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ABSTRACT 

 

This thesis proposes a novel method for solving inverse thermal systems problems 

based on stigmergy. Inverse problems are those problems that have a desired output but the 

inputs required to achieve that output are unknown. The example problem examined is an 

established inverse radiation heat transfer problem in which two parallel plates are separated 

by a distance. The temperature profile along the top plate is adjusted to achieve a specified 

temperature profile on the insulated bottom plate. This type of inverse radiation problem 

arises in annealing, industrial process ovens, and combustion chambers. Stigmergic processes 

rely on local instructions and interactions and as a result can be readily scaled up to larger 

and more complex systems. The algorithm developed here uses the concept of distributed 

construction and finds the solution without direct communication and uses only local 

information. Specifically, a stigmergic algorithm was developed based on the egg dumping 

and redistribution behavior of lacebugs (Gargaphia solani) and the construction of ant 

cemeteries based on ant species Lasius niger and Pheidole pallidula.  The algorithm is 

demonstrated with five separate lower surface starting and ending profiles. In contrast with 

traditional methods that rely on global information, the desired temperature profiles are 

attained using only local information. Based on this, in each case the temperature profile of 

the lower surface rapidly converges to the desired temperature profile. Therefore, sensors can 

be added as needed without restructuring the sensors network or control strategy. 
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CHAPTER 1. INTRODUCTION 

 

Energy systems are becoming increasingly complex and require better control to meet 

increasingly stringent environmental regulations. Normally, the goal of these energy systems 

is to adjust a set of control protocols to achieve or maintain a specific set of outputs. These 

types of problems are considered inverse problems, when the desired output is known and the 

inputs are not known. Inverse problems are considered ill-posed and are challenging because 

solutions can be difficult to attain, and when one is found it may be infeasible based on 

constraints. 

When written explicitly, inverse problems cannot be solved directly using traditional 

analytical techniques. Regularization or optimization are typical means of solving these 

problems. Regularization filters out the ill-condition part of the problem such that stable 

solutions can be found.  Optimization problems form some objective function that specifies 

boundary conditions. An optimization routine is run over multiple iterations such that better 

solutions are found that continue to minimize the objective function until some stopping 

criteria is met (Duan 2005). 

This thesis presents a novel method to solve inverse thermal systems based on the 

coordination behavior of social insects’ ability to construct complex structures using only 

local information. These social insects act as autonomous agents, capable of building 

complex structures using cues from their environment as a means of coordination. This 

coordination, which is based solely on the manipulation of their environment, is called 

stigmergy. Stigmergy is based on the concept of emergence, where global behavior is created 

from local interactions, coordinated by the manipulation of the environment. It is this 
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coordination through environmental interaction that allows a system to become more robust 

and flexible, and it is this characteristic that is desirable in finding a new method to find a 

solution to an inverse thermal systems problem. 
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CHAPTER 2. BACKGROUND 

 

Dynamic energy systems are typically driven by sensors which are distributed 

throughout the system to gauge the behavior and responses of the system outputs. These 

systems make decisions based on some control scheme while trying to achieve some optimal 

conditions. Centralized control, while preferred because of simplicity, becomes increasingly 

difficult to coordinate as the size and complexity of both the sensor network and the system 

being controlled increase. This creates a need for a different control paradigm, one in which 

top-down centralized controllers are replaced by a flexible, robust, and scalable network of 

sensors and controllers, and with the capability of self-organizing, allow control decisions to 

be made at the local level rather than passed upwards through some hierarchy.  

With distributed control, each sensor is able to make control decisions independently, 

based on local information, thus allowing the system to be more scalable and flexible 

(Dressler, Krüger, and Fuchs 2005). Decentralization minimizes the amount of decisions any 

one sensor needs to make at any one time and allows each sensor to become an autonomous 

agent capable of making decisions without a centralized controller giving instructions. This 

same concept of decentralization helps explain the emergent, self-organized behavior in 

social insects.  

 

2.1 Self-Organization, Emergence and Stigmergy 

Self-organization draws its origins in biological systems and establishes how 

organisms can react, adapt, and interact with their environment and each other to create 

macroscopic level behaviors from microscopic interactions (Halley and Winkler 2008). 
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Flocking behavior of birds and schooling behavior of fish are both examples of how order 

can spontaneously be created from disorder and how global behaviors are created from local 

interactions (Camazine et al. 2003). Based on this concept of emergence, where patterns and 

structures are created spontaneously without a template, step-by-step instructions, or global 

information, self-organization has been shown to be a useful tool in complex distributed 

systems.  

