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ABSTRACT 

 

  This study explores a novel application of the Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO) heuristic methods in a hybrid construction on a 4 cylinder 

medium-duty diesel engine at part-load conditions. The application of the hybrid PSO-GA 

approach is compared with a basic PSO in the optimization of the control parameters of a diesel 

engine utilizing high EGR capability, modestly high fuel pressure capability, and a two-injection 

fuel strategy.  

The results indicate that the application of the GA to the basic PSO method improved 

the search breadth and convergence rate when compared to the basic PSO method alone. The 

novel approach of applying the GA to the fuel schedule is found to be worthy of further 

investigation. Applying the GA to specific parameters as way to improve optimizations on was 

effective in reducing the iterations and time taken to achieve satisfactory objective values. The 

hybrid method showed up to a 49% improvement in objective value over the basic PSO with 

less operational time in testing. 
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CHAPTER I INTRODUCTION  

1.1 Motivation 

Internal combustion engines (ICEs) have played a substantial role in the development of 

our modern world. Several industries rely on internal combustion engines to drive their 

productivity. Globally internal combustion engines are widely used in the sectors of 

transportation, power generation, construction, and agriculture. Almost every aspect of life in 

this age is dependent on ICEs [1]. IC engines are used widely and production is competitive. On 

the other hand, such widespread use of ICEs has been identified as a source of harmful 

emissions on a global scale [2] [3] [4]. 

 Continued growth in industries which use ICEs is also a significant factor in the 

prediction of fuel use and emission production. As of 2012 87% of eligible Americans are 

licensed to drive an automobile, which represents a steady increase since licensing was 

introduced [4]. Furthermore, rapid growth and modernization in developing countries, such as 

China and India, are responsible for adding a large number of vehicles to the global fleet. 

Despite these trends, the predictions of gasoline consumption are somewhat steady to 

decreasing for the next 20 years. “Dieselization” of passenger cars and CAFE mileage standards 

imposed by recent American legislation both contribute to this prediction of gasoline use, while 

at the same time they contribute to the increased use of diesel engines [5]. 

 On the other hand, increased attention towards diesel engine tailpipe emissions has 

created pressure for manufacturers to produce engines which pollute less [1] [3] [4]. 

Developments such as diesel particulate filters, selective catalyst reduction with diesel exhaust 
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fluid, diesel oxidation catalysts, and NOx traps have been introduced to address emissions 

concerns by after-treatment of exhaust gasses. The U.S. Tiered emissions standards have 

required emissions to be reduced tenfold over the last decade [4]. The costs of these exhaust 

treatment systems are quite high since they often require rare earth metals and advanced 

manufacturing techniques [3] [6] [7] [8]. As new technologies are developed to both reduce 

emissions as well as increase fuel mileage, diesel engines become increasingly complex and 

more expensive to operate and develop [1] [3] [9]. 

As the vast majority of goods consumed in America are transported using diesel engines, 

improvements in fuel consumption can have a real impact on market prices of goods [1] [5]. 

Developments which improve the fuel consumption rate can also impact the fuel price itself. It 

is critically important to the economy that the issue of fuel efficiency in modern diesel engines 

is addressed [3]. 

Global environmental concerns over increasing atmospheric CO2 concentration are also 

another motivation for decreasing fuel use [4]. By decreasing the total fuel used CO2 emissions 

are directly reduced [1] [3]. Although CO2 emissions are not currently regulated by government 

agencies, a trend of advertising environmentally friendly technologies and practices has 

motivated agencies to further understand and limit resource consumption and CO2 production 

[1]. 

Other pollution concerns come from the emission of hydrocarbons and nitrogen oxides 

which can contribute to acid rain and smog [1]. Smoke, or more technically particulate 

emissions, can also lead to substantial environmental impact as well as an immediate impact on 
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humans [2]. In rapidly growing regions of Asia, pollution levels have reached dangerous levels 

for humans and rainfall onto the skin can harm people and objects.  

Furthermore, small particulate matter has been implicated by the WHO in 3.7 million 

deaths in 2012 alone, attributed mostly to finer smoke particles which can easily enter the 

cardiovascular system and cause cancer [2]. This level of pollution requires rapid technology 

developments and such rapid changes in applied technologies are usually quite costly. 

 

1.2 Objective 

Computerized technology has allowed our society to advance at an astonishing pace 

since they were introduced [3]. Advancements in digital controls and communications, 

materials science, and manufacturing processes have provided opportunities to improve 

emissions performance in modern combustion engines [1] [3]. Optimizing such complex 

systems presents a problem in itself, however, as new technology must be thoroughly tested 

before it is considered viable for production. As each new device is added or changed the 

performance of the combustion system can become harder to predict and the combustion itself 

can become more difficult to control [1] [3]. Thus, efforts must be applied to improve the 

techniques of testing and control parameter optimization to enable new advancements to be 

rapidly evaluated and improved in the design process.  

Modern optimization techniques have demonstrated that they can reduce the time and 

resources to identify solutions in complex systems with highly varied response characteristics 

[10] [11] [12] [13] [14] [15] [16]. The objective of this research is to apply new methodology to 

the heuristic optimization of control parameters in an experimentally tested diesel engine. A 
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new hybrid of two established heuristic methods, the particle swarm optimization (PSO) and 

genetic algorithm (GA), which are commonly used in engine testing, is hypothesized to provide 

the benefits of both methodologies while avoiding compounding of the drawbacks [17] [16] 

[18]. This hybrid approach is expected to be broadly applicable applied to an experimental 

engine apparatus. 
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CHAPTER 2 THEORETICAL BACKGROUND 

2.1 Particle Swarm Optimization 

The particle swarm optimization (PSO) algorithm is a heuristic optimization algorithm, 

developed by Kennedy and Eberhart in 1995, wherein potential solutions are evaluated and 

improved using information exchange to produce improved solution values within a population 

[19]. As a heuristic method, of course, the PSO cannot guarantee the location a global optimum 

within the design space, although it does perform well on problems with non-differentiable 

space and with convoluted response variables [20]. PSO is just one example of a group of 

methods, classified as evolutionary methods, along with the genetic algorithm, which has been 

commonly applied to internal combustion engine optimization [3] [10] [17] [21]. 

 Optimization of internal combustion engine operating parameters is a very complex and 

difficult problem. Heuristics in general, and specifically evolutionary methods, are an efficient 

way to optimize parameter selection within a particular test environment with such complexity 

[3] [11] [12]. The PSO and GA have both been shown to be effective methods for optimizing 

combustions systems, especially with a high number of variables in the design space and 

convolutions in the response characteristic which cannot be optimized with gradient search 

techniques [3] [10] [11] [17]. 

 PSO has been used extensively since its emergence and many variations have been 

developed for specific applications and classes of problems [13]. Generalizations of the “social 

intelligence” factors have been developed into more modern methods such as neural network 

development and advanced topology structures within the PSO but these have tended to focus 

on well-studied test functions [11] [15]. Modern advancements in heuristic optimization have 
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focused on generalized methods, computational systems, and standard test batteries, which 

have been widely used to evaluate the performance of optimization routines [3] [11]. On one 

hand we want the method to perform well on a wide range of problems, while on the other 

hand, performance in unrelated realms may actually serve as a detriment to the specific 

application, as illustrated by the “no free lunch” theorem [22] [23]. 

