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ABSTRACT 

Gyroscopes have played an important role in the science community with uses ranging from 

simple classroom demonstrations to cutting edge technological advancements.  They offer a unique 

source of torque that has been proven useful in a wide range of applications.  One common 

educational demonstration calls for a person to stand on a pivoting platform, and hold a 

spinning bicycle wheel with one hand on each side of the axle.  As the person rotates their 

arms, causing precession of the bicycle tire, they begin to spin on the platform.  This is due to 

the dynamic effect of the gyroscope and is a perfect example of a control moment gyro.  This 

paper presents the use of control moment gyros as a compact way of dynamically controlling 

an inverted pendulum.  The dynamic characteristics are derived for a dual-gyroscope 

configuration that generates torque proportional to the velocity about the gimbal axis.  

Classical control theory is used to design a controller that not only stabilizes the pendulum, but 

also controls the gyroscopes to return to a neutral steady state position.  Control gains are 

adjusted to account for noise effects and to compensate for parameter errors, and an 

accelerometer is used to replace the potentiometer measuring the vertical angle.  With the 

theory and background in place, experimental results are presented to verify the predicted 

response and validate the control approach.  The end result is a stable system that is resilient to 

a broad range of external influences and erroneous measurements.   
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CHAPTER 1.  INTRODUCTION 

The gyroscope is an interesting display of motion and dynamics.  The movement of a 

gyroscope’s spin axis causes a torque which results in the precession seen in spinning tops and 

other gyroscope based applications.  With the dynamics of gyroscope motion understood, 

people began to develop creative ways to use them for practical purposes.  Perhaps the first 

notable implementation of gyro-stabilization was the gyrocar, created by Russian Count Peter 

Schilovski, in 1912.  The car drove on two inline wheels and used a large gyroscope torsion 

system to balance the car during operation.  When the car leaned in one direction, a 

mechanical component would measure this angle and apply a clutch to use gyroscope 

momentum to apply torque in a direction that would balance the car.  In 1962, a similar 

implementation was used on a monorail train system, [16] and [20].  Since then, control 

momentum gyroscopes have had continued use in ship stabilization and in new concept cars 

that use two inline wheels with a gyro-stabilized chassis.  They have also been used to stabilize 

free space objects in satellite attitude control, [13] [14] [15], and in some early missile guidance 

systems [12].  More recently, a space ready robotic arm was developed and tested using control 

moment gyros to control the kinematics, rather than electric motors [23].  This configuration is 

beneficial because while electric motors cause unwanted moments in the robot chassis in free 

space, the control moment gyros can drive the motion of the robotic arm without causing these 

unwanted moments on the chassis. 

The idea of using gyroscopes to balance an object is part of a much broader effort to 

stabilize inverted pendulums.  In general, the inverted pendulum can be defined as a pole with 
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a mass on top, and a pivot point on the bottom.   Alone, the pendulum has a vertical unstable 

equilibrium point, and the challenge is to implement some kind of mechanism that can 

influence the motion of the pendulum with a control system that stabilizes it about the 

equilibrium point.  The inverted pendulum, originally developed for the stabilization of rockets, 

is now being applied to a large range of different control applications.  The inverted pendulums 

in [4] [5] [6] [7] and [8] describe a mobile chassis to dynamically balance the pendulum.  This is 

extremely effective whenever a wheeled chassis is available for use.  The Segway [19] is an 

interesting, commercial application of this method of control.  It uses two side-by-side wheels 

on a mobile base to drive a passenger in a vertical orientation.  It is an effective transportation 

device on flat grounds and paved roadways.  However, in an environment where control cannot 

be achieved by chassis movements, other methods were developed.  One such solution, the 

reaction wheel pendulum [1] [2] [3], achieves stability with the torque exerted by an 

accelerating flywheel.  Even more exotic solutions use the manipulation of actuators or arms to 

cause the momentum and center of gravity imbalances used to stabilize the pendulum.  One 

such implementation, is shown in [9], uses a robotic arm to accelerate the base of an inverted 

pendulum such that the whole system balances.  However, many of these systems are 

impractical because the weight or shape of the active components will always be a hindrance in 

a practical application.  The problem with using mechanical moments to balance a robot is that 

the more massive the robot chassis is compared to the mass of the balancing mechanism, the 

less influence the balancing system has on the body.  This results in lower controllable range of 

motion.  Therefore, stabilizing the pendulum would then require more acceleration in the 

reaction wheel pendulum and balancing arm.  The same problem can be solved with control 
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moment gyros simply by increasing the gyroscope angular velocity or radius.  An inverted 

pendulum stabilized by control moment gyros has some clear advantages because it can 

provide a large amount of control torque in a small compact package.  It can also be 

significantly more efficient than some of the systems mentioned above because the gyros can 

spin with a very efficient bearing system using very little power to keep the gyros spinning, and 

the movements required to create the control torques require almost no work given that the 

pendulum moves only a few degrees.  This is a huge advantage over the reaction wheel 

pendulum, and the segway, which would require a proportional amount of power per unit 

torque desired from the balancing mechanism.  Therefore, many robotics applications where a 

light weight active stabilization system is needed could benefit from this research. 

