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EXTENDED ABSTRACT 
 

The overall goal of this research is to develop methods for analyzing and recovering sugars 

and phenolic compounds from bio-oil.  Specific objectives include (1) adapting analytical 

methods developed for sugar analysis in the food industry to measure total water-soluble sugars 

in the aqueous phase of bio-oil; (2) adapting analytical methods developed for total phenolic 

analysis of wine to measure total phenol content of  bio-oil; (3) separate the heavy fraction of 

bio-oil into a concentrated sugar solution and a phenolic oligomer-rich raffinate; and (4) 

determine the effect of pyrolysis temperature on the yield of sugars and phenolic compounds in 

bio-oil.  

Recent research at Iowa State University suggests that bio-oil may be the most economical 

approach to advanced biofuels production. Produced from the fast pyrolysis of biomass, bio-oil 

contains hundreds of chemical compounds that complicate their accurate and cost-effective 

chemical analysis. Among the most commercially important components of bio-oil are sugars 

and phenolic compounds. Both are difficult to analyze because of the large number of variations 

that can occur and potential interferences with other bio-oil components.  

The approach to this research was to adapt chemical analysis methods developed by food 

chemistry to quantify total sugars and phenolic compounds using standardized test methods. The 

Association of Analytical Communities, International (AOAC) Official Method of Analysis 

988.12 (44.1.30) Phenol-Sulfuric Acid Assay for Total Carbohydrate Determination was utilized 

to quantify water-soluble sugars and the Folin-Ciocalteu (FC) colorimetry method was used to 

quantify total phenolic compounds in bio-oil.  

Bio-oil produced from fast pyrolysis of biomass contains sugars originating from cellulose. 

Traditional quantification of sugars in bio-oil is accomplished by gas chromatography/mass 



xv 

spectroscopy (GC/MS) via derivatization, high-performance liquid chromatography (HPLC), 

ion-exhange chromatography (IC), or nuclear magnetic resonance (NMR) methodologies. These 

techniques are highly specific for each sugar, tedious to perform, expensive, and involve the use 

of hazardous solvents.  

A standardized test method developed for food and agriculture applications, the Association 

of Analytical Communities, International (AOAC) Method 988.12 (44.1.30) Phenol-Sulfuric 

Acid Assay for Total Carbohydrate Determination, was utilized to quantify total sugars in the 

water-soluble fraction of bio-oil. This study investigated accuracy relative to matrix effects 

caused by non-sugar compounds using positive and negative controls. Positive controls included 

levoglucosan, D-glucose, D-mannose, D-xylose, D-fructose, D-galactose, L-arabinose, L-fucose, 

and cellobiosan. Negative controls included phenol, acetic acid, formic acid, propionic acid, 

glycolic acid, acetol, furfural, 5-hydroxymethylfurfural (5HMF), furfuryl alcohol, 2-methylfuran 

and 2(5H)-furanone.  

Potential interference with the quantification of total water-soluble sugars by the AOAC 

Method 988.12 (44.1.30) was calculated for all positive and negative controls by using data 

obtained when adding the contributor (positive controls) and the interferent (negative controls) 

into the water-soluble fraction of bio-oil with typical concentrations found in bio-oil. It was 

found that furfural, 2(5H)-furanone, 5HMF, and furfuryl alcohol influenced results with a range 

of potential errors of 9.56-29.7%, 9.52-29.8%, 2.91-24.8%, and 1.34-11.9%, respectively. A 

correction factor of 0.76 wt% was established to reduce or eliminate this influence. Total water-

soluble sugars content in bio-oil detected by AOAC Method 988.12 (44.1.30) was comparable to 

the quantity of sugars detected using hydrolysis with quantification by HPLC. The uncertainty of 
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measurement of water-soluble sugars in bio-oil at 95% confidence was ±1.7% using AOAC 

Method 988.12 (44.1.30) when the correction factor was employed. 

Bio-oil from fast pyrolysis of biomass contains phenolic compounds derived from the lignin 

portion of the biomass. Traditional testing for total phenolic compounds in bio-oil is based on 

either a rough estimate of the weight percent water-insolubles in bio-oil or on tedious liquid-

liquid extraction methods. The Folin-Ciocalteu (FC) colorimetry method used for quantifying 

total phenols in wine was used to determine total phenols in bio-oil. This method, based on the 

oxidation of phenolic compounds by the FC reagent, is fast and easy to perform. This study 

evaluated its accuracy relative to interferents by the use of positive and negative controls.  

Positive controls included phenol, 4-methylphenol, 3-ethylphenol, guaiacol, 2,6-

dimethoxyphenol and eugenol. The negative controls included sugars, furfural, and acids. 

Potential interferents with the quantification of total phenols by the FC method was calculated 

for all positive and negative controls by using data obtained when adding the contributor 

(positive controls) and the interferent (negative controls) into bio-oil using typical concentrations 

found in bio-oil. The positive and several of the negative controls produced strongly correlated 

linear relationships between the indicated phenolic content of the bio-oil and the amount of 

contributor or interferent added.  However, the slopes of these relationships for the negative 

controls were much smaller than those for the positive controls, indicating that the error in the 

prediction of phenol content was small even for large concentrations of interferent compounds.  

For typical concentrations of non-phenolic compounds in bio-oil, the error in predicted 

phenolic content as a result of their presence was ≤ 5.8%. Total phenolic content in bio-oil 

detected by the FC method was comparable to the quantity of total phenolic compounds obtained 

by liquid-liquid extraction. All results fell within the margin of error and the uncertainty of the 
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measurement by the FC method indicating there was no significant difference in the results 

between the two methods. The FC method uncertainty of measurement was ±1.1% at the 95% 

confidence level. 

An investigation of sugar and phenolic oligomer recover from the heavy-ends of fractionated 

bio-oil is performed. This study explores the separate recovery of sugars and phenolic oligomers 

produced during the fast pyrolysis of lignocellulosic biomass. The experiments were conducted 

in an 8 kg/h fluidized bed pyrolysis process development unit. Bio-oil fractionation was 

accomplished with a five-stage system that recovers bio-oil according to “condensation points” 

of the constituent compounds. The first two stages capture “heavy-ends” consisting mostly of 

water soluble sugars derived from polysaccharides and water insoluble phenolic oligomers 

derived from lignin. Exploiting differences in water solubility, a sugar-rich aqueous phase and a 

phenolic-rich raffinate were recovered. The soluble sugars were effectively washed from the 

phenolic oligomers allowing the production of “pyrolytic sugars” and a carbohydrate-free 

raffinate comprised of phenolic oligomers that readily flowed at room temperature. Over 93 wt% 

sugars were removed with two wash stages for stage fractions (SF) 1 and 2.  

The separated sugars from SF 1 and 2 are suitable for either fermentation or catalytic 

upgrading to biofuels. The phenolic oligomer-rich raffinate, which represents 44-47 wt% dry 

basis (db) of both SF 1 and 2, is less sticky and viscous than the unwashed SFs. It has potential 

for production of fuels, aromatic chemicals, unique polymers, resins, binders, coatings, 

adhesives, asphalt, and preservatives. 

Iowa State University’s fluidized bed pyrolysis process development unit (PDU) with a 

condenser collection system is utilized to evaluate physicochemical properties of bio-oil 

produced at 350, 400, 450, 500, and 550 °C. A study of temperature effects on the production 
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and distribution of specific chemical families and or chemicals is pertinent to quality bio-oil with 

specific end-use applications. The red oak biomass gave maximum bio-oil yield at 400°C, 

highest non-condensable gases (NCG) yield at 550°C, with the highest char yield at 350°C. 

Carbon monoxide increased at the expense of carbon dioxide at 550°C. There was a slight 

increase in methane as well. A higher conversion of cellulose and hemicellulose content to 

sugars resulted at 400°C and was condensed in stage fractions (SF) 1and 2. Total phenolic 

compound production was highest at 350°C with the majority being larger lignin derived 

oligomers which condensed in SF 1-2. The phenolic monomers were the most prevalent at 550°C 

with the highest concentration condensed in SF 3.The insolubles ranged from 40-45 wt% at 500-

550°C in SF 1-2. Moisture content was highest at 550° in SF 5. 
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CHAPTER 1.  OVERVIEW 
 

1.1 Introduction 

Chemical composition of bio-oil is dramatically different from that of petroleum-derived oil. 

Bio-oils are multi-component mixtures derived from cellulose, hemicellulose, and lignin. 

Therefore, its chemical make-up resemble that of biomass and not petroleum oils [8]. Produced 

from the fast pyrolysis of biomass, bio-oil contains hundreds of chemical compounds that 

complicate their accurate and cost-effective chemical analysis and separation.  

Among the most commercially important components of bio-oil are sugars and phenolic 

compounds. Both are difficult to analyze because of the large number of variations that can occur 

and potential interferences with other bio-oil components. The approach to this research is to 

adapt chemical analyses methods developed by food chemistry to quantify total water-soluble 

sugars and phenols using standardized test methods. The Association of Analytical 

Communities, International (AOAC) Official Method of Analysis 988.12 (44.1.30) Phenol-

Sulfuric Acid Assay for Total Carbohydrate Determination is utilized to quantify bio-oil water-

soluble sugars and the Folin-Ciocalteu colorimetry method is used to quantify total phenolic 

compounds in bio-oil. 

Development of a method for recovering two value-added products from the fast pyrolysis of 

lignocellulosic biomass: a concentrated sugar-rich solution and phenolic oligomer-rich raffinate 

is investigated. Effective removal of these two products offers an array of industrial 

opportunities. Pyrolytic sugars can be used for direct upgrading to liquid transportation fuels 

and/or fermentation. Successful sugar removal also has potential for pharmaceutical applications. 

Phenolic oligomers have potential to be used in resins, binders, asphalt, etc. The opportunity also 

exists for removal of specific phenolic compounds for use as valuable chemicals. 
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Lastly, the fast pyrolysis process can be adjusted to favor bio-char, bio-oil, or non-

condensable gas (NCG) formation during the thermochemical conversion of biomass. Often 

research on fast pyrolysis has been carried out with the goal of maximizing the production of 

bio-oil and bio-oil constituents without being aware of the process conditions that optimize 

higher quality bio-oil [9-11].  

 Bio-oil quality is essential for specific targeted applications [9]. Higher molecular weight 

oligomers are important if bio-oil end-use is asphalt, resins, polymers, etc. If sugar production is 

the goal; temperature control for the production of sugars is important. Yield and the structure of 

chemical constituents would be essential in a biorefinery scenario utilizing direct upgrading to 

liquid fuels. Maximizing bio-oil yield should not remain the focus of bio-oil production but 

rather bio-oil quality for specific end-use.  

1.2 Research Objectives 

 The overall goal of this research is to develop methods for analyzing and recovering 

sugars and phenolic compounds from bio-oil.  Specific objectives include (1) adapting analytical 

methods developed for sugar analysis in the food industry to measure total water-soluble sugars 

in the aqueous phase of bio-oil; (2) adapting analytical methods developed for total phenolic 

analysis of wine to measure total phenolic content of  bio-oil; (3) separate the heavy fraction of 

bio-oil into a concentrated sugar solution and a phenolic oligomer-rich raffinate; and (4) 

determine the effect of pyrolysis temperature on the yield of sugars and phenolic compounds in 

bio-oil. These are described in more detail below. 

1.2.1 Methodology Evaluation for Quantification of Total Water-Soluble Sugars in Bio-Oil 

 The first research objective is to adapt analytical methodology developed for food 

chemistry to measure water-soluble sugars in bio-oil. Bio-oil contains sugars originating from 

cellulose. Traditional quantification of sugars in bio-oil is accomplished by gas 
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chromatography/mass spectroscopy (GC/MS) via derivatization, high-performance liquid 

chromatography (HPLC), ion-exhange chromatography (IC), or nuclear magnetic resonance 

(NMR) methodologies. These techniques are highly specific for each sugar, tedious to perform, 

expensive, and involve the use of hazardous solvents. A standardized test method developed for 

food and agriculture applications, AOAC Method 988.12 (44.1.30), is evaluated to quantify total 

sugars in the water-soluble fraction of bio-oil. 

Among the most commercially important components of bio-oil is sugar [12]. Sugar within 

bio-oil’s complex matrix is difficult to analyze. A standardized test method that can be used to 

quantify total water-soluble sugars in bio-oil would enable meaningful comparisons and provide 

more consistent results. The approach to this research is to adapt a standardized chemical 

analyses method developed by food chemistry to quantify total water-soluble sugars in bio-oil. 

1.2.2 Methodology Evaluation for Quantification of Total Phenols in Bio-Oil 

The second research objective is to evaluate the Folin-Ciocalteu colorimetry method used for 

quantifying total phenols in wine to determine total phenols in bio-oil. Bio-oil contains phenolic 

compounds derived from the lignin portion of the biomass. Traditional testing for total phenolic 

compounds  in bio-oil is based on either a rough estimate of the weight percent bio-oil water-

insolubles or on tedious liquid-liquid extraction methods. The Folin-Ciocalteu colorimetry 

method used for quantifying total phenols in wine to determine total phenols in bio-oil is 

evaluated. This method, based on the oxidation of phenolic compounds by the FC reagent, is fast 

and easy to perform. 

Liquid-liquid extraction is very time consuming and it is not a good alternative to a faster, 

easier and standardized test methods. Basing total phenolic compounds  on the water-insoluble 

fraction content of bio-oil is merely a rough estimation. A standardized test method that can be 
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used to quantify total phenolic compounds would allow for meaningful comparisons and provide 

more consistent results. There is a need for a fast, easy, reliable standardized test method for 

quantifying total phenols in bio-oil.  

1.2.3  Development of an Effective Separation Method for the Removal of Total Water-
Soluble Sugars and Phenolic Oligomer-Rich Raffinates from Bio-Oil 

 
The third objective of this research is to develop a method for recovering two value-added 

products from the fast pyrolysis of lignocellulosic biomass: a concentrated sugar-rich solution 

and phenolic oligomer-rich raffinate. 

A vital aspect in the  separation and recovery of chemicals from bio-oil is fractionation; 

where bio-oil is separated into less complex fractions or mixtures [3]. Fractionated bio-oil is 

pertinent for upgrading to transportation fuels. Distillation, as applied to crude petroleum oil, is 

not a valid route to bio-oil fractionation due to thermal and chemical instability [3] therefore, 

other fractionation methods must be utilized.  

Significant progress has been achieved in the advancement of bio-oil collection, allowing for 

an effective bio-oil fractionation method. Iowa State University (ISU) has developed a bio-oil 

recovery system from fast pyrolysis of lignocellulosic biomass as stage fractions (SF) with 

distinct chemical and physical properties using a system of condensers with carefully controlled 

coolant temperatures and electrostatic precipitators (ESP) [1].  

The separated phenolic oligomer-rich raffinate has potential for upgrading to transportation 

fuels, as well as other platform chemicals. The removal of pyrolytic sugars and their conversion 

into liquid drop-in fuels while using phenols to produce high value products (i.e. resins, 

adhesives) could be a promising approach to economic viability of bio-oil refineries [12-15]. The 

recovery of separate sugar-rich and phenolic oligomer-rich streams from the heavy-ends 

represents numerous opportunities for value-added products.  
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1.2.4 Effects of Pyrolysis Temperatures on Yields of Sugar and Phenolic Compounds 

The fourth research objective is to consider bio-oil quality when recovered as SFs using 

different reactor temperatures, evaluation for the production of specific chemical constituents. 

Previously, fast pyrolysis has been carried out with the goal of maximizing the production of bio-

oil. Minimum research has been conducted concerning the production of specific bio-oil 

constituents with little consideration given to process conditions that optimize higher quality bio-

oil [9-11]. Emphasis should not remain on optimizing bio-oil production but rather bio-oil 

quality for specific end-use. 

1.3 Guiding Hypothesis 

Sugars and phenolic compounds can be quantified in bio-oil utilizing standardized testing 

methodology developed by food chemistry. Both the water-soluble sugars and water-insoluble 

phenol compounds can be successfully separated from bio-oil. Furthermore, the pyrolysis reactor 

can be operated at temperatures that optimize effective production of sugars, phenolic 

compounds and other valuable chemicals.  

1.4 Hypothesis 1 

Analytical methods developed by food chemistry to measure sugars can be adapted to the 

analyses of bio-oil. 

The first research goal includes determination of the applicability of established methodology 

from food chemistry for sugars determination in bio-oil. 

1.5 Hypothesis 2 

Analytical methodology developed for the food industry to measure total phenolic 

compounds can be adapted to the analyses of bio-oil. 
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The second research goal includes determination of the applicability of established 

methodology from food chemistry for  the quantification of total phenolic compounds in bio-oil.  

1.6 Hypothesis 1 and 2 Discussion 

Bio-oil properties are drastically different from that of petroleum-derived oils [8,16]. 

Methodology exists in the evaluation of natural products in both the agricultural and food 

chemistry sectors of industry. 

This is a rational approach because many of the chemical constituents in bio-oil are 

remarkably similar to those evaluated in food chemistry including carbohydrates and phenolic 

compounds. Methodologies for food evaluation are well proven and readily available. Food 

application chemistry may offer faster, less complex methods targeting specific chemical groups 

within bio-oil. Potentially, these methods will offer easy, rapid, and repeatable results in 

comparison to the current approaches to bio-oil analyses. 

1.7 Hypothesis 3 and Discussion 

The water-soluble sugars and water-insoluble phenolic compounds can be separated  from 

bio-oil produced using a fractionated condenser system.  

The third research goal includes the separation of two commercially important bio-oil 

constituents, sugars and phenolic compounds. This offers the unique opportunity for use in 

specific value-added applications. The separated water-insoluble fraction exhibits potential for 

upgrading to transportation fuels, as well as other platform chemicals. The removal of pyrolytic 

sugars and their conversion into liquid drop-in fuels while using phenolic compounds to produce 

high value products (i.e. resins, adhesives) promotes the economic viability of the 

thermochemical conversion of biomass for use in direct upgrading to fuels and other important 

applications. 
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1.8 Hypothesis 4 and Discussion 

Pyrolysis reactors can be operated at specific temperatures for optimum yields of sugars, 

phenolic compounds and other chemicals of interest.  

The fourth research goal examines biomass pyrolysis temperature effects on lignin-derived 

oligomers, levoglucosan, and other important constituents, as recovered in SFs. This will offer 

insight on appropriate reactor operating conditions for specifically desired end-products. 

Ultimately, providing economic vitality to a fledgling bio-oil industry. 
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CHAPTER 2. BACKGROUND 
 

2.1 Demand for Liquid Transportation Fuel and Chemicals 

Liquid transportation fuels are primarily derived from petroleum [17] and movement towards 

a sustainable bioeconomy has spurred development of renewable energy and chemical sources 

[3,18]. Biomass, a renewable energy source, has potential to become economically feasible and 

generate similar quality liquid fuels to those derived from petroleum. The utilization of 

lignocellulosic biomass will play a progressively important role in the future [19,20] because it 

offers a number of conversion technologies that can be used to produce liquid fuels [3,18,19]. 

Among these, fast pyrolysis of biomass has been undergoing rapid development because it has 

the potential to solve liquid fuel shortage problems [16,19-21] and provide a source from which 

energy, fuels, and chemicals can be co-produced in a biorefinery integrated system [3,18,19].  

Fast pyrolysis of biomass produces solid bio-char, liquid bio-oil, and NCGs. A typical yield 

from woody biomass includes 60-75 wt% bio-oil, 15-25 wt% bio-char, and 10-20 wt% gas [16]. 

Agricultural feedstocks result in lower bio-oil yields (36-45 wt%) for straws and hay [22] and 

12.5 to 18 wt% for sugarcane bagasse (in natura) bio-oil produced by fast pyrolysis at 

temperatures ranging from 350-450°C [23]. 

Bio-oil is increasingly being recognized as an important feedstock [24,25] for 

thermochemical-based biorefinery applications for transportation fuels, energy and chemicals 

[3,12] even though bio-oil exhibits negative characteristics. Bio-oil contains 42 to 48 wt% 

oxygen [16,22], which must be reduced by catalytic upgrading before co-feeding in a refinery 

unit to produce transportation fuels [24]. Several other problems to direct upgrading of bio-oil 

includes high water content (15-30%), limited stability, and high acidity [24,26,27]. To lower 

acidity and improve stability of bio-oil the removal of acids is important [28]. Because of bio-oil 
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detrimental qualities, separation of bio-oil constituents is necessary before utilization of bio-oil 

can be accomplished.  

2.2 Current Testing Practices for Phenolic Compounds and Sugars Quantification and 

Identification in Bio-Oil 

 

Fermentable sugars obtained from lignocellulosic material shows great potential as a cheap 

renewable feedstock for bio-fuels. The sugars are produced by the depolymerization of the 

cellulose and hemicellulose in plant biomass. This plant material represents an “untapped” 

source of fermentable sugars for significant industrial use [29].  

Traditional quantification of sugars in bio-oil is complicated and difficult to accomplish. 

Consequently, complete analyses of sugars is lacking in bio-oil research. The current techniques 

for sugar identification and quantification are specific to each sugar and involve expensive 

analytical instrumentation as well as highly trained personnel. Bio-oil sugars are not well 

identified. Reported sugars include levoglucosan, glucose, arabinose, and cellobiose [30] fucose, 

galactose, mannose, fructose, and ribose [31]. It would be beneficial to quantify total sugars with 

a simple and fast test methodology suitable for biorefinery settings. 

Bio-oil phenolic compounds also are problematic for individual identity and quantification. 

Wet chemistry methods are used to help identify specific functional groups within water-

insoluble phenolic oligomers (pyrolytic lignin). These include carbonyl, methoxyl, and hydroxyl 

groups [4]. Although wet chemistry methods are time consuming and require the use of 

hazardous solvents, these methods are essential for basic understanding of pyrolytic lignin; 

revealing possible reactions, radical formation, and structural models. But in light of the 

complexity of the oligomeric phenols in bio-oil, it is not feasible to identify these individually. It 

is undoubtedly more important to estimate the total phenolic compounds content of the oil which 
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influences both the total acid number (TAN) for the oil as well as the aromatic content of fuels 

refined from the oil [30]. As to date, phenols are “estimated” by measuring the water-insoluble 

fraction of bio-oil. This fraction is derived from lignin and is considered to be comprised of 

mainly phenolic compounds. 

The importance of reliable and accurate testing procedures for the measurement of sugars 

and phenols in bio-oil cannot be overstated. The future of thermochemical conversion processes 

are dependent on successful quantification of important chemical constituents in bio-oil by 

standardized test methods. Without accurate testing procedures, little headway or acceptance of 

the products with occur. 

2.3 Bio-Oil Fractionation 

It is vital that bio-oil be separated into less complex fractions/mixtures for successful 

upgrading to liquid drop-in transportation fuels and/or valuable chemicals. As discussed 

previously, distillation is not a valid route to bio-oil fractionation because of bio-oils thermal and 

chemical instability [3]. 

Iowa State University’s bio-oil recovery system consisting of condensers and electrostatic 

precipitators (ESPs) (Figure 1) has provided bio-oil fractionation during bio-oil production. This 

system offers prospects for separating commercially important compounds from pyrolysis vapor 

streams.  For example, the heavy fraction contained in SF 1 and 2 contains both water-soluble 

sugars and water insoluble phenolic oligomers that if separated could provide substrate for 

fermentation and a bitumen-substitute for production of asphalt binder. 

