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ABSTRACT 

 

Optical methods are promising tools for small-scale thermal probing and characterization. 

A lab-developed photothermal (PT) technique provides a noncontact method to characterize the 

thermal transport along the thickness direction of a multilayered film by analyzing the phase shift 

of the thermal radiation from the sample’s surface. Aiming to reduce the calibration in the phase 

shift method, a new amplitude method is developed on the basis of the amplitude of the thermal 

radiation signal. The new method successfully performs the thermal measurements for chemical 

vapor deposited SiC films, thermally oxidized SiO2 film on silicon substrates, and spider silk 

films. Furthermore, weak-sensitivity to the thermal contact resistance enables the amplitude 

method to lower the effect of thermal contact resistance on thermal conductivity determination. 

The normalized amplitude ratio of a high frequency to a low frequency provides a reliable way to 

evaluate the effusivity ratio of the film to that of the substrate. For spider silk films, the 

contribution to the thermal conductivity from -helices and antiparallel -sheets in silk proteins 

against the temperature has been studied. 

 

Raman spectroscopy is better than PT since its scatterings involve not only the structure 

information of a sample but also physical properties, like temperature and stress. The edge area 

of a mechanically cleaved Si wafer is studied using Raman spectroscopy. The appearance of 

nanocrystals there is proved and it accounts for the abnormal increase in Raman intensity when 

the grain size of nanocrystals varies from 20 to 10 nm. For transient thermal probing and 

characterization, a time-domain differential Raman technique is developed using a square-wave 

modulated laser. The varying duty cycle of the modulation signal realizes controlled heating and 
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transient thermal probing based on Raman thermometry and transient electrothermal technique. 

A validation experiment is conducted on a tipless Si cantilever. Physical models are later 

constructed to simulate the variation of the cumulative Raman spectra over one excitation period 

and to determine the thermal diffusivity of the cantilever. The resulting thermal diffusivity is 

well agreed with the theoretically determined reference value. 
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CHAPTER 1  

INTRODUCTION 

 

Optical based probing methods attract more attentions than others in recent scientific and 

industrial fields due to the unique features of laser sources: high accuracy of collimation, high 

special resolution, good controllability, non-invasiveness and nondestructiveness. Therefore, the 

advancement of optical based thermal probing and characterization methods become more 

important. 

 

1.1. Photothermal technique development and applications in spider silk films 

Film materials play a basic role in today’s industry, since the knowledge of the 

thermophysical properties of films in and cross plane is necessary in the thermal design of 

devices. Many techniques have been developed over past decades to measure the thermophysical 

properties of thin films. One important class is the 3 method [1-3]. It utilizes a microfabricated 

metal line deposited on the specimen to act as a resistive heater. An AC current is then fed 

through the metal line with a frequency of . The periodic heating generates a temperature 

variation and oscillations in the electrical resistance at the second harmonic frequency, thus 

leading to a 3 variation in the voltage. The resulting amplitude and phase shift of this third 

harmonic voltage signal reflect the thermophysical properties of the film. The 3 method gives a 

relatively high signal-to-noise ratio. The I-V behavior and the temperature coefficient of the 

resistance of the studied film need to be known or calibrated separately, which may increase the 

complexity of the measurement. 
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Another class of techniques, known as the pump-probe technique, employs optical and 

noncontact measurements to study thin films’ properties. A feature of the pump-probe technique 

is the use of ultrafast lasers to measure transient events on picoseconds time. The technique has 

been widely applied in diverse fields such as ultrafast spectroscopy [4, 5], photo-acoustics [6, 7], 

Terahertz imaging [8], and etc. Among typical thermal characterization methods, transient 

thermoreflectance (TTR) technique [9] is a widely used pump-probe type of measurement. Two 

ultrafast laser pulses of a few picoseconds pulse width or shorter irradiate the sample surface. 

The first pulse heats the sample and leads to the reflectance change of the sample surface, while 

the second pulse is weaker and slightly delayed to probe this reflectance variation. The resulting 

change in the reflectivity is linearly proportional to the temperature change within a small 

temperature range [10, 11]. The TTR technique using ultrashort pulsed lasers has been 

demonstrated as an effective tool for measuring the thermophysical and mechanical properties of 

thin film materials, but challenges exist when one wants the study the interfacial thermal 

transport between layers [12]. 

 

The photoacoustic (PA) technique, another class of the pump-probe methods, correlates 

acoustic signals with the incident light for thermophysical property measurements. Rosencwaig 

and Gersho [13] first developed the RG model to understand the PA phenomenon. Since then, 

many works based on this model have been carried out and focused on thermal transport in 

multilayer samples [14-17]. Briefly, a modulated laser is focused on the sample surface to 

generate local heating. The sample surface temperature variation is then detected by measuring 

the small pressure variations in the gas adjacent to the surface [18]. In the PA measurement, the 
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experimental setup for detecting sound wave needs to be carefully designed to reduce noises in 

the circumstance. 

 

On the basis of the principle of the PA technology, the photothermal (PT) technique [19-

21], developed in our lab, improves the measurement by detecting thermal radiation instead of 

acoustic signals from a sample’s surface. In the PT technique, the phase shift between the 

measured thermal response (radiation) and the incident laser is frequently used. It is sensitive to 

the thermal conductivity along the thickness direction and interfacial resistances. As an extension 

of the PT technique, pulsed laser-assisted thermal relaxation (PLTR) technique [22, 23] has the 

capability of measuring the thermophysical properties of one-dimensional structures along the 

axial direction in a transient process. Photon works as a heat source and the voltage variation 

over a filament reflects the temperature change. PLTR2 technique [24] is a further improvement 

on the PLTR technique. It can simultaneously measure thermal properties of free-standing films 

along both in-plane and thickness directions. The amplitude of the radiation in the PT 

measurement, however, was not used so much for the characterization in previous work due to 

its susceptibleness to the circumstance. 

 

The thermophysical properties of the film of interest are tightly related to its internal 

structures, such as crystalline or amorphous structures. The PT technique provides us with a new 

manner for structural characterization in a film through its thermal response after heated. It could 

even be applicable to study the structural evolution of the proteins in biomaterials during a 

special treatment, like spider silks. For over 50 years, spider silk has been recognized as a 

promising material due to its outstanding mechanical properties. With tensile strengths as high as 
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1.75 GPa and elongations of 26% - 35% [25-27], some spider silks surpass the toughness of steel. 

Spider silk also behaves like rubber on a weight to weight basis and can be two to three times as 

tough as Nylon or Kevlar [28]. In addition to these superb features, spider silk offers further 

advantages over inorganic polymers with its biocompatibility and biodegradability. The medical 

application of spider silks was described as early as 1901 [29, 30]. Spider silk outperforms 

almost all synthetic materials [31] due to its combination of mechanical strength and elasticity 

[32]. Moreover, the biomedical functionality of this material could be deployed for applications 

in tissue replacement [33, 34], suture [30, 35], drug carrier [33], ligament/tendon tissue [36], 

biomaterial scaffold [37, 38], and artificial blood vessels [29]. 

 

Compared with other kinds of fibers, the preeminent properties of spider silk come from 

its unique internal structure. A spider produces more than one type of silk for different usages. 

Among them, dragline silk is the most widely studied and has more desirable mechanical 

properties than others. Dragline silk, synthesized in the major ampullate glands in the abdomen 

of a spider, is composed of many parallel fibrils [39-41]. Spidroins (spider fibroins) are the main 

component of a silk fibril, and dragline silk in particular is composed of two spidroins, major 

ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2). In major ampullate silk, 

antiparallel -sheets and random coils are the main secondary structures. Silk proteins are stored 

in high concentration inside of the glands lumens as a liquid crystalline solution [42]. The 

synthesis of dragline silk happens at the tail of the gland within specialized cells. The antiparallel 

-sheets form during spinning. 
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One general approach to study the structure and properties of spider silk is to dissolve the 

silk protein in a solution, make a coating material to understand how the structure determines the 

physical properties, and then manipulate the structure [43]. Transmission electron microscopy 

(TEM) [44] has a higher resolution than standard optical microscopy making it very useful to 

observe the internal structure of spider silk film at the nanometer-scale. Fourier transform 

infrared spectroscopy (FTIR) [44, 45] can characterize detailed chemical bonds in spider silk 

proteins. Circular dichroism (CD) spectroscopy [45, 46] can analyze the -helices and the 

antiparallel -sheets conformation of spider silk protein in a solvent. 

 

In addition to the aforementioned techniques, Raman spectroscopy is a powerful method 

to characterize the internal structure of spider silks and it has been employed in many studies 

[43]. Most Raman spectra of different silk samples from various spiders show two major peaks 

about amide III (1220-1279 cm
-1

) and amide I (1650-1680 cm
-1

). These represent antiparallel -

sheets, which silks from silkworm also have. These two peaks have their own distinct locations 

when they are in the antiparallel -sheets and their wavenumber shift when they are in random 

coils. 

 

In spider silks, the intrinsic thermal transport capacity strongly depends on molecular 

weight, structure, crystallinity and alignment, while defects are the main source of reduction in 

strength and thermal conductivity. Under the same measurement condition, better internal 

structures (e.g., less defect, higher crystallinity, and better alignment) will lead to higher thermal 

transport properties. Therefore, thermal diffusivity and conductivity can be used as signatures to 

reflect protein structures of spider silks. These thermal transport properties can complement the 
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structural information determined by other techniques (e.g., XRD, SEM, FTIR), and provide new 

perspectives and understanding of the structure regularity and energy coupling in spider silk, as 

well as other synthetic and natural polymers. Unfortunately, very little research has been done on 

the thermal transport capacity in spider silks, thus, there has been very little use of this property 

to characterize its structure variation. According to Huang’s discovery, the observed 

exceptionally high thermal conductivity of spider silk, from 348.7±33.4 to 415.9±33.0 W/m∙K, is 

largely attributed to its extraordinary well-organized and less defective structures formed from 

strong self-assembly [47]. 

 

1.2. Raman scattering for structural characterization and thermometry 

Raman scattering is not only available for structural characterization of molecular 

configuration and conformation in chemistry, but also relevant to physical properties of bulks, 

such as temperature and stress. In the Raman scattering, incident photons interact with optical 

phonons and exchange energy with those phonons. An inelastic scattering occurs in the 

meanwhile with emitting Raman signals: new photons have different frequency to the incident 

ones. Raman signals generally produce a Gauss or Lorentz peak in the spectrum. Intensity, 

wavenumber (or Raman shift) and linewidth (full width at half maximum, or FWHM) of Raman 

signals are tightly related to phonons’ emission efficiency, frequency and finite lifetime [48, 49]. 

When temperature variation and stress effect are negligible in materials, the intensity, 

wavenumber, and linewidth can characterize the crystalline structures in nanocrystalline 

structure. 
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Nanocrystalline silicon, which is defined as a material composed of nano-size silicon 

crystalline grains [50], is popular in microelectronics and optoelectronic industry, such as gates, 

load resistors, and solar cells, because of its high performance. Compared with single crystalline 

silicon, nanocrystalline silicon can be easily recognized with visible grains and produced through 

various methods in different sizes, shape and purity [51]. Although amorphous silicon also has 

the above advantages, nanocrystalline silicon has a larger quantity of mobile charge carriers and 

is more stable under electric field and light-induced stresses. 

 

In engineering applications of nanocrystalline silicon, it is important to obtain the 

knowledge of crystalline structures and relate such information to the desired functionality. 

Among different techniques, Raman spectroscopy is an effective way to characterize structure of 

crystals. In Raman spectrum, the lattice vibration mode in single crystalline silicon is observed as 

a sharp peak around 521 cm
-1

, while a broad peak centered at 480 cm
-1

 represents the amorphous 

state because the breakdown of lattice periodicity relaxes the symmetry restrictions and permits 

scattering from all other vibrational modes. Nanocrystalline silicon is the intermediate state 

between these two forms so it is easily recognizable by fitting these two peaks in the spectrum 

[50]. The resulting peak intensity, linewidth, and wavenumber have a close and direct 

relationship with the structure of crystals. In Tong et al.’s work, the crystalline perfection can be 

detected from the intensity of the Raman peak by analyzing the ratio of intensity between the 

peaks at 521 cm
-1

 and 480 cm
-1

. From the linewidth of the peak, the amount of lattice 

perturbation and residual internal strain can be investigated. Additionally, many models were 

developed to calculate the actual size of nanograin from the peak shift [52]. However, the Raman 

peak intensity is rarely used to characterize the profile of the nanocrystalline structure due to the 
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fact that the intensity can be influenced by many factors, such as the excitation laser level, 

optical alignment, and material surface roughness.  

 

The information from the Raman spectrum mentioned above has also been used to 

characterize strains and stresses, and measure temperature in crystalline materials. Through 

Raman scanning near-field optical microscopy (RSNOM), Webster et al. [53] found that the 

degree of shift depended on the nature of stresses. The residual stress decreased with the positive 

shifts of the peak position of the Si’s 521 cm
-1

 peak as a function of the distance when 

approaching the scratch in their silicon sample.  

 

Temperature variation will affect the thermal state of phonons and so as Raman signals. 

When the temperature of the detected surface goes up, wavenumber will become smaller, 

intensity will decrease, and linewidth will broaden. The relationship between temperature and 

wavenumber was calculated by Balkanski [54] and was also verified by many other researchers 

[55, 56]. Raman thermometry is then a manner analyzing Raman signal’s variation to obtain the 

temperature and thermophyscial properties of a system of interest.  

 

Furthermore, due to its less invasive and nondestructive feature and high resolution in 

space, Raman thermometry has been widely used to determine the temperature of complicated 

and highly compacted structures and devices [57, 58]. Song, et al. [59] studied the thermal 

stability of single-walled carbon nanotube (SWCNT) rings with the Raman shift method in the 

range of 80-550 K. Beechem, et al. [60] mapped both temperature and stress distribution 

simultaneously with Raman shift of functioning polysilicon microheater. Lundt, et al. [61] 
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developed a micro-Raman thermometry with a spatial resolution of 280 nm by employing 

anatase TiO2 microparticles. 

 

Since the temperature of a studied system can be measured using Raman thermometry, 

the intrinsic thermal conductivity of the targeted material in the system can also be quantified. In 

popular 2D materials investigation, the thermal conductivity of a suspended thin layer of material 

can be determined from the correlation between input energy increase and resulting temperature 

increase, while the temperature rise is determined by variation in the Raman peak shift with a 

thermal coefficient from additional calibration. This optical based thermal properties 

characterization technique becomes a common tool to study the thermal conductivity of Raman 

active 2D materials, such as graphene [62] and extended materials from graphene family [63, 64], 

silicon nano-membranes [65], TaSe2 thin films [66], and few-layer MoS2 [67].  

 

Interface energy coupling also can be investigated with Raman thermometry. Yue, et al. 

[68] successfully used a combination of Raman spectroscopy and Joule heating to achieve 

nanoscale temperature mapping for interfacial thermal contact resistance probing between 

graphene and SiC. Joule heating acted as the heating source, while the Raman spectroscopy 

probed the temperature rise and difference. A large interfacial thermal resistance was observed. 

Additional calibration of temperature coefficients of graphene and SiC were conducted from 

room temperature to 250
°
C to determine the temperature variation in experiment. Tang, et al. 

improved Raman thermometry for interface energy coupling measurement by using two 

separated lasers: one for well-defined localized heating and one for Raman excitation and 

temperature probing [69, 70]. Naturally corrugated graphene on Si, SiO2, and SiC were studied 
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respectively. Loose contact or point contact between graphene substrate was the main reason for 

low energy coupling at the interface. In Tang’s work, calibration for temperature coefficients of 

graphene and substrate materials was also carried out to determine the temperature during 

interface probing. 

 

With the decrease of the size of micro-devices, higher resolution temperature mapping 

techniques are badly needed. Near-field optics technique makes it possible for scanning delicate 

nanostructures at a resolution lower than the diffraction limit. Tang’s work [71-73] utilized 

different structures, such as silica nanoparticles and fibers, to focus the excitation laser into an 

extremely small size and realized a probing resolution of 20 nm in the near-field. In that work, 

the effect of temperature, stress and optical field on the Raman spectrum was de-conjugated. For 

the first time, the stress and temperature distribution was characterized successfully with 20 nm 

resolution. Furthermore, Yue, et al. [48] employed an atomic force microscope tip to conduct 

near field heating and thermal probing at sub-10 nm resolution. The Raman laser acted as both 

exciting and heating source in Tang’s and Yue’s works. 

 

To precisely determine the temperature for each layer of a multilayered sample in 

previous works on interface energy coupling study, additional calibration was needed to build the 

relation between peak position, linewidth, intensity and temperature. Also the precise knowledge 

of the amount of absorbed laser energy was needed for calculation of the temperature rise. 

Besides, other effects induced by temperature rise, like microstage shift, stress build-up in the 

sample holder due to extended heating, and the resulting out-of-focus effect, would all contribute 

to large measurement errors. The microstage shift and the out-of-focus effect induced the same 
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trends of change in peak position, linewidth and intensity as those induced by temperature rise. 

They were rigorously treated and carefully removed in previous works [73, 74]. The stress effect 

could be de-conjugated from the difference between changes in linewidth and peak position. 