The motivation behind this research is to enhance the maneuverability of biped robots.  

Many biped robots are based on the human being, with a desired motion emulating that of a 

walking human.  The human body can be thought of as an inverted pendulum employing two 

balancing systems discussed above.  The legs stabilize the body by propelling it forward and 

backward, similar to the Segway operation, while the arms swing from side to side for further 

stabilization, similar to the self-balancing arm, or reaction wheel pendulum.  However modern 

humanoid robots and bipeds do not have the kinematics or control to achieve such fluid motion 

as displayed by the human body.  Without such advanced control achieved by human walking, 

the underlying limit of most bipedal robot maneuverability is the size of its footprint.  A walking 

robot is only stable if the normal force vector of the CG is within the footprint.  Therefore, in 

order to achieve stable walking without limiting mobility and agility, the robot must either have 

extremely accurate kinematic control, or very large feet.   
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Two commercially available humanoid robots are shown in Figure 5 and Figure 6.  They 

were designed for the toy industry, but since have been modified to fit a range of different 

hobby applications such as humanoid robot soccer games or humanoid sumo robot matches. 

 

Figure 1. "Robosapien" 
 

Figure 2. "I-SOROBOT" 

In general, the reason for large feet is to make it easy to keep the normal force of the CG 

inside the footprint.  These robots serve as examples of the ‘large foot’ approach to biped 

robots.  These robots have a large range of pre-programmed movements and routines.  

“Robosapien,” for instance, even can dance.  With such aggressive movements, especially in an 

event such as a sumo fighting match, many humanoid robots are made with large feet to 

accommodate this motion.  In these cases, without the luxury of advanced research 

laboratories, intellect, and a large budget, it is just more economical to give the robot large 

feet.  “Robosapian,” for example, has a footprint of about 1/3rd of its body height. 
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Many efforts have been made to improve the maneuverability of bipedal robots despite 

their small foot print.  Two humanoid robots built by Honda and Toyota are shown in Figure 7 

and Figure 8. 

  

Figure 3.  Toyotas Humanoid Robot 
 
 

Figure 4.  Hondas "Asimo" Humanoid Robot 

 These robots have set a high standard for the humanoid robot industry, and they have 

some impressive motion capabilities.  Honda recently released test results of their humanoid 

robot “Asimo” having stable bipedal motion at a top speed of 6 Km/h [11].  Toyotas humanoid 

robot can jog at a speed of 7 km/h [10].  In order to achieve these speeds, very accurate motor 

control in the leg actuators is needed to achieve a smooth enough motion for these speeds.  

Millions of dollars were spent developing accurate enough control models, dynamics, and 

hardware to be able to move at these speeds in the most ideal of environments.  These robots 

are impressive examples of the “use of extremely accurate kinematic control” approach to 

biped stabilization. 

http://www.youtube.com/watch?v=sv35ItWLBBk&eurl=http://singularityhub.com/2009/07/29/toyota-humanoid-robot-runs-at-7-kmhr/&feature=player_embedded
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Using an active stabilization system presented in this work, a biped could have very 

small feet and be stable enough to sprint across the floor, with only a simple model of the robot 

dynamics.  This approach can be considered the middle ground between large feet on bipeds 

and immensely complex dynamical modeling and control. 

This technology can also be extended to other applications.  One that comes to mind is a 

stabilizing backpack for people with trouble walking, or who have lost their sense of balance.  It 

could help people with disabilities increase their mobility, and aid in walking rehabilitation for 

people with injuries.  Stabilizing gyros could also be used in certain instances of haptic 

feedback, where torque is needed without the use of a kinematic joint creating that torque.  

These devices could be popular in the video game industry as methods of interaction between 

the gamer and their virtual reality.  Haptic feedback has existed in the form of joystick vibration 

in some videogame consoles, and adding torques to controllers has the potential to add a new 

level of interactive gameplay.  Some interesting areas of development could include a wireless 

sword handle that feels like you are hitting the sword of a virtual adversary, or a wireless 

steering wheel that gives torque feedback based on the turns taken in a road course. 

This paper will present a foundation for some of the applications expressed above, as 

we describe the development of an active gyroscope stabilization system that is used to 

stabilize an inverted pendulum.   
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CHAPTER 2.  TECHNICAL DEVELOPMENT 

A two-gyroscope system was developed to control one axis of an inverted pendulum.  

The gyros were configured as shown in Figure 5.  Rotation of each gyroscope by an angle of   

causes a torque,  , that is proportional to the rate of rotation,  ̇. 

 

 

 Figure 5.  The configuration of the control moment gyroscope 

system, and its associated torques. 
 

 

Each gyroscope is mounted on a powered gimbal which rotates the gyroscope about the 

gimbal axis by an angle  .  The rotation of each gyro creates a torque,    and   , that can be 

added to obtain the overall torque exerted on the chassis.  The torque exerted on the chassis 

frame is found by: 

      ̇       Equation 1 

 

For both gyros, the placement of the rotation axis causes the torques to add in only one axis: 
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                   ̇         Equation 2 

 

Here,   is the gyroscope angle, ‘I’ is the moment of inertia of each gyro wheel, and    is the 

angular velocity of each gyroscope wheel. 