Stigmergy is based on indirect communication methods used by social insects for 

coordination of behaviors. Stigmergy, like self-organization, uses local information to make 

decision and has no step-by-step instructions. Coordination is established by making small 

changes to the insects’ environment which other insects can interpret triggering actions or 

responses further altering their environment (Bonabeau et al. 1997). Actions reinforce each 

other and can lead to the spontaneous emergence of complex, intelligent structures without 

the need for centralized planning, control, or direct communication between the individuals.  

Jean Louis Denebourg sought to answer the question of how ants can build such 

complex structures from only local information. He noted that their behavior was based on 

pheromones, both those left on the ground for foraging or those impregnated into soil for nest 

construction. When foraging, ants make decisions about where to go based on a pheromone 

trail, but this pheromone trail strength was based on how many ants used a trail and how 

frequently they used it (Deneubourg et al. 1990; Goss et al. 1990). Increased use reinforces 

and strengthens the pheromone trail, but if the trail is used infrequently the pheromones 

evaporate and the pheromone trail weakens.  

 There are two types of stigmergy: quantitative and qualitative stigmergy. Quantitative 

stigmergy is a homogenous stimulus, whereas qualitative stigmergy is a discrete set of non-
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homogenous stimuli (Theraulaz and Bonobeau 1999). Qualitative stigmergy can be thought 

of as how termites construct pillars for their nest construction. There is an identical 

pheromone that is built up over time and when a threshold is reached, an action is performed. 

This takes place in two phases, which are non-coordinated and coordinated. In the non-

coordinated phase some action is performed, such as impregnating soil pellets with 

pheromones, as the termites collect the pellets. Once the threshold pheromone level is 

reached, the coordinated or action stage begins. This action stage leads to the creation of 

termite pillars, and as the pillars are constructed, the pheromone level drops down and the 

coordinated stage stops (Theraulaz, Bonabeau, and Deneubourg 1998). An example of 

qualitative sign-based stigmergy is the dance that bees use when communicating to the rest of 

the hive after a foraging trip. If a resource is nearby and plentiful, the bee will perform a 

specific, intricate dance, communicating the specific direction and distance to and from the 

resource with different dance movements (Frisch 1967). 

 

2.2 Inverse Radiation Heat Transfer Problems 

To determine the temperature or heat flux distribution over one or more surfaces, the 

solution set becomes very sensitive to errors. The ill-posed nature of heat transfer problems 

leads them to be estimations rather than exact answers. Typically inverse heat transfer 

problems (IHTP) use a regularization or optimization to find a solution to problems that 

would otherwise be too time consuming to compute analytical solutions. Inverse heat transfer 

problems can be solved using either parameter estimation or function estimation. Using 

parameter estimation, a set of conditions is estimated. Using function estimation, a function 

is estimated and the conditions are solved for (Beck, Blackwell, and St. Clair 1985). 



 6 

Regularization techniques, such as truncated singular value decomposition, modified 

truncated singular value decomposition, and Tikhonov regularization have been used to solve 

IHTP problems using different geometric configurations and initial conditions which are 

discussed in (Rukolaine 2007; Daun et al. 2006; Ertürk, Ezekoye, and Howell 2002a). 

Optimization techniques such as conjugate gradient (Park and Yoon 2000) and genetic 

algorithms (Amiri et al. 2011; Safavinejad et al. 2009), tabu search and simulated annealing 

(Porter et al. 2006) and a quasi-Newton method (Daun, Howell, and Morton 2004) have been 

used to find heater temperature settings for transient systems. Ertürk used artificial neural 

networks to solve an IHTP (Ertürk, Ezekoye, and Howell 2002c). Yang was able to control 

the temperature of an oven during runtime using genetic algorithms (Yang, Chan, and Luo 

2005). On-line genetic algorithms were used to control the proportional and integral gain 

values of a heating system (Ahmad, Zhang, and Readle 1997). 