 In experimental application an operator or designer has at hand a large amount of 

problem specific knowledge and potentially previously accepted test methods. The basic PSO 

algorithm is generally devoid of preference toward problem-specific knowledge and is widely 

applicable to almost all problem types, be they continuous or discrete, global or localized, etc. 

As applied to engine studies the basic PSO has performed well enough to be considered 

effective, though the PSO does have some drawbacks [3] [10] [21]. Drawbacks of the general 

PSO method include its single-objective arrangement, a likelihood of premature convergence by 

clustering in a local optimum, the inability to make vast leaps to isolated regions of the feasible 

design space, and stagnancy in late stages [3] [15] [19]. The advantages of the PSO method 

include rapid discovery of the approximate optimum, minimal objective evaluations when 

compared to other evolutionary algorithms, few tuning parameters, and relative simplistic 

methodology [11] [12]. 

 The particle swarm algorithm is simple in construction and implementation requiring 

only a few lines of code to operate. 

 

𝑋𝑖 + 1 = 𝑋𝑖 +  𝑉𝑖 + 1                    ( 2.1 ) 

𝑉𝑖 + 1 =  𝑤𝑉𝑖 +  𝐶1𝑅1 (𝑃𝑏𝑒𝑠𝑡, 𝑖 –  𝑋𝑖 )  +  𝐶2𝑅2 (𝐺𝑏𝑒𝑠𝑡 –  𝑋𝑖  )    ( 2.2 ) 
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The PSO algorithm uses two weight parameters to balance the individual and social confidence 

factors for the particle while stochastic elements are multiplied to those weights which vary the 

interest of the particles at each iteration. Another weight is used to either reduce the current 

velocity or reduce the impact of the previous velocity factor. These are called the constriction 

factor and the inertia weight respectively and in practice only one is applied, but almost all 

variations of the PSO use one or the other to prevent velocities of particles far from the global 

best from accumulating too much velocity and diverging [11] [14]. This basic PSO has been used 

successfully in combustion research and is the simple variation used in this study. Much work 

has been done on many PSO variations as well as parameter selection for the velocity reduction 

factor, social interest factor, and individual interest factor [11]. Such analysis is beyond the 

scope of this study and to emphasize the benefits of the methodology proposed no work 

beyond simply choosing well respected values for these parameters. Substantial work exists on 

not only the choice of the parameters themselves but on how to optimize even those 

parameter choices (a realm of optimization called meta-heuristics) [3]. Furthermore, the 

parameters were kept constant even if an improvement could be realized because the ultimate 

goal of the research presented here is to validate the construction and novel application of the 

method rather than compare the absolute performance of each method independently after 

meta-optimization of the optimization itself. While choosing different parameters can 

accelerate the optimization a relative comparison was made using w=0.33, C1=C2=0.66. This 

conforms well to parameter ranges presented in prior studies and literature [11] [12] [10] [19]. 
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2.2 Genetic Algorithm 

The Genetic Algorithm (GA) was originally presented in the 1960s and 70s by 

Rechenberg and Schwefel, and then through the work of John Holland at the University of 

Michigan, it became widely seen as a viable algorithm for optimization of a diverse array of 

problems. The use of genetic algorithms remained predominantly theoretical until the 80s 

when conferences began to be held on the subject. After some time academic interest grew 

and by 1989 commercial tools existed for computational optimization using desktop computers. 

The original software package is still in existence as “Evolver” which was its original moniker [3]. 

Such prevalence is rare in the computing industry and it speaks to the power of the genetic 

algorithm. Indeed, decades later even the basic GA serves as a powerful and proven tool for 

optimization [3] [10]. 

 Modern variations in the structure of variants of the GA are so numerous that a concise 

study of GA methods is well beyond the scope of an application based work such as this. Many 

modern GA constructions have been reviewed and validated by computational researchers and 

work continues in combustion optimization with a focus on GA variants [3] [11] [12] [17].The 

GA is most commonly used in combustion chamber design as well as operating regime [3] [16] 

[24]. 

 The genetic algorithm can be described simply as a set of functions which closely 

approximate natural selection and are performed on a set of individuals in order to improve the 

overall fitness of the population [11]. Beneficial traits are identified by their retention in the 

population as it evolves. Different implementations of the GA might examine individuals or the 

entire population, or typically some combination of the two. The functions used in the GA 
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replicate those from natural evolutionary systems, specifically crossover, selection, and 

mutation [11] [12]. 

 The GA has specifically been proven useful in determining optimal injection strategies in 

simulated experiments which revealed a prediction of PCCI combustion, a widely accepted 

strategy for reducing NOx and Soot emissions simultaneously [25]. The ability of the GA to find 

regions of the design space which are not contiguous with the initial search space is one of the 

primary reasons that the GA is so useful when discovering new modes of combustion, in 

particular, HCCI, RCCI, PCCI, as well as alternatively fueled engines, combustion modes wherein 

the earliest injections could be a full crankshaft rotation before the combustion event [3] [9] 

[25].  

Generally speaking, the genetic algorithm can suffer from scalability issues as well as 

demanding a large number of evaluations to converge [11]. These limitations come with the 

advantage of being able to find disjoint areas of feasible solutions within a complex response 

space. The genetic algorithm can also naturally explore more of the design space as compared 

with the particle swarm method [11] [18]. Other potential shortcomings of the GA include 

failure to converge, destructive mutation, and genetic stagnancy. Many methods have been 

proposed for counteracting the shortcomings of the basic GA but each comes with its own new 

caveats; typically sacrificing simplicity in methodology and the increased difficulty of handling 

“problem-specific tuning parameters”, such as with multi-objective methods or neighborhood 

PSOs. 

 While there are certainly plenty of GA variants that seek to add steps which push the 

solutions in particular directions using PSO like steps, however, as these methods become more 
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convoluted they also become susceptible to bias and preferences toward certain problem 

specifics. Designers would like to use these methods to test unknown new technologies, some 

never before considered, and it would be unfair to expect methods which are highly 

conditioned to one system to perform effectively and efficiently on a new, totally unknown 

system [23]. This is underscored by the wide acceptance of the “no free lunch” effect. As a 

particular method becomes more convoluted the confidence in such a method to work as well 

when an unknown change is made in the system is reduced dramatically. Occam’s razor can be 

interpreted to mean a simple method which shows good success should always be preferred 

over a convoluted one which provides only similar performance. Certainly, though, some 

optimization methods and convolutions specific to combustion problems will be advantageous, 

they are beyond the scope of this study. 

 Another trend in optimization is toward multi-objective optimization techniques which 

can offer designers more feedback and explore spaces more fully. These have been commonly 

implemented in the GA and occasionally in the PSO, but as this study seeks to compare the GA, 

PSO, and hybridized PSO-GA method to each other it would have been unscientific to compare 

Multi-Objective GAs due to the fact that they have different performance metrics and goals in 

revealing relationships rather than seeking single optimums. Even as such, it is expected that 

improvements in the performance of single solution methods could be extended to such Multi-

Objective methods as well as more complicated methods with enhanced logic, albeit with the 

potential for reduced enhancement due to overlap of the benefits. Furthermore, the coding of 

such multi-objective methods is often substantially different than that of single objective 

methods. The effect of the structure chosen for the particular objective function in this study is 



11 

briefly explored in order to understand the impact of the choice, but conformity to prior studies 

and commonly used structure allows broader comparison and more accurate expectations. 

