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ABSTRACT 
 

For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) 

algorithms are applied to the optimization of experimental diesel engine performance, to meet 

Environmental Protection Agency, off-road, diesel engine standards.  This work is the first to 

apply ABC optimization to experimental engine testing. All trials were conducted at partial load 

on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and 

regular pump diesel for ABC.  Key variables were altered throughout the experiments, including, 

fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for 

two injections, pilot injection timing and main injection timing.  Both forms of optimization 

proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a 

superior solution to that of ABC within fewer engine runs.  Both solutions call for high exhaust 

gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main 

fuel injections to near top dead center for improved tradeoffs between NOx and particulate 

matter. 
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CHAPTER 1 INTRODUCTION 
 

1.1 Motivation 

As Gross Domestic Product and population expand, more energy is required to meet 

increasing demands for transportation and electricity production.  Due to the continued use of 

fossil fuel combustion to meet this need, the corresponding emissions from this process has come 

under scrutiny due to rising atmospheric CO2 and global surface temperatures (Vanic et al 2012).   

Further, other possible products of combustion such as oxides of nitrogen and particulate matter 

can be hazardous to human health. Over the last 30 years emission standards have been set in 

countries throughout the globe designed to reduce emissions from all forms of combustion 

related to power production (Turns 2012).  In the US, the Environmental Protection Agency 

(EPA) has set stringent standards for both diesel and gasoline engines in Tiers that decrease 

allowed emissions per kilowatt-hour (kW-h) progressively over time.  

1.2 Objective 

The focus of this work is on modern diesel engines, which utilize a vast swath of 

technologies to minimize emissions and maintain power output.  These technologies include but 

are not limited to EGR, injection pressure, injection timing, turbo-charging and intercooling.   A 

small change in any of these parameters can introduce vast differences in heat release, emissions, 

and efficiency.  In order to best utilize these technologies to reduce emissions and fuel 

consumption, new engines are tested on a dynamometer stand and connected to a variety of state-

of-the-art equipment to read emissions data for each operating condition of interest.  As noted by 

Perhinschi et al. 2011, traditional parametric studies are costly and require exhaustive strain on 
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equipment and labor.  Artificial intelligence (AI) in the form of optimization algorithms can be 

used to vastly reduce the number of required experiments saving money and time. 

 Mathematically, the way in which air and fuel are mixed and burned in an engine can be 

represented as inputs to a complex multimodal, non-separable function producing power and 

emissions as outputs.  Optimization of diesel engines is a balancing act of interconnected 

variables and tradeoffs between emissions and power output.  Given variable limits and an 

overall objective, optimization algorithms produce a new set of experimental trials based on the 

results of previous experiments, rather than by a step-by-step change in each of the input 

parameters.  These algorithms are typically based on evolution or swarm intelligence which can 

both be found in nature. 

The following chapters will review current optimization algorithms and give examples as 

to how they can be improved and used to solve real world problems in shorter time.  Two of the 

algorithms discussed below are modified, tested against standard benchmark functions and then 

applied to real world engine operation.  Chapter 2 provides a literature review covering the 

numerous diesel engine pollution reduction strategies and the many varieties and applications of 

optimization.  Chapter 3 encompasses the process and testing of a Particle Swarm-Genetic 

Algorithm hybrid as well as a modified version of Artificial Bee Colony algorithm.  Chapter 4 

displays and discusses the results of both applications to a John Deere diesel engine. Finally, 

Chapter 5 summarizes key results and provides recommendations for future experimental 

optimization with ABC. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Modern Diesel Engine Emission Reduction Strategies 

Exhaust Gas Recirculation (EGR) 

 EGR involves the recirculation of combustion product exhaust gas back into the intake 

manifold. The CO2 and H2O in the exhaust gas increases the specific heat of the charge gas and 

decreases the local equivalence ratio (Turns 2012).  These effects work to decrease overall in-

cylinder temperatures and reduce thermal NOx emissions whose production are a strong function 

of temperature. EGR is especially important for the combustion of biodiesel which produces 

fewer emissions of incomplete combustion but increased NOx comparatively to that of regular 

diesel (Mueller et al. 2009). Products of incomplete combustion include CO, HC, and PM.  The 

increase in NOx when using biodiesel and its blends has been well studied and has been strongly 

correlated with increased local equivalence ratio near the fuel jet due to the oxygen content of the 

fuel.  This accelerates combustion and increases cylinder temperatures earlier in the cycle than 

regular diesel, especially at low or partial load conditions where mixing controlled combustion is 

less prevalent (Mueller et al. 2009).  While EGR decreases NOx emissions it also can increase 

PM emissions due to decreasing local equivalence ratio which must be taken into account to 

meet EPA and Euro regulation standards (Turns 2012). 

Fuel Injection Strategies 

 The modern, high pressure, common rail, diesel fuel delivery system allows for more 

than one fuel injection at any crank angle, theta, at constant pressure. Increasing fuel injection 

pressure increases the momentum of fuel within the charge gas and has been shown in previous 

studies to improve mixing between air and fuel and thus lower PM emissions (Karra and Kong 
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2008).  In Karra and Kong 2008, it was found that fuel pressure could be increased from 150-180 

MPa under moderate EGR to reduce PM without a large penalty in NOx emissions.  Pilot 

injections split the overall fuel between an early and main injection.  Pilot combustion produces 

heat and radical species which allow for a decreased ignition delay for main injection and thus a 

decrease in soot emissions (Karra and Kong 2008, Shi et al 2010). 

2.2 Optimization Algorithms 

 

Genetic Algorithm (GA) 

The Genetic Algorithm (GA) is modeled after the evolution of species and represents 

potential solutions as parents and children.  A given set of potential parents with specific genes 

(solution elements) are trialed as generation one.  Similar to evolution, only the best parents 

survive or are ‘good enough’ relative to the utopia to combine their positive characteristics in the 

form of an offspring.  Similar to human genetics children differ from their parents through 

random mutations.  Children with superior mutations for their environment survive to eventually 

become parents thus continuing the cycle. Due to its ability to thoroughly explore the search 

space, convergence time is a common concern with GA, requiring careful consideration of 

parameters affecting selection of the best results, mutation rate, population, and crossover of 

genes (Angelova and Penchevea, 2011).  Experimental applications typically employ the micro-

Genetic algorithm (µGA) which allows for a much smaller population of 5 or less compared to 

that of the standard GA, which can require populations of up to 200. In µGA, tournament 

selection and elitism strategies work with crossover and mutation in an effort to ensure that only 

the best potential solutions participate in the optimization routine (Karra and Kong 2010). 
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Particle Swarm Optimization (PSO) 

Particle Swarm optimization (PSO) models a swarm of beings, each individual has 

information about their distinct location (Pbest) in the search space as well as the position of the 

leader (Gbest).  This could represent a swarm of birds, ants, or even robots.  In the PSO process 

starting particles are given initial positions Xi.  Following the evaluation of initial positions the 

vector Xi is modified by means of an updated velocity Vi+1, using equations 2.1 and 2.2.  In the 

PSO equations, i is the current iteration, w is an inertia weight for the previous velocity, and C1 

and C2 represent interest factors for both local and global solution information.  R1 and R2 are 

randomly chosen numbers in [0,1] that serve to enhance exploration (Karra, 2009).   