Control of distributed thermal systems in rapid thermal processing (RPT) has a wide 

array of applications in semiconductor, metal and glass cooling, and many other 

manufacturing industries that require precise control of multiple heaters to achieve a uniform 

temperature across the product. There is an increase in demand for temperature uniformity 

and the ability to hold that temperature at a steady state precisely as long as needed for the 

manufacturing process (Dassau, Grosman, and Lewin 2006; Emami-Naeini et al. 2003; 

Balakrishnan and Edgar 2000; Yoshitani and Hasegawa 1998; Young Man Cho and Gyugyi 

1997; Schaper 1994). Rapid thermal prototyping is concerned with an actual process for 

maintaining a uniform surface temperature of an inverse radiant system but uses more 

conventional control techniques such as adaptive control and linear quadratic Gaussian 

control (Lee et al. 2001) and PID tuning (Dassau, Grosman, and Lewin 2006). 
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CHAPTER 3. DISTRIBUTED CONSTRUCTION APPLIED TO AN INVERSE HEAT 
TRANSFER PROBLEM 

 

A paper to be submitted in Advances in Engineering Software 

 
Peter S. B. Finzella, Kenneth M. Brydena, Ashwani Guptab, Miao Yub 

aSimulation, Modeling and Decision Science Program, Ames Laboratory,  

Ames, IA  

 

bDepartment of Mechanical Engineering, University of Maryland 

College Park, MD 

Abstract 

Engineering problems that specify output conditions but require a given input are 

considered ill-posed. This paper focuses on creating a stigmergic algorithm to solve an 

inverse radiation heat transfer problem. This stigmergic algorithm is inspired by the egg 

dumping and redistribution behavior of lacebugs (Gargaphia solani) and the construction of 

ant cemeteries based on Lasius niger and Pheidole pallidula. Five separate trials were 

performed to gauge the effectiveness of the algorithm at achieving a uniform or varied 

temperature distribution from different initial conditions. The stigmergic algorithm was 

shown to be capable of achieving the desired temperature profiles to within an acceptable 

degree of accuracy.  

 

Key Words:  

Inverse problems; Radiation heat transfer; Stigmergy; Self-organization; Distributed 

construction  
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3.1 Introduction 

This paper presents a novel solution strategy for inverse thermal system problems 

using distributed construction. In distributed construction, autonomous agents use only local 

information and simple interactions to solve construction problems based on emergent 

behavior. Emergent behavior is created from the bottom up; order and structure emerge 

spontaneously and organically (White 2005). Using only local information, patterns and 

structure begin to emerge from the agent’s interactions without a predefined map or plan 

(Bonabeau et al. 2000). The concept of distributed construction is inspired by the stigmergic 

processes used by social insects, (termites, bees, ants and wasps) to coordinate their behavior 

to build complex structures using only the environment as a means of coordination. As 

changes are made to an environment, either through pheromone deposition or gradual 

construction, agents can interpret those cues and contribute. Every agent’s action is made 

independent of another agent’s, thus allowing the whole coordination to be distributed among 

any number of agents. Additional agents can contribute if needed or leave without 

consequence, allowing these systems to be distributed, robust, and scalable.  

Distributed construction has been used to examine the applicability of stigmergic 

processes to the construction of complex two- and three-dimensional structures and lattices 

using simple blocks (Petersen, Nagpal, and Werfel, 2011). Theraulaz et al. used stigmergy to 

replicate the distributed construction behavior of paper wasps and was able to create three 

dimensional lattice structures using simple building blocks (Theraulaz and Bonabeau 1995).  

These autonomous agents can be thought of as mobile platforms guided by sensors. 

An instance of this is a power plant, which uses a network of sensors and actuators that can 
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be adjusted to maintain a particular configuration (e.g., a given power and emissions level). 

The sensors are the autonomous agents, using the information available locally to make 

decisions in order to reach and maintain the particular configuration. The concept of 

distributed construction can be extended to other domains. In thermal systems, the agents are 

static and the structure being constructed is the establishment of specific thermal conditions.  

This paper first develops the concept and then demonstrates the concept using the 

established ill-posed parallel plate radiation heat transfer problem (Namjoo et al. 2009; Zhou 

et al. 2002; França et al. 2002; Morales 1998). With traditional heat transfer the conditions or 

parameters are fully specified and the outcome is solved for. With inverse problems, the 

desired outcome is specified and the conditions that give the desired output need to be 

determined (Daun, Howell, and Morton 2003; Daun, Ertürk, and Howell 2002; Ertürk, 

Ezekoye, and Howell 2002b; Beck, Blackwell, and St. Clair 1985). This problem consists of 

two parallel plates separated by some distance and with radiation heat transfer from the top 

surfaces to the bottom surfaces. The top surface temperatures are set such that the lower 

temperature is maintained at a desired temperature via radiation transfer. Distributed 

construction can be thought of as an inverse problem as well because the desired final 

structure is specified, and the collective behavior to produce that structure needs to be found. 

