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ABSTRACT 

Advanced biofuel is a promising replacement to fossil fuels for the purpose of protecting 

the environment and securing national energy supply, but the high cost of producing advanced 

biofuels makes it not as competitive as petroleum-based fuels. Recent technology developments 

in biomass fast pyrolysis and bio-oil upgrading introduced several innovative pathways to 

convert bio-oil into other commodity products, such as bio-asphalt, bio-cement, dextrose and 

benzene, toluene, xylene (BTX). Before commercializing these products, a comprehensive 

techno-economic analysis should be employed to examine the economic feasibility of producing 

them. This thesis compared the economic performance of biofuels, biochemicals, and 

hydrocarbon chemicals portfolios and optimized the product selection of an integrated bio-

refinery. 

Based on a fast pyrolysis and bio-oil fractionation system, three product portfolios were 

proposed: biofuels (gasoline and diesel), biochemicals (bio-asphalt, cement and dextrose) and 

hydrocarbon chemicals (BTX and olefins). The production process, operating costs and capital 

costs were simulated based on the model data, experimental data, and literature data. Minimum 

product selling price (MPSP), maximum investment cost (MIC) and net present value (NPV) 

were used to evaluate and compare the economic performance of three portfolios with a 10% 

internal rate of return (IRR). A bio-refinery concept integrating all products was proposed to 

improve the flexibility to respond to changes in the market prices of the proposed products. The 

ratio of bio-oil upgrading to different product groups was manipulated to maximize the NPV 

under different price situations. 

Several major conclusions were drawn from this study. Due to high capital costs and 

operating costs associated with biofuels production, hydrocarbon chemical and biochemical 



vii 

 

products can be attractive bio-refinery products. However, there has been limited development of 

the hydrocarbon chemical and biochemical product technologies. This study attempts to address 

this risk by evaluating the uncertainty in the NPV and MIC. In particular, the biochemicals 

scenario has the highest MIC, which indicates that it has the greatest potential for remaining 

profitable with increased capital investment. The hydrocarbon chemicals production yields 

relatively high revenues and is more robust to fluctuations in market prices based on historical 

data. Biofuels production is economically attractive only when the price of transportation fuels is 

at historically high values. 
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CHAPTER 1. GENERAL INTRODUCTION 

In the 20th century, most research efforts were dedicated to develop petroleum, coal and 

natural gas based commodity products to meet the growing energy demand of the increasing 

population [1]. Currently, fossil fuels and products are not considered environmentally friendly 

and sustainable for human development. In addition, the dependence on foreign petroleum has 

become a concern for energy policymakers. The desires of finding a clean and sustainable energy 

source have driven more efforts and investment into developing substitutes of fossil fuels. 

Biofuels, as a promising substitute, have attracted increasing attention for its sustainability, 

resource availability and positive economic effects. 

Biofuel is any type of liquid or gaseous fuel that is derived from recent biological 

materials [2]. Recent biological materials are also called biomass, which can be energy crops, 

wood residues, agricultural residues, municipal waste and others. Based on the source of 

biomass, biofuels are classified into first generation biofuels, which are produced from sugarcane 

and corn starch, and second generation biofuels, which are derived from non-food biomass. The 

biomass potential in the U.S. is 1.1-1.6 billion tons per year and it could supply energy content of 

over one-third of total petroleum consumption in the U.S. if they are fully taken advantage of [3]. 

Due to the accessibility of biomass, biofuels can be produced in every country and thus have the 

potential of reducing foreign energy dependence. Rural areas that have abundant biomass 

resources will be benefitted greatly from the development of biofuels. Several researches have 

shown the sustainability of biofuels production and demonstrated that greenhouse gas (GHG) 

emissions can be reduced by replacing petroleum-derived fuels with biofuels [4–7].  

In the United States, biofuel production received great support from the government in 

the form of favorable policies. Petroleum industry received a federal tax credit which encouraged 
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the blending of ethanol with gasoline in 1978 and biodiesel received a similar tax credit in 2004 

[8]. In order to stimulate the biofuel production, the U.S. Environmental Protection Agency 

(EPA) released the Renewable Fuel Standard (RFS) in 2005 which increased the minimum 

amount of biofuel production from 4 billion gallons in 2006 to 7.5 billion gallons in 2013 [9]. 

The Energy Independence and Security Act (EISA) of 2007 replaced the RFS with a more 

comprehensive RFS2, which increased the total renewable fuel requirement from 9 billion 

gallons in 2008 to 36 billion gallons per year by 2022 [9]. EISA also divided renewable fuel into 

four categories based on the life-cycle GHG emission reductions and set volume requirement for 

each of them. At least 21 billion gallons of renewable fuel should be advanced biofuels and no 

more than 15 billion gallons should come from corn ethanol or biodiesel [9]. Cellulosic biofuel, 

as next-generation biofuel, was mentioned specifically in the RFS2 which mandates the 

production of cellulosic biofuels from 100 million gallons in 2008 to 16 billion gallons in 2022 

[9]. 

Cellulosic biofuel is derived from lignocellulosic biomass, which includes agricultural 

residues, virgin biomass, energy crops, and municipal solid waste. Among different conversion 

pathways of cellulosic biomass, the thermochemical pathway has received high attention for its 

ability to produce hydrocarbons[10]. Thermochemical conversion usually produces multiple and 

complex products in a short reaction time. Sometimes catalysts are added to improve the quality 

or spectrum of the product [11]. Combustion, gasification, pyrolysis, and solvolysis have been 

investigated as thermochemical pathways for biomass conversion [12–18]. A variety of liquid 

and gaseous products can be produced from thermochemical processing of biomass as shown in 

Figure 1. 
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Figure 1. Strategies for production of fuels from lignocellulosic biomass[19] 

Pyrolysis was used for charcoal production thousands of years ago, but only in the past 

30 years fast pyrolysis has become of a considerable interest in biofuel production [11]. The 

liquid product from fast pyrolysis, which is also called bio-oil, offers this technology significant 

logistical and economic advantages over other thermochemical conversion methods because the 

liquid product can be stored or transported to where it is needed [20]. Fast pyrolysis is a rapid 

thermal decomposition of organic compounds at moderate temperature in the absence of oxygen. 

Liquids, solids and gases are produced in the process and the product distributions vary with 
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biomass type, pyrolysis temperature and vapor residence time. Short vapor residence time, up to 

2 seconds, and reaction temperature of 500 °C favor the production of liquid products. The yields 

of bio-oil can be up to 75 wt% of dry biomass feed [21]. Bio-oil can be directly used for heat and 

power generation or subsequently upgraded to biofuels and chemicals. Charcoal, one of the by-

products, can be burned with process gases to provide process heat or can be upgraded to biochar 

for soil amendment. 

Mohan et al. gave the details about fast pyrolysis process from biomass to bio-oil and 

introduced the application of bio-oil [22]. The high viscosity, chemical instability, high oxygen 

content and corrosiveness make bio-oil incompatible with current fuel system [23]. Further 

upgrading is required to make bio-oil more valuable and available in transportation fuels or 

chemical markets. Renewable transportation fuels are the focus of current research efforts in 

finding a substitute to fossil fuels. Elliott et al. [24] developed several catalyst formulations for 

hydroprocessing of bio-oil to produce hydrocarbon products, which can be used to supplement 

petroleum refinery feedstock. Stevens et al. [25] designed a plant that produces infrastructure-

ready renewable gasoline and diesel from biomass through fast pyrolysis, hydrotreating and 

hydrocracking and evaluated its economic feasibility. Susanne et al. [26] designed a process and 

evaluated the economics for the conversion of lignocellulosic biomass to hydrocarbon via fast 

pyrolysis and hydrotreating bio-oil pathway. Commodity chemicals always have high market 

value and thus many investments have been attracted into the research of producing chemicals 

from renewable resources. Vispute et al. [27] developed five catalytic hydroprocessing of whole 

bio-oil and aqueous phase bio-oil pathways to produce aromatic hydrocarbons and light olefins. 

Ru/C and Pt/C were chosen as the catalysts for hydroprocessing and zeolite was the catalyst of 

fluid catalytic cracking (FCC). Cheng et al. [28] developed a bifunctional Ga/ZSM-5 catalyst for 
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fast pyrolysis of lignocellulosic biomass to produce benzene, toluene and xylenes (BTX). 

Hydrogen is another main product that can be produced from biomass. Takanabe et al. [29] 

investigated a pathway to generate hydrogen from bio-oil via steam reforming over Pt/ZrO2 

followed by gas-shift reaction. Vagia and Lemonidou [30] analyzed the thermodynamics of 

hydrogen production via steam reforming the aqueous faction of bio-oil and concluded that 

hydrogen from bio-oil steam reforming is competitive with hydrogen from natural gas steam 

reforming. Hydrogen generation via aqueous phase bio-oil steam reforming can be integrated 

into bio-oil upgrading process to provide hydrogen for deoxygenation [31]. Sugars are the most 

important component in the bio-oil and have high value, they can be upgraded to various 

hydrocarbon. Kuzhiyil et al. [32] developed an acid treatment method to increase the sugar yields 

during fast pyrolysis. Rover et al. [33] found a two-stage water wash method of removing 

pyrolytic sugars from bio-oil and detoxification method to get clean sugars. Charcoal is the main 

by-product in fast pyrolysis process and there are several publications investigating the 

production of biochar from biomass [34,35]. Some studies also explored some new routes for 

bio-oil utilization, for example asphalt and gluconic acids [36,37]. 