 

It is critical to develop a method to eliminate the aforementioned disadvantages, but still 

take advantage of the Raman thermometry’s unique features: high spatial resolution and the 

capability of distinguishing temperatures of materials in immediate contact. The inspiration for 

novel Raman method comes from the transient electro-thermal (TET) which was developed in 

our lab for effective thermal characterization of one-dimensional solid materials [75]. The 

thermal diffusivity of various solid materials has been successfully and precisely determined by 

this technique [76-78]. In the TET technique, the sample is suspended between two electrodes 

where a step electrical current is applied. The sample’s temperature evolution is obtained by 

probing its tiny temperature-induced resistance change. This technique is applicable for both 

electrical conductive and nonconductive materials. For nonconductive samples, a thin layer of 

metal coating is needed to make the sample electrically conductive and also to give a suitable 

resistance for Joule heating. The TET technique relies on electric connection and cannot be 

applied to interface study. Although Raman thermometry has unprecedented selective 

temperature measurement capacity and a very high spatial resolution, normal Raman technology 

is not able to probe transient temperature variation to achieve the same capacity of the TET 

technique. 
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1.3. Scope of present work 

Improving and developing new optical based techniques for thermal transport 

characterization is the main object of this work. The development of the amplitude profile 

method for the lab-developed PT technique and the corresponding application to inorganic thin 

films characterization are presented in Chapter 2. To extend the application of the developed PT 

technique, Chapter 3 investigates the correlation between the internal structures of spider silk 

films and the overall thermophysical properties. Raman spectroscopy is introduced to further 

probe structure information as well as the thermal properties. Using Raman spectroscopy to 

detect the size of Si nanocrystals induced by mechanically cleaving process is demonstrated in 

Chapter 4. The decrease of the grain sizes of Si nanocrystals accounts for the observed 

exceptional increasing in Raman intensity. In Chapter 5, the development of time-domain 

differential Raman is described in details, including the design of the experiment and the 

construction of appropriate physical models for data analyzing. A good agreement is obtained 

between the resulting thermal diffusivity for a Si cantilever with the literature value of it bulk 

counterpart. Chapter 6 includes a summary of my work and a brief introduction of possible 

future improvement on my present work. 
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CHAPTER 2  

PHOTOTHERMAL TECHNIQUE USING AMPLITUDE PROFILE 

 

In this chapter, a lab developed PT technique is improved to employ the amplitude of 

thermal radiation to determine the thermophysical properties of films in the thickness direction. 

Amplitude has rarely been used in previous work because of its complexity. The absolute 

amplitude of thermal radiation is affected by many factors, like the sample’s surface reflection, 

absorption, emissivity, the experimental setup, and the sensitivity of the infrared detector. Instead 

of its absolute value, the reducing trend of the amplitude of radiation signal against modulation 

frequencies is used for thermophysical properties determination. The evaluation of the new 

amplitude method is conducted on SiC films of 2~3 m thickness on Si. Its accuracy is examined 

by comparing the results with that of those determined using phase shift fitting, and its sensitivity 

is also studied in detail. 

 

2.1. Physics of the method 

To study the thermal transport across a multilayered film sample, the PT technique [19-

21] applied a modulated laser beam to the surface of the sample as a heat source, causing thermal 

radiation from the sample’s surface, which contain the information about thermoproperties of the 

layers beneath the top layer. Given that the thermal diffusion length in gas and the target layer is 

much smaller than the diameter of the laser beam as the laser focal spot is large enough, the PT 

experiment can be simplified to one-dimensional cross-plane thermal transport for describing 

temperature distribution and evolution. The cross-sectional view of the multilayer model is 

shown in Fig. 2.1a. 
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Figure 2.1. (a) Schematic of an N-layer sample. It shows the multiple layers model. The x axis is 

along the thickness direction of the model. (b) The experimental setup of the PT technique. 

 

Layers from 1 to N are sample layers between the substrate (layer 0) and the gas layer 

(layer N+1). The incident laser is a square-wave modulated monochromatic laser beam with a 

modulation frequency f. Layer i thereby has a thickness of Li = li − li−1. Other thermophysical 

properties of the layer i are noted as: thermal conductivity ki, specific heat cp,i, thermal diffusivity 

i, and optical absorption coefficient i. Other parameters needed in the physical model are the 

thermal diffusion length /i i f   , thermal diffusion coefficient 1/i ia  , and thermal 

(a) 

(b) 

Pre-Amplifier 

 

 

Lock-in Amplifier 

Beam 

dump 

Function generator 

Diode Laser 

  

0 
1     …     i       i+1       …    N 

N+1 
gas 

l
b
 l

0
 l

1
 l

i-1
 l

i+1
 l

i
 l

N-1
 l

N
 l

N+1
 

x 

laser beam 

Sample 

backing 

material 



15 
 

contact resistance between layer i and (i+1), Ri,i+1. Therefore, the governing equation for a 

multilayer 1D thermal diffusion problem in layer i can be expressed as 
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where θi= Ti - Tamb is the modified temperature of layer i, and Tamb is the ambient temperature. ω 

is angular frequency (2πf). The solution θi to Eq. 2.1 is composed of the transient component θi,t, 

the steady DC component ,i s  and the steady AC component ,i s . Among the previous three 

terms, only the AC component ,i s  will be collected for further evaluation and data processing. 

The general solution of ,i s  can be expressed as following equation: 
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GN+1 = 0. i is defined as (1 + j)·ai with 1j   . 

 

To obtain coefficients Ai and Bi, both the gas layer and backing material are assumed to 

be thermally thick (sufficiently met in the experiment), so that AN+1 = 0 and B0 = 0. The rest of 

coefficients are determined by using the interfacial conditions at x = li, as 
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where Ui is the interfacial transmission matrix of heat and Vi is the absorption matrix of light 

from layer i+1 to i.[79] They are expressed as 
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where  1 , 1 1 1 1 , 1 1 1(1 / ) expn i i i i i i i i i i i iu k k k R l l               , n = 1, 2,  (2.4a) 

 2 , 1 1 1 1 , 1 1 1(1 / ) expn i i i i i i i i i i i iu k k k R l l              , n = 1, 2,  (2.4b) 

1, 1 /n i i iv   , n = 1, 2,  (2.4c) 

and  2 , 1 1 1 1 , 1 1 1( 1 / ) expn i i i i i i i i i i i iv k k k R l l                , n = 1, 2. (2.4d) 

Thus, the coefficients Ai and Bi are obtained using 
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The PT signal can be expressed in terms of surface temperature T of the top layer, since 

the measured radiation variation is proportional to the surface temperature change. Detailed 

calculations are provided in the reference [18]. These equations are listed here for further 

discussion of physical meanings and sensitivity in our amplitude method. 

 

In previous studies with the PT technique, the amplitude data was not used to determine a 

film’s properties due to the fact that the absolute amplitude (raw data, Araw) is affected by many 

factors other than the rise in temperature, such as the experimental setup (optical alignment), the 

sample’s surface properties, and the sensitivity of the infrared detector. An amplitude 

normalizing procedure is thus introduced to process Araw before it is used for fitting. 
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The measured radiation signals are directly affected by the amplitude variations of the 

incident laser amplitude variation due to the inevitable systematic uncertainty and energy loss 

produced. Thus calibration data from a metal coated substrate with a large thermal conductivity 

is required before the PT measurement to exclude the random oscillation in the amplitude of the 

incident laser. With the reflected laser amplitude (Acal) from this metallic surface, the laser output 

variation effect can be eliminated by dividing Araw by Acal. Meanwhile, the sample’s surface 

properties should also be considered, like surface emissivity and absorptivity. The influence of 

other parameters can be grouped in a universal constant during data fitting discussed later. 

 

Additionally, the frequency f also affects the raw amplitude by modulating the incident 

laser during the entire PT experiment. The measured amplitude decreases quickly as the 

frequency increases since the heating time is shorter in each period as the frequency becomes 

higher. The sensitivity is also lower in the higher frequency range, so the modulation effect 

should be taken into consideration. The total energy input depends on the irradiation time and the 

incident intensity. For physical analysis, when the modulated laser irradiates the metallic film, 

the total incident energy arriving at the sample surface (E) in one heating period is 

00.5 /E I f  , where I0 is the laser intensity, and  the surface absorptivity. I0 is proportional 

to the reflected laser amplitude Acal. The modulation frequency in the denominator illustrates that 

the longer the laser irradiates (1/f), the higher the temperature rises on the metallic surface. 

Another involved parameter, the thermal diffusion length f   , depends on both the 

thermal diffusivity α and the frequency f. A higher frequency will shorten the diffusion length 

and concentrate the absorbed energy into a smaller depth. Amplitude Araw is the combination of 

these two factors as 
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where ζ is a coefficient related to  and other factors in the experiment, including detector 

sensitivity, surface emissivity, and collection angle of the paralloidal mirrors. ζ is recognized as a 

constant across all the frequencies, so f is the only changing variable in Eq. 2.6. The resulted 

Araw/Acal is further normalized by multiplying f  to get rid of the frequency effect. The 

normalized amplitude Anor, can be expressed as  

 ~raw
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    (2.7) 

where e is the effusivity of the sample with the expression 
pe k c . The physical meaning of 

thermal effusivity is the thermal energy needed for 1 K temperature rise in the characteristic 

thermal diffusion length per unit area per second. Equation 2.7 shows that Anor is inversely 

proportional to e of the sample, including the sample layer and the substrate.  

 

After the amplitude normalization, the fitting program is run to fit the trend of the 

normalized amplitude against frequency. With the guessed initial thermal conductivity and 

specific heat of the layer of interest, the program starts calculating the theoretical amplitude at 

each experimental frequency and compares the resulted curve with the Anor curve using the least 

square method. During the fitting process, a universal constant C is introduced to group all the 

aforementioned constant parameters, and then the normalized theoretical amplitude Anor,the is 

multiplied by C and compared with the normalized experiment amplitude Anor,exp at each 

frequency, (Anor,exp - C·Anor,the)f. Theoretically, the best fitted values can be obtained when the 

sum of the square of [(Anor,exp - C·Anor,the)f] over all the frequencies is the minimum value. Thus, 
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the derivative should be 0 and C can be determined using 2

, , , , , ,·nor exp i nor the i nor t i

f

he

f

A A A  . The 

thermal conductivity and specific heat will be adjusted around the initial guessed values until 

finding the best theoretical curve that fits the shape of the experimental curve. The corresponding 

thermal conductivity and specific heat are taken as the properties of the layer of interest. 

 

2.2. Across-plane thermal characterization of SiC and SiO2 films on Si 

2.2.1. Sample and experiment details 

We first measure SiC films grown on Si to demonstrate the capacity of the amplitude 

method and compare the results with the phase shift method which has been used and verified 

extensively in the past [19-21]. The chemical vapor deposited (CVD) SiC samples on the Si 

substrate are from Veeco with a size of 1”×1”. Two different ratios of Si and C are used in their 

film growth: 50% Si / 50% C for sample 1 and 2, and 20% Si / 80% C for sample 3. An 80 nm-

thick Cr film is sputter-coated on the top of the SiC layer to absorb the laser energy and generate 

heat in the experiment. The very fine thickness (80 nm) of the Cr coating has very little effect on 

the measurement result.  

 

Both the principle and the experimental setup of the PT technique are shown in Fig. 2.1b. 

A continuous infrared diode laser (809 nm) is modulated by a function generator and focused on 

the sample surface with a convex lens. The metallic layer on top of the sample absorbs the 

periodic energy from the modulated laser and generates heat as a heating source. A periodic 

temperature variation on the surface arises which causes a variation in the thermal emission from 

the sample surface. The thermal emission is collected by two off-axis paraboloidal mirrors and 

then collected and identified by an infrared detector (J15D12-M204-S01M-60, Jusdon 
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Technologies). In front of the detector, a Ge window filters out the reflected laser beam from the 

sample and only allows the thermal radiation to pass. The thermal radiation will be converted 

into electrical signals, pre-amplified and then sent to a lock-in amplifier. The whole experiment 

is controlled by a program for automatic data acquisition and noise suppression. The 

experimental frequency range in this work is 400 Hz to 20 kHz. 

 

2.2.2. The phase shift method 

To evaluate the accuracy of the amplitude method, the phase shift method is conducted 

first to determine the sample’s thermal conductivity and interfacial resistance for comparison. In 

our fitting, the properties of the air layer, the metal coating, the sample layer, and the substrate 

are taken from references [80]: The 80 nm thick Cr film has a thermal conductivity k of 93.7 

W/m∙K, a specific heat cp of 449 J/kg∙K, and density  of 7160 kg/m
3
. The Si substrate has a 

thermal conductivity k of 148 W/m∙K, the specific heat cp of 712 J/kg∙K, and the density  of 

2330 kg/m
3
. The bulk density and specific heat of SiC, 690 J/kg∙K and 3160 kg/m

3
, are used here 

because these two properties for the CVD SiC are weakly determined by the structure. They 

should have little deviation from the bulk’s values.  
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Figure 2.2. (a) The fitting result based on the phase shift method for the 2.5 m SiC film on Si. 

The thermal conductivity is determined at 3.72 W/m·K. The statistical uncertainty  is much 

smaller than nor, indicating the accuracy of the measurement. Curves with thermal 

conductivities of 3.42 W/m∙K and 4.02 W/m∙K demonstrate the fitting uncertainty. (b) The raw 

data of samples and the calibration amplitude (inset plot). (c) The fitting result based on the 

amplitude method. The normalized amplitude Anor (black dots) increases against the frequency f. 

The thermal conductivity is determined at 3.58 W/m·K.  
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The fitted result for sample 1 using the phase shift method is plotted in Fig. 2.2a. Sound 

agreement is observed between the fitting result and the experimental data. The thermal 

conductivity is fitted as 3.72 W/m·K and the thermal contact resistance 
"

Si,SiCR  is determined to be 

1.5×10
-7

 m
2.K/W. The experimental statistical uncertainty (the blue hollow squares in Fig. 2.2a) 

is calculated using 
2 2

raw cal   , where 
raw  and 

cal  are statistical uncertainty of the phase shift 

for the raw data and calibration data, respectively. Both 
raw  and 

cal  are acquired during the PT 

measurement and calibration. For the fitting uncertainty of thermal conductivity, the theoretical 

curves with k of 3.42 W/m∙K and 4.02 W/m∙K (± 8% deviation from best fitted k) show obvious 

deviation from the best fitting result. In fact, the deviation is much larger than the experimental 

uncertainty of the phase shift. We can therefore conclude the fitting uncertainty of the thermal 

conductivity is ± 8%.  

 

2.2.3. The amplitude method 

For the amplitude method, the raw amplitude of radiation signal Araw and the reflected 

laser intensity (the calibration amplitude) Acal for sample 1 are shown in Fig. 2.2b. The statistical 

uncertainty 
rawA  is collected while the raw amplitude is being recorded during the measurement. 

Araw decreases quickly as the frequency increases. For all samples, the raw amplitude has a very 

similar trend so that the differences in heat transfer for different samples are difficult to 

distinguish from the raw amplitude. This significantly illustrates the fact that the effect of f 

lowers the sensitivity of Araw. By multiplying Araw by f  in the normalization, we easily extract 

the difference in heat transfer for each sample over the entire frequency range and thereby fit the 

variation of the amplitude and obtain its thermophysical properties. The reflected intensity of the 
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laser Acal (black dots in the inset plot of Fig. 2.2b) is very steady with only 4.8% variation across 

the whole measurement. Although it is affected by the modulation frequency to a very limited 

extent, the tiny change of the irradiation laser is considered in our amplitude fitting as described 

above. Its statistical uncertainty 
calA  in the inset plot is much lower, about 0.1% of Acal, 

indicating the sound steadiness of the laser source. 

 

After excluding influences from the systematic noise, experimental setup and frequency, 

the final normalized amplitude Anor (black dots in Fig. 2.2c) for sample 1 gradually increase 

relative to the frequency from 0.3 to 1. Anor at a higher frequency becomes more significant for 

the shape determination of the Anor curve and thereby the k fitting. Opposite to the raw data, Anor 

becomes more sensitive. Its small variation can be easily detected especially in the high 

frequency range due to the fact that the modulation effect is removed. With the same parameters 

used in the phase shift method, a thermal conductivity k of 3.58 W/m·K is obtained based on the 

amplitude method. Also the curves with k = 3.23 W/m∙K and k = 3.94 W/m∙K clearly show ± 

10% deviation of the thermal conductivity. On the other side, the experimental statistical 

uncertainty 
norA is calculated using 

2 2

raw calA A

nor

raw cal

A
A A

    
       

   
. Its value is about five orders of 

magnitude less than Anor which is much smaller than ± 10%. Therefore, the fitting uncertainty of 

the thermal conductivity for the amplitude method is determined to be ± 10%.  

 

The fitted thermal conductivity for all SiC/Si samples with both the phase shift and 

amplitude methods are listed in the Table 2.1. The amplitude method gives very close fitting 

results of thermal conductivity to the phase shift method. The deviations between these two 
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methods are 4%, 7%, and 16% for samples 1, 2, and 3, respectively. However, the thermal 

contact resistance is hard to be precisely determined by the amplitude method. We find the fitting 

result is not sensitive to the interface thermal resistance. 
"

Si,SiCR  = 1.5×10
-7

 m
2.K/W and 

"

Si,SiCR  = 0 

m
2.K/W give undistinguishable fitting curves when other parameters are fixed. More detailed 

studies are given in the next section. 

Table 2.1. Thermal conductivity determination based on phase shift and amplitude. 

   
Thermal conductivity k 

(W/m·K) 

"

Si,SiCR  

(m
2.K/W) 

Sample Description Thickness Phase shift Amplitude Phase shift 

1 Si50C50 2.5 m 3.72 3.58 1.5×10
-7

 

2 Si50C50 2.5 m 3.86 3.59 1.1×10
-7

 

3 Si20C80 3.5 m 2.21 2.59 1.5×10
-7

 

4 SiO2 500 nm 1.31 1.68 <10
-8

 

 

2.2.4. Raman characterization 

Compared with the results from the phase shift method, the amplitude method excellently 

determines the thermal conductivity of the SiC film. However, it is noticed that the thermal 

conductivity of the SiC films reported in Table 2.1 is obviously lower than that of bulk SiC: from 

360 W/m·K to higher [81]. This significant reduction in thermal conductivity is mainly attributed 

to structures of CVD SiC. To characterize the internal structure of those films, a confocal Raman 

spectrometer (Voyage, B&W Tek, Inc.) installed with a 532 nm excitation laser and a 

microscope (BX51, Olympus) are used for structure characterization. The Raman laser beam is 

focused using a 50× microscope objective, with a focal point size of about 8 m
2
. The resolution 

of this Raman spectrum is 1.05-1.99 cm
-1

. All samples are characterized and spectra are all 

recorded at room temperature (20 ˚C) in the open air.  
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Figure 2.3. Raman spectra of the SiC samples and bulk 4H-SiC single crystal under the same 

measurement condition. The bulk SiC single crystal shows clear sharp peaks indicating good 

crystalline structures, while the CVD SiC samples only have broad peaks demonstrating their 

amorphous structures. 

