METRIC PROJECTIONS ONTO SUBSPACES OF FINITE CODIMENSION

By Peter D. Morris

1. Introduction. Let E be a real normed vector space and let S be a subset of E. For x in E, we denote by T(x) the set of nearest points in S to x, i.e. $T(x) = \{y \text{ in } S: ||x - y|| = \text{dist } (x, S)\}$. If T(x) is nonvoid for all x in E, then S is an E-subset. If T(x) contains at most one point for x in E, then S is a U-subset. If S is both an E-subset and a S-subset, then S is an S-subset. (An S-subset is often called a S-subset of S-subset. Our terminology is that of S-subset. The set-valued mapping S-subset is called the S-subset of S-subset, we regard S-subset and a point-valued mapping.

The principal result of this paper is the following (which will follow from the slightly stronger Theorem 3):

THEOREM. If X is an infinite compact Hausdorff space and P is an EU-space of finite codimension greater than one in C(X), then the metric projection onto P is discontinuous.

This result is somewhat surprising since the first example of a discontinuous metric projection onto an EU-subset was given only recently [7; 87]. Other examples have since been given by Holmes and Kripke [6] and by Cheney and Wulbert [3].

Throughout this paper we are concerned with metric projections onto subspaces of finite codimension. In $\S 2$, we take E to be a space of the type C(X), for X a compact Hausdorff space. Other results on this topic are found in [10] and [5]. Besides the theorem stated above, we obtain (Theorem 1) a characterization of those finite codimensional E-subspaces which have the property that T(f) is finite dimensional for every f in C(X).

In §3, we are concerned with spaces of the type $L_1(S, \Sigma, \mu)$ where (S, Σ, μ) is a σ -finite measure space. We characterize the U-subspaces of finite codimension and also characterize those EU-subspaces of finite codimension for which the metric projection is continuous and those for which the metric projection is linear.

In dealing with a space of the type C(X), we identify the dual space $C(X)^*$ with the space rca(X) of regular Borel measures on X. For μ in $C(X)^*$, μ^+ , μ^- denote, respectively, the positive and negative parts of μ and supp (μ) denotes the support of μ [4].

For P a subspace of a normed vector space E with dual E^* and T the metric projection onto P, $P^{\perp} = \{x^* \text{ in } E^* : x^*(x) = 0 \text{ for all } x \text{ in } P\}$ and $P^0 = \{x \text{ in } E : 0 \text{ is in } T(x)\}$. A subset S of E is boundedly compact if $S \cap \{y : ||x - y|| \le r\}$ is compact for all x in E and x > 0.

We state the following known results here for convenience.

Received June 22, 1967. Supported in part by National Science Foundation Grant GP-7730.

THEOREM A. ([11], also see [2]) Let P be a subspace of E. Then $P^0 = \bigcup \{W_f : f \text{ in } P^\perp, ||f|| = 1\}$, where $W_f = \{x \text{ in } E : f(x) = ||x||\}$. Also, for each x in E, $T(x) = (x + P^0) \cap P$.

THEOREM B. [10] Let P be an E-subspace of finite codimension in C(X). Then each μ in P^{\perp} attains its supremum on the unit sphere of C(X), and therefore supp $(\mu^{+}) \cap \text{supp } (\mu^{-}) = \phi$.

THEOREM C. [3] Let P be an EU-subspace of finite codimension in E. Then the metric projection onto P is continuous if and only if P^0 is boundedly compact.

We shall prove a result (Theorem 2) slightly stronger than Theorem C.

We denote the set-theoretic difference of the sets A and B by $A \setminus B$. Throughout, N denotes the set of positive integers. The cardinality of a set A is denoted by card (A). If A is contained in a topological space, its closure is denoted by ClA.

2. Spaces of the type C(X). Throughout this section, X denotes a compact Hausdorff space and P denotes a closed subspace of finite codimension in the real space C(X).

DEFINITION. Let T be the metric projection onto a subspace Q in the space E. Then Q is an EF-subspace if T(x) is a nonvoid finite dimensional set for every x in E.