Numerous studies have already been conducted to explore the potential of lignocellulosic 

biomass fast pyrolysis to promote the commercialization cellulosic biofuels. To investigate the 

economic feasibility of advanced biofuel refinery, techno-economic analysis of fast pyrolysis 

have been widely conducted. Wright et al. [38] examined corn stover fast pyrolysis to bio-oil 

with subsequent upgrading to naphtha and diesel range fuel and $3.09 along with $2.11 per 

gallon of gasoline equivalent value was achieved for fuel products. Brown et al. [39] performed 

an updated techno-economic analysis of fast pyrolysis and hydroprocessing of biomass to 

transportation fuels and electricity based on the previous study. In this study, the minimum 
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product selling price (MPSP) of $2.57 per gallon of gasoline and diesel was achieved. Zhang et 

al. [40] modeled a woody biomass fast pyrolysis refinery that produced monosaccharides, 

hydrogen and transportation fuel, and examined its economic feasibility. Internal rate of return 

(IRR) method was used to assess the economic performance and 11.4% was achieved based on 

the market price of products. Thilakaratne et al. [41] compared two catalytic pyrolysis pathways 

of converting microalgae into drop-in fuels with different feedstock dewatering methods. The 

MPSPs of $1.8 per liter and $1.49 per liter were calculated for two pathways. Brown et al. [42] 

evaluated the economic feasibility of five fast pyrolysis and bio-oil upgrading scenarios in which 

commodity chemicals were produced through integrated catalytic processing (ICP). To optimize 

the bio-refinery concept, several studies have investigated fast pyrolysis bio-refinery using life 

cycle assessment method and developed optimization methods for fast pyrolysis products 

selection and supply chain management [43–47]. 

Numerous studies have investigated the economic feasibility of cellulosic biofuels 

production. Normally the transportation fuel production is the intended product of a bio-refinery, 

but the fluctuations in petroleum prices make it difficult to guarantee the profit of the refinery. 

There are more alternative products generated from fast pyrolysis which might offer the bio-

refinery more economic benefits and stability. The objective of this research is to explore the 

economic performance of advanced bio-refineries with multiple categories of products based on 

the state-of-the-art fast pyrolysis and bio-oil upgrading technologies. The organization of the 

thesis is as follows: 

In Chapter two, we conduct techno-economic analysis of three product portfolios from 

biomass fast pyrolysis: transportation fuels, biochemicals and hydrocarbon chemicals. The fast 

pyrolysis process is simulated in the Aspen PlusTM software and products yields are calculated 
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based on model, experimental, and literature data. A modified discounted cash flow rate of return 

spreadsheet is used to summarize the production process consumption, estimate the capital cost 

and annual operating costs, calculate the net present value and minimum fuel selling price, and 

finally determine the economic feasibility. The uncertainty analysis of bio-refinery net present 

value is implemented using Monte-Carlo method based on products historical prices. 

Based on the previous work in chapter two, a bio-refinery concept that integrates three 

product categories is proposed. Multiple product selection strategy gives the bio-refinery more 

flexibility when the market for the intended product is changing. In order to find the best product 

combination based on different product price situations, a Mathematica model is created to 

optimize the distribution of products and find the highest net present value. In the meantime, the 

capital costs and annual operating costs are adjusted by the ratio of product groups. The optimal 

product selection under different market situations is determined. 

The thesis is summarized and concluded in chapter four. Some thoughts for future 

research directions are given in the concluding chapter. 
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CHAPTER 2. COMPARATIVE TECHNO-ECONOMIC ANALYSIS OF ADVANCED 

BIOFUELS, BIOCHEMICALS, AND HYDROCARBON CHEMICALS PRODUCTION VIA 

THE PYROLYSIS PLATFORM 

A paper to be submitted to Biomass and Bioenergy 

Wenhao Hu, Qi Dang, Mark M. Wright, Marjorie Rover, Robert C. Brown 

 

Abstract 

This study evaluates the techno-economic feasibility of three product portfolios from a 

biomass fast pyrolysis bio-refinery: biofuels, biochemicals, and hydrocarbon chemicals. The bio-

refinery design is based on the fast pyrolysis and five-stage recovery system developed by Iowa 

State University. It can produce drop-in transportation fuels; infrastructure materials such as bio-

asphalt and bio-cement, and dextrose in the biochemicals scenario; and hydrocarbon aromatics 

and olefins are produced in the hydrocarbon chemicals scenario. The bio-refinery converts 65.87 

wt% of corn stover biomass into bio-oil. The bio-oil is fractionated into five stage fractions and 

upgraded through different pathways based on the chosen portfolio. Minimum product selling 

prices (MPSP) are calculated based on a 30-year discounted cash flow rate of return analysis 

with a target 10% internal rate of return (IRR).  

We estimated MPSPs of $3.09/gallon for biofuels, $461.32/MT for biochemicals, and 

$1113.83/MT for hydrocarbon chemicals. Monte-Carlo analysis is used to determine maximum 

investment cost (MIC) and the net present value (NPV) distribution based on 20-year historical 

prices. The mean MICs are estimated to be $162 MM, $525 MM and $283 MM for biofuels 

scenario, biochemicals scenario and hydrocarbon chemicals scenario, respectively. The net 

present value distributions are $-243.42±268.9 MM for the biofuels scenario, $412.03±374.1 
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MM for the biochemicals scenario, and $82.08±16.6 MM for the hydrocarbon chemicals 

scenario. Biofuels, biochemicals and hydrocarbon chemicals portfolios have 18%, 100% and 

100% chance that net present values are positive respectively, which indicates that producing 

biochemicals and hydrocarbon chemicals could be more competitive than producing biofuels 

alone. 

 

Introduction 

Global concerns over climate change and energy resources have driven interest in 

replacing fossil products with clean and sustainable alternatives. Biomass is a suitable resource 

for the production of a variety of fuels, chemicals, and infrastructure (asphalt and cement) 

materials via biochemical and thermochemical processing. Through fast pyrolysis, one of several 

thermochemical platforms, we can convert biomass into products that can substitute those 

derived from fossil fuels. Previous studies have shown that biomass fast pyrolysis produces bio-

oil which can be upgraded into gasoline and diesel, chemicals, and infrastructure materials [1–4]. 

Fast pyrolysis is the rapid thermal decomposition of organic materials into liquid, vapor 

and solid products in the absence of oxygen at temperatures of about 500 °C with residence time 

of 0.5 to 2 seconds [5–7]. The selectivity of fast pyrolysis products depends on the composition 

of biomass, temperature, and reaction residence time [6]. The liquid product is commonly known 

as bio-oil, and it contains oxygenated organic compounds. The gases, also known as non-

condensable gases (NCG), are a low-Btu natural gas substitute. The solids are called bio-char, 

and they include carbon, alkali and alkaline earth metals, and ash. Each of these products can be 

commercialized into various markets, but there is currently no large-scale commercial market 

based on these systems. 
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There are several studies that have evaluated the commercialization of multiple fast 

pyrolysis products. Wright et al. [1] examined two 2000 tons corn stover bio-refineries to 

produce naphtha and diesel range fuels with on-site hydrogen generation or merchant hydrogen. 

With capital costs of $911 and $585 million, $6.55 and $3.41 per gasoline gallon equivalent 

(gge) product values was achieved. Brown et al. [8] presented a pathway for fast pyrolysis and 

hydroprocessing of biomass to transportation fuels and electricity and achieved minimum 

product selling price (MPSP) of $2.57/gal which was competitive with petroleum. Zhang et al. 

[2] explored the economic feasibility of a 2000 dry metric ton biomass per day fast pyrolysis 

facility producing monosaccharides, hydrogen and transportation fuels. Based on the market 

price of products, 11.4% internal rate of return was achieved. Brown et al. [3] evaluated the 

economic feasibility of producing biobased commodity chemicals based on fast pyrolysis facility 

with five different catalytic upgrading processes. There are hundreds of compounds in bio-oil 

[9]. This property makes bio-oil available to be upgraded towards specialty product. Santhanaraj 

et al. [10] presented a novel route to produce the specialty chemical gluconic acid from biomass 

fast pyrolysis oils without additional by-products. Bio-char is a very important by-product in the 

fast pyrolysis facility because of its potential agronomic and carbon sequestration value [11]. 

Laird et al. [12] gave a review of pyrolysis platform for coproducing renewable fuels and biochar 

which is a promising means of producing large amount of fuels while reducing emission of 

greenhouse gases at the same time. Brown et al. [13] estimated the profitability of producing 

biochar through slow pyrolysis and fast pyrolysis and concluded that coproducing gasoline and 

biochar via fast pyrolysis was commercially feasible. Zhang et al. [14] utilized a mixed-integer 

nonlinear programming model (MINLP) to determine the biomass supply, facility selection and 

optimal distribution of different products for an integrated fast pyrolysis bio-refinery supply 
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chain. A few studies have developed optimization frameworks for the selection of fast pyrolysis 

products within a supply chain framework [15–17] 

In this study, a techno-economic analysis is conducted to evaluate the minimum product 

selling price (MPSP), maximum investment cost (MIC) and net present value (NPV) of multiple 

product portfolios from a biomass fast pyrolysis bio-refinery. The analysis employs recent 

experimental data [9, 18] to compare the commercialization potential of hydrocarbon chemicals 

(benzene, toluene, and xylene (BTX)) and biochemicals (bio-asphalt, bio-cement, and dextrose) 

to the traditional fast pyrolysis to fuels approach. Previous studies have evaluated the production 

of multiple products from a single fast pyrolysis bio-refinery including chemicals. To our 

knowledge, this is the first study to compare the production of our biomass-based biochemicals 

and hydrocarbon chemicals to fuels production via fast pyrolysis. By comparing their MPSPs, 

MICs and NPVs, we seek to determine favorable market conditions for the commercialization of 

a multi-product fast pyrolysis bio-refinery.  

The structure of this article is as follows: first we describe the three portfolio options for 

fuels, biochemicals, and hydrocarbon chemicals; second, we evaluate the MPSPs for each of the 

portfolios; third, we determine the MIC and NPV uncertainties of the various scenarios based on 

historical market prices. 

