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ABSTRACT 

In this research study we focused on studying the tribological properties of 

materials using atomic force microscopy techniques (AFM). Especially the 

tribological properties of fiber materials like natural silks (spider and silkworm) 

and synthetic materials (Kevlar and Nylon) were studied at micro/nanoscales. It 

was found that the natural silks (spider silks, silkworm silks) exhibit lower 

coefficient of friction and work of adhesion values that the synthetic fibers 

(Kevlar, Nylon). While the natural silks exhibit comparable scratch resistance to 

the synthetic fibers at low loads, the synthetic fibers tend to exhibit significantly 

better scratch resistance at higher loads. 

Durability of AFM tips were also studied by measuring the change in tip radius of 

the AFM tips and also utilized the atom probe tomographic (APT) techniques to 

examine the AFM tips. The measure of change in tip radius indicates the wear 

resistance of the tips. It was founded that coated tips (silicon nitride and DLC) has 

good wear resistance compared to pure Si tips and is also confirmed in APT 

studies. 
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CHAPTER 1. GENERAL INTRODUCTION 

The overarching theme of this dissertation research work is to utilize Atomic 

force microscopy (AFM) to study the micro/nanoscale tribological properties of 

materials. This introductory chapter outlines the background, motivation and 

objectives of the research work. 

1.1 Background 

1.1.1 Nanotribology 

Nanotribology is the study of friction/wear/lubrication at nano scales. The 

mechanisms of the interactions between two surfaces in relative motion , ranging 

from atomic to microscale , need to be understood in order to understand 

fundamental concepts of adhesion, friction, wear, indentation and lubrication 

process [1-12]. Nanotribology and nanoscale mechanics studies are necessary to 

understand the interfacial phenomenon in micro/nanostructures used in several 

applicaions. [3, 7-9, 13, 14]. 

Scanning probe microscopic techniques which include scanning tunneling 

microscope (STM), atomic force microscope (AFM) are widely used in 

micro/nanotribological studies. 
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1.1.2 Atomic force microscopy 

Atomic force microscopy (AFM) is a very commonly used technique of 

microscopy which is a very high resolution type of scanning probe microscopy. 

The precursor to AFM was scanning tunneling microscope (STM) which was 

invented by Binning and his colleagues [15] and received Nobel Prize in Physics 

in 1986 for its invention. STMs can only be used to study the surfaces which are 

electrically conductive [16] and it operates by moving sharp tip close in close 

proximity with the surface of the sample. The tunneling current depends on the 

distance between the tip and the sample. The tip is rastered over the surface over a 

distance of 0.3-1nm, while the tunneling current is measured between them. It can 

be operated in two modes: constant current and constant height.  

Based on their STM design, Binning el al. developed atomic force microscope 

(AFM) in 1986 [17]. AFM measures small forces between the tip and sample 

surfaces. By using AFM we can scan the surfaces of the samples which can be 

both conductive and non-conductive in dry, humid, vacuum and liquid conditions. 

AFM is operated by mounting a sample on a PZT tube scanner, which consists of 

separate electrodes which can used to precisely scan the surface of the sample in 

x-y plane in a raster pattern and can also move the sample in vertical z direction. 

A sharp AFM tip which is at the end of the cantilever is engaged or brought into 

contact with the surface of the sample and a set scan size would raster the tip over 
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the surface of the sample. During the scanning the features and artifacts present 

on the surface of the sample cause the cantilever to deflect in vertical and lateral 

directions. A laser beam through a prism is directed onto the back of the 

cantilever.  The laser beam is reflected of the back of the cantilever onto a 

photodiode detector (position sensitive detector) which is a split detector with for 

quadrants as shown in figure 1. The difference in signal of the top and bottom 

quadrants of the photodiode gives the vertical deflection signal of the cantilever.  

