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ABSTRACT 

Since the advent of the Information Age, there has been an ever growing demand to 

continually shrink and reduce the cost of semiconductor products.  To meet this demand, a great 

amount of research has been done to improve our current micro/nano manufacturing processes 

and develop the next generation of semiconductor fabrication techniques.  High throughput, low 

cost, smaller features, high repeatability, and the simplification of the manufacturing processes 

are all targets that researchers continually strive for.  To this day, there are no perfect systems 

capable of simultaneously achieving all of these targets. For this reason, much research time is 

spent improving and developing new techniques in hopes of developing a system that will 

incorporate all of these targets.  While there are numerous techniques being investigated and 

developed every year, one of the most promising areas of research that may one day be capable 

of achieving our desired targets is plasmonics.  Plasmonics, or the study of the free electron 

oscillations in metals, is the driving phenomena in the applications reported in this paper.  In 

chapter 2, the formation of ordered gold nanoparticles on a silicon substrate through the use of 

energetic surface plasmons is reported.  Utilizing a gold/alumina nano-hole antenna and 1064 nm 

Nd:YAG laser system, semi-periodic gold nanoparticles were deposited onto the surface of a 

silicon substrate.  The novel technique is simpler, faster, and safer than any known gold 

nanoparticle deposition technique reported in literature.  The implementation of this technique 

has potential wide-ranging applications in photovoltaic cells, medical products, and many others.  

In chapter 3, a low cost lithography technique utilizing surface plasmons is reported.  In this 

technique, a plasmonic photomask is created by coating a pre-made porous alumina membrane 

with a thin aluminum layer.  A coherent, 337 nm UV laser source is used to expose the 

photomask and excite surface plasmons along the metal layer.  The surface plasmons allow for 
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features well below the wavelength of the incident light to be produced.  Along with this 

technique, a unique texturing effect was discovered using the same photomask and 400 nm UV 

lamp source.  The developed technique promises to greatly reduce the cost and complexity of 

sub-100 nm photolithography using only a UV light source and the novel plasmonic photomask. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Motivation 

The research problems that are addressed in this thesis can be broken into two main 

categories.  The first problem is the need to develop low cost, simple, and energy efficient 

techniques for forming and depositing metallic nanoparticles onto the surface of various 

substrates.  Current techniques are limited in these aspects and are thus highly expensive with 

relatively low throughputs.  The second problem that is addressed is the diffraction limit of light 

in conventional photolithography.  Feature sizes produced in conventional photolithography are 

generally limited to half the wavelength of the exposure source.  This limitation introduces 

additional cost and system complexity when features smaller than 100 nm are fabricated.  The 

research discussed in this thesis is highly significant in that any potential applications could 

provide a significant paradigm shift to the multi-billion dollar semiconductor industry.  With the 

continuing advancement of consumer electronics at an ever increasing pace, we must continue to 

improve our fabrication techniques at an equally rapid pace.  The work presented in this thesis 

looks to address this growing demand and provide tangible solutions to some of the issues 

plaguing current fabrication techniques. 

1.2 Thesis Organization 

The organization of this thesis is centered upon two journal papers that have been 

submitted for publication to Nanomaterials and Materials Letters.  The contents of these papers 

explain in depth the methods and results of the research conducted to address the problems listed 

in the general introduction.  Sources specific to each journal entry are located at the end of their 
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respective chapters.  A general conclusions section will follow the second journal article and 

summarize the findings of each journal entry. 

1.3 Review of Literature 

I. Current Nanolithography Techniques 

While plasmonics may still be in the early stages of development, there has been a great 

deal of research reporting the underlying physics and potential applications of this phenomenon.  

One of the most widely reported applications of plasmonics are its potential uses in the 

lithography process.  Lithography has been the mainstream technique for fabricating cutting-

edge semiconductor integrated circuits or microelectromechanical systems for the past several 

decades.  There are many lithography techniques used in the semiconductor industry today, and 

while no technique is perfect, each technique has its own set of advantages and disadvantages.  

This section of the literature review will discuss some of these nanolithography techniques and 

compare their advantages and disadvantages. 

Electron beam lithography is a method in which a beam of electrons is emitted in a 

patterned fashion along the surface of a substrate covered with a thin film known as resist [1].  

When the electrons come in contact with the resist, the molecules of the resist interact with the 

electrons, thus changing the solubility of the exposed area.  The direction of the electron beam 

can then be controlled along the substrate and resulting patterns can be formed.  Electron beam 

lithography is advantageous in that its resolution is not limited by the diffraction limit of light, 

which can allow for linewidths on the order of 10 nm or smaller.  Electron beam lithography is 

however limited by its high system cost and low throughput due to the relatively slow write 

speeds of the single beam system. 



3 
 

Dip Pen Nanolithography (DPN) uses a technique where an atomic force microscope 

(AFM) tip is used to pattern images onto a substrate typically using a form of molecular ink 

coated onto the microscope tip itself [2,3].  DPN is able to produce features under 100 nm 

depending on the quality of the AFM tip.  Similar to electron beam lithography, Dip Pen 

Nanolithography is limited by the total cost of the system and low throughput. 

Electron beam lithography and Dip Pen Nanolithography are two types of systems that 

fall into the category of maskless lithography.  Maskless lithography is a type of printing that 

involves the direct writing of patterns onto substrates.  Lithography using a mask on the other 

hand is a common nanoscale printing technique where a “stensil” or mask is made with pre-

defined patterns that can be reused to print the same pattern multiple times on different 

substrates.  The advantage of using a mask is that it typically allows for a much higher 

throughput than maskless techniques, but can be disadvantageous in that it is less versatile than 

maskless techniques.  Electron beam lithography and Dip Pen Nanolithography are commonly 

used in the production of masks for other nanolithography techniques. 

In Nanoimprint Lithography (NIL), a 3-D stamp mask is made with a pre-formed pattern 

that is desired to be shaped onto a substrate[4-6].  The mask is then stamped onto a material coated 

with a polymer resist and heat and pressure is applied.  The mask is then lifted from the surface 

and the residual resist is etched away, leaving behind the fully patterned resist.  The NIL 

technique addresses the problems of low throughput and high cost, but new issues of limited 

repeatability and contamination arise.  The masks used in NIL are often very fragile and can be 

easily damaged when removed from the substrate, which greatly limits the lifetime of the masks 

and repeatability of the process.  
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By far the most common lithography technique in use today is photolithography.  

Photolithography is a process that uses light to transfer a pattern from a mask onto a substrate 

coated with a light sensitive resist.  When light of a certain frequency interacts with the 

molecules of the resist, the solubility of the exposed area changes, allowing specific sections of 

the substrate to be patterned.  Similar to Nanoimprint Lithography, the resist is chemically 

treated to engrave the exposure pattern into the substrate and enable the deposition of a new 

material in the desired pattern where the photoresist once was.  Photolithography is praised for 

its high throughput, as most resists can be exposed within a few seconds. The high durability and 

reusability of the optical masks used in photolithography is also highly regarded.  The main 

concern with photolithography is its potential low resolution due to the diffraction limit of light.  

In general, the smallest feature sizes that can be printed during photolithography is of the same 

order as half the wavelength of the incident exposure light.  To increase this resolution, the 

wavelength of the incident light can be shortened or the numerical aperture can be increased.  

The shortening of the incident wavelength is the main idea behind X-ray and extreme UV 

photolithography [7,8].  Just as their names imply, these techniques make use of x-ray and extreme 

UV wavelength light sources impinged on the mask to pattern the photoresist on the substrate.  

These shorter wavelengths allow for features as small as 20 nm to be formed while maintaining 

the high throughput and mask durability of longer wavelength techniques.  The main concern 

with these short wavelength lithography techniques is that the cost of each of these systems 

begins to skyrocket as the incident wavelength begins to shrink.  These systems can also be quite 

complex and difficult to operate safely.  Other techniques based on increasing the numerical 

aperture of the mask have been developed, but are limited by low light transmission due to 

diffraction and scattering.  As the amount of light that reaches the photoresist decreases, the 



5 
 

exposure time begins to increase, and the feasibility of the system comes into question due to 

long production times.              