 

Methodology 

Red oak is employed as the biomass feedstock in this study, and the bio-refinery is 

designed to process 2000 dry metric ton of red oak per day. The properties of the red oak 

feedstock are provided in Table 1. There are five basic processing areas: biomass pretreatment, 

biomass pyrolysis, solid removal, bio-oil fractionation, bio-oil upgrading and co-generation. The 
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following analysis will be divided into three parts: bio-oil production and collection, bio-oil 

upgrading and bio-refinery economic analysis. 

Table 1. Properties of Red Oak[19]  

Constituent (wt %) Ultimate Analysis (wt %) Proximate Analysis (wt %) 

Hemicellulose 20.0 Carbon 48.7 Moisture 3.86 

Cellulose 29.8 Hydrogen 6.8 Volatiles 81.9 

Lignin 43.3 Nitrogen 0.072 Fixed Carbon 12.56 

Extractives 3.3 Oxygen 44.03 Ash 0.39 

Ash 0.3 Sulfur 0.002 Other 1.28 

Other 3.3 Ash 0.39   

 

Bio-oil production and collection 

In the biomass pretreatment section, biomass is first chopped, dried and ground to 3 mm 

diameter particles [1]. The chopping process grinds biomass into 10 mm particles in order to 

improve the drying performance by increasing the particle surface area and reducing the heat 

input required to remove moisture. The grinding process is employed to enhance the fast 

pyrolysis performance in a fluidized bed reactor [1].  The drying process is required because high 

moisture content in biomass can contribute to lower products yields. In this study, we assume the 

moisture of red oak is reduced from 25 wt% to less than 7 wt%. For the biochemicals scenario, 

an additional acid treatment is applied to the chopped biomass in order to improve the sugar 

yields during fast pyrolysis. A sulfuric acid solution is adopted in this paper with an acid to water 

mass ratio of 1:1 [20]. 
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Figure 2. Schematic of bio-oil conversion system 

Pretreated biomass then enters the fluidized bed reactor where fast pyrolysis takes place. 

The pyrolyzer is operated at around 500 °C under ambient pressure without oxygen. Biomass is 

decomposed into a mixture of pyrolysis vapor, non-condensable gases, aerosols, char and ashes 

in a very short residence time. Before the vapor is condensed and collected as bio-oil, it passes 

through a high volume and efficient cyclone where solids and ash are removed at 95% 

efficiency. Part of the bio-char collected in this section is burned in the combustion section to 

provide process heat for biomass pretreatment and pyrolysis. 
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Figure 3. Schematic of bio-oil fractionation system 

Bio-oil is recovered as distinct stage fractions using a five-stage bio-oil fractionation 

system developed at Iowa State University as shown in Figure 3 [9]. Stage fraction (SF) 1&2 are 

designed to recover levoglucosan and other compounds with high dew points, so SF 1&2 consist 

of sugars and the majority of water-insoluble content which consists primarily of phenolic 

oligomers [9]. SF 1&2 are also designated as heavy ends. SF 3&4 are designed to collect 

monomeric phenols and other compounds with similar dew points. Therefore most of SF 3&4, 

which are called mid ends, are phenols and alkylated phenols as well as part of the acids [9]. 

Most of the acids, furans, water, and part of the monomeric phenols are collected in SF 5, which 

is also named light ends[9]. Non-condensable gases (NCG) from this section are combusted to 

provide heat for whole system.  

Bio-oil contains more than one hundred compounds and five-stage fractionation system 

divides bio-oil into stage fractions with diverse chemical and physical properties, which makes it 

possible to upgrade them into various products. The chemical compounds detected in bio-oil 

fractions using GC/MS are given in Table 2 [9]. In this paper, different target products will be 

evaluated in different portfolios according to the properties of each stage fraction. 
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Table 2. Chemical compounds detected in bio-oil fractions using GC/MS 

Levoglucosan Additional phenolic compounds 

Acetic acid    Phenol 

Furans    2-Methylphenol 

   2-Furan methanol    3-Methylphenol 

   5-Methyl-2-furancarboxaldehyde    4-Methylphenol 

   3-Methyl-2(5H)-furanone    2-Ethylphenol 

   Furfural    3-Ethylphenol 

   5-Hydroxymethyl-2-furancarboxaldehdye    2.4-Dimethylphenol 

Dimethoxy phenols    2,5-Dimethylphenol 

   2,6-Dimethoxyphenol    3,4-Dimethylphenol 

   l-(4-Hydroxy-3,5-dimethoxyphenyl) ethanone Benzenediol 

   4-Methyl-2,6-dimethoxyphenol    Hydroquinone 

Monomethoxy phenols Ketones 

   2-Methoxyphenol    l-Hydroxy-2-propanone 

   2-Methoxy-4-methylphenol    3-Hydroxy-2-butanone 

   4-Ethyl-2-methoxyphenol    2-Methyl-2-cyclopenten-1-one 

   Eugenol    2H-pyran-2-one 

   Isoeugenol    3-Methyl-1,2-cyclopentanedione 

   Vanillin  

 

 

Bio-oil upgrading 

To produce transportation fuels, first four stage fractions (SF1-SF4) go through a two-

stage hydroprocessing process [21]. First-stage hydroprocessing happens in the reduction reactor 

under 140 °C and 121 bar, long chain molecules and oligomers are broken down to monomers. 

Under 370 °C and 121 bar, monomers are hydrotreated into gasoline and diesel range 

hydrocarbons in the second stage reactor. This hydrotreated bio-oil is called stabilized bio-oil. 
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Then a refining process is applied to separate gasoline and diesel. Distillation bottoms will be 

hydrocracked into gasoline and diesel in a hydrocracker. 
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Figure 4. Schematic of biofuels production 

In the biochemicals portfolio, dextrose, bio-asphalt and bio-cement are the main products. 

Most of the water-soluble sugars exist in the heavy ends fractions [9]. A simple two-stage water 

washing and detoxification process can recover a stream with high concentration of these sugars 

[22]. These sugars can be hydrolyzed to monosaccharide using 400mM sulfuric acid solution 

[23]. Dextrose equivalent (DE) value is used to differentiate glucose-rich syrup and dextrose. 

Dextrose’s DE is greater than 60 [24], while glucose syrup has 38-44 DE [25]. Sugar analysis 

shows that the pyrolytic sugars have more than 90% of monomers, and it is high enough to 

consider the syrup as dextrose even though the DE value is undetermined [2]. Sugar yields 

achieve around 15 wt% of the bio-oil and 16.9 wt% yield can be achieved with additional 

biomass pretreatment [2,23]. The raffinate from heavy ends washing is water-insoluble phenolic 

oligomers. These products present similar performance to asphaltic bitumen, which means it has 

the potential to replace the bitumen or used as the modifier of a bituminous binder [26]. Due to 

the scarcity of commercialization data of this technology, we assume this product value is similar 

to fossil-based asphalt. Light ends are recovered as an aqueous phase, which contains large 

quantities of water and light oxygenated organic compounds. The major constituent is acetic 

acid, which can be converted into calcium acetate by adding limestone. This acetate can be used 
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to produce gelled fuel by mixing it with ethanol or can be combined with urea and seeded with 

urease-producing bacteria, then sprayed on soil or other pavement materials to produce concrete. 

Both products need further study for commercialization. In this study, calcium acetate is sold as 

the final product. 
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Figure 5. Schematic of biochemicals production 

Commodity chemicals, such as BTX have high market value. In the hydrocarbon 

chemicals scenario, aromatic hydrocarbon (BTX, ethylbenzene) and olefins (Ethylene, 

propylene, Butylene) are chosen as the target products. SF 1&2 go through the same water 

washing process to separate water-soluble fraction, then the water-soluble fraction is mixed with 

the remaining stage fractions for upgrading. Two-stage hydrotreating followed by FCC of 

aqueous phase bio-oil upgrading method which is developed by Vispute et al. [27] is adopted. 

First stage hydrotreating happens at 398 K and 100 bar hydrogen pressure over Ru/C catalyst in a 

low temperature hydrotreator while the second stage hydrotreating is carried out at 523 K with 

100 bar hydrogen pressure over Pt/C catalyst in a high-temperature hydrotreator. Subsequent 

fluidized catalytic cracking (FCC) occurs at 873 K over HZSM-5 catalyst. Hydrogen is 

purchased near-site for hydroprocessing.  
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Figure 6. Schematic of hydrocarbon chemicals production 

Table 3 gives the hydrogen consumption, carbon yields and carbon selectivity for each 

product. According to the model data, the empirical formula for SF 1&2 is CH1.34O0.51. Here we 

assume the elements are uniformly distributed in the water-insoluble and water-soluble fractions. 

The carbon mole number of aqueous phase bio-oil is summarized from the process model for the 

final product yield calculation. Raffinate from SF 1&2 washing is sold as boiler fuel at coal 

price. In the MPSP analysis, the raffinate price is set to $60/MT as the boiler fuel. In the 

uncertainty analysis, we employ coal prices stochastically chosen from the Monte-Carlo 

simulation. 

Table 3. Final products carbon yields and carbon selectivity[27] 

Process Hydrogen consumption 

(g/100 g of carbon in 

feed) 

Carbon yields and carbon selectivity (%) 

Ru/H2+Pt/H2+Zeolite 

Aromatics Olefins 

8.1 

18.3 43.0 

Carbon selectivity (%) 

Benzene 27.0 Ethylene 32.0 

Toluene 49.3 Propylene 53.8 

Xylene 19.1 Butylene 14.2 

EthylBenzene 2.3   
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Bio-refinery economic analysis 

Equipment size and cost estimation are calculated from Aspen Economic Analyzer 

software and scaled for different scenarios. Peter and Timmerhaus factors for installation cost are 

employed to estimate the total project cost[28]. The type of depreciation is double declining 

balance (DDB), and the depreciation period for the general plant and steam system are 7 and 20 

years respectively. The bio-refinery construction period is 2.5 years and capital investment spent 

in this period is 8% for first year, 60% for second year and 32% for third year. The revenues, 

variable costs and fixed cost during start-up years are 50%, 75% and 100% of normal. Income 

tax rate is set to be 39%. A Lang factor of 5.6 is used to calculate the total project investment. A 

modified discounted cash flow rate of return (DCFROR) spreadsheet is employed to calculate 

the MPSPs of products for a target IRR of 10% over a 30-year period. MIC estimation is another 

value in which industry is interested to assess the maximum investment that should be invested 

into the project based on current market condition. Here we set the operating cost to a fixed value 

and use Monte-Carlo simulation to calculate MIC distribution using modified DCFROR 

spreadsheet based on historical prices with a target of 0 NPV and 10% IRR.  