1 1i i iX X V     (2.1) 

1 1 1 2 2( ) ( )i i best i best iV wV C R P X C R G X         (2.2) 

Artificial Bee Colony Optimization (ABC) 

ABC optimization, introduced by Dervis Karaboga in 2005 is another form of swarm 

optimization that mimics the way in which bees find and develop food sources.  In a real honey 

bee hive only a portion of the bees will leave in search of food sources.  In the first step of the 

ABC, a quantity of initial food sources or parameter vectors are trialed.  The fitness of each food 

source in reference to a given utopia point is recorded.  Initial food sources are produced based 

on the upper and lower bounds (UB and LB respectively) of the problem according to equation 

2.3. Equation 2.3 is conducted in a loop where each food source, i, is given an element j, until the 

dimension of the food source, D, has been reached (Karaboga and Akay, 2009, Karaboga, 2005). 

[0,1]( )ij LB UB LB jFood X Rand X X     (2.3) 
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Following the initialization and testing of initial food sources employed bees return one 

by one to a point very near each source.  The employed bee phase will add one random mutation 

to their source based off of another randomly chosen food source in the group, regardless of 

fitness.  Following their selection, each employed bee evaluates the mutated food source’s 

wealth in comparison to the initialized source and remembers only the better one.  In the hive, 

employed bees will return from a given food source and conduct the waggle dance in the hope of 

recruiting onlooker bees to the food site.  The quality of the dance communicates the quality and 

location of the food source to the hive.  The onlooker bee phase uses probability based on the 

fitness of the previous solutions to mimic the waggle and dance and thus decide which food 

sources are most likely to receive onlooker bees (tests).  The food source that received the best 

fitness value is most likely to be selected at each step in the onlooker bee phase.  The onlooker 

bee will again apply a random mutation to the visited source based off of a randomly selected 

neighbor and will remember only the food source with the better result.  During the onlooker 

phase it is possible that a food source will be visited more than once or not at all.  Each time a 

food source is not improved by the onlooker or employed bee phase its trial counter is increased.  

Equation 2.4 below prescribed by Karaboga, is used at both the employed and onlooker bee 

phases, where   is a random number in the interval [0,1].   The first subscript identifies the food 

source, and the second, the parameter (dimension) to be changed (Karaboga and Akay, 2009).  

      

 ij ij ij ij kjV x x x     (2.4) 

Following the conclusion of the onlooker bee phase the scout bee is called.  Should a 

food source have been modified (trialed) more than a specified limit value without improvement, 



7 
 

it is replaced by the scout bee with a newly initialized food source. If the limit value has not been 

reached by any food source than the cycle repeats with the employed bees visiting each source in 

succession.  Only one scout bee is allowed, per iteration, in standard ABC. The amount of times 

the cycle repeats in application is referred to as maximum cycle number (MCN) (Karaboga and 

Akay, 2009). 

2.3 Modifying the Standard ABC Algorithm 

Because of the small number of input parameters, ABC optimization can be applied to a 

large host of problems.  Standard ABC has been applied to numerous benchmark functions in 

Karaboga and Akay 2009, and shows better if not competitive performance against PSO and GA 

in standard benchmark tests.  The primary shortcoming of traditional ABC in comparison to 

other evolutionary algorithms is time to convergence (Zhu and Kwong, 2010; Imanian et. all, 

2014; Gao and Liu, 2011).  Gau and Liu, 2011 also point out that traditional ABC can also 

become trapped in local minima, when optimizing multi-modal functions.    

Exploration and exploitation describe the ability of an algorithm to both find and utilize a 

trend to its full potential.  A lack of exploration could lead an algorithm to settle at the bottom of 

local minimum.  An endless search could be result of a lack of exploitation, where the algorithm 

is not able to follow the shortest route to the bottom of the valley.  Zhu and Kwong 2010 and 

Yuan et al. 2014, determine that the ABC algorithm is very effective in exploration but lacking 

in exploitation.  Therefore, a term inspired by PSO is prescribed for the modification of food 

sources which considers the global best solution in equation 2.5.  In this addition to equation 2.4, 

  is a random number in the interval [0,1.5] and y represents the current global best solution 

(Zhu and Kwong 2010).  This modification increases the convergence speed of the algorithm by 

pulling all potential solutions toward the global best, similar to that of PSO in equation 2.2.  By 
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applying Equation 2.5 to both the employed and onlooker bee phases, Zhu and Kwong were able 

to improve the exploitation of ABC in standard benchmark tests and thus decrease convergence 

time.  Imanian et al. 2014, employs this technique as well, but restrict the use of Equation 2.5 to 

the onlooker phase only, using Equation 2.4 in the employed bee phase. 

   ij ij ij ij kj ij j ijV x x x y x        (2.5) 

A further modification can be made to the employed bee phase in order to increase 

exploration.  In Gao et. al. 2011, several modifications are made to ABC in an effort to avoid 

local minima.  The work suggests the mutation of multiple elements of a food source at both the 

employed and onlooker phases.  At each modification step, based on a constant probability P, 

additional elements of a food source are mutated using a random number generator in a loop 

(until the random number is larger than P).  If P is selected too large, than it becomes highly 

possible that all elements of a food source vector will be changed in one step. Using P equal to 

0.25, the algorithm is able to explore further mutations, allowing it to achieve better fitness than 

standard ABC in the same number of iterations (Gao et. al 2011).  Fitness refers to the fraction of 

actual solution value to that of the ideal.  

2.4 Hybrid Algorithms 

 It is possible to combine optimization algorithms in order to produce a hybrid with the 

intent to use the positive attributes of one algorithm to cancel out the negative attributes of 

another.  Hybrid algorithms can also be designed in order to ‘seed’ or lead another algorithm into 

a narrow search space.  In Araújo et al. 2013, PSO is employed to the first 30% of function 

iterations to perform a global search while for the final 70% of iterations, Differential Evolution 

(DE) algorithm is employed to perform a local search.  DE is similar to PSO, however it has 
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been shown to perform a more thorough exploration of the search space than PSO which can 

become entrapped in local minima.  Using PSO to first seed the more explorative DE allows for 

a thorough search in a higher quality area of the search space (Araújo et al. 2013).  The Genetic 

Algorithm is powerful search tool, however this ability can lead to long convergence times when 

it is used alone.  In Muñoz et al. 2013, GA is first given three iterations followed by the use of a 

local search tool; the Nelder Mead Method.  By coupling GA with a local search method the 

computational time is greatly decreased for the same accuracy gained with pure GA (Muñoz et 

al. 2013).   