This bio-oil collection system was developed on the premise that both vapors and aerosols 

are generated during fast pyrolysis. Vapors were presumed to be predominantly decomposition 

products of carbohydrate polymers while aerosols were the non-volatile, lignin-derived 
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oligomers often described as “pyrolytic lignin” in bio-oil. The condenser stages were designed to 

recover vapors according to condensation temperatures. Electrostatic precipitators were used to 

effectively recover aerosols. Five stages of bio-oil recovery allows separate collection of both 

vapors and aerosols from the oligomeric rich “heavy-ends”, a middle portion of monomeric 

phenols and furans, and  an aqueous phase containing most of the “light oxygenates” [1].  

 

Figure 1. Schematic of the fast pyrolysis reactor and the five stage fractions (SF) of bio-oil 
recovery [1]. 
 

Stage 1 captures high boiling point compounds such as levoglucosan (1,6-anhydro-β-D-

glucopyranose, C6H10O5, Figure 2) and phenolic oligomers while Stage 2 captures aerosols 

formed from these compounds either during pyrolysis or cooling in the condenser of Stage 1[1]. 

The highest weight percentage water-insolubles are captured in SFs 1 and 2, as well as the 

highest weight percentage levoglucosan. Stage 1, a condenser, consists of a shell-and tube heat 

exchanger consisting of thirty, 2.54 cm diameter stainless steel tubes and operates with gas inlet 

and outlet temperatures of 345°C and 102°C, respectively. The temperature of the coolant water 

is controlled to 85°C. Stage 2, an electrostatic precipitator (ESP) operated at 40 kVDC, is 
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constructed from 15.24 cm diameter stainless steel pipe with a 2.54 cm diameter electrode 

extending the length of the pipe along its axis. It is heat traced to 129°C to prevent condensation 

of vapors. Both Stages 1-2 bio-oil are black and extremely viscous even when hot. Upon cooling, 

they are resinous solids at room temperature [1]. Further detail of the reactor is described in 

detail by Pollard et al. [1]. 

   

O
O

HO

HO

HO

 

Figure 2. Structure of levoglucosan. 

High molecular weight phenolic oligomers, which comprise the water-insoluble fraction of 

bio-oil, are condensed in stage 1 and 2. Pollard et al. [1] reported the highest weight percentage 

water-insolubles were captured in SF 1 and 2 as well as the highest weight percentage 

levoglucosan. In conclusion, the authors reported the concentration of water-soluble 

levoglucosan and water-insoluble “pyrolytic lignin” in the first two SFs suggest their separation 

by water washing, ultimately yielding an aqueous stream of fermentable sugar [1]. The separated 

water-insoluble portion exhibits potential for upgrading to transportation fuels, as well as other 

platform chemicals (Figure 3).  

The removal of pyrolytic sugars and their conversion into liquid drop-in fuels while using 

phenols to produce high value products (i.e. green diesel, resins, adhesives) could be a promising 

approach to economic viability of bio-oil refineries [13-15]. Other opportunities exist for the 

phenolic oligomeric fraction (water-insolubles) from SF 1-2 as use in asphalt.  

The determination of applicability and suitability of SF 1-2 in asphalt is current on-going 
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research at ISU [32,33]. Williams et al. [34] report the development of fractionated bio-oil 

during production is a source for beneficial asphalt additives, modifiers, and extenders.  

 

 

 

 

 

 

 

 

Figure 3. Biomass fast pyrolysis and 5 staged bio-oil upgrading diagram [1-3]. 

2.4 “Washing” to Separate the Water-Soluble and Water-Insoluble Phases of Bio-Oil  

It has been shown that the bio-oil aqueous phase is an excellent source to isolate the water-

soluble sugars [3,35]. Separation of bio-oil water-soluble from the bio-oil water-insoluble phases 

has been used to isolate specific groups of chemicals [3,4,16,26,31,35-39]. Bio-oils have high 

oxygen content due to carboxylic acids, aldehydes, ketones, carbohydrates, alcohols, esters, 

phenols, and lignin-derived material. These compounds cause the polarity of bio-oils which 

make them highly soluble in other polar solvents. With the addition of increasing amounts of 

water-to-bio-oil, phase separation can be forced to occur [38]. The aqueous phase contains the 

polar carbohydrate-derived compounds while the viscous layer is predominantly less polar 

lignin-derived compounds [16]. The presence of both the water-soluble and water-insoluble 

phases can complicate bio-oil applications. Both phases can be treated separately to produce 

different value-added products either as an intermediate or as the final product [3].  
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Bio-oil aqueous phase is a starting feedstock to isolate chemicals, such as water-soluble 

sugars and acetic acid [3]. Even though water addition is commonly applied to bio-oil 

characterization there is little research in this area and traditionally is only applied to bio-oil 

captured in one fraction as “whole” bio-oil. Optimization and separation of levoglucosan by 

varying total water content used to extract the water-soluble fraction in whole bio-oil produced 

from Scots Pine is shown by Bennett et al. [35] prior to hydrolysis and fermentation to produce 

bio-ethanol. Oasmaa and Kuoppala [40] also describe whole bio-oil sample preparation for 

acquiring the water-soluble fraction for sugar determination in bio-oil.  

Separation and quantification of the water-insoluble fraction of bio-oil is important in 

advancing pyrolysis technologies, as well. Sometimes called “pyrolytic lignin,” it is mostly non-

volatile organic compounds derived from the lignin fraction of the biomass feedstock [41]. This 

oligomeric fraction is considered to react with other oligomers within the pyrolytic lignin or with 

reactive monomers such as eugenol, isoeugenol, vinyl guaiacol, vinyl-syringol, and 3-hydroxy-

5,6-(4H)-pyran-4-one [42] causing bio-oil stability issues.  

The composition and structural features of the water-insoluble fraction is important in 

stabilizing bio-oil and upgrading it to transportation fuels and other chemical products [39]. 

According to Bayerback and Meier [4], the constituents within the water-insoluble fraction have 

detrimental effects on several bio-oil properties including viscosity, reactivity, and stability. The 

viscous water-insoluble fraction is largely responsible for the poor combustion performance of 

bio-oil in boilers and engines. On the other hand, the water-insoluble fraction is attractive for the 

production of extenders in resin formulations [16] or phenolic compounds [4]. Typical phenolic 

compounds in bio-oil are guaiacol, catechol, resorcinol, syringol, eugenol, vanillin, isoeugenol, 
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and syringaldehyde. These compounds have commercial value with their main applications in 

the food and fragrance industry [43]. 

Elder and Soltes [44] estimated that 75% of the phenolic fraction is nonvolatile and 

potentially polymeric. When the water-soluble material from the initial extraction of the bio-oil 

was evaluated for phenols, it was found to be very low in comparison with the phenols found in 

the water-insoluble fraction [44]. 

Bio-oil contains more than 300 compounds of different molecular sizes with around 35-50% 

of these constituents being non-volatile [45]. Bayerback and Meier [4] classified bio-oil from 

wood into four main fractions (Figure 4). These are (1) medium-polar monomers 

 

Figure 4. The main groups in whole bio-oil from the fast pyrolysis of wood [4]. 

detected by GC, 40 wt%, (2) polar monomers detectable directly by HPLC or GC after 

derivatization, 12 wt%, (3) water derived from reaction water and feedstock moisture, 28 wt%, 

and (4) oligomeric material (water-insoluble pyrolytic lignin) 20 wt%. The oligomeric portion is 

an important constituent of bio-oil, however, only scarce information on this fraction is available 
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in literature [4]. Pyrolytic lignin is normally reported as mass fraction of the whole bio-oil 

without additional chemical data. 

 

2.5 Effects of Pyrolysis Temperature on Recovery of Bio-Oil as Distinctive  

Stage Fractions  

 

The fast pyrolysis process can be adjusted to favor specific product formation (i.e. bio-char, 

bio-oil, or NCGs). Maximum yields of bio-oil are obtained in the temperature range of 450-

550°C [46] where approximately 70% of the biomass is converted to bio-oil [9]. Over this 

temperature range there is a bio-char yield decrease with a corresponding increase in NCG yield 

[46,47]. This increase in NCG yield is attributed to the secondary cracking of pyrolysis vapors 

and char into NCGs, depending on the temperature [48]. Often research on fast pyrolysis has 

been carried out with the goal of maximizing the production of bio-oil and bio-oil constituents 

without being aware of the process conditions that optimize higher quality bio-oil [9-11].  

Bio-oil quality is essential for specific targeted applications [9]. Higher molecular weight 

oligomers are important if bio-oil end-use is asphalt, resins, polymers, etc. If sugar production is 

the goal; temperature control for the production of sugars is important. The yield and structure of 

chemical constituents would be essential in a biorefinery scenario utilizing direct upgrading to 

liquid fuels. Maximizing bio-oil yield should not remain the focus of bio-oil production but 

rather bio-oil quality for specific end-use.  

2.6 Dissertation Format 

This dissertation consists of a compilation of journal manuscripts, supplemented with a 

background section, literature review and overall conclusions. The first manuscript details 

analytical work and results of total water-soluble sugar quantification using AOAC Method 
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988.12 (44.1.30). Total water-soluble sugars quantification and comparison is provided for 3 

separate methodologies: AOAC Method 988.12 (44.1.30), liquid-liquid extraction, and 

hydrolysis with quantification by HPLC. The second manuscript discusses the Folin-Ciocalteu 

method and provides a direct comparison of total phenolic concentrations in bio-oil using the 

Folin-Ciocalteu method and a liquid-liquid extraction method, obtained from literature, for total 

phenolic compound determination. The third manuscript details analytical work and results for 

the efficient removal of sugars and phenolic oligomers from SF 1 and  SF 2 bio-oil. The fourth 

manuscript discusses bio-oil chemical constituent quantities and distribution. These bio-oils were 

produced and collected utilizing ISU process design unit fast pyrolysis reactor with the collection 

system at five different reactor temperatures: 350, 400, 450, 500, and 550°C. This manuscript 

discusses the importance of temperature in the optimization of the fast pyrolysis reactor for 

production of specific chemicals for desired end-use applications.  
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CHAPTER 3. LITERATURE REVIEW  
 

3.1 Background 

Bio-oil is the main product obtained from the thermal conversion of biomass and is 

considered a possible replacement for petroleum-based fuels and chemicals. However, bio-oil is 

compositionally distinct from petroleum. Many of the standard test methods used to characterize 

petroleum are ineffective for bio-oil characterization.  

Firstly, this literature review explores the relevance of analytical methodologies developed 

for the food industry in the evaluation of bio-oil. Bio-oil constituents are similar to those 

evaluated by food chemistry including both sugars and phenols. Methodology for food 

evaluation is well proven and readily available.  

Secondly, it includes information for effective removal of phenolic compounds and sugars 

from SF 1-2 bio-oil produced on the ISU process design unit fast pyrolysis reactor equipped with 

a unique condenser system. Once recovered as individual components, both sugars and phenolic 

compounds can be used in specific applications such as fermentation or direct up-grading to 

transportation fuels. Ultimately providing economic viability to thermochemical conversion 

processes. 

Lastly, this review comprises temperature effects of fast pyrolysis on the produced bio-oil 

chemical constituent quantities and SF distribution. This knowledge offers the opportunity to 

target exact end-use applications and maximize the production of the required chemical 

constituents. 

3.2 Introduction 

Bio-oil is produced by the pyrolysis of biomass in a high-temperature, oxygen-free 

environment. It is comprised of multi-component mixtures of varying sized molecules derived 
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from cellulose, hemicellulose and lignin [49]. Bio-oil’s complex physical and chemical makeup 

does not necessarily allow for accurate and reliable physicochemical characterization using 

current methodologies. This complexity makes bio-oil difficult to test and often leads to tedious 

testing procedures with high standard deviations.  

A number of methodologies used in bio-oil characterization have been approved by the  

American Society for Testing and Materials International (ASTM) Committee D02 Petroleum 

Products and Lubricants. Standard methodologies are important for various reasons; they ensure 

that products conform to specifications, comparisons can be made on product performance for 

consumers as well as manufacturers and producers, and testing standards ensure that specific 

tests are being performed precisely the same at each laboratory.  

Unfortunately, many of the standard methods developed for petroleum oil are used to 

characterize bio-oil even though these test methods may not be suitable nor reflect corresponding 

results [30]. For example, ASTM D664-09 is used to determine TAN of petroleum crudes [50]. 

This test method is also used to determine TAN of bio-oil. When used for the evaluation of bio-

oil, this test method includes strong acids (i.e. mineral acids), weak acids (i.e. carboxylic acids) 

and very weak acids (i.e. phenols and substituted phenols). This does not necessarily reflect bio-

oil corrosion properties or degradation, as intended.  

Total acid number is defined as the quantity (mg) of potassium hydroxide needed to 

neutralize the acids contained in one gram of petroleum oil. According to ASTM D664-09 [51], 

it is applicable for acid determinations that have a dissociation constant (Ka) in water larger than 

10-9; extremely weak acids whose dissociation constants are smaller than 10-9 do not interfere. 

Therefore very weak acids such as phenol with a Ka of 1.28 x 10-10, o-cresol with a Ka of 6.3 x 

10-11, m-cresol with a Ka of 9.8 x 10-11, and  p-cresol with a  
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Ka of 6.7 x 10-11 would not be included [52]. However, bio-oil’s high oxygen content and wide 

range of chemical functional groups results in ASTM D664-09 analyses to include strong acids, 

weak acids, and very weak acids. Consequently, bio-oil TAN values range as high as 400 mg 

KOH/ g sample. This is unfortunate because petroleum industry considers oils containing TAN 

values higher than 0.5 to be high acid crudes. Petroleum refinery processing of high acid crude 

oil causes major corrosion of equipment. Petroleum acids are primarily monocarboxylic acids 

which include aliphatic, naphthenic, and aromatic acids. It has been determined that naphthenic 

acids are currently considered the major source of this corrosion [53].  

Total acid numbers may give an indication if a specific petroleum crude oil will be corrosive. 

However, TAN is a poor quantitative indicator of the expected corrosion severity. It is suspected 

that corrosion is not caused by total acid numbers but by a specific group of acids. Significant 

differences in corrosivity can be obtained from oils with the same TAN values, depending on the 

chemical structure of the naphthenic acids within the oils [54]. Crude petroleum oils are also 

complex mixtures. They contain sulfur and chlorides which may play a role in the nature and 

extent of the corrosion as well [55]. 

Further study is necessary before comparing TAN obtained from petroleum with those 

acquired with bio-oil. It is not known to what extent corrosion will occur from the bio-oil acids. 

It would be beneficial to compare corrosion with specific acids within bio-oil. Sulfur and 

chloride play a role in the corrosion process in regards to petroleum crude. Bio-oil contains very 

little sulfur thus its influence would be minimized. On the other hand, bio-oil does contain 

chlorides. Studies have not been performed to see the effect chloride plays in corrosion. 

Therefore, ASTM D664-09, is a poor indicator of corrosion characteristic of bio-oil and should 

not be used.   
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Problems occur when using petroleum ASTM standards and other analytical methodologies 

for bio-oil evaluation and characterization. As discussed, testing protocol for petroleum oil does 

not always reflect comparable parameters [16]. Round robin testing on bio-oil was organized in 

Europe in the 1980s to measure the accuracy of all physical and chemical analyses of bio-oil. 

Due to bio-oil’s heterogeneity, erroneous results were obtained. More extensive round robin 

testing has been initiated due to problems of reproducibility between laboratories [30].  

Bio-oil testing protocol has evolved over recent decades but problems remain because of the 

large variation in the physical and chemical nature of the oil. It differs from petroleum oils in 

chemical composition as well as physical properties [30]. Bio-oil is a complex mixture of 

chemicals consisting of several functional groups including carboxylic acids, aldehydes, furans, 

ketones, phenols, and carbohydrates. It is acidic, displays instability and phase separation in 

storage and contains large amounts of water and oxygen that contributes to its immisciblity in 

petroleum-based fuels. The heating value is approximately one half that of petroleum due to the 

large percentage of oxygen, approximately 40-50%, present in bio-oil [8,16,26]. It is essential for 

bio-oil’s success as a renewable resource to provide standardized testing procedures that can be 

used world-wide. 

3.3 Applicable Food Chemistry Methodologies for Bio-Oil Characterization 

The present investigation considers the applicability of established methodology from food 

chemistry for bio-oil characterization. Methodology exists in the evaluation of natural products 

in both the agricultural and food chemistry sectors of industry. These testing protocols have been 

in continual development due to requirements for measuring food composition and 

characteristics. Many of these testing methods are well proven, have been used for decades, and 

are used internationally.  
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A few of the organizations that have official methods of analysis for food samples include 

AOAC, American Oil Chemist’s Society, and American Association of Cereal Chemists. The 

choice of methodology is determined by the nature of the food sample and the specific reason for 

the analysis. This offers the unique opportunity to couple existing food chemistry methodology 

with analysis of bio-oil. Bio-oil chemical makeup is more similar to food products versus that of 

petroleum. It may be more beneficial to evaluate pyrolysis composition utilizing food product 

methodology opposed to petroleum oil methodology.  

Oasmaa and Kuoppala [40] used the Brix method, developed to measure the sugar content of 

juice and wine, to characterize carbohydrates in the water-soluble fraction of bio-oil. The sugar 

content is determined via a hydrometer that indicates a liquid’s specific gravity [40]. Brix is a 

measure of the mass ratio of soluble solids to water, which can be used as a proxy for the amount 

of sugar in solution [56]. Although Oasmaa and Kuoppala [40] reported the sugar fraction 

correlated well with the Brix determinations, it systematically gave 20 wt% higher values for 

fresh liquids. They compared sugar determinations of newly produced bio-oil to that of various 

stages of aging. The authors explained the higher values for fresh liquids was due to the fact that 

the Brix method is used in the sugar industry for samples that do not contain hydroxy aldehydes. 

Carbohydrates are polyhydroxy aldehydes or polyhydroxy ketones. When the Brix method is 

used, it not only gives the total amount of sugar but also includes hydroxyl aldehydes, and 

hydroxyl ketones. They concluded there is a need for a rapid method of analyzing the 

carbohydrate content of bio-oils because carbohydrates in bio-oil cause problems in fuel oil due 

to their reactivity and sticking tendency [40].  
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3.4 AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid Assay for Total Carbohydrate 

Determination using Ultraviolet-Visible Range Spectroscopy (UV-Vis)  

 

Both, qualitative and quantitative analyses of sugars are a complex and challenging areas for 

analytical chemistry [57]. Traditionally, sugar content in foods is estimated on the basis of 

refractive index measurements or volumetric procedures, which provide total sugar content 

information and the amount of reducing sugars. Commonly used procedures include various 

HPLC methodologies for sugar analysis. Other highly specific procedures for quantifying each 

sugar separately include enzymatic analysis, derivatization, and online dialysis. Precision is 

reasonable but the time required for analysis can be long. Also, these methods are chemical 

based, tedious, and often require reagents that are unfriendly to the environment or hazardous 

and generate chemical waste [57]. 

Total soluble carbohydrate concentration can be determined by AOAC Method 988.12 

(44.1.30). It is simple, fast, accurate, and specific to carbohydrate methodology. Nearly all 

classes of sugars (i.e. sugar derivatives, oligosaccharides, polysaccharides) can be determined.  

When treated with phenol and concentrated sulfuric acid, the reducing groups give an orange-

yellow color which shows absorbs light in the ultraviolet visible range. The reagent is 

inexpensive and stable. The color produced is permanent, thus, it is not necessary to pay special 

attention to controlling conditions [5]. 

In 1951, DuBois et al. [58], discovered that phenol in the presence of sulfuric acid provided a 

simple fast method for the quantitative colorimetric determination of ketoses and aldoses that 

was applicable to reducing carbohydrates. DuBois et al. [5] ran a series of standard curves for 

various monosaccharides, disaccharides, and trisaccharides during further development of this 

method in 1956. Absorption curves were obtained by plotting absorbance versus wavelength. 
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The absorption curve was characteristic for each sugar tested. Their wavelength determinations 

are shown in Table 1. They determined the pentoses have an absorption maximum at 480 nm, 

while the hexoses have an absorption maximum at 485-490 nm. The authors concluded AOAC 

Method 988.12 (44.1.30) can be applied to the analyses of mixtures of sugars and their methyl 

derivatives. 

In the late 1980s, Rao and Pattabiraman [59,60] describe a modification that reduces the 

variability of the assay towards different sugars while increasing sensitivity. Their modification 

avoids sulfonation of the phenols by adding the phenols after the sugars have been converted to 

furfurals with strong sulfuric acid and lowering the heat of reaction. They reported that the color 

intensities for many hexoses and pentoses was decreased when phenol-sulfonic acid was formed.  

Table 1. Wavelength data for certain carbohydrates determined by the phenol-sulfuric acid 
reagent [5]. 
 

Carbohydrate Wavelength (nm) 
D-Fructose 490 
D-Glucose 485 

      Sucrose 490 
Dextran 488 
D-Galactose 487 
D-Mannose 487 
L-Arabinose 480 
D-Xylose 480 
Maltose 490 

 

BeMiller [7] describes the phenol-sulfuric acid assay for total carbohydrate determination. 

He explains the method’s principals and characteristics. Carbohydrates are destroyed by strong 

acids and/or high temperatures and under these conditions a series of reactions take place, 

beginning with a dehydration reaction (Figure 1). With continued heating in the presence of acid, 

various furan derivatives are produced (Figure 2) [5-7]. These can then condense with various 

phenolic compounds to produce colored compounds. 
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Figure 1. Dehydration reaction occurs when strong acid is added to carbohydrates [5-7]. 

Method validity and the type of sugars that fit within the scope of this method can be found 

in literature, as well. Fournier [61] states that with the exception of certain deoxy sugars, the 

method can be applied to reducing and non-reducing sugars and to many classes of 

carbohydrates including oligosaccharides. Fucose is a deoxy sugar reported in bio-oil [31] in low 

concentrations. Under proper conditions, the AOAC method is accurate to ±2%.  

In addition to the food industry, agricultural industries are also utilizing this method. 

Giannoccaro et al. [62] discuss AOAC Method 988.12 (44.1.30) which is widely used for the 

total sugar determination in soybeans. The procedure detects soluble sugars as well as 

oligomeric/polymeric sugars because the high sulfuric acid concentration can hydrolyze 

oligomeric/polymeric sugars into monomers. Sucrose and glucose are used for establishing the 

standard curve in the phenol-sulfuric acid method for determination of soybean sugars.  

The color response of the AOAC method varies with different sugars due to their differences 

in molecular structure [63]. The quantification of total sugars present in a particular sample will 

be affected by the type of sugar used in preparing the standard curve [7]. Giannoccaro et al. [62] 

found that significant differences in total sugars were observed when extracts from the same 

soybean line were analyzed using standard curves prepared from different sugars. Giannoccaro et 

al. [62] demonstrated that the quantification of sugars using the AOAC method strongly depends 
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on the sugar used for the standard curve. Because different sugars have a distinct response to the 

phenol-sulfuric acid reaction, the final color is assumed to be a combination of the colors that 

resulted from the reaction of different sugars [7,63]. Giannoccaro et.al [62] proposed sucrose to 

be more suitable than any other sugar for standard curve preparation in quantifying total soluble 

sugars in soybeans because it represents the majority of soluble sugars present.   