While the benefits of multi-objective methods are undeniable, they are simply a different class 

of optimizers and are better suited for design parameters rather than control parameters [3]. 

 

2.3 Engine Technology and Testing 

 Engine technologies constantly evolve as machining techniques and new materials 

become available, and as inventors develop novel technologies. The trend in recent times has 

been toward variability over fixed parameter selection. The results of this trend are that as-built 

engine calibration is several orders more complex than just a decade ago. New tools must be 

used to optimize these incredibly complex systems [3] [12] [26].  

Examples of this include but are not limited to variable valve timing, variable valve lift, 

variable effective compression/expansion ratio (Miller cycle, Atkinson cycle), fuel pressure, fuel 

injection timing, fuel injection rate, fuel injection events, fuel reactivity, boost pressure / vane 

control, and exhaust recirculation rate. Considering that these parameters are actually all 

commonly available market technologies that were rare just a decade or two ago, and when 

they are combined and packaged into functional engines the complexity of the systems is 

dramatically large and parametric study is simply impossible. Even with discrete blocking and 

combustion mode prediction the order of such systems is incredible. Modern diesel engines can 

use from 5 to 8 injections during each combustion cycle alone, and in a rate shape controlled 

injector this would result in up to 4 parameters for each injection, potentially adding 32 



12 

variables to the necessary design space. The absurdity of such full parametric studies is quite 

clear [11]. 

Furthermore, the variable devices identified above would appear in the as-built 

condition of an engine, not its original design parameters, which could easily number into the 

hundreds. Given such complex systems which need to be tuned and calibrated for operation in 

the real world it is clear that optimization techniques need to be applied not only to 

computational design but also to operational testing of such engines. Validation of models, 

emissions testing, and rapid prototyping are just a few reasons that real engine testing must 

still occur despite so much progress in the realm of computational modeling. One example that 

underscores the need for using engine testing is the application of new fuels. Synthetic fuel 

developments have posed problems in multicomponent spray, vaporization, and combustion 

modeling requiring long periods of development and validation whereas engine studies can 

begin as soon as the fuel is available for testing. In this way, designers can use feedback from 

existing engines to validate and develop models as well as attempt preliminary designs using 

insight from the actual engine testing. The author sees the new paradigm of engine design as 

one in which engine testing and computational engine design are done in an integrated manner 

with feedback from testing apparatus able to be used immediately by designers to develop new 

designs. This new paradigm will require rapid discovery of optimum combustion parameters in 

order to be useful to design engineers. Thus, the necessity of adapting useful combustion 

optimization strategies from computational design to experimental apparatus is clear. 

Another complexity involved with engine testing that is not a factor for computational 

design is the specific apparatus has a substantial impact on the time it takes to obtain results. 
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This would be paralleled in the computational realm by the comparison of a GPU calculation to 

a CPU calculation or the computational effort in floating point operation versus that of an 

integer operation. In common optimization problems, any single function evaluation is 

weighted the same as any other, whereas in an experimental apparatus, the time to obtain 

steady state equilibrium parallels the computational cost. The optimization of real systems 

should serve to minimize the time and real costs of operation rather than the specific number 

of data points taken. By increasing the speed of the data collection as well as the diversity of 

the population of data, value is added by the experiment in two ways; engineers can get 

feedback more quickly and at lower cost to iterate through the design process more rapidly, 

and secondly, within single objective methods still more information about tradeoff 

relationships can be discovered without the increased time penalty multi-objective methods 

can impose. 

 The focus of this study is on accelerating the optimization of injection schedule 

parameters in a two injection strategy with variable fuel pressure through applying the GA to 

an existing PSO method. As evidence indicates, the GA methodology has inherent benefits in 

developing injection strategy optimums [25] [3] [14]. The established particle swarm techniques 

work very well in problems where the response characteristics are nearly convex in the local 

region of the optimum and along any front which might be contiguous to that optimal region 

[10].  

Multi-objective optimization research indicates that single objective function 

formulations for multi-objective problems are too restrictive and require more problem specific 

knowledge than those inherently designed for multi-objective optimization. Decisions in 
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methods of applying appropriate objective functions to optimize problems which contain new 

constructions also complicate the process for single-objective methods in multi-objective 

problems [3]. The author posits that regardless of the multiple objective strategies used during 

an experimental engine study, the actual calculation of the objective value(s) itself is 

inconsequential in this study, due to the nature of collecting exhaust emissions and engine test 

data, and thus it can quickly be recalculated for all historical data points in the study at any time 

at effectively no iterative cost. In this way, the objective function can itself change during the 

testing such that a single objective methodology can still explore trade-offs between objectives 

and provide meaningful results without the added complexity of full multi-objective methods, 

while also maintaining some influence for engineering intuition and problem specific 

knowledge, by changing weight and order to specific the objectives. In this way the formulation 

of the single objective function can remain simple and construction minimized, while at the 

same time offering more exploration and broader information about the relationships between 

objectives and still allowing the designer to influence the priority of the objectives. This 

simplified approach to multi-objective optimization in an experimental engine study is 

proposed due to its simplicity and ability to illustrate clearly the benefits of the approach. The 

overall merit of multi-objective techniques in both the GA and PSO routines is not disputed, it is 

merely excluded and alternative approaches to simplify the construction are explored for 

viability. In practice multi-objective methods have been absolutely useful and are widely 

implemented but for the purposes of academic comparisons they interfere with this particular 

studies ability to test the application of the GA to particular parameters within another 

methodology. These multi-objective methods are excluded from this study but could be applied 



15 

with the construction proposed here if deemed useful by designers of experiments. GA and PSO 

multi-objective variants have been shown to be effective developments in combustion 

optimization and are fundamental in modern engine design processes [3] [21] [25]. 

 

2.4 Novel Hybridization of the PSO and GA 

 Novel approaches to applying the PSO and GA methods simultaneously have been well 

researched and explored in computational studies [16] [24] [27]. Other hybrid approaches have 

also combined non-evolutionary methods with evolutionary ones, typically using gradients (or a 

numeric approximation of the gradient) combined with evolutionary methods [3] [11]. Hybrid 

gradient methods may improve the GA more than they improve the PSO due to the nature of 

the PSO to naturally seek out improved solutions in a path-driven approach, while the GA 

methods do not specifically reward individuals for improvement in objective value beyond the 

selection criteria. Other applied hybrid methods which have utilized regression techniques 

along with evolutionary methods and have been quite successful but typically require a large 

amount of data to be analyzed [3] [14]. Unfortunately, most current studies have neglected to 

compare the PSO-GA hybrid methods to basic PSO methods in order to determine if exploiting 

the advantages of hybrid methods can be realized on an experimental engine testing apparatus, 

especially one with a variable cost function in evaluation time. As indicated by prior research, it 

is expected that controllable design parameters can be optimized separately from hardware 

design parameters and while most recently research has focused on modeling and 

computational realms while optimization of control parameters in actual engine test platforms 

has been somewhat neglected. By investigating and applying hybrid concepts adapted from the 
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computational realm, experimental methods will be sought to improve controllable parameter 

optimization on the experimental engine apparatus.  