 PSO and GA have been, and can be combined, to take advantage of the exploration of 

GA as well as the exploitation of PSO.  Shi et al. 2005 and Jeong et al. 2009, apply algorithms 

which employ PSO and GA simultaneously at each iteration.  In Jeong et al. 2009, solutions are 

split half and half at each iteration to PSO or GA operators.  By combining the two methods both 

authors report improved search capability of the hybrid algorithm, resulting in better solutions in 

shorter time. 

2.5 GA and PSO Engineering Applications in Literature 

GA and PSO have the ability to optimize multiple objectives at the same time and have 

been used in numerous engineering problems. Hardy and Reitz 2006, Ge et al. 2009, Ge et al. 

2010, and Lee et al. 2012 all use Genetic algorithms for the optimization of diesel engine piston 

design and injection parameters for emissions and fuel consumption. Duan et al. 2014 uses multi-

objective PSO to optimize the efficiency, power-output, and entropy production of a numerically 

modeled Stirling Engine.  Karra and Kong 2010, use PSO optimization through direct 

experiment to minimize emissions by balancing fuel injection strategies with EGR.  
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2.6 ABC Engineering Applications in Literature 

ABC has been used for a multitude of problems extending outside of the standard 

benchmark tests.  In Şahin et al. 2011, ABC is employed for the optimization of shell and tube 

heat exchanger design to minimize overall cost.  In Saif et al. 2014, ABC is used successfully to 

optimize assembly line task planning.  Finally, M. Basu 2011 utilizes Bee Colony algorithm to 

find the best combination of heat and electric power dispatch to minimize fuel costs. The above 

simulation based works, show bee colony optimization to converge to Pareto regimes of higher 

optimality than those found through traditional GA and PSO methods.  A Pareto regime 

represents the solutions with optimum tradeoff between multiple objectives.  
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CHAPTER 3 EXPERIMENTAL SETUP 

 

3.1 Experiment Overview 

This work examines the applications of a PSO-GA hybrid algorithm and modified ABC 

algorithm to experimental diesel engine optimization.  Based on the literature review this chapter 

provides an overview of how both algorithms were constructed, used, and tested both 

computationally and experimentally.  For the PSO-GA experiment 100% soy biodiesel was used 

as fuel with 5 input dimensions as seen in Table 3.9. For the ABC experiment, pump diesel was 

applied as fuel with 6 input dimensions as seen in Table 3.10.  Chapter 4 shows the progression 

of results for both algorithms and discusses tradeoffs between emissions and efficiency.  The 

resulting best condition and algorithm performance are also discussed. 

 

3.2 Combining GA and PSO 

 By combining PSO and GA, one can get the exploration of GA coupled with the 

exploitation abilities of PSO.  In this work a unique pairing of PSO with GA was used, where 

PSO and GA are operated sequentially at each iteration using a small population. Each iteration 

begins with PSO using Equations 2.1 and 2.2 for N potential solutions.  Following PSO, the best 

n solutions, evaluated by fitness value, are submitted to a µGA process (small population).  The 

µGA operator randomly mates pairs of these solutions whilst also applying a mutation to a 

randomly chosen offspring to be brought back to PSO at the next iteration.  A small population N 

is desired to minimize dynamometer time.  The best population size was found to be 8 in the 

interval [6,10] in order to minimize time to convergence in standard benchmark tests.  N and n 

are therefore set to 4 for simplicity.  PSO constants C1 and C2 along with the µGA mutation rate 
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can be found in Table 3.1 (Qiang et al. 2015).  The full PSO-GA hybrid process steps can be 

seen below and by use of a flow chart in Figure 3.1.  

Table 3.1: PSO-GA Parameters Defining the Dimension and Limits of the Problem 

 

Step 1: Randomly generate initial positions X(i)={xj (i)} and velocities V(i)={vj (i)}  of particles, 

where j is the dimension of the particles,  j=(1,2,…, N) where N is the size of the swarm.  

Step 2: Calculate the value of the objective function. If the termination condition is met, the 

algorithm terminates.   

Step 3: Obtain the new velocities V (i+1) and positions X (i+1) of particles using Equations 2.1 

and 2.2, and update Pbest and Gbest.  

Step 4: Identify the best n members and discard the rest of the N–n members.  

GA steps: 

Step 5: Tournament selection based on n members. Select these n individuals from X(i+1) to form 

the mating pool with a population of Xs(i+1).  

Step 6: Crossover. Perform crossover operation on population Xs(i+1) to form a population               

Xc(i+1). 

Step 7: Dynamic mutation. Mutate a single element of an individual with the mutation rate of pm 

to form a population Xm(i+1) and output N–n offspring.  

Step 8: Form the new generation i+1 which includes n members from PSO and N–n members from 

GA. Return to step 2. 

Population Size (N) 8

Tournament Selection (n) 4

PSO Constants: C1, C2 2

GA Mutation Rate 0.1

PSO-GA Hybrid Parameters
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Figure 3.1: PSO-GA Hybrid Flow Chart 

3.3 Modified ABC Algorithm 

Testing a new engine requires a large amount of capital and time, therefore, it is 

important that testing time be minimized and that a satisfactory solution is found.  Therefore, 

modifications from the literature were made to the standard ABC algorithm in an attempt to 

increase convergence speed and avoid local minima.  In this work, in order to maintain 

individual exploration of the employed bee stage, a PSO inspired term was only applied in the 

Onlooker Bee phase similar to that of Imanian et al. 2014.  Inspired by Gao et al 2011, the 
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employed bee phase is designed to involve two mutations using Equation 2.4, for each food 

source.  The probability scheme from Gao et al. was not employed. 

The value of Limit for ABC was found using equation 3.1 from Karaboga and Akay 

2009, where D is the number of elements in each food source.  No food sources in the 

experiment reached the limit value.  The number of food sources (population) to be memorized 

was chosen arbitrarily in an effort to minimize experimental time.  A larger number of initialized 

sources could slow down convergence time which is of careful consideration when working to 

minimize dynamometer time.  The MATLAB program for ABC was designed per Gao and Liu 

2011, to move any mutations outside of table 3.10 to within the specified upper or lower bounds 

automatically.  Table 3.2 shows input parameters to the Modified ABC algorithm.   

(# )( )Limit Foods D    (3.1) 

Table 3.2: ABC Parameters Defining the Dimension and Limits of the Problem 

 

The complete list of steps in the modified algorithm are below followed by the overall 

flowchart used though the experiment in Figure 3.2.  