 

 

 

 

 

 

 

Figure 2. Furan products that may arise from carbohydrates upon addition of a strong acid [5-7]. 

Levoglucosan, an anydrosugar, is one of the predominant sugars from the degradation of 

cellulose during fast pyrolysis [35] and has been reported in concentrations ranging from 3 to 6 

wt% in bio-oil [64]. Yu and Zhang [65] report that anhydrosugars formed during pyrolysis (i.e. 

levoglucosan and cellobiosan) may be converted to glucose by dilute acid hydrolysis. Their work 

shows that the addition of sulfuric acid to pyrolysis oil generated more glucose than could be 

accounted for by the amount of levoglucosan present. While this extra glucose was attributed to 

unknown carbohydrate oligomers (i.e. cellobiosan and other sugars) there is little is known about 

identity or relative proportions. Li and Zhang [66] also report levoglucosan can be readily 

hydrolyzed to glucose by acid hydrolysis. 
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3.5 Folin-Ciocalteu Colorimetry Method 

The potential exists to evaluate bio-oil for phenolic compounds content, as well. Bio-oil 

contains numerous phenolic compounds. It is not feasible to identify these individually and 

probably more important to estimate the total phenolic compounds content of the oil, which 

influences both the TAN for the oil as well as the aromatic content of fuels refined from the oil.  

Extraction work is time consuming, tedious, and involves the use of many different 

hazardous solvents. There is a need for a fast, easy, reliable standardized test method for 

quantification of total phenols in bio-oil. 

The wine industry utilizes the Folin-Ciocalteu Colorimetry Method to determine total 

phenolic compounds in their products. Wine is not the only food containing phenols. Phenolic 

compounds are found in all foods, most of which contain very low levels. Prominent foods high 

in phenolic compounds include coffee, tea, chocolate, fruits, oils, spices, and some whole grains 

[67].  

The Folin-Ciocalteu method is based on a chemical reduction of the reagent (mixture of 

tungsten and molybdenum oxides). The products of the metal oxide reduction have blue color 

that has broad light absorption with a maximum at 765 nm [67]. The chemistry of tungstates and 

molybdates is very complex. The isopolyphosphotungstates are colorless in the fully oxidized 6+ 

valence state of the metal and the molybdenum compounds are yellow. They form mixed 

heteropolyphosphotungstates-molybdates and exist in acid solution as hydrated octahedral 

complexes of the metal oxides coordinated around a central phosphate. Sequences of reversible 

one or two electron reductions lead to blue species such as (PMoW11O40)4-. In principle, the 

addition of an electron to a formally nonbonding orbital reduces nominal MoO4+ units to 
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isostructural MoO3+ blue species [68]. The intensity of the color is proportional to the 

concentration of phenols. A disadvantage of the FC method is that it is nonspecific and can be 

affected by other nonphenolic reducing molecules. The reagent is commercially available but can 

be prepared in the laboratory [67].   

Due to the color formation of the Folin-Ciocalteu  reaction via the reduction of the reagent, 

this reaction is general enough to allow for interferences. The most problematic interference may 

be sugar. Proteins are also oxidized by the Folin-Ciocalteu  reagent. In wine analysis the 

interference of sugar is corrected by subtraction of established correction factors [67].  

3.6 Sugar and Phenols Recovery from the Heavy-Ends of Fractionated Bio-Oil 

Bio-oils have high oxygen content because of the highly polar constituents: carboxylic acids, 

aldehydes, ketones, carbohydrates, alcohols, esters, phenols, and lignin-derived constituents. 

These compounds cause the polarity, thus making bio-oil highly soluble in polar solvents such as 

water, methanol, and acetone [38]. In its present condition, water is miscible with the oligomeric 

lignin derived components due to the solubilizing effect of other polar hydrophilic compounds 

[26]. During the separation of the water soluble compounds from the water insoluble fraction 

there is co-extraction between the two phases. It is well known that, in the presence of large 

amounts of water, the lignin oligomers spontaneously precipitate [69,70]. By adding increasing 

amounts of water to bio-oil, phase separation can be forced to occur [38].  

Two separated distinct streams; a water-soluble sugar rich stream and a phenolic oligomer-

rich raffinate offer numerous opportunities for end-product uses. This has the potential to  

provide economic viability to bio-oil refineries [13-15] as well as to thermochemical conversion 

processes as a means of production of biobased products as an alternative to petroleum.  
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3.7 Effects of Pyrolysis Temperature on Recovery of Bio-Oil as Distinctive Stage 

Fractions  

 

Research on fast pyrolysis continues to focus on maximizing production of bio-oil and bio-

oil constituents. Little consideration has been put into the necessary process conditions that 

optimize higher quality bio-oil [9-11]. It is crucial to make headway and exploit endless 

opportunities that exist for producing quality bio-oil for specific targeted end-use.  

Bio-oils are multicomponent mixtures containing 35-40 wt% oxygen which is present in 

most of the more than 300 identified compounds [8]. It is comprised of both volatile and non-

volatile compounds and viscous oligomers including water, acids, alcohols, aldehydes, esters, 

ketones, sugars, phenols, quaiacols, syringols, vanillins, furans, and multifunctional compounds 

(i.e. hydroxyacetic acid, hydroxyacetaldehyde, hydroxy acetone,3-hydroxy-3-methoxy 

benzaldehyde) [1,16,71,72].  

The major chemical components of lignocellulosic biomass are cellulose, hemicellulose, and 

lignin [73]. Lignocellulosic biomass typically contains 85-90% cellulose, hemicellulose, and 

lignin while organic extractives and inorganic mineral matter constitutes the remaining mass. 

The cellulose, hemicellulose, and lignin constituents of wood, pyrolyze to mainly monomer and 

monomer-related fragments[74]. Hemicellulose breaks down first at approximately 197-320°C 

followed by cellulose in the temperature range of 310-390°C. Lignin is the last component to be 

pyrolyzed at 200-550°C [75,76]. These differences in reactivity of biomass due to the variations 

in chemical composition must be better understood in order to optimize the fast pyrolysis process 

to obtain bio-fuels and valuable chemicals with high selectivity and efficiency [73,77]. 
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Bio-oil quality is essential for specific targeted applications [9]. Higher molecular weight 

oligomers are important if bio-oil end-use is asphalt, resins, polymers, etc. If sugar production is 

the goal; temperature control for the production of sugars is important. On the other hand, yield 

and the structure of chemical constituents would be essential in a biorefinery scenario utilizing 

direct upgrading to liquid fuels. Maximizing bio-oil yield should not remain the focus of bio-oil 

production but rather bio-oil quality for specific end-use.  

3.8 Summary 

Bio-oils are recognized for their potential as liquid drop-in fuels and chemicals. Firstly, 

problems hindering their advancement include standardized testing procedures that are 

applicable and provide correct, repeatable results. Food application chemistry may offer faster, 

less complex methodology targeting specific chemical groups within bio-oil. Potentially, the 

development of these methods will offer easy, rapid, and accurate results in comparison to the 

current test methods used for bio-oil analyses. Secondly, the separation of two key products from 

bio-oil is significant. Currently, sugars and phenolic compounds are being used in the production 

of biofuels and other important chemistries. Thirdly, temperature control of pyrolysis reactors to 

produce higher quantities of specific chemical families or individual constituents is central to 

economic viability of these processes. By continuing to maximize bio-oil quantity instead of 

optimizing quality, little progress will be made in advancing thermochemical technologies. My 

research goals include:  

1.  The evaluation of the total sugar content in the water-soluble fraction of bio-oil utilizing the 

AOAC Method 988.12 (44.1.30) Phenol-sulfuric Acid Assay for Total Carbohydrate 

Determination. Individual sugars in bio-oil have not been identified. Potentially, those sugars 
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that are water-soluble can be subjected to this test method that has been in existence and used 

for decades. 

The potential of bio-oil is increasingly recognized even though most research is still at a 

fundamental scale [25]. It is important to bio-oil’s future to implement standard test methods 

and gain understanding of specific “families” contributing to bio-oils complexity that make 

upgrading problematic. Looking to existing food methodology may allow for faster 

advancement of bio-oil in the pursuit of bio-fuels and chemicals. 

2.  The water-insoluble fraction of bio-oil is comprised of various phenolic compounds. 

Complete identification may not be feasible. Total quantification of phenols is a more 

realistic approach and can possibly be accomplished using methodology common in the wine 

industry: the Folin-Ciocalteu Colorimetry Method. Total phenolic compound quantification 

will allow for evaluations of pyrolysis condition changes and its effect on total phenolic 

compounds concentration. The phenolic fraction of bio-oil evolves from pyrolysis of the 

biomass lignin fraction and it shows potential for use as feedstock in the production of liquid 

fuels and chemicals.  

3.  The ability to separate two very important chemical families from bio-oil is important to its 

viability for use in fuel and chemical production. Besides the detrimental problems caused by 

both sugars and phenolic compounds when they are not separated, their influence on each 

other during upgrading processes cannot be overlooked. Sugars causes coking, stickiness, 

and other problems during upgrading processes when it is not removed from bio-oil. On the 

other hand, phenolics cause problems with fermentation of pyrolytic sugars as they are toxic 

to micro-organisms.  
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4.  The ability to operate the pyrolysis reactor at temperatures to optimize the production of the 

chemical of interest is vital. If sugars is the main interest, both feedstock and reactor 

temperatures can be optimized for its production. If phenolic compounds are the key concern, 

optimization is also available.  
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CHAPTER 4: TOTAL WATER-SOLUBLE SUGARS QUANTIFICATION 
IN BIO-OIL USING THE PHENOL-SULFURIC ACID ASSAY 

 

A paper submitted to the Journal of Analytical and Applied Pyrolysis 

Marjorie R. Rovera, Patrick A. Johnstona, Buddhi P. Lamsalb, Robert C. Brownc 

Abstract 

Bio-oil produced from fast pyrolysis of biomass contains sugars originating from cellulose. 

Traditional quantification of sugars in bio-oil is accomplished by gas chromatography/mass 

spectroscopy (GC/MS) via derivatization, high-performance liquid chromatography (HPLC), 

ion-exchange chromatography (IC), or nuclear magnetic resonance (NMR) methodologies. 

These techniques are highly specific for each sugar, tedious to perform, expensive, and involve 

the use of hazardous solvents. We have evaluated a standardized test method developed for food 

and agriculture applications, the Association of Analytical Communities, International, (AOAC) 

Method 988.12 (44.1.30) Phenol-Sulfuric Acid Assay for Total Carbohydrate Determination, to 

quantify total sugars in the water-soluble fraction of bio-oil. This study investigates accuracy 

relative to matrix effects caused by non-sugar compounds using positive and negative controls. 

Positive controls included levoglucosan, D-glucose, D-mannose, D-xylose, D-fructose, D-

galactose, L-arabinose, L-fucose, and cellobiosan. Negative controls included phenol, acetic 

acid, formic acid, propionic acid, glycolic acid, acetol, furfural, 5-hydroxymethylfurfural 

(5HMF), furfuryl alcohol, 2-methylfuran and 2(5H)-furanone. Potential interference with the 

quantification of total water-soluble sugars by the AOAC Method 988.12 (44.1.30) was 

calculated for all positive and negative controls by using data obtained when adding the 

contributor (positive controls) and the interferent (negative controls) into the water-soluble 

fraction of bio-oil with typical concentrations found in bio-oil. It was found that furfural, 2(5H)-

furanone, 5HMF, and furfuryl alcohol influenced results with a range of potential errors of 9.56-



34 

29.7%, 9.52-29.8%, 2.91-24.8%, and 1.34-11.9%, respectively. A correction factor of 0.76 wt% 

was established to reduce or eliminate this influence. Total water-soluble sugars content in bio-

oil detected by AOAC Method 988.12 (44.1.30) was comparable to the quantity of sugars 

detected using hydrolysis with quantification by HPLC. The uncertainty of measurement of 

water-soluble sugars in bio-oil at 95% confidence was ±1.7% using AOAC Method 988.12 

(44.1.30) when the correction factor was employed. 

Introduction 

The goal of this research is to adapt standard analytical methodology developed for the food 

industry to measure water-soluble sugars in bio-oil. To accomplish this, research was performed 

using AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid Assay for Total Carbohydrate 

Determination in quantifying total sugar content in the water-soluble fraction of bio-oil. 

Traditionally, sugar quantification in bio-oil is accomplished by liquid-liquid extraction, HPLC, 

IC, GC/MS utilizing derivatization, or NMR. Qualitative and quantitative analyses of sugars are 

complex and difficult areas for analytical chemistry. Precision is reasonable but the time required 

for analysis can be long. Also, these methods are chemically based, tedious, and often require 

reagents that are unfriendly to the environment or hazardous and generate chemical waste [57]. 

Bio-oil, the liquid product from the fast pyrolysis of biomass, is an exceedingly complex 

mixture of organic compounds with many oxygen-containing functional groups which include 

acids, aldehydes, ketones, phenols, furans, and sugars. It has a high water content (approximately 

20%), high acidity (pH of 2-3), and low storage stability [78].  

Bio-oil characterization is challenging and many analytical techniques must be used to obtain 

a detailed product distribution which is still incomplete. Only 40% of bio-oil compounds are 

volatile enough to be analyzed by GC while only 10-15% can be determined by HPLC [4,30,64]. 



35 

For further development of bio-oil applications, simple and direct analytical methods are needed 

[64]. 

Although the application of analytical methods developed for food chemistry to analyze bio-

oil is uncommon, there is precedence for doing so. Oasmaa and Kuoppala [40] used the Brix 

method, developed to measure the sugar content of juice and wine, to characterize carbohydrates 

in the water-soluble fraction of bio-oil. The sugar content is determined via a hydrometer that 

indicates a liquid’s specific gravity [40]. Brix is a measure of the mass ratio of soluble solids to 

water, which can be used as a proxy for the amount of sugar in solution [56]. Although Oasmaa 

and Kuoppala [40] reported the sugar fraction correlated well with the Brix determinations, it 

systematically gave 20 wt% higher values for fresh liquids. They compared sugar determinations 

of newly produced bio-oil to that of various stages of aging. The authors explained the higher 

values for fresh liquids was due to the fact that the Brix method is used in the sugar industry for 

samples that do not contain hydroxy aldehydes. Carbohydrates are polyhydroxy aldehydes or 

polyhydroxy ketones. When the Brix method is used, it not only gives the total amount of sugar 

but also includes hydroxyl aldehydes, and hydroxyl ketones. They concluded there is a need for a 

rapid method of analyzing the carbohydrate content of bio-oils because carbohydrates in bio-oil 

cause problems in fuel oil due to their reactivity and sticking tendency [40].  

Total soluble carbohydrate concentration can be determined by AOAC method 988.12 

(44.1.30). It is simple, fast, accurate, and specific to carbohydrate methodology. Nearly all 

classes of sugars (i.e. sugar derivatives, oligosaccharides, polysaccharides) can be determined. 

When treated with phenol and concentrated sulfuric acid, the reducing groups give an orange-

yellow color that absorbs light in the ultraviolet visible range. The chromophore electron spectral 

transitions shift the absorption of light to longer wavelengths (200-700 nm) which are convenient 
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for UV-Vis analyses [79]. The color produced by the AOAC method is stable for several hours 

and readings may be made later if necessary [5]. 

In 1951, DuBois et al. [58], discovered that phenol in the presence of sulfuric acid provided a 

simple, fast method for the quantitative UV-Vis determination of ketoses and aldoses that was 

applicable to reducing carbohydrates. DuBois et al. [5] employed a series of standard curves for 

various monosaccharides, disaccharides, and trisaccharides to further develop this method. 

Absorption curves were obtained by plotting absorbance versus wavelength. The absorption 

curve was characteristic for each sugar tested. They determined that pentoses have an absorption 

maximum at 480 nm, while hexoses have an absorption maximum at 485-490 nm. The authors 

concluded this method could be applied to the analyses of mixtures of sugars and their methyl 

derivatives. 

BeMiller [7] provides an in-depth explanation of AOAC Method 988.12 (44.1.30), detailing 

the method’s principals and characteristics. Carbohydrates are hydrolyzed by strong acids and/or 

high temperatures. Under these conditions a series of reactions take place, beginning with a 

dehydration reaction (Figure 1). With continued heating in the presence of acid, various furan 

derivatives are produced (Figure 2) [5-7]. These can then condense with various phenolic 

compounds to produce colored compounds. 

 

 

 

 

Figure 1. Dehydration reaction occurs when strong acid is added to carbohydrates [5-7]. 

 

C

OH

C

H

OH

H

H2O

C C

OH

H

H2
C C

O



37 

 

 

 

 

 

 

 

Figure 2. Furan products that can arise from carbohydrates upon addition of a strong acid [5-7]. 

Method validity and the type of sugars that fit within the scope of this method can also be 

found in literature. Fournier [61] states that with the exception of certain deoxy sugars, the 

method can be applied to reducing and non-reducing sugars and to many classes of 

carbohydrates including oligosaccharides. Under proper conditions, AOAC Method 988.12 

(44.1.30) is accurate to ±2% [61].  

In addition to the food industry, other agricultural sectors also utilize this method. 

Giannoccaro et al. [62] discuss AOAC Method 988.12 (44.1.30) which is also widely used for 

total sugar determination in soybeans. The procedure detects soluble sugars as well as 

oligomeric/polymeric sugars because the high sulfuric acid concentration can hydrolyze 

oligomeric/polymeric sugars into monomers.  

The color response of AOAC Method 988.12 (44.1.30) varies with different sugars due to 

their differences in molecular structure [63]. Each sugar has an absorption maximum at a specific 

wavelength when absorption curves are obtained by plotting absorbance versus wavelength. 

Therefore, the quantification of total sugars present in a particular sample will be affected by the 
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type of sugar used in preparing the standard curve [7]. It is important to use the sugar that is in 

highest abundance in the specific substrate when applying AOAC Method 988.12 (44.1.30). 

Levoglucosan, an anhydrosugar, is one of the predominant sugars produced from cellulose 

during fast pyrolysis and is reported in literature at 3-6 wt% [64]. Yu and Zhang [65] report that 

anhydrosugars formed during pyrolysis can be converted to glucose by dilute acid hydrolysis. 

Their work shows the addition of sulfuric acid to pyrolysis oil generated more glucose than could 

be accounted for by the amount of levoglucosan present. This extra glucose was attributed to 

unknown carbohydrate oligomers (i.e. cellobiosan and other sugars). Li and Zhang [66] also 

report levoglucosan can be readily hydrolyzed to glucose by acid. Oasmaa and Kuoppala [40] 

report that the carbohydrate fraction of bio-oil contains monosaccharides, anhydrosugars 

(especially levoglucosan, cellobiosan), and anhydro-polysaccharides. They indicate that this 

fraction cannot be thoroughly identified using present analytical tools; one problem being the 

lack of standards. Other sugars reported to be found in bio-oil at low concentrations include 

xylose, arabinose [30] fucose, galactose, mannose, fructose, and ribose [31]. 

Among the most commercially important components of bio-oil is sugar [12]. Sugar within 

the bio-oil matrix is difficult to analyze because of the large number of variations that can occur 

and potential interferences with other bio-oil components. A standardized test method that can be 

used to quantify total water-soluble sugars in bio-oil would enable meaningful comparisons and 

provide more consistent results. The approach to this research is to adapt a chemical analysis 

method developed by the food industry to quantify total water-soluble sugars in bio-oil using a 

standardized test method. 
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Methods 

Bio-oil was produced in a fast pyrolysis process development unit (PDU) consisting of a 

fluidized bed operated at 450-500°C and a bio-oil recovery system that recovers bio-oil in 

multiple stage fractions (SFs) having distinctive properties from one another, as described by 

Pollard et al. [1]. SF 1 was designed to capture levoglucosan and other high molecular weight 

compounds. SF 2 consists of an electrostatic precipitator (ESP) and was designed to collect 

aerosols while stage 3 was designed to capture monomeric compounds with condensation points 

close to that of phenol. Stage 4 was an insulated ESP and stage 5 was designed to remove water 

and light oxygenated compounds such as acetic acid [1]. Red oak (Quercus rubra) (Wood 

Residual Solutions of Montello, WI) was used as feedstock for production of the bio-oil. The 

bio-oil collected from the stages were combined immediately after recovery and referred to as 

whole bio-oil. Total sugars in SF 1-5 were also determined. All results acquired using AOAC 

Method 988.12 (44.1.30) were compared to results obtained by a bio-oil liquid-liquid extraction 

method to quantify water-soluble sugars described in literature [80,81] and a hydrolysis method 

used to quantify total bio-oil sugars. The bio-oil was stored at 5°C in polypropylene containers. 

Carbohydrate analysis by AOAC Method 988.12 (44.1.30) from literature was followed [82]. 

Since each sugar has a unique absorption maximum at a specific wavelength, absorption curves 

were obtained by plotting absorbance versus wavelength for each of the positive control sugars. 

The absorption maximum for levoglucosan, the most prominent sugar in bio-oil, was 490 nm. 

All samples were treated using the same AOAC Method 988.12 (44.1.30) conditions. Firstly, the 

sample (1090µL) was placed in a glass test tube. Secondly, 3260µl concentrated sulfuric acid 

was added rapidly. Thirdly, a 5% phenol solution (650µL) was immediately added. This mixture 

was heated for 5 min in a 90°C static water bath. After cooling to room temperature for 5 min in 
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another water bath, the sample was transferred to a polystyrene cuvette. The sample absorbance 

was measured at 490 nm, with a 1 cm path length and 1.5 nm split width, using a Varian Cary 50 

UV-Visible Spectrophotometer (Agilent Technologies, Inc. Santa Clara, CA) with Cary WinUV  

Simple Reads module software (Agilent Technologies, Inc. Santa Clara, CA). Concentrations 

were diluted to keep absorbance between 0.2 and 1.0. Determination of the maximum 

wavelength absorption for each sugar used as a positive control was accomplished by scanning 

with the Cary 50 scan application. Wavelengths were acquired from 300 to 800 nm. Averages of 

5-6 trials with a minimum of 5 separate replications, for the positive and negative controls, were 

obtained using typical values for bio-oil as reported in the literature and our own laboratory. The 

color produced by AOAC Method 988.12 (44.1.30) is stable for several hours and readings may 

be made later if necessary [5]. 

Positive and negative controls were used for AOAC Method 988.12 (44.1.30) validation of 

total water-soluble sugars in bio-oil. Positive controls included sugars reported in bio-oil. These 

positive controls were added to the water-soluble fraction of bio-oil to determine whether AOAC 

Method 988.12 (44.1.30) could accurately measure their concentration in the presence of other 

bio-oil water-soluble components. Positive controls used with this method included 

levoglucosan, D-glucose, D-mannose, D-xylose, D-fructose, D-galactose, L-arabinose, L-fucose, 

and cellobiosan. This allowed appraisal of AOAC Method 988.12 (44.1.30) for its ability to 

detect the correct amounts of spiked sugars. Negative controls were other chemicals known to 

exist in the bio-oil water-soluble fraction that might cause errors in quantification of total water-

soluble sugars. The negative controls included furfural, 5HMF, furfuryl alcohol, 2-methyl furan, 

2(5H)-furanone, formic acid, glycolic acid, propionic acid, acetic acid, acetol, and phenol. Both 

positive and negative controls were purchased from Thermo Scientific® (Hanover Park, IL) with 
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the exception of levoglucosan and cellobiosan which were purchased through Carbosynth 

(Compton, Berkshire, UK). The range of concentrations tested for contributing compounds 

(positive controls) and potentially interfering compounds (negative controls) were based on 

typical values for bio-oil as reported in the literature and our own laboratory data. The positive 

and negative controls were added into a prepared water-soluble sample of bio-oil and subjected 

to AOAC Method 988.12 (44.1.30).  