II. Plasmonic Nanolithography 

In an attempt to capture all of the positive aspects of photolithography and form a superior 

nanolithography system, plasmonic nanolithography was developed.  Plasmonic nanolithography 

is based upon the theory of surface plasmon polaritons (SPPs). Surface plasmons are collective 

localized electrons existing on the interface of a metal and dielectric material.  Surface plasmons 

have a unique dispersion relation and thus potentially a unique wavelength from the incident 

light that induced the SPPs.  The dispersion relation for SPPs is given as: 

𝑘𝑠𝑝 = (
2𝜋

𝜆0
) √

𝜀𝑑𝜀𝑚

𝜀𝑑 + 𝜀𝑚
=

2𝜋

𝜆𝑠𝑝
 

where 𝜆0 is the incident light wavelength in vacuum, 𝜀𝑑 is the permittivity of the dielectric 

material, and 𝜀𝑚 is the permittivity of the metal material.  By properly selecting the permittivities 

of the materials used, the wavelengths of the SPPs can be significantly lower than that of the 

incident light.  Using this phenomena, a nanolithography system can be developed that 

effectively overcomes the diffraction limit of the incident light while maintaining the lower cost 

and simplicity of a system with longer wavelength incident light.   
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Figure 1. SPPs along metal/dielectric interface (nature.com) 

 Surface plasmons exist in two basic forms, localized and propagating.  Along the metal-

dielectric interface, the SPPs wave propagates as an evanescent electromagnetic wave resulting 

from the collective oscillations of the free electrons in the conduction band on the metal surface.  

In most cases, SPPs are not easily excited due to the momentum difference between the incident 

light waves and the waves of the surface plasmon.  To compensate for this, periodic hole or 

nanosphere arrays that are properly tuned can account for the momentum mismatch and excite 

the SPPs [9,10].   

Localized surface plasmons (LSPs) do not propagate in the horizontal plane, but rather as 

localized electromagnetic fields near the surface of isolated nanoparticles.  The transmission of 

light in a single subwavelength aperture can be enhanced due to the existence of LSPs.  For 

periodic subwavelength apertures, the total transmission enhancement is explained as the 

integrated effect of LSPs and SPPs.  This periodic enhancement is explained by the following 

equation: 
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𝜆max(𝑖, 𝑗) = 𝑃(𝑖2 + 𝑗2)−
1

2√
𝜀1𝜀2

𝜀1+𝜀2
 , 

where 𝜆max(𝑖, 𝑗) is the wavelength of peak light transmission, 𝑃 is the lattice constant, 𝑖 and 𝑗 are 

the scattering orders from the array, 𝜀1 and 𝜀2 are respectively the dielectric constant of the metal 

and the dielectric materials.  Each peak of the light transmission is labeled by a set of integers (𝑖, 

𝑗).  Numerical simulations have shown that resolutions as high as 20 nm can theoretically be 

achieved using illumination light of 365 nm by taking advantage of surface plasmon resonance 

and periodic array subwavelength apertures. 

III. Plasmonic Lens 

By taking advantage of the SPP effect and periodic subwavelength apertures, several 

plasmonic lenses have been developed using various techniques.  These techniques are generally 

separated into three main categories: contact nanolithography, planar lens imaging 

nanolithography, and direct writing nanolithography.  In the contact method, the photoresist is 

exposed by SPPs originating from the metal mask.  Since SPPs can only travel tens of 

nanometers, intimate contact between the mask and photoresist is required.  The planar lens 

imaging method uses a superlens placed underneath the mask to project nanopatterns through the 

mask and onto the photoresist.  This sub-diffraction imaging is made possible by materials with a 

negative index of refraction bending light into a negative angle with respect to the surface 

normal.  Finally, the direct writing method as discussed before, is a plasmonic nanolithography 

system that does not invoke the use of a mask to form nanopatterns on a substrate.   

Now that the three basic types of plasmonic nanolithography systems have been 

established, some of the specific lenses that have been proposed and developed can be discussed. 
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Liu, Srituravanich, et al. created two very basic plasmonic lenses using structures milled into a 

thin metal film and placed on a quartz substrate [11].  In the first technique, circles of varying 

diameter were cut through a 150 nm thick silver film.  The average slit width for these circles 

being 283 +/- 23 nm.  In the second technique, elliptical shapes with a semi-major axis length of 

4 μm and semi-minor axis length of 2.5 μm were milled into 70 nm thick aluminum films.  In 

both techniques, the metal films were then deposited onto a quartz substrate and 514 nm incident 

wavelength light was used. The transmission of SPPs through these lenses was observed and 

then modeled using Microwave Studio. 

 Srituravanich, Pan, et al. created a “flying plasmonic lens” intended to be a low cost, high 

throughput, maskless nanolithography system [12].  While keeping the design of the plasmonic 

lens similar to the one mentioned earlier, the true innovation in this technique is the system used 

to create a nanoscale air gap between the plasmonic lens and the substrate during the high-speed 

writing process.  The developed technique involves a novel air-bearing slider to “fly” the 

plasmonic lens arrays at a height of 20 nm above the substrate at speeds between 4 and 12 m s⁄ .  

The rotation of the substrate creates an air flow beneath the surface of the plasmonic flying head, 

known as the air bearing surface.  The air bearing surface generates an aerodynamic lift force 

and is balanced with the force supplied by a suspension arm to precisely regulate the gap 

between the plasmonic lens array and the rotating substrate. 

 While many plasmonic lenses are based around the concept of periodic subwavelength 

nanohole arrays, recent research has shown that sharp ridged apertures in metal may provide 

equal transmittance and possibly even greater spatial resolution compared to their counterpart. 

Grober, et al. first proposed the bowtie aperture to be used in sub-diffraction optics as an optical 

probe at microwave frequencies [13].  Xu, et al. were the first to use the bowtie antenna in a 
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plasmonic lens [14].  Bowtie apertures with a 30 nm gap size were fabricated in 150 nm thick 

aluminum film and deposited on a quartz substrate.  Using this technique, sub-50 nm linewidths 

were achieved. 

More recently, plasmonic lenses tailored for more traditional 365 nm UV incident light 

have been developed [15, 16].  The design of these lenses is based around an aluminum layer 

perforated with 2D periodic hole arrays surrounded by a dielectric layer of quartz on top and 

dielectric PMMA below.  A negative photoresist layer (SU-8) was then spun coated onto the 

PMMA layer to eliminate any air gap between the mask and the photoresist. Using this lens, sub-

100 nm dot arrays were patterned with exposure times under 10 s.   

 Yang, Zeng, et al. developed a plasmonic lens designed for 193 nm (Deep UV) 

wavelength by using multiple metal-dielectric interfaces [17].  For this plasmonic lens, 8 pairs of 

GaN/Al multi-layers are stacked together onto a PMMA substrate.  The incident light is sent 

through the PMMA layer as well as an optical mask shaped in the desired pattern.  The light 

reaches the multi-layers and surface plasmons are induced at each of the metal-dielectric 

interfaces.  Using this lens, features as small as 22 nm were observed. 

 While these are just a few examples of the plasmonic lenses that have recently been 

developed, there are plenty of others not discussed that have been proposed just in the past few 

years alone[18-22 ].  Although it may seem that with the development of so many unique plasmonic 

lenses that little work is left to be done in this field, the opposite is actually true.  Some of the 

challenges that need to be addressed in the design of future plasmonic lenses are low light 

transmission resulting in long production times, high cost of lens fabrication, and the lack of a 

large exposure area in a massively parallel scheme.  While many issues still remain, plasmonic 
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nanolithography remains a promising technique for the next generation of nanolithography with 

its vast potential for high throughput, excellent resolution, and cost effectiveness. 