Step 1: Use equation 2.3 to generate four random initiate food sources. 

Step 2: Initial food sources are tested and assigned a fitness value. 

Colony Size 8

Number of Food Sources 4

Food Source Dimensions (D) 6

Maximum Cycle Number 200

Limit 24

ABC Parameters
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Step 3: Employed bees visit each food source in succession changing two random parameters at 

a time at each food source based on equation 2.4. 

Step 4: Altered food sources from step 3 are tested and assigned a fitness value. 

Step 5: A greedy selection is made whereby only the best condition of each food source is 

memorized, if the fitness value of a food source does not improve its trial counter 

increases. 

Step 6: A probability value is assigned to each food source based on its current fitness value 

relative to the group.  

Step 7: A random number generator is used in tandem with food source probability to determine 

which sources will be visited by each of the 4 onlooker bees. 

Step 8: Each food source selected by the onlooker bees is altered using equation 2.5. 

Step 9: Altered food sources from step 8 are tested and assigned a fitness value. 

Step 10: A greedy selection is made whereby only the best condition of each food source is    

memorized, if the fitness value of a food source does not improve its trial counter 

increases. 

Step 11: If any food sources have exceeded the trial Limit value, they are considered abandoned 

and a new food source is generated by the scout bee using equation 2.3.  Only one scout 

bee is allowed per trial 

Step 12: If optimum conditions have not been met return to Step 3. 
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Figure 3.2: Modified Artificial Bee Optimization Flow Chart 

3.4 Benchmark Tests 

 As was done in the previously stated literature (Karaboga and Akay 2009; Imanian et. al., 

2014; Zhu and Kwong 2010; Gao and Liu 2011) the PSO-GA hybrid and modified ABC 

algorithm were tested against PSO and GA in the minimization of three test functions.  Equations 

3.2, 3.3, and 3.4 represent optimization test functions and are referred to as Styblinsky-Tang, 

Rastrigin, and Ackley respectively.  Each algorithm was given a maximum of 200 iterations for 

each of 30 trials.  Tables 3.4 and 3.6 give the average minimum of 30 trials for each algorithm 

and test function.  Tables 3.3 and 3.5 give the range of each test function along with its 

respective minimum value.  The optimum value of the Styblinsky-Tang function changes with 
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the dimension of the input.  PSO and GA were given the same dimensional input as PSO-GA and 

ABC in order to increase similarity to the experimental work. A population size of 4 and 8 with 

dimensions of 5 and 6 for PSO-GA and modified ABC respectively were applied. The ABC 

algorithm was given the extra dimension of intake temperature experimentally, therefore this 

addition is reflected in the additional dimension given to ABC in the benchmark tests. 

4 2

1

1
( ) ( 16 5 )

2

D

i i i

i

f x x x x


      (3.2) 

2

1

( ) 10 ( 10cos(2 ))
D

i i

i

f x D x x


       (3.3) 

2

1 1

1 1
( ) 20exp 0.2 exp cos(2 ) 20

D D

i i

i i

f x x x e
n n


 

   
            

     (3.4) 

 

 

Figure 3.3: Minimization of Stablinksy-Tang Function for PSO-GA 



18 
 

 

Figure 3.4: Minimization of Rastrigin Function for PSO-GA 

 

Figure 3.5: Minimization of Ackley Function for PSO-GA 

 

 

 

 



19 
 

Table 3.3: 5 Dimension Benchmark Function Details 

 

Table 3.4: Average Minimum Values for Benchmark Functions Using Each Algorithm for 

30 Trials at 200 Iterations per Trial 

 

 The PSO-GA hybrid is able to converge closer to the objective value than GA for each 

test and performs competitively with PSO.  Figures 3.3, 3.4 and 3.5 show the increased 

exploration of the hybrid against PSO. The improved exploration of the hybrid slows down 

convergence in some trials but also helps the algorithm to avoid local minima.  This is due to the 

fact that at each iteration the GA performs a wide global search based on the best four PSO 

particles.  The same PSO and GA inputs for the hybrid algorithm found in Table 3.1, were used 

for the individual algorithms as well. 

 

Function Dimensions Domain Minimum F(x)

Syblinski-Tang 5 [-5.0, 5.0] -195.829

Rastrigin 5 [-5.12, 5.12] 0

Ackley 5 [-32.768, 32.768] 0

Benchmark Function Details

Algorithm

Styblinksy-

Tang Min. 

Value

Rastrigin Min. 

Value

Ackley Min. 

Value
GA -158.5758 19.3020 11.8823

PSO -165.6725 5.3463 1.6228

PSO-GA Hybrid -195.7331 1.8890 2.1473
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Figure 3.6: Minimization of Stablinksy-Tang Function for Modified ABC

 

Figure 3.7: Minimization of Rastrigin Function for Modified ABC 



21 
 

 

Figure 3.8: Minimization of Ackley Function for Modified ABC 

Table 3.5: 6 Dimension Benchmark Function Details 

 

Table 3.6: Average Minimum Values for Benchmark Functions Using Each Algorithm for 

30 Trials at 200 Iterations per Trial 

 

Function Dimensions Domain Minimum F(x)

Syblinski-Tang 6 [-5.0, 5.0] -234.996

Rastrigin 6 [-5.12, 5.12] 0

Ackley 6 [-32.768, 32.768] 0

Benchmark Function Details

Algorithm

Styblinksy-

Tang Min. 

Value

Rastrigin Min. 

Value

Ackley Min. 

Value

GA -177.9695 32.3384 14.6464

PSO -192.3975 17.9791 10.3603

ABC -234.9970 0.0613 0.0238
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Figures 3.6, 3.7 and 3.8 show the performance of ABC vs PSO and GA against the benchmark 

functions.  Within the limited number of trials, ABC consistently out-performed GA and PSO in 

finding values closest to the global minimum.  The same PSO and GA inputs for the hybrid 

algorithm found in Table 3.1, were used for the individual algorithms as well. Settings for 

modified ABC for the benchmark tests as well as for the experimental work can be found in 

Table 3.2.  The decrease in population to 4 vs the value of 8 used in PSO-GA benchmark 

functions may have been detrimental to the performance of the PSO and GA algorithms. 

3.5 Engine Stand Setup 

This work utilized a 4-cylinder, 4.5 liter turbo-charged diesel engine with a high pressure 

common rail injection system and long route EGR.  Table 3.7 gives exact metrics for the engine.  

A General Electric, DC dynamometer was used to load the engine through all trials.  John Deere 

ECU control software DevX was used to command fuel injection pressure, injection timing, and 

fuel distribution for two injections.  EGR flow to the intake was controlled by means an 

externally driven EGR pump. Intake gas temperature was controlled via a heat exchanger using 

city water as the cold flow.  Cylinder pressure was measured using a Kistler 6125A pressure 

transducer and a Kistler 5010A charge amplifier.  Cylinder pressure data was processed through 

a customized Labview program which captured and averaged cycle data for pressure and heat 

release analysis.  MATLAB was used to program the Hybrid PSO-GA and modified ABC 

algorithms throughout both experiments.  