Table 5 gives the details of operating variables employed in this paper. The feedstock is 

assumed to be $80/metric ton. Hydrogen price is assumed to be purchased near-site hydrogen 

production facility and set to be $1.5/kg. The natural gas and electricity prices are based on the 

averages for EIA 20-year price forecasts[29]. Sulfuric acid and limestone prices are collected 

online [30,31]. Char produced by facility is sold for $20/MT based on the low heating value of 

char. 

The market price of commodity products are unstable and fluctuate due to the market 

conditions so fixed product prices are insufficient to adequately estimate the economic potential 
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of a bio-refinery. To investigate the influence of these fluctuations, the historical market prices of 

commodity products over past 20 years (1995-2014) are collected and used to find their price 

distribution. Sample sets of 3000 random picked group product prices are incorporated into the 

DCFROR spreadsheet to calculate the bio-refinery NPV. Finally, NPV distributions are 

generated to illustrate the economic potential of bio-refinery. 

Table 4. Methodology for capital cost estimation for nth plant[28] 

Parameter Assumption 

Total purchased equipment cost (TPEC) 100% 

   Purchased equipment installation 39% 

   Instrumentation and controls 26% 

   Piping 10% 

   Electrical systems 31% 

   Buildings (including services) 29% 

   Yard improvements 12% 

   Service facilities 55% 

Total installed cost (TIC)  3.02 *TPEC 

   Engineering 32% 

   Construction 34% 

   Legal and contractors fees 23% 

Indirect cost (IC)  0.89 * TPEC 

  

Total direct and indirect costs (TDIC)  TIC + IC 

Contingency  20% of TDIC 

Fixed capital investment (FCI) TDIC + Contingency 

  

Working capital (WC)  15% of FCI 

Land use 6% of TPEC 

  

Total capital investment (with land)  FCI +WC + Land 
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Table 5. Material parameters employed in the evaluation 

Commodity Price 

Feedstock $80/MT  

Hydrogen $1.5/kg 

Natural gas $0.26/kg 

Pt/C $56.29/kg 

Ru/C $5.60/kg 

Zeolite $1.6/kg 

Sulfuric Acid $200.0/MT 

Limestone $17.0/MT 

Electricity $0.062/kWh 

Process water $0.52/MT 

Char $20/MT 

 

Results and discussion 

The bio-refinery uses red oak as feedstock, and it is designed to process 2000 metric tons 

dry biomass per day. The same pyrolysis and fractionation system is employed in all three 

scenarios, the system is modeled in the Aspen PlusTM software and the yields of stage fractions 

are summarized in Table 6. Model and process yields are simulated based on the experimental 

data from laboratory in Iowa State University. The total bio-oil yields is 65.87 wt% of dry 

biomass, which is within the range of previous studies. Char and NCG yields are 13.04 wt% and 

21.09 wt%, respectively. In the facility, all the NCG and 135 tons of char are burned in the 

combustor to provide process heat for the whole system. 

The yields of final products for each scenario are illustrated in Table 7. For the fuel 

scenario, 173,000 gal gasoline and diesel are produced per day. For the alternative scenario, 480 

tons per day infrastructure material and 222 tons per day dextrose syrup are produced. In the 
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chemical scenario, the total yields of olefins and aromatics are 246.2 tons per day and 87.9 tons 

per day. 

Table 6. Stage fraction yields from Aspen Plus model 

 Mass yields based on 2000 MT dry biomass (MT) wt % (dry biomass base) 

SF1 274.25 13.71% 

SF2 408.29 20.41% 

SF3 86.82 4.34% 

SF4 33.01 1.65% 

SF5 515.1 25.76% 

Total Bio-oil 1317.47 65.87% 

Char 260.8 13.04% 

NCG 421.73 21.09% 

 

Table 7. Final products yields for three portfolios 

Products yields for three scenarios based on 2000 MT dry biomass 

Biofuels 
Gasoline 96,790 gal 

Diesel 76,144 gal 

Biochemicals 

Asphalt 426.00 MT 

Dextrose 222.65 MT 

Calcium Acetate 52.99 MT 

Hydrocarbon 

Chemicals 

Butylene 32.73 MT 

Ethylene 73.89 MT 

Propylene 124.24 MT 

Benzene 24.63 MT 

Toluene 45.47 MT 

Xylene 17.76 MT 

Ethylebenzene 2.14 MT 

Indene 0.45 MT 

Naphthalene 0.45 MT 

Styrene 12.26 MT 
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The fixed capital investments for the three scenarios are $317, $162 and $216 million, 

respectively. The details of them are shown in Figure 7. The differences in the investments are 

mainly because of the high costs of the bio-oil upgrading process. The installed equipment cost 

for upgrading process are $100 and $35 million for biofuels scenario and hydrocarbon chemicals 

scenario, respectively. The upgrading process of the biofuels scenario includes bio-oil 

stabilization, refining and hydrogen generation. The installed costs of these three sections are 

$23.2 MM, $13.4 MM and $63.3 MM. For the hydrocarbon chemicals portfolio, the installed 

equipment cost of the upgrading process is $35 MM and consists primarily of hydroprocessing, 

FCC, and separation units. In this scenario, hydrogen is purchased instead of producing on-site, 

so the equipment investment is reduced while $10 million cost for hydrogen purchase is added to 

the annual operating cost. Upgrading processes are relatively simple in the biochemicals 

scenario, and several storage tanks are needed for sugar hydrolysis. The equipment cost for this 

section is included in the balance of plant cost.  

 

Figure 7. Fixed capital investment for three scenarios 
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The biofuels scenario has annual operating costs of $105 million, while the biochemicals 

scenario has annual operating costs of $68 million, and the hydrocarbon chemicals scenario has 

annual operating costs of $79 million. Feedstock, natural gas and hydrogen have higher impacts 

on the operating cost. To meet the 10% IRR rate, MPSP is calculated to be $3.09/gal for 

biofuels, $461.32/MT for biochemicals and $1113.12/MT for hydrocarbon chemicals. This price 

is the average price for the products in each scenario. Similar to the previous TEA analysis, 

products yields, fixed capital costs and biomass cost have higher impacts on the MPSP. Figure 8 

gives the detail compositions of the MPSP for three scenarios. 

 

Figure 8. Annualized operating costs for three scenarios 
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MPSPs give us a criterion of the product prices, but in practice market prices are volatile 

throughout the project’s 30-year life. The fluctuation of commodity products price will impact 

the NPV. Uncertainty analysis enables the evaluation of MIC and NPV changes due to product 

price changes. Monte-Carlo simulation is adapted in the uncertainty analysis. The changing 

variables in the Monte-Carlo analysis are the selling prices of main products. Figure 9 gives the 

price distribution of main products. Due to the scarcity of price information for chemicals, 

toluene and xylene prices are assumed to have the same distribution with benzene but different 

mean values. Other low yields hydrocarbon aromatics are sold at a mean price of benzene, and 

olefins are sold based on available price information from the literature in which toluene is 

$1186/MT and xylene is $1404/MT [32]. 

 

Figure 9. Products historical prices distribution 
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Three thousand facility maximum investment costs and net present values are generated 

from Monte-Carlo simulation. Through the analysis, the facility MICs for three scenarios are 

$162.14±181.3 MM for biofuels scenario, $524.69±308.7 MM for biochemicals scenario and 

$282.84±14 MM for hydrocarbon chemicals scenario. The facility NPVs for three scenarios are 

found to be $-243.42±268.9 MM for biofuels scenario, $412.03±374.1 MM for biochemicals 

scenario and $82.08±16.6 MM for hydrocarbon chemicals scenario. Figure 10 shows the 

probability density distribution of MICs and NPVs for the three scenarios.  

For the mean value of the MIC analysis. The MICs are $162 MM, $525 MM and $283 

MM for biofuels scenario, biochemicals scenario and hydrocarbon chemicals scenario, 

respectively. Compared to calculated capital cost, the MIC of biofuels scenario is much lower 

than the required capital cost while the MICs of biochemicals scenario and hydrocarbon 

chemicals scenario are higher than the required capital costs.  It means that fuels production has 

less potential to be profitable while biochemicals and hydrocarbon chemicals production have 

higher potential to be profitable and are more flexible.  