 PSO and GA hybrids are often applied in novel ways using problem specific knowledge 

[21]. As identified by prior studies the PSO method advantage is primarily rapid convergence, 

especially in locally smooth regions. The GA advantages are primarily exploration and diversity, 

especially in convoluted and disjoint regions of feasible design space, and with highly complex 

response surfaces. Identifying which parameters are well suited to optimization by PSO and 

which are best suited to the GA requires engineering intuition, general problem-specific 

background knowledge, apparatus-specific knowledge, preliminary studies, or a substantial 

quantity of a priori decisions derived from prior explorations or research. 

 This study constructed a PSO-GA stepwise hybrid using a PSO “step” followed by a GA 

“generation” in order to exploit a settling time difference in the test apparatus. No function 

evaluation took place between the two different steps so the current objective value of the 

“parent” particle is unknown when compared to the current generation. In this evaluation, 

however, the parent particle location is tested to demonstrate the type of improvements 

expected. 
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CHAPTER 3 EXPERIMENTAL SETUP 

3.1 Overview of Testing 

 This study aims to find a novel improvement of existing heuristic optimization methods 

for an experimental compression ignition engine by utilizing a hybrid of two existing methods. 

The goal of the test is to determine if the specific construction can improve the ability of the 

particle swarm method to find an optimum in less real-time, using less fuel and resources, and 

with improved diversity in near-optimum data points. The methodology implements the 

genetic algorithm functionality into the particle swarm method in order to diversify and 

improve results while exploiting the difference in settling time of the experimental apparatus 

 Initially a sensitivity study revealed the response level of the five parameters varied 

throughout the study while a second brief investigation revealed the safe feasible space for the 

main SOI and EGR on the apparatus. The apparatus also had limitations on fuel pressure and 

pilot injection parameters with respect to the absolute timing as well as the relative timing of 

the main SOI to the pilot timing. The initial study was used to guide the limiting factors in the 

primary study. Parameter sets with poor combustion quality were eliminated in this step to 

expedite testing and preserve the condition of the apparatus for continued testing without any 

loss of quality to the results. Poor combustion quality causes prohibitive HC emissions and 

instability in the apparatus preventing steady state conditions. 

After initial tests were used to determine sensitive parameters, limits of operation, and 

response time of the system to step changes in each parameter, the final test arrangement was 

determined. Using the information from the initial studies the test parameters were set. Pump 

diesel fuel was used in order to best reflect operations as equipment would be used by end 
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users in the marketplace and the fuel for the entire testing was reported to contain 

approximately 5% biodiesel and all of the fuel used for testing came from the same pump at the 

same time. No fuel density variations could be measured throughout the testing using both a 

specific gravity apparatus and a live measurement from the fuel flow apparatus. 

The load condition chosen was approximately 50% of the rated constant duty load at 

1400 RPMs which represented part-load conditions where control parameters play a critical 

role in determining emissions and fuel economy. Higher loads tend to be dependent more upon 

fixed design parameters while very low load cases are not as useful for real-world applications 

in medium to heavy duty engines applied in variable speed applications. These conditions 

replicated earlier studies on the apparatus and allowed validation of the operation prior to and 

following the study. Some parameters such as the intake temperature and fuel temperature 

may not be representative of average real-world conditions, however, they offered more 

consistent control over variation to control the test environment more effectively. 

  
Table 3.1 Test Conditions 

Speed 1400 RPM 

Torque 110 Lb-ft (149 Nm) 

Intake Temperature 80 F (26.7 C) 

EGR Temperature 104 F (40 C) 

Fuel Temperature 65 F (18.3 C) 
 

 
 Table 3.2 Engine Control Parameter Limits 

Parameter Minimum Maximum 

SOI -15 CAD ATDC 5 CAD ATDC 

EGR 2% 65.5% 

Fuel Pressure 113 MPa 240 MPa 

Pilot Timing -40 CAD ATDC 0 CAD ATDC 

Pilot Ratio 2% 65.5% 
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3.2 Particle Swarm Optimization 

 The particle swarm optimization routine requires parameters including limits on feasible 

design space in restricted domain problems as well as operational parameters for the method 

itself. The specific variant used in this basic PSO implementation is the inertia weight method 

which applies a velocity reduction factor to the previous velocity at each update. This is the 

most simple PSO variation and allows some velocity limitation without fully stifling the 

acceleration offered by the PSO. The factor was chosen to be very small in this study when 

compared with other PSO variants due to the desire for a more complete exploration of the 

local spaces after initialization. The alternate velocity restricting variation, the constriction 

factor, would have reduce the impact of new information to the particles and is more complex 

without providing clear benefits to this problem. The inertia weight factor chosen to be equal to 

0.33.  

 The other PSO parameters were chosen to represent the social and individual 

motivation of each particle equally. The Gbest and Pbest influence was, on average, equal for 

each particle at each iteration by using a value of 0.66 for both the Gbest and Pbest scalar 

factor. This resulted in a new velocity term at each iteration which was on average one part 

each prior velocity, vector difference to Gbest location, and vector difference to Pbest location. 

Each factor had an equal influence with stochastic variation introduced to each of the Pbest and 

Gbest through the random number factor. The PSO factors used are summarized and presented 

in Table 3.3. 
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Table 3.3 PSO factors 

C1 – Social Factor 0.66 

C2 – Individual Factor 0.66 

w – inertia weight factor 0.33 
 

 

 

3.3 Genetic Algorithm 

 The generic genetic algorithm structure was modeled using an existing code and 

modifying the techniques to apply the three unique functions of crossover, mutation, and 

selection, to the method. The unique parameters for a GA include crossover rates and mutation 

rates as well as selection criteria. The selection criteria used was simply the objective function 

chosen. An opportunity exists to exploit a different objective function at each generation or 

specifically to the genetic algorithm rather than the PSO through the selection criteria. In this 

study the focus is on the construction rather than the individual exploits within each method. 

Two types of crossover were used to control the type of mixing referred to as “single point” and 

“switching” which traded either single points of genetic information or switched streams of 

genetic information are used as the recombination method. Two types of mutation were also 

implemented to control mutation referred to as “replacement” and “switching” with 

replacement involving replacement of the chosen point with a preset value and switching 

simply flipping the bit to the opposite value. The mutation rates were held quite low as this 

experiment did not have isolated design space islands or totally random starting points. In 

practice each problem requires tuning of such parameters and some test mutation and 
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crossover was done on particular members to assure substantial variation in the design 

variables while selecting the parameters, summarized in Table 3-4 below 

Table 3.4 GA Factors 

Parameter Crossover Rate Crossover Type Mutation Rate Mutation Type 

SOI 0 N/A 0 N/A 

EGR 0 N/A 0 N/A 

Pilot Timing 0.57 Switching 0.07 Switching 

Pilot Percent 0.57 Switching 0.07 Switching 

Fuel Pressure 0.34 Point 0.03 Replacement 
 

 

 

3.4 Hybrid Method and Objective 

 The methodology applied herein was done as a two-step process, first taking a PSO 

update step, then producing offspring for each PSO point. The PSO was processed on the 

existing data points using the previous generations Gbest and Pbest locations, the genetic 

variants are taken by crossing over with random current generation PSO particles and 

exchanging selected fueling parameter information. The genetic variants are tested and the 

best performer is selected from each sub-population to represent the PSO particle. The 

resulting PSO position is then fed back to the PSO process so that a Gbest and Pbest can be 

identified from the selected population. The ratio of GA variants to test for each PSO particle 

was selected in order to maintain an equivalent ratio of GA and PSO searching with respect to 

evaluation time, rather than by the computational tradition of raw function evaluation counts. 