Exhaust emission species and intake CO2 were quantified using a Horiba MEXA-

7100DEGR analyzer.  The Horiba analyzer captured emissions of CO2, CO, O2, HC and NOx.  

The percentage of EGR was monitored by comparing the amount of CO2 in the exhaust to that of 
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the intake gas.  An AVL 415S smoke meter was used to quantify particulate matter (PM) in the 

exhaust stream. 

Table 3.7: Test Engine Metrics 

 

3.6 Testing Process: 

The results for each trial in the experiment were taken at steady-state conditions.  This 

was done first, by giving the engine thirty minutes start up time each day to warm the oil, and 

second, by allowing a minimum of ten minutes to pass after each set of conditions had been 

input.  Parameters kept constant for both experiments are given in Table 3.8.  The test conditions 

and control parameter limits for PSO-GA and ABC testing can be found in tables 3.9 and 3.10 

respectively.   

Table 3.8: Engine Testing Conditions Held Constant for All Trials 

 

 

 

 

 

Number of Cylinders 4

Bore (mm) 106

Stroke (mm) 127

Compression Ratio 17.0:1

Injection System High Pressure Common Rail

Intake/Exhuast Valves 2 Each per Cylinder

John Deere Power Tech Diesel Engine

Speed (RPM) 1400

Brake Mean Effective Pressure (Bar) 16.7

Avg. Fuel Temperature (⁰C) 20
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Table 3.9: PSO-GA Optimization Parameter Limits; Any Generated Mutation Outside of 

the Bounds Was Programmatically Placed Inside, Near the Limit 

 

Table 3.10: ABC Optimization Parameter Limits; Any Generated Mutation Outside of the 

Bounds Was Programmatically Placed Inside, Near the Limit 

 

3.7 Objective Function: 

In order to optimize multiple objectives at once for both PSO-GA and ABC an objective 

function was designed such that each trial’s fitness was evaluated based on the cumulative fitness 

of 5 variables.  The objective function took inputs from brake specific (g/kW-h) CO, HC, NOx, 

PM and fuel consumption.  Similar to Hardy and Reitz 2006 and appropriated from Bertram 

2014, Equation 3.5 below shows the overall objective function which is weighted to respond 

most quickly to changes in PM and NOx.  Ideal values were prescribed using the EPA Tier 4 off-

road standards illustrated in Table 3.11 (Non-road Compression-Ignition Engines-Exhaust 

Parameter Minimum Maximum
EGR % 2 50

Intake Gas Temperature (⁰C) 40 40

Fuel Pressure (Mpa) 113 200

Pilot Injection Timing (CAD ATDC) -40 0

Pilot Fuel % 2 65

Main Injection Timing (CAD ATDC) -15 5

Parameter Minimum Maximum
EGR % 2 50

Intake Gas Temperature (⁰C) 20 55

Fuel Pressure (Mpa) 113 200

Pilot Injection Timing (CAD ATDC) -40 0

Pilot Fuel % 2 65

Main Injection Timing (CAD ATDC) -15 5
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Emission Standards).  In order to monitor the tradeoff between PM and NOx emissions, separate 

objective functions that only consider these pollutants are taken from Equation 3.5 and can be 

seen below in equations 3.6 and 3.7.   In the following discussion in Chapters 4 and 5 the term 

fitness will be used as a qualifier for a given solutions objective value.  Decreasing fitness refers 

to a decrease in objective value while increased fitness refers to an increased objective value or 

poor solution development. 

0.5
2 2

3 3 3

meas meas meas meas meas
obj

ideal ideal ideal ideal ideal

NOx PM CO HC FC
F

Nox PM CO HC FC

            
               
            

  (3.5) 

meas
obj
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PM
PM

PM

 
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    (3.6) 

meas
obj
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Nox
NOx

Nox

 
  
 

    (3.7) 

Table 3.11: Engine Performance Ideal Values, All Units in g/kW-h 

 

 

  

Engine Out Tier 4 Regulation Objective Point Values
Nox 0.4 0.2

PM 0.02 0.01

CO 5.0 5.0

HC 0.19 0.19

Fuel Use N/A 200

Engine Performance Objectives
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CHAPTER 4 RESULTS AND DISCUSSION 

 

4.1 PSO-GA Optimization Results 

 

Fitness Evolution 

 Figure 4.1 below shows the evolution of particles by generation throughout the PSO-GA 

experiment.  The figure is organized by overall fitness found by Equation 3.5.  As seen in the 

above benchmark tests the algorithm was able to quickly reduce the overall objective function.  

Generations 5 and 6 represent highly similar input parameters that lie in a close tradeoff between 

NOx and PM.  Figure 4.2 shows the global minimum value for each generation (iteration) of the 

PSO-GA hybrid.  Due to its oxygen content, biodiesel produces comparatively low PM and HC 

emissions to that of regular diesel fuel in the absence of EGR, therefore the global minimum PM 

objective function never decreased as EGR was added to reduce NOx.  Trials were stopped at 48 

due to a lack of further decrease in overall global minimum fitness value. 

 

Figure 4.1: Evolution of Fitness Values for Overall, NOx, and PM, Fitness Over 48 Total 

PSO-GA Engine Runs 
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Figure 4.2: Evolution of Global Minimum Fitness Values for Overall, NOx, and PM, 

Fitness Over 48 Total PSO-GA Engine Runs 

Best Conditions 

Table 4.1 shows the best solutions for overall objective function (minimum fitness) while 

Table 4.2 displays the best solutions for PM and NOx emissions.  Emissions and input values for 

points from generations 4 and 5 are very similar and differ primarily from main injection timing.  