 

 

 

 

 

 

Fig 1. Principle of operation of AFM  

(Source: http://en.wikipedia.org/wiki/File:AFM_schematic_(EN).svg) 

 

http://en.wikipedia.org/wiki/File:AFM_schematic_(EN).svg�
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Most commonly used types of modes in AFM are contact mode and intermittent-

contact or tapping mode. Contact mode of operation is capable of obtaining very 

high resolution images. In this mode the deflection of the cantilever is kept 

constant known as set point. When the tip is continuously rastered over the 

surface of the sample, the features on the sample cause the cantilever to deflect 

and hence the change in the signal. This change in the signal is detected by the 

photodiode detector and the vertical deflection signal is measured by subtracting 

the signals  

Fig 2. Contact mode operation of AFM 

from top and bottom quadrants (A+B) – (C+D) as show in the figure 2. This 

signal is used in generating the topographical map of the surface.. 



5 
 

 
 

 The second common mode of operation is Intermittent contact mode or tapping 

mode. In this mode of operation the cantilever/tip assembly, with spring constant 

ranging from 20-100N/m is sinusoidally vibrated at its resonant frequency (50-

400 kHz) by piezo mounted. This vibrating tip is then engaged onto the surface of 

the sample. During this process the amplitude will change and using the feedback 

control in the z-direction is adjusted to maintain a constant oscillating amplitude 

[18,19].  The feedback signal is used to track the surface of the sample.  Generally 

tapping mode is used in topography measurements to minimize the effect of 

lateral forces and effects of friction. Using tapping mode we can use very sharp 

tips for scanning on surfaces without damaging. Especially very soft samples 

characterized using tapping mode. 

AFM is a powerful tool to measure the tribological properties like roughness, 

friction, scratching/wear and nano indentation of the samples at micro/nano 

scales. Surface roughness measurements can be measured both by contact and 

tapping mode by scanning the area and measuring its RMS roughness value. To 

measure the coefficient of friction values the AFM tip was scanned at 90˚ scan 

angle on the surface of these fibers with a scan length and at a scan 

frequency. The friction response of the tip and sample was measured by 

taking the difference between forward and reverse scans of a scan line along 

the long axis of the cantilever. Coefficient of friction values are calibrated 
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using method proposed by Ruan and Bhushan [17]. Adhesive forces are 

measured by using force-displacement curves in contact mode. Microscale 

scratching/wear measurements are taken using very hard tips. 

   

1.1.3 Objectives 

In recent years many researchers have expressed their interest in studying the 

properties of materials at micro/nanoscales. AFM techniques can be used in the 

fields of nanoscale sciences to analyze the materials to evaluate for its properties. 

My objective in this research work is to study the nanotribological properties of 

natural silk fibers and synthetic fibers and methods to evaluate near apex region 

of hard AFM tips using atomic force microscopy and atom probe tomography. 
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CHAPTER 2. MICRO/NANOTRIBOLOGICAL PROPERTIES OF 

NATURAL AND SYNTHETIC FIBERS 

Modified from a paper to be submitted to Wear 

Srinath Kistampallya, Nadia Fronningb, Sriram Sundararajana,* 

Abstract 

Several natural fibers such as spider silks exhibit superior mechanical properties which 

are derived from its bulk. In this study we focus on evaluating the microtribological 

properties of selected natural and synthetic fibers: dragline silk samples of Nephila 

Clavipes (a species of golden orb-web spider), silk worm silk samples obtained from 

white, cultivated Bombyx Mori silk (both natural and bleached type), Kevlar 6 fibers 

and Nylon 6 fibers. Interfacial parameters including work of adhesion, microscale 

coefficient of friction and wear resistance were evaluated using atomic force 

microscopy. We have observed that natural fibers have lower pull-off forces and lower 

coefficient of friction values compared to synthetic fibers. However synthetic fibers 

have greater wear resistance when compared to natural fibers. 