 

The clear differences between samples 1, 2, 3, and the crystal 4H-SiC are shown in the 

Raman spectra in Fig. 2.3. For the 4H-SiC crystal, its Raman spectrum has several sharp peaks at 

212 cm
-1

 (FTA mode for 4H polytype), 785 cm
-1

 (TO band) and 973 cm
-1

 (LO band) [82, 83]. 

But, for the CVD SiC films, only several broad peaks are observed. Samples 1 and 2 have the 

same composition of Si and C in the SiC film, so their Raman spectra are almost the same and 

have a small broad peak at 1410 cm
-1

. Due to the different ratio of Si and C from sample 1 and 2, 

sample 3 shows a slightly different spectrum. It also has the broad 1410 cm
-1

 peak, but the peak 

is much stronger than that of samples 1 and 2. The 1410 cm
-1

 is associated to stretching vibration 

mode of the C-C bond [84], which indicates the formation of carbon clusters in all three CVD 

SiC films. Sample 3 has more percent of C than sample 1 and 2. A large amount of C may form 

homonuclear C-C bond in the carbon clusters instead of forming Si-C bonds. The weak peak 

around 500 cm
-1

 indicates some silicon clusters in the films. According to the Raman spectra, the 

crystal SiC has several sharp peaks showing high crystallinity, while the CVD samples have only 
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a broad and weak peak around 700 cm
-1

 for Si-C bond (shown as a shoulder in Fig. 2.3) 

indicating the small grain size of SiC crystals within the film and other amorphous structures.  

 

Since the single crystalline 4H-SiC is a long range ordered crystal, its optical phonons are 

largely restricted to one scattering mode and produce a narrow peak. However, the 

nanocrystalline SiC optically allows more phonon scattering modes to broaden peaks due to its 

smaller grain size [74]. The SiC films measured here are grown on a Si substrate. Lattice 

mismatch at the SiC/Si interface will occur at the beginning of growth, leading to significantly 

reduced crystallinity of the film. Additionally, if the growth is not epitaxial, nanograins will exist 

in the film. Such small size grains will significantly enhance phonon scattering mainly at the 

grain boundary, and broaden the Raman peak. The grain boundaries induced phonon scattering 

changes the wavelength and wavenumber of the phonon. As a result, a substantially reduced 

thermal conductivity is expected. Moreover, sample 3 contains more carbon clusters than sample 

1 and 2 due to the strong 1410 cm
-1

 peak in its Raman spectrum. The low thermal conductivity of 

amorphous structures in carbon clusters further lowers the overall thermal conductivity of sample 

3. 

 

2.2.5. Thermal transport across 500 nm thick SiO2 film 

For the purpose of comparison and studying the accuracy of the amplitude method, we 

also measure another non-crystalline sample (Sample 4) that is composed of a thin layer of SiO2 

on a Si substrate. The SiO2 layer is grown via thermal oxidation and has a thickness of 500 nm. 

A 60 nm Ir coating covers the top of SiO2 layer and performs the same function as the Cr film for 

SiC samples. The Ir coating has a thermal conductivity of 147 W/m∙K, density of 2.26×10
4
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kg/m
3
, and specific heat of 131 J/kg∙K. For the SiO2 film, density (2200 kg/m

3
) and specific heat 

(745 J/kg∙K) of bulk SiO2 are used here for the 500 nm thermal oxidation layer during data 

processing. 

 

The fitted curves for both the phase shift and amplitude methods are plotted in Fig. 2.4 

and fitted thermal conductivities are listed in Table 2.1. The best fitted thermal conductivity of 

SiO2 is 1.31 W/m·K based on the phase shift method. The corresponding interfacial thermal 

resistance is less than 10
-8

 m
2.K/W, which is too small to be precisely determined. The k from the 

phase shift method is very close to the reference bulk’s value (1.38 W/m·K). For the amplitude 

fitting method, k of SiO2 is determined to be 1.68 0.17  W/m·K and 
2

"

Si,SiOR is also less than 10
-8

 

m
2.K/W. This k is 24% higher than that from the phase shift method or the value in literature. 

The thin thickness of SiO2 is one reason that causes this deviation and raises large uncertainty. 

Usually when the film is very thin, its own thermal resistance L/k (thermal resistance per unit 

area) is very small. For the SiO2 layer (500 nm), L/k is about 3.8×10
-7

 m
2.K/W, which will 

produce a weaker effect on the phase shift and amplitude than the thick SiC films (2.5 m). In 

the experiment, the small variation in normalized amplitude will lower the sensitivity of k in the 

fitting process. As shown in Fig. 2.4, the percentage of the increment of Anor in the SiO2/Si 

sample is smaller than that in the SiC/Si sample. More thermal energy penetrates into the 

substrate and the effusivity of Si strongly affects the amplitude of thermal radiation which is 

detailed in the next section. If a pure bulk sample is measured by using the amplitude method, 

the normalized amplitude variation would be 0 (flat Anor against frequency). 
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Figure 2.4. Fitting results based on the phase shift and the amplitude methods for the 500 nm 

thick SiO2 film on Si. With the phase shift method, the thermal conductivity is determined to be 

1.31 W/m·K. Theoretical curves with thermal conductivities of 1.24 W/m∙K and 1.37 W/m∙K 

demonstrate the fitting uncertainty. Based on the amplitude method, the thermal conductivity is 

determined to be 1.68 W/m·K. The fitting uncertainty is illustrated with curves of thermal 

conductivities of 1.51 W/m∙K and 1.85 W/m∙K. 

 

2.3. Sensitivity study of parameters 

2.3.1. Sensitivity study of thermal contact resistance 

As mentioned above, the interfacial thermal resistance cannot be precisely determined in 

the amplitude method even though it is very sensitive to the film’s thermal conductivity. In the 

theoretical calculation, the role of the interface resistance is illustrated in Eq. 2.4a. The term 

1 1 /i i i ik k  
 can be simplified to ei+1/ei, where ei is the effusivity of the layer i. It is the ratio of 

effusivity e between the sample layer and the substrate in a two-layered sample. In our case 

study, the interaction between SiC layer and Si substrate dominates the thermal transport through 

the whole sample. Therefore, the term 
1 1 /i i i ik k  

 can be expressed as eSiC/eSi, which is the 

effusivity ratio of SiC layer to Si substrate. This ratio is usually smaller than 1 depending on how 

the sample is designed and is calculated to be around 0.18 with the fitting result for our samples. 
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1 1 , 1i i i ik R  
 is the only term relevant to the interfacial thermal contact resistance in the 

theoretical calculation. It can be deduced as 1 , 1(1 ) i i ij f e R     , in which f is the only variable 

in the PT measurement. Ri,i+1 is 
"

Si,SiCR  in the present work. Clearly, the effect of Ri,i+1 is mainly 

dependent upon the frequency. Furthermore, the SiC is grown on the Si surface using a CVD 

method, thus the connection between these two layers should be good. A small Ri,i+1 is expected, 

around 10
-7

 m
2.K/W according to our fitting result. At a very high frequency, the resistance 

effect becomes more important and contributes to the total value of Eq. 2.4a. For example, the 

value of this term reaches 10
-2

 at 10 kHz. Compared with the terms “1” and 
1 1 /i i i ik k  

, 

1 , 1(1 ) i i ij f e R      is still much smaller, especially in the low frequency range in Eq. 2.4a. 

However, in the phase shift method, the phase shift changes more relative to the amplitude with 

the same variation of Ri,i+1. Therefore, the phase shift method is more sensitive to the interfacial 

resistance. For the exponent term  1 1exp i i il l      , its value is determined by the thickness 

of the sample layer. Samples measured by the PT technique in our case have a thickness of 

several micrometers or fewer, so the value of this term is approximately equal to 1. 

 

A study of 
"

Si,SiCR  is conducted for sample 1 to reveal the sensitivity of the thermal contact 

resistance in the amplitude method. The residual (r) of the least square calculation determines the 

quality of the resulting curve in the fitting process. It is defined as the standard deviation of 

(Anor,exp - C·Anor,the) at all recorded frequencies. The relationship between r and the thermal 

resistance 
"

Si,SiCR  is plotted in Fig. 2.5a. The residual r clearly begins to increase when 
"

Si,SiCR  is 

larger than 10
-7

 m
2.K/W. It should be noted that the interface between the CVD SiC film and the 
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Si substrate has a good contact so that 
"

Si,SiCR  should not be larger than 10
-6

 m
2.K/W. Thus, the 

thermal contact resistance is not sensitive in our case. 

 

Figure 2.5. (a) Residual of the least square method against the thermal contact resistance 
"

Si,SiCR  

for sample 1. The residual does not change much against 
"

Si,SiCR  until it is larger than 10
-7

 m
2
∙K/W, 

so the amplitude method is not sensitive to 
"

Si,SiCR . (b) The ratio Anor,f /Anor,400 Hz against the 

frequency with all parameters from sample 1. The rest parameters for sample 1 are fixed for 

these two plots: k is 3.58 W/m·K,  is 3160 kg/m
3
, cp is 690 J/kg·K, and d is 2.5 m, and 

"

Si,SiCR  

is 1.51×10
-7

 m
2
·K/W for Fig. 2.4b. 

 

2.3.2. Importance of effusivity  

From the physical model described in Sec. 2.1, the interfacial transmission matrix of heat 

and then 
i ik  and 

i iL in Eq. 2.4a for each layer in the sample are obtained directly and 

independently. Thus, in the fitting process, kcp (thermal effusivity) and L/k (thermal resistance 
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per unit area) can be determined with high accuracy and will not be affected by the uncertainty 

of thickness measurement. Individual thermal parameter, k and cp, needs further calculation 

which will give rise to their experimental uncertainty. Alternatively, the thermal effusivity is an 

important and reliable parameter for evaluating the amplitude method. 

 

In the amplitude method, the normalized amplitude Anor directly shows the effect of 

thermal diffusion length changing against an increasing frequency. The thermal diffusion length 

is proportional to 1/ f . At a low modulated frequency, the thermal diffusion length is long and 

may be longer than the thickness of the sample layer. The thermal radiation signal in this 

situation will be affected by the thermophysical properties of both the sample layer and the 

substrate. As the thermal diffusion length decreases at a high frequency, the sample layer’s 

property contributes primarily to the radiation signal. Based on this analysis, a simple assessment 

of the accuracy of the amplitude method can be thereby conducted directly from Anor. 

 

The ratio Anor,f/Anor,400 Hz is introduced to study the accuracy of the amplitude 

normalization and the amplitude method. This relationship between Anor,f/Anor,400 Hz and the 

frequency is shown in Fig. 2.5b with determined parameters from sample 1: density  = 3160 

kg/m
3
, thermal conductivity k = 3.58 W/m·K, specific heat cp = 690 J/kg·K, and the thickness of 

the film L =2.5 m. The calculation of the curve starts at 400 Hz to guarantee the assumption of 

the 1D model. Also, 400 Hz is the same as the start frequency in the experiment. The frequency 

ends at 0.9 MHz in assessment, which is much larger than 20 kHz in the experiment. The 

theoretical calculation to this high frequency is for exploring the effect of the Cr layer on the 

thermal radiation signals, though such high frequency is unnecessary in the experiment. Figure 
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2.5b shows a gradual increase for the curve against the modulated frequency when the frequency 

is lower than 100 kHz. After rising to a maximum of 100 kHz, the amplitude ratio begins to 

decrease. 

 

According to the expression of thermal diffusion length /i i f   , the diffusion 

depth is longer at low frequencies.SiC,400 Hz is approximately 36 m at 400 Hz which is longer 

than the thickness of the SiC film (2.5 m). The thermal energy can pass through the SiC film 

and significantly penetrating into the Si substrate. The effusivity of Si dominates the effective 

effusivity of the sample. When the frequency rises to 100 kHz, SiC,100 kHz becomes 2.29 m. The 

thermal energy is only transferred inside the SiC film and the radiation signal is mainly related to 

the SiC properties. The data point at 100 kHz in Fig. 2.5b is selected for further discussion. The 

theoretical fitted value of the ratio Anor,100 kHz /Anor,400 Hz is 4.10 in the experiment. In contrast, it 

has 
,100kHz ,400Hz Si SiC/ ( ) / ( )nor nor p pA A k c k c  = 5.60 based on Eq. 2.7, which is slightly larger 

than the theoretical fitted ratio. Anor,400 Hz is a combined result of both SiC and Si effects at the 

low frequency of 400 Hz because both SiC and Si contribute portions of the amplitude of the 

total thermal radiation from the Cr surface. Since eSiC (2.85×10
3
 W/m

2
·K·s

0.5
) is smaller than eSi 

(1.57×10
4
 W/m

2
·K·s

0.5
), this combination lowers ( )pk c  at 400 Hz. The effect of Cr is 

negligible at 400 Hz. 

 

At the frequency of 100 kHz, the thermal diffusion length in SiC becomes shorter (2.29 

m) than the SiC film’s thickness, and thus the effect of the Si substrate on the thermal radiation 

becomes negligible. Instead, the Cr film plays an more important role in determining the 



33 
 

effective effusivity. Since the effusivity of Cr (1.74×10
4
 W/m

2
·K·s

0.5
) is much higher than that of 

SiC (2.85×10
3
 W/m

2
·K·s

0.5
), eCr increases eeff that determines the thermal radiation signal. Both 

of these two factors cause the deviation in the amplitude ratio between our theoretical fitting and 

the real effusivity. When the frequency is higher than 100 kHz, the normalized amplitude ratio 

gradually decays compared with the ratio at 100 kHz in Fig. 2.5b. The reduction results from the 

increasing effect of the Cr film. At frequencies higher than 100 kHz, the SiC’s thermophysical 

property contributes less to the thermal radiation because the thermal diffusion length in the SiC 

film continues decreasing. The effective effusivity to determine the amplitude is a combined 

effect of eCr and eSiC. The ratio 
, 100kHz ,400Hz Si/ ( ) / ( )nor nor p p effA A k c k c    thereby decreases 

against the frequency increasing. It is easily understood that the amplitude of thermal radiation is 

a constant for a pure bulk material because of the constant effusivity. Nevertheless, the ratio of 

the normalized amplitude at sufficiently high frequencies to that at low frequencies can be used 

as a quick indicator to evaluate the effusivity ratio of the film to the substrate. 

 

The amplitude method has the feature that the interfacial thermal contact resistance is less 

sensitive. It can thereby help determine the thermal conductivity of a film precisely with little 

effect from the unknown interfacial resistance. Moreover, the ratio of normalized amplitude 

provides a good way to directly evaluate the effusivity of the film of interest.  
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CHAPTER 3  

PHOTOTHERMAL CHARACTERIZATION OF CROSS-PLANE THERMAL TRANSPORT 

IN SPIDER SILK FILM 

 

This chapter focuses on the cross-plane thermal transport study of the films made from 

native spider silk protein (major ampullate) that have either been cast directly from freshly 

dissected glands or from glands dissolved in hexafluoroisopropanol, HFIP. Two spider species 

are studied: Nephila clavipes (golden orb-weaver) and Latrodectus hesperus (Western black 

widow). Based on the observation in the last chapter that the thermophysical properties can 

reflect the internal structures of the film of interest to some extent, the structure of untreated 

spider silk films and heat-treated HFIP films are studied and correlated with the thermophysical 

property change, in anticipation of revealing the unique structure of spider silk films and how 

energy transport is achieved. Additionally, the PT technique is used to characterize the 

thermophysical properties along the thickness direction of the films of interest. 

 

3.1. Sample preparations 

To better understand the relationship between thermophysical properties of spider silk 

and protein structures from different film casting methods, two types of samples from two spider 

species, N. clavipes and L. hesperus, are prepared in this study. The first type of films is major 

ampullate silk films that are cast on glass slides directly from freshly dissected major ampullate 

glands (as “fresh films” hereafter). For each slide, one pair of major ampullate glands is 

dissected from an individual adult female spider in 1X saline-sodium citrate (SSC) solution. The 

major ampullate glands are then moved to a water bath, where the surrounding gland tissue is 
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carefully removed, leaving just the silk material. The silk material retains in the gland. The silk 

mass is then placed on a glass slide and flattened into a film using a spatula dipped in 50% 

ethanol to prevent sticking. The film is air-dried. Each L. hesperus fresh film contains 

approximately 35 µg of protein while each N. clavipes fresh film contains approximately 400 µg 

of protein. N. clavipes fresh films have more protein because a N. clavipes major ampullate gland 

(Fig. 3.1a, left) is much larger than a L. hesperus major ampullate gland (Fig. 3.1b). N. clavipes 

major ampullate glands and films are also distinguished by a bright yellow color (Fig. 3.1a). 

 

 

Figure 3.1. (a) L. hesperus major ampullate gland, scale bar = 1 mm. (b) N. clavipes major 

ampullate gland (left image, scale bar = 1 mm) and HFIP film (right image). Note translucence 

and bright yellow color of the silk. 

 

The second type of films is made from major ampullate silk glands dissolved in HFIP 

(referred to as “HFIP films”). For N. clavipes, two pairs of major ampullate glands are combined 

in a microfuge tube. For L. hesperus, five pairs of major ampullate glands are combined in 

another microfuge tube. Each tube of glands is dissolved overnight in 1300 L HFIP, centrifuged 

to remove insoluble debris, and the HFIP evaporated to about 500 L. For each film, 100 L of 

HFIP solution is spread onto a glass slide and allowed to air dry. As with the fresh films, the 

Nephila HFIP films have a bright yellow color. The N. clavipes and L. hesperus HFIP films 

contain approximately 140 g and 40 g of protein, respectively.  

(b) (a) 
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To make thicker HFIP films for heat treatment experiments, an 8 mm diameter washer is 

mounted flatwise on a glass slide. The HFIP solutions are prepared similarly as above. 

Specifically, for N. clavipes, one pair of major ampullate glands is put into a microfuge tube and 

for L. hesperus, five pairs of major ampullate glands are put in another microfuge tube. Each set 

of glands is dissolved in approximately 1000 L of HFIP overnight. After centrifugation to 

remove insoluble debris, the HFIP is evaporated until 300 L for N. clavipes and 600 L for L. 

hesperus. These volumes are selected to approximate the same protein concentration as the 

previous HFIP films. For each species, 100 L of the HFIP solution is slowly pipetted onto each 

glass slide in the middle of the washer and allowed to air dry. The result is a thickened HFIP film. 