EF-subspaces played an important role in [1]. We have the following

THEOREM 1. Let P be an E-subspace. Then P is an EF-subspace if and only if $X \searrow (\mu)$ is finite for every μ in $P^{\perp} \searrow \{0\}$.

Proof. Let T be the metric projection onto P. \iff Assume $X \setminus \text{supp } (\mu)$ is finite for every μ in $P^{\perp} \setminus \{0\}$. For any f in C(X) and p in T(f), f - p is in P^0 and T(f - p) = T(f) - p. Hence it suffices to show that T(f) is finite-dimensional for f in P^0 . We may assume that ||f|| = 1. There exists (Theorem A) μ in P^{\perp} such that $||\mu|| = 1$ and $\int_X f d\mu = 1$. Then f = 1 on supp (μ^+) and f = -1 on supp (μ^-) . Let p be in T(f). Since ||f - p|| = 1, $p \geq 0$ on supp (μ^+) and $p \leq 0$ on supp (μ^-) . However, $\int_X p d\mu = 0$, so that p vanishes identically on supp (μ) . Thus $T(f) \subseteq \{h \text{ in } C(X) : h \text{ vanishes on supp } (\mu)\}$, and this set is finite-dimensional because $X \setminus \text{supp } (\mu)$ is finite.

(\Rightarrow) Let n be the codimension of P. Suppose $X \setminus \sup(\mu)$ is infinite for some nonzero μ in P^{\perp} . We can assume that $||\mu|| = 1$. Let U_1 be a non-void open subset of X such that $\operatorname{Cl} U_1 \subseteq X \setminus \sup(\mu)$ and such that $X \setminus \sup(\mu) \cup \operatorname{Cl} U_1$ is infinite. Then let U_2 be a non-void open subset such that $\operatorname{Cl} U_2 \subseteq X \setminus \sup(\mu) \cup \operatorname{Cl} U_1$ and such that $X \setminus \sup(\mu) \cup \operatorname{Cl} U_1 \cup \operatorname{Cl} U_2$ is infinite. Continuing in this fashion, we obtain a sequence $\{U_1, U_2, \dots\}$ of non-void open sets such that $\operatorname{Cl} U_i \subseteq X \setminus \sup(\mu)$ for each i in N, and such that $\operatorname{Cl} U_i \cap \operatorname{Cl} U_i \cap \operatorname{Cl} U_i$ and such that $\operatorname{Cl} U_i \cap \operatorname{Cl} U_i \cap \operatorname{Cl} U_i$ is infinite.

 $\operatorname{Cl} U_i = \phi$, for i, j in $N, i \neq j$. For each i in N let h_i be in C(X) such that $||h_i|| = 1$, h_i is 1 on supp (μ^+) , h_i is -1 on supp (μ^-) , and such that h_i vanishes on $\operatorname{Cl} U_i$. The existence of h_i is ensured by Theorem B. Let $h = \sum_{i=1}^{\infty} (\frac{1}{2})^i h_i$ in C(X). Then h is 1 on supp (μ^+) and h is -1 on supp (μ^-) . Since, also, ||h|| = 1, h is in P^0 . Also, for each i in N, $M_i = \max\{|h(x)|: x \text{ in } \operatorname{Cl} U_i\} < 1$. For each i in N let p_i be a non-zero function in C(X) which vanishes outside U_i . For each k in N, choose a non-zero linear combination q_k of functions p_{kn+1} , p_{kn+2} , \cdots , p_{kn+n} such that $||q_k|| \leq 1 - M_i$, i = kn + 1, kn + 2, \cdots , kn + n, and such that q_k is in P. This is possible since P^\perp is n-dimensional and since p_i vanishes on supp (μ) , for each i in N. Now $||h - q_k|| = 1$ for all k in N. Therefore the infinite linearly independent set $\{q_1, q_2, \cdots\}$ is contained in T(h) so that T(h) is infinite dimensional.

This completes the proof.