Thus, the same concepts that have been used to solve distributed construction problems will 

be applied to an inverse thermal problem. Although distributed construction is the 

encompassing idea, two stigmergic insect behaviors inspired pieces of this algorithm.  
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3.1.1 Cemetery Construction and Egg Dumping  

When ants in a colony die they generally die in the middle of whatever task they were 

performing. This can be an inconvenience for the other ants trying to work around them.	
  The 

Lasius niger or Pheidole pallidula ants clear out their dead to make more room by clustering 

the corpses into larger and larger piles. This is done without prior knowledge of where the 

piles will form or which piles will become the largest.  This takes place in two phases, non-

coordinated and coordinated. In the non-coordinated stage, each dead ant acts as a stimulus 

and, once a threshold of corpses is reached, worker ants take action by sorting them into 

clusters. As these cluster become larger, the stimulus for removing the dead decreases until 

there are only several large clusters of dead workers (Bonabeau, Dorigo, and Theraulaz 1999; 

Deneubourg, Goss, and Franks 1991). This behavior has been replicated by computational 

(Tsankova and Georgieva 2004; Jones and Matarić 2003) and physical agents (Phan and 

Rusell 2012; Parker and Zhang 2011; Beckers, Holland and Deneubourg 1994). 

Ants, termites, wasps, and bees are eusocial, wherein members of the same generation 

live together with “cooperative care”, and there is a reproductive division of labor; however 

other social insects are considered communal, meaning members of the same generation live 

together. Parental care in insect societies is relatively rare, and communal care is a rarer 

subset (Costa 2006). Most of these communal insect societies deposit eggs individually and 

guard them against predation and against others in the community. There exists an even 

smaller number of insect species that exhibit not only communal care but also egg dumping 

or sharing behavior. Example insect species include barklice, Peripsocus nitens; lacebugs 

Gargaphia solani; and treehoppers Publilia concava and Polyglypta dispar (Tallamy 2005; 

Zink 2003). Egg dumping can be individually beneficial where dumping eggs in another 
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female’s nest to increase the amount of offspring one female can produce in her lifetime or 

separately can be mutually beneficial. One of the best examples of mutually beneficial 

relationships in egg dumping is in the Gargaphia solani   (Loeb and Zink 2006). Although 

egg dumpers are attracted to egg masses as long as one is available, at some point one will 

not be available and the females will be forced to lay and guard their own eggs. This female 

will accept eggs willingly, and as other females deposit their eggs in her egg mass, the 

probability that her own eggs will survive increases. She will continue to accept eggs until 

resources become too scarce, and she cannot accept any more. To maximize the number of 

their own offspring it is an assumed there is an ideal brood size that each female seeks to 

attain. If it is too small, most will survive but not produce an ideal number of offspring, and 

if it is too large, their resources become scarce to the point that survival rate drops 

significantly. Finding an ideal brood size in order to optimize the survival rate is the main 

motivation for both dumpers and hosts. 

 

3.2 Inverse Radiation Heat Transfer Problem 

The problem examined is concern with two parallel plates separated by a certain 

distance with the top surface attempting to create and maintain a certain temperature profile 

along the lower surface. As shown in Fig. 3.1, if the top surface was assumed to be one 

uniform temperature, the temperature distribution along the lower surface would be higher in 

the middle and lower on the ends. In order to find a solution to this problem and create a 

uniform temperature distribution along the lower surface, the top plate will have to have 

different temperatures along several sub surfaces. Thus the top and bottom plates are each 

broken up into ten sub surfaces. The top surfaces can be thought of as the heaters. As each 
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heater is turned on, the radiative heat from that heater will affect all of the lower sub 

surfaces. The plate is discretized into sub surfaces and Fig. 3.1 shows the radiation heat 

transfer from each of the upper sub surfaces to each of the lower sub surfaces.  
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Fig. 3.1. Top plate set to a uniform temperature and the temperature distribution of the 
bottom plate. Discretization of top and bottom plates into ten sub surfaces. 
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3.2.1 Governing Equations  

The radiation energy equation for every sub element i can be written as a discretized 

Fredholm equation of the first kind. 

ρiCpiΔT = AjEjFj−i − AiEi
j=1

N

∑         (1) 

This problem is assumed to be transient because there is a temperature buildup in each of the 

lower sub surfaces. The transient problem can be assumed to be a series of steady state 

problems solved sequentially, which forms a Fredholm equation of the first kind, which is 

inherently ill-posed (Daun, Ertürk, and Howell 2002). 