For the cumulative probability distribution of the NPV analysis, around 18% of the 

biofuels scenario NPVs are profitable (NPV > 0). For the biochemicals and hydrocarbon 

chemicals scenarios, 100% of NPVs are expected to be profitable based on historical market 

prices. It means that there is a high risk to invest fuel plant while lower risk to invest in 

biochemicals and hydrocarbon chemicals production. However, there are other technical 

(feasibility) and market constraints (demand) that should be considered in a commercialization 

plan. 
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Figure 10. Probability density distribution of MICs and NPVs 

 

Conclusion  

This paper evaluates the economic feasibility of biomass fast pyrolysis and three product 

portfolios based on the fast pyrolysis and fractionation system developed by Iowa State 

University. The biochemicals scenario producing infrastructure materials and hydrocarbon 

chemicals scenario producing BTX and olefins are compared to a conventional fast pyrolysis 

biofuels production facility. Through the process model analysis, both scenario facilities have 
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much lower capital costs and annual operating costs. In addition, the high product values from 

these two scenarios make the bio-refinery have a higher potential to be profitable. For the target 

of 10% IRR, MPSP gives a straightforward approach to examine the economic feasibility of this 

facility by comparing it to current market prices. We estimated MPSPs of $3.09/gal for biofuels 

scenario, $461.62/MT for biochemicals scenario, and $1113.83/MT for hydrocarbon chemicals 

and mean MICs of $162 MM for biofuels scenario, $525 MM for biochemicals scenario and 

$282 MM for hydrocarbon chemicals scenario. The high volatility of market prices increases the 

commercialization uncertainty of these portfolios. Monte-Carlo simulation is used to analyze the 

uncertainty of the facility. The net present value distributions are estimated as -$243.42±268.9 

MM for the biofuels scenario, $412.03±374.1 MM for the biochemicals scenario and 

$82.08±16.6 MM for the hydrocarbon chemicals scenario. The uncertainty analysis indicates that 

18%, 100% and 100% of NPVs are expected to be profitable at a 10% IRR for the biofuels, 

biochemicals, and hydrocarbon chemicals scenarios. These results suggest that a fast pyrolysis 

bio-refineries could be more competitive if it integrates new products into their portfolios. 
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CHAPTER 3. TECHNO-ECONOMIC ANALYSIS OF PRODUCTS SELECTION AND 

OPTIMIZATION FROM BIOMASS FAST PYROLYSIS AND BIO-OIL UPGRADING 

A paper to be submitted to Biomass and Bioenergy 

Wenhao Hu, Qi Dang, Mark M. Wright, Robert C. Brown 

 

Abstract 

A novel integrated bio-refinery design producing multiple products via the fast pyrolysis 

platform is introduced in this work. Three different product portfolios targeting certain markets, 

namely biofuels, biochemicals (bio-asphalt, calcium acetate, dextrose) and hydrocarbon 

chemicals, are proposed and investigated. The Net Present Value (NPV) is employed as the 

indicator to evaluate the performance of the bio-refinery. The study employs historical price data 

to determine low, medium, and high prices for each product. By choosing three price levels for 

products of each portfolio, a total of twenty-seven scenarios are explored, and the NPV of each 

scenario is maximized based on the allocation ratios to the various product portfolios. The results 

indicate that under most price scenarios a hydrocarbon chemicals portfolio generates a relatively 

higher NPV compared to the alternatives and fuels portfolios whereas the fuel portfolio performs 

better when gasoline prices are $1601/tonne ($4.4/gallon) or greater.  

Fixed capital costs of $162 MM, $216 MM and $317 MM and annual operating costs of 

$73 MM, $89 MM and $104 MM are estimated for a 2000 tonne/day bio-refinery producing 

biochemicals, hydrocarbon chemicals and biofuels, respectively. Relatively high capital and 

operating cost make biofuels production unfavorable when compared to the biochemicals and 

hydrocarbon chemicals production scenarios. 
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Introduction 

Environmental quality, energy security and economic development are important factors 

related to energy utilization. Incentives for improving environmental quality, securing energy 

supply and promoting economic development have drawn interest towards finding renewable 

and clean substitutes for petroleum-derived products. Biomass are organic materials from recent 

biological origin that are a clean and renewable alternative to fossil resources. They can be 

converted into heat, stationary power, transportation fuels and commodity chemicals through 

chemical processing. The total sustainable availability of biomass in the U.S. is 1.1-1.6 billion 

tons per year, which is equivalent to 19.3-28.1 billion GJ energy [1]. If this resource is fully 

developed, it could replace over one third of the total petroleum consumption in the U.S. [1].  

Thermochemical conversion is a proven pathway to producing biofuels, biochemical, and 

bioproducts from biomass [2]. Thermochemical conversion technologies include liquefaction, 

gasification and pyrolysis, which are frequently used for the thermal degradation of biomass [3]. 

Fast Pyrolysis is investigated in this paper as the pathway to convert biomass into hydrocarbon-

based transportation fuels, biochemicals and hydrocarbon chemicals. Fast pyrolysis is a rapid 

thermal decomposition of organic compounds occurring in the absence of oxygen at moderate 

temperature of around 500 °C and short residence time, yielding a mix of liquids, gases and 

solids [4]. The yield of each compound varies with feedstock composition, pyrolysis temperature 

and residence time [4]. The liquid pyrolysis product is known as bio-oil, and it can represent up 

to 75 wt% of biomass [5,6]. Increasing the heating rate, reducing the residence time and rapid 

cooling of the pyrolysis vapors favor higher bio-oil yield [7]. Bio-oil is usually a dark brown 

liquid with distinctive smoky odor which consists of hundreds of different compounds derived 

from decomposition of cellulose, hemicellulose and lignin in the woody biomass [5,8]. Bio-oil 
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can be directly used in burner systems, diesel engines, turbines and Stirling engines, or it can be 

upgraded into a variety of hydrocarbon fuels and chemicals [5,9–11]. Fast pyrolysis was chosen 

for this study because of its ability to generate a portfolio of products at a lower cost than other 

thermochemical pathways [12] 

There is a growing literature on pathways for upgrading bio-oil into valued-added 

products. Elliott et al. [10] proposed a catalytic hydroprocessing method followed with 

hydrocracking to upgrade bio-oil into alkenes and aromatics, which can serve as a petroleum 

refinery feedstock for transportation fuel applications. Peralta et al. [13] developed a bio-binder 

using s rubber-modified fractionated bio-oil for flexible pavements. Vispute et al. [11] found that 

bio-oil can be upgraded into industrial commodity chemical feedstock through catalytic 

hydroprocessing and fluid catalytic cracking (FCC). All of these products are targeting existing 

markets, but those upgrading systems have not been commercialized in large-scale. There are 

some papers that have examined the economic feasibility of commercialization of fast pyrolysis 

products. Zhang et al. [14] evaluated the production of monosaccharide along with hydrogen and 

transportation fuels via fast pyrolysis. Wright et al. [15] examined a fast pyrolysis facility that 

converts corn stover to naphtha and diesel range fuels and the fuel product values were estimated 

to be $3.09 and $2.11 per gallon of gasoline equivalent (GGE) for hydrogen production and 

purchase scenarios, respectively. Brown et al. [16] evaluated the economic feasibility of the five 

scenarios in Vispute’s paper to produce biobased commodity chemicals using Integrated 

Catalytic Processing (ICP). Zhang et al. [17] compared two bio-oil upgrading pathways that 

produce transportation fuel along with hydrogen and commodity chemicals. Previous techno-

economic analysis (TEA) papers have focused on fast pyrolysis facilities designed for producing 

a single product such as transportation fuels or commodity chemicals. Hydrogen production was 
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often combined with transportation fuel production to provide hydrogen for bio-oil 

hydroprocessing. The economic performance of these technologies have often been quantified by 

calculating either the internal rate of return (IRR) or minimum product selling price (MPSP). 

However, industrial deployment of fast pyrolysis technologies has been limited and its 

commercialization potential is subject to high uncertainty [18,19]. 

Diverse product portfolios are one approach to reducing commercialization risk. Various 

authors have investigated the product selection and optimization of bio-refineries generating 

multiple products[20–23]. These studies combine feedstock selection, facility location, and 

product selection to maximize project profitability. This article focuses on the conceptual design 

of a single bio-refinery producing transportation fuel, hydrogen, biochemicals (bio-asphalt, 

calcium acetate, dextrose) and hydrocarbon chemicals (benzene, toluene, and xylene). The 

contribution of this study is in the techno-economic evaluation of the alternative products 

portfolio within the context of an integrated bio-refinery. 

 

Methodology 

This study employs material and energy balance data from an Aspen PlusTM chemical 

process to determine the process performance of converting biomass into fuels, biochemicals, 

and hydrocarbon chemicals. The analysis estimates capital and operating costs for a commercial-

scale bio-refinery based on the process model results. The facility is modeled with a fixed input 

capacity for processing 2000 metric ton per day (MTPD) of biomass. Product yields vary based 

on the ratio of bio-oil upgraded through each portfolio. The yields of all products are substituted 

into the discounted cash flow rate of return (DCFROR) model to estimate capital costs based on 

scaling factors and the net present value (NPV) for a fixed IRR of 10%. The portfolio production 
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distributions are varied to optimize the NPV, and contour plots of the variables space are 

generated to validate the optimal portfolio allocations. 

Process model description 

The bio-refinery conceptual design is based on the fast pyrolysis and bio-oil fractionation 

system developed at Iowa State University. Figure 11 shows the generalized process diagram. 

There are six main processes: biomass pretreatment, fast pyrolysis, solids removal, bio-oil 

recovery, bio-oil upgrading, and co-generation. The process converts raw biomass into products 

from bio-oil upgrading and excess char. Non-condensable gases are consumed for heat within the 

process.  
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Removal
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Co-generation

Bio-oil
Recovery

Non-Condensable
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Excess Char

Process Heat
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Figure 11. Generalized Schematic of bio-oil production and upgrading 

The bio-refinery employs red oak as its process feedstock, and red oak ultimate and 

proximate analyses are shown in the Table 8. In the pretreatment section, biomass is first 

chopped to an approximately 10 mm diameter particle. For the production of dextrose, higher 

sugar content is preferred in the bio-oil. To increase the sugar yield, an acid treatment is adopted 

and sulfuric acid (0.4 wt% of dry biomass) is infused unto the biomass  in a continuous spray 

rotary drum after chopping [14]. After acid treatment, the biomass moisture is reduced to below 

7 wt% in a steam rotary dryer. After drying, the biomass particle is ground to about 3mm 

diameter. In the pyrolysis section, biomass is rapidly heated to 500 °C in a fluidized bed reactor 
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and decomposed to condensable vapors, non-condensable gases (NCG), aerosols and solids. Fast 

pyrolysis product distributions are modeled in the Aspen PlusTM software based on the 

experimental data by Pollard et al. [24]. 