For these thickened HFIP films, the approximate protein amounts are 135 g and 120 g per N. 

clavipes and L. hesperus films, respectively. 

 

3.2. Structure characterization using Raman spectroscopy 

All spider silk films are first characterized by using Raman spectroscopy and the 

representative spectrum of each film is shown in Fig. 3.1. Spectra are all recorded at room 

temperature (20 ˚C) in open air. A confocal Raman spectrometer (Voyage, B&W Tek, Inc.) 

installed with a 532 nm excitation laser and a microscope (Olymoys BX51) is employed for the 

characterization. A 50× microscope objective is used to focus the laser beam. The beam is about 

8 m
2
 at the focal spot. The glass slide is mounted on a three-dimensional nanostage (Max 

311D). The resolution of the Raman spectrum is 1.05-1.99 cm
-1

. 
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3.2.1 Films of Nephila clavipes  

Figures 3.2a and 3.2b contain two Raman spectra from 500 cm
-1

 to 1750 cm
-1

 for N. 

clavipes samples. According to previous work [85-87], most peaks in this range are related to 

detailed structures of the spider silk film. To get a sound spectrum, the Raman integration time is 

set to 10s for the N. clavipes films and the laser energy is 8.6×10
8
 W/m

2
. N. clavipes silk films 

have a yellow color that causes a strong background as shown in the Raman spectra. Table 3.1 

lists the important observed peaks in Figs. 3.2a and 3.2b, and the corresponding chemical bonds 

in silk proteins are assigned. 

 

Figure 3.2. Raman spectra from 500 cm
-1

 to 1750 cm
-1 

for N. clavipes (a) HFIP film (b) fresh 

film, and for L. hesperus (c) HFIP film and (d) fresh film. This region is tightly related to 

internal structures of silk films. 

 

In Figs. 3.2a and 3.2b, profiles of both spectra are similar since they are all extracted 

from major ampullate glands of N. clavipes. The Raman intensity of the fresh film (Fig. 3.2b) is 

higher because it is thicker and has more protein than the HFIP film (Fig. 3.2a). The fresh liquid 

silk protein from major ampullate glands is viscous and quickly solidifies during sample 

preparation. Thus, it is hard to make the film thin. Compared with the fresh liquid silk protein, 
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the silk protein-HFIP solution is less viscous. It covers a larger area on the glass slide and forms 

a thinner film. Furthermore, the fresh film contains more proteins than the HFIP film. Therefore, 

these two reasons likely cause the different intensities of Raman peaks for the fresh film and the 

HFIP film despite using the same conditions for the Raman spectroscopy.  

 

Table 3.1. Detailed assignment of major peaks in Raman spectra of N. clavipes and L. hesperus 

major ampullate silk films [85, 86]. 

Assignment Peak position (cm
-1

)   

 N. clavipes L. hesperus 

 Fresh HFIP Fresh HFIP 

Ala   527 

-helices 

527 

-helices 

Fermi resonance of 

the Tyr doublet 

  851 849 

-helices   932 

-helices 

932 

-helices 

In-plane stretching of 

benzene ring 

  1022 1028 

Skeletal C

-C


 

stretching 

  1102 

Random coils 

1107 

-helices and 

Random coils 

Amide III 1243 

-sheets 

1253 

Random coils 

1257 

Random coils 

1263 

Random coils 

Amide I 1653 

-helices and 

Random coils 

1657 

-helices and 

Random coils 

1655 

-helices and 

Random coils 

1656 

-helices and 

Random coils 

Mass of protein 400 g 140 g 35 g 40 g 

 

The most obvious difference between the HFIP film and the fresh film is the location of 

the amide III peak. The location of this peak differs in the two spectra, indicating the difference 

in the structures of protein crystals between these two samples. The broad amide III peak locates 

between 1243 cm
-1

 and 1253 cm
-1

 in HFIP film. It may be composed of multiple split peaks, 

which implies the existence of both random coils and antiparallel -sheets. However, for the 

fresh film, the clear amide III peak at 1243 cm
-1

 indicates antiparallel -sheets. They may be 
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formed in fresh film during quick solidification. The difference between these two films could 

result from the solvent used in the production of the HFIP film. The chemical (CF3)2CHOH 

contains F and O elements, which can form a stronger hydrogen bond with N element in silk 

protein and thus will prevent protein crystals of secondary structures from forming. Therefore, it 

explains why fewer antiparallel -sheets exist in HFIP film. 

 

3.2.2. Films of Latrodectus hesperus 

The same analysis is applied to Raman spectra of L. hesperus films. Two spectra are 

shown in Figs 3.2c and 3.2d and detailed assignments of main peaks are also listed in Table 3.1 

Although the HFIP film and fresh film have similar amounts of protein, as the N. clavipes films, 

the HFIP film is spread over a larger area. Therefore, the lower concentration of protein in the 

HFIP film compared to the fresh film is reflected by the weaker intensity of all peaks. The HFIP 

film has a very weak amide III peak at 1263 cm
-1

 and an amide I peak at 1656 cm
-1

. These two 

locations are characteristic locations for the amide III and amide I peaks in random coils, 

respectively. A relatively weak and broad peak is near 527 cm
-1

, which is assigned to alanine 

(Ala) configuration in -helices. For the fresh film in Fig. 3.2d, it has qualitatively the same 

structure as the HFIP film because some locations of peaks of the fresh film match those of the 

HFIP film. The amide III peak of fresh film is at 1257 cm
-1

and amide I peak is at 1655 cm
-1

, and 

both of them represent the random coils. However, compared with the HFIP film, the fresh film 

has a relatively strong sharp peak at 527 cm
-1

, indicating the existence of more -helices. 

Another peak at 932 cm
-1 

refers to -helices appearing as a shoulder in both spectra of fresh and 

HFIP films.  
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Some differences exist between these two spectra in Figs. 3.2c and 3.2d. The peak at 

1022 cm
-1

 for the fresh film (Fig. 3.2d) is clear and a little lower than the peak at 1102 cm
-1

, but 

for the HFIP film, this peak (approximately at 1028 cm
-1

 in Fig. 3.2c) is weak and is overlapped 

by the one at 1107 cm
-1

. This peak (1022 cm
-1

) is assigned to the in-plane stretching of benzene 

ring (Phenylalanine). The fresh film has another strong peak at 851 cm
-1

, which represents the 

fermi resonance of the Tyrosine (Tyr) doublet. Instead, the HFIP film shows a corresponding 

peak approximately at 849 cm
-1

 in Fig. 3.2c but its intensity is near the noise level. Both 851 cm
-

1
 and 1022 cm

-1
 peaks refer to two amino side chains and can be easily detected in fresh film 

because the fresh film has more proteins under the focal spot. Also, more crystals in fresh film 

help increase the protein density. For L. hesperus samples, the solvent reduces the formation of 

protein secondary structures in HFIP films, resulting in more random coils than in fresh films. 

 

Both N. clavipes and L. hesperus films have major peaks for random coils and -helices 

mixtures. The -helices and some other structural bonds are more clearly found in L. hesperus 

films than in N. clavipes films. The difference in structure between L. hesperus and N. clavipes 

films may be due to the proportion of MaSp1 to MaSp2. Both MaSp1 and MaSp2 have poly-

alanine regions, which are expected to contribute to the -helices. MaSp2, however, contains 

appreciable amounts of proline, which are less favorable for -helices. Based on amino acid 

composition data, L. hesperus major ampullate silk has a higher ratio of MaSp1 to MaSp2 

compared to N. clavipes major ampullate silk (5:2 vs. 3:2, respectively) [88-91]. Raman peaks 

for other functional groups in random coils are more obvious for L. hesperus film. 
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3.3. Thermal energy transport 

3.3.1. Fundamentals of the photothermal technique 

For the PT characterization of energy transport along the thickness direction in the spider 

silks films, the original film is first coated with a 100 nm thick Au film in our sputter coating 

system (Denton: Desk V). Au is chosen for the surface coating due to its high thermal 

conductivity, which improves the thermal conduction between Au and samples. The optical 

absorption length of Au for the laser with a wavelength λ = 809 nm is 13.2 nm [80] noting that 

100 nm is thick enough to protect samples from being directly excited by the laser. A modulated 

laser is then used to irradiate and heat the surface of the Au film (Fig. 3.3a). The temperature of 

the surface rises as the surface absorbs the laser energy. Thus, when the heating laser is 

modulated periodically, a periodic temperature variation will occur at its surface. This 

temperature variation will have a phase shift relative to the modulated laser beam. This phase 

shift largely depends on thermophysical properties of underlayers (silk films in this work). By 

fitting the phase shift variation against the modulation frequency, thermophysical properties of 

underlayers can be determined. Details of the PT principles and theoretical solution can be found 

in previous works [18-21]. 

 

The setup of the PT measurement is the same as in Fig. 2.1b. A modulated infrared diode 

laser (BWF-2, BWTEK) with a wavelength of 809 nm irradiates the surface of the Au layer that 

is on the spider silk film. The laser beam follows the Gaussian distribution and the spot size of 

the laser focused on the sample surface is approximately 0.7 mm×1.4 mm [19]. It is modulated in 

a wide frequency range from 17 Hz to 20 kHz. Its power is about 2.1 W after modulation. The 

thermal emission due to temperature variation on the Au surface is measured by an infrared 
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detector (J15D12, Judson Technology). A Germanium (Ge) window is placed in front of the 

detector to filter the diffuse reflection and only allows the thermal emission to pass through. The 

signal from the infrared detector is transferred to a pre-amplifier and collected by a lock-in 

amplifier (SR830, Stanford Research) that is controlled by a PC for data acquisition. 

 

Figure 3.3. (a) The mechanism of the PT experiment showing the sample structure. (b) Raw 

phase shift raw (purple squares), real phase shift re after calibration (red dots), and the fitting 

curve (black line). The thermal conductivity is determined at 0.270 W/m·K. Theoretical curves 

with thermal conductivity of 0.243 W/m∙K (green line) and 0.297 W/m∙K (blue line) demonstrate 

the fitting uncertainty. The theoretical fitting agrees well with experimental data. (c) Normalized 

amplitude Anor (red dots) and raw amplitude Araw (purple squares) change with the frequency. 

 

In the characterization, the experimental setup will inevitably induce systematic time 

delay. The PT measurement is run with a clean silicon wafer with 100 nm gold coating for 
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system time delay calibration. The Ge window is moved away and the detector collects the 

scattered laser light. The measured phase shift and amplitude are both used in phase shift data 

processing and amplitude-based data analysis as detailed below. 

 

3.3.2. Thermophysical properties determination based on phase shift 

After the experimental setup is calibrated, the system phase shift (cal) is ruled out by 

directly subtracting calibration phase shift from the raw data (raw) of samples. A program 

developed in our lab is used to fit the phase shift to determine the film properties. The results 

with the L. hesperus HFIP film (HFIP2) is shown in Fig. 3.3b. The purple squares represent the 

raw data, and the red dots are real phase shift: re = raw -cal. The black solid line is the best 

theoretical fitting curve for the real phase shift. The thickness of this HFIP2 film is 2.24 m in 

the tested area. Using the known properties of glass substrate, gold and air [80], the calculated 

effective thermal conductivity k is 0.270 W/m∙K and the heat capacity per unit volume ·cp is 

1.40×10
6
 J/K∙m

3
, where  is density and cp is specific heat. Figure 3.3b also shows the 

experimental uncertainty with 10% variation in k. It is evident when the k value is changed by 10% 

from the best one, significant difference can be observed between the theoretical calculation and 

experimental data. Thus, the determined k and ·cp have an uncertainty better than 10%. 

 

All thicknesses d, fitted effective thermophysical properties k and ·cp, and thermal 

effusivity, e, of films for both N. clavipes and L. hesperus are summarized in Table 3.2. For N. 

clavipes, two fresh films and two HFIP films have similar k around 0.370 W/m∙K. The thickened 

HFIP2 film (17.34 m thick) has the largest k among four samples, which is 0.404 W/m∙K. The 

thickened film is less smooth and uniform than other types of films. This can be explained by 
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substances, such as protein crystals, not being well distributed during solidification. The laser 

spot is quite small when focused on the sample surface and that area might have higher content 

of substances of thermal conductivity. As revealed before in Figs. 3.2a and 3.2b, the fresh film 

has some antiparallel -sheet crystals that the HFIP film does not have. Such structure difference 

gives negligible difference in thermophysical properties considering the 10% experimental 

uncertainty. It is hypothesized that the antiparallel -sheet crystal in the fresh film is randomly 

aligned since it does not increase the thermal conductivity. 

 

Table 3.2. Thermophysical properties determination based on phase shift and amplitude. 

  Phase shift fitting Amplitude fitting 

Sample 

index 

d 

(m) 

∙cp  

(10
6
 J/K∙m

3
) 

k  

(W/m∙K) 

e 

(W∙s
1/2

/m
2
∙K) 

∙cp  

(10
6
 J/K∙m

3
) 

k  

(W/m∙K) 

e 

(W∙s
1/2

/m
2
∙K) 

N. clavipes (golden orb-weaver) 

fresh1 18.58 1.57 0.365 757.0 1.53 0.547 914.8 

fresh2 28.19 1.34 0.388 721.0 1.48 0.448 814.3 

HFIP1 5.69 1.73 0.343 770.3 1.39 0.359 706.4 

HFIP2 17.34 1.57 0.404 796.4 1.38 0.610 917.5 

L. hesperus (Western black widow) 

fresh1 21.32 1.74 0.306 729.7 2.08 0.396 907.6 

fresh2 6.53 1.78 0.355 794.9 1.68 0.397 816.7 

HFIP1 3.39 1.14 0.435 704.2 1.20 0.668 895.3 

HFIP2 2.24 1.37 0.270 608.2 1.55 0.264 639.7 

HFIP3 2.06 1.31 0.280 605.6 1.67 0.270 671.5 

 

For all L. hesperus samples, the obtained average k and ·cp from two fresh films are 

slightly larger than HFIP films. For example, they are 0.355 W/m∙K and 1.78×10
6
 J/K∙m

3
 for the 

fresh2 film, while for the HFIP2 film, k is about 0.270 W/m∙K and ·cp is 1.37×10
6
 J/K∙m

3
. The 

difference between fresh and HFIP films should be caused by the different preparation methods. 

Solubilization of proteins affects the formation of internal structures when preparing HFIP films. 
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In agreement with Raman spectra of these two kinds of samples, the HFIP film has weaker and 

broader Raman peaks of structures than the fresh film since the HFIP blocks the formation of 

hydrogen bonds in silk protein and then reduces protein crystals of secondary structures. It is 

well known that crystals have structures favoring thermal energy transport that random coils do 

not. HFIP films have more random coils than fresh films, so they have a weaker capability of 

transferring the heat and thus a lower k. The conclusion that the HFIP film has a lower thermal 

conductivity than the fresh film is not very strong since we do observe one HFIP film (HFIP1) 

with a higher thermal conductivity (0.435 W/m∙K) than all other four films. Furthermore, due to 

a larger quantity of crystals, fresh films have more compact structures and thus higher ·cp than 

HFIP films. Also, it is known that hydrogen bonds are good at storing thermal energy. Therefore, 

the low hydrogen bond concentration caused by the HFIP solution in the HFIP film will lower its 

heat capacitance. 

 

Comparing the thermophysical properties of N. clavipes and L. hesperus samples, all 

films of N. clavipes have similar k, while the two types of L. hesperus films have different k. The 

k of fresh films of L. hesperus is similar to the N. clavipes samples, but the k of HFIP films of L. 

hesperus is lower, which can be attributed to their less crystalline structure. When comparing the 

heat capacity per unit volume: ·cp, films of N. clavipes have similar heat capacities. However, 

the L. hesperus films are significantly different in that the heat capacity of HFIP films is lower 

than fresh films because of the looser internal structures of HFIP films. Evidently, HFIP solvent 

has a large effect on the internal structures that form during solidification of L. hesperus films. 

This could be explained by the thin L. HFIP films being composed of less concentrated protein 

than either fresh or thickened HFIP N. films. With less protein, there is less opportunity for 
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structure formation. Therefore, L. hesperus HFIP films have the most random coils, the smallest 

thermal conductivity and the lowest heat capacity.  

 

3.3.3. Thermophysical properties determination based on amplitude 

The amplitude of thermal radiation from the Au surface is another significant parameter 

we measure for calculating the thermophysical properties of samples. The k of spider silk will 

strongly affect the temperature rise at the Au surface during heating. If k is larger, the thermal 

energy in the Au layer will easily and quickly transfer into the spider silk layer so that the 

temperature on the Au surface will be lower than that with a lower k underlayer. We can 

determine the k of spider silk layer through fitting the amplitude of thermal radiation from the Au 

surface under different frequencies as we do in the phase shift fitting.  

 

This amplitude fitting is a new analysis method that we developed and applied in this 

work. Figure 3.3c shows the raw (Araw) amplitude data of HFIP2 film of L. hesperus (purple 

square dots). The amplitude quickly decreases as the frequency increases. However, the 

experimental system will inevitably produce systematic uncertainty and the random amplitude 

oscillation of the incident laser will also affect radiation signals. These systematic and laser 

effects can be eliminated by dividing the raw data of the laser amplitude (Acal) measured in 

calibration. 

 

Furthermore, the incident laser is modulated by a function generator during the whole PT 

experiment. The raw amplitude is also affected by frequency f. The measured amplitude 

decreases quickly as the frequency increases since the heating time is shorter in each period in 
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the higher frequency range. The sensitivity is thus lower in the higher frequency range so that the 

modulation effect should be considered. The processed result Araw/Acal is further normalized by 

multiplying f  (the physics discussed below). The final normalized amplitude, Anor, is shown in 

Fig. 3.3c. Opposite to the raw data, Anor is increasing with the frequency and becomes more 

sensitive especially in the high frequency range. 

 

Figure 3.3c also shows the fitting result (black curve) of HFIP2 film of Latrodectus 

hesperus for the normalized amplitude. The same parameters of other materials used in phase 

shift fitting are used in this amplitude fitting, and the fitted k and ∙cp for the spider silk film is 

0.264 W/m∙K and 1.55×10
6
 J/K∙m

3
, respectively. The theoretical fitting matches the 

experimental results well. The uncertainty of the fitting process is also plotted as two other 

curves with 10% variation of k. The green curve is the curve with k = 0.238 W/m∙K and blue 

curve is the curve with k = 0.292 W/m∙K. The k from the phase shift and the amplitude fitting 

methods are very close to each other while there is only a slight difference between ∙cp. 