_______________________ 

a Department of Mechanical Engineering, Iowa State University, Ames, IA 50011  

b Minot State University, Minot, ND 58707, USA 

*Corresponding Author email: srirams@iastate.edu 
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1. Introduction 

In recent years there has been increased focus on studying mechanical properties of 

natural and synthetic silk fibers due to their applications in biomedical, defense and 

textile industries. Natural silk fibers are polymers made up of proteins that are spun 

into fibers by silkworms, spiders and other Lepidoptera larvae [1-5]. Spider silk 

(Nephila Clavipes and Araneus diadematus) and Bombyx Mori silkworm silk are the 

most common silks used today. These silk fibers are known for their biocompatibility, 

biodegradability and also for their exceptional mechanical properties like high tensile 

strength and toughness [5-8].  Romer and Scheibel [9] have studied the structure-

function relationship of spider silk  and have reported that spider silk consists of  

proteins which contains repetitive non-polar and hydrophobic amino acids which 

accounts for their exceptional mechanical properties. Genetic engineering including 

cloning is being used to construct spider silk proteins in bulk to overcome the limited 

commercial production of silk using spiders [4]. Bombyx Mori silkworm silk contains 

sericin and fibroin proteins with alternating hydrophilic and hydrophobic groups in the 

chain which are responsible for its exceptional mechanical properties [4, 10].  Hence 

both these silk fibers are used in making scaffolds for tissue engineering and for 

controlled released technology. The applications of silkworm silks and spider silks 

include sutures in biomedical industry, specialty ropes and fishing nets, ballistic 

applications, sports, textile industry [11]. When compared to spider silk, silkworm silk 

has low strength and low extensibility [6, 9] and under compression tests both these 
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silks exhibit superiority over Kevlar [4]. Aramid fibers like Kevlar manufactured by 

Dupont are basically synthetic polymers have a remarkable combination of mechanical 

properties like high strength, resilience and light weight. Hence they are used mainly 

in defense industry.  In the class of Nylons, Nylon 6 is the most characterized fiber due 

to its high tensile strength and elasticity especially at high temperatures, good 

resistance to abrasion and low coefficient of friction [12, 13]. Nylon 6 is hygroscopic 

in nature due the presence of H-bonds in its polymer chains [13]. Nylons are mainly 

used in textile industries and fishing industries.  Porter et al [6] have reported that 

natural silks have high toughness and processing efficiency when compared to 

synthetic fibers like Kevlar and Nylon. 

  

While many studies have investigated the mechanical properties of natural fibers and 

synthetic fibers relatively few studies have addressed the interfacial properties. Macro 

scale studies to evaluate tribological properties of Kevlar and its composites have been 

conducted [14, 15], but very little is known about their behavior at micro/nano scales. 

Mircro/nano scale tribological studies on natural materials like human hair have been 

studied elaborately by C. LaTorre and B. Bhushan [16]  
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Our main objective of this study is to evaluate the micro/nanotribological properties of 

selected natural and synthetic fibers. Specific properties that are reported include 

Microscale coefficient of friction, scratch resistance as well as other interfacial 

properties such as work of adhesion.  

2. Experimental Methods 

2.1 Materials 

In this study we conducted experiments on dragline silk samples of Nephila Clavipes 

(a species of golden orb-web spider), Silk worm silk samples obtained from white, 

cultivated Bombyx Mori silk (both natural and bleached type) from Aurora silks and 

both Kevlar 49 fibers and Nylon 6 fibers from Goodfellow corporation. Figure 1 

shows SEM images of various samples.   Natural and bleached silkworm silk are fairly 

smooth on the surface compared to the spider silk. Spider silks typically have multiple 

strands attached to each other as shown in the figure. Both Kevlar and Nylon look 

fairly smooth on the surface and exhibit fibrous texture along its longitudinal axis. 
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Figure 1   SEM images of (a) natural silkworm silk (b) bleached Silkworm silk, (c) spider silk and (d) 
Kevlar (e) Nylon 
 

 2.2 Atomic Force Microscopy  

Samples were analyzed using atomic force microscopy (AFM). Contact mode atomic 

force microscopy (AFM) experiments were carried out with a  DimensionTM 3100 

AFM (Nanoscope IV, Veeco Instruments, Santa Barbara, CA)  at various humidity 

levels. Very thin samples of these fibers are carefully mounted by laying them on the 

carbon conductive tape which is a very good adhesive. This keeps the silk in place 

from rolling. All AFM measurements were conducted using rectangular silicon probes 