IV.  Formation of Gold Nanoparticles 

There are several established techniques that are in widespread use that are capable of 

forming gold nanoparticles.  These fabrication techniques can be split into the two main 

categories of chemical synthesis and thermal ablation.  Chemical synthesis, or the purposeful 

execution of a chemical reaction to obtain a final product, can be used to isolate gold from other 

chemical products.  These chemical reactions can often be controlled to produce gold 

nanoparticles of varying size and shape.  Thermal ablation, or the selective heating of a specific 

target area, can be used to create metallic nanoparticles by introducing a selective heating system 

(usually a focused laser) to a metal source.  The heating system will form and remove metallic 

nanoparticles from the source metal during the ablation process.  The size and shape of the 

metallic nanoparticles can be manipulated by adjusting the area of thermal exposure and by the 

type of heating source used.  Specific examples of developed techniques for creating gold 

nanoparticles will be discussed further in chapter 2. 

The utilization of surface plasmon resonance in the aided formation of gold nanoparticles 

is a relatively new reported process.  Through the introduction of laser light impinged on metal 

film at surface plasmon resonance conditions, thermal ablation of metallic film can occur at 

lower threshold fluence values than previously reported.  The use of air/Au film/glass under the 

second harmonic of a Q-switched Nd:YAG laser (532 nm) with pulse power density slightly 

lower than the ablation threshold limit of gold film has been shown to result in the 

nanostructuring of gold particles [23].  This reported effect paves the way for future fabrication 
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processes utilizing surface plasmon resonance in the formation of gold nanoparticles and is a 

basis for some of the results detailed in chapter 2.   

1.4 Proposed Projects 

In the projects discussed in this thesis, we looked to address many of the issues discussed in 

the literature review.  In the first project, we examined the potential applications of plasmonics in 

gold nanoparticle formation.  In the second project, we looked to overcome some of the issues 

plaguing UV plasmonic nanolithography by developing a nanolithography system based on a 

newly proposed plasmonic lens. The main issues we wanted to address include the simplicity of 

the system, fabrication cost, and total energy fluence of the fabrication process.  The specific 

tasks that we hoped to achieve in these projects included:  

1. Fabricate a plasmonic lens using nanoporous alumina membrane (PAM) coated with a 

thin metal layer tailored to the desired parameters of the plasmonic lens, i.e. hole shape, 

diameter, periodicity.  

2. Generate SPPs through UV laser beam interaction with the plasmonic lens developed in 

(1), and understand the transfer of SPP into high-intensity light with spatial patterns 

through coherent interference of multiple scattered SPP waves in the near field. 

3. Perfom nanolithography by producing subwavelength features as small as 20 nm and 

characterizing the feature size, accuracy, repeatability, and collateral thermal damages 

using scanning electron microscopy (SEM) and atomic force microscopy (AFM). 

4. Develop a plasmonic optical nano-antenna capable of producing metallic nanoparticles at 

lower laser energy fluence than any previously reported study. 
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The novel features of our proposed nanolithography system are the use of a low cost UV 

laser for the excitation of SPPs, and a new, inexpensive, and easy to fabricate plasmonic lens 

based on nanoporous alumina.  The novel features of the plasmonic nano-antenna system include 

the use of periodic alumina structures to create semi-periodic metallic structures and the use of 

plasmonics in a nanostructuring system to lower the total energy fluence.   

When designing the alumina pore features and metal film used in the plasmonic mask to 

excite SPPs along the PAM interface, great care must be taken in determining these parameters.  

Gold, silver, and aluminum have all been shown to excite surface plasmons due to their negative 

dielectric constants under certain wavelengths, and are thus good candidates for use in a 

plasmonic lens.  In order for surface plasmons to be excited, the real part of the dielectric 

constant of the metal film must be negative and its magnitude must be larger than that of the 

surrounding dielectric material (PAM).  To calculate the dielectric constant, or relative 

permittivity of a material, the following equation is used, 

𝑛 = √𝜀𝑟𝜇𝑟 

where 𝑛 is the refractive index of a material, 𝜀𝑟 is the material’s relative permittivity, and 𝜇𝑟 is 

the material’s relative permeability.  Knowing the wavelength of the light that is incident on the 

material, we can determine the refractive index of that material, and thus determine the 

material’s relative permittivity [24,25].   

For the plasmonic lens setup, we will be using UV light sources between 337-405 nm.  

Using this information, it was determined that the relative permittivities of gold, silver, and 

aluminum will approximately be −0.26 + 6.66𝑖, −1.01 + 0.58𝑖, and −16.3 + 2.74i at 337 nm.  

The relative permittivity of alumina under UV wavelengths was determined to be 3.24.  It must 
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also be noted that the Drude model for determining the dielectric constant of metals can also be 

used to confirm these results.  It was determined that aluminum would be the best option to 

excite SPPs under UV wavelengths since the magnitude of the real part of the dielectric constant 

is greater than that of the PAM.  This idea is supported with literature for UV excitation of SPPs 

[26].  SU-8 and AZ-5214E will be used as the negative and positive photoresists due to their high 

absorption in the UV and deep UV range.   

 

               

Figure 2. Side view of proposed plasmonic lens (porous alumina membrane with thin aluminum coating) 

In the plasmonic nano-hole antenna setup, we will be using a 1064 nm Nd:YAG laser  

source.  This higher energy source will be able to provide short, powerful pulses capable of 

thermal ablation of various metals under infrared wavelengths.  In this setup, gold was 

determined to be the best option to excite SPPs due to its high plasmonic response under infrared 

wavelengths compared to other metals.  A silicon wafer will be used as the base substrate for 

depositing the gold nanoparticles as it is the industry standard for semiconductor substrates.  The 

experimental methods and results of these two projects will be discussed in detail in the next two 

chapters. 

 

 

 

Aluminum 

Porous Alumina Membrane 
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CHAPTER 2. FORMATION OF GOLD NANOPARTICLES BY 

ABLATION WITH SURFACE PLASMONS 

A paper to be submitted to Nanomaterials 

*Quincy Garner and Pal Molian 

*corresponding author 

 

The formation of ordered gold nanoparticles on a silicon substrate through the use of 

energetic surface plasmons is reported.  A laser-assisted plasmonics system was assembled and 

tested to synthesize gold nanoparticles from gold thin film by electrical field enhancement 

mechanism.  A mask containing an array of 200 nm diameter holes with a periodicity of 400 nm 

was prepared and placed on a silicon substrate.  The mask was composed of 60 µm thick porous 

alumina membrane sputter-coated with 100 nm thin gold film.  A Nd:YAG laser with 1064 nm 

wavelength and 230 µs pulse width (free-running mode) was then passed through the mask at an 

energy fluence of 0.35 J/cm2.  The extraordinary transmission of laser light through alumina/gold 

nano-hole optical antenna created both extended and localized surface plasmons that caused the 

gold film at the bottom of the mask to fragment into nanoparticles and deposit on the silicon 

substrate that is in direct contact with the mask.  The surface plasmon method is simpler, 

quicker, energy efficient, contamination-free, and environmentally safer than existing physical 

and chemical methods and can be extended to all types of materials that will in turn allow for 

new possibilities in the formation of nanostructured surfaces, the creation of plasmonic devices, 

and other wide ranging applications.  

Keywords: Laser – plasmons – gold – nanoparticles – porous alumina membrane 
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I. Introduction  

Plasmonics is a rapidly emerging technology for photonics, sensors, microscopy, data 

storage, and lithography.  However, there is little work reported on the use of plasmonics for 

nanoscale manufacturing applications such as nanomachining and nanoparticle synthesis [1-3].  

The coherent interference of surface plasmon polaritons was able to produce 50-70 nm diameter 

holes in silicon wafers [1].   Plasmonic effects strongly affected the aspect ratio of nanometer-

sized holes in femtosecond laser ablation if the surface plasmon resonance conditions were met 

[2].  Nanofragmentation of gold thin films by 532 nm, 10 ns laser radiation in the system air/gold 

film/glass was achieved at surface plasmon resonance conditions [3].  The plasmonic effects 

aided in reducing the energy fluence required for thermal ablation and permitted self-

organization of micro-ablation events [3]. 