Deviations between the two fitting methods may come from the residual calculation in the 

theoretical computing. Fitted results based on amplitude are summarized in Table 3.2 for all 

samples. Briefly, the amplitude fitting gives the same conclusion as the phase shift fitting about 

how the HFIP affects the film structure and thermophysical properties. It needs to be pointed out 

the amplitude fitting is based on how the normalized amplitude changes with frequency, and 

does not use absolute values. It has less accuracy when compared with the phase shift fitting. 

Nevertheless, it provides a reasonable comparison to check the phase shift fitting results. 
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When the laser irradiates the Au surface of the sample, the energy input amount depends 

on the irradiation time and incident intensity. In accordance with Eq. 2.7, the normalized 

amplitude is related to effusivity of the sample: e = pk c  , including that of the spider silk 

film and glass substrate. 

Data points A (fA = 51 Hz) and B (fB = 10000 Hz) in Fig. 3.3c are selected for further 

discussion of the amplitude fitting method. Point A is in the low frequency region and B is in the 

high frequency region, and then we have 
, ,/ 2.07nor B nor AA A  . The amplitude value at point B is 

largely determined by the properties of spider silk since the thermal diffusion length is very short, 

mostly constrained within the film thickness. In the low frequency range, heat transfer has a long 

diffusion depth, passing the film, and significantly penetrating into the glass substrate. So k∙·cp 

is mostly the property of pure glass slide. To test our results, the values of density, specific heat 

and thermal conductivity of glass from references [80] and spider silk we measured based on 

phase shift are used here. The ratio of k∙·cp of glass to that of the spider silk is 5.6. Thus, based 

on Eq. 2.7, we have , ,/ ~ ( ) / ( )nor B nor A p spider p glassA A k c k c  =2.37, which is very close to the 

ratio directly calculated from the normalized amplitude: 2.07. This estimation is slightly larger 

than the experimental figure because k∙·cp is not the exact value of the pure glass in the low 

frequency range. Both spider silk and glass will affect the amplitude of thermal radiation from 

the Au surface. In the high frequency range, glass has a very weak effect on the surface radiation 

since the thermal diffusion length is quite short in the spider silk layer.  
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3.3.4. Thermal treatment 

Heat treatment can provide an opportunity to transform the internal structure of spider 

silk proteins. Previous works showed that random coils will transform into secondary structures 

by using heating process, such as -helices and antiparallel -sheets [92]. Here, heat treatment is 

applied to the thickened HFIP films to study the transformation of protein structures. Films are 

heated at 20 ˚C, 40 ˚C, 60 ˚C, 80 ˚C, 95 ˚C, 120 ˚C, 140 ˚C, 160 ˚C, and 180 ˚C, respectively, 

with one temperature per run. For temperatures below 100 ˚C, films are placed in a glass jar 

sealed with a cap in a water bath. The temperature of the water around the glass container is 

maintained for 4 hours. For temperature over 100 ˚C, the sample is directly heated in an oven. A 

thermal couple is placed next to the sample to verify that the heating temperature achieved in the 

oven matches the instrument setting. Both N. clavipes and L. hesperus thickened HFIP films are 

heated at every temperature. All films burned at 200 ˚C. Since the PT experiments are done at 

room temperature, for consistency between PT and Raman measurements, Raman spectra are 

collected after each sample is cooled down at ambient room temperature for about one hour, and 

then the PT technique is applied to study the sample’s thermophysical properties.  

 

For the N. clavipes thickened HFIP film, figures 3.4a and 3.4b show variations of Raman 

spectra and effusivity with increasing heat treatment temperatures. Comparing the spectrum in 

Fig. 3.1a and the one of 20 ˚C in Fig. 3.4a, we find that the former has more peaks. The only 

difference in producing these two kinds of films is the solidification process; the protein stock 

and solvents are the same. It may be caused by the different surface extension. For the HFIP film 

used in the previous section, the spider silk solution is dropped on a glass slide to form a film 

without restriction, and the surface extension is the only factor affecting the film shape. However, 
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for the thickened HFIP film, the solution is pipetted slowly in a fixed washer and the shape of the 

film is maintained during drying. The effect of surface extension should be smaller. 

 

For the N. clavipes thickened HFIP film, figures 3.4a and 3.4b show variations of Raman 

spectra and effusivity with increasing heat treatment temperatures. Comparing the spectrum in 

Fig. 3.2a and the one of 20 ˚C in Fig. 3.4a, we find that the former has more peaks. The only 

difference in producing these two kinds of films is the solidification process; the protein stock 

and solvents are the same. It may be caused by the different surface extension. For the HFIP film 

used in the previous section, the spider silk solution is dropped on a glass slide to form a film 

without restriction, and the surface extension is the only factor affecting the film shape. However, 

for the thickened HFIP film, the solution is pipetted slowly in a fixed washer and the shape of the 

film is maintained during drying. The effect of surface extension should be smaller. 

 

Figure 3.4. (a) Raman spectra of the thickened major ampullate HFIP silk film of N. clavipes 

heated under different temperatures. The observed crystallization happens at 60 ˚C as peaks shift 

to the wavenumber representing -helices in the Raman spectrum. These Raman peaks weaken 

and disappear gradually under continued heating processes. (b) The effusivity with error bars of 

this film after heat treatment at different temperatures. 
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The Raman spectra remain the same for this film at 20 ˚C and 40 ˚C as shown in Fig 3.4a. 

The crystallization starts at 60 ˚C demonstrated by the shift of peaks. The 1086 cm
-1

 peak at 20 

and 40 ˚C shifts to 1101 cm
-1

 at 60 ˚C. This means the C-C skeletal bond configuration changes 

from unordered status to -helices [93]. It could be caused by the high thermal energy and the 

evaporation of residual HFIP in the film. Heat energy enhances the movement of molecules and 

more hydrogen bonds form between polar groups in proteins and favor crystal formation. 

Furthermore, the boiling point of HFIP is 58.2 ˚C. Since all film samples are air dried, there 

should be a small amount of HFIP in them. When the heating temperature reaches 60 ˚C, the 

hydrogen bond between HFIP and protein breaks and the HFIP molecules dissipate into the air. 

The left polar groups can then connect with others and thus increase the hydrogen bonding 

within and among protein molecules. Moreover, the 1641 cm
-1

 peak at 20 ˚C and 40 ˚C shifts to 

1662 cm
-1

 after heat treatment at 60 ˚C. This is also caused by the formation of -helices [94]. 

As the temperature continues to increase, peaks become weaker in the Raman spectrum and the 

background of the spectrum increases. This background of the spectrum is caused by the yellow 

color of the film itself and the carbonization of protein at high temperatures since films are 

heated in the open air. During heating, the high thermal energy and the interaction between 

proteins and gas molecule may cause the unstableness and the break of the hydrogen bonds. 

 

Figure 3.4b shows the measured effect of heat treatment on effusivity. One film is 

continuously used in all heating runs and the thickness of this film is considered to be constant 

throughout the experiment. The thickness is about 11.43 m for the N. clavipes thickened HFIP 

film. The thermal effusivity is used to explain the thermophysical properties of the film in the PT 

experiment because the error induced by thickness can be ruled out during the fitting process. 
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Below 60 ˚C, the effusivity is about 800 W∙s
1/2

/m
2
∙K, and it starts increasing at 60 ˚C, the 

beginning of crystalline formation. A sharp decrease appears in the effusivity curve at 140 ˚C. 

This temperature is close to the burning point, and silk proteins begin degrading due to the 

dehydration and oxidation at such high temperature. Random coils fragment into small pieces. 

The carbonization of proteins also starts at this temperature, with the film darkening due to some 

proteins becoming carbon. After the temperature exceeds 140 ˚C, the thermal effusivity and 

conductivity increase largely because of the increase of carbon content. At 200 ˚C, the film is 

completely dark and burned in appearance. ·cp is expected to be constant since the heating 

process does not change the profile of the film before it is burned, so the thermal conductivity 

should increase just like the effusivity. 

 

Figure 3.5. (a) Raman spectra of the thickened major ampullate HFIP silk film of L. hesperus 

heated under different temperatures. The observed crystallization happens at 60 ˚C as some clear 

and representative peaks appear in the Raman spectrum. This crystal structure disappears after 

being heated at 80 ˚C. (b) The effusivity with error bars of this film after heat treatment at 

different temperatures. 
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four Raman spectra and effusivity are recorded for this film. The film thickness is 10.43 m for 

the L. hesperus thickened HFIP film (film 1). Before heating the film, the Raman spectrum only 

has two observed peaks at 550 cm
-1

 and 1089 cm
-1

, as shown in Fig. 3.5a. This characterization 

is different from the thin L. hesperus HFIP film described in the previous section. The thin HFIP 

film contains some -helices while the thickened HFIP films mainly contain random coils before 

heat treatment. Although the thickened HFIP films have a higher amount of protein (120 g), 

few crystals form in this film. However, the Raman spectrum of the thickened HFIP film is 

similar to that for N. clavipes at 20 ˚C. This similarity indicates that both films contain mostly 

random coils in films and no protein crystal is observed. In Fig. 3.5a, no change happens in the 

Raman spectrum after heat treatment at 40 ˚C. However, for the spectrum after 60 ˚C treatment, 

new peaks suddenly appear in the spectrum. Peaks at 528 cm
-1

, 1101 cm
-1

 and 1657 cm
-1

 

represent the existence of -helices in the film. Those peaks begin to disappear when the heating 

temperature continuously increases beyond 60 ˚C. This can be explained by the heat treatment 

enhancing the movement of molecules and the breaking of hydrogen bonds. 

 

In Fig. 3.5b, the effusivity of the HFIP film remains nearly constant before 60 ˚C and 

starts increasing largely after that. For the effusivity increase from 60 to 80 C, although the 

crystallinity structure disappears, the temperature increase in heating will induce H-bond 

breaking among molecular chains. This will reduce the phonon scattering among molecular 

chains, and lead to an increased phonon mean free path. Therefore, the thermal transport capacity 

will increase, and the thermal effusivity will increase as well. This also explains the effusivity 

increase from 100 to 120 C for N. clavipes films shown in Fig. 3.4b. Another L. hesperus 

thickened HFIP film (film 2) is heated from 140 ˚C. It also shows an obvious decrease before 
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burning at 160 ˚C, as with the N. clavipes film. Random coils in these thickened HFIP films of 

spiders will transform into -helices and no -sheet is observed during heat treatment. The 

formation of -helices will increase the thermal effusivity and conductivity as the heating 

temperature increases, but a sharp decrease is observed for these two types of films before they 

are burned.  
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CHAPTER 4  

RAMAN SPECTROPSCOPY FOR NANOSTRUCTURE PROBING 

 

This chapter is to explore the very sensitive change of the Raman intensity with various 

grain size of nanocrystalline silicon on the cleaving edge of a silicon wafer. Raman spectroscopy 

is utilized to ascertain the size of nanocrystalline silicon in the sub-surface region with a formula 

in ref. [52], and to study the maximum intensity of the Raman peak. The analyzed Raman results 

are used to exclude other factors causing the change of the spectroscopy and prove the very high 

sensitivity of Raman intensity in terms of examining grain size. 

 

4.1. Experimental details 

A 270 m silicon (100) wafer (University Wafer) and a 7 m silicon wafer are used and 

cleaved by a traditional method. A silicon wafer is placed on a desk and cut on its edge with a 

knife to make a sharp notch. Then a small needle is placed under the notch and forces applied on 

both sides of the notch to break the wafer. The sample edge is finally formed when the silicon 

naturally cleaves along its crystal face. The cleaved silicon edge is cleaned with ethanol before 

all tests. A confocal Raman spectrometer (Voyage, B&W Tek, Inc.) installed with a 532 nm 

excitation laser and a microscope (BX51, Olymoys) is employed to focus the laser. The spectral 

resolution is 1-2 cm
-1

. During the experiment, a 100× microscope objective is used to focus the 

laser beam and the beam size is about 0.5 m in diameter at the focal spot as will be detailed 

later. There is a two-dimensional stage used for mounting the sample, which consists of two one-

dimensional stages. One is in the x direction (NFL5DP20S, ThorLabs) and the other on is in the z 

direction (MT1-Z8, ThorLabs). The movement ranges of those two stages are 20 m in the x 
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direction with a resolution of 20 nm and 13 mm in the z direction with a resolution of 0.2 m. 

The combined stage is located under the focal spot of the laser beam and can move around the 

focal spot in the z direction. When mounting the sample wafer, the optical trace is perpendicular 

to the cleaved edge of the wafer which is along the y direction.  

 

The experiment setup is shown in Fig. 4.1a. The laser is focused on the surface of the 

cleaved silicon wafer, and the scattering signal and Rayleigh scattering signal are both collected 

by the same objective in the backscattering mode. During the experiment, the stage makes the 

laser spot move from the center of the cleaved silicon wafer to the edge with a step of 266 nm at 

the beginning and then the step length is changed into 133 nm after the intensity starts increasing. 

The step is controlled by adjusting the voltage on an electronic-control box and 1 V adjustment is 

for 266 nm movement. 1 second integral time is used in this measurement to obtain a strong 

Raman signal from silicon. The whole measuring system is placed in open air. Due to the 

resolution limit of the spectrometer, Raman signals are processed to calculate the linewidth, 

maximum intensity and the precise peak wavenumber shift after all the spectra data obtained. 

The fitting procedure can be simply described as picking up a segment of Raman data (from 

492.11 cm
-1

 to 552.45 cm
-1

), choosing eight points on both tails of the peak with fixing the x 

coordinate as the baseline (four on each side), subtracting the baseline from the original data, and 

finally using Gaussian function to fit the peak to get the information we need. 
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Figure 4.1. (a) is a schematic of the experimental setup for Raman experiment with a 100× 

objective lens (not to scale). The relative location of the laser spot moves along the x direction 

shown by green arrow. Red dots show the approximate positions of A, B, C spots. A is mostly 

near the edge, then B, and C is farthest to the edge; (b) are three the Raman spectra of silicon 

near 521 cm
-1 

at selected spots A, B, and C. The dots represent the raw data and curves are from 

Gaussian fitting, and both of them have the baseline subtracted. For clear comparison, the curves 

A and B are shifted up, and 0 points of their y coordinates are shown in the plot; (c) scanning 

electron micrograph (SEM) shows a smooth surface. The right half of the image is the area 

which is out focus and shown black, while the left half is the silicon wafer surface. The boundary 

of the silicon wafer is indicated by white arrows. (d) Atomic force microscopy (AFM) image of 

the silicon wafer surface is also taken in the same place like that in SEM. The inset plot is the 

profile of the cross-section measured along the direction of black dash arrow in upper right side 

of Fig. 4.1d. The boundary of the silicon wafer is indicated by black arrows. 
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4.2. Results and discussions 

4.2.1. Raman imaging for 270 m thick silicon wafer 

By varying the position of the laser spot on the surface of the cleaved silicon wafer 

sample, a series of Raman spectra are attained and analyzed. Figure 4.1b shows three typical 

results of the Raman peaks of silicon with fitting curves near 521cm
-1

 at selected measuring 

points A, B and C. The outlines of those peaks change with the location where the signal 

originates. These three points A, B and C, located from farthest to nearest to the edge 

respectively, are illustrated in Fig. 4.1a. The black line is from point A which is the nearest the 

edge, the red line is form B which is in the middle of A and C, and finally C, shown in green line, 

is the farthest point away from the edge. It is obvious that the intensity, linewidth and Raman 

wavenumber of these peaks change with the position. The signal from point A has the strongest 

intensity in Raman spectrum, point B has a weaker intensity, and point C’s intensity is the 

weakest. This intensity change is very large and surprising, about 100% from position C to 

position A. The linewidth and wavenumber shift of the Raman peak also changed, though the 

changes are small to observe. Furthermore, there is no 480 cm
-1

 broad peak appearing in the 

spectrum, meaning no amorphous silicon formed during cleaving.  

 

In Raman experiment, the intensity of the Raman signal will be affected by the profile of 

the surface. A rough surface will enhance the Raman intensity largely because it can improve the 

absorption of the light on the surface [95] due to surface polaritons induced the enhancement of 

Raman cross-section. The roughness of the magnitude of micrometers can raise an observed 

enhancement in Raman spectrum. Our sample has a flat surface until the edge which is proved 

by the results of scanning electron microscope (SEM) and atomic force microscope (AFM) 



59 
 

characterization. In Fig. 4.1c, the SEM measurement is taken under 10 kV in a vacuum. The 

picture shows that the area is very smooth in 2-3 m abutting on the edge. Furthermore, contact-

AFM is also employed to measure the detailed structure in a 15×15 m
2
 area. In Fig. 4.1d, the 

right hand side of the dark line indicates the silicon surface and the edge, and the left hand side is 

caused by the system adjustment since the difference in height is too steep to track. The inset 

graph in Fig. 4.1d is the profile of the cross section at the location of the straight line drawn in 

the figure. Both SEM and AFM results in Figs. 4.1c and 4.1d illustrate that the surface roughness 

is very small, and there is no special structure which could increase the roughness. Therefore, the 

enhanced intensity is not caused by the roughness in the testing area. There should be another 

reason leading to this sensitive change in Raman intensity, so Gaussian fitting is applied to all 

those measurement results to obtain more accurate data to analyze. 