The algorithm evolved with fitness to move main injection and pilot injections near top dead 

center with a small offset between injections.  The additional oxygen content and density of 

biodiesel allows for the application of increased EGR without large increases in PM emissions 

compared to regular diesel fuel (Zhang et al. 2006).  Referring to Table 4.2, injecting a large, 

early pilot, effectively burns the fuel during the compression stroke reducing PM under moderate 

EGR but at the expense of BSFC and increased NOx.  Increasing EGR with an early pilot 

decreased NOx but increased HC and CO emissions, this could be due to poor mixing of air and 

fuel at this condition. 
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Table 4.1: Parameters for Best Global Objective Value Obtained through 48 Trials of PSO-

GA 

 

Table 4.2: Parameters for Best PM (Top) and NOx (Bottom) Objective Value Obtained 

Through 48 Trials of PSO-GA 

 

Table 4.3: Emissions, Fuel Consumption and Overall Fitness for Best Overall Fitness, PM, 

and NOx Results 

 

Trial

Fuel Injection 

Pressure 

(Mpa)

Exhaust Gas 

Recirculation 

(%)

Pilot Timing 

Offset (CAD)

Main 

Injection 

Timing           

(CAD BTDC)

Pilot/Main Fuel                     

(%)

Intake Gas 

Temperature 

(⁰C)

40 173.67 48.53 4.90 -3.13 45.06 40.0

39 173.83 49.48 4.90 -3.23 44.88 40.0

48 173.86 49.41 4.90 -2.99 44.88 40.0

Trial

Fuel Injection 

Pressure 

(Mpa)

Exhaust Gas 

Recirculation 

(%)

Pilot Timing 

Offset (CAD)

Main 

Injection 

Timing           

(CAD BTDC)

Pilot/Main Fuel        

(%)

Intake Gas 

Temperature 

(⁰C)

2 157.02 14.42 13.54 -0.03 60.09 40.0

20 168.91 48.55 38.28 -3.74 44.85 40.0

Trial
NOx          

(g/kW-h)

PM        

(g/kW-h)

CO         

(g/kW-h)

HC          

(g/kW-h)

Fuel 

Consumption 

(g/kW-h)

Overall Fitness

40 0.72 0.008 3.02 0.18 296.10 4.72

39 0.74 0.009 3.01 0.14 293.37 4.73

45 0.73 0.009 3.09 0.17 293.71 4.74

2 14.88 0.007 0.37 0.07 304.89 75.08

20 0.67 0.074 11.01 0.99 300.36 11.04
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Tradeoffs 

 Figure 4.3 shows the non-dominated (best tradeoff) solutions found for NOx VS BSFC.  

The filled squares represent the optimum tradeoffs between the two objectives.  Trials from 

Table 4.3 correspond to those on the Pareto front. By design, the objective function was highly 

sensitive to changes in NOx and PM, thus moving the algorithm toward and along the front. The 

following discussion will discuss changes in NOx through the latter half of the experiment. 

 Within generation 3 the algorithm began to center around solutions whose fitness varied 

most with main injection timing.  Table 4.4 gives the bounds for this 24 trial regime while Figure 

4.4 displays sweeps of SOI VS NOx and SOI VS PM. Trials with SOI 1.72 CAD ATDC in 

Figure 4.4 display the effect of increasing EGR within the bounds of Table 4.4.  The data shows 

however that retarding Main SOI with the same pilot offset has a much greater impact on 

reducing both PM and NOx together.  Furthermore, at SOI > 2.8 CAD ATDC, increasing EGR 

to the edge of the bound of table 4.4 allows for further NOx reduction while keeping PM below 

the EPA tier 4 limit of 0.01 g/kW-h.  Retarding main injection timing, along with the use of a 

late pilot injection near TDC reduces the maximum cylinder pressure which will be discussed 

further in section 4.3.  With a large pilot near TDC an effective radical pool may be developing 

with increased heat that aids in reducing PM (Shi et al. 2010). 

Table 4.4: Bounds for Majority of Trials in Generations 4-6 for PSO-GA 

 

Fuel 

Injection 

Pressure 

(Mpa)

Exhaust Gas 

Recirculation 

(%)

Pilot Timing 

Offset    

(CAD)

Main 

Injection 

Timing           

(CAD ATDC)

Pilot/Main 

Fuel                     

(%)

[173.67-174.19] [47.88-49.97] 4.909 [1.72-3.31] [44.79-45.66]
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Figure 4.3: Pareto Frontier for NOx VS BSFC 

 

Figure 4.4: SOI ATDC VS NOx (Top) and PM (Bottom) Holding all Other Variables Near 

Constant 
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4.2 ABC Optimization Test Results 

 

Fitness Evolution 

   The evolution of fitness based on Equations 3.5, 3.6, and 3.7 can be seen below in 

Figure 4.5.  Generations 1-7 represent full cycles of ABC through the Employed and Onlooker 

phases of the algorithm (4 for each phase).  Trials in Figure 4.5 are ordered by decreasing overall 

fitness in each generation.  Trial 37 in generation 5 exhibited PM and overall fitness values 

outside the range of the graph at 104 and 107 respectively.  The outlier is due to a mutation 

increasing fuel pressure causing spray impingement with the cylinder wall (Lee et. all 2012). The 

tradeoff between NOx and PM is illustrated in figure 4.5 where large reductions in NOx are 

accompanied by an increase in PM, this can especially be seen in Generations 6-7.  Figure 4.6 

shows the global minimum values for overall fitness, NOx and PM. Trials were stopped at 65 

total engine runs due to a lack of further decrease in overall global minimum fitness. This can be 

seen in the lower half of figure 4.5 and in figure 4.6.  The global minimum for all three 

objectives remains almost constant from trials 45 to 65. Decreasing exploration eluded that the 

algorithm may have become trapped in the Pareto regime of a local minimum where within this 

search area, small advances in one objective came with the equal loss of another.  
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Figure 4.5: Evolution of Fitness Values for Overall, NOx, and PM, Fitness Over 65 Total 

ABC Engine Runs 

 

Figure 4.6: Evolution of Global Minimum Fitness Values for Overall, NOx, and PM, 

Fitness over 65 Total ABC Engine Runs 
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Best Conditions 

The details of the best results can be observed in Table 4.5 while parameters for best PM 

and NOx can be found in Table 4.6. The best results for overall fitness call for main injection 

timings near TDC with almost 20 CAD between injections and high EGR.  Changes in intake 

temperature did not have as large an effect as the other five variables.  Therefore, most 

discussion will concentrate on changes in injection timing, pilot fuel ratio, fuel pressure and 

EGR.  Trail 45 in Table 4.6 shows the progression of Trial 44 in Table 4.5.  Increasing EGR with 

the same injection timings greatly reduced NOx emissions while at the same time increasing PM 

and fuel consumption due to incomplete combustion.  Table 4.7 shows the resulting emissions, 

and fitness data for Tables 4.5 and 4.6. 