We can easily give an example of an EF-subspace P which is not an EU-subspace. We work with the sequence space $l_{\infty} = C(X)$, where X is the Stone-Čech compactification of N. Let $m_1 = (0, 0, \frac{1}{2}, \frac{1}{4}, \cdots)$ and let $m_2 = (0, 0, \frac{1}{3}, \frac{1}{9}, \cdots)$. Then m_1 , m_2 are in l_1 . Since $l_1^* = l_{\infty}$, we will consider elements in l_{∞} as acting as functionals on l_1 . Define $P_i = \{x \text{ in } l_{\infty} : x(m_i) = 0\}$, i = 1, 2, and let $P = P_1 \cap P_2$. Then P is a weak*-closed subspace of codimension 2 in l_{∞} . Hence it is an E-subspace. By Theorem 1, P is an EF-subspace. However it is not an EU-subspace by Proposition 6 of [10]. It is clear that, in a similar manner, subspaces of all finite codimensions may be constructed which are EF-subspaces but not EU-subspaces.

DEFINITION. Suppose F is a mapping from a topological space Y into the set of subsets of Y. Then F is upper semi-continuous [8] if $\{y \text{ in } Y : F(y) \subseteq U\}$ is open whenever U is open.

For results concerning upper semi-continuity and other continuity conditions on set-valued metric projections, see [1] and the references cited there.

THEOREM 2. Let E be a normed vector space and let Q be an E-subspace of finite codimension in E. Let T be the metric projection onto Q. Then Q^0 is boundedly compact if and only if T is upper semi-continuous, and T(x) is compact for each x in E.

Proof. (\Rightarrow) Assume Q^0 is boundedly compact. Then $T(x) = (x + Q^0) \cap Q$ (Theorem A) is clearly compact for each x in E. Suppose T is not upper semicontinuous. Then there exists an open set U, x_0 in E, and a sequence $\{x_n\}$ converging to x_0 such that $T(x_0) \subseteq U$ but $T(x_n) \nsubseteq U$ for all n in N. For n in N, define $S_n = x_n - T(x_n)$. Then $S_n \subseteq Q^0$. Since $T(x_n) \nsubseteq U$, $S_n \nsubseteq x_n - U$. For each n in N chose w_n in $S_n \setminus (x_n - U)$. Since $\{w_n\}$ is a bounded sequence in Q^0 , it has a subsequence $\{w_{n_i}\}$ which converges to, say, w in Q^0 . We show that w is not in $x_0 - U$. Suppose, on the contrary, that w is in $x_0 - U$ and let $\epsilon > 0$ be such that $\{y: ||w - y|| < 2\epsilon\} \subseteq x_0 - U$. Now choose n in N such that $||x_0 - x_n|| < \epsilon$ and such that $||w_n - w|| < \epsilon$. Then

$$||w - w_n + x_n - x_0|| \le ||w_n - w|| + ||x_n - x_0|| < 2\epsilon.$$

Hence $w_n - x_n + x_0$ is in $x_0 - U$ so that $w_n - x_n$ is in -U. Thus w_n is in $x_n - U$. But this contradicts the choice of w_n . Therefore w is not in $x_0 - U$. Now we show that $x_0 - w$ is in $T(x_0)$. Now, for each i in N, $x_{n_i} - w_{n_i}$ is in $T(x_{n_i})$ so that

$$||w_{n_i}|| \leq ||x_{n_i} - q||$$
, for all q in Q .

Taking the limit as $i \to \infty$, we get

$$||w|| \leq ||x_0 - q||$$
, for all q in Q.

Therefore, $x_0 - w$ is in $T(x_0)$. But w is not in $x_0 - U$ so that $x_0 - w$ is not in U. This is impossible since $T(x_0) \subseteq U$. Thus T is upper semi-continuous. (\Leftarrow) Suppose T(x) is compact for each x in E and T is upper semi-continuous, but Q^0 is not boundedly compact. Let $\{x_n\}$ be a bounded sequence in Q^0 without a convergent subsequence. Since the space E/Q is finite dimensional and since $\{x_n + Q\}$ is bounded in E/Q, $\{x_n + Q\}$ has a convergent subsequence and we assume, without loss of generality, that $x_n + Q \to x + Q$. For each n in N, choose q_n in $T(x_n - x)$. Then