(CSC 37) from Mikromasch with tip radius ranging from 12-20 nm [17, 18]. The tip 

radii were characterized using a standard tip characterization sample (TGT 1) 

commercially available from Mikromasch. Spring constants of the cantilevers were 

calibrated using Sader’s method [19] and ranged from 1.1 to 2 N/m. Surface 
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topography was measured in contact mode over a scan size of 800nm x 800nm and 

roughness data was evaluated from these scans.  

Pull-off forces on these fibers were measured by using force-displacement curves at 

different humidity conditions (8± 3% RH, 38± 3%RH and 60± 3% RH). The work of 

adhesion on these fibers was calculated from pull-off (adhesive) force data under dry 

conditions. 

Friction measurements were taken at controlled dry conditions (8± 3% RH) to 

minimize the effects of adsorbed water vapor. To measure the coefficient of friction 

values the AFM tip was scanned at 90̊  scan angle on the surface of these fibers with a 

scan length of 2 µm and scan frequency of 1 Hz along the long axis of the fibers. The 

friction response of the tip and sample was measured by taking the difference between 

forward and reverse scans of a scan line along the long axis of the cantilever. Any 

small contribution towards the lateral deflection signal from non-frictional forces can 

be eliminated by using this method as described by Bhushan [20]. Coefficient of 

friction values are calibrated using the method proposed by Ruan and Bhushan [21]. 

The tip radius was characterized using a standard tip characterization sample (TGT 1) 

commercially available from Mikromasch.  

The scratch resistance of the fibers was evaluated by performing reciprocatory 

scratches on the surfaces of the fibers at various loads (50, 100, 200 nN) using Si AFM 

probe. A stroke length of 2 µm in length at a sliding speed of 12 mm/s (scan rate of 3 

Hz) was used. Each scratch test was conducted for reciprocatory 15 cycles 
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corresponding to a total sliding distance of 60 mm. The scratches were evaluated post-

test via a topography scan using the same tip. 

 

3. Results and Discussion 

 

Figure 2 compares the RMS roughness values for the various samples. Three 

roughness measurements were taken on each sample and the 90% uncertainty intervals 

are also reported. The roughness value of Nephila clavipes spider silk is highest 

among all the fibers whereas natural and bleached silkworm silks have the least 

roughness values.  

 

 

 

 

 

 

Figure 2  RMS roughness values of different fibers obtained from 800nm x 800nm 

scan size using AFM 
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Figure 3 shows the pull-off forces measured on the various samples as a function of 

relative humidity. Each reported values is an average of five measurements were taken 

at different regions on the surface of each sample. 90% uncertainty intervals are also 

reported. Overall, the natural silkworm silks exhibits the lowest pull-off forces, 

followed by the spider silks and the synthetic fibers. The variation in pull-off forces 

with increasing humidity can inform us of the hydrophobic or hydrophilic nature of the 

surfaces. Increasing humidity generally promotes increases water adsorption leading to 

increased contributions from capillary bridges between the tip and the surface towards 

the pull-off force. A hydrophobic material would exhibit less tendency to form 

adsorbed water and consequently less variation due to capillary forces as a function of 

increasing humidity. On the other hand, a hydrophilic surface would exhibit increasing 

contributions from capillary forces as a function of increasing humidity leading to 

increasing pull-off forces. The natural silkworm silk exhibit little variation in pull-off 

forces as the relative humidity increases. Studies have shown that the silk fibroin 

structure has repetitive hydrophilic and hydrophobic groups along the chain [10]. The  

pull-off force data indicate that the silkworm silks are essentially hydrophobic in 

nature. The surface of Nephila Clavipes spider silks also contain repeated alternate 

units of hydrophilic and hydrophobic regions [22, 23] and the overall behavior of 

surface appears to be hydrophobic in nature, as evidenced by the pull-off force data 

variation with humidity.  Kevlar 49 fibers are known to be  hydrophobic in nature [24] 

and hence shows a less variation in the pull of forces with increase in relative humidity 
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when compared to Nylon which is hydrophilic in nature [13] and exhibits a very 

significant increase in pull-off force with increasing humidity. Based on the pull-off 

force data the silkworm silks appear to be the most hydrophobic in nature while Nylon 

6 appears to be the most hydrophilic. 

