the 

forced penetration increased linearly with respect to groove width when load was kept constant.  

This finding led to the model developed in (11).  In order to address the difficulties in modeling 

sharp corners with finite element methods, the model incorporated a small radius of curvature of 

the ridge edges (a ratio of ridge-edge radius of curvature to the radius of the deformable body of 

0.001). It was assumed that the corners’ contribution to forced penetration was negligible.  The 

change in initial penetration from varying radii of curvature of the groove edges was accounted 

for by (1).   

Additional simulations were conducted to determine the effect of additional grooves on 

the penetration into the center groove.  Thus, a new parameter representing the width of a ridge 

was introduced into the model (denoted by a) and normalized to the cylinder radius by a/R.  In 
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these simulations, b/R ratios of 0.01, 0.02, and 0.03 were chosen as well as a/R ratios of 0.012, 

0.022, and 0.032.  These parameters were used with simulations of 3, 5, and 7 grooves.  The 

presence of additional grooves resulted in an increase in penetration into the center groove.    The 

increase in grooves had a greater impact on penetration with larger b/R values and lower a/R 

values as seen by Fig. 11.  While the shift from 1 groove to 3 grooves showed a significant 

impact on penetration,   the increase to 5 and 7 grooves resulted in a negligible increase in 

penetration for the given loading range.  Thus, the amount of penetration into a surface with a 

large number of grooves can be accurately predicted by only modeling the grooved surface as 

having 3 grooves.  It is hypothesized that increasing the groove count above 3 may have an 

impact on penetration into the center groove for higher loads or a higher ratio of b/R to a/R. 

As previously mentioned, Darden et al. [10] investigated the sliding of a neoprene sphere 

across parallel ridged surfaces of varying groove width, ridge width, and ridge height.  Although 

the model presented in this paper assumed a cylindrical shape for the deformable body, it 

provides insight to their results by predicting whether the neoprene sphere is in contact with the 

bottom of the grooves.  When the groove and edge widths were normalized with the radius of the 

neoprene ball, the b/R values varied between 0.007 and 0.05 while the a/R values varied between 

0.012 and 0.04.    In their experiment, a force of 7N was applied to the neoprene ball.  The p/E 

value used in their experiment was found by doing a similar compression tests on the neoprene 

ball and utilizing ImageJ to find the compression and therefore an elastic modulus.  The 

compressive stiffness of the neoprene ball was found to be 1.4 ksi which results in a p/E value of 

0.003.   Applying the model derived in this paper, which only takes into consideration one 

groove, it was found that penetration would be between 30%-45% of the ridge heights.   

However, the effect of additional grooves in this paper for a b/R value of 0.03 led to a fourfold 
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Fig. 11. When the number of grooves is increased from 1 to 3, the increase in penetration is more significant for larger b/R 

ratios and smaller a/R ratios.  The increase in penetration grows significantly as the cylinder penetrates into the adjacent 

grooves but levels off after contacting the outer edge of the adjacent grooves.  

 

increase in penetration at p/E value of 0.003.  This suggests that with shorter ridge heights, the 

directionality of sliding friction is reduced because the penetration is sufficient to contact the 

bottom surface of the groove, providing additional contact area for adhesive friction.  

This model is also insightful when compared to the findings of Tomlinson et al., whose 

work showed that at shallow groove depths adhesion was still the dominant mechanism, but at 

deep depths, the interlocking term was much more pronounced.  The model can be used to bridge 

the gap of determining at what depth the friction mechanisms would change so as to more 

accurately model tactile friction.  In addition, Taylor and Lederman [11] showed that penetration 

was of importance to tactile perception.  Having an accurate prediction of penetration may be an 

indicator of the perception of roughness. 