Total sugar concentrations (wt%) indicated by AOAC Method 988.12 (44.1.30) analyses 

were linearly correlated to concentrations (wt%) of positive and negative controls.  The slope of 

the line represents responsivity of the positive or negative control to AOAC Method 988.12 

(44.1.30). The extrapolated baseline concentration of sugar compounds in bio-oil (wt%) is 

indicated by the Y-intercept. The potential contribution to results (%) was determined by solving 

the linear equation Y-variable (concentration of sugar wt%) using  typical values for bio-oil as 

reported in the literature and our own laboratory data as the X-variable. 

The negative controls; furfural, 2(5H)-furanone, 5HMF, and furfuryl alcohol showed 

interference with sugar analyses using AOAC Method 988.12 (44.1.30). These components were 

each added separately in concentrations based on typical values for bio-oil as reported in the 

literature and our own laboratory data to deionized water and analyzed by AOAC Method 988.12 

(44.1.30). The range of weight percent commonly found in bio-oil (X-variable) allowed for the 

calculation of the Y-variable. The average calculated weight percent influence (correction factor) 

from these furans was subtracted from total sugars quantified by AOAC Method 988.12 

(44.1.30). The correction factor was determined to be 0.76 wt%. 

The water-soluble fraction of bio-oil was obtained following protocol from Oasmaa and 

Kuoppala [40]. After thorough mixing, three grams of bio-oil were weighed and placed into a 45 



42 

mL centrifuge tube, spreading it thinly along the bottom and lower sides of the tube to facilitate 

the removal of the water-soluble fraction. Thirty mL of water was added to the centrifuge tube 

giving a ratio of 10:1 water to bio-oil. According to Oasmaa and Kuoppala [40], the water to bio-

oil ratio must not exceed 11:1 or fall below 9:1. The centrifuge tube was placed in an ultrasonic 

bath (320W) for 30 min ensuring the temperature did not exceed 40°C. The tube was centrifuged 

(accuSpin™ 1R, Thermo Scientific®, Hanover Park, IL) at 1307g force for 30 min to fully 

separate the water-soluble fraction from the water-insoluble fraction. The water-soluble fraction 

was decanted into a clean centrifuge tube and stored at 5°C for no longer than 1 week prior to 

testing by AOAC Method 988.12 (44.1.30) and the liquid-liquid extraction method. All samples 

were done in triplicate and averaged. 

A liquid-liquid extraction method [80,81] was used to remove sugars from the water-soluble 

fraction of bio-oil. This liquid-liquid extraction was used as a control for comparison of results 

obtained by AOAC Method 988.12 (44.1.30). In this liquid-liquid extraction scheme, the water-

soluble fraction of bio-oil is extracted with DEE and DCM to remove the sugars. The DEE is 

used at a 1:1 ratio by sample weight. Dichloromethane is used at a 1:1 ratio by weight of the 

DEE-insoluble. The DEE/DCM-insolubles are then evaporated at ≤40°C in a rotary evaporator 

(Büchi Rotavapor RII, Thermo Scientific®, Hanover Park, IL) using 25 inches of mercury 

reduced pressure. The dried residues are weighed [80,81].  

Hydrolysis of bio-oil was also used as a control for comparison of total water-soluble sugar 

results obtained by AOAC Method 988.12 (44.1.30) and the liquid-liquid extraction. In the 

hydrolysis method the sugars in bio-oil were acid hydrolyzed with 400 mM H2SO4 at 125°C for 

44 min to glucose following Bennett et al. [35]. Aliquots of 6 mL of 400 mM H2SO4 and 60 mg 

of bio-oil were added to sealed glass vials. Pure compounds of levoglucosan and cellobiosan 
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were hydrolyzed under the same conditions as the samples to establish complete hydrolysis 

conditions and were used as reference standards. All samples and standards solutions were 

prepared using ultrapure 18.2 mega-ohm deionized water from a Barnstead E-Pure system (part 

of Thermo Fisher Scientific, Waltham, MA). The sulfuric acid used was certified 10N with an 

assay of (9.95-10.05) from Thermo Fisher Scientific. The HPLC system used to quantify the 

hydrolyzed sugars was a Dionex Ultimate 3000 LC system (Sunnyvale, CA) with a quaternary 

analytical pump and a Shodex Refractive Index (RI) Detector (New York, NY).  The analytical 

column used was 300 mm X 7.7 mm 8µm particle size HyperRez XP Carbohydrate (p/n 69008-

307780). The guard column used for the HyperRez was a Carbohydrate H+ cartridge (p/n 69008-

903027) with the guard holder (p/n 69208-90327). The instrument parameters for the HyperRez 

were as follows: The mobile phase was ultrapure 18.2 mega-ohm deionized water with a flow 

rate of 0.2 mL min-1 and a column temperature was set at 55°C [83].   

The positive and negative controls were evaluated for relative absorbance using levoglucosan 

=100. Equal weights of the controls were subjected to AOAC Method 988.12 (44.1.30) and their 

absorbance compared to that of levoglucosan. These analyses allowed for a comparison of 

reactivity of the controls to AOAC Method 988.12 (44.1.30). 

Moisture content of the bio-oil was determined by a MKS 500 Karl Fischer Moisture Titrator 

(Kyoto Electronics Manufacturing Co., LTD, Kyoto, Japan) using ASTM E203 Standard Test 

Method for Water Using Karl Fischer Reagent. The reagent used was Hydranal Composite 5K 

and the solvent was Hydranal Working Medium K purchased from Thermo Scientific® 

(Hanover Park, IL). The percent moisture of the bio-oil samples was determined in a minimum 

of four trials. 
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Acid content was determined by IC. The IC system used was a Dionex ICS3000 (Thermo 

Scientific®, Sunnyvale, CA) equipped with a conductivity detector and an Anion 

Micromembrane Suppressor AMMS-ICE300. The suppressor regenerant used was 5mM 

tetrabutylammonia hydroxide (TBAOH) at a flow rate of 4-5 mL min-1. The eluent used was 1.0 

mM heptaflourobutyric acid with an IonPac® ICE-AS1 4X50 mm guard column and IonPac® 

ICE-AS1 4X250 mm analytical column with a flow rate of 0.120 mL min-1at 19°C. The software 

used to control the instrument and evaluate the samples was Dionex Chromeleon (Thermo 

Scientific®, Sunnyvale, CA) version 6.8. The bio-oil samples were prepared using 6 mL 

deioinzed water and 1.5 mL of methanol. If concentrations of organic acids fell outside of the 

calibration curve (extrapolation) a second sample was diluted with more water while keeping the 

methanol concentration at 1.5 mL. All samples were filtered with a Whatman 0.45µL Glass 

Microfiber (Thermo Scientific® Hanover Park, IL) syringe filter prior to IC analysis. Samples 

were analyzed in duplicate.  

Other water-soluble bio-oil constituents were evaluated and quantified using GC with a flame 

ionization detector (GC/FID). All chemical analyses were performed on a 430 GC/FID (Bruker 

Corporation, Bruker Daltonics, Inc., Fremont, CA) fitted with a Zebron ZB-WAXplus capillary 

column 30 meters in length, 0.25 mm inner diameter with a 0.25 mm film thickness 

(Phenomenex, Inc. Torrance, CA). The operating system used was Galaxie Chromatography 

Data System version 1.9.302.530 (Bruker Corporation, Bruker Daltonics, Inc., Fremont, CA). 

The carrier gas was helium (99.9995%) with a constant flow rate of 1.0 mL min-1. The helium 

make-up was 25 mL min-1, hydrogen flow at 30 mL min-1 with an air flow of 300 mL min-1. The 

oven was programmed to be held for 6 min at 35°C ramped at 5°C per min to 60°C and held for 

2 min and ramped again at 10°C per min to 210°C and held for 1 min for a total of 29 min. A 
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sample volume of 1µL was injected utilizing a Varian CP 8400 (Bruker Corporation, Bruker 

Daltonics, Inc., Fremont, CA) auto sampler with a split ratio of 1:25. Peak identification was 

based on calibration standards purchased from Fisher Scientific (Thermo Scientific® Hanover 

Park, IL). For each of the calibration standards, calibration lines were made by injecting a 

minimum of five standard solutions on the GC/FID run in triplicate. The concentration range was 

determined by injection of the standard solutions until a range was determined that comprised the 

quantified value [84]. Each of the triplicate samples obtained in the water wash was run and 

analyzed on the GC/FID in triplicate or greater.  

To determine if any chemicals removed using the bio-oil liquid-liquid extraction remained 

with the DEE/DCM-insoluble after evaporation, water was added to the DEE/DCM-insoluble 

residue in a 1:1 ratio by weight. These prepared samples were analyzed for remaining acids by 

IC and other chemicals by GC/FID. All samples were analyzed in duplicate (IC) or triplicate 

(GC/FID). 

To determine the reliability of AOAC Method 988.12 (44.1.30) for quantifying total water-

soluble sugars in bio-oil, the mean, standard deviation, and 95% confidence intervals were 

calculated. Quantification of total water-soluble sugars for each bio-oil utilizing AOAC Method 

988.12 (44.1.30) was included in this calculation.  

To determine the reliability of AOAC Method 988.12 (44.1.30) for quantifying total water-

soluble sugars in bio-oil, the uncertainty interval of measurement was determined by the average 

of the repeated measurements (Equation 1) and sample standard deviation (Equation 2). The 

coverage factor in the uncertainty interval representing the t-distribution is t (n -1) where n is the 

number of repeated trials. The confidence limits µ (Equation 3) is equal to the mean ± Student t 

values acquired from a statistical table [79] multiplied by the standard deviation s and divided by 
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the square root of the number of sample trials n [79,85]. This was done to estimate the 

probability that the population mean lied within the region centered at the experimental mean (�̅�) 

of our measurements [79].  

Equation 1.   

𝑀𝑒𝑎𝑛 =  �̅� =  �𝑥𝑖
𝑖=𝑛

𝑖=1

 

Equation 2.  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑠 = �
∑ (𝑥𝑖 − �̅�)2𝑖=𝑛
𝑖=1

(𝑛 − 1)  

      Equation 3.    

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐿𝑖𝑚𝑖𝑡𝑠 = µ = �̅� ±  
𝑡𝑠
√𝑛

 

 

Results and Discussion 

The AOAC Method 988.12 (44.1.30) allows for a variable absorbance response and resulting 

absorbance maximum for individual sugars because of the different furan products that arise 

from the addition of a strong acid. Consequently, applicability of AOAC Method 988.12 

(44.1.30) was examined for the color formation of the resulting chromophores formed by the 

phenol-sulfuric acid reaction. Relative absorbance numbers were compared between the sugars 

and were based on the absorbance obtained with levoglucosan as 100. As shown in Table 1, the 

relative absorbance was largest for xylose, fructose, and cellobiosan. Sugars having absorbance 

maximum at 490 nm were expected to show higher relative absorption because levoglucosan, the 

standard, has an absorbance maximum at 490 nm. It is interesting that the absorption observed 

for D-xylose (480 nm) was higher than other pentoses resulting in a higher relative absorbance. 
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According to Dubois et al. [5], the spectral curves for D-xylose and furfural are very similar and 

under the assumption that the amount of color is proportional to the amount of furfural present or 

produced, the conversion of D-xylose to furfural under the conditions of AOAC Method 988.12 

(44.1.30) is 93% of theory. Our relative absorbance results for D-xylose were lower (81). Other 

sugars showing lower relative absorption have absorption maximum at 470 to 485 nm except for 

mannose which showed an absorption maximum at 487 nm.  

Table 1. Absorbance response (reactivity) of sugars when utilizing AOAC Method 988.12 
(44.1.30) Phenol-Sulfuric Acid Assay for Total Carbohydrate Determination relative to 
levoglucosan=100. 
 

 

Literature reports that some deoxy-sugars are not detected by AOAC Method 988.12 

(44.1.30)  [61]. We did detect fucose, a deoxy-sugar found in bio-oil at low concentration. 

Fucose, reported in bio-oil at 0.058 wt% [31], gave the lowest relative absorbance among the 

contributors. According to Feather and Harris [86], there are ultraviolet-absorbing products 

formed from specific deoxy sugars when subjected to concentrated sulfuric acid. The formation 

of furfural from the acid treatment of these deoxy sugars is in the order of 30%. Our results agree 

with these findings with a relative absorbance of fucose to levoglucosan of 31. 

The regression line for the positive controls showed a strong linear relationship between X 

and Y-variables (Table 2) with r2 values of ≥ 0.92 except for fucose. The Y-intercept was the 

Contributor 
(Positive Control) 

Maximum Wavelength 
Absorption (nm) 

Relative Absorbance 
to Levoglucosan=100 

Levoglucosan 490 100 
D-Fructose 490 84 
D-Xylose 480 81 
Cellobiosan 490 80 
D-Glucose 485 65 
D-Galactose 485 63 
L-Arabinose 480 62 
D-Mannose 487 49 
L-Fucose 475 31 
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baseline concentration of water-soluble sugars while the X-variable was the wt% positive control 

added to the water-soluble fraction of bio-oil. The total sugar acquired by hydrolysis 

was13.0±0.1 wt% wet basis (wb). This indicated an 18% difference between the hydrolysis value 

and the average Y-intercept baseline value.  

The contributor response factors (slope) show levoglucosan, fructose, xylose, and cellobiosan 

were the highest for the sugars tested. This was in agreement with relative absorbance values. 

Levoglucosan and fructose reacted similarly to the AOAC Method 988.12 (44.1.30) reagents 

while xylose and cellobiosan showed approximately 50% less response versus levoglucosan. 

Both the response factor and the relative absorbance values follow a similar trend.  

The applicability of AOAC Method 988.12 (44.1.30) was also examined for the color 

formation reaction with the interferents. As shown in Figure 3, the relative absorbance was high 

for furfural, 2(5H)-furanone, 5-HMF, and furfuryl alcohol based on the absorbance obtained with 

levoglucosan as 100. The high relative absorbance for these furans indicated interference from 

them when utilizing AOAC Method 988.12 (44.1.30) for total water-soluble sugar quantification. 

On the other hand, formic acid, glycolic acid, propionic acid, acetic acid, acetol, 2-methylfuran 

and phenol showed very small relative absorbance, therefore not influencing the total sugar 

results with AOAC Method 988.12 (44.1.30).  

The response factor and potential contribution of interferents to quantification of total sugars 

using AOAC Method 988.12 (44.1.30) were examined. The results, shown in Table 3, indicate 

formic acid, glycolic acid, propionic acid, acetic acid, acetol, 2-methylfuran and phenol do not 

interfere with the application of AOAC Method 988.12 (44.1.30) to the bio-oil water-soluble 

fraction. The r2 values were also very low. These results correspond with the relative absorbance 

obtained for these compounds, as well. As stated, the presence of furfural, 2(5H)-furanone, 5-
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HMF, and furfuryl alcohol cause an over reporting of total water-soluble sugars when using 

AOAC Method 988.12 (44.1.30); contributing to errors in the range of 1-30%. To account for 

this influence, a correction factor was determined by adding known amounts of each of the listed 

furans to deionized water and subjecting these samples to AOAC Method 

988.12 (44.1.30). The resulting graphs were linear (not shown). The range of weight percent 

commonly found in bio-oil (X-variable) allowed for the calculation of the Y-variable. The 

average calculated weight percent influence for the furans listed were subtracted from the total 

sugars determined by AOAC Method 988.12 (44.1.30). For the samples used in this research, the 

correction factor was determined to be 0.76 wt%. 

Table 2. The effect of contributors (positive controls) on quantification of total water-soluble 
sugars in whole bio-oil when analyzed by AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid 
Assay for Total Carbohydrate Determination.  
 
Contributor 
(Positive 
Control) 

Typical 
Concentration in 
bio-oil (wt% ) 
X-variable 

Response 
Factor 
(slope) 

Indicated 
Concentration  
(wt% wb) Y-variable 

R2 

Value 
Potential 
Contribution to 
Results (%) 

Levoglucosan1 4.0-6.0 16.1 10.8 1.00 85.0-90.0 
D-Fructose3 0.115 14.5 10.8 0.99 13.4 
D-Xylose1 0.1-1.4 8.54 10.4 0.92 7.59-46.5 
Cellobiosan1 1.4-1.5 8.10 10.4 0.97 52.2-53.9 
L-Arabinose2 0.1 7.96 10.7 0.95 6.92 
D-Glucose2 0.4-1.3 7.15 10.1 0.97 22.1-47.9 
D-Galactose3 0.20 6.91 10.8 0.93 11.3 
D-Mannose1 0.02-0.03 3.26 10.5 1.00 0.617-0.923 
L-Fucose3 0.115 0.97 10.8 0.58 1.02 

1as measured in our laboratory (wt% wb) 
2as measured in literature [87] 
3as measured in literature [31] 
 

A carbohydrate-rich solution is obtained by washing bio-oil with water. Unfortunately, some 

water-insoluble compounds are also washed out into solution. In addition to the water-soluble 
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sugars, there are various other compounds in the water-soluble fraction (11.3 wt% wb quantified) 

(Table 4). These GC/FID and IC calibrated compounds are both water-soluble and slightly 

*Relative absorbance number is based on absorbance obtained with levoglucosan as 100. 

Figure 3. Effect of bio-oil water-soluble compounds on the color response (reactivity) of 
interferents when utilizing AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid Assay for 
Total Carbohydrate Determination for quantification of total sugars relative to levoglucosan 
=100. 
 
water-soluble. For example, phenol is appreciably soluble in water (8.3 g per 100 mL) while 2,6-

dimethoxyphenol is somewhat soluble at 2 g per 100 mL water. This phenomenon may well lead 

to overestimation when utilizing the liquid-liquid extraction for total water-soluble sugars in bio-

oil.  

With the intention of quantifying compounds remaining behind with the DEE/DCM-

insoluble residues after liquid-liquid extraction of the water-soluble fraction of bio-oil, water was 

added to the remaining residue in a 1:1 by weight ratio and analyzed by GC/FID and IC. Nearly 

3.7 wt% of calibrated constituents remained behind in the DEE/DCM extraction residue  

0

20

40

60

80

100

120

R
el

at
iv

e A
bs

or
ba

nc
e*

 

Sugars 



51 

(Table 5). This is approximately 33 wt% of the calibrated compounds remaining with the sugars. 

Undesirable ramifications arising from this include gross over-estimation of the amount of 

DEE/DCM-insoluble which is often considered and reported as “sugars” in bio-oil. 

Table 3. The effect of interferents (negative controls) on quantification of total water-soluble 
sugars in whole bio-oil when analyzed by AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid 
Assay for Total Carbohydrate Determination. 
 

Interferent 
(Negative 
Control)  

Typical 
Concentration in 
Bio-Oil (wt% ) 
X-variable 

Response 
Factor 
(slope) 

Indicated 
Concentratio
n (wt% wb) 
Y-variable  

R2 

Value 
Potential 
Contribution 
to Results (%)   

Furfural1 0.1-0.4 12.9 12.2 0.97 9.56-29.7 
5-(hydroxymethyl) 
furfural1 

0.1-0.4 12.2 11.5 0.99 9.52-29.8 

2(5H)-furanone1 0.1-1.1 3.72 12.4 0.91 2.91-24.8 
Furfuryl Alcohol1 0.1-1.0 1.60 11.8 0.96 1.34-11.9 
Glycolic Acid1 0.4-0.5 0.73 11.7 0.26 2.43-3.02 
Formic Acid1 0.6-1.0 0.25 11.6 0.18 1.28-2.11 
Propionic Acid1 0.1-0.6 0.19 10.3 0.15 0.184-1.09 
Acetic Acid1 0.5-5.5 0.18 11.9 0.17 0.751-7.68 
Phenol1 0.03-0.2 0.01 11.0 0.0002 0.00273-0.0182 
2-Methylfuran1 0.0-0.1 0.03 11.0 0.0003 ≤0.0273 

1as measured in our laboratory (wt% wb) 
2as measured in literature [87] 
 

Literature values state bio-oil contains from 30-35 wt% DEE/DCM-insoluble 

(anhydrosugars, anhydro-oligomers, monosaccharides and hydroxy acids ≤C10) [40,80,81]. 

Table 6 summarizes the results from the liquid-liquid extraction of the bio-oil water-soluble 

fraction. Our results were lower than stated literature values, showing 23.1±1.1 wt% wb 

DEE/DCM-insoluble. When the total calibrated constituents and percent moisture were 

subtracted; 17 wt% wb DEE/DCM-insoluble remained. In comparison, AOAC Method 988.12 

(44.1.30) gave 11.9±0.9 wt% wb sugars after subtraction of the furan correction factor while 

hydrolysis revealed 13.0±0.10 wt% wb total sugars. As expected, the DEE/DCM insoluble 

results seriously overestimated sugars. There was 78% difference between the hydrolysis and 
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Table 4. A comparison of total water-soluble sugars in whole bio-oil by three different methods; 
DEE/DCM-insoluble, AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid Assay for Total 
Carbohydrate Determination, and hydrolysis with GC/FID and IC analyses of quantified 
compounds (wt% wb) in the water-soluble fraction of bio-oil.  
 

Sugar Determination Method  Sugars in Whole Bio-Oil 
(wt% wb) 

DEE/DCM-insoluble (anhydrosugars, 
anhydro-oligomers, monosaccharides and 
hydroxy acids ≤C10) 

23.1±1.1 

AOAC Method 988.12 (44.1.30) (total 
water-soluble sugars) 

11.9±0.9 

Hydrolysis (total bio-oil sugars) 13.0±0.1 
  
Chemicals in Water-Soluble Bio-Oil Whole Bio-Oil (wt% wb) 
Methanol 0.54±0.05 
Acetic Acid 4.66±0.01 
Formic Acid 0.61±0.002 
Furfural 0.37±0.01 
Propionic Acid 0.08±0.001 
Glycolic Acid 0.50±0.01 
1,2-Ethanediol 1.54±0.18 
Furfuryl Alcohol 0.06±0.02 
Phenol 0.42±0.05 
Acetol 1.63±0.09 
2,6-Dimethoxyphenol 0.09±0.0001 
2(5H)-Furanone 0.24±0.02 
3-Methyl-1,2-cyclopentanedione 0.22±0.01 
Guaiacol 0.12±0.001 
Vanillin 0.12±0.06 
5-(Hydroxymethyl) furfural 0.12±0.001 
Total Chemicals in Water-Soluble Bio-Oil  11.3±0.03 

 

the DEE/DCM-insoluble, signifying this was not a reliable approach to quantification of water-

soluble sugars in bio-oil. On the other hand, only an 8.5% difference was observed between the 

hydrolysis results and those acquired with AOAC Method 988.12 (44.1.30) : demonstrating the 

reliability of this method as a quick easy method for use during bio-oil production. 

 
 
 



53 

Table 5. GC/FID and IC quantified bio-oil compounds remaining with the water-soluble sugars 
in the evaporated DEE/DCM-insoluble residue. 
 