 

Figure 4.2. Raman imaging results from the center to the edge of 270 m thick silicon wafer. (a) 

Peak intensity (I). The laser spot size is calculated from the highest intensity to 10% of 

maximum intensity in this plot, (b) width (), (c) 521 cm
-1

 peak wavenumber shift (), and (d) 

size of nanocrystalline silicon grain (d) change with focal spot from the center to the edge, 

calculated from 2 /d B    in ref.[52]. The red line in this plot shows the actual position of 

the edge.  
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With fitting of all the data, Figs. 4.2a - 4.2c show the changes of the intensity (I), 

linewidth () and peak wavenumber shift () against the location in the x direction along which 

the laser focus spot moves to the cleaved edge of the silicon. The red dash line indicates the edge 

position. The spot size can be evaluated from Fig. 4.2a. The point having the maximum intensity 

indicates that the whole laser spot focus on silicon immediately next to the edge. Part of laser 

irradiates other places when the laser spot keeps moving toward the silicon wafer edge, and 

therefore the Raman intensity decreases quickly. 90% change of the maximum intensity is used 

for spot size evaluation and it is about 0.5 m. During the whole movement of the laser spot, the 

decrease of the Raman wavenumber shift can be observed while the linewidth of the peak is 

broadening. The intensity changes in a quite different manner. It first increases quickly and 

largely from the beginning till the edge. The immediate decline of Raman intensity is caused by 

decreased power of the laser irradiating the sample when the laser spot gradually moves away 

from the edge. The location of the focal spot is measured by using a CCD camera and this 

phenomenon is repeated three times to ensure the reliability. In Fig. 4.2, the range of the change 

is 4 cm
-1

 for Raman wavenumber shift and 2 cm
-1

 for the linewidth. On contrast, the intensity 

increases by almost 100% from the beginning to the edge, and it is extremely obvious and 

sensitive with the location of the focal spot. 

 

In ordinary Raman experiments, many factors will affect the spectrum, and the most 

important one is the focal level because it can cause many other effects. The out-of-focus effect 

will lower the density of the incident light and therefore lead to effect of heating and the stress 

decreasing in the sample surface. Both the heat and stress effect will cause the change of the 

wavenumber shift and Raman linewidth. Also the out-of-focus effect will change the incident 
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angle of the backscattered Raman signal into the spectrometer, which may cause some Raman 

signal change. In this experiment, the stage in the z direction is locked mechanically. However, it 

may still have a little shift due to vibrations in the surrounding which will finally cause the 

sample out of focus. To study the out-of-focus effect in our results, a group of Raman spectra are 

obtained from the middle area of the same sample silicon wafer located in different distances to 

the focal level in the z direction. The sample surface level is adjusted near the focal level in a 

range smaller than 1 m in order to analyze the out-focus effect on the silicon surface. The 

moving step is around 50 nm. Raman spectra are recorded at each step with an integration time 

of 2 s, and the background signal is subtracted to obtain sound Raman signals.  

 

Figure 4.3. Variation of the Raman spectrum from different focal levels on two single crystal 

silicon wafers. (a) Peak intensity (I), (b) width (), and (c) 521 cm
-1

 peak wavenumber shift () 

change with the distance to the focal point. The solid legends represent Raman information for 

the 270 m thick Si wafer and the hollow ones are for the 7 m thick Si wafer. The red line in 

this plot shows the 0 nm position in the z direction and the laser beam is well focused on this 

level. 
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Figure 4.3 shows how the Raman wavenumber, linewidth, and intensity change with the z 

location. Those solid legends represent the Raman data from 270 m Si wafer and hollow 

legends are for 7 m Si wafer, which is used later. At the beginning, the focal level is below the 

sample surface. When the sample approaches the focal spot from the upper side, both the laser 

spot size and the linewidth are decreasing while the peak wavenumber shift and intensity 

increase. After the surface passes the focal level to a lower position, it reverses the former 

process: the laser spot and the linewidth become larger, but the Raman intensity and 

wavenumber shift decrease. Moreover, the maximums of wavenumber and Raman intensity and 

the minimum Raman linewidth appear at the same focal level, which is indicated at 0 nm with a 

red dash line in Fig. 4.3. 

 

Compared with the result in Fig. 4.2, although the variation of the peak shift and 

linewidth are similar, the trend of the intensity change is totally different from the out-of-focus 

situation. The change ranges are about 2.5 cm
-1

 for the linewidth and 2.5 cm
-1

 for the 

wavenumber in the condition of 600 nm away from the focal point. These ranges are a little 

larger than those in aforementioned Raman results. Nevertheless, the moving distance in the x 

direction is about 2.6 m in the whole measurement. If there were a difference in the z direction 

from the beginning to the end in our experiment, the tilt angle would be as large as 13 degrees 

which can be easily detected. Furthermore, the intensity increases and becomes anomalously 

large when the stage moves in the x direction. So if there were any movement in the z direction 

to make the sample shift from the focal plane, the intensity would become smaller instead of 

larger. Therefore the results observed in Fig. 4.2 are not induced by the out-of-focus effect due to 

the stage shift. 
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Previous work by Webster et al., has mentioned that the residual stress was preserved in 

and affected the Raman spectrum, too [53]. In that work, a single crystal silicon wafer with a 

scratch in its surface was used as a test sample. They found that a positive shift of wavenumber 

of 521 cm
-1

 peak when approaching the scratch, meaning compressive stress in the silicon 

surface. Based on their results, the residual stress will cause different changes in Raman 

spectrum from ours. Theoretical studies on the electronic structure of Si nanospheres, assuming 

spherical confinement of phonons, have been reported and its results showed the wavenumber 

would increase when the diameter became larger [96-99]. This shift was explained as due to 

localization of phonons at the quasi-isolated crystallites [100]. 

 

4.2.2. Nanocrystalline grain size 

Our results on the Raman linewidth and wavenumber shift are similar to the results in 

previous studies of polycrystalline silicon [100], and such similarity indicates there are 

nanocrystals formed in the area next to the edge during the mechanical cleaving. The formula 

2 /d B    in ref. [52] is used to determine the size of silicon nanocrystalline grains. B is 

2.24cm
-1

 nm
2
 for Si and is the value of Raman wavenumber shift with respect to single 

crystalline Si peak at 521 cm
-1

. From this formula, the nano-grain size can be calculated, and 

results are plotted in Fig. 4.2d. The dash line in Fig. 4.2 indicates the edge location. From the 

calculation, the size of Si nanocrystalline grains changes from 20 nm to 10 nm in silicon surface. 

Meanwhile, the Raman linewidth increases from 6.5 cm
-1

 to 7.0 cm
-1

 and the peak location down 

shifts from 521 cm
-1

 to 520 cm
-1

. However, the intensity of the Raman peak increased by about 

100% because of the variation of grain size. 
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The change of Raman intensity with the crystalline size was rarely studied in previous 

works because in Raman spectroscopy the intensity will be affected by many factors such as the 

surface roughness, optical alignment, integration time, and excitation level of Raman equipment. 

Here, we rigorously exclude those possibilities before the further analysis of nanocrystalline 

formation. The intensity of the incident light is kept the same in all measurements, and the 

surface is very smooth which has been proved by SEM and AFM studies.  

 

Veprek et al., [100] used a chemical transport method to produce a thin layer of 

nanocrystalline silicon film, about several micrometers thick, and treated it in different 

temperatures to form nanocrystals with various sizes. They found the Raman intensity of Si 521 

cm
-1

 peak varied as a parabolic function of grain size in the thin film of nanocrystalline silicon. 

The maximum intensity appeared at the grain size of 18 nm and then became weaker when the 

grain size either increased or decreased. X-ray diffraction (XRD) was also employed in their 

works and it showed a surface model of “amorphous-like” Si in their samples with a 480 cm
-1

 

“shoulder” near 521 cm
-1

 peak in Raman spectra. This surface model was raised by either 

stretching or compression of the bond lengths in grain boundaries during nanocrystal formation, 

and the bonds dilatation would affect the absorption of incident energy and Raman scattering 

intensity. In nanocrystalline structures, both the optical absorption coefficient and Raman 

scattering are increased due to bond dilation in grain boundaries, which can cause fluctuating 

electric charge density and enhance the coupling of the electromagnetic field to the charge-

density fluctuation [100]. It was observed in previous work that the absorption of nanocrystalline 

silicon is much higher than that of single crystalline silicon [101]. 
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Figure 4.4. Relationship between Raman intensity I and nanocrystalline grain size d in the 270 

m thick silicon wafer and 7 m thick silicon wafers. I is decreasing with the grain size 

increasing. The solid line is used to guide eyes for the data trend. 

 

Compared with their results, figure 4.4 shows the relationship between crystalline size 

and Raman intensity of 270 m thick Si wafer. From the beginning point to the edge on the 

silicon wafer, the size of nanocrystals declines while Raman intensity increases by 100% because 

of the increased density of both nanocrystals and grain boundaries. There is a rapid increase 

around the size of 12 nm, and on the other side of this curve, the intensity is gradually 

approaching that from single crystal silicon when the grain size increases. We obtain a 

monotonic decreasing relationship between intensity and grain size. The differences between 

Veprek’s and our work may result from samples’ preparing methods. Our sample is formed 

during mechanical cleaving without heating. Generally, Si breaks easily along its (100) face. 

Therefore the tensile stress in Si surface next to the broken edge produces nanocrystals which do 

not have the 480 cm
-1

 peak. In the past, effort has been taken to relate the Raman peak shape to 

the grain size as [96, 98] 
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  is a Fourier coefficient, q0 is wave vector of optical phonon, 

0 1/ (2 )q q d  , (q) is the phonon dispersion curve, 0 is the natural linewidth of Raman 

active mode 25’ (521 cm
-1

 peak) in single crystal silicon, and 0 is the mean free path of the 

excited optical phonons. Due to the good long range order in single crystal silicon, the restricted 

q-selection rule only allows phonons with wave vector q0= 0 and gives a narrow peak at 521 cm
-1

. 

However, in nanocrystals, the restriction of q-selection is relaxed by the smaller crystalline grain 

size and more phonons are optically allowed in Raman spectrum, so the linewidth of Raman 

peak of 25’ mode broadens and peak shift decreases. 

 

4.2.3. Raman imaging for 7 m thick silicon wafer 

The same process is also performed on an ultrathin silicon wafer to compare and confirm 

our previous study on the thicker silicon. A 7 m ultrathin silicon wafer is cleaved in the same 

way as that cleaves the thick Si wafer sample and the edge is used. We scan along a 1 m long 

path perpendicular to the edge with a resolution of 20 nm and collect and analyze Raman 

information. Fitting results of intensity, linewidth, wavenumber shift and crystal size are all 

shown in Figs. 4.5a - 4.5d. The changing trends of all four properties are similar to those of thick 

silicon sample. The intensity is gradually enhanced when the tested area is getting closer to the 

edge and the maximum intensity at the edge is twice of the intensity at the center. The Raman 

peak intensity variation against the grain size is also plotted in Fig. 4.4.  
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Figure 4.5. Raman imaging results from the center to the edge of 7 m thick silicon wafer. (a) 

Peak intensity (I), (b) width (), (c) 521 cm
-1

 peak wavenumber shift (), (d) size of 

nanocrystalline silicon (d) change with focal spot from the center to the edge. The red line in this 

plot shows the actual position of the edge. (e) AFM image of the silicon wafer surface close to 

Raman testing area. The inset plot is the cross-sectional profile measured along the direction of 

black dash arrow in the left, and the edge of the wafer is located in the lower left (black area). 

 

Differences exist between this thin Si sample and the previous thicker one. The point 

where the intensity starts increasing is 200 nm away from the edge and is much smaller than that 

in the thick Si wafer sample (about 1 m), which means the area containing nanocrystals is 

smaller. Because of the ultrathin thickness, the wafer is easily and quickly broken and so the 

stress caused by cleaving impacts a smaller region. To evaluate the smooth surface of thin Si 

wafer near the cleaving edge, AFM study is conducted and the result is shown in Fig. 4.5e. The 

upper side of this image is silicon wafer and the edge is in the lower left side. The inside plot is 

the cross sectional profile along the black line in the left and it indicates that the surface of thin 

Si wafer is smooth at the edge and it will not affect the Raman intensity during testing. 
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CHAPTER 5  

TIME-DOMAIN DIFFERENTIAL RAMAN FOR THERMAL PROBING 

 

In this chapter, a brand-new and compelling transient thermal probing and 

characterization technology is developed based on Raman thermometry and our TET concept: 

time-domain differential Raman (TD Raman). This new technique overcomes the drawbacks of 

other techniques listed above and is able to accurately measure the thermal diffusivity of 

materials. The potential application of this technique is demonstrated by measuring the thermal 

diffusivity of a microscale Si cantilever. Physical and mathematical models are developed to 

relate the measured Raman spectrum to the temperature evolution of the sample, and use this 

information to determine the sample’s thermal diffusivity. 

 

5.1. Time-domain differential Raman: physics and experimental setup 

5.1.1. Concept and physics of TD Raman 

To achieve well-defined heating and transient thermal probing, a modulated single laser 

beam is used for both material heating and Raman excitation/thermal probing. Figure 5.1a shows 

the concept of the technique. In Case 1, the modulated laser cycle is designed to consist of an 

excitation period (te) followed by a thermal relaxation period (tr). During the excitation period, 

the temperature of the sample starts to rise when the laser is on, and keeps increasing until the 

pulse ends. Raman scattering is also excited and collected during this period. Along with the 

rising temperature, the instant Raman spectrum varies: the Raman peak intensity (I) decreases, 

the wavenumber () softens and the linewidth () broadens. The schematic of Raman spectrum’s 

properties variations is shown in Case 1 in Fig. 5.1a. During the relaxation period the laser is 
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switched off and the sample will cool down due to thermal dissipation to the heat sink or 

supporting structure. As the laser is off, neither is Raman scattering excited nor collected in this 

period. The thermal relaxation period tr is long enough to allow the sample to completely cool 

down before the next excitation cycle starts. In one entire cycle, the excited Raman scattering 

signals are collected and accumulated over the whole excitation period te. Since one single 

heating period is too short for Raman signal collection, multiple heating/cooling cycles are used 

in spectrum acquisition to ensure a sufficiently high Raman peak. Based on the number of 

heating/probing cycles in the measurement, the Raman signal of a single heating period can be 

simply obtained. The Raman spectrum in Fig. 5.1b shows the temporally accumulative Raman 

spectrum for this case. 

 

After the first heating and thermal probing case is studied, we design a second modulated 

laser heating/probing case (Case 2). As illustrated in Fig. 5.1a, the excitation period is a little 

longer than Case 1 by te, but the relaxation period is the same as Case 1. Thus, the entire cycle 

is also extended by te while the frequency is decreased. The temperature increases further in the 

extended heating time (te), and the instantaneous I, , and  vary with increasing temperature 

than at the end of the laser pulse in Case 1.  
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Figure 5.1. (a) Timing profiles of the laser pulse and the temperature evolution, and instant 

changes of Raman peak intensity (I), peak shift () and linewidth (). Along with the heating, 

the temperature in the sample increases, and then the Raman peak intensity decreases, the 

wavenumber softens and linewidth broadens. In TD Raman, the laser heating time is increased a 

little bit (te) each time from Case 1 to Case 3. Therefore, the temperature of the heated region 

will experience more increase (before reaching the steady state) from Case 1 to Case 3. This 
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extended temperature rise will give rise to a slight change in the Raman spectrum collected 

during the heating period. (b) The corresponding temporally accumulative Raman spectra of one 

cycle in three cases. Slight Raman peak softening due to the increased differential heating time is 

marked in the figure. The peak intensity increases largely because of the longer excitation period. 

The heating induced intensity decrease is less obvious in these spectra, but is visible via further 

peak analysis. 

 

The collected temporally accumulative Raman spectrum (shown on the right in Fig. 5.1b) 

will differ from the Raman spectrum of Case 1 because of te. First, it will have a higher 

intensity due to the increased excitation time, because more scattered photons are sent to the 

spectrometer during this period. However, this intensity differential is not proportional to te. As 

shown in Fig. 5.1a, since the excitation time is longer, the sample will have a greater temperature 

rise (if the steady state is not reached yet), resulting in a small reduction in the intensity increase. 

Second, since the collected Raman spectrum reflects the temperature information in the entire 

excitation cycle, the Raman spectrum with an extended excitation time will have Raman peak 

position softening due to the further temperature increase during te. In Fig. 5.1b, this slight 

wavenumber softening is marked. Finally, the Raman spectrum in the new excitation case should 

have a broadened linewidth, since the sample has a higher average temperature during the 

excitation than in Case 1. 

 

After the second excitation/probing case study is done, the excitation time of the laser is 

extended again while the thermal relaxation time is kept the same (Case 3). The instantaneous T, 

I, , and  are shown in Case 3 in Fig. 5.1a. The variations of T, I, , and  are even smaller 

than those in Case 2. The frequency will then be even shorter. The sample is heated, and the 

accumulated Raman spectrum is collected to reflect the temperature history over the excitation 

period. As we can see, with the increase of the excitation period by te in each case, the 
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corresponding Raman spectrum will have a small change (differential). Such change is related to 

the temperature rise of the sample induced by te. This information can be used with further 

physical data handling to capture the realistic temperature evolution of the sample and to 

determine the thermal diffusivity of the sample. 

 

It is better to construct a physical model for describing the normalized temperature 

evolution in a specific sample. Differing from other studies, the measured wavenumber, 

linewidth, and intensity in our work reflect an accumulative quantity of temperature variation 

during the pulse domain, but are not the time average. Variations in wavenumber, linewidth, and 

intensity against te are complexly related to the temperature increase. Rather, a precise physical 

model is needed to extract the temperature variation. With the correlation between variations of 

the Raman spectra and the normalized temperature rise, we can fit the normalized change of 

some parameters of the Raman peak to determine the sample’s thermal diffusivity. 

 

5.1.2. Experiment design 

The TD Raman idea is realized by integrating a square-wave-modulated diode laser into a 

commercial confocal Raman spectrometer. A continuous wave single longitudinal mode laser 

(MSL-III-532-AOM-150mW, Ultralaser, Inc.) is modulated with a function generator (DS345) 

to output variable duty cycle pulses. The laser is reflected by several mirrors to be integrated into 

the original optical path of a commercial confocal Raman system (Voyage, B&W Tek, Inc. and 

Olympus BX51). This laser is then focused on the sample surface with an objective lens and acts 

as both the heating and Raman excitation source. When the pulse is on, the laser heats the sample 

and induces a temperature rise of the sample surface. The Raman scattering signal collected 
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simultaneously during this period contains temperature and thermal stress information. It is 

collected by the same objective lens in back scattering mode and sent to the Raman spectrometer. 