$$||x_n - q_n - x|| = \text{dist } (x_n - x, Q) \to 0.$$

Therefore, $x_n - q_n \to x$. Now $T(x_n - q_n) = T(x_n) - q_n$ so that $T(x_n - q_n)$ contains $-q_n = (x_n - x - q_n) + (x - x_n)$. By the upper semi-continuity of T, we may, by passing to a subsequence if necessary, find, for each n in N, z_n in T(x) such that

$$||(x_n - x - q_n) + (x - x_n) - z_n|| < 1/n.$$

Since T(x) is compact, we may, without loss of generality, assume that $\{z_n\}$ converges to, say, z in T(x). We have

$$||(x-z)-x_n|| \le ||(x_n-x-q_n)+(x-x_n)-z_n|| + ||z-z_n|| + ||x_n-x-q_n|| \to 0.$$

Hence $x_n \to x - z$, which contradicts the assumption that $\{x_n\}$ has no convergent subsequence. Thus Q^0 is boundedly compact.

This completes the proof.

We remark that the proof given above is a modification of the proof of Theorem C given in [3].

THEOREM 3. Suppose P is an EF-subspace of finite codimension greater than 1 and let T be the metric projection onto P. If X is infinite, then T is not upper semi-continuous.

Proof. Suppose P^0 is boundedly compact. Define, for x, y in X, $x \sim y$ if and only if h(x) = h(y) for all h in P^0 . Then \sim is an equivalence relation and the quotient space $Y = X/\sim$ is a compact Hausdorff space. Under the

natural identification, $C(X) \supseteq C(Y) = \{f \text{ in } C(X) : x \sim y \text{ implies } f(x) = f(y) \}.$ Now P^0 separates the points of Y. We want to show that P^0 actually contains enough extreme points of the unit sphere of C(X) (i.e. functions e in C(X)) such that |e| = 1) to separate the points of Y. Let x, y be points of X belonging to different \sim -equivalence classes. By definition of the relation \sim , there exists a function h in P^0 such that $h(x) \neq h(y)$. We may assume that ||h|| = 1. By Theorem A, there exists μ in P^{\perp} such that $\int_X h \ d\mu = 1 = ||\mu||$. Thus h = 1on supp (μ^+) and h = -1 on supp (μ^-) . By Theorem 1, $X \setminus (\text{supp } (\mu^+) \cup (\mu^+))$ supp (μ^{-}) is a finite set. It is also open and therefore each of its points is isolated. It is now clear that we may choose a function e in C(X) such that |e| = 1, e agrees with h on supp $(\mu^+) \cup \text{supp } (\mu^-)$, and such that $e(x) \neq e(y)$. Since $\int_X e \ d\mu = \int_X h \ d\mu = 1$, e is in P^0 , and we have proved that P^0 contains enough extreme points of the unit sphere of C(X) to separate the points of Y. However the distance between two distinct extreme points is two. Therefore, since P^0 is boundedly compact, it contains only finitely many extreme points. From these facts, we see that Y is finite. Since X is infinite, there exists an infinite \sim -equivalence class $E \subseteq X$. Clearly E is both open and closed. We now show that if μ is in $P^{\perp} \setminus \{0\}$, then $\mu(E) \neq 0$. To do this, suppose $\mu(E) = 0$. Since, by Theorem 1, $X \setminus \text{supp }(\mu)$ is finite, $E \cap \text{supp }(\mu^+)$ and $E \cap \text{supp }(\mu^-)$ must both be non-void. By Theorem B, supp $(\mu^+) \cap \text{supp } (\mu^-) = \phi$, and therefore there exists a function h in C(X) such that ||h|| = 1, h = 1 on supp (μ^+) , and h = -1 on supp (μ^{-}) . Hence $\int_{X} h \ d\mu = ||\mu||$ and therefore h is in P^{0} . However h is not constant on E, which is impossible since E is a \sim -equivalence class. Thus we have proved that $\mu(E) \neq 0$ for μ in $P^{\perp} \setminus \{0\}$. Now let μ_1 , μ_2 be linearly independent measures in P^{\perp} and let $\mu = \mu_1(E)\mu_2 - \mu_2(E)\mu_1$. Then μ is in $P^{\perp} \setminus \{0\}$ but $\mu(E) = 0$, and so we reach a contradiction. Thus P^0 is not boundedly compact, and therefore T is not upper semi-continuous by Theorem 2.