ρiCpi
Ai
Ti

n+1 −Ti
n

Δt
= AjEj

nFj−i
j=1

N

∑ − AiEj
n

       (2) 

To calculate the surface temperature from the top surfaces to any given bottom surface gives 

Ti
n = Ti

n−1 + Δt
ρiCpi

Ai
Ej
n−1AjFj−i

j=1

N

∑ − Ei
n−1Ai

⎛

⎝⎜
⎞

⎠⎟        (3) 

Fi− j  is the view factor, and the aspect ratio A = h /w is 2, which are used to determine how 

much of the intended radiation actually reaches a surface. Hottels’ cross string method was 

used for the computation of the exchange factor between surfaces. An emissivity ε of 1 was 

used for both surfaces, which determines how much of the radiation reaching the surface is 

absorbed and how much is reflected outward. Ai  is the surface area of each element. σ is the 

Stefan-Boltzman constant.  Each heater surface and lower surface temperature is assumed to 

be uniform across each subsurface. N is the number of heaters and surfaces and n  is the time 

step. Radiation is assumed to be the only mode of heat transfer, and reradiative effects are 

neglected. 
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A problem is considered well posed when it is unique, a solution exists, and the 

solution depends continuously on the data. With inverse or ill-posed problems, the desired 

outcome is specified, and the conditions that give the desired output need to be determined 

(Alifanov, Artyukhin, and Rumyantsev 1995; Özisik and Orlande 2000). 

The lower surface temperatures are known but the temperatures needed on the upper 

surfaces are unknown making this an ill-posed inverse problem.   The ill-posed nature of 

inverse problems can frequently lead to multiple solutions, many of which are infeasible or 

unattainable in real world conditions. To achieve a realizable solution to an inverse problem, 

specifically an inverse radiant heat transfer problem, the problem can either be regularized or 

optimized (Daun et al. 2006). Regularization attempts to make the ill-posed part of the 

problem become well posed. Truncated singular values decomposition, modified truncated 

singular value decomposition and Tikhovnov regularization have been used as regularization 

techniques to solve similar problems. Truncated singular value decomposition and modified 

truncated singular value decomposition are based off of singular value decomposition, an 

algebraic manipulation wherein a matrix of known parameters is broken into three matrices, a 

unitary matrix, the conjugate transpose and the diagonal matrix of singular values. These 

singular values determine how invertible the matrix is and thus if the matrix is well posed or 

ill-posed (Hansen 1998). By truncating some of these singular values, the matrix becomes 

well posed, and a realizable solution can be found. Modified truncated singular value 

decomposition adds a correcting term for the remaining singular values and corresponding 

singular vectors. Tikhonov’s regularization procedure attempts to reduce unstable effects by 

adding smoothing terms to the least squares equation (Howell, Ezekoye, and Morales 2000).  



 16 

Optimization problems form an objective function that has a set of boundary 

conditions and assumes some initial conditions. These conditions are varied within some 

bounds until a reasonable or acceptable solution is found (Colaço and Orlande 2006). While 

many papers are concerned with efficiently finding an exact solution for a geometrically 

complex system or the heater inputs need to control thermal system at runtime, all of these 

require a global knowledge of all of the current heater settings. This problem, however, 

requires that each agent operates without a global knowledge of the entire system and makes 

decisions based on local information. This requires a new methodology.  

 

3.3 Stigmergic Algorithm 

The proposed stigmergic algorithm draws on two specific insect behaviors previously 

discussed; the pheromone buildup in ant cemeteries and the egg distribution behavior of 

lacebugs. Just as wasps or termites are attempting to construct a colony or nest without prior 

knowing the steps to build it, this algorithm is attempting to create a set of thermal conditions 

without knowing the steps to achieve it.	
  

One part of this algorithm is based on the distribution of eggs from brood to brood in 

order to find the ideal amount to satisfy some conditions. Each additional increase or 

decrease of an egg being added or taken away is analogous to a block being added or taken 

during distributed construction or in this instance a temperature change of a single degree. 

The second part of this algorithm is drawn from the way that ants collect and remove their 

dead. Once a certain threshold is reached, an action is taken; in the same way ants remove 

their dead until the number of dead is below a threshold. There are two distinct phases, a 
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distribution phase and redistribution phase. The steps for the stigmergic algorithm are shown 

below. 