A beam splitter and a notch filter are placed in front of the spectrometer to filter out the reflected 

excitation light. Acquisition of the Raman spectrum is accomplished by using commercial 

software in a computer. 

 

5.2. Si cantilever measurement: Raman spectrum variation against te 

A carefully designed experiment for time-domain thermal probing and thermal 

characterization is conducted on a tipless silicon AFM cantilever (AppNano, Ltd.) in the open air 

at room temperature (293 K). The optical image of the tipless cantilever (Fig. 5.2a) shows that 

the tip is about 450.35 m long, 49 m wide and 2.5 m thick. The tip end is a triangle with a 

height of 22.95 m. The laser is focused on the tip end of the cantilever with a 4× objective lens. 

The laser spot size is 31.4×65.3 m
2
 at the focal level. The long axis of the laser spot is 

perpendicular to the cantilever and the short axis is parallel to it in the horizontal plane (Fig. 

5.2b). 7.9 mW laser energy is carefully selected to heat the cantilever, while the range of the 

temperature rise is still small enough that the Raman spectrum parameters are considered linearly 

correlated with temperature rise. Also, the small thermal energy input would not induce damage 

on the cantilever. It is proved by a repeated measurement on the same irradiated spot that no 

obvious change in the spectrum was observed. To simplify the evaluation of the temperature-

induced change of Raman signals, an approximation of a square tip end is applied to our physical 

model as shown in Fig. 5.2b. The total length L used in the physical model is 438.9 m and the 

length of irradiation area le is 19.9 m. 
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Figure 5.2. (a) The optical microscope view of the tipless Si cantilever. It is 450.35 m long and 

49 m wide. The tip has a height of 22.95 m. (b) Schematic of laser spot position on the 

cantilever tip. The effective heating region is marked with x1 and x2 on the x coordinate in the 

physical model. le (= x2 - x1) is 19.9 m indicating the effective length of the heating region on 

the cantilever. L is the total effective length (438.9 m) used for the cantilever in the physical 

model. 

 

The characteristic heat transfer time of this cantilever in the length direction is estimated 

as 0.81L
2
/ [75]. With bulk Si’s reference thermal diffusivity  of 8.92×10

-5
 m

2
/s at 300 K [80], 

this characteristic time is around 1.75 ms. The relaxation time (tr) is fixed as 10 ms during which 

the cantilever can definitely relax to the room temperature and the cumulative thermal effect in 

the cantilever can be completely eliminated. Meanwhile, the length of the excitation period is 

adjusted from 20 s to 30 ms to cover the whole transient range of temperature rise from room 

temperature to the steady state temperature. The increment of te in experiment is varied in order 

to best reflect the change of the Raman spectrum against the heating time. The integration time 

for an individual spectrum is also selected to cover many pulse cycles and obtain a strong Raman 

signal for analysis. Differences in collecting cycles and time will be normalized later in the data 

processing.  
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Eight selected experimental Raman spectra of the Si peak are normalized to represent the 

signal for one excitation cycle (Fig. 5.3a). With increased excitation time, the Si Raman peak 

shifts to a smaller wavenumber (softening) and broadens a little bit. This is due to an increase in 

temperature with increasing te. Also with increased te, the Raman intensity becomes larger 

because the excitation time is longer. Figures 5.3b - 5.3d show variations of both the peak 

intensity (E) and the time-averaged one (
*E =Eω/te), linewidth (Γ), and wavenumber (ω) against 

the excitation time. The subscript “” means that the maximum intensity is from the peak center 

wavenumber , which softens along with the increase of the heating time. For the Raman peak 

intensity, E increases with increased te, since when te is longer, the Raman excitation is longer 

and a stronger signal is expected. Theoretically, if there is no temperature rise (heating), the 

Raman peak intensity should increase linearly with te. However, as seen in Fig. 5.3b, in the 

beginning, the Raman intensity increases fast. This rate slowes down and finally reaches a 

relatively constant rate (slope). The observed decrease in eE t   is related to the laser heating 

time and temperature rise. Our recent studies show that when the temperature increases, the 

Raman intensity will decrease [69-71]. When te gets longer, the cantilever will reach the steady 

state (no further increase in the temperature), and the Raman intensity will increase with te 

linearly. The normalized Raman peak intensity 
*E  is calculated as Eω/te. It eliminates the effect 

of varied te and shows a decreasing trend against the excitation time. The decreasing rate is fast 

at the beginning while the average temperature rises more quickly. As the cantilever is 

approaching the steady state (longer te), the average temperature rise gradually becomes a 

constant and so as
*E . 
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Figure 5.3. The evolution of the Si Raman peak against the increase of excitation/heating duty in 

the experiment. (a) Spectra per cycle under different excitation time of te: 0.24 ms, 0.4 

ms, 0.68 ms, 1.16 ms, 1.72 ms,  4.2 ms, and  10 ms. As the 

excitation/heating time becomes longer, the Raman peak in one cycle increases and softens to the 

left. (b) Raman emission E (  to the left y axis) increase against te, but the rate eE t 

declines quickly at the beginning and then slows down to a constant. The normalized Raman 

emission 
*E  (  to the right y axis) decreases to a steady state value as te become longer. 

*E  

directly illustrates that the Raman emission per unit time decreases against the heating time. (c) 

Raman linewidth variation against the excitation time. Although an increasing trend is observed 

for the linewidth against increased excitation time, large noises are observed in linewidth data 

due to the less sensivity of linewidth to temperature variation. So this data is less applicable for 

thermal diffusivity determination. (d) A clear decline in the wavenumber against te makes 

wavenumber  a good parameter for detemining  of the cantilever. 
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For the linewidth (Fig. 5.3c), although an increasing trend is observed against increased 

excitation time, the signal to noise ratio (SNR) is small due to the small variation of linewidth 

with temperature. For the wavenumber (Fig. 5.3d), it experiences quick decay because of the fast 

temperature increase at the beginning of the laser heating. During this period, the increasing rate 

of temperature is mainly determined by the heating rate since the heat conduction is weak. Along 

with the heating (longer te), thermal transport to the heat sink (the chip) becomes more important 

while the laser heating rate remains the same. Thus the heat dissipation slows down the rate of 

the temperature rise in the sample. As a result, the wavenumber changes slower at the longer te 

than it did around the beginning. The wavenumber shown in Fig. 5.3d is Raman intensity 

weighted over the time: 0~te. Therefore its rate of change against te is slower than the real 

temperature changing rate. These changes are tightly associated with the temperature rise in the 

cantilever. 

 

As we stated above, the measured Raman peak intensity, linewidth, and wavenumber is 

an intensity-weighted average over 0~te, and could not reflect the instantaneous temperature 

variation against time. To utilize the Raman spectrum to determine the thermal diffusivity, 

physical model development is necessary to describe the temperature evolution of the laser 

heated region, to relate the measured Raman spectrum to the temperature evolution with 

consideration of temperature dependent Raman intensity, and to fit the reduced Raman spectrum 

variation against te.  
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5.3. Physical model for temperature evolution  

The characteristic thermal diffusion time of a material is proportional to l
2
, where l is the 

thermal diffusion length. The cantilever is 2.5 m thick and 450.35 m long. The characteristic 

thermal diffusion time in the thickness direction (1) of the cantilever is negligible in comparison 

with the time (2) taken by the whole cantilever to reach the thermal steady state (1~3×10
-52) in 

the length direction. Although the cantilever is heated at the end from the top surface, it is 

physically reasonable to assume that the temperature uniformly distributes across the cross-

section. This 1D approximation (along the length direction) is applicable for evaluating the heat 

transport from the tip of the cantilever to the chip. Neglecting radiation and convection effect 

(discussed later), the heat transport in the cantilever along the length direction can be expressed 

as:  

 
2

2pc k g
t x

 


 
 

 
, (5.1) 

where g  is the heating induced by the laser pulse at the tip end. The x coordinate is shown in Fig. 

5.2b. , cp, and k are the density, specific heat, and thermal conductivity, respectively. Adiabatic 

boundary condition is imposed on the tip end, and the other end is treated as a big heat sink with 

a constant temperature of 293 K.  is the temperature rise under the pulsed laser heating. At the 

beginning,  is 0 K in the whole cantilever. The Green’s function method is employed to solve 

Eq. 5.1: 

 
2 2 2( )/

11

1

2
( , , ) sin( )sin( )m t L

X

m

x x'
G x t x' e m m

L L L

    


 



  , (5.2) 

= k/cp is thermal diffusivity. The temperature rise has the expression of: 
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Since the excited Raman signals are collected at the tip end, a spatially averaged 

temperature in the heated region is used to describe the temperature evolution probed by the 

Raman spectrum. This is physically reasonable since the heated region is very small, and the 

temperature distribution over it is very uniform. In the 1D model, x1 = 427.4 m and x2 = 2L - x1 

are the coordinates of the effective heated region on the tip surface. The origin is located at the 

conjunction point of the cantilever and the chip shown in Fig. 5.2b. The solution for the spatially 

averaged temperature rise at one instant is:  
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At the steady state ( t  ), the final temperature rise ss  has the expression of 

 
3

2

1 14 4
11

8 1
[cos cos (2 )]

( ) 2 2

 








  


ss

m

gL m m
x L x

L x k m L L
. (5.5) 

The normalized temperature rise *  with respect to ss is 
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Considering the linear correlations between temperature rise and variations in Raman peak 

intensity, wavenumber and linewidth in a small range of temperature variation, the change of the 

Raman spectrum in the experiment can be evaluated by considering the evolution of 
* . 

 

5.4. Physical model and numerical reconstruction of Raman spectrum 

At any instant t during the excitation cycle, 0~te, the Raman signal emitting rate can be 

expressed as [assuming the Raman peak takes the Gaussian distribution, which usually holds up] 
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( ) exp[ ]t
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  . (5.7) 

I(ω) is the Raman emission rate at frequency ω, and At is the rate at the Raman peak location ωt. 

Γt is the Raman linewidth. Note that At, ωt and Γt all depend on temperature, so they change with 

time t during the excitation cycle because temperature changes with t. The calibration in previous 

works [69-71] reveals the linear temperature-dependent feature of Si Raman peak properties over 

a temperature range from 20 to 200 C. Thus, in this work, this feature can be expressed as 

*

0(1 )tA A A  , 
*

0t B    , and 
*

0t C    , where A0, ω0. Γ0 are the corresponding 

Raman properties at the beginning of laser heating (no temperature rise yet). Constants A, B, and 

C are the changing rate of the Raman intensity, peak location, and linewidth against the 

normalized temperature. The accumulative Raman emission (at wavenumber ω) for the entire 

excitation cycle from 0 to te can be obtained by integrating I(ω) over time as 
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In Eq. 5.6, the variable t and the parameter  can be grouped together as the Fourier 

number Fo (Fo = t/L
2
). Thus, from Eqs. 5.6 and 5.8, we can tell that both temperature rise and 

Raman intensity depend on Fo. Substituting Fo into Eq. 5.8, the correlation between the 

excitation time and Raman spectrum has the expression of 
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where Foe=te/L
2
. For the Raman peak intensity variation against te as shown in Fig. 5.3b, its 

increase against the excitation time carries the integration time’s effect. Instead of using the 
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cumulative Raman emission for the entire excitation cycle, we use the time average for analysis. 

This is done by simply dividing the left term in Eq. 5.9 by Foe. The expression of this normalized 

intensity is 
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Fo C


  
 

 

   
   

 
 , (5.10) 

where 
*

e( , )E Fo   = E(ω, Foe)/Foe. The values of constants A0, ω0, Γ0, A, B, and C in Eq. 5.10, 

can be extracted from the normalized peak intensity, wavenumber, and linewidth variation 

against te (shown in Fig. 5.3) by evaluating the limit at te  0 and te  . However, because 

even the Raman spectrum with the shortest te inevitably has some heating effect, the extracted 

thermal properties and Raman scaling constants will deviate from the actual values. Thus, these 

constants are then refined to better approach the actual values which are then used for fitting 

experimental data. The refining process will be detailed in Section 5.5. They are finally 

determined as A = 0.31, 0 = 520.22 cm
-1

, B = 3.7 cm
-1

, 0 = 11.06 cm
-1

, and C = 0.34 cm
-1

. 

Constant A0 is less important to us for we are only interested in the relative Raman intensity 

variation. 

 

Based on Eq. 5.9, the reconstructed Raman spectrum per cycle at different Foe is shown 

in Fig. 5.4a. It is observed when Foe increases, the Raman peak shifts to the left (softening), the 

linewidth slightly broadens, and the Raman peak intensity increases largely as the 

excitation/collecting time becomes longer. Figures 5.4b and 5.4c show how the normalized 

Raman intensity and wavenumber vary with Foe. The normalized Raman intensity 
*E  decreases 

with increased Foe. This is because when Foe is larger, the average temperature of the sample 

during that period is higher. As a result, the average Raman signal becomes smaller. Also we fit 
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the reconstructed Raman peaks and determine their peak intensity and peak location at different 

Foe. The reconstructed 
*E  and show the similar trends as the experimental results shown in 

Figs. 5.3b (the right y axis) and 5.3d. However, how fast or slow they change with time is 

dependent on the thermal diffusivity of the sample. Foe here only gives a non-dimensionalized 

time. 

 
 

Figure 5.4. (a) The evolution of the reconstructed Si Raman spectrum per cycle with the 

numerical method against the increase of Fourier number Foe (te): 0.028, 0.047, 

0.079, 0.14, 0.20,  0.49, and  1.17. The Raman peak in one cycle increases 

and softens to the left against the increased Foe. This echoes the one in Fig. 5.3a. (b) The 

decreasing trends of the normalized Raman intensity 
*E  and (c) the Raman shift  against the 

Fourier number Foe well agree with the trends in the experiment. 
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5.5. Thermal diffusivity determination based on ω and E* 

Although the Raman linewidth is directly related to temperature, the SNR for the 

linewidth measurement is too small to precisely determine the thermal diffusivity of the Si 

cantilever. Instead, we use the variations of the normalized Raman intensity and peak shift for 

thermal diffusivity determination. In the fitting process, the initial values of constants A0, ω0, Γ0, 

A, B, and C are directly read from the experimental data and substituted into Eq. 5.10. As 

mentioned above, some heating effect inevitably exists in the initial state of the experiment as we 

cannot make te extremely short while collecting a sufficient Raman signal. The extracted initial 

values of those constants from Fig. 5.3b will deviate from their real values. Fine adjustment of 

them is then performed in determining the cantilever’s thermal diffusivity. If an extremely short 

te could be realized, the heating effect could be safely neglected and the A, B, and ω0 can thus be 

directly measured. The improvement of TD Raman technology with respect to shorten the 

excitation time will be pursued in near future. 

 

In the fitting process, ω0, A and B are scanned over a specified reasonable range. For each 

combination of ω0, A and B, based on Eq. 5.10, we reconstruct the Raman spectrum at different 

Foe, and obtain curves like those shown in Figs. 5.4b and 5.4c. Note these curves do not have the 

time information yet. For each thermal diffusivity, the Foe can be converted to time, and the 

curves become time-related. Then these curves are compared with those experimental data in 

Figs. 5.3b and 5.3d using the least square method and obtain a deviation (σ: root mean square of 

differences) at the end of the comparison. A0 is not needed as we are only interested in the 

relative Raman intensity variation. Then we scan the thermal diffusivity from 5.05×10
-5

 m
2
/s to 

12×10
-5

 m
2
/s with an increment of 1% each step. The whole fitting process is run to find the 
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smallest  and returns the corresponding ω0, A, B, and . Refining is also conducted on Γ0 and C, 

but it is observed that the extracted Γ0 and C is very close to their initial values due to 

temperature sensitivities. Thus their initial values read from Fig. 5.3b are directly used in the 

entire fitting process. The thermal diffusivity giving the best fit of the experimental data is taken 

as the property of the sample. The experimental data and best fitted curves for the normalized 

intensity and the wavenumber based on the Eq. 5.10 are shown in Figs. 5.5a and 5.5b. 

 

The normalized intensity decreases against the excitation time to the steady value. The 

best fitted curve with an *E

  of 9.17×10
-5

 m
2
/s follows the trend of the normalized intensity in 

the experiment well. The uncertainty of the normalized intensity in the peak analysis is indicated 

by the error bars in Fig. 5.5a. To illustrate the sensitivity of the normalized Raman intensity 

method, two curves of ±10% variations in *E

  are plotted in blue and green in Fig. 5.5a. Across 

the whole te span, a visible change is observed for these two curves compared with the best 

fitting results, indicating this method is sensitive to determine thermal diffusivity. Though these 

two curves of ±10% variations in *E

  could not cover all the measurement errors, they best limit 

the changing trend of the fitted curve to well follow the experiment result. The accurate changing 

trend is more important in our fitting process. The most experimental data fall in between the 

±10% curves even though the error level is much broader. Figure 5.5b shows the change in 

wavenumber shift against te and error bars show the wave number uncertainty in peak fitting. 

The curve with an  of 8.14×10
-5

 m
2
/s gives the best fit (red), and the other two curves, varying 

10% in , are plotted for showing the sensitivity of the wavenumber fitting method. 
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Figure 5.5. (a) Variation of normalized intensity against the excitation time. It decreases as te is 

increasing to a steady state value. The red curve with *E

  of 9.17×10
-5

 m
2
/s best fits the 

experimental data based on the intensity method. (b) Wavenumber shift to the steady state 

against the excitation time. The best fitted curve with  of 8.14×10
-5

 m
2
/s is shown red. Error 

bars in both figures show the uncertainty in the measurement, and curves with 10% deviation in 

both thermal diffusivities are shown in blue and green. They show obvious difference from the 

best fitted results indicating the sensitivity of the normalized Raman intensity method and 

wavenumber shift method, respectively. 

 

5.6. Physical analysis and experimental uncertainty evaluation 

To evaluate the measured thermal diffusivity, we first estimate the temperature rise in the 

Si cantilever’s tip end with the physical mode shown in Fig. 5.2b. The final temperature rise T 

in the irradiated area can be calculated with the equation cross ss,tip /q kA T L  . q is the absorbed 
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laser power which is the product of the incident laser power on the surface of the tip end and the 

absorbance of single crystal Si (0.626 at 532 nm). k is the thermal conductivity of bulk Si (148 

W/m·K) at 300 K, and Across is the cross-section area of the cantilever. The steady state 

temperature rise (Tss,tip) is determined to be 57 K at the tip end of the Si cantilever. The thermal 

diffusivity  in the physical model in Eq. 5.4 reflects a spatial-average value for describing the 

temperature evolution in the whole cantilever. The temperature linearly decreases from the tip 

end to the chip, so the spatial-average temperature is the half of Tss,tip at the steady state. 