This completes the proof.

In case P is an EU-subspace, upper semi-continuity of T is equivalent to continuity. Thus we have the result mentioned earlier:

THEOREM 4. If X is an infinite compact Hausdorff space and P is an EU-subspace of finite codimension greater than one in C(X), then the metric projection onto P is discontinuous.

We remark that EU-subspaces of finite codimension greater than one in spaces of the type C(X) are not at all rare. For example, A. L. Garkavi [5] has shown that if X is a compact metric space with the property that its isolated points are dense, then C(X) contains EU-subspaces of all finite codimensions.

3. Spaces of the type $L_1(S, \Sigma, \mu)$. In this section, (S, Σ, μ) denotes a σ -finite measure space, i.e. S is a non-void set, Σ is a σ -algebra of subsets of S, and μ is a σ -finite measure defined on Σ . If a in Σ is such that $0 < \mu(a) < \infty$ and such that B in Σ , $B \subseteq a$ implies $\mu(B) = 0$ or $\mu(B) = \mu(a)$, then a is an atom

[4]. It is well known that a measurable function is constant a.e. on an atom. For B in Σ , at B denotes the set $\{a \text{ in } \Sigma : a \text{ is an atom and } a \text{ is contained in } B\}$. Since (S, Σ, μ) is σ -finite, at S is countable. We call the set B in Σ purely atomic if $\mu(B \setminus \bigcup \{a: a \text{ in } atB\}) = 0$.

Throughout this section, P denotes a closed subspace of finite codimension in $L_1(S, \Sigma, \mu)$. We identify the dual $L_1(S, \Sigma, \mu)^*$ with $L_{\infty}(S, \Sigma, \mu)$. For f in $L_{\infty}(S, \Sigma, \mu)$, the set crit (f) is defined, up to a set of measure zero, by: crit $(f) = \{s \text{ in } S: |f(s)| = ||f||\}$. Finally, if h is in $L_1(S, \Sigma, \mu)$, supp (h) is defined, up to a set of measure zero, by supp $(h) = \{s \text{ in } S: h(s) \neq 0\}$.

THEOREM 5. The subspace P is a U-space if and only if, for each f in $P^{\perp} \setminus \{0\}$, the following conditions hold: (i) crit (f) is purely atomic; (ii) if $A \subseteq \text{crit}$ (f) and 0 < card (at $A = k < \infty$, then the set of restrictions $P^{\perp} \mid A$ is k-dimensional.

Note. Condition (ii) implies that card (at crit (f)) does not exceed the co-dimension of P.

Proof. (\Rightarrow) Suppose P is a U-space and let f be in $P^{\perp} \setminus \{0\}$. We may assume that ||f|| = 1. First suppose crit (f) is not purely atomic. Then there exists a set B in Σ such that $0 < \mu(B) < \infty$, $atB = \phi$, and |f| = 1 a.e. on B. Let B_1 , B_2 , \cdots , B_{n+1} be pairwise disjoint subsets of B such that $\mu(B_i) > 0$ for $i = 1, 2, \dots, n+1$. Let $f_1 = f$ and let $\{f_1, f_2, \dots, f_n\}$ be a basis for P^{\perp} . There exist numbers r_1, r_2, \dots, r_{n+1} , not all zero, such that

$$\sum_{i=1}^{n+1} r_i \int_{B_i} f_i d\mu = 0, \qquad j = 1, 2, \cdots, n.$$

We may assume that $|r_i| < 1/\sum_{i=1}^{n+1} \mu(B_i)$, for $i = 1, 2, \dots, n+1$. Define p by:

$$p(x) = \begin{cases} r_i, x & \text{in } B_i, & i = 1, 2, \dots, n+1 \\ 0, & \text{otherwise.} \end{cases}$$

Then p is in P. Define h by:

$$h(x) = \begin{cases} f(x) / \sum_{i=1}^{n+1} \mu(B_i), & x \text{ in } B_i, & i = 1, 2, \dots, n+1 \\ 0, & \text{otherwise.} \end{cases}$$

Then ||h|| = 1 and $\int_S hf d\mu = 1$, so that h is in P^0 . However,

$$||h - p|| = \int_{S} |h - p| d\mu = \sum_{i=1}^{n+1} \int_{B_{i}} |h - p| d\mu = \sum_{i=1}^{n+1} \int_{B_{i}} (fh - fp) d\mu$$
$$= 1 - \sum_{i=1}^{n+1} \int_{B_{i}} r_{i} f d\mu = 1.$$

Thus p is in T(h) and $p \neq 0$. Therefore the assumption that P is a U-space is contradicted. Hence crit (f) is purely atomic.