Gold nanoparticles play a vital role in biology, chemistry, optics and microelectronics by 

virtues of a large surface-to-volume ratio, quantum confinement, and other unique properties.  

For example, gold nanoparticles are extensively used in life sciences for labeling, delivery, 

heating, and sensing due to their strong absorption, scattering, plasmon resonance, x-ray 

contrasting and functionalization with ligands. The development of highly ordered, uniform gold 

nanoparticles is also useful to the advancement of plasmonic devices.   Gold nanoparticles could 

act as a surface coupler and, under certain size and periodicity conditions, can help in the 

transmission of sub-diffraction limited light.   New applications of gold nanoparticles are 

constantly emerging in many areas such as fuel cells, cancer cell therapy, nanoimprinting and 

solar cells [4-6].   
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Many physical and chemical techniques are available to generate gold nanoparticles [7-

20]. Pulsed laser ablation (PLA) in gas and liquid media appear to lead among all physical 

processes. When the energy fluence of a laser beam exceeds that of the ablation threshold of 

gold, fragmentation occurs in the form of ions, electrons and neutrals at the irradiated spot 

forming nanoparticles.  Despite the availability of a number of physical and chemical processes 

for gold nanoparticles, there are still many issues that need to be addressed in the form of particle 

size and uniformity, production rate, simplicity, contamination, energy efficiency and system 

cost.  In this paper, we present a method capable of producing gold nanoparticles through the 

excitation of surface plasmons that addresses many of these problems.   

II. Theory 

Plasmonics has been known by scientists for many decades, yet its applications to 

photonics, microelectronics and medicine have just begun to be realized within the past decade 

[21].  Surface plasmons (SP) are the collective and coherent oscillations of conduction electrons 

in a metal film present at the interface of metal-dielectric with permittivities of opposite sign. 

Energy can be harnessed when the electrons are coupled with photons by creating quasiparticles 

called polaritons.  SPs are easier to produce in metals that exhibit a dielectric function with large 

negative real number and small imaginary number.  Common metals that fulfill this requirement 

under certain wavelengths are silver, gold and aluminum.   

SPs propagate along the interface between a metal and dielectric, which is typically 

perpendicular to the incident light.  Figure 1 shows a coordinate system where z > 0 is the 

dielectric, z < 0 is the metal, and the metal-dielectric interface is in the x-y plane.  
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FIG. 1. The coordinate system used for the description of surface plasmons 

 

It may be noted that SPs are purely longitudinal surface charge density waves unlike other 

electromagnetic waves.  The plasmon wavevector, kx, is related to the angular frequency, of 

the incident light through the dispersion relationship [22]: 

 𝑘𝑥 = 𝑘𝑠𝑝 = (
2𝜋

𝜆0
) √

𝜀𝑑𝜀𝑚

𝜀𝑑 + 𝜀𝑚
   (1) 

Where  kx= ksp= 2π/λsp with λsp the plasmon wavelength, λo the incident laser wavelength, εm (λo) 

and εd (λo) are the dielectric functions of the metal and dielectric material respectively. An 

important attribute of SPs is their potential for a shorter wavelength and higher intensity 

compared to the incident light.  It should be noted that the dielectric function of metal is a 

complex wavevector with εm= εm’+ iεm’’ while for the dielectric it is a real number.  The 

amplitude of SPs decreases with increasing propagation distance in the x-direction and 

eventually dissipates.  The propagation distance L along the metal surface is given by: 

Dielectric 
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𝐿 =
1

𝑘0
(

𝜀𝑑+𝜀m
′

𝜀𝑑
)

3
2⁄

(𝜀m
′)

1
2⁄

𝜀m
′′     (2) 

The wavevector perpendicular to the interface, kz, corresponds to electric fields that decay 

exponentially with increasing distance from the interface. The penetration depth is defined as the 

distance from the interface of metal-dielectric at which the amplitude is reduced to 35% of the 

initial value.   The penetration depths and permittivites are related by:  

−𝑧𝑚
𝜀𝑚

′⁄ =
𝑧𝑑

𝜀𝑑
⁄  (3) 

where zm and zd are the penetrations in metal and dielectric respectively. The penetration depth 

in metal is usually smaller than in dielectric due to considerable energy losses.   

The extraordinary optical transmission phenomenon, originally discovered in nano-hole 

arrays of metal thin films, is attributed to the excitation of SPs that exist in two basic forms: 

localized (LSP) and extended (ESP) [23].  LSPs are localized electromagnetic fields near the 

surface of isolated nanostructures while ESPs propagate in the horizontal plane. LSP depends on 

the shape and size of the hole while the ESP is a function of the periodicity.  Both SPs contribute 

to the enhanced transmission.  In most cases, SPs are not easily excited due to the momentum 

difference between the incident light waves and the waves of SPs.  To compensate for this, 

periodic arrays in thin films can be properly tuned to account for the momentum mismatch and 

consequent excitation of SPs [24, 25].   

The transmission of light in a single sub-wavelength aperture can be enhanced due to the 

existence of LSPs.  For periodic sub-wavelength apertures, the total transmission is based on the 

integrated effect of LSP and ESP.  The maximum transmission depends on the period of the 

nano-hole array, the incidence angle and the polarization of the excitation light. The transmission 
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of light in nano-hole arrays is much higher than expected from classic diffraction theory 

implying that even the light impinging on the metal between the holes can also be transmitted.  

In other words, the whole periodic structure acts like an antenna in the optical regime.  The 

transmission spectra of hole array display peaks that can be tuned by adjusting the period and the 

symmetry is given by the following equation: 

𝜆max(𝑖, 𝑗) = 𝑃(𝑖2 + 𝑗2)−
1

2√
𝜀𝑚𝜀𝑑

𝜀𝑚+𝜀𝑑
      (4) 

where 𝜆max(𝑖, 𝑗) is the wavelength of peak light transmission, 𝑃 is the periodicity, 𝑖 and 𝑗 are the 

scattering orders from the array, 𝜀𝑚 and 𝜀𝑑 are respectively the dielectric constant of the metal 

and the dielectric material.  Each peak of the light transmission is labeled by a set of integers (𝑖, 

𝑗).  

The oscillatory nature of the surface modes enables the resonant enhancement of the 

highly confined electromagnetic fields.  At the resonance, the intensity of the electric field at the 

interface between the metal and the dielectric is strongly enhanced due mainly to the smaller 

complex permittivity of the dielectric compared to the metal. SPs can enhance the electrical field 

by as high of a factor as 1000.  Nanofocusing, or the strong localization of the optical energy in 

regions smaller than possible by the diffraction limit, can offer promising applications in 

nanofabrication. In summary, when the incident light illuminates the nano-hole array, localized 

and extended SPs are excited under surface plasmon resonance conditions.  The nano-hole array 

with SPs as electrical dipoles acts as an optical antenna with the potential capability for 

nanoscale material removal.  
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III. Experiment  

Figure 2 illustrates the underlying physical mechanism involved in the experiment and its 

projected effect on the formation of metallic nanoparticles.  In this setup, there are three main 

components: metal/dielectric mask, silicon substrate and 1064 nm laser.  

 

 

 

FIG. 2. Schematic diagram of experimental excitation of surface plasmons and the 

resulting formation of nanoparticles 

The mask is prepared as follows: porous alumina membranes with a diameter of 25 mm 

(Anodisc25™) were received from Whatman. Anodisc25 is composed of a high purity alumina 

matrix manufactured by electrochemical methods.  It has a precise, non-deformable honeycomb 

pore structure with no lateral crossovers between individual pores.  The membrane has an 

average thickness of 60 µm, pore diameter of 200 nm and periodicity of 400 nm.  Figure 3 shows 

the scanning electron micrograph image of the membrane.  Sputtering was then employed using 

a Denton Vacuum Desk V at 40 mTorr of pressure for 200 seconds to deposit a 100 nm thin film 

of gold on the bottom side of the membrane.  The dielectric alumina nano-hole array pattern and 

thin metal gold film combination serves as an optical antenna for light transmission.   
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FIG. 3. SEM image of porous alumina membrane 

Silicon wafers (p-type Si:B (100)) were acquired from University Wafers (66 N Street 

Unit #9 South Boston, MA 02127). The wafers had a diameter of 25 mm and thickness of 

280±25µm. One side of the wafer was polished while the other side was etched using an alkaline 

solution.  