 

Step 1 

The upper surfaces are only aware of the temperature of the lower surface directly 

beneath them and whether the temperature of that lower surface is at a given set point, which 

is established beforehand. If an upper surface determines that the lower surface directly 

below it is not at the set point temperature, it will take action. Since all of the lower surfaces 

start off at room temperature, each of the upper surfaces will send a request to a distribution 

node for additional blocks. The distribution node is not a controller and has no knowledge of 

any of the current temperatures or states of the system. The only knowledge the node has at 

any given time is the amount of heaters in the system, how many of those heaters are 

requesting blocks, and how many blocks are available. This node’s only functions are the 

creation, distribution, and storage of blocks.  A diagram of the initial system is shown in Fig. 

3.2.  

 

• Each heater is a simple agent only capable of detecting the surface temperature directly 

below it. 

• It determines if the set point is met or not and whether the current state is above or below 

the set point: 

• If the current state is below the set point, it sends a request for additional blocks 

• If the current state is above the set point, it returns blocks 

• If the current state is within a certain tolerance of the set point, it keep all current blocks 
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Fig. 3.2. Initial requests from the upper surfaces to the distribution node 
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Step 2 

If the amount of upper surfaces requesting blocks is over half of the total number of 

surfaces, the distribution node begins to create blocks. These blocks are the means of 

modification of the system and are used for coordination. During each iteration, blocks have 

a random probability of being distributed to a randomly selected upper surface. This random 

distribution ensures that the behavior of the system is emergent and safeguards against 

unintended imposition of predefined behaviors.  

 

Step 3 

If an upper surface is randomly selected, that surface will make a decision based on 

only the current state of the lower surface to accept the block, give back a block, or keep all 

of its current blocks. If a block is available and the lower surface is currently not at its set 

point, it will choose to take the block. If the lower surface is below the set point, but a block 

is not available nothing will happen. If it is above the set point, it will give a block back that 

can be randomly distributed to other surfaces. If the current temperature of the lower surface 

is within a certain tolerance of the set point, it will neither give nor take a block. The 

distribution of blocks can be seen in Fig. 3.3 and 3.4. 
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Fig. 3.3. Initial response and random distribution of blocks to the upper surfaces from  
the distribution node 
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Fig. 3.4. Accumulation of blocks in the upper surfaces and temperature increases in  
the lower surfaces  
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Step 4 

Steps 1–3 are repeated until over half of the blocks are at or above their set point. At 

this point, the distribution node ceases to generate blocks, and it is left to surfaces to 

distribute the remaining blocks to the appropriate upper surfaces. In each subsequent iteration 

one surface is selected and may choose to take a block or give a block back to the distribution 

node, and every lower surface’s temperature is updated. This is shown in Fig. 3.5.  

 

Step 5 

During the refinement stage some of the upper surfaces are giving back blocks while 

others are still accepting some, which can be seen in Fig. 3.6. Lower surfaces that have gone 

over their limit will return the blocks, and lower surfaces that have not reached their limit 

will accept them. This process is like that of the lacebugs, but the eggs in this instance are 

blocks.  This refinement process is repeated until all of the surfaces are within some tolerance 

of their specified set point. The pseudo-code for this algorithm is given in Fig. 3.7. 
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Fig. 3.5. Distribution and redistribution of blocks to and from the upper surfaces 
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Fig. 3.6. Equilibrium state in all of the lower surfaces 
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Fig. 3.7. Stigmergic algorithm pseudo-code 
 

If requests greater than half of sensors S 

 Create_new_block() 

Freeblocks+1 

 End If 

 

Distribute_Blocks() 

 N=Random_Number (0-P) 

 M=Random_Number(0-S)  

Allocate_Blocks() 

 If M=S & N<L  

 If block available and block needed 

Take_Block() 

Freeblocks-1 

Else If block available and block not needed 

Give_Block() 

Freeblocks+1 

 

Update_Temperature() 

Update_Lower_Surface() 

 Update_Upper_Surface() 

End Update_Temperature 
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3.3.1 Stigmergic Algorithm Evaluation 

A computational model was constructed to simulate the conditions and test the 

stigmergic algorithm. The model used the radiative heat transfer from each of the upper 

surfaces to determine the current temperature of the lower surface. The computational model 

has shown that lower surface temperatures accurately reflect adjusting the temperatures of 

any number of the upper surface heaters. The goal is to prove that this stigmergic algorithm 

can accurately maintain a desired temperature distribution along the lower surfaces. Once 

this can be shown on a small scale, (10 heaters and 10 surfaces) this experiment can be scaled 

up to larger systems.  

 

3.3.2 Simulation 

The stigmergic algorithm was implemented in a computational simulation framework. 

An initial temperature of 26°C was assumed for the lower surfaces unless explicitly 

specified. In addition, it was assumed that the maximum temperature for the upper surfaces 

was 300°C. It was determined that 10000 iterations were sufficient to examine the different 

test cases.   