Future work with computational models similar to that used in this study may involve 

sliding the deformable cylinder over the parallel grooves with a compressive load as opposed to 
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the current static compression.  Utilizing a sliding step with frictionless surfaces, the frictional 

force due to deformation and penetration could be investigated computationally and correlated 

with groove size and compressive load.  The physical experiment could also be improved in the 

future by using deformable cylinders of a very fine degree of warping and also ensuring a very 

small tolerance of parallelism of the groove edges in addition to incorporating sliding motion.      

2.4 Conclusion 

 The finite element computational model results suggest that groove penetration can be 

very well modeled by a simple non-dimensional relationship that incorporates the ratios 

of groove width to cylinder radius, applied load per unit area to elastic modulus, and 

initial geometry-based unloaded penetration. This empirical relationship allows for 

penetration to be incorporated into skin friction models based on interlocking with 

textural features. 

 The model showed a good correlation with the experimental data obtained from 

polyurethane cylinders loaded onto a single groove.  Error was expected due to the slight 

warping of the cylinders, parallelism of the aluminum blocks, precision of ImageJ, and 

the relatively low amount of total penetration due to forced penetration. 

 Elastomer penetration into a center groove is increased by the presence of additional 

parallel groves, as would be encountered in a uniform parallel-ridged texture.  An 

increase in number of grooves beyond three had a minimal effect for the elastic modulus, 

load range, groove and ridge widths investigated here. 
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CHAPTER III 

PARAMETRIC INVESTIGATION OF SOFT-BODY CONTACT WITH PARALLEL-RIDGE 

TEXTURED SURFACES TO UNDERSTAND INFLUENCE ON CONTACT AREA 

A paper to be submitted to Tribology International 

T.J. Wilde, C.J. Schwartz 

3.1 Introduction 

 

Tactile interaction with the surface of engineered products is a nearly continuous 

occurrence and there is a need to better understand the tactile phenomenon to improve both 

functional and aesthetic qualities of surface textures. Tactile interaction helps us make 

judgements about materials [1-3], allows us to distinguish between materials [4],  and serves 

functional purposes such as the control of friction for product grip.  Many surfaces are textured 

with grooves to influence the frictional characteristics of the surface.  Grooved textures can be 

seen in products requiring grip for functionality such as power tools, razors, and bottle tops.  In 

addition, grooves may be present on products to reduce the coefficient of friction such as some 

laptop mousepads, or to enable a user to tactually distinguish between surfaces such as with 

smartphone devices which have different surface textures for distinguishing between buttons.    

The friction between a deformable body such as skin and a counter surface has been 

shown to be dependent on adhesion, deformation, and interlocking.  In tactile friction, the 

adhesion component has been shown to contribute most of the frictional force [5, 6].  However, 

as surface roughness increases beyond a certain point, the deformation and interlocking 

components drive friction [9].  The contact between cylindrical bodies and rigid planes has been 

extensively studied to serve as a model for many applications on the micro and macro scale of 
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tribo-surfaces.  Analytical solutions for contact area between two elastic bodies go back to Hertz 

and are used frequently for estimating real contact area and friction.  Two and three dimensional 

finite element analysis (FEA) simulations have been employed for more complex surface 

interaction and material properties to address the complexity of modeling human skin-to-surface 

interactions.  Jackson et al. [20] simulated the contact area of elasto-plastic hemispherical contact 

against a rigid flat surface. Xydas et al. [15] simulated the contact of a non-linear elastic 

hemispherical body against a rigid flat surface with friction. Locations of stress concentrations 

with respect to tactile sensors were simulated by Maeno et al. [16] for flat surfaces and by Shao 

et al. [17] for grooved surfaces.  Each of these uses of FEA provided much insight into tactile 

interaction that would have otherwise been very difficult to study analytically.  