 The particle swarm and genetic algorithms used in the optimization were structured to 

work with single objective functions. The single objective function was normalized using the 

Tier 4 2014 final off-road standards set forth by the EPA as a guide. The study was not partial to 
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this restriction however. An optimum utopia point was chosen, using knowledge of the 

apparatus and engineering intuition, which represented the center point of the NOx-Soot 

emissions area to explore the known NOx-Soot tradeoff. Targets for HC and CO emissions were 

set to the Tier IV emissions limits for the 75 HP to 175 HP range, which allowed 5.0 g/kw-hr CO 

production rather than the 3.5 g/kW-hr as required for larger engines from 175 HP to 560 HP. 

This particular engine is capable of producing 175 HP intermittently but it is not rated for 

continuous duty at such high power ratings and was not sold in such a configuration. 

The objective function chosen was structured with NOx and Soot being prioritized 

higher than HC, CO, and specific fuel consumption, which were weighted equally as secondary 

objectives. This structure was chosen for simplicity and in compliance with prior examples from 

literature however the validity of the methodology and specific exhaust targets are not 

intrinsically related. Computational methods were also used to explore the impact of the 

weighting factors in order to determine if the weighting factors could have substantial impact 

on the study and validity of the methodology. The utopia point was chosen such that it was 

presumed to be impossible to achieve but reflected the design goals of modern engine 

designers. The objective function is as follows, denoted as Fobj, with ideal values taken from 

table 3.5 

𝐹𝑜𝑏𝑗 =  [(
𝑁𝑂𝑚𝑒𝑎𝑠

𝑁𝑂𝑖𝑑𝑒𝑎𝑙
)

2

+ (
𝑃𝑀𝑚𝑒𝑎𝑠

𝑃𝑀𝑖𝑑𝑒𝑎𝑙
)

2

]
0.5

+  [(
𝐶𝑂𝑚𝑒𝑎𝑠

3∗𝐶𝑂𝑖𝑑𝑒𝑎𝑙
) + (

𝐻𝐶𝑚𝑒𝑎𝑠

3∗𝐻𝐶𝑖𝑑𝑒𝑎𝑙
) + (

𝐹𝐶𝑚𝑒𝑎𝑠

3∗ 𝐹𝐶𝑖𝑑𝑒𝑎𝑙
)]               ( 3.2 ) 
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Table 3.5 –Initially selected objective values 

Emission / Objective Tier 4 regulation Objective Point Values 

NOx 0.40 (g/kw-hr) 0.20 (g/kw-hr) 

NMHC (THC-2%)  0.19 (g/kw-hr) 0.19 (g/kw-hr) 

CO  5.0 (g/kw-hr) 5.0 (g/kw-hr) 

Soot 0.02 (g/kw-hr) 0.01 (g/kw-hr) 

Fuel Consumption * 200 
 

 

3.5 Exhaust Emissions Analysis 

 The exhaust emissions were measured using a Horiba MEXA 7100 DEGR 2 channel 

analyzer. Primary sampling and secondary sampling allowed for a live EGR calculation using the 

CO2 ratio between intake and exhaust gasses. This is a common simplification of the EGR 

measurement and is provided directly by the Horiba analyzer. Figure 3.1 shows the Horiba 

analyzer in place as it was used. The analyzer was calibrated before each data session and 

atmospheric air was sampled at the end of each session to assure that drift errors were 

avoided. Exhaust gas measurements were given in terms of concentration or volume 

percentage. Table 3.6 shows the units of measure that the Horiba analyzer returned.  The 

exhaust analyzer relies on several different technologies which can be found in corresponding 

data sheets. Of particular interest is the inclusion of methane in the hydrocarbon 

measurement, which, according to the EPA, represents a 2% increase in measured emissions 

versus controlled emissions. This difference only affects compliance to EPA standards, and since 

the test was not an EPA approved test the importance of including a scaled factor to correct the 

methane measurement was not necessary. 
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 The Horiba exhaust gas analyzer measured emissions in two separate units with Nitric 

Oxides (NOx) and Total Hydro-carbons (THC) measured in an oven while the Carbon Dioxide 

(CO2), Carbon Monoxide (CO) and Oxygen (O2) were measured in a cooled gas analyzer. Both 

devices were part of the same measurement tool and used the same exhaust gas sampling 

sources.  

Table 3.6 Exhaust Gas Analysis Measurement Units 

Exhaust Gas Species Unit of Measure 

CO (H) % 

CO (L) ppm 

CO2  % 

O2  % 

HC ppm C6 

NOx  ppm 
 

 

 

 

 

 

  

Figure 3.1 Horiba MEXA7100 DEGR Exhaust Gas Analyzer 
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 The particulate matter emissions were measured using an AVL 415S smoke meter, 

pictured in figure 3.2. The particulate emissions were the most critical emission to control as 

the Tiered emissions are incredibly strict. The smoke meter operated fundamentally by drawing 

a known sample volume of exhaust gasses through heated line and filter to capture the 

emission. Then, a light of known reference intensity was reflected off of the sample to 

determine its blackening level and this was correlated and reported by the machine in volume-

specific mass units (g/m3) and in FSN, a customized unit representing the Smoke Number 

sometimes used in industry. Since the EPA currently uses the brake-power specific mass 

production, the measurement was converted from volume specific units into mass specific units 

using exhaust gas properties and exhaust mass flow rates. This methodology allowed the total 

particulate emissions to be measured and represented in the same units as the gaseous 

emissions for direct comparison. The AVL sampling was set to sample 3.5L of exhaust gas and 

five samples for each data point, which allowed high confidence in the precision of the smoke 

tests, which can be naturally somewhat varied. 
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Figure 3.2 AVL 415S Reflective Smoke Meter 

 

 

3.6 DAQ Systems 

 National Instruments PCI data cards were used to capture data from SCB-68 breakout 

boxes. Thermal data was acquired through one unit while dyno and engine pressure data were 

taken through another. Thermocouple junctions and pressure transducers were placed at 

critical locations in the fuel and air flows. Differential pressure was measured across a laminar 
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air flow meter and converted into a corrected airflow volume and mass. The cylinder pressure 

measurements were made using a Kistler 6125A pressure transducer and a Kistler 5010A charge 

amplifier. Figure 3.3 shows the pressure transducer and charge amplifier used, while figure 3.4 

shows a PCI series DAQ card representative of the computer hardware used in this test. 

   

Figure 3.3 Kistler 6000 Series Pressure Transducer and 5000 Series Charge Amplifier 
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Figure 3.4 National Instruments PCI 

 

 Data was captured at discrete crank angle degree increments by a BEI H25 Incremental 

shaft encoder, pictured in figure3.5. The encoder was set up to trigger data collection of the 

DAQ system by using the clock input on the DAQ hardware. This method has been commonly 

used in academia and the research community as it produces smooth dense data at almost any 

RPM and does not need to be validated at each RPM value. It was also the same methodology 

that the other engine measurement and control devices used inherently, including the John 

Deere ECU. This also prevents the system from capturing different data densities when the 

rotational speed was varied, allowing the LabView data acquisition code to function the same 

for all speeds. 
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Figure 3.5 BEI H25 Incremental Quadrature Shaft Encoder 
 

 The data was processed using a customized LabView program which captured and 

averaged cycle data and produced representative curves for heat release rate and cylinder 

pressure. The program provided additional data that was not used by the study specifically 

though it was captured and archived as part of an effort to archive data on the particular 

apparatus as fully as possible, either for expansion of this study or for alternate analysis of this 

precise study.  