 

As discussed in Sec. 5.2, time averaging is performed in constructing the correlation 

between the temperature rise and the peak profile. Actually, the obtained raw Si Raman peak is 

an accumulated signal over the excitation period. The normalization of the intensity excludes the 

varied excitation time averages the peak profile. The thermal diffusivity determined by the 

physical model fitting contains another average in the time domain. For Tss,tip/2 is a sound 

approximate of the spatial-average temperature rise at the steady state, the final average 

temperature rise that determines the fitted thermal diffusivity in the cantilever is about Tss,tip/4. 

This characteristic temperature rise is about 14 K. Our TD Raman experiment is carried out at 

room temperature (293 K), so the spatially-and-timely-averaged temperature of the Si cantilever 

is 307 K. The corresponding reference thermal diffusivity ref of single crystal silicon is 8.66×10
-

5
 m

2
/s at this temperature. In fact, considering the thickness of the cantilever, the temperature 

distribution could be uneven from the upper part to the bottom of the cantilever. The real average 

temperature rise will be even lower than 14 K and then the thermal diffusivity will be a little 

larger than 8.66×10
-5

 m
2
/s. 
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Due to the extremely small size and the delicate feature of the cantilever, a regular 

thermocouple could not be applied for real-temperature measurement. To compare with the 

above analysis, the temperature rise is also examined from the experimental variations in 

linewidth, normalized intensity, and wavenumber of the Si Raman peak. Among them, the 

temperature change based on linewidth is the most straightforward to analyze. However the 

small SNR associated with the linewidth measurement makes it difficult for accurate fitting. The 

linewidth of the Si peak increases by about 0.34 cm
-1

 in Fig. 5.3c from the initial state to the 

steady state in the experiment. So the total temperature rise at the cantilever end is 38 K and the 

average temperature (  ) is 9.5 K with the temperature coefficient of 0.009 cm
-1

/K calibrated in 

our previous work [70]. It is a little lower than, but very close to th . The Si Raman spectrum 

with the shortest excitation period is taken as the initial state to evaluate the temperature rise. 

This experimental initial state still has some temperature rise, while the real initial state should 

be extracted from the Si Raman peak without heating effect. Thus, the linewidth of the real initial 

state should be narrower. It is reasonable that   is a little lower than th . 

 

In the intensity method, we use the ratio of normalized intensity at the steady state to the 

initial state to estimate the total temperature rise. This ratio is 74.6% from Fig. 5.5a and the 

determined temperature is about 108.8 K based on the temperature coefficient of 0.0024 K
-1

 [70]. 

Analogous to   , averaged temperature *E

  will be 27.2 K, which is higher than th . Several 

factors could account for this deviation. One is the unevenly distributed temperature-induced 

thermal stress in the cantilever. This thermal stress is high in the upper irradiated area of the 

cantilever. The cantilever’s deflection is the factor resulting from the uneven thermal stress and 

expansion. It will cause an out-of-focus effect during Raman spectra acquisition, though the 
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deflection is invisible to naked eyes under the 4× objective lens. These thermal stress induced 

effects will lead to the reduction in the Si Raman intensity at the steady state and increase *E

 .  

 

Another possible reason is the inaccuracy of the initial state value in the experiment. On 

one hand, large noises are observed at the beginning of the experimental data in Fig. 5.5a, which 

will obscure the real initial intensity. On the other hand, when the excitation period is short, a 

long integration time is necessary to obtain a strong signal: about 15 minutes signal acquisition is 

needed for a sound spectrum when the excitation time is 20 s. This may cause an additional 

out-of-focus effect due to the backlash of the sample stage and vibration in the environment. 

Moreover, the deficiency in the square pulse of the modulated laser will lower the temperature 

rise of the shortest excitation time. The modulated laser has a rising time of 0.13 s. Though the 

total amount of thermal input is fixed, the heating rate is slower at the beginning of the excitation 

period than the rest and the temperature of the cantilever correspondingly rises slower in the 

beginning. Due to the fact that Raman intensity is highly sensitive to temperature, the instant 

intensity in the pulse rising time will increase the average intensity of the entire excitation period. 

When te is as short as 20 s, the rising time will result ~1% increase in the average temperature 

and the Raman intensity. When te is being longer in our experiment, the effect of the rising time 

becomes negligible. Therefore, the total variation in 
*E  is, to some extent, increased and so as 

*E

 . But the increase in 
*E  will “stretch” the real curve and accelerate the changing rate of the 

curve, and thus cause the 5.9% deviation in the measured *E

  of 9.17×10
-5

 m
2
/s from the 

reference thermal diffusivity of 8.66×10
-5

 m
2
/s. 
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In Fig. 5.5b, the total wavenumber shift is about 2.8 cm
-1

. It is several times larger than 

the broadening in the linewidth, though the temperature coefficient for the wavenumber is just 

twice that for the linewidth. The total shift of wavenumber is the combined result from not only 

the sole temperature rise but also the thermal stress and other factors in the cantilever. We could 

not directly evaluate  , but our model is still applicable for fitting the variation of the 

wavenumber shift. The stress and other possible factors could approximate to a first-order 

function of q to simplify the fitting process. They are all included in constant B in a 

determination in Eq. 5.8. The best fitted result aw is 8.14×10
-5

 m
2
/s. It is 5.8% lower than the 

reference value of 8.66×10
-5

 m
2
/s. 

 

The thermal radiation and convection effect in the determined thermal diffusivity of the 

cantilever can be evaluated with the equation of 
3 2 2

0(8 4 ) / ( )pT h L c D    [76, 102]. r, cp, and 

e, are density (2330 kg/m
3
), specific heat (712 J/kg∙K), and emissivity (< 0.1) of bulk Si at room 

temperature. h is the free convection coefficient, which is about 1~2 W/m
2
∙K at 300K. L and D 

are the length (438.9 mm) and the thickness (2.5 mm) of the Si cantilever. The thermal radiation 

and convection effect will give a negligible error of ~4.8×10
-8

 m
2
/s in the determined thermal 

diffusivity. 

 

5.7. Thermal diffusivity determination based on total Raman emission 

Raman peak intensity is a typical property representing the Raman scattering efficiency 

of a material. However, with the existence of the incident light broadening, heating effects, 

surface refraction and reflection, and detector efficiency, additional references and calibrations 

are needed if the intensity is used to analyze the Raman emission [103, 104]. Furthermore, in the 
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numerical model, the Raman spectrum is a complex composition of the peak intensity, the 

wavenumber and the linewidth. Each property will affect the determination of the other two. It is 

also very time consuming to reconstruct spectra for all excitation duties in the experiment. 

 

Instead of using the Raman peak intensity, the Raman peak area could be an alternative 

property to evaluate the total Raman emission over the whole wavenumber range of the peak. In 

this model, since the total Raman emission is used, the Raman wavenumber shift is not needed. 

In this section, we develop a simplified physical model on the basis of the total Raman emission 

to fit the thermal diffusivity of the Si cantilever. The Raman peak area is proportional to the 

product of the linewidth and the peak intensity in the Gaussian function. The Raman 

wavenumber shift is not taken into consideration. In experimental data processing, the 

normalization is first conducted to divide the Raman peak area by the total irradiation time. This 

normalized peak area indicates the average Raman emission per unit time in the excitation period. 

It is also related to the average temperature rise in the Si cantilever. The normalized total Raman 

emission, E
*
, is simplified as: 

 
'

* *
* 0

0
0

(1 )( )
et

e

A
E A C dt

t
     , (11) 

'

0A  is a multiple compensating for the difference in the peak area between the normalized 

experimental data and the average fitting result. It is determined by comparing experimental data 

with theoretical data at the steady state. As the same to A0, 
'

0A  is less significant to us while the 

relative variation of the peak area is more useful. Constants 0  and C are directly extracted from 

the linewidth variation of the experimental spectra, and take the values indicated above (0 = 

11.06 cm
-1

 and C = 0.34 cm
-1

). 



91 
 

A and C are the changing rates of the normalized peak intensity and linewidth against the 

excitation time. Based on the A value extracted from Fig. 5.3b, refinement is also conducted 

together with the determination  in the peak area fitting process. A is varied from 0.1 to 0.4 with 

an increment of 1%. For each A,  is scanned from 3×10
-5

 m
2
/s to 12×10

-5
 m

2
/s. The best fitted 

values of A and *E
  are 0.32 K

-1
 and 9.51×10

-5
 m

2
/s, respectively, for constructing a theoretical 

curve that fits the experimental data best (Fig. 5.6). The value of A is very close to the one 

determined above based on the precise physical mode: 0.31 K
-1

. In Fig. 5.6, error bars indicate 

the peak area measurement uncertainty and the blue and green curves with 10% deviation in  

illustrate the sensitivity of the total Raman emission method. 

 

 
 

Figure 5.6. The experimental data fitting based on the peak area with the best fitted curve with 

*E  = 9.51×10
-5

 m
2
/s. The measurement uncertainty is shown using error bars. The sensitivity of 

the total Raman emission method to  is shown with  = 8.56×10
-5

 m
2
/s and  = 10.47×10

-5
 m

2
/s, 

respectively. A visible deviation is observed from the best fitted result when  changes with 10%. 

 

Compared with the reference value in Section 5.5, *E
  from the total Raman emission 

method has a 10% deviation from ref. *E
  has a larger error than those from the intensity 
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method and wavenumber method because it is the product of Raman intensity and linewidth. 

Errors of the normalized intensity and linewidth will be combined together during thermal 

diffusivity determination based on the peak area method. The advantage of the peak area fitting 

method (or total Raman emission method) is that it provides an alternative quick way to 

determine the thermal diffusivity of a material. The peak area method utilizes the linewidth 

variation against the excitation time. No other information is needed for the Raman wavenumber 

and shift. Thus, it avoids the Raman spectrum re-construction, which is very time consuming. 
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CHAPTER 6  

SUMMARY AND FUTURE WORK 

 

6.1. Summary 

6.1.1. Photothermal technique with amplitude profile 

An amplitude method for the PT technique has been successfully developed to analyze 

the thermal radiation signal from the surface of a multilayered sample. There CVD SiC film 

samples and a SiO2 film sample on a silicon substrate were characterized using the amplitude 

method. The determined thermal conductivity based on the amplitude method is 3.58, 3.59, and 

2.59 W/m·K for SiC sample 1 to 3, respectively. The accuracy of the amplitude method was 

verified by comparing it with the reliable phase shift method. The resulting thermal conductivity 

of all SiC samples from the two methods agreed well with each other. For the SiO2 film on Si 

substrate, the thermal conductivity is measured to be 1.68 W/m·K which is a little higher than 

that determined by the phase shift method: 1.31 W/m·K. The normalized amplitude (Anor) 

defined in our amplitude method is closely related to the effusivity of the film and substrate. The 

ratio of Anor at a sufficiently high frequency to that at a low frequency provides a sound estimate 

of the effusivity ratio of the film to the substrate. In addition, the non-sensitive nature of thermal 

contact resistance in the amplitude method was observed through studying the sensitivity of 

parameters. The reason for weak sensitivity has been specifically discussed with the expression 

and physical meanings of interfacial transmission matrix. However, this feature allows for the 

amplitude method to fit the thermal conductivity of samples with little effect from the interfacial 

resistance in multilayered samples, and provides a reliable alternative to study the 

thermophysical properties of films in the thickness direction. 
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6.1.2. Cross-plane thermal transport in spider silk films 

This study focused on the thermal transport capacity in the thickness direction for fresh 

films and HFIP films cast with major ampullate liquid silk protein of two spiders, N. clavipes and 

L. hesperus. Confocal Raman spectroscopy was conducted to characterize the structures of these 

samples, and the thermal properties were measured by using the PT technique. The fresh films 

had more crystalline secondary protein structures such as antiparallel -sheets than the HFIP 

films for N. clavipes, but both films had similar thermal conductivities. A few randomly 

distributed antiparallel -sheets in the fresh film had nearly no effect on the thermal conductivity. 

For L. hesperus, the films primarily consisted of -helices and random coils. Since the fresh film 

had a higher concentration of -helices than the HFIP film, its thermal conductivity and thermal 

capacity were larger than those of HFIP films. However, the effect of a-helices on thermal 

conductivity increase is rather weak in comparison with its effect on heat capacity. Moreover, the 

thickened HFIP films were heated at different temperatures to study the effect of the heat 

treatment on the internal structure of spider silk films. -helices were formed during the heating 

process and the thermal effusivity increased when -helices appeared in the spectra for films of 

both kinds of spiders. Since the internal structures largely affect thermal conductivities of spider 

silk films, measuring thermal properties provides an alternative way to looking at the crystalline 

structures of spider silk proteins, their structure regularity, and energy coupling. 

 

6.1.3. Raman spectroscopy for nanostructure probing 

Raman spectroscopy was conducted for mechanically cleaved Si wafers of 270 and 7 μm 

thicknesses. When the probe laser point was moved from the center to the cleaved edge by a 

distance of 1.75 μm, a very surprising phenomenon was observed: the intensity of 521 cm
-1

 peak 
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increased abnormally, up to 100%. Our careful study of the surface morphology near the edge by 

using AFM and SEM did not reveal change on the Si surface to explain such an abnormal 

intensity increase. Also, the out-of-focus effect was ruled out based on the observed wavenumber 

change and linewidth broadening. According to the Raman wavenumber change, the crystalline 

size within the Si wafer was evaluated. It changes from 20 to 10 nm when the laser point is 

moved from the center to the cleaved edge. Meanwhile, both the linewidth and wavenumber 

changed by about 2 and 4 cm
-1

, respectively. If instrument and surface effects are well defined, 

the change of Raman intensity could provide a sensitive and complementary way to characterize 

grain size. 

 

6.1.4. Time-domain differential Raman for thermal probing  

In this work, a time-domain differential Raman technology was successfully developed 

for probing and characterizing transient thermal transport in a tipless Si cantilever along the 

length direction. A physical model was first developed for describing the temperature evolution 

in the cantilever against the increased heating time. The variation of the Si Raman spectrum was 

also correlated with the normalized temperature rise through developing a precise physical model 

for Raman spectrum reconstruction. The thermal diffusivity of the cantilever was determined at 

9.17×10
-5

, 8.14×10
-5

, and 9.51×10
-5

 m
2
/s by fitting the variation of Raman peak intensity, 

wavenumber, and peak area against heating time. To evaluate this new technique, the real 

temperature rise (timely-and-spatially averaged for the thermal diffusivity) was calculated at 14 

K. The corresponding reference thermal diffusivity ref is 8.66×10
-5

 m
2
/s. All three determined 

results were very close to the reference value. The deviation was induced by the inaccurate 

definition of the initial state and the heat induced deflection and out-of-focus effect. The most 
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important advantage of the TD Raman technique is that the specific temperature of the sample at 

any instant is not needed to study its thermal transport. Only the normalized variation of the 

temperature rise is needed. Thus no calibration was conducted in this work. The normalized 

variation in the Raman intensity and wavenumber can be directly and accurately analyzed to 

determine the thermal diffusivity of the sample. 

 

6.2. Future work: extended application of TD Raman 

The TD Raman has successfully probed the transient thermal transport in a cantilever and 

characterized its thermal diffusivity without knowing the real temperature in the tipless Si 

cantilever (1D model). TD Raman can also be used for characterizing 2D or bulk materials 

besides 1D structure, if the lower limit of the excitation period could be even shorter. Currently, 

the minimum pulse width could be set to 260 ns, since the intrinsic rising time of the modulated 

laser pulse is 130 ns. It is too long to probe the transient thermal process in bulk materials, such 

as Si. On the other hand, the requirement of a sound Raman spectrum with the combination of a 

fixed relaxation time and the shortest excitation period (tr = 10 ms and te = 20 s) limits the 

further reduction of excitation cycle. Theoretically, the shortest excitation time of 260 ns could 

work if the integration time of the spectrum acquisition is long enough, the resulting stage 

drifting and environment vibrations, however, could not be negligible. They will significantly 

affect the precise measurement of the initial state and therefore increase the experimental errors 

in the determined thermal diffusivity. An ultrafast laser source (picosecond) is preferred in future 

to reduce the minimum excitation time, to increase the TD Raman probing capacity, and to 

further broaden its applications to bulk materials. 
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In addition to characterizing the thermophysical properties of bulk materials, TD Raman 

is also promising in probing the thermal transport across interfaces. Compared with our previous 

Raman technology, TD Raman overcomes the drawbacks of other Raman thermometry 

techniques and has the capacity of characterizing the interfaces of high thermal conductance. To 

manifest the advantage of TD Raman, a laser irradiates an interface composed of a top layer and 

a substrate. Both the top layer and the bottom substrate will be heated by the laser. The 

temperature rising rates, however, are different in the two substances due to their different 

thermal diffusivities, and lead to a temperature difference across the interface. The interface 

thermal conduction happens immediately and soon reaches the steady state leading to a constant 

interfacial temperature difference, while both the top layer and the substrate need more time to 

reach the steady state. 

 

In the case of studying the interface of small contact thermal resistance, a large thermal 

energy input is necessary to generate a detectable temperature difference across the interface. For 

the measurement at the steady state, like most Raman thermometry techniques do, the large 

thermal energy is inevitably accumulated over the spectra integration time in the top layer. The 

resulting high temperature rise will damage the top layer, especially the one with a low thermal 

conductivity. In contrast, using a transient Raman laser, the measurement of the interface thermal 

conduction can be done in the duration when the interface has been thermally steady, yet the 

layer and the substrate do not reach the steady state. The thermal energy accumulation will be 

interrupted by the followed relaxation period that prevents the layer’s temperature from rising 

too high. Meanwhile the high repetition rate of the ultrafast laser will guarantee the sufficiently 
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strong signals in the Raman spectra. This remarkable feature will widely broaden the application 

of the TD Raman to the study of interface between 2D materials and substrates. 
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