Both Lederman et al. [13] and Smith et al. [12] investigated parallel-rectangular ridged 

textures and reported a correlation between the perception of roughness and the groove width 

and pressing force.  Grooves were also shown to be important for grip by Tomlinson et al., 

whose study showed that when the surfaces roughness of triangular-ridged textures increased 

beyond a certain threshold, friction increased significantly  as a result of interlocking [9].  In a 

study by Taylor et al. [11] involving a parallel rectangular ridged texture, they hypothesized that 

the amount of penetration of the human finger into the groove impacted the perception of surface 

roughness. It was hypothesized in this investigation that the number of ridges in contact plays an 

important role in friction and tactile perception, as it affects the real contact area and the number 

of instances of penetration into the grooved texture which are essential to adhesive and 

interlocking friction respectively.   However, there lacks an analytical solution to accurately 

predict the number of ridges that would be in contact with an elastomeric cylinder loaded against 

a textured surface.  Hertzian contact accurately predicts the contact distance between a soft 
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cylinder and rigid plane.  This contact distance can be used to predict the number of theoretical 

ridges in contact (based on groove and ridge width), but it is analytically difficult to determine 

how the presence of grooves affects the contact distance with the cylinder. 

The objective of this study was to determine if the presence of surface texture and its 

governing parameters influences contact distance to an extent that Hertzian contact can no longer 

be assumed.  Furthermore, it is important to estimate the number of grooves in which an 

elastomeric body penetrates for the development of an interlocking friction model.  In this 

investigation, numerous two dimensional FEA simulations were conducted to examine the 

compression of an elastic cylinder against a rigid, parallel rectangular ridged texture in order to 

obtain a regression model which predicts the number of ridges which are in contact for a given 

set of texture and loading parameters.  The texture is defined by the widths of both its ridges and 

grooves while the cylinder is defined by its radius and elastic modulus, and is taken to be 

incompressible.  The input parameters of similitude for the model were non-dimensionalized so 

that the model could be applied to both the micro and macro scale.   

 

3.2 Method 

3.2.1 Texture parameters and application to Hertzian contact 

The textures used in this analysis were two dimensional and having the cross section of 

parallel rectangular ridges, as indicated in Fig. 12.  The texture’s ridge width is referred to as a, 

while the distance between the ridges, or the texture’s groove width, is referred to as b.  A 

cylinder was used to represent the elastomeric body because its geometry is seen in many 

applications and its simple nature confines its defining parameters to its radius, R, elastic 
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modulus, E, and Poisson ratio, ν.  The applied load per unit area of the cylinder is referred to as 

p.  The number of the central ridge edges which come into contact with the cylinder when loaded 

is referred to as Q.  The parameters of similitude were non-dimensionalized using Buckingham 

Pi theorem to be a/R, b/R, and p/E, respectively.    

In order to examine if the Hertzian model was an adequate prediction for determining the 

number of ridges of a textured surface in contact with the elastomeric cylinder, a relationship 

was needed to define Hertzian contact distance in terms of the texture parameters.  Generally, a 

formulation of the Hertzian contact distance between a cylinder and two rigid plates includes a 

loading term per unit depth.  Adjusting this formulation to include p, and in terms of the radius 

yields the following 

1/2
22 1

4
v

d R p
E

 
  

 
      (12) 

In order to use the Hertzian model to predict the number of ridge edges in contact, (12) needed to 

be expressed in terms of number of ridges, Q, and texture parameters a and b.  In order to 

accomplish this, the Hertzian contact distance needed to be defined in terms of a virtual ridge-

count distance, denoted as Q’.  This virtual ridge-count distance describes contact distance solely 

on the number of inner ridge edges in contact and is equal to Q at the instant the cylinder initiates 

contact with a new pair of central ridge edges.  Because the center of the cylinder was 

constrained to align with the centerline of the central groove, it was initially in contact with two 

ridge edges when unloaded, or had an initial contact distance of b.  The difference of the initial 

contact distance from the total contact distance is of interest because it determines the number of 

additional ridge edges in contact when divided through by the pitch of the ridges, or a+b.  This 

relationship is described by 
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       (13) 

Fig. 12 depicts each of these governing parameters and shows how the number of central ridge 

edges in contact can be determined to be 4, based on the additional contact outside of the center 

groove summing to slightly higher than two times the pitch. 