 

3.7 Engine Test Stand 

The test apparatus used in this study was a 4-cylinder medium duty John Deere 4045T 

engine utilizing a high-pressure common rail injection system. The engine was equipped with a 
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fixed geometry turbocharger and a customized low-pressure cooled EGR system. The engine 

was coupled to a GE dynamometer which was able to motor the engine delivering up to 120 HP 

and absorbing up to 150 HP. The test stand measured torque using a torque arm and force 

transducer which was calibrated using internal dynamometer skew and scale factors and a fixed 

weight. The dynamometer and engine are pictured in figure 3.7. The Engine geometry specifics 

are listed in Table 3.6 and were common or similar to almost all John Deere 4045 engines 

manufactured over the last decade. The engine represented a typical engine in its current 

configuration, with exception to the EGR system used. 

 

 

  

Figure 3.6 John Deere 4045 Engine and GE Dynamometer 
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Table 3.7 Test Engine Specifications 

Parameter Specification 

Bore 106 mm 

Stroke 127 mm 

Compression Ratio 17.0:1 

Injection System Common Rail 

Intake Valves 2 

Exhaust Valves 2 

Firing Order 1-3-4-2 

Piston Shape Bowl in Piston 

Model HF475-4 
 

 

 The EGR system applied to the engine was a customized apparatus utilizing a small 

positive displacement supercharger driven by an externally controlled 3 phase motor. The 

current to the motor was adjusted to vary the speed of the supercharger to further motivate 

the EGR gasses to enter the intake flow. This allowed precise and wide control of the EGR 

parameter without needing to send parameters to the engine ECU separately. The EGR system 

was capable of delivering EGR rates well above typical operating limits for combustion engines, 

up to 80% or more, and such substantial EGR rates require substantial cooling. Three John 

Deere EGR coolers were employed in parallel with variable cooling water flows to cool the 

exhaust gasses prior to entry to the turbocharger. Figure 3.7 shows the EGR manifold and 

coolers employed by the system while figure 3.8 shows the supercharger system used to 

motivate the EGR gases into the intake flow. 
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Figure 3.7 EGR Cooling Manifold and Coolers 

 

 
Figure 3.8 EGR System Supercharger and Collection Manifold 
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 The fuel flow was measured using a high precision flow meter, which relied 

fundamentally on the Coriolis effect to measure the flow, and the measurement was repeated 

4 times during each data point collection. The meter utilized an integrated temperature and 

density measurement while it reported flow in terms of mass flow rate (g/s). Figure 3.9 shows 

the flow meter and its associated display unit. 

  
 

Figure 3.9 Fuel Flow Meter and Display Unit 
 

 The John Deere DevX development tool was used to send and receive communications 

with the engine ECU. The fuel event timing and fuel pressure were confirmed using the 

feedback from the ECU via the CANBUS using the DevX tool. The tool also allowed other engine 

operating parameters to be observed while the engine was operated for consistency. The DevX 

software and John Deere ECU had a substantial effect on the testing. The configuration files 
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associated with the DevX and the ECU limit fuel control parameters and were important factors 

in determining the operational limits of the engine for the study. 

 

3.8 Experimental Test Procedure 

 The test procedure for the study involved sending operational parameters to the ECU 

and setting manual controls for the EGR system and engine throttle to meet the test specifics 

and then waiting for steady state operation to take exhaust, fuel, air, and performance data. 

After each adjustment some time was taken before the controls were adjusted a second time 

to achieve the precise operating point. Settling time for the apparatus varied based on the 

specific changes made to the operating condition, but observations were made as the 

apparatus settled to discern steady state operation. Since the turbocharger was of the fixed 

geometry type the exhaust gas temperature was a good feedback tool for determining steady 

state conditions. The emissions were also measured live and were used to determine the 

steady state readiness of the apparatus. Once steady state was achieved the apparatus was 

initialized and data collection was started. Naturally, manually collected data took a few 

minutes and over the course of the test some measurements had significant variability, such as 

fuel flow rate. These measurements were measured and averaged to decrease the variability 

introduced by their measurement. 

 Once the test data was captured for an entire generation the engine was motored and 

motoring data was collected. The data was passed to the optimization handler and new data 

points were returned to the test supervisor. Then the next generation of particles was tested. 
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This process was repeated several times for both methods and comparisons were made 

between the variations. 

 Each day the apparatus was run using prior data points which were initially collected 

and compared to expectations in order to qualitatively judge the operational status of the 

engine. This was done to detect major defects and not to study the day to day repeatability in a 

scientific process. The day to day variability is a major factor in testing, but was relatively minor 

in observation. This was due to the use of highly effective temperature controls for the intake, 

EGR, fuel, and coolant systems, which kept most temperatures consistent regardless of the 

weather conditions. Temperature, humidity, and pressure measurements were made each 

session so that the ambient conditions could be factored into the airflow measurements 

specifically. 

 Each session the exhaust gas analyzer and particulate matter analyzer were also self-

calibrated and validated using the qualitative observation discussed previously. The gas 

analyzer utilized complex internal calibrations which required very precise calibration gases and 

the smoke meter used internal blackening and white measuring utilities to self-calibrate. These 

processes were performed at a minimum of every 4 hours as well as any time a data session 

was started. 
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                                                 CHAPTER 4 EXPERIMENTAL RESULTS 

4.1 Preliminary Studies 

The results of the sensitivity and response studies indicated that the parameters which 

were most sensitive were the fuel schedule parameters, SOI, pilot timing, and pilot percentage, 

while the parameters which caused the longest delay in system readiness were SOI and EGR. 

The parameters for the PSO included all variables, allowing the PSO to rapidly accelerate the 

optimization, while the GA was only processed on the pilot timing, pilot percentage, and fuel 

pressure. The fuel pressure sensitivity was modest, as was the sensitivity, and a smaller rate of 

crossover was chosen in order to minimize the amount of variation while all parameters 

possible in the GA for more rapid and diverse exploration. 

The engine was initially operated during the first stages of the PSO and GA codes in 

unison while timing the apparatus and data collection process. The time required to measure 

the system after a large jump in all 5 input parameters was approximately 10 minutes while the 

time required for a pilot change and modest fuel pressure change was approximately 2.7 

minutes.  

Table 4.1 Qualitative Study of Unit Steps from Default Operating Conditions 

Parameter Delay in Settling Effect on Combustion 

SOI High High 

EGR High Medium 

Pilot Timing Low Medium 

Pilot Quantity Low Medium 

Fuel Pressure Medium High 
 

 
Table 4.2 Settling Time Study Results 

 Average Std. Dev. 