The chassis is mounted on top of a pole which is free to pivot about an axle mounted to 

a static base.  A complete diagram is shown Figure 6. 

 

 Figure 6.  Inverted pendulum setup  

 

In Figure 6, the circular objects represent the gyroscopes in the two gyroscope system.  Each 

gyroscope is mounted on a motor and spins with an angular velocity of   .  The motor and 

gyroscope pair is then mounted on a gimbal, which rotates about an axis represented by  ̇.  

The gimble axis is perpendicular to    and  ̇. 
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The equations of motion governing the dynamics of this inverted pendulum are given 

below. 

 
 ̈  

 

 
     

    

   
 ̇          

Equation 3 

   

The linear equations predict the motion for small motions around the angle     and    . 

 
 ̈  

 

 
  

    

   
 ̇      {

   
   

 
Equation 4 

The transfer function relating the pendulum angle and gimbal axis rate is: 

 

 ( )  
 

 ̇
( )  

    

   

   
 
 

 

 
Equation 5 

We linearize the system at     in order to use classical control to stabilize the pendulum.  

Considering this linearized model is a good practical approach, because it allows us to stabilize 

the system about the unstable equilibrium point at    .  We have also considered any 

damping forces to be negligible in this model. 

The prototype uses a small RC hobby style servo to manipulate each gimbal.  As the 

servo rotates the gimbal, the spin axis of each motor and gyro rotates about the spin axis of the 

gimbal, as described in Equation 1.  In order to generate torque from the gyros, an angular 

velocity is applied on the gyro gimbals.  Because the RC servos track a reference position, the 

dynamic response of the servos is important when a desired velocity is required by the gyro 

gimbals.  In order to achieve an accurate pendulum model, the servo dynamics were 

determined experimentally.  We used a common second order dynamic system to model the 
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response of the servos.  The assumed servo model is shown in Figure 7 as functional block 

diagram. 

 

 Figure 7. PWM servo system functional block diagram  

In Figure 7,     is the commanded position sent to the servo as a PWM signal.  Experimental 

measurements of the servos step response were taken to identify the servo dynamics, and will 

be described in detail in the results section of this paper.  Equation 2 shows that the torque 

generated by the gyros is proportional to the rate of motion around the gimbal axis.  Using the 

RC servo rate as the output, we can integrate the rate command to obtain a desired servo 

position.  This block diagram is shown in Figure 8. 

 

 Figure 8.  Velocity commanded servo system functional block diagram  

Reducing the block diagrams in Figure 7 and Figure 8, results in the same transfer function 

between the desired and actual rates, and the desired and actual positions.  The servo system 

can then be characterized using a simple second order transfer function. 
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  ̇       

 ̇      

( )  
        

       

( )  
 

       
 

 

Equation 6 

In Equation 6,         represents the PWM command sent to the servo.  The servo then 

rotates to this position commanded with the dynamics described in Figure 7.  Although the servo 

motion is approximated by a second order transfer function, it was found that the specific 

servos used in this project have a small time delay that accounts for computation and 

communication protocol between the servo and controller.  In order to model this, we use a 

third order pade approximation of a time delay.  Therefore, Equation 7 shows a more accurate 

model of the servo system. 

 
 ̇       

 ̇      

( )  
        

       

( )  (
1   

 
  

  

1    
  

1    

1   
 
  

  

1    
  

1    

)
 

       
 

 

Equation 7 

In this equation,   is the time delay.  This perturbation has a negligible effect on the design of 

the controller, so to start; we will focus on the system without this time delay, and show the 

effects of the delay later on.    

Stabilization of the pendulum angle 

The inverted pendulum characteristic equation has one pole in the right half plane, 

making the system inherently unstable.  Stabilizing the system was achieved using a PD 

controller designed using the root locus method.  Figure 9 and Figure 10 show the process of 

controller design using root locus. 
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 Figure 9. Open loop root locus of the pendulum system  

 

Figure 9 shows that there is no stable region with only proportional control.  However adding a 

zero into the controller transforms the system shown in Figure 10. 
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 Figure 10.  Closed loop poles of Pendulum (zoomed in)  

In order to stabilize this system, a zero was placed at    √  ⁄ , effectively canceling 

out the left pole on the real axis.  The loop gain can then be adjusted to move all four closed 

loop poles to the left half plane.  Given the stability region, the loop gain can be adjusted to 

obtain the desired response.  The resultant controller used to achieve this stability is given by 

Equation 1.  A block diagram is included in Figure 11 to show the overall system stabilized by this 

controller.  This controller will successfully stabilize the inverted pendulum but has some 

problems with the final value of the gimbal angle,  .  Although the rate is zero when the 

pendulum is balanced, the position is not controlled.  This will be solved later on in the paper. 
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 Figure 11.  Closed loop system representation of the pendulum stabilization controller  

The controller D(s) on its own is non-causal, therefore, its implementation would be 

impossible.  In most control applications, a low-pass filter is added to this controller to retain 

causality, however the specific physical setup of this system allows for an alternative solution.  