 

 

Fig. 12. Geometry of a grooved texture where ‘d’ is the contact distance, ‘a’ is the ridge width, and ‘b’ is the groove width.  

The unloaded cylinder is in initial contact with 2 ridges, or Q = 2.  After loading, Q increases to 4 and can be predicted by 

the Hertzian contact distance. 

 

Substituting (12) into (13) and putting into dimensionless parameters, yields 
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    (14) 

The virtual ridge-count contact distance is more practical when it is expressed as a concrete 

number of ridge edges in contact, or Q.  This was accomplished using a floor function.  Because 

Q represents the number of ridge edges in contact, it must be an integer, and because the model 
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is symmetric in the lateral direction, the number must be even.  Thus, the floor function must 

round down to the nearest even integer.  The mathematical representation for a floor function to 

the nearest integer is expressed by the brackets “⌊ ⌋”. Assuming an incompressible material ( = 

0.5), the Hertzian model for number of ridge edges in contact is then 
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     (15) 

(15) is the finalized form of the Hertzian-based ridge prediction model and will hereafter be 

referred to as the ‘Classic Hertzian Model’. This model was used as a benchmark to investigate 

the accuracy of the more complex regression-fitted models based on finite element analysis, 

described below.  

 

3.2.2 Finite element method 

A two dimensional finite element method was utilized (Abaqus/CAE v6.12) to run 

several experiments efficiently.  Plain strain elements were used to better model a cylinder by 

assuming the strain in negligible outside of the plane.  An 8-node biquadratic quadrilateral 

element was used with full integration.  Quadratic elements assisted in simulating contact of 

curved surfaces to a higher degree and the use of full integration reduced the effect of hour-

glassing. The experimental validation of this computation model was presented in a previous 

paper (under review). 

In order to verify the simulation configurations as well as the classic Hertzian contact 

approximation (15), the cylinder was first loaded between two flat rigid plates.  The resulting 

contact distance was recorded as a function of load and converted to Q’ values using (13).  These 
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values were then compared to the predictions from the classic Hertzian equation (15) to verify 

(13) and (15) as well as the simulation configurations. 

The cylinder was then centered and rested on a rigid grooved surface.  The mesh was 

highly refined in the area of contact as depicted by Fig. 13 to increase the accuracy at which the 

cylinder made contact with additional ridge edges.  The load was large enough such that an 

adequate number of ridges are initiated into contact with the deformable cylinder.  The exact 

load was noted when each ridge became in contact during the loading process.  This process was 

repeated for all combinations of b/R values of 0.01, 0.02, 0.03, and a/R values of 0.012, 0.022,  

 

Fig. 13. FEM model with a large b/R of 0.09, and small a/R of 0.011 for display purposes.  The mesh is highly refined at 

the area of contact.   
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and 0.032.  These are values which are common in tactile experiments [10] when assuming a 

single radius of curvature to represent the finger.  From the p/E values obtained when ridge 

edges became in contact, a model was developed using a least squares regression which 

incorporated the dimensionless geometric and loading parameters to predict Q.  

 

3.3 Results and Discussion 

3.3.1 Modified Hertzian Model 

 

The finite-element (FE) based simulation model was first verified by comparing the 

simulated contact distance of a compressed cylinder between two rigid plates with the Hertzian 

contact distance approximation. Relation (2), which relates contact distance to virtual ridge-

count contact distance (Q’), was also verified by comparing its results to the classic Hertzian 

contact described by (15).    This comparison resulted in a high correlation (R2 = 1) and 

maximum error of 2% which can be seen by Fig. 14. 