Chemicals Remaining with the 
Evaporated DEE/DCM-Insoluble  

Remaining Chemical in the 
Evaporated DEE/DCM-Insoluble 
(wt% wb) 

Methanol 0.01±0.001 
Acetic Acid 0.39±0.01 
Formic Acid 0.25±0.003 
Furfural 0.07±0.002 
Glycolic Acid 0.46±0.01 
1,2-Ethanediol 1.2±0.02 
Furfuryl Alcohol 0.06±0.01 
Phenol 0.26±0.01 
Acetol 0.25±0.01 
2,6-Dimethoxyphenol 0.09±0.01 
2(5H)-Furanone 0.16±0.004 
3-Methyl-1,2-cyclopentanedione 0.22±0.01 
Guaiacol 0.01±0.001 
Vanillin 0.12±0.01 
5-(hydroxymethyl) furfural 0.12±0.003 
Total  3.7±0.01 

 
Table 6. The effect on results from the remaining moisture and GC/FID and IC quantified 
compounds in the evaporated diethyl ether and dichloromethane residue obtained using whole 
bio-oil. 
 

Components  Total (wt% wb) 
DEE/DCM-Insoluble 23.1±1.1 
Calibrated compounds remaining after evaporation 3.69±0.010 
Moisture (%) 2.38±0.020 
Total DEE/DCM-insoluble 17.03±0.38 
 

The fluidized bed fast pyrolysis reactor with the staged condenser system used for production 

of the research bio-oil was designed to collect levoglucosan in stage SFs 1and 2, monomeric 

phenols and furans in SFs 3 and 4, and an aqueous phase containing acids and other “light 

oxygenates”( SF 5) [1]. The SF bio-oil yield distribution was 17.6% in SF 1, 31.0% in SF 2, 

6.06% in SF 3, 1.1% in SF 4, and 43.6% bio-oil was captured in SF 5. 
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SF analyses demonstrated a noteworthy trend when comparing the amount of the water-

soluble constituents found in each SF. Due to the fractionated condenser system [1] levoglucosan 

was condensed in SFs 1 and 2 (Table 7). Levoglucosan is hydrolyzed into glucose. Due to the 

collection system design, levoglucosan was present in the first two SFs only, with no glucose 

present in SFs 3-5 after hydrolysis. Furthermore, the majority of furans were not condensed in 

SFs 1 and 2 but were condensed in SFs 3-5. 

The SF analyses were performed on constituents removed with the water wash. Calculated on 

a bio-oil yield distribution, the GC/FID and IC analyses revealed 13.8 wt% other constituents 

were in the water-soluble fraction of bio-oil (Table 7). The DEE/ DCM insoluble residue, after 

additional water was added in a 1:1 ratio by weight, was analyzed by GC/FID and IC. It showed 

7.11 wt% wb still remained behind in the DEE/DCM residue “sugar” sample (Table 8). This was 

52 wt% wb of other quantified water- soluble or partially soluble constituents remaining with the 

sugars resulting in an overestimation of sugars by the liquid-liquid extraction. 

Table 9 shows the bio-oil weighted average yield and sugars calculated on a biomass 

feedstock basis for the three methods used in this research for quantification of sugars in bio-oil. 

The hydrolysis sugars yielded 9.63 wt% wb, while AOAC Method 988.12 (44.1.30) with furfural 

correction was 9.57 wt% wb and the DEE/DCM-insoluble was 22.5 wt% wb on a bio-oil yield 

distribution. Calculated on a biomass feedstock basis, 6.22 wt% wb, 6.17 wt% wb and 14.5 wt% 

wb, respectively was sugar.  

To determine the reliability of AOAC Method 988.12 (44.1.30) for quantifying total water-

soluble sugars in bio-oil, the mean, standard deviation, and 95% confidence intervals were 

calculated for all bio-oil analyses using AOAC Method 988.12 (44.1.30). The uncertainty of  
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Table 7. A comparison of total water-soluble sugars by three different methods; DEE/DCM-
insoluble, AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid Assay for Total Carbohydrate 
Determination, and hydrolysis in fractionated bio-oil with other constituents in the water-soluble 
fraction of bio-oil quantified by GC/FID and IC.  
 

Sugar Determination Method  SF 1 SF 2 SF 3 SF 4 SF 5 
DEE/DCM-insoluble 
(anhydrosugars, anhydro-
oligomers, monosaccharides and 
hydroxy acids ≤C10) (wt% wb) 

15.7±1.3 24.2±1.3 37.1±1.8 41.1±0.83 21.3±1.6 

AOAC Method 988.12 (44.1.30)  
(total water-soluble sugars)  
(wt% wb) 

15.1±0.96 
 
 

15.6±0.14 
 
 

9.88±0.38 
 
 

9.44±0.75 
 
 

3.06±0.37 
 
 

Hydrolysis (total bio-oil sugars) 
(wt% wb) 

16.3±0.19 22.0±0.23 0 0 0 

 
Chemicals in Water-Soluble Bio-
Oil  

     

Methanol (wt% wb) 0.03±0.01 0.02±0.001 0.26±0.09 0.33±0.01 1.71±0.08 
Acetic Acid (wt% wb) 1.33±0.001 0.46±0.01 5.13±0.01 6.18±0.08 9.74±0.01 
Formic Acid (wt% wb) 0.93±0.01 0.26±0.001 1.74±0.02 1.63±0.02 0.78±0.001 
Furfural (wt% wb) 0.34±0.07 0.10±0.02 1.17±0.4 1.09±0.06 1.05±0.02 
Propionic Acid (wt% wb) 0.26±0.001 0.22±0.02 1.03±0.04 1.13±0.02 1.40±0.04 
Glycolic Acid (wt% wb) 1.12±0.002 0.40±0.004 0.91±0.05 0.95±0.04 0.70±0.3 
1,2-Ethanediol (wt% wb) 0.58±0.05 0.11±0.02 2.92±0.6 1.77±0.7 0.37±0.04 
Furfuryl Alcohol (wt% wb) 0.16±0.03 0.04±0.01 0.44±0.09 0.33±0.2 0.09±0.03 
Phenol (wt% wb) 0.74±0.04 1.01±0.2 0.98±0.2 0.84±0.1 0.41±0.06 
Acetol (wt% wb) 0.69±0.07 0.26±0.06 2.03±0.09 2.65±0.1 2.85±0.2 
2,6-Dimethoxyphenol (wt% wb) 0.05±0.002 0.30±0.03 0.33±0.2 0.22±0.04 0.23±0.09 
2(5H)-furanone (wt% wb) 1.03±0.2 0.26±0.03 2.58±0.6 1.87±0.1 0.56±0.06 
3-Methyl-1,2-cyclopentanedione 
(wt% wb) 

0.60±0.1 0.11±0.03 1.49±0.4 1.10±0.03 0.18±0.02 

Guaiacol (wt% wb) 0.18±0.06 0.15±0.06 0.78±0.2 0.54±0.02 0.28±0.08 
Vanillin (wt% wb) 0.19±0.06 0.50±0.08 0.14±0.02 0.09±0.01 0.00±0.00 
5-(Hydroxymethyl) furfural (wt% 
wb) 

0.67±0.1 0.16±0.02 1.69±0.4 1.23±0.1 0.37±0.04 

Total Chemicals in Water-
Soluble Bio-Oil (wt% wb) 

8.90±0.1 4.36±0.03 23.62±0.2 21.95±0.1 20.72±0.1 

 

measurement of water-soluble sugars in bio-oil at 95% confidence was ±1.7% using AOAC 

Method 988.12 (44.1.30) when the correction factor was employed. 
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Table 8. GC/FID quantified compounds remaining with the water-soluble sugars in the 
DEE/DCM-insoluble residue after liquid-liquid extraction of bio-oil water-soluble sugars. 
 

Chemical  SF 1 SF 2 SF 3 SF 4 SF 5 
Methanol (wt% wb) 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.01 
Acetic Acid (wt% wb) 0.24±0.02 0.10±0.01 0.80±0.09 0.66±0.2 0.50±0.1 
Formic Acid (wt% wb) 0.52±0.04 0.25±0.03 0.80±0.1 0.73±0.1 0.27±0.05 
Furfural (wt% wb) 0.04±0.01 0.11±0.00 0.14±0.08 0.14±0.04 0.20±0.07 
Propionic Acid (wt% wb) 0.23±0.05 0.10±0.07 0.70±0.05 0.64±0.08 0.73±0.02 
Glycolic Acid (wt% wb) 0.93±0.05 0.56±0.03 0.90±0.2 1.00±0.06 0.39±0.02 
1,2-Ethanediol (wt% wb) 1.29±0.1 0.45±0.07 4.15±0.7 3.07±0.2 2.28±0.4 
Furfuryl Alcohol (wt% wb) 0.25±0.02 0.12±0.03 0.78±0.1 0.56±0.06 0.54±0.2 
Phenol (wt% wb) 0.11±0.02 0.07±0.03 0.05±0.03 0.16±0.07 0.11±0.03 
Acetol (wt% wb) 0.18±0.01 0.09±0.01 0.80±0.1 0.87±0.27 2.67 ±0.2 
2(5H)-furanone (wt% wb) 0.25±0.03 0.09±0.001 0.64±0.08 0.56±0.06 0.38±0.02 
2,6-Dimethoxyphenol  
(wt% wb) 

0.00±0.00 0.02±0.001 1.41±0.4 0.61±0.07 2.05±0.7 

3-Methyl-1,2-
cyclopentanedione  
(wt% wb) 

0.15±0.01 0.04±0.001 0.24±0.03 0.25±0.02 0.09±0.0001 

Guaiacol (wt% wb) 0.01±0.00 0.02±0.001 0.03±0.00001 0.03±0.0001 0.03±0.0001 
Vanillin (wt% wb) 0.11±0.03 0.09±0.02 0.07±0.01 0.07±0.01 0.23±0.1 
5-(Hydroxymethyl) furfural 
(wt% wb) 

0.40±0.03 0.16±0.01 0.41±0.05 0.36±0.04 0.22±0.04 

Total  (wt% wb) 4.71±0.04 2.28±0.03 11.9±0.2 9.72±0.1 10.7±0.2 
 

Table 9. A comparison of total water-soluble sugars captured in the stage fractions reported on 
bio-oil yield distribution(wt% wb) and biomass basis (wt% wb) utilizing a liquid-liquid 
extraction method, the AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid Assay for Total 
Carbohydrate Determination, and hydrolysis with quantification by HPLC. 
 

Sugar Determination 
Method 

Stage Fraction Weighted Average 
Yield (wt% wb) 

Biomass Basis  
(wt% wb) 

Liquid-Liquid 
Extraction 

22.5±1.4 14.5  

AOAC  9.57±0.52 6.17 
Hydrolysis  9.63±0.21 6.22 

 

Conclusions 

We successfully demonstrated AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid Assay 

for Total Carbohydrate Determination, originally designed to evaluate sugars in food products, 

can be used to the measure water-soluble sugars in bio-oil with ±1.7% uncertainty of 
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measurement. Both whole bio-oil and SFs 1-5 bio-oil were examined and all show similar results 

in comparison to a hydrolysis method utilizing HPLC for quantification. This research has shown 

that the typical liquid-liquid extraction bio-oil method greatly overestimates the total water-

soluble sugars and should not be used for these analyses. Interferents include furans, therefore a 

correction factor of 0.76 wt% has been established for use with bio-oil. This research has 

demonstrated AOAC Method 988.12 (44.1.30) gave highly reproducible results while providing 

a reliable standardized test method for quantification of total water-soluble sugars in bio-oil.  
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CHAPTER 5. QUANTIFICATION OF TOTAL PHENOLS IN BIO-OIL 
USING THE FOLIN-CIOCALTEU METHOD 

 

A paper submitted to the Journal of Analytical and Applied Pyrolysis 

Marjorie R. Rovera, Robert C. Brownb 

Abstract 

Bio-oil from fast pyrolysis of biomass contains phenolic compounds derived from the lignin 

portion of the biomass. Traditional testing for total phenolic compounds in bio-oil is based on 

either a rough estimate of the weight percent water-insolubles in bio-oil or on tedious liquid-

liquid extraction methods. We have evaluated the Folin-Ciocalteu (FC) colorimetry method used 

for quantifying total phenols in wine to determine total phenols in bio-oil. This method, based on 

the oxidation of phenolic compounds by the FC reagent, is fast and easy to perform. This study 

evaluated its accuracy relative to interferents by the use of positive and negative controls. 

Positive controls included phenol, 4-methylphenol, 3-ethylphenol, guaiacol, 2,6-

dimethoxyphenol and eugenol. The negative controls included sugars, furfural, and acids. 

Potential interferents with the quantification of total phenols by the FC method was calculated 

for all positive and negative controls by using data obtained when adding the contributor 

(positive controls) and the interferent (negative controls) into bio-oil using typical concentrations 

found in bio-oil. The positive and several of the negative controls produced strongly correlated 

linear relationships between the indicated phenolic content of the bio-oil and the amount of 

contributor or interferent added.  However, the slopes of these relationships for the negative 

controls were much smaller than those for the positive controls, indicating that the error in the 

prediction of phenolic content was small even for large concentrations of interferent compounds. 

For typical concentrations of non-phenolic compounds in bio-oil, the error in predicted phenolic 
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content as a result of their presence was ≤ 5.8%. Total phenolic content in bio-oil detected by the 

FC method was comparable to the quantity of total phenolic compounds obtained by liquid-

liquid extraction. All results fell within the margin of error and the uncertainty of the 

measurement by the FC method indicating there was no significant difference in the results 

between the two methods. The FC method uncertainty of measurement was ±1.1% at the 95% 

confidence level. 

Introduction 

The goal of this research is to determine if a fast and easy standardized test method used in 

the food industry to quantify total phenols in wine will provide reliable results for quantifying 

total phenolic compounds in bio-oil. Traditionally, quantification of phenols is done either by 

liquid-liquid extraction processes and/or estimated as the amount of water-insoluble fraction 

(WIF) in the bio-oil, which consists mostly of phenolic oligomers. 

Bio-oil arises from the depolymerization and fragmentation of cellulose, hemicelluloses, and 

lignin in plant materials [1,8,88]. Little deoxygenation occurs during fast pyrolysis, producing 

bio-oil with an elemental composition closely resembling the original biomass [1,26]. Bio-oil is 

considered a possible alternative to petroleum as a source of liquid fuels [26] and chemicals [89].  

Bio-oil is a complex mixture of water (15-30%), ketones, acids, aldehydes, sugars, phenolic 

compounds and other oligomeric lignin derivatives. Approximately 35-50% of bio-oil is 

comprised of constituents that are nonvolatile [8,90]. Softwoods have the highest lignin content 

(25-35%), mainly the guaiacyl type, while hardwoods contain from 16-25% lignin comprised of 

the guaiacyl-syringyl type [16,90]. Bio-oil characteristics, which include extreme complexity, 

instability, heterogeneity, and low pH [91], necessitate refining or upgrading to enable 

utilization.  
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Lignin has attracted attention because of the wide variety of phenolic compounds that can be 

produced from it (i.e. methyl, ethyl, methoxy, dimethoxy, and other alkylated derivatives). 

Phenol, derived from lignin during fast pyrolysis, is a commodity chemical manufactured from 

increasingly expensive crude petroleum oil [92]. The high content of oxygenated compounds in 

bio-oil makes it a potential source for these organic compounds [8], either from whole bio-oil or 

major fractions of bio-oil [90]. One important product from the lignin-derived fraction of bio-oil 

is phenolic replacement in phenol-formaldehyde resins [90], which is utilized as a raw material 

for laminate industries and specialty chemical manufacturing [93].  

Quantifying phenols in bio-oil is important because phenols influence reactivity and stability. 

Upon thermal degradation of biomass, lignin breaks down into a complex bio-oil with the major 

fraction consisting of phenolic compounds [93], which comprise the WIF of bio-oil. The phenol 

concentration in bio-oil is typically very low, on the order of 0.1 wt%, while monomeric phenols 

analyzed by gas chromatography (GC) range from 1 to 4 wt% [30]. Many phenolic compounds 

are present in bio-oil as oligomers containing varying numbers of acidic, phenolic, and 

carboxylic acid hydroxyl groups as well as aldehyde, alcohol, and ether functions. These 

oligomers typically have molecular weight distributions of several hundred to 5000 g mol-1 

depending on the pyrolysis process severity (i.e. temperatures, residence time, heating rates) 

[92], which is adequately high enough that they cannot be analyzed by GC. 

The WIF of bio-oil is often referred to as “pyrolytic lignin” [39] although this is not a 

particularly accurate description of the phenolic oligomers making up the WIF. These oligomers 

consist of aromatic rings substituted with various methoxy groups and linked by various types of 

aliphatic linkers [94]. Water extraction precipitates the pyrolytic lignin and removes the water-

soluble carbonyl compounds, sugars, etc. that are derived from cellulose and hemicellulose 
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during pyrolysis. The WIF can be recovered by centrifuging or filtering. Upon further washing 

and drying the WIF gives a light brown powder product. Yields of pyrolytic lignin are 

approximately 22 to 28% of the crude bio-oil [95]. Literature states the method for the 

determination of pyrolytic lignin requires improvement for better reliability [30,41]. This 

statement indicates that estimation of total phenolic compounds by weight of the WIF is not 

reliable. 

The wine industry utilizes the Folin-Ciocalteu (FC) colorimetry method to determine total 

phenolic compounds in their products. A major advantage of the FC method is that it has an 

equivalent response to different phenolic substances in wine, making it suitable for measuring 

accurate mass levels of total phenolic compounds [67]. Slinkard and Singleton [96] stated that 

the FC method is the best method for determining the total content of phenols of all types in dry 

wines, plant extracts, brandies, and similar products. Yu and Dahlgren [97] could not 

recommend a single optimal protocol for the quantification of total phenols and condensed 

tannins (i.e. polyphenolic compounds) in conifer foliage. However, they stated that the FC 

method, which takes into account all hydroxyl aromatic compounds, is one of two methods that 

is superior for quantification of condensed tannins [97]. Derkyi [98] reported that different types 

of polyphenols react similarly with the FC reagent, making them more easily quantifiable. 

Chapuis-Lardy et al. [99] utilized the FC method to determine the water-soluble phenolic 

compounds in leaf litter of Eucalyptus and reported that the FC method provides a rapid test for a 

large number of samples and allows the characterization of phenolic compounds. High-

performance liquid chromatography was used for semi-quantitative analyses of components in 

water extracts of the Eucalyptus leaf litter and the sum of the identified phenolic compounds was 

only about 10% of the water-soluble phenolic fraction estimated with the FC reagent [99]. 
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The FC method is based on chemical reduction of the reagent (mixture of tungsten and 

molybdenum oxides). The products of the metal oxide reduction have a blue color that has broad 

light absorption with a maximum at 765 nm [67]. The chemistries of tungstates and molybdates 

are very complex. The isopolyphosphotungstates are colorless in the fully oxidized 6+ valence 

state of the metal and the molybdenum compounds are yellow. They form mixed 

heteropolyphosphotungstates-molybdates and exist in an acid solution as hydrated octahedral 

complexes of the metal oxides coordinated around a central phosphate. Sequences of reversible 

one or two electron reductions lead to blue species such as (PMoW11O40)4-. In principle, the 

addition of an electron to a nonbonding orbital reduces nominal MoO4+ units to isostructural 

MoO3+ blue species [68]. The intensity of the light is proportional to the concentration of 

phenols.  

A disadvantage of the FC method is that it is nonspecific and can be affected by other 

nonphenolic reducing molecules. This method depends on the selective oxidation of similar 

easily-oxidized substances that when present contribute to the apparent total phenol content. 

Other easily-oxidized substances besides phenols include aromatic amines, sulfur dioxide, 

ascorbic acid plus endiols. Sugars break down in alkali to give endiols, which are readily 

oxidized [96]. The FC reagent also oxidizes proteins. Due to the color formation of the FC 

reaction via the reduction of the reagent, this reaction is general enough to allow for these types 

of interferents, the most problematic of which may be sugar. Waterhouse [67] explains that 

sugars create a complex issue because different sugars yield different interferents when using the 

FC method for total phenolic compounds determinations in wine. Levoglucosan is the main 

sugar reported in literature at 3-6 wt% [64] while other sugars reported at low concentrations 
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include xylose, arabinose, fucose, galactose, mannose, fructose, and ribose [30,64]. The FC 

reagent is commercially available but can be prepared in the laboratory [67].   

Liquid-liquid extraction is time consuming, tedious, and can involve the use of many 

different hazardous solvents. Basing total phenolic compounds on the WIF content of bio-oil is 

merely a rough estimation. A standardized test method that can be used to quantify total phenolic 

compounds would allow for meaningful comparisons and provide more consistent results. There 

is a need for a fast, easy, reliable standardized test method for quantifying total phenols in bio-

oil. 

Methods 

Red oak (Quercus rubra) from Wood Residual Solutions, LLC of Montello, WI was used as 

feedstock for production of bio-oil. Bio-oil was produced in a fast pyrolysis process development 

unit (PDU) consisting of a fluidized-bed operated at 450 to 500°C and a bio-oil recovery system 

that collects bio-oil in multiple stage fractions (SF) having distinct properties from one another, 

as described by Pollard et al. [1]. Stage 1 was designed to capture levoglucosan and phenolic 

oligomers with high condensation points and was operated with gas inlet and outlet temperatures 

of 345°C and 102°C, respectively. Coolant water temperature was controlled to 85°C. Stage 2 

consists of an electrostatic precipitator (ESP) operated at 40 kVDC and heat traced to 129°C to 

prevent condensation of vapors. Sugars and phenolic oligomers are the main constituents of stage 

2, as well. Stage 3 was designed to capture compounds with condensation points close to that of 

phenol and other phenolic monomers. It was operated with gas inlet and outlet temperatures of 

129°C and 77°C, respectively. The coolant water was controlled to 65°C. Stage  4, an insulated 

ESP, utilizes an operating temperature of about 77°C. Larger molecular weight oligomers that 

escape stage 2 are also collected in SF 4. Stage 5 was designed to remove water and light 
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oxygenated compounds such as acetic acid. Its coolant was water entering at 18°C. Residence 

times in the individual stages of the bio-oil collection system ranged from 1 s to 10 s [1]. The 

bio-oil collected in each stage was recombined immediately after recovery and referred to as 

whole bio-oil. The WIF was separated from the water-soluble components of SF 2 by mixing 

equal weights of bio-oil and water. The solution was manually stirred by hand to blend the bio-

oil and water. The sample was placed on a shaker table (MaxQ 2506, Thermo Scientific®, 

Hanover Park, IL) for 30 min at 250 motions per min and centrifuged (accuSpin™ 1R, Thermo 

Scientific®, Hanover Park, IL) at 1307g force for 30 min. The water-soluble portion was 

decanted leaving behind the WIF.  

A liquid-liquid extraction technique for the removal of phenols from bio-oil was utilized 

[100]. A bio-oil sample in the range of 4-20 g was dissolved in an equal quantity of ethyl acetate. 