Now let $A \subseteq \operatorname{crit}(f)$ with $0 < \operatorname{card}(atA) = k < \infty$. Suppose the dimension of $P^{\perp} \mid A < k$. Write $atA = \{a_1, a_2, \dots, a_k\}$. There exist r_1, r_2, \dots, r_k , not all zero, such that

$$\sum_{i=1}^k r_i g(a_i) = 0, \quad \text{for all } g \text{ in } P^{\perp}.$$

We can assume that $|r_i| < \mu(a_i)/\sum_{i=1}^k \mu(a_i)$, for all $i = 1, 2, \dots, k$. Define p in $L_1(S, \Sigma, \mu)$ by:

$$p(x) = \begin{cases} r_i/\mu(a_i), & \text{if } x \text{ is in } a_i, & i = 1, 2, \dots, k. \\ 0, & x \text{ not in } A. \end{cases}$$

Then p is in P. Define h by:

$$h(x) = \begin{cases} f(a_i) / \sum_{i=1}^k \mu(a_i), & x \text{ in } a_i, & i = 1, 2, \dots, k \\ 0, & x \text{ not in } A. \end{cases}$$

Then h is in P^0 and ||h|| = 1. However,

$$||h - p|| = \sum_{i=1}^{k} |h(a_i) - p(a_i)| \ \mu(a_i) = \sum_{i=1}^{k} f(a_i)(h(a_i) - p(a_i))\mu(a_i)$$
$$= \sum_{i=1}^{k} \left[\mu(a_i) / \sum_{i=1}^{k} \mu(a_i) \right] - \sum_{i=1}^{k} r_i f(a_i) = 1.$$

Since $p \neq 0$, this contradicts the assumption that P is a U-subspace.

Therefore (i) and (ii) are satisfied.

(\Leftarrow) Suppose P is not a U-space. Then there exists h in P^0 , ||h|| = 1, and p in P, $p \neq 0$, such that $||h \pm p|| = 1$. There exists f in P^1 such that ||f|| = 1 and $\int_S fh \ d\mu = 1$. Suppose (i) and (ii) hold for f. Clearly supp $(h) \subseteq \operatorname{crit}(f)$. We first show that supp $(h) \supseteq \operatorname{supp}(p)$. Without loss of generality, we may assume that |p(a)| < |h(a)|, for every atom $a \subseteq \operatorname{supp}(h)$. If $\operatorname{supp}(p) \subseteq \operatorname{supp}(h)$, then, letting Σ denote summation over the elements a in at (supp (h)), we have, for each r in [-1, 1],

$$\sum |h(a) - rp(a)| \mu(a) < 1.$$

But sgn $(h(a) - rp(a)) = \operatorname{sgn} h(a) = \operatorname{sgn} f(a)$, for a in at (supp (h)) and hence $\sum (f(a)h(a) - rf(a)p(a))\mu(a) < 1, r \text{ in } [-1, 1].$

Thus,

$$1 - r \sum f(a)p(a)\mu(a) < 1, r \text{ in } [-1, 1].$$

Therefore,

$$r \sum f(a)p(a)\mu(a) > 0, r \text{ in } [-1,1],$$

which is absurd. Thus supp $(p) \subseteq \text{supp } (h)$.

Let $k = \operatorname{card} (at \operatorname{supp} (h))$. Then $P^{\perp} | \operatorname{supp} (h)$ is k-dimensional. But this leads to a contradiction because $p(a) \neq 0$ for some a in at (supp (h)) and the following linear equations hold, for $\{f_1^*, f_2^*, \dots, f_k^*\}$ a basis for $P^{\perp} | \operatorname{supp} (h)$ and Σ retaining its former meaning,

$$\sum f_i^*(a)p(a)\mu(a) = 0, \quad i = 1, 2, \dots, k.$$

This completes the proof.