As previously stated, the cylinder was then loaded against a rigid grooved surface for all 

combinations of normalized groove and ridge width, respectively (b/R values of 0.01, 0.02, 0.03 

and a/R values of 0.012, 0.022, and 0.032).   As normal load was increased during the FE 

simulations, the load at which a new pair of ridge edges came in contact with the deformed 

cylinder was recorded. Fig. 15 shows the number of ridge edges in contact (Q) as a function of 

non-dimensional load and ridge width, with a fixed value of normalized groove width.  Ridge 

edge contacts can only take on even integer values, thus those are the points plotted in the figure. 

The number of ridge edges in contact is equal to the virtual ridge-count distance (Q’) when the  
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Fig. 14. Contact distance between a cylinder and two rigid planes was simulated and converted to virtual ridge-count 

distance (Q’) in contact using (13) by assigning arbitrary values of a/R and b/R to 0.022 and 0.03 respectively.  The 

simulated results are predicted with high accuracy (R2 = 1) by the classic Hertzian contact (solid line). 

 

latter takes on even integer values (e.g., 2, 4, 6, etc.).  All other parameter combinations showed 

similar trends.  Each data series in Fig. 15 shows a relationship between loading and ridge edge 

contacts that can be well modeled by 
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       (16) 

with a high correlation for each series  (R2  > 0.999).  Thus, 𝐾 must be a function of the texture 

parameters, b/R and a/R.  The classic Hertzian equation described by (15) takes a similar form, 

however, it over-predicted the amount of load necessary to obtain contact with a certain number 

of ridge edges.  It was hypothesized that a potential contribution to this was the fact that (15) did 

not include an initial contact distance equal to b.   When the Hertzian contact distance described 

by (12) included an initial contact distance of b, the first term on the numerator of (15) vanishes 

yielding 
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This model describes the data remarkably well (R2 = 0.999) and will hereafter be referred to as 

the ‘Modified Hertzian Model’. This relation indicates that in these particular ranges of 

normalized load, groove width and ridge width, respectively, the individual values of groove 

width and ridge width have a minimal effect because it only depends on the sum of a/R and b/R, 

or the pitch.  Moreover, this best fit model is nearly identical to the classic Hertzian contact 

described by (15) when the initial contact distance is accounted for as previously described. 

The Hertzian model under-predicted the necessary load to initiate contact with 4 ridge 

edges at relatively small groove widths (b/R).  This was because of the inherent error in the FE 

simulation due to the size of the calculation increment.  Because contact with four ridge edges 

required very little applied load, the simulation added more load than necessary to obtain the  

 

 

Fig. 15. Number of ridge edges in contact as a function of load.  The b/R value is kept constant at 0.01 while a/R is varied 

from 0.032 (x), to 0.022 (o), and 0.012 (+).  Decreasing b/R with a constant a/R value follows a similar trend. 
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contact.  However, the increment is small enough to give much more accurate loads for contact 

with six or more ridge edges at low b/R ratios. 

 

3.3.2 Hybrid Model 

 

The error of the Modified Hertzian Model increased as groove width increased or ridge 

width decreased.  At the lowest b/R to a/R ratio, 0.01 and 0.032 respectively, the error of the 

Modified Hertzian Model was between 1% and 2%, while at the highest b/R to a/R ratio, 0.03 

and 0.012 respectively, the error climbed to between 3% and 5%.  This can be attributed to a 

deviation from classic Hertzian contact as penetration into the grooves becomes more profound.  

With a normalized groove width (b/R) much larger than normalized ridge width (a/R), (values of 

0.09 and 0.012 respectively) the error in predicted load of the Modified Hertzian Model grows to 

as high as 15% compared to the FE simulation.  Thus, it was decided to consider an additional 

term in the model to address this issue.  Because it was seen that larger ridge widths caused more 

hindrance to ridge-edge contact than did groove widths, an additional term dependent on 

normalized ridge width (a/R) was added to the existing model to account for this difference.  

Using a least squares best-fit regression, the empirically modified model became 
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hereafter referred to as the ‘Hybrid Model’. There are two terms in the coefficient to the load.  It 

is heavily influenced by the first term, which is effectively the normalized pitch of the texture. 