PSO Change 2.64 (min) 0.64 (min) 

GA Change 10.73 (min) 2.96 (min) 
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4.2 Pure PSO Results 

The initial population was distributed and tested and both algorithms were initiated 

using the test parameters from section 3. The initial test points had an average objective value 

of 28.52 and a minimum value of 11.66. The basic PSO method showed a decrease in the 

average objective function value, which indicated a tendency toward rapid clumping, while the 

minimum remained stagnant during the third generation. This highlights the PSO methods 

aggressive acceleration toward the optimum as a whole, while early exploration was inhibited 

by the strong drive towards one optimum value. Figure 4.1 shows the particle history for the 

objective values of NOx, PM, and the total of the complete objective function. 

 

 

Figure 4.1 NOx, PM and Total Objective Values for the PSO Method 
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The NOx-Soot trade was explored, as it was well known in the apparatus, and the 

generations were examined to observe the qualitative character of the spread as well as 

observe the movement from generation to generation. Shown by figure 4.2, the later 

generations of the PSO were improved in general but the showed little deviation from the 

known relationship. No points compliant to the desired region were observed. Only one point 

of the final generation demonstrated non-dominated properties which indicated that the PSO 

had not found the optimum neighborhood precisely by generation 5 and 40 particle 

evaluations. 

 

Figure 4.2 NOx-Soot Objective Values for Generation 1 through 5 for the Basic PSO 

 

The overall improvement which occurred in the PSO can be seen in figure 4.3 which 

illustrates the relatively slow improvement in the best value of the population while the 

average and variation between population members was reduced continually. 
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Figure 4.3 Overall Objective Values for Generation 1 through 5 for the Basic PSO 

  

 

The PSO method showed a clear trend of consistently decreasing the objective value of 

the best member and the population as a whole, but as the PSO population approached the 

minimum distance from the desired region the convergence was somewhat slow. The minimum 

value found after 5 generations of the PSO was 8.5 and the final average of the particles was 

11.15. Figure 4.4 shows the progression of the best value found and the average of the swarm 

by generation while figure 4.5 shows the particle evolution of the best overall, NOx, and Soot 

objective values. 
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Figure 4.4 Ave. and Min. Objective Values for Generation 1 through 5 for the Basic PSO 

 

 

Figure 4.5 Minimum Objective Values for Generation 1 through 5 for the Basic PSO 
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The particle swarm method showed a clear tendency to improve over generations even 

when the progress was slow and the drive was lowered by clumping and approach to the 

optimum.  

4.3 PSO-GA Hybrid 

 The hybrid PSO-GA method showed a decrease in the average objective function 

value, which indicated a tendency toward rapid clumping, while the minimum remained 

stagnant during the third generation. This highlights the PSO methods aggressive acceleration 

toward the optimum as a whole, while early exploration was inhibited by the strong drive 

towards one optimum value. Figure 4.6 shows the particle history for the objective values of 

NOx, PM, and the total of the complete objective function. Clearly evident was the ability of the 

hybrid method to maintain exploration and diversity into the later evaluations of generation 3 

due to the combined overshoot of the PSO and the diversity influence of the GA. 
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Figure 4.6 NOx, PM and Total Objective Values for the hybrid PSO-GA Method 

 

The NOx-Soot trade was explored for the hybrid method, as it was for the basic PSO, 
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NOx-Soot limit, bearing the traditional curved and angled “V” shape. The complete set of PSO-
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been missed in a course refined parametric study. 
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Figure 4.7a NOx-Soot Objective Values for Generation 1 through 4 for the Hybrid PSO-GA 
 

 

Figure 4.7b NOx-Soot Objective Values for Generation 1 through 4 for the Hybrid PSO-GA 
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The overall improvement which occurred in the hybrid method can be seen in figure 4.8 

which shows that while the average value decreased reasonably the minimum value decreased 

more consistently through evolutions and the spread of particles maintained a range which was 

greater than 3 times the minimum value. This illustrates that the hybrid method more 

aggressively reduced the minimum function value by exploiting a region on the NOx-Soot 

tradeoff curve while it maintained more complete exploration of the space late into the 

optimization. Also, it is further evident that while the hybrid method did not consistently 

reduce the average and spread at each generation, it did reduce the minimum value which 

indicated that the method was indeed exploring more fully while more rapidly finding the 

optimum neighborhood. 

 

Figure 4.8 Overall Objective Values for Generation 1 through 4 for the Hybrid PSO-GA 
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The hybrid method consistently decreased the objective value of the best member even 

as the hybrid population approached the minimum distance from the objective minimum. The 

minimum value found after 4 generations of the hybrid was 4.34 and the final average of the 

particles was 7.77. Figure 4.9 shows the progression of the best value found and the average of 

the swarm by generation and figure 4.10 shows the evolution of the best overall, NOx, and Soot 

objective values. 

 

Figure 4.9 Ave. and Min. Objective Values for Generation 1 through 4 for the Hybrid PSO-GA 
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Figure 4.10 Minimum Objective Values for Generation 1 through 5 for the Basic PSO 
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schedule. Figure 4.12 excludes points which fell outside the desirable range and shows the 

improvements of the hybrid method more clearly. 

 

 

Figure 4.11 Objective values of the PSO-GA and basic PSO method by time-equivalence 

 

 

Figure 4.12Objective values of the PSO-GA and basic PSO method without outliers 
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The hybrid method increased the rate of improvement showing an advantage in the first 

step that nearly exceeded the best value found by the basic PSO method over a full 5 

generations. The hybrid method also showed a higher rate of improvement over successive 

generations, as figure 4.13 illustrates, when compared with the basic PSO method. Also visible 

is the rapid reduction in average values of the PSO method versus the spreading evidenced by 

the hybrid method. The observed trend illustrates the benefits of the hybrid method clearly. 

The relative gap between the average objective value and the minimum value discovered 

highlight the simultaneous benefits of the hybrid method as the particles avoided clumping. 

 

 

Figure 4.13 Average and Minimum Objective Values for the Hybrid and PSO methods 
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Figure 4.14a Minimum Objective Values for Hybrid PSO-GA and Basic GA 

 

 

 

Figure 4.14b Minimum NOx Objective Values for Hybrid PSO-GA and Basic GA 
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Figure 4.14c Minimum PM Objective Values for Hybrid PSO-GA and Basic GA 
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4.5 PSO-GA PSO Input Parameters Comparison 

In order to garner information about the input parameters and their interactions two 

sets of data were trimmed from the whole dataset. Those points whose objective value was 

above an upper limit and those which were below a lower limit were taken to represent the 

best and worst conditions. Several graphs were produced to represent the second order 

interactions between the input parameters to reveal the combinations of parameters which 

had positive and negative relationships.  A complete second order interaction analysis was not 

the intention of the study, though the desire to discover prudent second order interactions was 

always a goal set forth by the methodology improvement through particle diversity. 

The precise values chosen as cutoffs were taken to be less important than the 

information captured within them. The upper limit was chosen to be 40 while the lower limit 

was chosen to be 7.5 which produced approximately 10 points for each in the upper portion 

and lower portion. The selected points represented the upper and lower quadrant of the data 

informally and were used to simply to understand if the optimization technique caused enough 

variation to discern important relationships for tuning and further study. The important 

negative relationships discovered are presented below in figures 4.15a, b and c and the positive 

relationships are presented in figure 4.16a, b, and c. The negative relationship discovered 

involved three parameters, specifically the pilot percentage, the fuel pressure, and the EGR 

rate, and are highlighted by the figures. 
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Figure 4.15a Second order interaction between Pilot Percentage and EGR 

 

 

Figure 4.15b Second order interaction between Pilot Percentage and Fuel Pressure 
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Figure 4.15c Second order interaction between EGR and Fuel Pressure 
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and pilot timing interaction that completes the set of three second order interactions between 

the main SOI and two pilot parameters. 