Because the RC servos already have a closed-loop position controller, the desired rate,  ̇        

is integrated to obtain the servo position command,         .  The servos require an angle 

command, and the pendulum requires a velocity command. Therefore, the integration term is 

computed within controller, and is effectively part of the controller.  This makes the once 

derived PD controller, effectively a PI controller.  The final controller used to stabilize   is given 

in Equation 9. 

 
 ( )        
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Equation 9 

With a pendulum controller designed, it is now appropriate to show the effects of the 

time delay on the system.  Figure 11 shows the addition of zeros and poles due to the Pade 

approximation. 
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 Figure 12. The effect of the Pade approximations on the open loop 
pendulum system 

 

 

Figure 13 and Figure 14 show the open loop and closed loop root locus for the pendulum 

system with and without the incorporation of the time delay. 
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 Figure 13. An overlay of the open loop pendulum root locus with the pade 
approximation, and without the Pade approximation 

 

 

 Figure 14. An overlay of the open loop pendulum root locus with the pade 
approximation, and without the Pade approximation 
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The time delay causes the pair of complex pole loci to be closer to the imaginary axis.  

This changes the oscillation component in the final solution.  It turns out that the difference 

between simulations of the system with and without this time delay perturbation is rather 

large.  The time delay in the dynamical system significantly increases the response time and 

frequency.  Figure 15 shows the simulated response for the system with and without the time 

delay portion.   

 

 Figure 15. An overlay of the simulated step response for the controlled 
pendulum system with and without the time delay 

 

 

These simulations are based on values shown later in the paper.  Because of this 

difference, our data will be compared to the system response with the time delay. 
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Nonlinear controller 

Equation 2 is linearized by the conditions     and    , and the pendulum controller 

given in Equation 9 was designed for these conditions  However, it will be shown that the gyro 

angle,  , is not always near zero.  The controller designed for the linear system does a 

satisfactory job of balancing the pendulum, but the influence of some external force can easily 

bring the gyroscopes out of the linear range.  It is also subject to steady state offsets based on 

factors explained later in this paper.  At this point, the controller is less effective because the 

controller expects the gyroscopes to apply a torque of    ̇   when it is actually applying a 

torque of   ̇      .  An easy way to compensate for this is to divide the controllers loop gain 

by      making the overall controller given below. 

 
 ( )  

     

    
 

     √  ⁄

     
 

 
Equation 10 

This controller can easily implemented since   is needed for stabilization anyway.  With 

this control equation in place, a singularity is formed at        ⁄ , where an infinite 

gyroscope velocity is needed, so it is important to limit the physical range of the gyroscopes far 

enough away from these points.  This controller was implemented and tested, but is outside 

the scope of this research, and will not be further discussed in this paper since all data and 

stabilization techniques were developed and implemented in the linear region. 

Stabilization of the gyroscope angle 

The above control system is an effective strategy for the immediate stabilization of the 

pendulum balancing angle; however, it is not a sufficient controller for the overall system.  The 
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current system lacks a way to control the gyroscope angle.  As explained above, twisting the 

gyroscope spin axis at some velocity results in a torque described in Equation 2.  The current 

controller essentially commands this velocity to achieve the appropriate torque needed to 

balance the pendulum.  Therefore, the application of any balancing torque causes an inevitable 

displacement on the gyroscope axis angle.  This displacement is a problem because the dynamic 

equations are derived on the assumption that   is small, and larger values of   will result in 

inaccurate control and a smaller region of controllable balancing space. 

It is apparent that the stabilization of   is also important in this system.  If   is made 

controllable, the system will be able to minimize the gyroscope angle along with the 

stabilization of the pendulum.  With the addition of such a controller, the balancing robot 

would be more robust, and resilient to external influences on the robot. 

The stabilization of   can be achieved by measuring the gyroscope angles, and adjusting 

the desired balancing angle of the pendulum.  When the balancing angle is nonzero, the 

gyroscope axes spin to counteract the torque caused by gravity.  Therefore, controlling the 

desired angle allows for the control of the gyroscope angles. 

To design a gyroscope controller, we first reformulate the control system from Figure 11 

to have the desired balancing angle be its input, and the gyroscope angle, its output.  The block 

diagram in Figure 16 shows this formulation. 
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 Figure 16. A reformulation of the stabilized inverted pendulum in terms of gyroscope angle.  

 

Using this block diagram, it can be shown that the transfer function for the entire system is 

given by Equation 11.   
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Equation 11 

By simple inspection, it is apparent that the best that this system can be is marginally 

stable because of the pole at zero.  The Root locus in Figure 17 shows that there is no stable 

region for a positive gain value. 
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 Figure 17.  Root locus of the open loop gyroscope system with positive gain  

 

Furthermore, there is very little that exists at all to stabilize this system with a positive feedback 

using classical control techniques.  However, it turns out that the system can easily be stabilized 

using negative feedback.  With a negative loop gain, two different controllers are designed that 
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 Figure 18. Root locus plot of the open loop gyroscope system with negative 
feedback. 

 

 

 

 Figure 19. Root locus of the open loop gyroscope system with a filter pole 
added and negative feedback. 
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Figure 18 and Figure 19 above show the stability region for each controller design option. 