The mixture was filtered with a Büchner funnel using Whatman #42 filter paper. The filtered oil-

ethyl acetate layer was placed in a separatory funnel and sodium bicarbonate (5 wt %) solution at 

a 1:1 ratio of oil-ethyl acetate to 5% sodium bicarbonate solution. The resulting aqueous 

bicarbonate layer contained the strong (mineral) and weak (organic) acids and highly polar 

compounds. This layer was retained and concentrated hydrochloric acid added to make the 

strong acids and highly polar compounds water insoluble. These insolubles were filtered using 

Whatman #42 filter paper; the residue was dried and weighed. The ethyl acetate soluble fraction 

contained phenolic monomers and oligomers as well as the neutral fraction (aromatics, ethers, 

esters, aldehydes, and ketones) and very weak bases [101]. This layer was concentrated using a 

rotary evaporator (Büchi Rotavapor RII, Thermo Scientific®, Hanover Park, IL) at 60°C with 

reduced pressure of 25 inches of mercury. The residue remaining was mixed with sodium 

hydroxide solution (5 wt %) in a 1:1 ratio with the residue. This mixture was kept at pH 12-13 
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and the alkaline aqueous phase separated out. This was decanted and acidified with a solution of 

sulfuric acid (50 wt %) to pH 6. Ethyl acetate was added to the neutralized aqueous solution in a 

1:1 ratio by weight to extract the phenolic compounds. The insolubles were filtered with 

Whatman #42 filter paper, dried and weighed. The ethyl acetate layer was separated and 

concentrated as described and the remaining residue consisted of phenolic compounds. A ratio of 

4:1 solvent-to-bio-oil was used for each step with the SF 2 WIF, as described previously. This 

ratio was used to help visually see the separations of the very dark WIF in SF 2. A minimum of 

three extractions were performed for each sample, with results averaged and standard deviation 

calculated. 

Micro-scale methodology for the FC colorimetry method was utilized [67]. A 20µl bio-oil 

sample, a blank (deionized water), and a gallic acid calibration standard were each placed in 2 ml 

polystyrene cuvettes. The bio-oil sample was dissolved in ethanol and filtered with a 0.45µm 

Corning syringe filter. Deionized water (1.58 ml) was added, followed by 100µl FC reagent. The 

solutions in each cuvette was mixed thoroughly by pipetting and incubated for 1-8 min. Sodium 

carbonate solution was added (300µl), mixed, and incubated for 2 h at room temperature. The 

sample absorbance was measured at 765 nm with 1 cm cells and a 1.5 nm bandwidth with a 

Varian Cary 50 UV-Visible Spectrophotometer (Agilent Technologies, Inc. Santa Clara, CA) 

using Cary WinUV (Agilent Technologies, Inc. Santa Clara, CA) Simple Reads module 

software. Samples were diluted to keep absorption between 0.06 and 0.6. The gallic acid 

calibration standards were made by dissolving 0.5 g gallic acid in 10 ml ethanol and then diluted 

to 100 ml with water (5 g l-1 final). Standards with 50, 100, 250, and 500 mg l-1 concentrations 

were created by diluting 1, 2, 5, and 10 ml to 100 ml with water, respectively. These can be 

stored up to 2 weeks at 4°C. The sodium carbonate solution was made by dissolving 200 g 
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anhydrous sodium carbonate in 800 ml water and bringing it to a boil. After cooling, a few 

crystals of sodium carbonate were added. The solution was stored for 24 h at room temperature. 

It was then filtered with Whatman #42 filter paper and water added to make 1 liter. This solution 

can be stored indefinitely at room temperature. A minimum of five trials were performed for 

each sample, with results averaged and standard deviation calculated. All results are given in 

wt% gallic acid equivalents (GAE) as expressed by the FC method [67]. The FC reagent was 

purchased from Thermo Scientific® (Hanover Park, IL).  

Positive and negative controls were used to validate the method. Positive controls were 

phenolic compounds added to bio-oil to determine whether the FC method could accurately 

measure their concentration in the presence of other bio-oil constituents. Positive controls 

utilized with this method included phenol, guaiacol, 3-ethylphenol, 4-methylphenol, 2,6-

dimethoxyphenol, and eugenol. Negative controls were other chemical constituents in bio-oil 

added to make known the error in total phenolic determination as a result of their presence. 

Negative controls included furfural, levoglucosan, D-fructose, D-glucose, D-mannose, D-xylose, 

L-arabinose, cellobiosan, D-fucose, D-galactose, acetic acid, glycolic acid, propionic acid, and 

formic acid. Both positive and negative controls were purchased from Thermo Scientific® 

(Hanover Park, IL). The positive and negative controls were added into a prepared sample of 

bio-oil utilizing the FC methodology [67]. The negative control sugars were dissolved in water 

prior to adding to the prepared bio-oil. Sugars such as levoglucosan are not completely miscible 

is ethanol, therefore the use of water as solvent ensured the samples were completely dissolved.  

Total phenolic concentrations (wt% GAE) indicated by FC analyses were linearly correlated 

to concentrations (wt %) of positive and negative controls. Typical concentrations for 

contributing compounds (positive controls) and potentially interfering compounds (negative 
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controls) in bio-oil were estimated from the literature and our own laboratory data. The slope of 

the line represents responsivity of the positive or negative control to the FC reagent (i.e. its 

ability to be oxidized by the FC reagent). The y-intercept corresponds to the baseline 

concentration (wt% GAE) of phenolic compounds in the bio-oil sample.  

The Beer-Lambert-Bouguer Law (Beer’s Law) [102] plots using the FC method results were 

linear. Molar absorptivity (l mol-1 cm-1), a measure of the electronic absorption at a chosen 

wavelength of analyte chromophores, was calculated for each of the controls. The Beer’s law 

relationship was applied to relate absorbance (A) with molar concentration (c) and the path 

length through the sample (b) using the well-known equation: A=εbc to determine the molar 

absorptivity (ε) [102,103].  

Moisture content of the bio-oil was determined by a MKS 500 Karl Fischer Moisture Titrator 

using ASTM E203 Standard Test Method for Water Using Karl Fischer Reagent. The reagent 

used was Hydranal Composite 5K and the solvent was Hydranal Working Medium K. The 

percent moisture of the bio-oil samples was determined in a minimum of four trials. 

To determine the reliability of the FC method for total phenolic determination in bio-oil, the 

mean, standard deviation, and 95% confidence intervals were calculated. Quantifications of total 

phenolic compounds for each bio-oil utilizing the FC method were included in this calculation.  

Results and Discussion 

The absorbance of a series of dilutions of both positive and negative controls added to bio-oil 

were recorded and a plot prepared using the concentration (wt% GAE) of total phenolic 

compounds (y-axis) versus concentration (wt%) of the added positive or negative control (x-axis) 

yielding a straight line. Both positive and negative control samples were added into the bio-oil 

sample in concentrations normally found in bio-oil and quantified by the FC method.  
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Positive controls showed a strong linear relationship between x and y variables (Table 1) 

with r2 values ≥ 98. The y-intercept was the baseline concentration of phenolic compounds in the 

bio-oil sample. Total phenolic quantification in the bio-oil (wt%) by liquid-liquid extraction was 

measured and found to be 24.2 ± 0.40 wt% dry basis (db). The y-intercept baseline values 

average 22.1 wt% GAE. This indicates an 8.7% difference between the liquid-liquid extraction 

value and the y-intercept baseline average value. 

The contributor response factors (ability of the contributor to be oxidized by the FC reagent) 

are the highest for guaiacol, 2,6-dimethoxyphenol, and phenol. This is in agreement with molar 

absorptivity values obtained for the contributors (Figure 1). Molar absorptivity (ε765 nm x10-3 l 

mol-1 cm-1) values show these three phenols responded similarly to the FC reagent. The response 

of a particular phenolic to the FC reagent is due to the number of phenolic groups it contains 

[67]. Both the response factor and molar absorptivity display comparable trends for 4-methyl and 

3-ethylphenol. Percent difference between the phenol response factor and that of 4-methyl and 3-

ethylphenol was 50% and 55%, respectively. Molar absorptivity percent difference between 

phenol and 4-methyl and 3-ethyl phenol was 51% and 56%, respectively. Singleton [104] reports 

phenols with substituent groups such as 3-ethyl or 4-methylphenol show a lower response to the 

FC reagent, approximately 40% less than phenol, while methoxyl groups can convert to or 

behave as phenolic hydroxyls in assay. As previously stated, our results demonstrate similar 

behavior. Singleton [104] reported the average molar absorptivity (ε765 nm x10-3) for the gallic 

acid standard was approximately 25.0. Our research resulted in 24.4 (ε765 nm x 10-3
 l mol-1 cm-1) 

for the gallic acid standard which was in agreement with the literature value. 

Among the interferents (Table 2), fructose and glucose gave the highest response factor 

(ability of the interferent to be oxidized by the FC reagent) and the highest correlation 
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coefficients. Singleton [104] reported no interferents from reducing sugars except for fructose 

and glucose with fructose giving a higher response to the FC method. As predicted, the FC 

method did show a much higher response to fructose and glucose, with fructose 

Table 1. Effect of contributors (positive controls) on total phenolic compounds (wt% GAE) 
quantified in whole bio-oil when analyzed by the Folin-Ciocalteu method.  
 

Contributor  
(Positive 
Control) 

Typical 
Contributor 
Content in Bio-
oil1(wt% wb) 

Response 
Factor 
(slope) 

Indicated Phenolic 
Content in Bio-oil 
(wt% GAE) 

R2 

Value 
Potential 
Contribution 
to Results (%) 

Guaiacol 0.1-0.7 5.8 21.0 0.98 2.8-19.0 
2,6-
dimethoxyphenol 

0.1-0.7 5.7 22.9 0.99 2.5-17.0 

Phenol 0.03-0.2 5.6 22.9 1.00 0.73-4.9 
4-methylphenol 0.1-0.5 3.3 21.8 0.99 1.5-7.6 
Eugenol 0.04-0.1 2.9 21.9 0.99 0.53-1.3 
3-ethylphenol 0.01-0.03 2.3 22.2 0.98 0.10-0.31 

1as measured in our laboratory (wt% wb) 
 

showing higher responsivity. As evident in Figure 2, both fructose and glucose had higher molar 

absorptivity values with fructose being the most responsive to the FC reagent. This was 

anticipated because the wine industry provides correction factors to the FC results for wines 

containing invert sugars [67]. Invert sugars are glucose and fructose which are broken down 

(invert) from sucrose by a small amount of acid [105]. Glucose and fructose have not been 

detected in our PDU bio-oils; therefore they would not interfere. The other sugar interferents 

show lower responsivity and molar absorptivity, ≤0.71 and ≤ 1.7 molar absorptivity (ε765 nm x 10-3
 

l mol-1 cm-1), respectively. The potential contribution from the sugar interferents was ≤ 2.7%. 

Singleton [104] reported reducing sugars were not reactive to the FC method reagent. The 

responsivity and molar absorptivity agree with this finding. 

Acetic and formic acids are reported to be the main acids in bio-oil [30,72,81]. These acids 

show small response factors in comparison to the phenolic contributors. Therefore, the FC 
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method would have a smaller response to these prominent acids, generally 5.8% or less. The 

negative control acid molar absorptivities were low, ≤ 1.7 (ε765 nm x 10-3
 l mol-1 cm-1).  

 

Figure 1. Comparison of contributor (positive controls) molar absorptivity (ε765 nm x 10-3
 l/mol 

cm) when spiked into bio-oil. 
 

Furfural also showed a small response factor with lower correlation and a low molar 

absorptivity. Its concentrations in bio-oil are low making its influence on the FC method very 

minimal. Possible interferent from furfural was ≤ 0.01%. 

The same bio-oil used for the positive control spiking was also used for the negative control 

spiking, and as stated earlier, the results were 24.2 ± 0.40 wt% db by liquid-liquid extraction. As 

measured by the y-intercept, average phenolic concentration was 22.4 wt% GAE. This was 7.4% 

less than the results obtained by liquid-liquid extraction. 

The same bio-oil used for the positive control spiking was also used for the negative control 

spiking, and as stated earlier, the results were 24.2 ± 0.40 wt% db by liquid-liquid extraction. As 
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measured by the y-intercept, average phenolic concentration was 22.4 wt% GAE. This was 7.4% 

less than the results obtained by liquid-liquid extraction. 

Table 2. Effect of interferents (negative controls) on total phenolic compounds (wt% GAE) 
quantified in whole bio-oil when analyzed by the Folin-Ciocalteu method.  
 

Interferent 
(negative 
Control) 

Typical 
Interferent 
Content in 
Bio-oil1 (wt%) 

Response 
Factor 
(slope) 

Indicated 
Phenolic 
Content in Bio-
oil (wt% GAE) 

R2 
Values 

Potential 
Contribution 
to Results (%) 

D-fructose3 0.115 2.2 22.5 0.96 1.1 
D-glucose2 0.4-1.3 1.1 22.2 0.95 1.98-6.4 
L-arabinose2 0.1 0.71 21.5 0.76 0.33 
Formic Acid1 0.6-1.0 0.59 21.7 0.41 1.6-2.7 
Glycolic Acid1 0.4-0.5 0.59 20.1 0.19 1.2-1.5 
Propionic acid1 0.1-0.6 0.56 23.5 0.29 0.24-1.4 
Furfural1 0.1-0.4 0.55 22.7 0.61 0.24-0.97 
D-xylose1 0.1-1.4 0.45 23.0 0.52 0.20-2.7 
Galactose3 0.20 0.33 22.3 0.71 0.30 
L-fucose3 0.058 0.32 23.0 0.01 0.081 
Levoglucosan1 4.0-6.0 0.30 22.5 0.89 0.45-0.68 
Acetic Acid1 0.5-5.5 0.27 23.7 0.15 0.56-5.8 
D-mannose1 0.02-0.03 0.25 22.6 0.0003 0.022-0.033 
Cellobiosan1 1.4-1.5 0.07 22.5 0.15 0.44-0.47 

1as measured in our laboratory (wt% wb) 
2as measured in literature [87] 
3as measured in literature [31] 
 

To verify if the FC method results corresponded to traditional bio-oil testing procedures, a 

comparison of total phenolic compounds in whole bio-oil quantification by both the FC method 

and liquid-liquid extraction was performed (Table 3). The FC method results were very similar 

to those acquired by the liquid-liquid extraction of phenols for bio-oils #1-3. All results lie within 

the margin of error and the uncertainty of the measurement by the FC method, indicating no 

significant differences in the results between the two methods.  

The WIF is expected to be an estimate of phenolic content on a gravimetric basis. The WIF 

was 28.1 wt% for bio-oil #1-2 and 21.1 wt% for bio-oil #3. Using the WIF to estimate total 

phenolic compounds in the whole bio-oil would give a fairly accurate assessment of bio-oil #1-2, 
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however bio-oil #3 shows an approximate 13% difference between this estimation and the FC 

method results.  

Figure 2. Comparison of interferent (negative controls) molar absorptivity (ε765 nm x 10-3
 l/mol 

cm) when spiked into bio-oil. 
 
Table 3. Comparison of total phenols quantified by the Folin-Ciocalteu method and liquid-liquid 
extraction of phenols for three whole bio-oils (bio-oil #1-3). 
 

Bio-Oil Total Phenols by FC 
(wt% GAE) 

Total Phenols by Liquid-Liquid 
Extraction (wt% db) 

#1 27.8 ±1.5 28.1±0.50 
#2 29.5±0.30 29.6±0.20 
#3 25.8±0.80 24.2±0.40 

 

By design, most of the pyrolytic lignin was recovered in the first two SFs of the bio-oil 

collection system [1]. SF 2 contained 63.5±3.0 wt% WIF. The WIF from SF 2 was analyzed 

using both the FC method and liquid-liquid extraction (Table 4). Four trials were performed on 

each sample and averaged. The total phenols by liquid-liquid extraction and the FC method gave 

similar results with differences falling within the standard deviation of the trials. It was 
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determined that there were no significant differences between the results for total phenolic 

determination using the FC method and the liquid-liquid extraction.  

Table 4.  Comparison of total phenolic determinations from the stage fraction 2 water-insoluble 
fraction of bio-oil analyzed by the Folin-Ciocalteu method and liquid-liquid extraction. 
 

Component (wt% wb) Total Phenols by Folin-
Ciocalteu Method (wt% GAE) 

Total Phenols by Liquid- 
Liquid Extraction (wt% wb) 

Phenols  64.7±1.3 66.7±1.8 
Neutrals and very weak 
bases 

--- 3.30±1.1 

Strong and weak acids --- 1.50±0.20 
Solids --- 3.20±0.20 
Moisture (%) 21.6±0.10 21.6±0.10 

Total  86.3 96.3 
 

The mass balance for the liquid-liquid extraction was 96.3 wt% wet basis (wb). The FC 

method gave a mass balance of 86.3 wt% wb. The neutrals and very weak bases, acids, and 

solids were not included in the mass balance for the FC method; therefore, the mass balance was 

expected to be lower. The acids would include both the strong (i.e. mineral) and weak (i.e. 

carboxylic) acids. Other possible weak acids include phenolic compounds with carboxylic acid 

functionality. Potential weak bases could be aromatic structures with nitrogen attached.  

Conclusions 

We were successful in quantifying total phenolic content in bio-oil using an established food 

methodology, the Folin-Ciocalteu (FC) colorimetry method, with a ±1.1 wt% uncertainty of 

measurement. Three whole bio-oils and SF 2 WIF were examined and all show virtually the 

same result by the FC method in comparison to liquid-liquid extractions. This research has 

shown the FC method gave highly reproducible results and provided a reliable standardized test 

method for quantification of total phenolic compounds in bio-oil. 
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CHAPTER 6. SUGARS AND PHENOLS RECOVERY FROM THE 
HEAVY-ENDS OF FRACTIONATED BIO-OIL 

 

A paper to be submitted to Bioresource Technology 

Marjorie R. Rovera, Patrick A. Johnstona, Ryan G. Smithb, Robert C. Brownb,c 

Abstract 

The present study explores the separate recovery of sugars and phenolic oligomers produced 

during the fast pyrolysis of lignocellulosic biomass. The experiments were conducted in an 8 

kg/h fluidized bed pyrolysis process development unit. Bio-oil fractionation was accomplished 

with a five-stage system that recovers bio-oil according to “condensation points” of the 

constituent compounds. The first two stages capture “heavy- ends” consisting mostly of water 

soluble sugars derived from polysaccharides and water-insoluble phenolic oligomers derived 

from lignin. Exploiting differences in water solubility, we are able to recover a sugar-rich 

aqueous phase and a phenolic-rich raffinate. The soluble sugars are effectively washed from the 

phenolic oligomers allowing the production of “pyrolytic sugars” and a carbohydrate-free 

raffinate comprised of phenolic oligomers that readily flows at room temperature.  Over 93 wt% 

of the sugars in stage fractions (SF) 1 and 2 are removed with two washes. The separated sugars 

from SF 1 and 2 are suitable for either fermentation or catalytic upgrading to biofuels. The 

phenolic oligomer-rich raffinate, which represents 44-47 wt% dry basis (db) of both SF 1 and 2, 

is less sticky and viscous than the unwashed SFs. The raffinate has potential for production of 

fuels, aromatic chemicals, unique polymers, resins, binders, coatings, adhesives, asphalt, and 

preservatives. 
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Introduction 

The goal of this research is to investigate a method for recovering two value-added products 

from the fast pyrolysis of lignocellulosic biomass: a concentrated sugar-rich solution and 

phenolic oligomer-rich raffinate. Fractionation is accomplished by using a unique five-stage bio-

oil recovery system [1] in combination with a washing procedure applied to the heavy-ends of 

bio-oil recovered by this system. We explore the effects of operating conditions on the 

effectiveness of the washing process including water-to-heavy-ends ratio, heavy-ends/water 

extraction temperatures, and the number of washes applied to the heavy-ends.  

Bio-oil is recognized as an important feedstock for thermochemical-based production of 

transportation fuels, chemicals, and power [3,12,16,24,69,106]. However, bio-oil has several 

undesirable characteristics that must be overcome before wider commercial exploitation. These 

problems include high oxygen content, high acidity, and low thermal stability [16,22], which 

negatively impact its use as a co-feed at refineries for the production of transportation fuels [24].  

Many of the problems with bio-oil are the direct result of it being a mixture of hundreds of 

different compounds representing a wide range of functionalities [106]. Thus, the ability to 

separate the compounds either through pretreatment of the biomass, staged pyrolysis, vapor 

phase fractionation, or separation of the condensed phase would significantly advance the field 

of pyrolysis [5]. Distillation, as applied to crude petroleum oil, is not a viable route to bio-oil 

fractionation due to thermal and chemical instabilities [106] therefore, other fractionation 

methods must be utilized. A bio-oil recovery system from fast pyrolysis of lignocellulosic 

biomass as SFs with distinct chemical and physical properties using a system of condensers with 

carefully controlled coolant temperatures and electrostatic precipitators has been developed [1].  
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This bio-oil collection system was developed on the premise that both vapors and aerosols 

are generated as primary or secondary products of fast pyrolysis. Vapors were presumed to be 

predominantly decomposition products of carbohydrate polymers while aerosols consisted of 

non-volatile, water-insoluble, lignin-derived oligomers often described as “pyrolytic lignin” in 

bio-oil. Stage 1 captures high boiling point compounds, such as levoglucosan (1,6-anhydro-β-D-

glucopyranose, C6H10O5) and phenolic oligomers, while Stage 2 captures aerosols formed from 

these compounds either during pyrolysis or cooling in the condenser of Stage 1[1]. The highest 

weight percentage water-insolubles were captured in stage fractions (SFs) 1 and 2, as well as the 

highest weight percentage of levoglucosan. Stage 1, a condenser, consisted of a shell-and tube 

heat exchanger consisting of thirty, 2.54cm diameter stainless steel tubes and operated with gas 

inlet and outlet temperatures of 345°C and 102°C, respectively. The temperature of the coolant 

water is controlled to 85°C. Stage 2, an electrostatic precipitator (ESP) operated at 40 kVDC, 

was constructed from 15.24cm diameter stainless steel pipe with a 2.54cm diameter electrode 

extending the length of the pipe along its axis. It was heat traced to 129°C to prevent 

condensation of vapors. Both Stages 1-2 bio-oil are black and extremely viscous even when hot. 

Upon cooling, they were resinous solids at room temperature [1]. 

The separated phenolic oligomer-rich raffinate exhibited potential for upgrading to 

transportation fuels, as well as other platform chemicals. The removal of pyrolytic sugars and 

their conversion into liquid drop-in fuels while using phenols to produce high-value products 

(i.e. resins, adhesives) could be a promising approach to economic viability of bio-oil refineries 

[12-15].  The recovery of separate sugar-rich and phenolic oligomer-rich streams from the 

heavy-ends represents numerous opportunities for value-added products.  
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Methods 

Red oak (Quercus rubra) from Wood Residual Solutions of Montello, WI, was used as 

feedstock for producing bio-oil. Bio-oil was produced in an 8kg/h fast pyrolysis development 

unit consisting of a fluidized bed operated at 450-500°C and a bio-oil recovery system that 

collects bio-oil in multiple SFs, having distinctive properties from one another. Stages 1, 3, and 5 

were water-cooled condensers operated at progressively lower temperatures to collect SFs of bio-

oil according to condensation points of the different compounds in the vapor stream. Stages 2 

and 4 were ESPs designed to collect aerosols generated downstream from these stages. Stages 1 

and 2 collect viscous, high-boiling point compounds collectively referred to as “heavy-ends” of 

the bio-oil. Stages 3 and 4 capture the compounds of intermediate molecular weight while stage 

5 recovered an aqueous phase containing “light oxygenates,” including acids and aldehydes. The 

present study focused on separating sugars and phenolic oligomers from SF 1 and 2, which were 

stored in polypropylene containers at 5°C in the dark prior to conducting washing trials. Details 

of this system and a complete characterization of the SFs are found in Pollard et al. [1].  