 

3.3.3 Trial 1 

In the first trial, three different tests were performed with different initial lower 

surface temperature distributions to evaluate this algorithms’ effectiveness. In the first test, 

all of the lower surfaces were initially set at room temperature (26°C) and all of the lower 

surfaces had a set point of 50°C. This was set up as a benchmark as all were starting at some 

uniform temperature and all ended at some uniform temeperature. This trial was able to 
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converge in under 5500 iterations, with surface 1 and 10 being the last to converge, which 

can be seen in Fig. 3.8a. In the second test, half of the surfaces were set to room temperature, 

half were set to 40°C, and the set point for all the lower surfaces was 50°C. The trial was 

used to determine how the algorithm would react when the surfaces did not have a uniform 

starting temperature distribution. There was no additional overshoot and the algorithm was 

able to converge on the set point values in fewer iterations than the benchmark trial as shown 

in Fig. 3.8b. In the third test, the surfaces were set to different temperatures ranging from 

room temperature to 75°C, and again the set point for all the surfaces was set to 50°C. This 

test was implemented to evaluate how well the algorithm would react when some of the 

surfaces were above their set point while other were below. This resulted in some of the 

surfaces overshooting, while others had to get colder before they began to get hotter and 

reach their final temperature. Despite having a very uneven starting temperature distribution, 

the algorithm was still able to converge the lower surfaces to their set point values under 

6500 iterations shown in Fig. 3.8c. The starting temperature distributions, set point 

distributions, and actual final values for test case one, two, and three are given in Table 3.1, 

respectively. All of the tests in the first trial case were able to converge to below a steady 

state error (SSE) value of 1, with the SSE values for the first, second, and third test cases 

given as 0.57, 0.8, and 0.84, respectively, also shown in Table 3.1. These three tests allowed 

for a good comparison of the effectiveness of the algorithm under different starting 

temperature distributions.  
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   (a)            (b) 

     

                      (c)  

Fig. 3.8. Trial 1: (a) All lower surface starting at 26°C with a set point of 50°C (b) Half lower 
surfaces starting at 26°C and half at 40°C, all with a set point of 50°C  (c) Non-uniform 
starting temperature distribution, all with a set point of 50°C 
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Table 3.1. Initial starting temperature, final set point temperature, actual final temperature 
and sum of squared errors for trials 1 and 2. 

	
  
 

 

 

 

 

Trial 1

Surface 1 2 3 4 5 6 7 8 9 10

Test 1

Lower Starting Profile 26 26 26 26 26 26 26 26 26 26
Lower Set Point Profile 50 50 50 50 50 50 50 50 50 50
Lower Actual  Profile 49.75 50.29 50.07 50.05 49.96 49.95 49.97 49.95 50.22 49.83
SSE 0.57

Test 2

Lower Starting Profile 26 26 26 26 26 40 40 40 40 40
Lower Set Point Profile 50 50 50 50 50 50 50 50 50 50
Lower Actual  Profile 49.64 50.32 50.16 50.08 50.03 49.82 50.10 49.96 50.45 49.83
SSE 0.8

Test 3

Lower Starting Profile 45 26 75 55 26 75 40 52 30 70
Lower Set Point Profile 50 50 50 50 50 50 50 50 50 50
Lower Actual  Profile 49.60 50.32 50.23 50.07 50.12 49.93 50.17 49.75 50.42 49.82
SSE 0.84

Trial 2

Surface 1 2 3 4 5 6 7 8 9 10

Test 1

Lower Starting Profile 26 26 26 26 26 26 26 26 26 26
Lower Set Point Profile 50 50 50 50 50 55 55 55 55 55
Lower Actual  Profile 49.79 50.54 50.14 50.39 52.80 54.73 54.97 54.90 55.08 54.18
SSE 3.1

Test 2

Lower Starting Profile 26 26 26 26 26 26 26 26 26 26
Lower Set Point Profile 42 44 46 48 50 50 48 46 44 42
Lower Actual  Profile 41.84 44.13 46.05 48.22 50.33 49.94 48.07 45.86 44.26 41.92
SSE 0.68
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3.3.4 Trial 2 

In the second trial, two tests were used to create an uneven ending distribution along 

the lower surfaces. In both cases, the starting temperatures for each of the lower surfaces was 

set at a uniform temperature of 26°C. In the first test, half of the surfaces have a goal 

temperature of 50°C and the other half were set at 55°C. While all of the lower surfaces were 

within several degrees of their goal temperature and most reached their set point temperature, 

the heaters were less able to accurately get the temperatures of the middle and outside 

surfaces to their precise goal temperatures. The heating of the lower surfaces was able to 

reach a near equilibrium state at around 5500 iterations, which can be seen in Fig. 3.9a. 