The laser system used was a Q-switched Nd:YAG laser (Spectra Physics, INDI series) 

along with beam delivery system and positioning table as shown in Fig.4. The laser can be 

operated in Q-switched mode with a pulse width of 10 ns or in free-running mode with a pulse 

width of 230 µs. The maximum average power of the laser is 3 W with a maximum possible 

repetition rate of 10 Hz.  
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FIG. 4.  Basic experimental setup: 1. Nd:YAG laser; 2. beam delivery system; 3. mask; 4. 

silicon substrate; 5. positioning stage 

The experiments consisted of placing the gold-sputtered membrane in direct contact with 

the polished side of the silicon wafer in an ambient, low humidity environment followed by the 

passage of the Nd:YAG laser beam through the mask. The 6 mm diameter, p-polarized beam 

emitted from the laser resonator was delivered to the mask through a 90 degree steering optics 

without focusing by a lens. The pulse repetition rate was held constant at 1 Hz. Only a single 

pulse was used for each experiment.  The average power of the laser was varied from 0.1 W to 

0.5 W.  Two pulse widths, 10 ns and 230 µs, were investigated.  In addition, experiments were 

conducted with masks having either only top side gold thin film or without any gold film. 

Optical microscopy, scanning electron microscopy, and atomic force microscopy were then used 

to examine the particle size and distribution of gold nanoparticles. A histogram was made to 

relate the particle size distribution and its relationship with the array of nano-holes in the mask.  
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IV. Results 

Nine different experiments involving both short and long pulsed beams were carried out, 

with multiple trials performed for each setup. Table 1 lists the specific experimental parameters 

for each setup.  The results of these nine experiments, are described below.   

TABLE I. Experimental trials and parameters 

Setup 

Number 

Pulse Width 

(FWHM) 

Average  

Power 

Peak Power Energy 

Fluence 

Mask Orientation (Alumina) 

1 10 ns 0.45 W 45 MW 1.6 J/cm2 Gold on bottom 

2 10 ns 0.34 W 34 MW 1.2 J/cm2 Gold on bottom 

3 10 ns 0.23 W 23 MW 0.8 J/cm2 Gold on bottom 

4 10 ns 0.10 W 10 MW 0.35 J/cm2 Gold on bottom  

5 230 μs 0.10 W 435 W 0.35 J/cm2 Gold on bottom  

6 230 μs 0.10 W 435 W 0.35 J/cm2 No gold coating 

7 230 μs 0.23 W 10 kW 0.8 J/cm2 No gold coating 

8 10 ns 0.23 W 23 MW 0.8 J/cm2 No gold coating 

9 230 μs 0.10 W 435 W 0.35 J/cm2 Gold on top 

 

In experiments 1-3, the alumina membrane was completely destroyed in the irradiated 

area due to the high intensity of SPs.  The pore structure of the alumina in this area was damaged 

and only fragmented pieces of alumina and gold remained in the exposed area.  In experiments 4 

and 5, a noteworthy result occurred.  In these trials, the laser beam irradiated the alumina 

membrane resulting in clean ablation and subsequent deposition of gold nanoparticles on the 

surface of the silicon substrate.  The pore structure of the alumina membrane in this case was 
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undamaged while the gold underneath the alumina in the exposed area was removed and 

deposited onto the wafer’s surface.  Figure 5 shows the nanoparticles embedded on silicon.  

Figure 6 shows the SEM image of the mask after laser irradiation. The intriguing aspect of this 

experiment is the low energy fluence and long pulse width of the laser beam in setup 5 that was 

needed for the fragmentation of the gold thin film.  Various studies of nanosecond pulsed laser 

ablation in gas or liquid media indicate that threshold fluence required for gold thin films is 

approximately 5-8 J/cm2 [3].  For the femtosecond pulsed laser ablation, threshold fluence is 

approximately 1.5 J/cm2 [26].  For long pulses such as microseconds, threshold fluence is 

expected to be much higher.  In the described work, 0.35 J/cm2 was sufficient to ablate a 

significant amount of gold in the exposed area.  A comparison with direct laser ablation suggests 

that surface plasmons substantially reduced the threshold fluence for ablation of gold.  To further 

validate this result, setup 5 was repeated several times under the same conditions while 

irradiating different sections of the gold/alumina mask.  Each of these new tests yielded the same 

result as before with the formation of gold nanoparticles on the surface of the substrate and no 

visible damage to the pore structure of the alumina membrane.  

Under infrared wavelengths, gold has been shown to induce plasmons at the surface of a 

dielectric interface [27].  In this case, the alumina membrane acts as both the dielectric material 

and a periodic enhancer of localized surface plasmons.  The 200 nm pores in the alumina 

membrane serve as the periodic sub-wavelength apertures in the system as discussed in the 

theory section.  Since the gold layer is deposited via electron beam deposition, the resulting layer 

takes on the shape of the supporting periodic alumina layer, allowing for the resonant 

enhancement to occur on the semi-periodic gold layer.  By inducing surface plasmons at the 

surface of the gold interface, microablation of the gold can occur at energy levels much lower 
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than that of direct laser ablation.  To lend credence to this observation, we will examine the 

results from experimental setups 6-9.  In setup 8, an alumina membrane without a gold coating 

was subjected to the same orientation, peak power, and pulse time as setup 3.   

 

  

(a) Optical image      (b) SEM image 

  

(c) AFM image 

FIG. 5. Gold nanoparticles on the surface of silicon substrate (setup 5) 
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FIG. 6. SEM image of the mask after laser irradiation  

In this setup, the alumina membrane pore structure was completely undamaged at the location of 

irradiation, suggesting that the alumina membrane was not damaged as a result of the initial 

energy of the laser in experiments 1-3, but as an effect of the creation of a surface plasmon wave 

at the interface of the gold/alumina.  In setup 9, the gold-coated alumina membrane was placed 

in contact with the silicon substrate as before with the exception that the gold coated side was 

placed facing up and the non-coated side of the mask was in direct contact with the substrate.  A 

long pulse with peak power of 0.1 W was used in a similar fashion as in setup 5.  Following 

exposure by the Nd:YAG laser, the pore structure of the alumina membrane in setup 9 was found 

undamaged; however no ablation or deposition of metallic gold nanoparticles had occurred.  It is 

apparent that the alumina membrane is important in the production of surface plasmons in our 

setup due to its favorable dielectric properties and periodic nature.  In many cases, air can act as 
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the dielectric medium for inducing surface plasmons at the interface of a metal.  In setup 9, the 

air/gold interface was unable to resonantly excite the strong surface plasmon wave that is needed 

to result in the ablation of gold.   

 Now that we have examined the mechanism behind the formation of gold particles in this 

experiment, we can begin to discuss the size, periodic nature, and distribution of these gold 

particles.  Following the deposition, several optical and SEM images were taken of the gold 

nanoparticles on the surface of the silicon substrate.  Upon analyzing these images, it is clear that 

the majority of the particles found on the surface have diameters in the range of 100-300 nm.  

Figure 7 shows a histogram of the average distribution of particle size per 15 μm square area. 

Results are consistent with the size of the pores in the alumina membrane and suggest that the 

size of the nanoparticles can very likely be easily influenced by adjusting the pore size of the 

alumina membrane.  The controllability of the size of gold nanoparticles is a highly sought after 

trait due to its ever-growing applications in medicine and plasmonics based nanofocusing 

devices. 

 While the particles shown in the images presented do not appear to be highly periodic in 

nature, there does appear to be an even distribution of particles on the surface of the substrate.  