We define $A_p = \bigcup \{at \text{ crit } (f): f \text{ in } P^{\perp} \setminus \{0\}\}$. We have:

THEOREM 6. Let P be an EU-subspace. Then the metric projection T onto P is continuous if and only if A_P is finite.

Proof. (\Rightarrow) Suppose T is continuous and A_P is infinite. Let $\{a_1, a_2, \dots\}$ be distinct atoms in A_P and let, for i in N, f_i be in $P^{\perp} \setminus \{0\}$ such that $||f_i|| = 1$ and $f_i = 1$ on a_i . For i in N, define h_i by:

$$h_i(x) = \begin{cases} 1/\mu(a_i), & x \text{ in } a_i \\ 0, & x \text{ not in } a_i \end{cases}.$$

Then, for each i in N, $||h_i|| = 1$, and $\int_S h_i f_i d\mu = 1$, so that h_i is in P^0 . If $i \neq j$, $||h_i - h_j|| = 2$ so that the bounded sequence $\{h_1, h_2, \dots, \}$ has no convergent subsequence. Thus P^0 is not boundedly compact. But this is a contradiction because of Theorem C.

 (\Leftarrow) Suppose A_P is finite. Then

$$P^0 \subseteq \{h \text{ in } L_1(S, \Sigma, \mu) : h \text{ vanishes outside } A_P\}$$

Since the latter set is obviously finite-dimensional, P^0 is boundedly compact and T is continuous.

This completes the proof.

COROLLARY 7. If at S is finite, then every metric projection onto a finite codimensional EU-subspace of $L_1(S, \Sigma, \mu)$ is continuous.

R. R. Phelps [9] pointed out that if $atS = \phi$, then there are no EU-subspaces of finite codimension in $L_1(S, \Sigma, \mu)$. On the other hand, it is not difficult to show that if $atS \neq \phi$, then there are EU-subspaces of every finite codimension not exceeding card (atS). These can be chosen so as to have continuous metric projections. An example of a discontinuous metric projection onto an EU-subspace of codimension 2 in l_1 was given in [3]. Their example can easily be modified to show the following.

COROLLARY 8. If at S is infinite, then there is an EU-subspace of codimension 2 in $L_1(S, \Sigma, \mu)$ with discontinuous metric projection.

A metric projection onto an EU-subspace is always bounded and therefore continuous if linear. The converse is false as is shown by simple finite dimensional examples. We now prove the following.

THEOREM 9. Let P be an EU-subspace with metric projection T. Then T is linear if and only if there exists f in P^{\perp} such that at (crit (f)) = A_P .

Proof. It is known [6] that T is linear if and only if P^0 is a subspace.

 (\Rightarrow) Suppose at (crit (f)) $\neq A_P$ for all f in P^{\perp} . Then there exists a finite set $B \subseteq A_P$ such that at (crit (f)) $\neq B$ for all f in P^{\perp} . To see this, suppose A_P is finite. Then we may take $B = A_P$. Suppose A_P is infinite. Then let B be any finite subset of A_P with cardinality greater than the codimension of P. Such a set satisfies the stated condition because of condition (ii) of Theorem 5. For each a in B, define h_a to be $1/\mu(a)$ on a and 0 otherwise. Then each h_a is in P^0 . Let $h = \sum_{a \text{ in } B} h_a$. Clearly $\int_S h f d\mu < ||h||$ for all f in P^{\perp} such that ||f|| = 1. Thus h is not in P^0 and therefore P^0 is not a subspace. (\Leftarrow) Suppose there exists f in P^{\perp} such that at (crit (f)) = \hat{A}_{P} . Let h_{1} , h_{2} be in P^0 . Then h_1 and h_2 are supported on $\bigcup \{a: a \text{ in } A_P\}$. To show that $h_1 + h_2$ is in P^0 , it suffices to find g in P^{\perp} such that ||g|| = 1 and $g = \operatorname{sgn}(h_1 + h_2)$ on $\bigcup \{a: a \text{ in } A_P\}$. Now the dimension of $P^{\perp} | A_P$ is card (A_P) by Theorem 5. Thus there exists g in P^{\perp} such that $g \mid A_P = \operatorname{sgn}(h_1 + h_2)$. Clearly $||g|| \geq 1$. Suppose ||g|| > 1. By Proposition 2 of [10], g (as a functional on $L_1(S, \Sigma, \mu)$) attains its supremum on the unit sphere of $L_1(S, \Sigma, \mu)$. Also, the set $\{f \text{ in } \}$ $L_1(S, \Sigma, \mu): ||f|| = 1$ and $\int_S gf d\mu = ||g||$ is a finite-dimensional [9; Theorem 1.4] extremal subset and therefore, using the Krein-Milman Theorem, contains an extreme point of the unit sphere of $L_1(S, \Sigma, \mu)$. Since each such extreme point vanishes outside an atom, we conclude that at (crit (g)) $\subseteq A_P$, which is absurd. Therefore ||g|| = 1 and hence $h_1 + h_2$ is in P^0 . Since P^0 is always closed under scalar multiplication, P^0 is a subspace.