As the pitch increases, the number of ridge edges in contact decreases. The second term, which is 

only dependent on a/R, represents the resistance to deformation caused by the width of the 
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ridges.  In contrast to b/R, a/R increases both the pitch and resistance to compression, thus 

having a more profound effect on limiting Q.  The predictions from the Hybrid Model were 

compared to that of the Modified Hertzian Model for all FE simulations.  The Hybrid Model 

performed even better than the Modified Hertzian Model at the lowest b/R to a/R ratio as shown 

by Fig. 16.  As the b/R to a/R ratio increased, the Hybrid Model remained within 2% error while 

the Modified Hertzian Model became less accurate, as shown by Fig. 17.  Furthermore, while the 

error of the Modified Hertzian Model grew to 15% for the highest b/R to a/R ratio tested, the 

Hybrid Model remained below 2% in error. 

For larger b/R values, it became more difficult for FE simulations to converge to obtain 

contact with a large number of ridges.  A suggestion for future simulations is to conduct 

controlled displacement simulations rather than controlled load to increase the likeliness of 

convergence.     

 

 

Fig. 16. Percent error of required load for number of ridge edges in contact for small groove width (b/R=0.01) and large 

ridge width (a/R=0.032).  The classic Hertzian equation and the Modified Hertzian Model are relatively accurate but 

outperformed by the Hybrid Model. 
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Fig. 17. Percent error of required load for number of ridge edges in contact for large groove width (b/R=0.03) and small 

edge width (a/R = 0.012).  At these higher ratios of b/R to a/R, the Hertzian prediction and the Modified Hertzian Model 

becomes much less accurate while the Hybrid Model, which incorporates the individual values of a/R and b/R, remains 

highly accurate. 

 

The effect of the presence of grooves on the compression of the cylinder and theoretical 

contact distance was contrary to the authors’ original expectations.  It was previously 

hypothesized by the authors that the presence of grooves would inhibit the horizontal growth of 

contact with the grooved surface and larger grooves would further this inhibition because of the 

area of the cylinder that would subsequently be penetrating into the grooves.  However, the result 

was the opposite. The presence of the grooves and the allowance for penetration results in a 

reduction in resistance to compression.  This allows the cylinder to be compressed to a greater 

extent for a given load than if it was loaded against a rigid plane.  This effect was more 

prominent for b/R values over 0.3, above which the Hertzian contact begins to greatly over 

predict the amount of load necessary to obtain contact with a certain number of ridge edges.  

The model displayed by (18) is useful to predict the real contact area between a 

cylindrically shaped elastomeric body with a parallel grooved texture. Furthermore, this model is 
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important to the development of an interlocking friction model as it determines the number of 

grooves in which the elastomeric body penetrates the texture. As previously mentioned, Taylor 

and Lederman found penetration into grooves to be an important contribution to the deformation 

component of friction and Tomlinson et al. [9] found interlocking to be the dominant component 

of friction with triangular-ridge textures of high surface roughness.  Furthermore, the groove 

widths and pressing force were linked to the perception of roughness by Smith [12] and Taylor 

[11].  Therefore the perception of roughness may also be linked to the number of ridges in 

contact as this number increases with load.  Additional research may be warranted to observe the 

stresses induced on the cylindrical body by the individual ridges such as seen in the work of 

Shao et al. [17].  The model developed from this investigation would provide the number of 

locations of these stress sites from groove ridge to finger interaction which may provide insight 

on tactile perception.   

3.4 Conclusion 

 

 Classic Hertzian theory does a reasonable job of predicting the number of ridge-edge 

contacts when an elastomeric cylinder is loaded against a parallel-rectangular-ridge 

texture, so long as normalized groove size is relatively small (b/R below 0.01) and 

normalized ridge width is sufficiently large (a/R above 0.032).  Outside of these 

parameter ranges, the model exhibits considerable error. 