Table 4.5: Parameters for Best Global Objective Value Obtained through 65 Trials of ABC 

 

Table 4.6: Parameters for Best PM (Top) and NOx (Bottom) Objective Value Obtained 

through 65 Trials of ABC 

 

 

 

Trial

Fuel Injection 

Pressure 

(Mpa)

Exhaust Gas 

Recirculation 

(%)

Pilot Timing 

Offset (CAD)

Main Injection 

Timing           

(CAD BTDC)

Pilot/Main 

Fuel        

(%)

Intake Gas 

Temperature 

(⁰C)
65 163.50 43.40 19.79 2.06 23.75 46.8

52 174.60 45.50 21.88 8.24 28.75 47.3

44 182.60 20.64 16.80 -3.80 25.68 46.7

Trial

Fuel Injection 

Pressure 

(Mpa)

Exhaust Gas 

Recirculation 

(%)

Pilot Timing 

Offset (CAD)

Main Injection 

Timing           

(CAD BTDC)

Pilot/Main 

Fuel        

(%)

Intake Gas 

Temperature 

(⁰C)
27 169.35 6.88 29.79 -0.304 36.39 52.5

45 182.61 50.88 20.64 -3.80 25.68 46.7
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Table 4.7: Emissions, Fuel Consumption and Overall Fitness for Best Overall Fitness, PM, 

and NOx Results 

 

Tradeoffs 

ABC optimization is unique from other algorithms because of its ability to memorize and 

forget food sources based on fitness.  Further, of the four sources in memory at one time in this 

experiment, only the best of these received an increased number of mutations due to the 

probability component of the Onlooker phase.  Several, distinct, food sources in this experiment 

received repeated mutations improving overall fitness while also applying memorization of 

positive elements. Due to their similarity, these food sources can be compared through sweeps of 

EGR and fuel pressure.  Tables 4.8 and 4.9 show the details of the food sources whose trial 

results are illustrated in Figures 4.7, 4.8 and 4.9.  The selected conditions are split up by main 

injection timing occurring before and after TDC.  Brackets indicate the bounds of input variables 

affecting overall fitness, NOx, and PM as sweeps of EGR and fuel pressure are conducted.  

Trials in the below tables do not represent the entire population of food sources, only repeated 

similar sources that can be relatively compared in a six dimensional hyperspace. 

 

 

 

Trial
NOx          

(g/kW-h)

PM        

(g/kW-h)

CO         

(g/kW-h)

HC          

(g/kW-h)

Fuel 

Consumption 

(g/kW-h)

Overall Fitness

65 1.33 0.08 3.59 0.33 256.54 11.94

52 1.85 0.05 3.63 0.38 261.92 11.99

44 2.34 0.02 2.09 0.25 257.14 12.96

27 6.96 0.01 3.36 0.56 260.91 36.47

45 0.49 0.40 5.95 0.63 265.50 41.92
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Table 4.8: Food Sources with Main SOI ATDC and Various Pilot Timing Offset 

 

Table 4.9: Food Sources with Main SOI BTDC and Various Pilot Timing Offset 

 

 Table 4.8 conditions are shown in Figure 4.7 for NOx and PM vs EGR.  Of these 

conditions timings with 11 and 20 CAD offsets and 30-50% EGR perform the best in terms of 

balancing NOx and PM.  Increasing EGR, decreases exhaust gas temperature resulting in less 

NOx but increased PM.  

 Table 4.9 conditions for main SOI before TDC are shown in Figure 4.8 for NOx and PM 

VS fuel pressure.  Decreasing pilot fuel allows for a simultaneous decrease in NOx and PM 

emissions for the same EGR and fuel pressure (blue triangles).  This could be due to less heat 

being produced during the compression stroke and a leaner air-fuel mixture.  The algorithm did 

not explore high EGR with condition 6 (red square short offset) which may have performed 

better with increased EGR similar to that of the triangles in Figure 4.7. 

Condition

Fuel 

Injection 

Pressure 

(Mpa)

Exhaust Gas 

Recirculation 

(%)

Pilot Timing Offset 

(CAD)

Main 

Injection 

Timing           

(CAD ATDC )

Pilot/Main 

Fuel        

(%)

Intake Gas 

Temperature 

(⁰C)

1 [176-183] [2-42] 11.85 3.80 28.26 [22-46]

2 [183-200] [28-50] 20.64 3.80 [25-27] 46.7

3 [150-169] [2-9] 29.78 0.30 36.58 [47-55]

Condition

Fuel 

Injection 

Pressure 

(Mpa)

Exhaust Gas 

Recirculation 

(%)

Pilot Timing Offset 

(CAD)

Main 

Injection 

Timing           

(CAD BTDC )

Pilot/Main 

Fuel        

(%)

Intake Gas 

Temperature 

(⁰C)

4 [126-167] [10-42] 29.78 2.06 [23-45] [46-48]

5 [135-174] 45.52 21.88 6.50 [48-65] 47.3

6 [157-192] 10.95 7.56 2.06 [44-48] 47.10
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Figure 4.7: Comparison of NOx and PM for Similar Food Sources, With Main Injection 

Timing ATDC 

 

Figure 4.8: Comparison of NOx and PM for Similar Food Sources, With Main Injection 

Timing BTDC 

10.95% EGR 
Pilot Fuel > 40% 

 
45% EGR 
Pilot Fuel > 40% 

 
42% EGR Pilot Fuel 23% 
 

Fuel Pressure 176-200 MPa 
Pilot Fuel 25-30% 

 

Fuel Pressure 176-200 MPa 
Pilot Fuel 25-30% 

 

Pilot Fuel 36% 
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 Figure 4.9 compares the overall fitness of conditions 1-6 in Tables 4.8 and 4.9.  

Decreasing pilot offset is shown as beneficial for main SOI after TDC similar to that of the PSO-

GA results.  For main SOI before TDC the larger offsets show better performance under high 

EGR and decreased pilot fuel in conditions 4 and 5.  Pilot fuel between 20 and 30% showed the 

best fitness for both sets of injection timings. Increasing pilot fuel beyond 30% percent at these 

timings resulted in increased fuel consumption and poor tradeoff between NOx and PM.  The 

trends seen here are reflective of the best final conditions found in Table 4.5. 

 

Figure 4.9: Comparison of Overall Fitness for Similar Food Sources, With Main Injection 

Timings Before, and After TDC 

 By definition, a Pareto front defines a regime with the optimum tradeoff between 

inversely proportional objective variables (Ge et. all 2009).  Several fronts of interest were 

formed by the best solutions of the Modified ABC algorithm that are shown in Figures 4.10 and 

4.11.  Increasing EGR cools combustion gasses decreasing NOx, but increasing CO and PM.  As 

Pilot Fuel 36% 

 

10.95% EGR Pilot Fuel > 40% 
 

Fuel Pressure 176-200 MPa 
Pilot Fuel 25-30% 
 

45% EGR 
Pilot Fuel > 40% 
 

42% EGR Pilot Fuel 23% 
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stated above the best balance between PM, CO, and NOx was found through decreased pilot fuel 

and high EGR for large pilot offsets and through comparatively lower EGR with smaller pilot 

offsets.  Both variations are shown in Table 4.4 to have produced the best overall fitness for the 

ABC experiments.  Fuel consumption is best served in, tandem with NOx and PM reduction, 

with main SOI near TDC as is discussed in the heat release data analysis. 