These two options lead to a much different dynamic response that will be discussed in the next 

section.  Figure 20 shows a block diagram showing the closed loop system with negative 

proportional and negative filtered control systems. 

 

 Figure 20. overall controller to stabilize both balancing angle and gyroscope angle.  

Now with the control theory in place it is now important to show the perturbations on 

these dynamics due to the servo time delay.  Figure 15 shows that as we consider the effect of 

the time delay on the pendulum controller, the systems response time increases.  Since the 

gyroscope controller is based on the responses of the controlled pendulum system, we can 

expect the gyroscope controller response time to change as well.  Figure 21 and Figure 22 show 

the root locus plots of the controllers with and without time delay to show the difference in 

pole locations. 
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 Figure 21. An overlay of root locus plots for the open loop gyroscope system 

with and without time delay 
 

 
 Figure 22. An overlay of root locus plots of the open loop gyroscope system with 

and without time delay.  both plots have a controller pole placed at s = 8.3 and 
are using negative feedback. 
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Figure 23 shows a plot of the system response with and without the effect of the time delay. 

 
 Figure 23. An overlay of the closed loop gyroscope system with and without time 

delay.  both plots are simulations of the gyroscope system controlled with a low 
pass filter and negative feedback 
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CHAPTER 3.  SIMULATION RESULTS 

To implement the proposed stabilization system, a prototype was built to the following 

specifications. 

Overall subsystem component value 

Gyroscopes Depth 8.89  1    m. 

Radius 0.0241 m. 

Mass 0.041 Kg 

Estimated moment of inertia 1.15  1    Kg*m2 

Estimated angular velocity 15,000 RPM 

Powered gimbals Servo top speed 3.49 rad/sec 

Angle range -π/2 – π/2 

Torque .015 Kg-m 

Angle measurement potentiometer 

Time delay 0.015 sec 

Robot chassis Mass 0.3 Kg 

Pole length 0.3 m 

Balancing measurement 10kΩ potentiometer or IMU filter 

Servo characteristics K value 1521 

B value 54.6 

 

Table 1. Part specs used in a dynamic model of the systems explained above. 

These values were used to model the dynamics of the physical system and the 

controllers.  To begin, the controller to stabilize the pendulum was designed using the root 

locus method explained in the technical development section.  Equation 12 shows the pendulum 

controller based on the physical parameters given in Table 1. 
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Equation 12 

 

Figure 24 shows the system step response of this controller. 

 

 Figure 24.  Step response of the stabilized inverted pendulum.  
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of oscillation in the closed loop response.  The Figure 25 shows some of the possible loop gain 

settings.  If the loop gain is larger, the system will react faster, but there will be a large 

component high frequency oscillation in the system.  This happens when the pair of poles on 

the complex loci gets close to the real axis.  A smaller loop gain gets rid of this oscillation for the 

most part, but significantly increases the response time of the system.  If this control method is 

used, it is up to the operator to decide what gain fits their own physical requirements. 

 

 Figure 25.  Step responses of various loop gains of the closed loop system.  

In this case, the responses shown by the proportional control seem to have either an 
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a filter to the proportional controller, shown in Figure 19, changes the response to a more 

desirable motion.  Using the root locus in Figure 19, a pole was added at s = -8.33.  Equation 13 

shows the resulting controller from this design. 

 
 ( )   

      

(
 
  

 1)
  

      

(
 

     1)
 

 
Equation 13 

Where   is the pole added as the first order filter.  The controller pole location can vary 

somewhat to yield a range of different response options.  We chose a pole at s = -8.33 to be an 

optimal location because it mixes a fast response time with a good amount of overshoot and 

damping possibilities.  A controller pole at zero, and a zero can also be added to the controller 

on the imaginary axis, making the controller resemble a filtered PI controller.  This essentially 

adds an integral gain component to the controller, and can be shown to have a stable region 

using the root locus method if the additional controller zero is very close to the origin in the left 

half plane.  The closer this added zero is to the origin, the smaller the integral component.  The 

advantage of this integral component will be discussed later in the paper, but was not 

implemented in this project.  Figure 26 shows the step response of the closed loop system is 

shown below. 
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 Figure 26.  predicted step response of the gyroscope angle control loop  
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CHAPTER 4.  EXPERIMENTAL SETUP AND RESULTS 

The prototype is constructed out of machined aluminum.  Each gyroscope is mounted 

on a small dc motor, which is mounted on a swivel platform powered by a 9 gram hobby style 

RC servo.  The servo is able to spin the gyro axis at an angular rate of 200 degrees/second.  Each 

gyroscope is independently controlled by its own servo, and it is assumed that both gyros are at 

the same angle at any given time because the servos themselves include a closed loop feedback 

system to command an angle.  The gyro angle is measured using a potentiometer, and for initial 

tests, the balancing angle is also measured using a potentiometer.  The whole robot is 

controlled using an Arduino microprocessor.  They are a good prototyping tool because they 

are inexpensive, light, and can handle a large range IO and communication protocols.  A further 

benefit of using an Arduino is that it is an open source product, and a large open source 

community of Arduino users has become a strong resource for this hardware.  The servos are 

controlled by a Pololu ‘Mini Maestro’ servo controller.  This is a serial controller that sends 

pulse width based digital commands to the servos at a 0.025 degree command resolution.  The 

system sample time is about 4 milliseconds. 