Table 8. Ultimate and proximate analysis of as received red oak[24]  

Ultimate Analysis (dry basis) Proximate Analysis (wet basis) 

Element wt % Element wt % 

Carbon 48.7 Moisture 3.86 

Hydrogen 6.8 Volatiles 81.9 

Nitrogen 0.072 Fixed Carbon 12.56 

Oxygen 44.03 Ash 0.39 

Sulfur 0.002 Other 1.28 

Ash 0.39   

 

Before the hot stream from reactor is condensed as bio-oil, it goes through a clean-up 

process in solids removal section where a high volume and efficiency cyclone removes the solids 

from the stream at 95% efficiency. The solids consist of char mixed with ashes and alkali metals. 

In the bio-oil recovery section, a five-stage fractionation system is employed to collect 

condensable vapors into five stage fractions (SF1-5) with distinct compositions.  
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Figure 12. Diagram of five-stage bio-oil fractionation system 
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SF1, 3, and 5 are condensed using shell-and-tube heat exchanger condensers. SF 2 and 4 

are collected by ESPs which consists of cylindrical steel pipes and a central cylindrical rod 

electrode. SF 1-2 are designed to recover levoglucosan and other high dew point compounds. SF 

3-4 are designed to capture the compounds that have similar dew points to that of phenol. SF 5 is 

designed to gather light oxygenated compounds and water. SF 1-2 are designated as heavy ends 

which consist of sugars and phenolic oligomers. SF 3-4 are called middle cut and contain 

monomeric phenol and furans as well as part of the acids. The aqueous phase SF 5 is also named 

light end which contains water, acids, furans and some monomeric phenols. 
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Figure 13. Stage fractions 1-5 upgrading pathways, intermediate and final products, and portfolio categories 

The distinctive compositions of each stage fraction makes them suitable for upgrading to 

different products. Figure 13 summarizes the stage fraction upgrading pathways considered in 

this study and final products. SF1&2 can be upgraded to gasoline and diesel blend-stock fuels via 

hydroprocessing or can be upgraded to dextrose through sugar extraction and hydrolysis. Sugar 

extraction yields phenolic oligomers, which can be upgraded into an asphalt binder through a 

rubber modifying process. The sugars can alternatively be hydroprocessed and treated in a fluid 

catalytic cracking (FCC) unit to produce aromatics and olefins. SF3 and 4 are the most versatile 
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fractions, and they can be upgraded through any of the aforementioned pathways except for 

sugar extraction. SF5 can be steam reformed to produce hydrogen based on its high moisture and 

acids content. Alternatively, SF5 can be employed as a substrate for producing cement. We 

group these products into three categories: biofuels, biochemicals and hydrocarbon chemicals. 

Biofuels portfolio includes hydrogen, gasoline, and diesel. Biochemicals portfolio includes 

asphalt binder, cement, and dextrose. Aromatics and olefins are included in hydrocarbon 

chemicals portfolio. 

In the biofuels scenario, gasoline and diesel are the main products and hydrogen is 

produced for hydroprocessing. A two-stage hydroprocessing process is adopted to upgrade SF 1-

4 into gasoline and diesel range hydrocarbon [26]. Distillation process is followed to separate 

gasoline and diesel range hydrocarbons, and hydrocracking is employed to convert distillation 

residues to lighter hydrocarbons. Hydroprocessing requires hydrogen at a ratio of 3-5 wt. % of 

the feed. Thus, SF 5 is steam reformed to produce hydrogen with additional natural gas input 

[15,27]. 

In the biochemicals scenario, dextrose, asphalt and cement are chosen as the product 

combination. The sugars and phenolic oligomers in SF 1-2 are recovered through a simple two-

stage water washing process that separates water-soluble sugars from water-insoluble oligomers 

[28]. These sugars are mostly monosaccharides along with levoglucosan and some disaccharides, 

and they can be hydrolyzed to produce a glucose-rich syrup, which can be valued as dextrose 

[14]. The water-insoluble raffinate left from water washing has similar properties to petroleum-

derived bitumen. The bio-asphalt produced from bio-oil can be used as modifier, extender or 

even replacement for petroleum asphalt [29]. Peralta has successfully developed a bio-binder 

using asphalt-rubber technology [13]. There is no available data to fully evaluate the economic 
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feasibility of this technology, so the water-insoluble raffinate along with SF 3-4 is valued as raw 

material for bio-asphalt at the market price for asphalt. The most distinct feature of SF 5 is high 

acetic acid content. Acetic acid can be converted into calcium acetate, which can be used to 

produce gelled fuel and bio-cement, by adding limestone [30]. In this paper, calcium acetate is 

sold as the final product considering that both acetic acid upgrading technologies have not been 

commercially developed.  

For the hydrocarbon chemicals scenario, Vispute et al. [11] developed five upgrading 

pathways to produce commodity chemicals (aromatics and olefins) from whole bio-oil or 

aqueous phase bio-oil. In this paper, the two-stage hydroprocessing followed by FCC of aqueous 

phase bio-oil pathway is adopted to produce olefins and aromatics, such as benzene, toluene, and 

xylene (BTX). The aqueous phase bio-oil in this scenario is the combination of SF 3-4 and 

water-soluble fraction from SF 1 and 2. The same washing process is used to separate the water-

soluble fraction and water-insoluble fraction of SF 1 and 2. The water-insoluble raffinate is also 

sold as bio-asphalt raw material. In this scenario, there is a high demand of hydrogen for 

hydroprocessing of aqueous phase. However, all stage fractions are upgraded, so the hydrogen is 

purchased from merchant sources for hydroprcessing. Table 9 shows the carbon yields and 

selectivity of final products of this upgrading pathway. 

Table 9. Process catalysts and carbon yields of aromatics and olefins[11] 

Catalysts Carbon yields (%) 

Ru/H2+Pt/H2+Zeolite 

Aromatics Olefins 

Benzene 4.94 Ethylene 13.76 

Toluene 9.02 Propylene 23.13 

Xylene 3.31 Butylene 6.11 

EthylBenzene 0.42   
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Product portfolio selection and cost analysis 

The concept of the bio-refinery in this paper is to simultaneously produce three categories 

of products and maximize the net present value. The high variability and correlations between 

the prices of transportation fuels, commodity chemicals and petroleum price results in a high 

price fluctuation for these products [17]. Thus, there is a wide range of a potential NPVs for this 

bio-refinery concept based on fluctuations of the market prices. To investigate the impact of 

these market prices, we evaluate up to 27 scenarios of combinations of portfolio prices. 

First, each portfolio is analyzed separately to find the base case stream flows of 

intermediates, final product yields, annual operating costs and bare equipment costs. Then all 

three portfolios are integrated into a single bio-refinery concept design. In this design, the 

feedstock input rate is constant, and the ratio of bio-oil upgraded through each technology is 

varied. The size and output of the upgrading equipment for each platform is scaled linearly by 

their input flow rates. Equipment costs through a power law with the ratio of new stream flow to 

old stream flow and a scaling factor of 0.7 [31] The fixed capital costs are calculated using Peter 

and Timmerhaus factors [32]. Table 10 gives the breakdowns of installation cost factor based on 

the total purchased equipment cost (TPEC). This approach provides a baseline capital cost for an 

integrated bio-refinery designed for a particular product distribution. In practice, an integrated 

bio-refinery can incur additional capital costs due to larger equipment sizes, increased process 

complexity, and unit redundancy that are not considered in this estimate. Furthermore, 

installation costs are based on an nth plant design in which all major engineering breakthroughs 

and technical innovations have been demonstrated.  
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Table 10. Methodology for capital cost estimation for nth plant 

Parameter Assumption 

Total purchased equipment cost (TPEC) 1*TPEC 

   Purchased equipment installation 0.39*TPEC 

   Instrumentation and controls 0.26*TPEC 

   Piping 0.1*TPEC 

   Electrical systems 0.31**TPEC 

   Buildings (including services) 0.29*TPEC 

   Yard improvements 0.12*TPEC 

   Service facilities 0.55*TPEC 

Total installed cost (TIC)  3.02 *TPEC 

  

   Engineering 0.32*TPEC 

   Construction 0.34*TPEC 

   Legal and contractors fees 0.23*TPEC 

Indirect cost (IC)  0.89 * TPEC 

  

Total direct and indirect costs (TDIC)  TIC + IC 

Contingency  0.2*TDIC 

Fixed capital investment (FCI) TDIC + Contingency 

  

Working capital (WC)  0.15* FCI 

Land use 0.06* TPEC 

  

Total capital investment (with land)  FCI +WC + Land 

 

In this study, the red oak purchase cost is set to $80/MT. Water and electricity prices are 

based on the EIA 20-year forecast [33]. For the fuel scenario, natural gas is purchased for 

hydrogen generation through steam reforming and the price is set to $0.26/kg [33]. The catalysts 

for hydroprocessing and steam reforming are set to $18.25/lb and 3.6 cents/kscf H2. In the 

biochemicals scenario, sulfuric acid is consumed for sugar hydrolysis and limestone is used to 
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convert acids into calcium acetate. Their prices are set to $200/MT and $17/MT for sulfuric acid 

and limestone, respectively[34,35]. For hydrocarbon chemicals production, hydrogen and 

catalyst account for most of the raw material cost. The hydrogen is assumed to be purchased 

from a near-site facility without storage and transportation cost, which results in a hydrogen 

price of $1.5/kg. Ru, Pt and zeolite are chosen as the catalysts for chemicals production and 

prices are $2.5/lb, $25.3/lb and $0.72/lb, respectively. The excess char is sold for $20/MT based 

on its heating value as a coal substitute.  