As evidenced by the images of the mask following exposure, it appears that the ablation of the 

gold generally occurs at the pores or near the edges of the pores in the mask and not the actual 

alumina.  Because of this, the gold particles formed on the surface of the substrate take on the 

semi-periodic nature of the membrane and provide an even distribution of particles.  Upon initial 

deposition, the gold nanoparticles in reality may have a slightly more periodic nature than what 

is shown in the optical and SEM images.  After the experiment is performed, the surface of the 
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substrate could potentially be disturbed due to the nature of moving the wafer during 

examination and imaging. 

  

FIG. 7.  Size distribution of gold nanoparticles on the silicon substrate 

V. Discussion 

The results of the experiment appear to show that highly energetic surface plasmons are 

formed during our process, resulting in the fragmentation of thin gold film to nanoscale particles.  

To validate this claim, we will examine whether surface plasmon resonance (SPR) conditions are 

met in our experiments.  For 1064 nm wavelength light, the dielectric constant of alumina is a 

real number with a value of 10, while the dielectric constant of gold is a complex number with a 

value of -50+4i [28].  Application of equations (1) and (4) in the present study provide that the 

wavelength of the SP is 300 nm and periodicity for SPR condition to occur is 300 nm, 425 nm, 

602 nm (1st, 2nd, and 3rd resonance modes) respectively. In our case, the wavelengths of the 
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surface plasmons are much shorter than the incident light and the 2nd resonance mode of the 

periodic enhancement matches the average period of the mask.  

The most exciting result of the study is the ability for SPs to ablate gold thin film at low 

energy fluence for long pulse width of incident laser light. For a gold target directly ablated by a 

laser, threshold fluence is given by [29]:  

               Threshold (J/cm2) = 0.049 (pulse width in ps)1/2   (5) 

Application of equation (5) in direct laser ablation yields a threshold fluence of 743 J/cm2 for 230 

µs pulse and 0.5 J/cm2 in 10 ns pulse.  It may be noted that threshold fluence is also a function of 

wavelength which is not displayed in equation (5). The fact that SPs require only 0.35 J/cm2 for 

the 230 µs incident light indicates that the mechanism of material removal in this process is 

different from typical thermal ablation encountered in 1064 nm laser irradiation. In a study on 

the 532 nm, 10 ns pulsed laser irradiation of the system air/gold film/glass under the conditions 

of surface plasmon resonance (SPR), a threshold fluence of 5.5 J/cm2 was reported to produce 

gold nanoparticles [3]. Without SPR conditions, threshold fluence was found to be 8 J/cm2. The 

mechanism accounting for material fragmentation under SPR conditions was thermal phase 

transition (melting and consequent micro-abalation) with a corresponding space modulation and 

subsequent partial nanostructure formation [3]. 

Results obtained in the present work did not offer any evidence for thermal damage like 

melting or evaporation thus eliminating thermal ablation as a possible mechanism. The non-

thermal ablation mechanisms include Coulomb explosion and electrical field intensity 

evaporation.  Typically an atom (ion) can be removed from a solid if its total energy exceeds the 

binding energy (i.e., the energy of vaporization per particle). In a metal like gold, Coulomb 
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explosion works under very high intensity and short pulse duration of the energy source because 

all energy losses due to electron–ion Coulomb collisions and heat conduction must be negligible.  

While the intensity of the laser light used during the experiment would not normally result in 

Coulomb explosion in gold film, the added effect of the extraordinary surface plasmon wave and 

adiabatic focusing allows for significantly higher effective intensities to be produced and for 

Coulomb explosion to occur in the gold ions.   The authors believe the operating mechanism in 

the present study is electrical field enhancement in the vicinity of nano-holes where field-

induced repulsive forces caused thin film fragmentation.  The metal/dielectric mask works like 

an optical antenna exciting a huge electric field enhancement at the interface between alumina 

and gold film.   Modeling the nano-hole array mask as a dipole antenna, the increase in electrical 

field intensity is dependent on the shape, radius and length of nano-holes in the mask.  Electric 

field intensity enhancement can be estimated by assuming a small taper in the hole in the porous 

alumina membrane and using Gramotnev’s model of adiabatic nanofocusing [30]. Different 

structures including sharp metal tips, dielectric conical tips covered in metal film, sharp V 

grooves and nanowedges etc. have been suggested for nanofocusing of plasmons [30].  Here we 

assume that the taper begins at one side of the pore in alumina and ends on the opposite opening 

at an infinitely sharp point.  Due to the nature of the sputtering process, the top of the walls of the 

alumina pores will likely contain a thin layer of gold film, allowing us to approximate our system 

as a sharp V dielectric groove covered in metal film.  From the pore diameter and thickness of 

alumina membrane, we approximate the taper angle 𝛽 ≈ 0.0033.  According to Gramotnev’s 

model of adiabatic nanofocusing [30], electrical field enhancement would occur if  

𝛽 <  𝛽𝑐 = −2 
𝜀𝑑

𝜀𝑚
⁄

′
    (6) 
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where 𝜀𝑑 = 10 , 𝜀𝑚′ = −50  and thus 𝛽𝑐 = 0.4 . Since <  𝛽𝑐  , significant enhancement of the 

electric field can occur assuming no plasmon energy dissipation in the metal.  Although the 

electric field will theoretically be infinite at the location of “zero radius” tip, this would not be 

the case in practice. At distances of 10−2𝜇m from the tip, the electric field enhancement is 

estimated to be around 100-150 times the normal value [30].  Thus, the high field enhancement 

factor induces dipole moments in gold and thereby pulling the atoms and grains out of gold.  

The surface plasmon method described in this work is simpler, quicker, energy efficient, 

contamination-free, and environmentally safer than existing physical and chemical methods. The 

technique can be readily extended to all types of materials.  A well-known physical technique for 

gold is pulsed laser ablation (PLA) in vacuum or gaseous environment and is widely used to 

produce nanoparticles collected in the form of nanopowder [16].  Although PLA does not require 

high temperature or a chemical reaction, it is limited by the need for a high vacuum, high energy 

fluence, and long pumping time. In addition, the broader distribution of nanoparticles is a 

problem.  An improved PLA for gold nanoparticles is performed by immersing the gold target in 

a liquid medium leading to functionalized gold nanoparticles with a ligand of choice in a 

colloidal solution.  For example, 532 nm, 7 ns Nd:YAG laser ablation of gold target at 79 J/cm2 

in distilled water produced colloidal gold nanoparticles [9].  The main difference between 

ablation in gas and in liquid is that liquid produces a stronger confinement of the expanding 

plasma plume generating higher temperatures and pressures and causing the vaporization of the 

liquid/chemical reactions and much broader distribution of nanoparticles [16-19].   It has been 

shown that laser ablation in liquid produces surface-charged nanoparticles with a shell of dipole 

molecules (e.g., water) formed around them, preventing agglomeration. Stable gold nanoparticles 

were synthesized by laser ablating gold foil placed inside ionic liquids without the addition of 
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any external chemical reagent [18].  Commercialization of laser ablation in liquids was launched 

by Particular GmbH for the production of gold nanoparticles in a variety of biophotonic 

applications.  

The other well defined process group used in the formation of gold nanoparticles is 

through chemical means, which is based on the synthesis of compounds to extract gold particles 

from a chemical system.  Simple chemical reduction methods can produce 5–100 nm 

nanoparticles but the surface of these nanoparticles are often contaminated with reaction by-

products such as anions and reducing agents, which can interfere with subsequent stabilization 

and functionalization steps [20].  Nakamoto [10] produced 11 to 76 nm gold particles by the 

controlled thermolysis of ammonium gold (I) thiolate.  Arshi [11] used a hybrid method 

involving chemical mixing and microwave heating to produce average particle size of 4 nm. 