The controllers were first developed in labview, using the ‘Labview Interface for 

Arduino’ toolbox and firmware.  This setup programs the arduino to function as a data 

acquisition board, sending values over a serial line to the labview application.  This allowed for 

quick prototyping of controller designs and convenient data acquisition.  In later work, an IMU 

is used with a complimentary filter to estimate the orientation, and the whole controller was 
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then programed onto the Arduino for a faster sample time and to allow standalone 

performance.  Figure 27 shows a picture of the prototype. 

 

Figure 27.  prototype of the Inverted pendulum 

Servo calibration 

The proposed servo dynamic equation shown above is commonly used to model 

damped harmonic motion.  However, damped harmonic systems are more conveniently 

expressed in the following form.   

  ̇       

 ̇      

( )  
  

 

           
 
 

 
Equation 14 
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Where    is the systems natural frequency, and   is the damping factor.  Keep in mind that our 

particular servos have a small time delay that we model using a Pade approximation.  We 

compared the measured data from the servo step response with the above dynamic model, and 

found the physical system to have a natural frequency of 39 rad/sec and a damping factor of 

0.7.  Using the model given above, we can conclude that K = 1521 and B = 54.6.  The servo time 

delay is approximately 0.015 sec.  Figure 28 and Figure 29 show the servo step response along with 

the simulated system response based on the above values. 

 

 
 Figure 28.  An overlay of the measured servo step response, with a simulation of 

a model that approximates its motion. 
 

 

Magnifying the first 30 milliseconds of the servos response shows the effect of the Pade 

approximation on this servo model, along with the time delay of the servo. 
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 Figure 29.  Time delay region of servo step response  

 

Pendulum controller results 

The specs of the robot were used to create a dynamic model of the system.  The root 

locus method outlined above was used to design a controller for the robot.  Measurements of 

the pendulums step response were taken by allowing the pendulum to lean approximately -2.4 

degrees against a rigid body.  Once the gyroscopes were up to speed, the controller was 

enabled, and results were recorded while the pendulum would stabilize about    .  The first 

implementation of the controller appeared to stabilize as expected, but the data suggests a 

small inaccuracy in the pendulum controller.  Figure 30 shows the step response of three 

common runs along with the predicted step response. 
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 Figure 30.  An overlay of the simulated pendulum step response vs. actual controllers 
step response 
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wavelength.  Figure 31 shows the step response of the system with controller zeros placed at 

various locations of    √  ⁄ . 

 

 Figure 31.  Variations of system step response using different pole values in the 
controller defined by Equation 9. 
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the data better matched the simulated response.  It was found that the pole is located 

somewhere around s = -5.3, where the optimal response was achieved.  Figure 32 shows three 

typical responses with the “corrected controller” against the modeled response. 

 

 Figure 32.  Tuned controller vs. predicted system step response  

 

Gyroscope controller results 

Out of the two gyroscope controllers described in the “Technical development” section, 

we chose to implement the filtered controller because it would provide a smoother response 

requiring less work on of the servos and less friction in the gyro motor axles.  Measurements 

were taken by allowing the gyro controller and pendulum controller to stabilize about a 

commanded gyroscope angle of -5.5°, then commanding a +5.5° desired angle, and recording 

0 0.1 0.2 0.3 0.4 0.5 0.6

-2

-1.5

-1

-0.5

0

0.5

1

Time (Seconds)

P
e
n
d
u
lu

m
 A

n
g
le

 (
D

e
g
re

e
s
)

Pendulum Step Response

 

 

Measured run 1

Measured run 2

Measured run 3

Simulated response



38 
 

the results.  Because our balancing controller dynamics were not exact, the phi control had 

some discrepancies as well, but stabilizes nonetheless.  Figure 33 shows the simulated response 

along with three typical runs.  

 

 Figure 33. Final results of the Gyroscope controller step response.  The top graph 
shows an overlay of the simulated response compared to three typical machine 
runs.  The bottom graph shows the pendulum behavior as the gyroscopes control 
system responds to a step input command.  This confirms the pendulum stability 
with the addition of the gyroscope controller. 
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Standalone controller 

In order for this prototype to be useful in real world applications it must be developed into a 

standalone controller.  The main obstacle in this process is measuring the pendulum angle.  In a 

laboratory setting, the pendulum angle was a measurable quality of the pendulum because a 

potentiometer could be easily attached to measure between the pendulum and the base.  

However, this is only useful in a lab because the potentiometer only measures the pendulum 

angle with respect to the base.  In a standalone application, the base will be removed and the 

pendulum angle is no longer a measureable parameter of the pendulum.  Therefore, if we want 

to use the control design outlined above, we must find a way to estimate this quantity.  Recall 

that the object of the inverted pendulum is to balance the pendulum at a vertical unstable 

equilibrium point.  This orientation is reference to the earth’s gravitational field, so we can 

estimate the pendulum orientation by measuring the earth’s gravitational field.  The earth’s 

gravitational field can be measured using a three axis accelerometer, and these measurements 

can be used to estimate the normal force vector in the reference frame of the pendulum.  It 

turns out that these measurements can be combined with the pendulums angular velocity, 

measured by a rate gyro sensor to create the orientation filters described below.  The estimate 

will be used to replace the potentiometer and provide a pendulum angle estimate.   