Table 11. Discounted Cash Flow Rate of Return analysis assumptions 

Parameters Assumption 

Equity 40% 

Loan Interest 7.5% 

Loan Term, years 10 

Depreciation type DDB 

General Plant 7 

Steam/Electricity System 20 

Construction Period 2.5 

  % Spent in Year -3 8% 

  % Spent in Year -2 60% 

  % Spent in Year -1 32% 

Start-up Time 0.5 

  Revenues (% of Normal) 50% 

  Variable Costs (% of Normal) 75% 

  Fixed Cost (% of Normal) 100% 

IRR 10% 

Income Tax Rate 39% 
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The historical prices of gasoline, diesel, asphalt, cement, dextrose and BTX are collected 

to find the price distributions. Three prices, low, medium and high, for each product are chosen 

for the NPV analysis based on the historical data. A discounted cash flow rate of return model is 

developed using Mathematica to calculate the best product allocation ratio to maximize the NPV 

for different product price scenarios. Table 11 presents the main assumptions for the 30-year 

DCFROR analysis. 

Results and Discussion 

The fast pyrolysis and bio-oil recovery process are modeled in the Aspen PlusTM 

software. Based on the experimental data, the processes and yields are simulated and adjusted in 

the established model. The yield of bio-oil is 65.87 wt% of dry biomass and each stage fraction 

yield is illustrated in Table 12. SF 1&2 yields are maximized to get more sugars and phenolic 

oligomers which can be either upgraded to transportation fuels or sold as asphalt binder. SF 5 

contains water and acids, which can be steam reformed for H2 or processed into calcium acetate. 

There are two more important products, char and NCG. Char and NCG account for 13.04 wt% 

and 21.09 wt% of dry biomass, which are 261 metric tonne per day (MTPD) and 422 MTPD, 

respectively. All of the NCG and a portion of the char are burned in the combustor to provide 

process heat for the whole system. There are 126 MTPD of excess char that is sold for $20/MT. 

Table 12. Mass distribution of bio-oil stage fractions from Aspen Plus 

Stage fractions wt % 

SF1 20.81% 

SF2 30.99% 

SF3 6.59% 

SF4 2.5% 

SF5 39.11% 
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According to the simulation, 266 MTPD gasoline and 245MTPD diesel can be produced 

with full production capacity. If the facility is dedicated to produce biochemicals, 223 MTPD 

glucose-rich syrup, which can be considered as dextrose, along with 426 MTPD asphalt binder 

modifier and 53 MTPD calcium acetate can be produced. For the hydrocarbon chemicals 

production, the yield of aromatics is 87.9 MTPD and the yield of olefins is 246.2 MTPD. Table 

13 gives the detailed yields of aromatics and olefins. 

Table 13. Chemicals yields from the SF 3, 4, 5 and water-soluble fraction of SF 1&2 

Name Output (MTPD) 

Butylene 32.73 

Ethylene 73.89 

Propylene 124.24 

Benzene 24.63 

Toluene 45.47 

Xylene 17.76 

Ethylebenzene 2.14 

Indene 0.45 

Naphthalene 0.45 

Styrene 12.26 

 

The total fixed investment cost is the sum of the installed equipment cost, indirect costs 

and project contingence. In this project, equipment costs are varied because of the ratio of 

different products. This facility is based on the fast pyrolysis system and five-stage bio-oil 

fractionation system developed by Iowa State University, and the capacity is fixed so that the 

equipment costs of the pretreatment, pyrolysis and recovery sections are fixed. The installed 

costs for those sections are $92 MM. The upgrading section for the transportation fuel portfolio 

includes bio-oil hydroprocessing, refining and hydrogen generation, which account for about 

$100 MM. The upgrading section for chemical production includes two-stage hydroprocessing 
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followed by a FCC and the installed equipment cost is $35 MM [17]. For the biochemicals 

portfolio, the condensed bio-oil fractions are collected and stored without additional processing. 

Storage costs are included in the balance of plant cost category. The remaining costs, which 

include cogeneration, cooling plant and balance of plant, are $12 MM. When all products are 

integrated into a single facility, the corresponding upgrading capital costs for each scenario are 

scaled by a power law with a factor of 0.7. 

In order to explore the performance of the facility under different market conditions, 

three price levels are generated according to the historical price distribution. The three price 

levels for each product are given in Table 14. As shown in Table 14, product prices range from 

$228/MT for calcium acetate to $1804/MT for xylene. 

Table 14. Prices combination for all products 

 Prices ($/MT) Low Average High 

Biofuel 
Gasoline 480 909 1601 

Diesel 428 808 1575 

Biochemicals 

Dextrose 347 570 603 

Asphalt Binder Modifier 382 960 1852 

Calcium Acetate 228 241 262 

Hydrocarbon 

Chemicals 

Benzene 1052 1355 1753 

Toluene 860 1186 1556 

Xylene 1062 1404 1804 

 

There are twenty-seven price combinations for different product groups. Under each price 

scenario, the yield ratio of each product group is varied to maximize the NPV of the bio-refinery. 

The products ratio and optimal NPV condition for each scenario is shown in Table 15.  
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Table 15. Net present value and product distributions under different price combination scenarios 

Scenario 
Prices Portfolio Distribution  

NPV ($ MM) 
Biofuel Biochemicals Chemicals Biofuel Biochemicals Chemicals 

1 Low Low Low 0 0 1 314 

2 Low Low Average 0 0 1 365 

3 Low Low High 0 0 1 426 

4 Low Average Low 0 0 1 634 

5 Low Average Average 0 0 1 685 

6 Low Average High 0 0 1 745 

7 Low High Low 0 1 0 1194 

8 Low High Average 0 1 0 1194 

9 Low High High 0 0 1 1238 

10 Average Low Low 0 0 1 314 

11 Average Low Average 0 0 1 365 

12 Average Low High 0 0 1 426 

13 Average Average Low 0 0 1 634 

14 Average Average Average 0 0 1 685 

15 Average Average High 0 0 1 745 

16 Average High Low 0 1 0 1194 

17 Average High Average 0 1 0 1194 

18 Average High High 0 0 1 1238 

19 High Low Low 1 0 0 477 

20 High Low Average 1 0 0 477 

21 High Low High 1 0 0 477 

22 High Average Low 0 0 1 634 

23 High Average Average 0 0 1 685 

24 High Average High 0 0 1 745 

25 High High Low 0 1 0 1194 

26 High High Average 0 1 0 1194 

27 High High High 0 0 1 1238 

 

Under most scenarios, maximizing hydrocarbon chemicals production yields the highest 

NPV. There are two scenarios where the biochemicals portfolio is optimal: either the 

biochemicals have high prices, or the hydrocarbon chemicals have low or average prices. There 

are only three scenarios in which producing biofuels is the most profitable option. This occurs 
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when biochemicals prices are low. Hydrocarbon chemicals generate a higher NPV than biofuels 

when biochemicals prices are medium or high because the water-insoluble fraction in the 

hydrocarbon chemical production scenario is marketed as asphalt binder modifier with a higher 

market value than boiler fuel.  

A NPV triangle contour plot was generated for each scenario. Contour plots for scenarios 

16 to 19 are shown in this paper to illustrate the analysis results. Three different optimal results 

are shown in those four plots. The black spot in the plots represents the product distribution ratio 

with the highest NPV.  

The plots for scenarios 16 and 17 are similar. These scenarios have medium biofuels 

prices, high biochemicals prices, and low to medium hydrocarbon chemical prices. The black 

spots in the first two plots are located on the lower right corner which means producing more 

biochemicals products will generate higher NPVs. The contour lines indicate that hydrocarbon 

chemicals are the second best choice of products given these market conditions, and biofuels 

generate the lowest revenue.  

In scenario 18, biofuels and biochemicals have medium and high prices respectively, and 

hydrocarbon chemicals have a historically high price. In this case, hydrocarbon chemicals are the 

preferred product followed by biochemicals. 

In scenario 19, fuels have a high price and the other products have low prices. Fuels are 

the desirable product in this case. However, the NPV for fuel production in this scenario is lower 

than the NPV of scenarios 16-18. 
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Figure 14. Selected net present value triangle contour plots 

 

The fixed capital investments (FCI) and annual operating costs for these four scenarios 

are summarized in Table 16. The scenarios which have same optimal product selection result 

will have same FCI and annual operating cost. The difference of FCI are mainly because of bio-

oil upgrading section. It has been discussed above. Feedstock cost and utilities (water and 
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electricity) are the main cost for the bio-refinery, and they are $52.6 MM and $16.3MM 

respectively. There is no high cost for upgrading in biochemicals production. Only sulfuric acid 

and limestone cost $1.5 MM per year. For scenario 18, the extra operating costs lie in hydrogen 

cost and hydrotreating and hydrocracking catalysts costs, which are about $10 MM and $7MM. 

The high operating cost of scenario 19 is the result of high cost of natural gas and catalysts. 

Natural gas cost about $20 MM per year and catalysts for hydrotreating, hydrocracking and 

steam reforming cost $13 MM per year. The high capital cost and annual operating cost make 

biofuels production unfavorable compared to biochemicals and hydrocarbon chemicals 

production. 

Table 16. Fixed capital cost and annual operating cost for selected scenarios 

Scenario Fixed Capital Cost ($ MM) Annual operating cost ($ MM) 

16 & 17 (Alternative) 162 73 

18 (Chemical) 216 89 

19 (Fuel) 317 104 

 

 

Conclusion  

Based on the fast pyrolysis and fractionation bio-oil recovery system, multiple bio-oil 

upgrading pathways are considered in this paper. Three product portfolios designed for various 

markets are proposed and an integrated bio-refinery concept, which includes all three groups of 

products, is introduced. The performance of the bio-refinery is evaluated based on the NPV, and 

the optimal performance is found from varying the ratio of different product groups. Three price 

levels for each product group are chosen to evaluate the performance of the bio-refinery under 

different market conditions. Twenty-seven scenarios in total are explored and optimal NPVs are 

found along with the product distributions. Hydrocarbon chemicals portfolio generates relatively 
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higher NPV when compared to biochemicals and biofuels scenarios. The biofuels portfolio also 

is attractive at high fuel prices, but its NPV is lower than producing hydrocarbon chemicals. The 

fixed capital cost for biochemicals scenario, hydrocarbon chemicals scenario and biofuels 

scenario are $162 MM, $216 MM and $317 MM, respectively. The annual operating costs for 

three scenarios are $73 MM, $89 MM and $104 MM.  