This completes the proof.

We conclude by giving an example of an EU-subspace of codimension 2 in l_1 such that the metric projection T onto P is continuous but not linear. Let h_1 be the sequence $(1, 1, 0, 0, \cdots)$ And h_2 be $(1, 0, 1, 0, 0, \cdots)$. Then h_1 and h_2 are in c_0 . Since $c_0^* = l_1$, the subspace

$$P = \{a = (a_1, a_2, \cdots) \text{ in } l_1 : a_1 + a_2 = a_1 + a_3 = 0\}$$

is weak*-closed and therefore an E-subspace. Moreover P^{\perp} is the subspace of l_{∞} spanned by h_1 and h_2 . Now $l_1 = L_1(N, \Sigma, \mu)$ where N is the set of positive integers, Σ is the set of all subsets of N, and μ is the counting measure. If $\alpha h_1 + \beta h_2$ is in $P^{\perp} \setminus \{0\}$, then crit $(\alpha h_1 + \beta h_2)$ is one of the sets: $\{1, 2\}$, $\{1, 3\}$, $\{2, 3\}$, $\{1\}$, $\{2\}$, $\{3\}$. By Theorem 5, P is a U-subspace. Since $A_P = \{1, 2, 3,\}$, T is continuous but not linear.

REFERENCES

- 1. J. BLATTER, P. D. MORRIS, AND D. E. WULBERT, Continuity of the set-valued metric projection, to appear in Math. Ann.
- R. C. Buck, Applications of Duality in Approximation Theory, in Approximation of Functions (edited by H. L. Garabedian), Amsterdam, 1965, pp. 27-42.

- 3. E. W. Cheney and D. E. Wulbert, The existence and unicity of best approximations, to appear.
- 4. N. Dunford and J. T. Schwartz, Linear Operators, Part I, New York, 1958.
- A. L. Garkavi, Approximative properties of subspaces with finite defect in the space of continuous functions, Dokl. Akad. Nauk SSSR, vol. 155(1964), pp. 513-516 (Russian). Translated in Sov. Math., vol. 5(1964), pp. 440-443.
- R. B. Holmes and B. R. Kripke, Smoothness of approximation, to appear. See also Abstract 636–138, Notices Amer. Math. Soc., vol. 13(1966).
- 7. J. LINDENSTRAUSS, Extension of compact operators, Mem. Amer. Math. Soc., vol. 48(1964).
- E. A. MICHAEL, Topologies on spaces of subsets, Trans. Amer. Math. Soc., vol. 71(1951), pp. 152–182.
- 9. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximations, Trans. Amer. Math. Soc., vol. 95(1960), pp. 238-255.
- R. R. Phelps, Cebysev subspaces of finite codimension in C(X), Pacific J. Math., vol. 13(1963), pp. 647-655.
- I. Singer, Caractérisation des éléments de meilleure approximation dans un espace de Banach quelconque, Acta Sci. Math. Szeged., vol. 17(1956), pp. 181–189.

PENNSYLVANIA STATE UNIVERSITY