 

Figure 4.10: Pareto Frontier for NOx VS CO (Top) and NOx VS BSFC (Bottom) 
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Figure 4.11: Pareto Frontier for NOx VS PM 

 

4.3 In-Cylinder Heat Release and Pressure Analysis 

 

Heat Release Calculation Details 

 Using cylinder pressure data, the ideal gas law, and conservation of energy the heat 

release rate was calculated and plotted for the global best (fitness value) solutions from PSO-GA 

and ABC.  As in Karra 2009, the heat loss (HL) through the cylinder wall was modeled assuming 

a constant cylinder gas temperature of 600K, and Nusselt number from the Taylor correlation in 

Ferguson, C.R. 2001.  The final heat release rate equation is shown below as Equation 4.1 where 

gamma is the ratio of specific heats. Instantaneous pressure and volume change with CAD were 

found using cycle averaged pressure data and three-point forward-difference. 

1

1 1

ndQ dV dP
P V HL

d d d  


  
   

    (4.1) 
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PSO-GA Best Conditions Heat Release 

 Heat release rate in J/CAD and cylinder pressure in MPa are shown below in Figure 4.12 

for some of the best operating conditions given by the PSO-GA hybrid algorithm.  Due to the 

convergence of the algorithm into one area of the search space, heat release rates and pressure 

for the best three points are highly similar.  Therefore, Figure 4.12 shows the effect of moving 

main SOI with constant pilot offset as discussed in the PSO-GA tradeoffs section.  The 

combustion phases with main SOI resulting in decreased peak cylinder pressure. Reducing 

cylinder pressure for the same amount of air and fuel reduces bulk average cylinder gas 

temperature by the ideal gas law and thus reduces thermal NOx (Mueller et al. 2009).  Phasing 

combustion to later in the cycle reduces NOx and PM simultaneously to the best solution with 

Main SOI 3.13 CAD ATDC for the same size pilot.   
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Figure 4.12: PSO-GA Best Global Food Sources Heat Release Rate in J/CAD and Cylinder 

Pressure in MPa 

ABC Best Conditions Heat Release 

The best three food sources differ largely in injection timing and EGR.  The small dotted 

line shows the third best source.  Decreasing EGR increases temperature and pressure from pilot 

fuel combustion, however, because this occurs before TDC fuel efficiency is negatively impacted 

and NOx emissions are higher than in the other cases.  Comparatively high EGR for the first and 

second best cases reduce cylinder temperature decreasing NOx for more PM.  Moving Main SOI 

closer to TDC allows for the most heat release to occur just after TDC.  The increased offset of 

the second best condition and earlier timing mean the piston is forced to compress more hot 

combustion gases rather than use them for work while also vastly increasing peak cylinder 
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pressure.  Retarding injection timings under high EGR phases combustion and decreases peak 

pressure giving the best tradeoffs between PM, BSFC and NOx.  As in the PSO-GA experiments 

the decrease in peak cylinder pressure for the best source, decreases temperature and thus NOx 

emissions. 

 

 

Figure 4.13: ABC Best Global Food Sources Heat Release Rate in J/CAD and Cylinder 

Pressure in MPa 
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4.3 Comparing PSO-GA and ABC Results 

 

Comparison of Objective Value Reduction 

 Both PSO-GA and ABC were able to reduce multiple engine performance objectives 

simultaneously.  Below, the algorithms are compared based on their ability to reduce NOx, PM, 

HC, CO, and fuel consumption.  Table 4.10 shows the percent reduction in these objectives 

based on their minimum values within the first and last generations tested.  The presence of EGR 

increases PM emissions, however in the case of PSO-GA, as seen in Table 4.3, PM is still within 

the EPA limit of 0.01 g/kW-h.  In terms of overall objective value reduction, PSO-GA showed 

superior performance in decreasing NOx and BSFC while still keeping PM, HC, and CO within 

the EPA limits. 

Table 4.10: Objective Value Reduction, From First Generation to Last 

 

Comparison of Heat Release 

 The Heat Release Rate in J/CAD and cylinder pressure in MPa can be seen below in 

Figure 4.14 for the best conditions of PSO-GA and ABC.  The conditions feature increased EGR 

and differ most in injection timing.  Looking at the pressure curves, the earlier injections of the 

ABC condition greatly increase cylinder pressure over that of the PSO-GA.  Increased heat 

decreases emissions of incomplete combustion but increases thermal NOx.  The Heat release and 

corresponding early pilot of ABC is detrimental to BSFC as well, due to increased pumping 

Objective % Increase % Decrease % Increase % Decrease

Nox N/A 83.7 N/A 29.6

PM 4.1 N/A 93.4 N/A

CO 6.7 N/A N/A 10.8

HC 2.4 N/A N/A 0.01

BSFC N/A 2.54 19.5 N/A
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losses for compression of hot gasses.  Finally, retarding both injections toward TDC allows for 

increased useful heat release with fewer pollutants, as main injection is burned more completely 

in this region with increased EGR.  If injections continue to move forward passed TDC however, 

this phasing could begin to negatively impact BSFC. 

 

 

Figure 4.14: PSO-GA VS ABC Comparison of Best Condition Heat Release Rate in J/CAD 

and Cylinder Pressure in MPa  
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CHAPTER 5 CONCLUSION 
 

5.1 Key Results 

 The hybrid PSO-GA and modified ABC algorithms successfully optimized engine 

performance for 5 and 6 input variables respectively.  Both algorithms moved pilot and main 

injections closer to TDC in order to improve tradeoffs between NOx, PM, and BSFC.  Of the two 

algorithms, PSO-GA was able to best reduce NOx emissions and BSFC while keeping other 

objectives below the Tier 4 limit set by the EPA.  Both algorithms produce effective and useful 

data in less time than a comprehensive parametric study, by using evolutionary theory and 

swarm intelligence behaviors seen in nature.  Saving time reduces cost, making it easier to make 

the most of new and established methods of increasing engine performance. 

5.2 Future Work: ABC Algorithm 

 The ABC algorithm was successful in reducing 3 of the 5 objectives through the second 

experiment.  Its advantages over PSO and GA, are its simplicity of application and ability to 

memorize only the best solutions.  The benchmark tests in this work show that it is superior to 

PSO and GA when applied to small populations.  Its ability of exploration is also of great 

advantage.  Future, experimental applications of ABC where time is in itself an objective should 

look into further reductions in population or decrease in limit value.  This could increase 

exploration and exploitation at the same time by reducing the amount of ‘less viable’ solutions.  

Similar to that of Araújo et al. 2013 and Muñoz et al. 2013, ABC optimization in its standard 

form could be used to perform a wide search after some amount of iterations of PSO or PSO-GA. 

This would help ensure the avoidance of local minima, and provide further trends in areas of 

higher optimality. 
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