These results suggest that integrating the production of hydrocarbon chemicals and 

biochemicals such as bio-asphalt, dextrose, and bio-cement can lead to increased bio-refinery 

NPV. However, further research must be done to understand the additional costs of constructing 

and operating an integrated bio-refinery. Furthermore, both basic research and engineering 

development are needed to develop these novel hydrocarbon chemicals and biochemicals 

upgrading pathways. 

 

Acknowledgments 

The authors would like to acknowledge the financial support from Bioeconomy Institute 

at Iowa State University. 

 

Conflict of interest 

All authors declare no conflicts of interest in this paper. 

 

References 

[1] Energy USD of. US Billion Ton Update: Biomass supply for a bioenergy and bioproducts 

industry. vol. 7. 2011. 

[2] Regalbuto JR. The sea change in US biofuels’ funding: from cellulosic ethanol to green 

gasoline. Biofuels, Bioprod Biorefining 2011;5:495–504. 



56 

 

[3] Wright MM, Brown RC. Comparative economics of biorefineries based on the 

biochemical and thermochemical platforms. Biofuels, Bioprod Biorefining 2007. 

[4] Bridgwater A V. Review of fast pyrolysis of biomass and product upgrading. Biomass and 

Bioenergy 2012;38:68–94. 

[5] Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil. 

Energy & Fuels 2004. 

[6] Bridgwater A V, Meier D, Radlein D. An overview of fast pyrolysis of biomass n.d. 

[7] Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: A critical 

review. Energy and Fuels 2006;20:848–89. 

[8] Chaala A, Ba T, Garcia-Perez M, Roy C. Colloidal properties of bio-oils obtained by 

vacuum pyrolysis of softwood bark: Aging and thermal stability. Energy and Fuels 

2004;18:1535–42. 

[9] Takanabe K, Aika KI, Seshan K, Lefferts L. Sustainable hydrogen from bio-oil - Steam 

reforming of acetic acid as a model oxygenate. J Catal 2004;227:101–8. 

[10] Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Zacher AH. Catalytic 

hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. 

Environ Prog Sustain Energy 2009. 

[11] Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW. Renewable chemical commodity 

feedstocks from integrated catalytic processing of pyrolysis oils. Science 2010;330:1222–

7. 

[12] Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, et al. Techno-

economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and 

biochemical pathways. Fuel 2010. 

[13] Peralta J, Silva HMRD, Williams RC, Rover MR, Machado AVA. Development of an 

Innovative Bio-binder Using Asphalt-Rubber Technology. Int J Pavement Res Technol 

2013;6:447–56. 

[14] Zhang Y, Brown TR, Hu G, Brown RC. Techno-economic analysis of monosaccharide 

production via fast pyrolysis of lignocellulose. Bioresour Technol 2013;127:358–65. 

[15] Wright MM, Satrio JA, Brown RC, Daugaard DE, Hsu DD. Techno-Economic Analysis 

of Biomass Fast Pyrolysis to Transportation Fuels. Fuel 2010;10:S2–10. 

[16] Brown TR, Zhang Y, Hu G, Brown RC. Techno-economic analysis of biobased chemicals 

production via integrated catalytic processing. Biofuels, Bioprod Biorefining 2011. 



57 

 

[17] Zhang Y, Brown TR, Hu G, Brown RC. Techno-economic analysis of two bio-oil 

upgrading pathways. Chem Eng J 2013;225:895–904. 

[18] Brown TR, Wright MM. Techno-economic impacts of shale gas on cellulosic biofuel 

pathways. Fuel 2014. 

[19] Liu G, Wright MM, Zhao Q, Brown RC. Catalytic fast pyrolysis of duckweed: Effects of 

pyrolysis parameters and optimization of aromatic production. J Anal Appl Pyrolysis 

2015;112:29–36. 

[20] Zhang Y, Wright MM. Product Selection and Supply Chain Optimization for Fast 

Pyrolysis and Biorefinery System. Ind Eng Chem Res 2014;53:19987–99. 

[21] Gebreslassie BH, Yao Y, You F. Multiobjective optimization of hydrocarbon biorefinery 

supply chain designs under uncertainty. Proc IEEE Conf Decis Control 2012:5560–5. 

[22] Li Y, Brown T, Hu G. Optimization Model for a Thermochemical Biofuels Supply 

Network Design. J Energy Eng 2014:04014004. Available 

from:http://ascelibrary.org/doi/abs/10.1061/(ASCE)EY.1943-7897.0000158. 

[23] Gebreslassie BH, Slivinsky M, Wang B, You F. Life cycle optimization for sustainable 

design and operations of hydrocarbon biorefinery via fast pyrolysis, hydrotreating and 

hydrocracking. Comput Chem Eng 2013;50:71–91. 

[24] Pollard AS, Rover MR, Brown RC. Characterization of bio-oil recovered as stage 

fractions with unique chemical and physical properties. J Anal Appl Pyrolysis 

2012;93:129–38. 

[25] Ellens CJ. Design, optimization and evaluation of a free-fall biomass fast pyrolysis reactor 

and its products. Iowa State University, 2009. 

[26] Susanne J, Pimphan M, Snowden-Swan L, Padmaperuma A, Tan E, Dutta A, et al. 

Process Design and Economics for the Conversion of Lignocellulosic Biomass to 

Hydrocarbon Fuels - Fast Pyrolysis and Hydrotreating. Golden, CO.: 2013. 

[27] Jones S, Holladay J, Valkenburg C, Stevens D, Walton C, Kinchin C, et al. Production of 

Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 

A Design Case. Richland, WA: 2009. 

[28] Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L. Production of clean 

pyrolytic sugars for fermentation. ChemSusChem 2014;7:1662–8. 

[29] Peralta J, Williams RC, Rover M, Silva HMRD. Development of Rubber-Modified 

Fractionated Bio-Oil for Use as Noncrude Petroleum Binder in Flexible Pavements. 

Transp Res Board 2012. Available from:http://hdl.handle.net/1822/22357. 



58 

 

[30] Ivanov V, Chu J. Applications of microorganisms to geotechnical engineering for 

bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 2008. 

[31] Wright M, Brown RC. Establishing the optimal sizes of different kinds of biorefineries. 

Biofuels, Bioprod Biorefining 2007;1:191–200. 

[32] Peters M, Timmerhaus K, West R. Plant Design and Economics for Chemical Engineers. 

Fifth. McGraw Hill, New York: 2003.  

[33] EIA. Annual Energy Outlook 2011. Washington DC.: 2011. 

[34] Sulfuric Acid Market and Cost Information n.d. Available from: http://www.sulphuric-

acid.com/sulphuric-acid-on-the-web/Market-Info.htm (accessed December 15, 2014). 

[35] Young’s Sand & Gravel n.d. Available from: 

http://www.youngssandandgravel.com/pricelist.htm (accessed January 2, 2015).   

 

 

  



59 

 

CHAPTER 4. GENERAL CONCLUSIONS 

Conclusions 

Under the policy stimulus of Renewable Fuel Standard (RFS) and Revised Renewable 

Fuel Standard (RFS2), cellulosic biofuels, as the most promising substitute of fossil-based 

transportation fuels, have received high industrial attention and research investment. Fast 

pyrolysis is a widely studied technology that produces bio-oil which is highly versatile because it 

can be upgraded to such products as transportation fuels. Due to recent low petroleum prices, the 

adoption and commercialization of biomass-derived fuels has been limited. Producing alternative 

products or adding valuable by-products can provide bio-refineries with economic benefits and 

make them more competitive. This study evaluated the economic feasibility of different product 

portfolios from biomass fast pyrolysis. 

Bio-asphalt, bio-cement and dextrose were chosen as the products for biochemicals 

scenario and BTX and olefins are produced in hydrocarbon chemicals scenario. Those two 

scenarios were compared to the traditional biofuels production via techno-economic analysis. As 

shown in this study, the bio-refineries which produce biochemicals and hydrocarbon chemicals 

required lower capital cost and operating cost. With the target of 10% IRR, the MPSPs were 

estimated to be 3.09/gal for biofuels, $461.62/MT for biochemicals, and $1113.83/MT for 

hydrocarbon chemicals. The uncertainty analysis showed that the biochemicals scenario and the 

hydrocarbon chemicals scenario have high probability of being profitable and the biofuels 

scenario has much lower chance of being profitable. MIC analysis indicated that the 

biochemicals scenario had higher investment allowance while biofuels scenario had much lower 

limit than the required investment. 
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To give the bio-refinery more flexibility when the market changes, multiple products 

combinations are integrated into the bio-refinery in chapter 3. Three price levels are generated 

based on the historical prices and used to evaluate the performance and optimize the product 

selection. Hydrocarbon chemicals are most frequently chosen as the best product selection 

because of its high value and valuable by-products. Transportation fuels can also be the optimal 

product when petroleum prices are high. 

 

Future Work 

The process simulation is essential for techno-economic analysis. The production of 

biochemicals and hydrocarbon chemicals through fast pyrolysis is still under development, and 

more details of how upgrading processes can be integrated to optimize the production line of 

market ready products is required. With biofuels, the upgrading process technology needs to be 

improved to increase the yield of transportation fuels and reduce the capital costs. There are 

uncertainties in biomass supply, operating costs and product yields that can be incorporated into 

techno-economic analysis. Char is an important by-product of fast pyrolysis, and it can be further 

used to increase economic profitability and improve environmental impacts. The environmental 

impact is one of the primary considerations choosing between biorenewable products and fossil 

products. Therefore, life cycle analysis would be needed to analyze the environmental impacts of 

alternative products. For the production of biofuels and hydrocarbon chemicals, policy 

constraints can be incorporated into the economic analysis. These extensions will contribute a 

more comprehensive insight to the future of biorenewable products. 
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