Specific analyses of the bio-oil were from methodologies described in detail in literature. The 

Association of Analytical Communities, International (AOAC) method 988.12 (44.1.30) Phenol-

Sulfuric Acid Assay for Total Carbohydrate Determination was used to quantify the water-

soluble sugar fraction in SF 1 and 2 [82,107]. Levoglucosan was used as the standard with a 

ultraviolet/visible range spectrophotometer wavelength set at 490 nm. The water-soluble fraction 

was evaluated by gas chromatography (GC) with a flame ionization detector (FID) following  

previously described methodology [107]. The acids analyzed in SFs 1and 2 included acetic, 

formic, glycolic, and propionic by ion-exhange chromatography (IC) [107]. The ultimate 

analysis was performed using LECO TruSpec carbon, hydrogen, and nitrogen (CHN) (LECO 
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Corp., St. Joseph, MI) analyzer with the determination of oxygen by difference that has been 

previously described [1]. Ethylenediamine-tetraacetic acid (EDTA) was used as a standard for 

CHN determinations. Moisture determinations were performed using a MKS 500 Karl Fischer 

Moisture Titrator (Kyoto Electronics Manufacturing Co., LTD, Kyoto, Japan) that has been 

previously reported [1]. The percentages of moisture in the bio-oil samples were determined in a 

minimum of three trials. Water-insolubles were determined by using an in-house method 

described by Pollard et al. [1].  

Gel permeation chromatography (GPC) was used to determine the molecular weight 

distribution of the phenolic oligomer-rich raffinates separated from the heavy-ends of the bio-oil. 

The high-performance liquid chromatography (HPLC) system used was a Dionex Ultimate 3000 

(Sunnyvale, CA) equipped with a Shodex Refractive Index (RI) and Diode Array detector 

(DAD). The software used to control the instrument and evaluate the samples was Dionex 

Chromeleon version 6.8. For the GPC analyses, the eluent for the phenolic oligomers was 

tetrahydrofuran (THF) with two Agilent PLgel 3µm 100Å 300 x 7.5mm and one Mesopore 300 x 

7.5mm. The column flow rate and temperature was 1.0 mL min-1 at 25°C. The phenolic 

oligomers samples were prepared using 10 mL of THF and 0.02 g of heavy-ends from the bio-

oil. All samples were filtered with a Whatman 0.45µ Glass Microfiber (GMF) syringe filter 

before analysis. The GPC standards were purchased from Agilent (Agilent Technologies, Inc. 

Santa Clara, CA). These standards contained polystyrene ranging from 162 – 38,640 g mol-1. The 

polystyrene standards were diluted with JT Baker HPLC-grade Stabilized THF.  

The minimum amount of water required for the phase separation of bio-oil water-soluble 

constituents from the water-insoluble constituents was determined by the drop-wise addition of 
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deionized water into SFs 1 and 2 while stirring thoroughly by hand after each addition. This 

forced phase separation to occur. Water was dispensed utilizing an electronic repeater pipette.  

The phenolic oligomer-rich raffinate was separated from the water-soluble components using 

a known amount of oil mixed at different ratios by weight with deionized water. The resulting 

solution was manually stirred to blend the bio-oil and water. The sample was placed on a shaker 

table for 30 min at 250 motions min-1 and centrifuged (accuSpin™ 1R, Thermo Scientific®, 

Hanover Park, IL) at 2561g force for 30 min. The water-soluble portion (sugar-rich solution) was 

decanted. 

Results and Discussion 

To establish when phase separation occurred, water was added drop-wise into SF 1 and 2. 

The mixtures were stirred after each addition to force phase separation. The moisture in SF 1 

prior to the addition of water was 3.35 ±0.99% and 3.34±1.20% for SF 2. The results of this 

experiment gave the minimum water-to-heavy-ends ratio that could be used to extract water-

soluble sugars from the heavy-ends. The minimum water-to-heavy-ends ratio for SF 1 was 0.5:1 

whereas, the lowest water-to-heavy-ends ratio for SF 2 was 0.4:1. The total weight percent of 

extracted water-soluble sugars was determined by AOAC Method 988.12 (44.1.30) and plotted 

for both SF 1 and 2 (Figure 1). As indicated, a 0.5-5:1 water-to-heavy-ends ratio could be used to 

extract the water-soluble sugars from SF 1. The total quantified sugars resulted in similar weight 

percentages and fall within experimental error. On the other hand, SF 2 indicated a water- to-

heavy-ends ratio of 1:1 to 2:1 was optimal for extracting water-soluble sugars.  

The optimal number of washes needed for removal of the water-soluble sugars in SF 1 and 2 

were determined (Figure 2). A single wash removed 77.1 wt% sugars db (1.37 wt%  
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biomass db) from SF 1 and 80.1 wt% db sugars (3.11 wt% db in biomass) for SF 2. A second 

wash removed an additional 15.9 wt% db for the phenolic oligomer-rich raffinate of SF 1 and an 

additional 14.3 wt% sugars db for SF 2. Two consecutive washes removed approximately 93% 

of the sugars from SF 1 and 94% from SF 2. Sugar extraction could be improved by optimization 

of the washing system. An in-line counter current flow extraction system may remove the 

majority of the sugars. 

The moisture content of the phenolic oligomer-rich raffinate was determined for SF 1 and 2 

(Table 1) for each water-to-heavy-ends ratio. The moisture in the original heavy-ends bio-oil was 

3.34±1.20% for SF 1 and 3.35 ±0.99% for SF 2. The percent moisture increased with the number 

of washes. This added moisture varied in the phenolic oligomer-rich raffinate between different 

water-to-heavy-ends ratios. The optimum water-to-heavy-ends ratio appears to be 1:1 when 

considering the amount of water left behind in the phenolic oligomer-rich raffinate. The moisture 

percent was lower at this ratio for both SF 1 and SF 2. 

The effects of extraction temperature on removal of water-soluble sugars in SFs 1 and 2 were 

determined. As shown, in Figure 3, bio-oil temperature did not influence the extraction of the 

water-soluble sugars from SF 1, with all results falling within experimental error. However, 

extraction temperature did influence recovery of water-soluble sugars from SF 2. As temperature 

increased, extraction efficacy increased. Maximum sugar recovery from SF 2 occurred in the 

temperature range of 80 to 120°C. Coincidentally, bio-oil was recovered from Stage 1 

(condenser) at 80-90°C and from Stage 2 (ESP) at 80-120°C [1], which suggested that on-line 

separation of sugars and phenolic oligomers from freshly produced heavy-ends could be readily 

implemented. 
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(a) 

 

(b) 

 

Figure 1. Total water-soluble sugars extracted from SF 1 (a) and SF 2 (b) as a function of water-
to-heavy-ends ratio with total water-soluble sugar determination by using AOAC Method 988.12 
(44.1.30). 

0

5

10

15

20

0 1 2 3 4 5 6

Su
ga

rs
 (w

t%
 d

b)
 

Water-to-Heavy-Ends Ratio (n:1) 

0

5

10

15

20

25

0 1 2 3 4 5 6

Su
ga

rs
 (w

t%
 d

b)
 

Water-to-Heavy-Ends Ratio (n:1) 



83 

 

Figure 2. Total water-soluble sugars removed from SF 1 and 2 phenolic oligomer-rich raffinates 
(at approximately 40°C) with multiple washes with total water-soluble sugars determined using 
AOAC Method 988.12 (44.1.30). 
 
Table 1. Moisture (%) in phenolic oligomer-rich raffinate in stage fraction SF 1and 2 heavy-ends 
after water-soluble sugars extraction using different water-to-heavy-ends ratios. 
 

Water-to-Heavy-
ends Ratio 

Phenolic Oligomer-Rich 
Raffinate SF 1 Heavy-Ends 
Moisture (%) 

Phenolic Oligomer-Rich 
Raffinate SF 2 Heavy-Ends 
Moisture (%) 

0.5:1 27.02±1.74 22.6±0.70 
1:1 18.3±0.17 17.9±0.49 
2:1 22.6±0.42 22.02±0.59 
5:1 21.9±0.62 19.7±0.26 

 

As shown in Figure 4, the molecular weight distribution (relative to polystyrene standards) 

for the phenolic oligomers obtained as raffinate from SF 1 had four peaks. The first and second 

peaks at 97 and 185 Da were consistent with the molecular weights for phenolic monomers [94]. 

Examples of possible monomers expected for red oak include phenol (94 g mol-1) syringol (154 

g mol-1) and 4-propenyl syringol (194 g mol-1) [108].  The third peak at 285 Da was likely a 

dimer while the fourth peak at 437 Da was believed to be comprised of trimers [94]. The 
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maximum molecular weight is 5770 Da for SF 1 phenolic oligomer-rich raffinate. SF 2 phenolic 

oligomer-rich raffinate indicates a slightly different profile versus SF 1 heavy-ends raffinate. 

There were only two prominent peaks, the first at 182 Da and the second at 429 Da with a 

maximum molecular weight of 5655 Da. These peaks were consistent with monomers and 

trimers. SF 1 and SF 2 GPC profiles were thought to have influenced higher extraction 

temperature requirements for SF 2 effective sugar removal. As reflected in the GPC profiles, a 

larger majority of trimers comprised SF 2 phenolic oligomers, whereas SF 1 majority consisted 

of  monomers. The maximum molecular weight for phenolic oligomers obtained as raffinate 

from SF 2 was slightly lower than for raffinate from SF 1.  

 

Figure 3. Effect of the extraction temperature on removal of water-soluble sugars from SF 1 and  
2. 
 

The empirical formulas for the phenolic oligomer-rich raffinate (db) after three washes were 

CH1.03O0.26 and CH1.1O0.25 for SF 1 and 2, respectively. For comparison, empirical formulas for 

possible phenolic monomers are shown in Table 2. As indicated, the empirical formula of the 
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identified in hardwood lignin [4]. The phenolic oligomer-rich raffinates appeared to have less 

hydrogen and oxygen versus many of the indicated probable monomers showing possible 

deoxygenation by loss of hydroxyl groups in the raffinates.  

 

Figure 4. Molecular weight (relative to polystyrene standards) comparison of phenolic oligomer-
rich raffinates for SF 1 and 2 after one water wash. 
 
Table 2. Empirical formulas of phenolic monomers obtained from hardwood lignin [4]. 

Phenolic Empirical Formula 
Phenol CHO0.17 
Vanillin CHO0.38 
Guaiacol CH1.1O0.29 
Acetosyringone CH1.2O0.40 
4-Propenyl syringol CH1.3O0.27 
2,6-Dimethoxy-4-methylphenol CH1.3O0.33 
Syringyl acetone CH1.3O0.36 
Syringol CH1.3O0.38 
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each wash for four washes of SF 1 and 2 were evaluated by using GC/FID and IC to quantify 

other water-soluble or partially water-soluble compounds (Tables 3-4). As indicated, 

approximately 6.5 wt% wet basis (wb) and 3.2 wt% wb constituents other than sugars were 

present in the sugar-rich solutions after the first washes of  SF 1 and SF 2, respectively. SF 2, an 

electrostatic precipitator designed to capture aerosols, contained approximately 50% less “other 

constituents” in the solution from each wash in comparison to SF 1. As the phenolic oligomer-

rich raffinates were washed additional times this percentage declined, as expected. The results 

indicate the water-soluble acids, ethylene glycol, furans, and acetol were extracted along with the 

water-soluble sugars. Usage of the sugar-rich solution for fermentation may require additional 

steps to remove any water-soluble compounds that are toxic to fermentation microbes. 

Table 3. Comparison of water-soluble and partially soluble constituents other than sugars found 
in the sugar-rich solution from SF 1 after consecutive washes. 
 

Chemical  FirstWash 
(wt% wb) 

Second Wash 
(wt% wb) 

Third Wash 
(wt% wb) 

Fourth Wash 
(wt% wb) 

Methanol 0.04±0.01 0.03±0.001 0.01±0.002 0 
Acetol 0.55±0.07 0.23±0.01 0.14±0.01 0.05±0.01 
Furfural 0.25±0.06 0.13±0.02 0.10±0.01 0.05±0.004 
2,6-Methoxyphenol 0.04±0.02 0.03±0.0009 0.02±0.004 0 
Ethylene glycol 1.30±0.23 0.24±0.01 0.08±0.01 0.09±0.01 
Furfuryl Alcohol 0.20±0.13 0.07±0.02 0.06±0.01 0.05±0.002 
2(5H)-furanone 0.09±0.01 0.20±0.01 0.15±0.004 0.01±0.004 
3-Methyl-1,2-
cyclopentanedione 

0.48±0.10 0.38±0.02 0.26±0.04 0.15±0.01 

Guaiacol 0.10±0.04 0.13±0.004 0.09±0.03 0.03±0.0009 
Vanillin 0.06±0.01 0.04±0.01 0.04±0.02 0.01±0.003 
Phenol 0 0.29±0.09 0.41±0.04 0.03±0.003 
5-(Hydroxymethyl)furfural 0.32±0.07 0.48±0.02 0.31±0.05 0.13±0.01 
Acetic acid 0.89±0.01 0.40±0.005 0.20±0.004 0.04±0.0006 
Formic acid 0.57±0.002 0.25±0.001 0.19±0.003 0.03±0.0009 
Glycolic acid 0.84±0.01 0.32±0.001 0.18±0.0003 0.03±0.0003 
Propionic acid 0.08±0.003 0.04±0.001 0.03±0.0005 0.006±0.0001 
Total (wt% wb) 6.5±0.03 3.4±0.01 2.3±0.01 0.71±0.004 
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SFs 1 and 2 were evaluated for total water-insoluble constituents. The percentage of phenolic 

oligomer-rich raffinate from SF 1 after a single wash was 54.5 wt% db whereas, 46.4 wt% db 

remained after a second wash. Raffinate from SF 2 showed a similar trend with each additional 

wash. The insoluble content for the phenolic oligomer-rich raffinate from SF 1 after four washes 

was 40.5 wt% db and 44.7 wt% db was obtained for raffinate from SF 2. The present work 

suggests the phenolic oligomer-rich raffinate may require 2-3 washes to remove “other non-

phenolic” water-soluble constituents.  

Table 4.  Comparison of water-soluble and partially water-soluble constituents other than sugars 
found in the sugar-rich solution from SF 2 after consecutive washes. 
 
Chemical  First Wash 

(wt% wb) 
Second Wash 
(wt% wb) 

Third Wash 
(wt% wb) 

Fourth Wash 
(wt% wb) 

Methanol 0.03±0.002 0.01±0.003 0.01±0.0004 0 
Acetol 0.31±0.01 0.18±0.01 0.09±0.01 0.02±0.0004 
Furfural 0.08±0.01 0.06±0.01 0.05±0.01 0.02±0.001 
2,6-Methoxyphenol 0 0.01±0.002 0.01±0.001 0 
Ethylene glycol 0.42±0.05 0.10±0.02 0.03±0.01 0.03±0.003 
Furfuryl Alcohol 0.09±0.04 0.03±0.01 0.03±0.01 0.03±0.002 
2(5H)-Furanone 0.29±0.02 0.19±0.09 0 0 
3-Methyl-1,2-
cyclopentanedione 

0.15±0.003 0.11±0.02 0.09±0.02 0.10±0.02 

Guaiacol 0.05±0.01 0 0.02±0.002 0.02±0.0009 
Vanillin 0 0 0.09±0.02 0 
Phenol 0.06±0.01 0.25±0.05 0.28±0.02 0.02±0.0004 
5-(Hydroxymethyl)furfural 0.33±0.02 0.26±0.11 0.12±0.02 0.05±0.002 
Acetic acid 0.56±0.02 0.23±0.003 0.11±0.0002 0.03±0.0002 
Formic acid 0.34±0.03 0.15±0.004 0.11±0.0008 0.03±0.0004 
Glycolic acid 0.43±0.04 0.14±0.03 0.18±0.00005 0.03±0.00003 
Propionic acid 0.07±0.01 0.03±0.001 0.02±0.0001 0.004±0.0001 
Total (wt% wb) 3.2±0.02 1.9±0.02 1.4±0.01 0.38±0.003 

 

Conclusions 

We successfully demonstrated the ability to separate sugars and lignin-derived phenolic 

oligomers from the heavy fractions of bio-oil produced pyrolyzing lignocellulosic biomass. This 
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was made possible by the large difference in water solubility of the sugars and phenolic 

oligomers. The sugars were effectively extracted at over 93 wt% with two water washes. 

Approximately 3-7 wt% of other water-soluble or partially soluble constituents were removed 

with the water-soluble sugars. Sugars and phenolic oligomers can be separated, providing two 

separate streams for fermentation, catalytic upgrading, or other types of conversions to value-

added products. 
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CHAPTER 7. EFFECTS OF PYROLYSIS TEMPERATURE ON RECOVERY OF BIO-
OIL AS DISTINCTIVE STAGE FRACTIONS 

 
A paper to be submitted to The Journal of Analytical and Applied Pyrolysis 

M.R. Rovera, P.A. Johnstona, L.E. Whitmera,b, Ryan G. Smithc, R.C. Brown a,b,c 

Abstract 

The goal of the present study was to investigate the effects of pyrolysis temperature on the 

recovery of various products from the pyrolysis of red oak by a fractionating bio-oil recovery 

system. Within the temperature range investigated, the maximum bio-char yield of 31.1 wt% 

occurred at 350°C, the maximum bio-oil yield of 66.7 wt% occurred at 400°C and the maximum 

non-condensable gas (NCG) yield of 26.3 wt% occurred at 550°C. The maximum production of 

sugar from biomass cellulose and hemicellulose, 13.5 wt%, occurred at 450°C. The sugars, in the 

form of anhydrosugars, were condensed in stage fractions (SF) 1-2. Production of phenolic 

compounds was highest at 400°C yielding 29.4 wt% dry basis (db) with the majority collected as 

oligomers in SF 1-2. Bio-oil moisture content was highest at 550°C, which is 91% of the total 

moisture. Gel permeation chromatography (GPC) indicated that the majority of compounds 

found in the heavy-ends of bio-oil (SF 1-2) ranged from oligomeric monomers to tetramers.  

Introduction 

Fast pyrolysis is the thermal decomposition of biomass into liquid (bio-oil), solids (bio-char), 

and non-condensable gases (syngas). Pyrolysis temperature affects the yield of these products; 

the goal of most pyrolysis research is to maximize the yield of liquids, which can be upgraded to 

transportation fuels. Little research has been directed toward the effect of temperature on the 

individual organic components of the bio-oil, possibly because they are usually recovered 

together as “whole bio-oil” with limited prospects for separating them after recovery.  
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Bio-oil is a multicomponent mixture containing 35-40 wt% oxygen and more than 300 

identified compounds in bio-oil [8]. It is comprised of both volatile compounds, including water, 

acids, alcohols, aldehydes, esters, ketones, sugars, phenols, quaiacols, syringols, vanillins, and 

furans, and non-volatile compounds, especially viscous phenolic oligomers [1,16,71,72].  

The complex chemical composition of bio-oil causes many problems including poor stability, 

both in storage and when heated for upgrading. Bio-oil constituents have a very wide range of 

boiling temperatures. Bio-oil starts to boil below 100°C but distillation ceases at 250-280°C 

leaving 35-50% of the starting material as residue [1,8]. Typical methods of separation and 

purification include liquid chromatography, extraction, centrifugation, and distillation, which are 

high cost and difficult to scale up [109].  

These problems prompted us to develop a bio-oil recovery system that separates bio-oil into 

stage fractions (SFs)  with distinctive chemical and physical characteristics [1]. This separation is 

accomplished by a combination of condensers with carefully controlled coolant temperatures to 

recover vapors and electrostatic precipitators (ESP) to recover aerosols.  

The ability to fractionate bio-oil enables the possibility of optimizing pyrolysis operating 

conditions to produce desired products [7]. For example, for the purpose of producing asphalt or 

resins, pyrolysis conditions that increase the yield of higher molecular weight phenolic oligomers 

should be optimized. If monomeric sugar production is the goal, conditions that encourage 

depolymerization of polysaccharides should be favored. The present study investigates the 

effects of pyrolysis temperature on the recovery of various products from the pyrolysis of red 

oak using the fractionating bio-oil recovery system. Of particular focus is cellulose-derived 

levoglucosan and lignin-derived phenolic oligomers. 

 



91 

Methods 

Biomass used for the pyrolysis experiments was red oak (Quercus rubra) procured from 

Wood Residual Solutions of Montello, WS. As-received biomass was passed through a 60 hp 

hammer mill equipped with a 3mm screen, resulting in approximately 200-500µm average 

particle size. The moisture content of the red oak was approximately10%.  

Experiments were performed in a fluidized bed pyrolyzer and  bio-oil recovery system that 

separates the bio-oil into distinctive SFs, as previously described by Pollard et al. [1]. Stage 1, a 

condenser, captures high boiling point compounds such as levoglucosan and phenolic oligomers. 

It was a shell-and tube heat exchanger operated with gas inlet and outlet temperatures of 345°C 

and 102°C, respectively. The coolant water was controlled to 85°C. Stage 2 uses an electrostatic 

precipitator (ESP) to collect aerosols formed either during pyrolysis or during cooling in Stage 1. 

The ESP was operated at 40 kVDC and heat traced to 129°C to prevent premature condensation 

of vapors. Stage 3, another shell-and-tube heat exchanger, collected compounds with 

condensation points near that of phenol. It operated at gas inlet and outlet temperatures of 129°C 

and 77°C, respectively. The coolant water was controlled to 65°C. Stage 4, an ESP, was 

insulated and had an operating temperature of approximately 77°C. Stage 5 was a shell-in-tube 

heat exchanger using water at 18°C as coolant for the purpose of removing water, furans, and 

light oxygenated compounds (i.e. acids) [5].   

Several improvements have been made to the system since first described by Pollard et al. 

[5]. The hopper in the feed system was expanded to allow extended test runs. Four Omega Type 

K thermocouple sensors (Omega Engineering, Inc., Stamford, CT) were inserted along the 

central axis of the fluidized bed spaced every 50 mm to improve monitoring and control of 

pyrolysis. The thermocouple located at the top of the fluidized bed region controled power to the 
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external bed heaters and thus set the reaction temperature of the bed. Enhanced preheating of 

nitrogen entering the plenum of the reactor further improved temperature control of the reactor. 

The bio-char disengagement section was heat traced to improve its operational reliability. Better 

temperature control was added to the inlet of SF 1, which was previously prone to fouling. The 

collection efficiency of the ESPs was improved with changes to its geometry to improve corona 

discharge. These changes to the pyrolysis system enabled significant improvements in bio-oil 

yield and allow more sustained operation compared to previously work [5].  