Contrasting this is the final test case where the ending goal temperatures were set to increase 

in a parabolic distribution such that the center temperatures of the lower surfaces were the 

highest and the outside temperatures set to the lowest. Since this goal is based on how this 

thermal system naturally settles, the algorithm had no problem in achieving this final 

temperature distribution in under 3000 iterations, as shown in Fig. 3.9b. The starting 

temperature distributions, set point distributions, and actual final values for test case one and 

two are given in Table 3.1. The SSE values for the first and second test cases are 3.1 and 

0.68, respectively.  
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             (a.) 

     

             (b.) 

Fig. 3.9. Trial 2: (a) All lower surface starting at 26°C with half having a set point of 50°C, 
and the other half 55°C (b) All lower surfaces starting at 26°C with a parabolic final 
temperature distribution 
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3.4. Future Work and Conclusions 

The established stigmergic algorithm was able to reach the goal temperatures of all of 

the lower surfaces within a reasonable number of iterations. One advantage to this type of 

algorithm is the incremental change that occurs during each iteration. Each heater is only 

accepting or rejecting blocks, or giving blocks back until a state is met. When the lower 

surfaces reach near their equilibrium values, the temperature of the end heaters are much 

higher than those in the middle. This is due to the heaters having to work harder in order to 

bring up the temperature of their lower surfaces while the middle heaters have less work to 

do because more heaters contribute to the temperature of their lower surfaces. The general 

trend shown in Fig. 3.8.a-c is that surfaces 1 and 10 were the last to converge because there is 

less total radiation reaching them, and therefore their upper surface temperatures must be 

higher to compensate. Another advantage of this approach is how little information each 

heater needs to know before or during runtime. The distribution node only needs to know 

how many active heaters there are, which it can learn during runtime, and of those, how 

many are requesting blocks. One of the main disadvantages of this system is its slow 

response. Finding the optimal solution to an ill-posed problem is frequently a time 

consuming and computationally expensive process, often requiring regularization techniques 

to prevent the production of infeasible solutions. Because the heaters are constrained between 

a maximum temperature and ambient temperature, the system is already somewhat 

regularized to not produce those infeasible results.  

In the future different block sizes can be used to determine if a block might represent 

more or less than one degree of temperature change. The stigmergic algorithm could be 

compared to other regularization methods to determine its effectiveness at solving more 
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complex inverse thermal problems. The geometric properties along with the physical 

properties of the system could be altered. This problem could be setup as a controls problem, 

where the algorithm would have to make decisions as the temperatures gradually increase 

and then maintain those temperatures. 
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CHAPTER 4. CONCLUSION 

 

This paper set out to establish the applicability of using stigmergy to solve an inverse 

radiation heat transfer problem. The model was idealized, but not to the point where it 

became well posed. It was shown that applying distributed construction to an inverse 

problem can be used to find a solution, without the need for optimization or regularization. 

This is due in part because the bounds were set such that the solutions could not produce 

infeasible results and in part because the changes made to the system were gradual enough 

that the system could not jump rapidly to infeasible results. Additionally, it was shown that 

stigmergy and distributed construction can be used to create an algorithm to solve an inverse 

parallel plate problem. This stigmergic algorithm was able to reach the goal temperatures for 

all of the lower surfaces examined in the two trials. Additional trials will be performed by 

changing the geometric configurations and temperature change associated with the addition 

or subtraction of a single block. 

In the future this algorithm will be tested as a means of not only finding a solution to 

an inverse problem but to control distributed thermal systems and will be scaled up to large, 

real world systems. The potential control scheme has wide ranging applications to many 

inverse radiation systems. As control schemes become more distributed and sensors more 

autonomous, this control scheme will prove invaluable as control decisions are made at a 

local level and without a centralized controller. The advantage of using this algorithm as a 

control strategy is that sensors can be added at any time without consequence and the amount 

of sensors added can be scaled up rapidly. This is because the only information the 

distribution node is responsible for is how many sensors are in a given system and of that 
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how many are requesting blocks. This information can be obtained at runtime and can change 

as the system changes. As this algorithm is transitioned into a control strategy, there can be 

more sensors than actuators. Disturbances can be simulated or sensors can be taken offline to 

determine how the system will react.  
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