Many existing real world applications combine measurements of angular velocity of an inverted 

pendulum with gravitational field measurements to estimate orientation.  Two common 

methods of this sensor fusion include Kalman filters, and complimentary filters.  We chose to 
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use a complimentary filter because it is simple, easy to use, and will ensure a fast time step due 

to the small amount of computation needed to calculate an estimate.    

Complimentary filters essentially combine data from an accelerometer and gyroscope to 

estimate orientation more accurately than just the accelerometer or gyroscope alone.  An 

accelerometer can be used to calculate an absolute measurement of attitude, but has a lot of 

noise in its data.  Gyroscopes on the other hand, output a velocity, which must be integrated to 

calculate position.  This results in less noise, but introduces drift upon numerical integration.  

Therefore, a simple low pass filter is applied to the accelerometer estimate, and is combined 

with the integrated gyro estimate.  Therefore, the gyro provides a quick, real time estimate of 

the attitude, while the accelerometers absolute measurement slowly corrects for the 

gyroscopes drift.  Equation 15 and Equation 16 show this system. 

                                  (
  

√  
    

 
) 

Equation 15 

     ( )    (     (   )    )  (1   )(                           ) Equation 16 

 

Where          are the 3 accelerometer measurements, t is the unit of time and   is the 

sample time of the system.    is the filter coefficient, and is set to 0.998 in this system.    is the 

angular velocity gyroscope measurement in the y-axis.  A 2-axis version of this complimentary 

filter also exists, and code for a few different types of complimentary and kalman orientation 

filters can be found on many open source websites.  The system defined by Equation 15 and 

Equation 16 refer to [21].  To find the accuracy of the orientation filter, angle measurements from 
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both orientation filter and potentiometer were taken simultaneously, over a range of different 

angles.  The results are shown in Figure 34, Figure 35, and Figure 36. 

 
 Figure 34.  Orientation Sensor vs. Potentiometer readout over full range of motion  

 
 Figure 35.  Orientation Sensor vs. Potentiometer readout undergoing step responses.  
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 Figure 36.  Orientation Sensor vs. Potentiometer readout through "sine wave" 

motion 
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orientation estimate, but it adds new dynamics to the pendulum system.  Despite these 

inaccuracies, the pendulum system is able to stabilize with the same controller.   Figure 37 shows 

the systems response. 

 

 Figure 37.  Step response of standalone theta controller  

As Figure 37 shows, the pendulum dynamics have changed slightly with the use of the 
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system has more overshoot, and a slower response time.   
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Although, it is quite apparent that it does have an impact because the systems response time is 

slower.  Once again, we can confirm this using the root locus plot of the pendulum system.  

Adding a low pass filter to the root locus plot of the open loop system will simulate the low pass 

filter of the accelerometer estimate.  Decreasing the magnitude this pole increases the 

response time of the system, while still allowing the system to be stabilized by the original 

controller.  This resembles the motion illustrated by Figure 37. 

Although the balancing angle is somewhat inaccurate, the system is stable regardless.  It 

turns out that the proportional and filtered proportional controllers are able to accommodate 

inaccurate orientation measurements.  If the orientation measurement is offset from actual 

zero, the robot initially stabilizes to this angle, but to maintain the angle, the theta controller 

rotates the gyroscopes axes at the velocity needed to stabilize at that point, against the pull of 

gravity.  The resulting displacement of the gyroscope axis is fed back to the proportional or 

filtered proportional controller which adjusts the desired balancing angle to counteract the 

orientation error, until a net zero is found in the pendulum controller.  Therefore, in steady 

state, an inaccuracy in the balancing angle estimate is corrected by a steady state phi offset.  

Furthermore, the inconvenience of having a steady state offset can be fixed as well.  Recall, the 

“Simulation Results” section, mentions that an extra controller pole and zero can be placed in 

the left half plane of the phi controller, turning it into a filtered PI controller.  When a controller 

pole is put at zero, and a controller zero is put very close to zero in the left half plane, a small 

integral component is added to the controller.  Although this was not explored in the scope of 

this project, it can be used to further enhance the robustness of the controller.  In this case, an 

inaccurate balancing measurement again causes the displacement of the gyroscopes causing 
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the robot to stabilize with gyro angles at an offset.  But now, with the integral component in the 

controller, the offset between desired and actual phi cause integral windup which causes phi to 

approach zero.  This turns out to be a useful feature of the phi controller because it increases 

the robustness of the controller, and can be extended to stabilize the robot influenced by 

external forces.  The pendulum, for example leans into wind, and presses back against an 

external touch. 

The standalone controller was implemented with the orientation sensor.  Figure 38 and 

Figure 39 show the step response of both balancing angle, and gyroscope angle stabilization. 