 

 

 

 

 

 

 

 

Figure 3 Pull-off forces of different fibers at different humidity conditions 

 

The work of adhesion between the samples and a Si tip was estimated from pull-off 

force data at dry conditions and depends on appropriate contact mechanics model. 
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samples and there was no significant change in the radius of the tip during the 

experiments. It is therefore reasonable to assume that the solid adhesion component is 

the dominant contributor to the pull-off force. The pull-off force  (𝐹𝑝𝑜) is related to the 

work of adhesion (𝑊𝑎𝑑) according to the following equation 

 𝐹𝑝𝑜 = −𝑐𝑅𝑊𝑎𝑑                     (1) 

where R is the radius of the tip and c is a constant which depends on the contact 

mechanics model [25, 26] that best describes the contact condition. 

The Johnson-Kendell-Roberts (JKR) model [27]  is used when the surfaces in contact 

have large tip radii and exhibit strong adhesion forces while the Dejaguin-Muller-

Toporov (DMT) model [28] is used when the surfaces in contact have weak adhesive 

forces and low tip radii.  

The non-dimensional Tabor parameter (χ) is used to determine the appropriate contact 

mechanics model [29] and is given by equation (2). 

χ = �16𝑅𝛾𝑊𝑎𝑑
2

9𝐾2𝑧03
�
1/3

           (2) 

where R is the radius of the tip, 𝑊𝑎𝑑 is the work of adhesion, 𝑧0 is the equilibrium 

spacing of the two surfaces (taken to be 0.2 mm [30]) and K is the composite elastic 

modulus given by  
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𝐾 = 4
3
�1−𝜗1

2

𝐸1
+ 1−𝜗2

2

𝐸2
 �          (3) 

where 𝜗1,2 and 𝐸1,2 are the Poisson’s ratio and elastic modulus of the tip and sample 

respectively. 

 

 

 

 

 

 

 

Figure 4 Work of adhesion of all fibers at dry condition 

A Tabor parameter close to zero (χ < 0.0864) is indicative of the DMT model’s 

suitability, while a value close to one is indicative of the JKR model’s suitability [26]. 

The non-dimensional Tabor parameter χ was calculated on all the samples by initially 

assuming a certain model. In this case we initially assumed DMT model (where c = 

2π) due to the small tip radius of the AFM tip. The resulting values of the Tabor 
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parameter were all less than 0.06 for all the fibers suggesting that the  DMT model was 

the appropriate one to use for our measurements. A check using the JKR model 

confirmed that it was not the suitable model, with Tabor parameter still yielding values 

close to 0.09. Consequently the DMT model was used to extract the work of adhesion. 

Figure 4 shows the work of adhesion values of different fibers as calculated from the 

pull-off forces at 8% relative humidity and equation 1. The work of adhesion of 

synthetic fibers is generally larger than the work of adhesion of natural fibers. 

Silkworm silks have the lowest work of adhesion values compared to synthetic fibers. 

Figure 5 shows the microscale coefficient of friction values of the fibers. Nylon has 

the maximum coefficient of friction compared to all other fibers. But we can also see 

that natural fibers have lower coefficient of friction values compared to the synthetic 

fibers.  