While these are just a few example techniques used to manufacture gold nanoparticles, 

the applications of these techniques are just as diverse and far-reaching.  Cherukuri and Curley 

[12] discussed the applications of gold nanoparticles in the treatment of malignant cells.  Gold 

nanoparticles conjugated with cetuximab are shown to be quickly internalized by pancreatic and 

colorectal cancer cells in the human body.  Following internalization, a non-invasive/non-

ionizing radiofrequency field is focused in the affected area of the body.  This exposure resulted 

in the heating of the gold nanoparticles and surrounding malignant cells.  The treated cells 

showed a cytotoxicity rate of almost 100%. In the microelectronics industry, gold nanoparticles 

bring exciting new possibilities to photovoltaic cells and conventional lithography.  Colloidal 

silver and gold nanoparticles are used to trap light on the surface of silicon photovoltaic cells 

[13].  By taking advantage of the plasmonic tendencies of gold nanoparticles, it has been shown 

that an enhancement of the photovoltaic conversion efficiency can occur.  When compared to 
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similar silicon solar cells without gold nanoparticles, the new solar cells showed a significant 

increase in the external quantum efficiency under visible and near-infrared light due to the effect 

of plasmonic light scattering.  In lithography, the use of gold nanoparticles can be used to help 

effectively overcome the diffraction limit of light.  Gold triangular nanoprisms patterened in a 

hexagonal lattice have been studied to observe their super focusing properties [14].   

VI. Conclusion 

The work presented in this paper attests to the power of surface plasmons for the ablation 

of gold.  The excitation of surface plasmon resonance described in this technique is a low energy 

alternative to the traditional pulsed laser ablation for the formation of structured nanoparticles on 

the surface of a substrate.  The plasmonic system takes advantage of a novel use of porous 

alumina membrane as an effective dielectric with periodic sub-wavelength aperture enhancement 

of localized surface plasmons at the interface of a gold film.  There is an orderly distribution of 

particles on the substrate with a close match between the particle size and the hole size in the 

mask. The results provide a strong basis for further development and applications related to 

laser-assisted surface plasmon excitation.  Unlike other chemical techniques used to create 

metallic nanoparticles, the advancement of this process will allow for the deposition of particles 

over a broad area and allow for the particles to be transferred to any substrate in a semi-periodic 

fashion.  The proposed technique is advantageous over other laser assisted techniques in that the 

process requires a lower energy density and results in a more highly ordered array of particles.  

The applications of the proposed technique are far-reaching and could potentially impact the 

advancement of microelectronic and medicinal research. 
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CHAPTER 3. PLASMONIC NANOLITHOGRAPHY AND 
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In this paper, the authors present a low-cost lithography technique utilizing surface 

plasmons.  The photomask is a porous alumina membrane coated with a thin layer of aluminum.  

A coherent, 337 nm UV laser source is used to expose the photomask and excite surface 

plasmons along the metal layer.  The surface plasmons allow for features well below the 

wavelength of the incident light to be produced in photoresist.  Along with this technique, an 

alternative technique has been developed using a 405 nm UV lamp to produce a labyrinth 

texturing effect and periodic micro-features. 

Keywords: surface plasmon polaritons; photolithography; porous alumina membrane 
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 1. Introduction 

Plasmonics is a rapidly growing technology for photonics, sensors, microscopy, data storage, and 

lithography.   For example, plasmonic photolithography based upon the theory of surface 

plasmon polaritons (SPPs) is widely perceived as the next generation lithography for validating 

Moore’s law.  Surface plasmon polaritons (SPPs) are generated at the interface between metal 

and dielectric when light impinges on nanoscale perforated metallic thin film.  SPPs exhibit 

much smaller wavelength compared to that of the incident light following the unique dispersion 

relation [1]: 

                               𝑘𝑠𝑝 = (
2𝜋

𝜆0
) √

𝜀𝑑𝜀𝑚

𝜀𝑑+𝜀𝑚
                                                  (1) 

where 𝜆0  is the incident light wavelength in vacuum, 𝜀𝑑  is the permittivity of the dielectric 

material, and 𝜀𝑚 is the permittivity of the metal material.  Surface plasmons exist in two basic 

forms: propagating (PSP) and localized (LSP).  Along the metal-dielectric interface, the PSP 

propagates as an evanescent electromagnetic wave resulting from the collective oscillations of 

the free electrons in the conduction band in the metal surface.  In most cases, SPPs are not easily 

excited due to the momentum difference between the incident light waves and surface plasmon 

waves.  To compensate for this, periodic arrays of holes in the thin films are necessary to account 

for the momentum mismatch and excite the SPPs [2, 3].   LSPs do not propagate in the horizontal 

plane, but rather exist as localized electromagnetic fields near the surface of isolated 

nanoparticles or nanohole arrays and assist in the transmission of light through sub-wavelength 

apertures. For periodic sub-wavelength apertures, the total transmission enhancement is 

explained as the integrated effect of LSPs and PSPs[4]: 

                                        𝜆max(𝑖, 𝑗) = 𝑃(𝑖2 + 𝑗2)−
1

2√
𝜀1𝜀2

𝜀1+𝜀2
                                            (2)                
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where 𝜆max(𝑖, 𝑗) is the wavelength of peak light transmission, 𝑃 is the lattice constant, 𝑖 and 𝑗 are 

the scattering orders from the array, 𝜀1 and 𝜀2 are respectively the dielectric constants of the 

metal and the dielectric material.  Each peak of the light transmission is labeled by a set of 

integers (𝑖, 𝑗).  

Using the dispersion and transmission of light phenomena described above, many 

nanolithography systems have been developed that overcome the diffraction limit of the incident 

light [5-12].  However, the bottlenecks of these plasmonic systems are weak plasmon exposure in 

photoresists due to the use of UV lamps with low intensity; costly, shape-limiting and time-

consuming fabrication of the plasmonic lenses based on grating, Fresnel pattern and slab of 

silver; near field processing with difficulties in positioning control systems; and serial 

nanofabrication schemes.  Most notable of these issues is the inherently low throughput of these 

systems due to the methods by which the photomask is fabricated.  In most cases, the patterns on 

a mask are generated using focused ion beam (FIB) or electron beam writer technology.  These 

writing systems can limit the throughput and complexity of a lithography mask due to their 

relatively slow writing speeds.  Along with these limitations, FIB and e-beam writer systems can 

be prohibitively expensive, which in turn drives up the cost of each mask produced. Alternative 

nanofabrication techniques such as nanoimprint lithography and plasma dry etching have been 

used to successfully pattern nanoscale features at relatively high throughput, but are limited by 

repeatability issues, cost, and damage to the mask.  Techniques using silica microbeads to focus 

light on the levels of λ/15 have been developed, but add complexity to the system by introducing 

extra steps for assembling and removing unwanted particles [13,14], which in turn lower the total 

throughput of the system. Thus, there exists a need to develop a method for producing low-cost 

masks capable of producing sub-diffraction limited features at a high throughput using simple 
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UV light sources.  In this paper, we focus on designing an easy-to-fabricate, inexpensive and 

durable photomask and investigating its effects in nanolithography.    

2. Material and Methods 

We devised a simple photomask of aluminum/alumina interface acting as the 

metal/dielectric boundary to address the two main issues of high cost and low throughput in the 

plasmonic masks.  Alumina having very high dielectric constant is robust and durable. 