 

 Figure 38.  Gyroscope data – Initial stabilization of Standalone system, compared 
to the theoretical model. 
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We found that adjusting the gain from 0.052 to 0.04 at least helped correct the overshoot.  

Although the response time was still not quite right, the system stabilizes.  Figure 39 shows three 

common responses of the system along with the simulated response.

 

 Figure 39.  Final results of the gyroscope controller step response with the addition of an IMU 
orientation sensor.  The top graph shows the simulated step response of the gyroscope control system 
along with three typical runs.  The bottom graph shows the pendulum motion as the gyroscope 
control system responds to the step command.  This graph shows that the pendulum is still stable 
with the addition of the gyroscope controller and IMU orientation sensor. 
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CHAPTER 5.  CONCLUSIONS 

The results of this study have shown an effective way to stabilize an inverted pendulum 

using control moment gyros.  The stabilization of both balancing angle and gyroscope angle 

allows for a robust control system that can withstand a large range of external stimuli and 

erroneous orientation measurements.  For instance, if the normal vector is inaccurate, the 

robot will still stabilize with only an offset in the equilibrium gyroscope angle.  If the robot is 

tapped by an external force, it will stabilize in less than a second.  Furthermore, the nature of 

the gyroscope angle stabilization loop allows the robot to lean towards a wind or in the 

direction of acceleration if the entire pendulum is pushed in a certain direction. 

With the information found in this research, the control moment gyro system offers 

some clear advantages over other balancing methods.  The linearized dynamic model can be 

stabilized with a very simple controller design.  The control moment available in this system is 

available in a small compact space, where the amount of controllable moment is increased by 

gyroscope angular velocity, or moment of inertia.  This can be done without adding any weight 

to the system.  A set of two gyros can also be configured to stabilize a robot with two axes of 

freedom if each gyro is mounted on a two axis powered gimbal.   

This system, if stabilized in only one axis, is also advantageous in the interest of energy 

usage.  When the robot stabilizes about a point the gimbal servos only experience resistive 

torque when the pendulum angle changes.  Therefore, if the pendulum stabilizes with very 

small angle fluctuations, the gimbal servos require very little energy, and experience very little 

deflection, due to back torque of the gyros.  This is opposite to other common mechanisms 
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such as the reaction wheel pendulum, or Segway, which use shear torque exerted by their 

motors to provide the accelerations needed to stabilize the body.  In an ideal environment, with 

no friction, the gyro system could use almost no energy to stabilize. 

At the same time, the system has some clear disadvantages as well.  The robot must 

maintain continuous rotation of its gyroscopes.  Although a properly balanced gyro wheel with 

a well-designed axle and motor system could be very efficient, this can’t be achieved without 

high precision machining and fabrication methods.  Furthermore, an unbalanced gyro can add a 

lot of vibration into the system, which can add noise to the IMU data.  This was a problem in 

our prototype because the hand crafted gyroscopes were not completely balanced.  While 

running, the chassis vibrated strongly, deemed the IMU useless.  This was fixed by mounting 

the IMU on a floating surface, coupled to the robot by an acoustic damping material.  This 

couple was absorbent enough to reduce most of the noise in the IMU data.  With these ideas in 

mind, our robot was not designed well.  The gyros being mounted on small hobby style DC 

motors put considerable wear on the motor shafts due to the shaft torsion caused when 

rotating the gyroscopes.  All of this friction and vibration absorbed a lot of energy out of the 

gyro momentum.  An improved model will use an axle and bearing mounting both sides of the 

gyroscope. 

With these strengths and weaknesses in mind, it is important for an engineer to 

evaluate the needs of the specific application before deciding the use of this system. 
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Future work 

There are many areas that would be interesting to continue exploring with this system.  

The next logical step would be to control this system using full state feedback.  This wouldn’t be 

too difficult since the 4 states    ̇,  , and  ̇ can all be measured fairly easily.  I would also be 

interesting to design a true Kalman filter to estimate  , and design a linear quadratic regulator to 

maximize performance.   It would also be interesting to develop a robot and controller that can 

stabilize the robot in two axes of motion.  If this is achieved, it may be possible to experiment with some 

of the applications mentioned in the introduction.   

With these ideas in mind, a new robot is already being fabricated, and will have some 

nice improvements.  First of all, the gyros are machined to high precision and have very little 

vibration.  They are supported on both sides of the gyro axel, which is integrated onto a 

brushless motor shaft.  Both gyro gimbal axes are coupled together by a spur gear, so only one 

servo system is used to drive both gyroscopes.  This will be nice because it forces the 

gyroscopes to be at equal and opposite angles at all times.  The centers are milled out of the 

gyroscopes so the moment of inertia to mass ratio is almost doubled.  The new chassis will have 

two sets of gyroscope systems so both forward and side to side leaning can be influenced by 

the system.  The system uses high torque servos that may be modified by a microprocessor to 

have a more accurate response.  The whole robot will be controlled by an MBED 

microprocessor, which has some impressive specs in relation to the arduino used in the current 

system, and would make a great controller for this system.  The gyroscope to chassis weight 

ratio is greater, which will lead to increased performance and robustness.  All of these 

improvements should lead to a drastically improved prototype.  
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