The coefficient of friction values of the samples follow a trend that is very similar to 

the work of adhesion values.  No significant wear was seen on the surface of the 

samples as a result of the friction measurements which suggests that the predominant 

friction was adhesive. Consequently, it is reasonable to expect the coefficient of 

friction of the samples to follow a similar trend with work of adhesion.   
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                             Figure 5  Microscale coefficient of friction of different fibers 

The representative wear scans of spider silk, natural silkworm silk and nylon are 

shown in figure 6 and the average wear/scratch depth of the samples are shown in 

figure 7. Kevlar shows the highest scratch resistance followed by Nylon and natural 

silkworm silk which have comparable values. Spider silk shows very good scratch 

resistance upto 100nN, comparable to Nylon and natural silkworm. However it begins 

to exhibit poorer scratch resistance at 200nN. Bleached silkworm silks exhibit the 

poorest scratch resistance by a large margin compared to the other fibers.  

From figure 6, the spider silks exhibit ploughing and wedge formation as the main 

mechanism of wear. The bleached silkworm silk shows some evidence of cutting 

debris on the sides of the tracks in addition to ploughing. 
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Figure 6   Representative wear scans of different fibers  (a) Spider silk (b) Bleached SW silk 

(c) Nylon 

The bleaching process and other degumming processes remove the Sericin which is present on 

the surface of the fibers [31] and may result in poor scratch resisistance. 

 

 

 

 

 

 

 

 

 

Figure 7  Scratch wear depth of different fibers 
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4. Conclusions 

 

In this paper we studied the nanotribological properties of natural fibers and synthetic 

fibers. Table 1 summarizes the various surface micro/nanoscale tribological properties 

of the fiber samples measured in this study. Based on our studies, the natural silks 

(spider silks, silkworm silks) exhibit lower coefficient of friction and work of adhesion 

values that the synthetic fibers (Kevlar, Nylon). While the natural silks exhibit 

comparable scratch resistance to the synthetic fibers at low loads, the synthetic fibers 

tend to exhibit significantly better scratch resistance at higher loads. The bleaching 

process severely undermines the scratch resistance of the silkworm silk. 
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Table 1: Summary of surface and interfacial properties of selected natural and 

synthetic fibers. Average numbers along with 90% uncertainty intervals are reported. 

Types of Fibers Roughness a (nm) 
Coefficient of 

Friction b 
Work of Adhesion c 

(N/m) 

Scratch 
depth d 
(nm) 

Spider silk 12 ± 5 0.05 ± 0.02 0.17 ± 0.04 8 ± 5 
Silkworm silk 

(Natural) 7 ± 4 0.03 ± 0.015 0.04 ± 0.01 4 ± 3 

Silkworm silk 
(Bleached) 6 ± 3 0.025 ± 0.02 0.03 ± 0.02 25 ± 15 

Kevlar 49 10 ± 4 0.085 ± 0.02 0.25 ± 0.08 2 ± 1 
Nylon 6 11 ± 3 0.15 ± 0.5 0.28 ± 0.08 3 ± 2 

Human hair * 10 ± 4 0.03 ± 0.01 --- --- 
 

a  Roughness measured on a scan area of 800nm x 800nm                                                                             
b  Coefficient of friction measured using CSC 37 tip on a scan length of 2µm                                              
c  Work of adhesion measured using Si tip of radius 12nm on the surface of fibers at dry conditions                    
d  Scratch depth measured by scratching a length of 2µm by applying a load of 100nN using Si tip                 
*  Latorre, Bhushan; Structural, nanomechanical and nanotribological characterization of human 
hair (roughness measured on a scan area of 5µm x 5µm of a virgin Asian human hair) 
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CHAPTER – 3 

EVALUATING DURABILITY OF AFM TIPS 

 

3.1 Introduction 

 

Atomic force microscopy is a powerful tool for very high resolution 

characterization of the surfaces and in investigating nanoscale tribological 

properties of the materials [1]. The resolution of the AFM measurements critically 

depends on the geometry of the probe and is strongly affected by the degradation 

of the tip during scanning on the surface the samples. The durability of the AFM 

tips is considered to be one of the most important factor in carrying out the 

experiments on surfaces at nanoscales. To use a single probe numerous times and 

scanning it over a distance of several millimeters to kilometers (eg: 

Nanolithography) during its lifetime is one of the biggest challenge for the 

manufacturers.  