Five pyrolysis tests were performed at 350, 400 450, 500, and 550°C and 6 kg/h biomass 

feed rate. Bio-oil was collected and weighed to determine yield for each SF. Bio-oil was stored 

in polypropylene containers at 5°C in the dark until analyzed. Non-condensable gas flow rate 

was determined by injecting helium at a known mass flow rate as determined by an Alicat Mass 

Flow Controller (Alicat Scientific, Tucson, AZ) located at the gas exit of the bio-oil collection 

system. An Agilent Varian® CP-4900 Micro-GC (Gas Chromatograph) (Agilent Technologies, 

Inc. Santa Clara, CA) interfaced with Galaxie® Chromatography 1.9 software (Bruker 

Corporation, Bruker Daltonics, Inc., Fremont, CA) was used for NCG analysis. The micro-GC 

was programmed to sample for 30 s followed by 120 s of run time. The average composition 

over steady-state operation was then used to calculate NCG yields. In principle, bio-char could 

be determined directly from the cyclone catch, but sand often elutriated from the fluidized bed 

along with the bio-char, making problematic the accurate measurement of bio-char yield from 

the cyclone catch. Accordingly, bio-char yield was determined by difference rather than direct 

gravimetric measurement.  

Specific analyses of the bio-oil were methodologies described in detail in the literature. The 

Association of Analytical Communities, International (AOAC) Method 988.12 (44.1.30) 
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(Phenol-Sulfuric Acid Assay for Total Carbohydrate Determination) was used to quantify the 

water-soluble sugar fraction in SF 1-5 [82]. Levoglucosan was used as the standard with the 

ultraviolet visible range spectrophotometer wavelength set to 490 nm. Oasmaa and Kuoppala 

[40] described bio-oil sample preparation for extracting the water-soluble fraction of bio-oil for 

sugar determination. The acids analyzed in each bio-oil SF included acetic, formic, glycolic, and 

propionic by ion-exchange chromatography (IC) [107]. These were done in triplicate with the 

standard deviation ≤ ±0.9 wt% wet basis (wb). Gas chromatography/mass spectroscopy was used 

for bio-oil chemical analyses. The samples were done in triplicate. The standard deviations for 

phenol and alkylated phenols were ≤ ±0.10 wt% wb, monomethoxyphenols ≤ ±0.41 wt% wb, 

and dimethoxyphenols ≤ ±0.60 wt% wb. The standard deviation for furans was ≤ ±0.01 wt% wb. 

A complete description of the methodology is found in Pollard et al. [1]. The Folin-Ciocalteu 

colorimetry method [67] was used to determine total phenols in bio-oil [110]. The sampling was 

done in triplicate. The standard deviation was ≤ ± 2.16 wt% db. The water-insoluble content was 

determined by using an in-house method previously described in the literature [1]. The standard 

deviation for the water-insoluble content evaluation was ≤ ±2.34 wt% db. Gel permeation 

chromatography (GPC) was used to determine the molecular weight distribution (relative to 

polystyrene standards) of the bio-oil constituents at 254 nm by utilizing a diode array detector. 

The GPC methodology was described in detail by Rover et al. [107].  

Moisture content of the bio-oil was determined by using a MKS 500 Karl Fischer Moisture 

Titrator (Kyoto Electronics Manufacturing Co., LTD, Kyoto, Japan) and ASTM E203 Standard 

Test Method for Water Using Karl Fischer Reagent. The reagent used was Hydranal Composite 

5K and the solvent was Hydranal Working Medium K purchased from Thermo Scientific® 



94 

(Hanover Park, IL). The percentage moisture of the bio-oil samples was determined for a 

minimum of four trials with a standard deviation of ≤ ± 3.08%. 

The ultimate analysis was performed using LECO TruSpec (LECO Corp., St. Joseph, MI) 

carbon, hydrogen, and nitrogen (CHN) analyzer with oxygen determined by difference. Ethylene 

diamine tetra acetic acid (EDTA) was used as a standard for carbon and hydrogen 

determinations. Calibration lines were prepared using four different concentrations of EDTA. 

The standard was purchased from LECO Corporation, St. Joseph, MI. A minimum of 3 trials 

were run for each sample The standard deviation for the ultimate analyses was ≤ ±0.42 wt% 

carbon and ≤ ±0.17 wt% hydrogen.  

Results and Discussion 

The yields (weight of product/weight of feedstock) of bio-char, NCG, and bio-oil SFs were 

determined at five different temperatures: 350, 400, 450, 500, and 550°C by using red oak as 

feedstock (Table 1). Maximum yield of whole bio-oil was obtained in the temperature range of 

400-450°C where approximately 67 wt% of the biomass was converted to bio-oil. However, 

there was some variation in the optimal temperature for production of bio-oil as SFs: 400°C for 

SF 1; 450°C for SF 2-3; 400°C for SF 4; and >550°C for SF 5. The reasons for these differences 

became apparent during subsequent analysis of SF composition. As expected, the NCG yield 

increased as temperature increased; with an 11.9 wt% product yield at 350°C and 26.3 wt% at 

550°C. Higher NCG formation was attributed to cracking of pyrolysis vapors and chars at higher 

temperatures [48,111]. As anticipated, increasing NCG yield corresponded to decreasing bio-

char yield. Bio-char yield decreased with increasing temperature. The bio-char product yield at 

350°C was 31.1 wt% with 11.4 wt% at 550°C. 
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Changing reactor temperature during fast pyrolysis dramatically influenced NCG 

composition (Figure 1). The distribution of NCG (reported as g/g NCG), showed methane to 

increase from 1.26% to 7.00% and carbon dioxide to increase from 26.5 to 46.5% in the 

temperature range of 350-550°C. In contrast, carbon dioxide decreased from 73.2% at 350°C to 

40.9% at 550°C. Ethane was not observed below 400°C while ethylene and propane appeared at 

450°C. These gases increased as reactor temperature increased, although the yields were low. 

Hydrogen yield was low as well and did not appear until 550°C. 

Table 1. Temperature effect on yields (wt%) of bio-char, bio-oil stage fractions (SF), and non-
condensable gas (NCG) for fast pyrolysis of red oak. 
 

Temperature 
(°C) 

SF 1 
(wt%) 

SF 2   
(wt%) 

SF 3 
(wt%) 

SF 4 
(wt%) 

SF 5 
(wt%) 

Total 
Bio-Oil 

NCG 
(wt%) 

Bio-Char* 
(wt%) 

350 12.5 16.6 2.97 1.10 23.9 57.0 11.9 31.1 
400 14.8 21.1 4.10 2.00 24.7 66.7 12.6 20.7 
450 13.2 21.3 4.60 1.70 25.0 65.8 16.0 18.2 
500 12.5 19.3 4.32 1.40 25.6 63.2 18.3 18.6 
550 12.1 18.3 3.77 1.41 26.7 62.3 26.3 11.4 

* Bio-char by difference 

Analyses of the bio-oil compounds detected by GC/MS were categorized by groups and 

shown in Table 2. These compounds represented specific functional groups and were only a 

small fraction of those compounds volatile enough to be analyzed by GC/MS.  

Phenol and alkylated phenols increased with pyrolysis temperatures in the range of 400-

550°C in SF 2-5 (Figure 2). The majority of phenol and alkylated phenols were condensed in SF 

3-5. The reactor collection system was designed to collect monomeric phenols (phenol and 

alkylated phenols) in SF 3-4. Because of the range of boiling points (182-227°C) it was not 

surprising they were also collected in SF 2. At 500°C pyrolysis temperature, approximately 47% 

wb of phenol and alkylated phenols were collected in SF 3 and 4, whereas SF 1-2 collected 22% 
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wb and SF 5 collected 31% wb. At 550°C pyrolysis temperature, approximately 54% wb phenol 

and alkylated phenols were captured in stages 3 and 4, while 15% wb were captured in stages 1 

Figure1. Effect of temperature on distribution of noncondensable gases (NCG) for fast pyrolysis 
of red oak.  
 

Table 2. Categorized chemical compounds detected in bio-oil stage fractions by GC/MS. 

 

and 2. Stage 5 captured 31% wb. The amount of phenol and alkylated phenols did not increase in 
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the resulting increase seen in SF 3-4. Phenol increased 88% as pyrolysis temperatures increased 

from 400 to 550°C. The increase in phenol as a function of temperature is important because this 

offers the opportunity to utilize phenol as an alternative to petroleum-based phenol for use as a 

valuable chemical. 

The monomethoxyphenols decreased in SF 1 as pyrolysis temperature increased from 400 to 

550°C but the overall collection in SF 1 and 2 increased from 51% to 75% wb over this same 

temperature range. Pollard et al. [1] collected approximately 73% wb monomethoxyphenols at a 

pyrolysis temperature of 500°C in SF 1 and 2. At this same temperature 53% wb monomethoxy-

phenols were collected in SF 1-2. The percentage difference of monomethoxyphenols from their 

maximum production temperature of 450°C to the minimum collected at 550°C was 61% wb. At 

pyrolysis temperature of 450°C approximately 64% wb of the monomethoxyphenols were 

collected in SFs 1 and 2.  

As seen with the monomethoxyphenols, the dimethoxyphenols also decreased in SF 1 as 

pyrolysis temperatures increased from 400°C to 550°C. At 400°C, SFs 1 and 2 collected 

approximately 78% wb of the dimethoxyphenols, which increased to at 81% wb at 450°C. At 

500°C approximately 79% wb were collected in SFs 1-2 with SF 1 collecting 20% less than SF 

2.  At the same temperature, Pollard et al. [1] reported a similar percentage (78%) wb of 

dimethoxyphenols collected in SFs 1 and 2, although it was equally distributed in the two SFs. 

We postulated that a large fraction of the dimethoxyphenols entered the bio-oil recovery system 

as vapors [1]. These results suggested that a large fraction of dimethoxyphenols left the reactor 

as aerosols rather than vapor. At 550°C, approximately 80% wb were collected in SFs 1 and 2. 
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(a) 

(b)  

 

(c) 

 

Figure 2. Distribution of phenol (P) and phenol and alkylated phenols (P-AP) (a), mono- 
methoxyphenols (b), and dimethoxyphenols (c) among bio-oil stage fractions (SF) on the basis of 
whole bio-oil (WBO) as a function of pyrolysis temperatures (wb). 
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The loss of monomethoxy and dimethoxyphenols while phenol and alkylated phenol increase 

with temperature was attributed to two types of processes that occurred during pyrolysis (a) 

primary reactions where the products are formed from biomass decomposition and (b) secondary 

reactions where the volatiles evolved from the biomass underwent further reactions [112]. The 

present work suggested the monomethoxy and dimethoxyphenols originated from primary 

reactions associated with the depolymerization of lignin, whereas phenol and alkylated phenols 

were products of continued degradation of lignin-derived oligomers and therefore continued to 

increase in concentration as temperatures increased.  

Total phenolic compounds quantified (Figure 3) were collected in the highest concentrations, 

approximately 85% db, in SFs 1 and 2 for pyrolysis at 350-550°C. Researchers often use the 

water-insoluble content of bio-oil as an “estimate” of total phenolic compounds in bio-oil. As 

shown in Figure 4, the majority of water-insoluble content was collected in SFs 1 and 2 (97% 

db). Total phenols contents were higher than the water-insoluble contents. This indicated the 

total water-insoluble content was not a good proxy for the total phenols contents in bio-oil. 

Because SF 1 and 2 collected the heavy-ends, it was not surprising that significant quantities of 

water-insoluble content were present in the first two SFs compared to SF 3-5. The majority of 

water-insoluble content was collected in SF 2, indicating that the majority was leaving the 

reactor as aerosol. Approximately 14.5 wt% of the lignin in the original biomass was collected as 

lignin oligomers (water-insoluble content) at 500°C. This percentage decreased at 550°C, 

indicating that secondary reactions were likely cracking these oligomers.  

Figure 5 shows the yield of levoglucosan (the major anhydrosugar product) and total water-

soluble sugars (WSS) (which included anhydrosugars) as a function of pyrolysis temperature. 

The majority of sugars were captured in SFs 1 and 2. At 450°C approximately 87% wb total 
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Figure 3. Distribution of total phenolic compounds across the stage fractions (SF) on the basis of 
whole bio-oil (WBO) as a function of pyrolysis temperature (db). 
 
 

 
 
Figure 4. Distribution of water-insoluble content across stage fractions (SF) on the basis of 
whole bio-oil (WBO) as a function of pyrolysis temperature (db).  
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yields at low temperatures shown in Table 1. At temperatures above the optimum range, 
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decreasing levoglucosan yields has been postulated to be the result of secondary reactions of 

levoglucosan in the vapor phase [113].  

 
 
Figure 5. Levoglucosan (LG) and total water-soluble sugars (WSS) in stage fractions (SF) on the 
basis of whole bio-oil (WBO) as a function of pyrolysis temperatures (wb). 
 

Figure 6 illustrates the effect of pyrolysis temperature on furan compounds. The vast 

majority of furans appeared in SF 5 for all temperatures evaluated. The highest yields of furans 

(furfural, furfuryl alcohol and 5-methylfurfural) occurred at 350°C. Furans decreased with 

increasing temperature. Lu et al. [114] and Dong et al. [115] discuss possible pyrolytic pathways 

for various furan formation. Furfural, derived from both cellulose and hemicellulose is 

influenced by pyrolysis temperature. 5-methylfurfural is produced from secondary reactions of 5-

hydroxymethylfurfural (HMF) while furfural is formed concurrently with HMF [114,115].  

 
 
Figure 6. Distribution of furans (furfural, furfuryl alcohol and 5-methylfurfural) in stage 
fractions (SF) on the basis of whole bio-oil (WBO) as a function of pyrolysis temperatures (wb). 
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As shown in Figure 7, the fractionating bio-oil recovery system was particularly effective in 

concentrating water in the last bio-oil fraction (SF 5). Typically, none of the first four fractions 

contained more than 4% of the total water found in the bio-oil while SF 5 contained more than 

90% of the water. The amount of water produced increased with pyrolysis temperature, 

increasing approximately 10% between 350°C and 550°C. Other researchers saw a more 

prominent increase with temperature. Heo et al. [116] observed an increase of 33% in the 

temperature range of 400-550°C when pyrolyzing waste furniture sawdust. 

Garcia-Perez et al. [9] reported an increase of 43% in the temperature range of 450-580°C for 

mallee wood. This is likely due to differences in pyrolysis conditions rather than attributable to 

the fractionating bio-oil recovery system. 

 

Figure 7. Distribution of water in stage fractions (SF) on the basis of whole bio-oil (WBO) as a 
function of pyrolysis temperature. 
 

Carboxylic acids (acetic, formic, glycolic, and propionic) increased with increasing pyrolysis 

temperatures in the range of 350°C to 550°C (Figure 8). The majority of acids were captured in 

SF 5 (approximately 73% wb at 550°C). Pollard et al. [1], observed relatively high 
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concentrations of acetic acid in SF 4 as well as SF 5. The current study showed only a small 

percentage of the total acetic acid appeared in SF 4 at any temperature (about 3.4% wb). This 

difference was likely due to improvements in collection efficiency of the ESP. 

Figure 8. Distribution of acids (acetic, formic, glycolic, and propionic) in stage fractions (SF) on 
the basis of whole bio-oil (WBO) as a function of pyrolysis temperatures (wb). 
 

Figure 9 shows the elemental analysis of whole bio-oil. For a given bio-oil fraction, there 

was no significant difference in the elemental composition as temperature increased. This 

suggested that little in the way of deoxygenation or dehydrogenation occurred during pyrolysis.    
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Figure 9. Yields (wt%) of carbon (C), oxygen (O), and hydrogen (H) on wet basis (wb) and dry 
basis (db) at different pyrolysis temperatures. 
GPC was only performed on SFs 1 and 2 because these were the only two fractions to have 

significant water-insoluble content, the source of most of the high molecular weight material in 

bio-oil (see Figure 10). The molecular weight distributions of SF 1 range from 30 – 8,000 Da 

with several peaks consistent with SF 1 containing largely monomers, dimers, trimers, and 

tetramers derived from lignin [94]. SF 2 had a narrower molecular weight distribution, ranging 

from 30 - 5,000 Da but also included tetramers. As pyrolysis temperature increased, the 

prominent peaks in the distributions for both SF 1 and 2 shifted to higher molecular weights. 

This observation does not support the expectation that higher pyrolysis temperatures promote 

more complete depolymerization of lignin; however, it is consistent with repolymerization of 

monomers and small oligomers that originally formed from depolymerizing lignin. 
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(a) 

 (b) 

 

Figure 10.  Molecular weight distributions of (a) SF 1 and (b) SF 2 using GPC (relative to 
polystyrene standards utilizing a diode array detector (DAD) at 254 nm). 

 
Conclusions 

As reported previously, we found that the yields of liquid, solid, and gaseous products from 

the pyrolysis of lignocellulosic biomass were strongly influenced by pyrolysis temperature. 

However, in the range of 300-550°C, pyrolysis temperature had relatively small effect on the 
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yield of specific chemical constituents in the bio-oil or their distribution across the SFs of the 

fractionating bio-oil recovery system, with a few exceptions. Carboxylic acids increased by 41% 

in this temperature range, especially appearing in SF 5. Other constituents showed various 

temperature dependencies but insignificant shifts in distributions among the SFs. The water-

insoluble content of bio-oil also increased with temperature before peaking at 500°C. Water 

increased with temperature, but only by 10% in the temperature range tests. Furan yield 

decreased at increasing temperature from 300°C to 350°C but yield was independent of 

temperature beyond that. Yields of levoglucosan and total water soluble sugar showed a 

discernible peak at 450°C, but the total effect was small. The results indicate that the bio-oil 

separation system, in terms of its ability to recover distinctive stage fractions, is robust to 

changes in pyrolysis temperature. 
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 
 

My overall research goal was to develop analysis methods for quantifying sugars and 

phenolic compounds in bio-oil, recover these two valuable products, and explore pyrolysis 

temperature effects for possible product optimizations. Specific goals included (1) adapting 

analytical methods developed for sugar analysis in the food industry to measure total water-

soluble sugars in the aqueous phase of bio-oil; (2) adapting analytical methods developed for 

quantification of total phenols in  wine to measure the total phenolic content of  bio-oil; (3) 

separating the heavy fraction of bio-oil into a concentrated sugar-rich solution and a phenolic 

oligomer-rich raffinate; and (4) determining the effect of pyrolysis temperature on the yield of 

sugars and phenolic compounds in bio-oil. Bio-oils are recognized as potential resources for 

drop-in fuels and chemicals. Bio-oil chemistries are very complex but offer a vast resource with 

potential applications in many areas of industry. This provides opportunities to exploit this 

valuable resource.  

8.1 Total Water-Soluble Sugars Quantification in Bio-Oil Using the Phenol-Sulfuric  
Acid Assay 

 
I demonstrated AOAC Method 988.12 (44.1.30) Phenol-Sulfuric Acid Assay for Total 

Carbohydrate Determination, originally designed to evaluate sugars in food products, can be 

used to the measure water-soluble sugars in bio-oil with ±1.7% uncertainty of measurement. 

Both whole bio-oil and SFs 1-5 bio-oil were examined and all show similar results in comparison 

to a hydrolysis method utilizing HPLC for quantification. The present research showed that the 

typical liquid-liquid extraction bio-oil method greatly overestimated the total water-soluble 

sugars and should not be used for these analyses. Interferents included  furans, therefore a 

correction factor of 0.76 wt% was established for use with bio-oil. Present research demonstrated 
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that AOAC Method 988.12 (44.1.30) gave highly reproducible results while providing a reliable 

standardized test method for quantifying total water-soluble sugars in bio-oil.  

8.2 Quantification of Total Phenols in Bio-Oil Using the Folin-Ciocalteu Method 

I quantified total phenolic content in bio-oil by using an established food methodology, the 

Folin-Ciocalteu (FC) colorimetry method, with a ±1.1 wt% uncertainty of measurement. Three 

whole bio-oils and SF 2 WIF were examined and all show virtually the same result by the FC 

method in comparison to liquid-liquid extractions. This research has shown the FC method gave 

highly reproducible results and provided a reliable standardized test method for quantifying total 

phenolic compounds in bio-oil. 

8.3 Sugar and Phenolic Oligomer Recovery from the Heavy-ends of Fractionated Bio-Oil 

I demonstrated the ability to separate sugars and lignin-derived phenolic oligomers from the 

heavy fractions of bio-oil produced by pyrolysis of lignocellulosic biomass. This was made 

possible by the large difference in water solubility of the sugars and phenolic oligomers. The 

sugars were extracted effectively at over 93 wt% with two water washes. Approximately 3-7 

wt% of other water-soluble or partially soluble constituents were removed with the water-soluble 

sugars. This research has shown that sugars and phenolic oligomers can be separated, providing 

two separate streams for fermentation, catalytic upgrading, or other kinds of conversions to 

value-added products. 

8.4 Effects of Pyrolysis Temperature on Recovery of Bio-Oil as Distinctive Stage Fractions 

As reported by previous researchers, we found that the yields of liquid, solid, and gaseous 

products from the pyrolysis of lignocellulosic biomass were strongly influenced by pyrolysis 

temperature. However, in the range of 300-550°C, pyrolysis temperature had relatively small 

effect on the yield of specific chemical constituents in the bio-oil or their distribution across the 
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stage fractions of the fractionating bio-oil recovery system, with a few exceptions. Carboxylic 

acids increased by 41% in this temperature range, especially appearing in SF 5. Other 

constituents showed various temperature dependencies but insignificant shifts in distributions 

among the stage fractions. The water insoluble content of bio-oil also increased with temperature 

before peaking at 500°C. Water increased with temperature, but only by 10% in the temperature 

range tests. Furan yield decreased as temperatures increased from 300 to 350°C but yield was 

independent of temperature beyond that. Yields of levoglucosan and total water soluble sugar 

showed a discernible peak at 450°C, but the total effect was small.  Overall, the results indicate 

that the bio-oil separation system, in terms of its ability to recover distinctive stage fractions, is 

robust to changes in pyrolysis temperature. 

8.5 Future Work 

Many challenges (related to my research work) still remain with bio-oil before it finds 

commercial applications and production . 

1. Lack of standardized test methodology causes many issues. Identical test methods must be 

used for bio-oil analyses throughout the world. For example, bio-oil lacks stability which can 

create quality issues for producers, retailers, and consumers. Without standard test methods, 

results will vary which will lead to inconsistencies and poor quality bio-oil. Unfortunately, 

this ultimately limits wider use acceptance. Additional existing standardized test methods 

should be explored to determine if they can be used effectively for bio-oil characterization.  

2. Lack of easy and fast testing methods causes difficulties. Bio-oil testing protocol needs to be 

faster and easier. Analytical instrumentation and personnel to operate the instrumentation 

comes at a high cost. Testing that can be accomplished using less expensive instrumentation 

and operated by personnel that require minimum training is essential. These types of methods 
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can be used during production for quality control. This is extremely important because bio-

oil properties can vary significantly. Further development/identification of fast easy test 

methodology is vital for bio-oil commercialization. 

3. Removal of specific families/chemicals from bio-oil is critical: allowing for higher value 

end-products thus making economic feasibility more likely. The fractionated condenser 

system has progressed us toward this end goal. There are a variety of features requiring 

investigation, such as cleaning the sugar rich solution during production, isolation of phenol, 

furfural, levoglucosan, etc. It is important to look at other cost effective separation 

techniques.  

4. It is essential to change the traditional  objective of maximized bio-oil yields. We need to 

emphasize quality versus quantity. Process requirements for end-use products resulting in the  

desired bio-oil properties is extremely important for fast pyrolysis commercialization.  
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