 A Modified Hertzian model, which takes into account the pitch of the texture ridges, 

predicted the loads required to obtain a specified number of ridge-edge contacts with the 

specified ranges of b/R and a/R with high accuracy. This model becomes less accurate, 
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however, with large groove widths because penetration into the grooves becomes more 

substantial and has an impact on overall penetration of the cylinder into the texture 

grooves. 

 A Hybrid model was developed which introduced empirical fit into the Modified 

Hertzian model, and was structured to include both pitch and ridge width.  This model 

was highly accurate with all values tested of b/R and a/R, including extreme ratios 

between the two texture parameters. 
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CHAPTER IV 

GENERAL CONCLUSIONS 

 

 Understanding tactile friction with textured surfaces is extremely important to properly 

design and engineer products to meet their functional purposes.  While it has been shown that the 

presence of surface texture can increase friction due to deformation and interlocking 

mechanisms, the effect of surface geometry and loading is poorly understood. 

 Interlocking friction between an elastomeric body and a textured surface occurs from the 

penetration of the elastomeric body between the ridges of the texture when the surfaces become 

in contact.  Furthermore, the extent of penetration determines the amount of micro-adhesion 

which occurs from contact with the bottom of groove channels.  Although difficult to model this 

contact mechanics problem analytically, the advent of finite element analysis allowed for the 

collection of data from several computational simulations from which regression models could 

be obtained.  These models proved to predict with high accuracy both the number of ridges that 

become in contact and the extent of penetration that occurs based on dimensionless parameters 

which describe the loading and geometry conditions.  To more thoroughly investigate the 

relationship between penetration and amount of ridges in contact with interlocking friction, it 

would be very beneficial to conduct sliding simulations and experiments to better understand 

how friction can be controlled by textural properties. 
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APPENDIX 

PARALLEL-INFINITESIMAL SPRING COMPRESSION PSEUDO-CODE MODELING 

THE PENETRATION INTO A SINGLE GROOVED TEXTURE 

 

 

// Assign arbitrary radius value, maximum compression, number of springs, and half groove 

// width 

R = 1;   

maxCompression = 1;  

numOfSprings = 1000; 

b = 0.01; 

// Determine compression increments and resulting increments of contact distance 

for (i=0; i < numOfCompressionIncrements; i++){ 

  cIncrements[i] = i * maxCompression/( numOfCompressionIncrements-1) 

  contactDistanceIncrements[i] = SquareRoot( 2 * R * cIncrements[i] - 

cIncrements[i]^2) 

} 

// Create a Spring class which is given an x location and can determine its force with a given 

c and R 

class Spring { 

location x; 

 

// Constructor 

Spring( location){ 

  x = location; 

} 

// Method to obtain force with given compression of cylinder 

getForce( c, R){ 

return 2*c – (2*R – 2*SquareRoot(R^2 – x^2) 

} 

} 

// Assign spring locations based on the number of springs 

springList.add( new Spring(0)); // Center Spring 

// Determine distance between springs based on Radius and numOfSprings 

distBetweenSprings = R/((numberOfSprings-1)/2); 

// Loop through half the number of springs and assign an x position to two springs 

for (i=0; i<(numberOfSprings-1)/2; i++){ 

  spring = new Spring((i+1) * distBetweenSprings); 

  springList.add(spring); 

  springList.add(spring); 

} 
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// Sum up the resulting force at each c increment 

for (i=0; i < numOfCompressionIncrements; i++){ 

  // Loop through springs and check that location is less than half-contact 

distance but greater than the half groove width 

  for ( Spring currentSpring : springList ){ 

if (currentSpring.getLocation() > b && currentSpring.getLocation() 

<= contactDistanceIncrements[i] ){ 

// add the force of the current spring to the total force 

forceIncrement[i] += currentSpring.getForce(cIncrements[i], 

R)/numOfSprings 

   } 

} 

} 
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