Several techniques are used to measure the geometry of the tip which range from 

electron microscopy to using standard tip characterizer samples and algorithms to 

reconstruct the images obtained [2-4]. To study the chemical composition and 

material structure of near apex region of the tip is an arduous task. Three 

dimensional atom probe tomography has been used successfully to study the 

material composition and structure of the near apex region of the AFM tips. In 
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this research work, we studied the durability of few hard AFM tips by measuring 

the change in tip radii after rubbing it against the hard sapphire. 

 

3.2 Materials and Methods 

AFM tips (uncoated NSC 15 Si tips, NSC 15 LS and NSC15 Si3N4 and DCP 20 

tips) are used to study their durability. Uncoated NSC 15 Si tips (Mikromasch) 

have a conical tip shape and n-type doped with phosphorus with spring constant 

in the range of 35-45 N/m,  NSC 15 LS and NSC 15 Si3N4 (Mikromasch) are both 

CVD coated with different thicknesses of Si3N4 coatings which results in tip radii 

of 30 and 20 nm respectively, DCP 20 (NT-MDT, K-TEK nanotechnology) is a 

boron doped Si tip coated with diamond like carbon (DLC) with a nominal tip 

radius of 30-45nm and spring constant of 65-90 N/m. 

The durability of tips was  studied by measuring the change in contact 

pressures(stresses) at the interface by rubbing it against the hard sapphire for                 

5 min at a load of 100nN on a scan area of 5µm x 5 µm at a scan rate of 1 Hz. The 

initial tip radius of the each tip was measured by using a standard TGT 1 tip 

characterizerInitial tip radius of NCS15 Si tip is 15 nm, NCS15 LS is 25nm and 

NCS15 Si3N4 is 16nm and DCP tip is 28nm. . Now each tip is rubbed against hard 

sapphire sample and change in the tip radius was measured.  By using these 
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changes in the tip radius we can measure the changes in the interfacial pressures 

which is a measure of durability. 

Figure1 below shows change in the pressures and percentage change in the 

contact pressures acting on the tips at the interface. A load of 100nN load is 

applied and rubbed against sapphire for 5 min for three times. After the end of 

three runs the changes in pressures of pure Si NSC 15, NSC 15 LS and DCP 20 

tips is found to be almost similar. And the percentage change in pressures is also 

similar as shown below. 

 

 

 

 

 

 Figure 1. Change and percentage change in average pressures of AFM tips after rubbing 

against sapphire  

These tips were also examined using atom probe tomography. APT techniques are 

now capable of determining the three dimensional structures and chemistry of 

AFM tips [5]. AFM tips possess necessary geometry which makes them suitable 
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for APT analysis. The tips were analyzed as received using a commercially 

available atom probe microscope (LEAP 3000X Si, Cameca Instruments Inc.) in 

the pulsed laser mode.  

 

Table1. Parameters for APT analysis of the various SPM tips. All samples were 

run in pulsed laser mode at 200 kHz and 0.5% evaporation rate.  

(Source: C.J. Tourek’s Ph.D Thesis) 

 

 

 

 

 

 

 

 

 

Tip Type Material Sample 
Temperature (K) Laser Power (nJ) 

NSC15 Si(100) 50 0.3 

NSC15  Si3N4 Si3N4 on Si(100) 50 0.9 

NSC15 LS Si3N4 on Si(100) 100 1.2 

DCP20 DLC on Si(100) 125 1.3 
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Figure 2    Mass spectrum from APT analysis of NSC 15 Si tip 

Figure 2 shows the mass spectrum of NSC 15 Si tip. Silicon ions and the native 

oxide of Silicon (Si+, Si++, and Si2
+, O+, O2

+, SiO++, SiO+, SiO2
+, Si2O++, and Si2O+) are 

seen in the spectrum along with Al+, Al++, AlO+ and AlO++, C+, C++, C+++, F+ and F++.  