Aluminum is chosen for its ability to excite surface plasmons in the UV range [1].   Pores in the 

dielectric alumina layer act as the periodic hole array capable of resonantly generating SPPs 

along the aluminum boundary.  To fabricate the plasmonic photomask for our experiments, a 

pre-made Whatman Anopore aluminum oxide membrane (PAM) with pore diameters of 

approximately 0.2 μm was coated with a 50 nm layer of aluminum via electron beam deposition 

(Figure 1).  The pores in the membrane are semi-periodic in nature with center to center period 

of 0.2 μm.  
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FIG. 1. Porous alumina membrane coated with a 50 nm layer of aluminum (plasmonic photomask) 

 

3. Results 

Two independent experiments were conducted using two different low-cost UV light 

sources.  In the first experiment, the mask is placed in direct contact with a silicon wafer spun 

coated with SU-8 photoresist.  The aluminum side of the mask is placed facing up and away 

from the wafer.   A p-polarized, VSL 337.1 nm nitrogen laser was incident perpendicularly 

across the surface of the photomask and exposed for 20 seconds.  The exposure resulted in a total 

dosage of approximately 400 mJ cm2⁄ , over a total area of 0.35 cm2.   Following exposure and 

development, the wafer was examined to see if the alumina pore pattern had transferred to the 

photoresist.  Using an atomic force microscope (AFM), several bands of exposed photoresist 
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patterns were discovered.  In these exposed areas, many features in the range of 200-300 nm 

were found in a similar pattern to that of the pores in the alumina membrane (Figure 2); this 

technique was able to produce features as small as 100 nm due to the variation in pore diameters 

of the PAM (Figure 3).  In a conventional photolithography system, the minimum linewidth of a 

pattern that can be successfully replicated is given by approximately λ/2.  In our system, 

linewidths of λ/3 were fabricated, suggesting an enhanced transmission likely occurred due to 

the creation of localized surface plasmons in some locations across the plasmonic mask.  

Features that appear to be slightly larger than the pore diameter can be attributed to the enhanced 

transmission of light due to the formation of localized surface plasmons as well as the slight air 

gap between the mask and photoresist layer.  The penetration depths of the patterns on the 

photoresist appear to be quite shallow due to the near-field property of the surface plasmon 

mode. This may cause issues when transferring the pattern to other materials, but can be easily 

remedied by using a different resist or thinner resist layer. 
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FIG. 2. AFM image of exposed SU-8 photoresist with plasmonic photomask pattern 

 

 

FIG. 3. Histogram of average frequency of individual feature diameter in 5 𝛍m x 5 𝛍m exposed area 
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In the second experiment, a 405 nm peak filtered Mercury lamp was used instead of the 

337 nm laser.  The aluminum covered membrane was again used as the photomask with the 

aluminum side facing opposite to the silicon wafer as before.  AZ-5214E photoresist was used 

for this experiment instead of SU-8.  The system was exposed to a total dosage of 150 

mJ cm2 ⁄ across the photomask.  Following exposure and development, the wafer was examined 

via an optical microscope and scanning electron microscope (SEM).  In the two SEM images 

(Figure 4), it is seen that instead of completely transferring the PAM pattern onto the photoresist, 

a labyrinth texturing pattern was instead created.  The formation of this texturing pattern can be 

attributed to a combination of the diffraction of light through the pores in the alumina membrane 

and the edge effect at the pore boundary.  Due to a slight roughness at the pore boundary 

between the aluminum/alumina interface, the incident light that is unable to focus through the 

pore becomes scattered, resulting in the labyrinth pattern shown.   At many areas throughout the 

alumina membrane, the pores are not highly periodic and thus localized surface plasmons cannot 

easily be generated.  The SPPs generated in this case are alone not enough to overcome the 

diffraction limit of the 200 nm diameter pores.  In the two optical images shown (Figure 5), it 

appears that the PAM pattern was able to transfer to the photoresist in a limited extent.  The 

features shown in the photoresist layer appear to represent the PAM pattern with the exception 

that the features are significantly larger and spread further apart than the pattern of the pores in 

the PAM.  The pattern is attributed to the presence of localized surface plasmons created by the 

semi-periodic nature of the aluminum on the alumina membrane.  Since the membrane pattern is 

not homogeneously periodic in all locations, localized surface plasmons will only be generated in 

certain spots along the surface of the aluminum.  These spots resulted in enhanced transmission 
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and the transfer of the pore pattern.  Larger feature sizes are again attributed to the formation of 

LSPs and the slight air gap between the photomask and wafer.  To further minimize the feature 

sizes created in this process, the mask dimensions, exposure dose and development technique 

will likely need to be optimized.  In the areas where localized surface plasmons cannot be 

resonantly generated, the textured labyrinth pattern seems to appear in the same manner as the 

SEM images as shown before. 

 

FIG. 4. SEM images of exposed AZ 5214 E photoresist with labyrinth texturing pattern 

 



48 
 

 

   

FIG. 5. Optical images of exposed AZ 5214 E photoresist with periodic micro features (1000x) 

To determine whether the metal-dielectric interface and the formation of surface 

plasmons were the main contributing factors in our process, a porous alumina membrane with no 

aluminum coating was subjected to the same photolithography processes as in the previous 

experiments.  Following exposure and development, the wafer was once again examined using 

SEM and optical microscopy.  After close examination, it was revealed that the porous alumina 

pattern was not transferred to the photoresist, suggesting the metal-dielectric interface played a 

crucial role in the lithography process. 

4. Conclusion 

The simple plasmonic photomask and subsequent fabrication techniques demonstrated in 

this letter provide a unique solution to the issues hampering the use of plasmonics in 

photolithography.  Through the use of a pre-fabricated porous alumina membrane coated with a 

thin layer of aluminum, features on the scale of λ/3 were demonstrated with relatively high 

throughput using a simple 337 nm UV laser.  A surface labyrinth texturing effect and periodic 
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micro features were realized using the same plasmonic photomask with a 405 nm peak UV lamp.  

Through process optimization and improved consistency in the alumina dielectric layer, the 

techniques shown in this letter have the potential to provide a low cost, simple, high throughput 

alternative to the semiconductor industry. 

 This material is based upon work supported by the National Science Foundation under 

Grant No. CMMI-1237275. The lead author gratefully acknowledges the financial support. 
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CHAPTER 4. GENERAL CONCLUSIONS 

4.1 Summary 

From the results of the previous two chapters, it is apparent that the use of plasmonics for 

micro/nano manufacturing purposes has the ability to revolutionize the semiconductor industry.  

In chapter 2, a method for generating a wide array of semi-periodic gold nanoparticles via an 

optical plasmonic antenna was discussed.  In this technique, a gold/alumina nano-hole optical 

antenna can be irradiated using a 1064 nm Nd:YAG laser system, depositing semi-periodic gold 

nanoparticles onto the surface of any flat substrate.  The discussed method shows great potential 

as a low cost, simple, low energy, and environmentally friendly alternative to other nanoparticle 

formation techniques in literature.  In chapter 4, a low cost plasmonic nanolithography 

photomask capable of producing features on the order of λ/3 is discussed.  This technique utilizes 

the dielectric properties of aluminum oxide with the ability of aluminum to produce surface 

plasmon effects at UV wavelengths.  Periodic nanohole arrays in the alumina allow for localized 

surface plasmons to develop on the surface of the aluminum film and expose features in the 

photoresist that would not be reproducible without a plasmonic effect.  This method provides a 

great low cost alternative to conventional photolithography and other more complex plasmonic 

nanolithography setups.   

 4.2 Recommendations  

The main focus of this study was to investigate the potential applications of plasmonics in 

micro/nanomanufacturing.  While the work presented in the previous chapters has shown a few 

possible uses of plasmonics in manufacturing, more work can be done to build upon the results 

of this paper.   One of the most impactful advances that could benefit the discussed techniques 
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would be the development of a more consistent and highly periodic alumina membrane.  The 

membranes used in the discussed research were developed for purposes unrelated to their actual 

application.  An alumina membrane with consistent periodic features would allow for stronger 

coupling of light with the deposited metal film and a more widespread localized surface plasmon 

resonance to occur.  With a stronger resonance effect, we could potentially see ablation of gold 

nanoparticles at even lower energy fluence levels than what was observed using the gold/alumina 

optical antenna. In the plasmonic nanolithography technique, a stronger localized surface 

plasmon effect has the potential to produce features smaller than the λ/3 features previously 

shown if minor adjustments are made to the pore sizes of the mask. 

 The plasmonic nanohole optical antenna technique has the versatility to be used with 

various metals exhibiting a plasmonic response under certain wavelengths.  UV and visible 

wavelength light sources could be used to develop a technique for depositing silver and 

aluminum nanoparticles in a similar manner to the gold nanoparticle technique. 
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