 

 

 

 

 

Figure 3   Mass spectrum from APT analysis of Silicon nitride coated NSC 15 tips 

Figure 3 shows the mass spectrum from APT analysis of NSC 15 Silicon tips 

coated with silicon nitride. The thicknesses of these coatings vary for NSC15 LS 

and NCS15 Si3N4. Silicon nitride is used as hard coating to minimize the wear of 
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the tips during the nanotribological studies. The mass spectrum shows Si peaks 

along with multiple peaks of silicon nitride compounds. High laser power was 

necessary in the case these coated tips to field evaporate compared to uncoated 

silicon tips. Since Si and N have mass to charge ratios that are multiples of each 

other 28 and 14 respectively, makes it difficult to distinguish the compounds of 

higher mass compounds.  

 

Figure 4   Mass spectrum of DLC coated AFM tip (DCP 20) 

Figure 4 shows the mass spectrum of AFP tip coated with diamond like carbon 

(DLC). DLC coatings have very good wear resistance and used extensively in 

nanoscale wear and nanoindentation studies.  

These tips required high laser power and temperature to field evaporate the ions. 

These coatings typically contains C3
++ in majority and also C2

+, C3
+, C3

++, C4
+ 

C4
++, C5

+, C6
+, C7

+ in minor quantities as shown in the mass spectrum.  
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3.3 Conclusions 

The near apex regions of several AFM tips were successfully analyzed using 

atomic force microscopy and atom probe tomography. In the AFM studies the 

change in the contact pressures of NSC15 Si3N4 probe is highest compared to all 

other tips. Pure Si NSC 15, NSC 15 LS and DCP 20 tips show almost similar 

trend in change in the contact pressures. In the APT studies uncoated Si tips 

needed much less temperature and laser energy to field evaporate compared to the 

tips coated with silicon nitride and diamond like carbon. In the case of the coated 

tips, field evaporation during the atom probe runs stopped when the interface was 

reached. APT runs on uncoated tips (NSC15) and tips coated with silicon nitride 

(NSC15 LS and NSC15 Si3N4) are successful more often compared to diamond 

like carbon (DLC) coating DCP tips. Hence, we can use AFM and APT studies to 

quantify the contamination of tips and analyze the material transfer during wear 

and scratch tests. 
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CHAPTER-4 

CONCLUSIONS 

Atomic force microscopy was used to study the nanotribological properties of 

natural fibers and synthetic fibers. Various surface micro/nanoscale tribological 

properties of the fiber samples measured in this study. Based on our studies, the 

natural silks (spider silks, silkworm silks) exhibit lower coefficient of friction and 

work of adhesion values that the synthetic fibers (Kevlar, Nylon). While the 

natural silks exhibit comparable scratch resistance to the synthetic fibers at low 

loads, the synthetic fibers tend to exhibit significantly better scratch resistance at 

higher loads. The bleaching process severely undermines the scratch resistance of 

the silkworm silk. 

We have also studied the durability of AFM tips by measuring the change in tip 

radius after rubbing it against the hard sapphire sample. In the AFM studies the 

change in tip radius of NSC15 Si probe is highest compared to all other tips. NSC 

15 LS and NSC15 Si3N4 tips show almost similar trend in change in the tip radius. 

Change in tip radius of the DLC coated DCP tips is very less compared to all 

other tips.   We have also successfully examined the near apex regions of several 

commercially available AFM tips using atom probe tomography. Conical Si tips 

coated with silicon nitride and DLC were successfully analyzed in pulsed laser 
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mode. The coated AFM tips required high temperatures and laser energies to field 

evaporate compared to uncoated Si tips. 

 

Future Study 

We can implement the same AFM techniques to evaluate the nanotribological 

properties of other fibrous materials and biomaterials. The nano scale hardness of 

these fibers can be studied using nanoindentation techniques. The transferred 

material on the near apex region of the AFM tips can be studied at nano scale 

using APT. The wear on hard materials in fluids could be studied using AFM tips 

and in turn can be analyzed by APT. 
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