 

Figure 4.16a Second order interaction between SOI and Pilot timing 

 

 

 

Figure 4.16b Second order interaction between SOI and Pilot percentage 
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Figure 4.16c Second order interaction between Pilot timing and Pilot percentage 
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CHAPTER 5 CONCLUSIONS 

5.1 PSO-GA Hybrid Improvements 

 

The data gathered during this experiment indicate that the novel hybrid approach 

selected did show improvement in the convergence speed and spread of exploration 

simultaneously. The PSO-GA hybrid method produced data which allowed some negative 

interactions to be isolated and some positive attributes to be identified in the region of the 

optimum value. The data revealed that there was a subtle region of improvement over the 

standard NOx-Soot tradeoff curve which could be explored rapidly using the novel approach. 

 The hybrid approach used applied the genetic algorithm specifically to parameters 

which had an unpredictable effect on the system and yet did not cause unsettling of the 

balance in the large fluid and heat transfer devices used for EGR cooling and return, 

turbocharger, or in-cylinder temperature. The main SOI timing and EGR rate had a substantial 

impact on the thermal and fluid systems and required a several extra minutes to reach 

equilibrium and measure and yet they did not have an unpredictable effect with regards to 

system response. Typical main SOI sweeps and EGR sweeps are rather smooth until the 

functional limits of the engine to sustain combustion are reached. With regards to pilot timing, 

pilot percentage, and fuel pressure, some trends are less smooth and the results have distinct 

mode changes mid-sweep. Several possible reasons exist for these sensitivities including spray 

interactions with the piston and cylinder wall, the pattern of spray circulation, spray-spray 

interactions, squish-spray interactions, combustion regime change from rapid low temperature 

blue-flame combustion to typical high temperature yellow-flame combustion.  
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 The application of the Genetic Algorithm to the fuel delivery schedule was a natural one 

due to the discrete computer control of the injection event as well as the consistent angular 

position-based injection event timing. Modern engine controls are beginning to vary the fuel 

delivery in ways never seen before, including injection rate shaping, high number of injections, 

and pressure variation during different injection events during a single cycle. The rapid 

developments which have taken place in fuel injection technology give rise to viewing the fuel 

injection events as a single massive variable known as the fuel injection schedule, which 

contains information about the pressure during the injection events, the time of each discrete 

injection as well as it’s duration, and the ramp slope of the opening and closing of each event. 

Current state of the art technology is capable of delivering between 5 and 8 injection events per 

cycle with highly variable combustion modes including HCCI and PCCI as well as secondary fuel 

injection with RCCI. Considering an engine with 8 injections of one fuel at one pressure, there 

would still be 8 individual start times, 8 relative ratios of fuel delivery or end times, 8 opening 

ramp rates, and 8 close ramp rates, along with a single fuel pressure, results in 33 parameters 

for fully characterizing the fuel flow schedule. 

 The novel approach, which follows from the application of the genetic algorithm, views 

the fuel flow into the cylinder as a single long schedule of discrete events. Simply put, the time-

based discrete control of the injector is naturally represented by the gene structure in the GA 

while the response sensitivity to the injection schedule is another key to exploiting the GA 

search diversity. In this way the fuel schedule demanded and the fuel schedule which can be 

delivered can be resolved for each system independently, such that a system with 4 injections 

could similarly apply a fuel schedule demand as a 5 injection system, though the performance 
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of such a system would be expected to be somewhat different. A tendency for fuel schedule 

parameters to follow varied standards of definition also convolutes how optimization can be 

applied whereas allowing designers the freedom to interpret a fuel schedule demanded by the 

optimization in whatever way the combustion system uses rather than convoluting the 

optimization structure with restrictions imposed by fuel injector technology, which may itself 

vary as part of the study. 

 Another novel advantage of the GA is its ability to reach disjoint sections of the fuel 

injection strategy such as HCCI combustion modes wherein the fuel charge is injected during 

the intake stroke and mixed fully before combustion. In these modes of combustion there is not 

a smooth feasible space which lies between the HCCI region, PCCI region, and normal 

combustion region, and this could prevent a pure PSO method from being able to reach the 

remote combustion regime when it is not initialized into the neighborhood of that combustion 

regime. Given the prevalence of these modern combustion regimes the PSO methodology 

needs to be updated in order to maintain prudence and applicability. Retaining the 

characteristic rapid convergence of the PSO method in a hybridized approach requires that the 

PSO is augmented in the best way possible to overcome these barriers in applying new 

combustion regimes. 

 The results of the study indicated that the novel hybrid technique of applying the GA to 

the selected fuel injection parameters was capable of providing improvements in convergence 

speed as well as diverse feedback about the design space related to the optimum region over 

the standard PSO. When the ability to reach disjoint areas of feasibility is also considered the 
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novel approach of adding GA operators to the PSO, with specific application to fuel injection 

schedule, the benefits of the hybrid approach are substantially significant.  

 Another aspect of the hybridized approach in experimental apparatus is that by using 

genetic algorithm structures the objective function structure can actually be changed 

throughout the optimization with an emphasis on explorative effects without actually 

implementing complex multi-objective methods. It can be seen here that NOx and PM can both 

be reduced simultaneously, as well as other emissions and fuel consumption. Single objective 

methods are sufficient to discover and characterize the optimum neighborhood in this study 

and the additional time required to re-calculate the objective values based on a different 

weight or ordering scheme is considered to be effectively zero. Global optimum value 

improvements could also be seen by randomizing the weights of the objective function and 

recalculating the objective function for all historical points during each generation of the PSO. 

This would allow any design prejudice to be removed and reveal the true Pareto front while 

using single objective function methods such as the hybrid one proposed here. This 

functionality was implemented in the code but not utilized by the study due to the entirely 

different nature of true multi-objective studies while this study was focused on comparing the 

PSO and hybrid methods. Casual investigations were done on individual generations and 

populations which showed that the global best particle rarely ever changed and when it did it 

often was the nearest neighbor who inherited the global best position, and thus little changed 

about the vectoring for the subsequent generations of the PSO. This technique would be more 

prudent if the weight preference of the designer was unknown or if true multi-objective 

characterization was desired. This adaptation further extends the novel hybrid methodology 
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here to a more robust multi-objective method without the need to restructure the method into 

a complicated new multi-objective version. This also allows single objective variations of the 

PSO and GA to be incorporated into the respective steps of the algorithm, especially in cases 

where they have been established as effective on the particular apparatus prior to the 

implementation of the hybridized approach. 

 The novel hybrid approach is clearly an improvement over the standard PSO which 

offers benefits of both the PSO and the GA while avoiding the shortcomings of either method 

alone. Additionally, further variations on structure have allowed multiple objectives to be 

studied using single objective methods more robustly than in the past. Additionally, the 

approach taken in this study is open to a wider range of variations for improving results on 

individual experimental apparatus than the existing multi-objective techniques, which are often 

quite complex and require major recoding to apply established variations. Methods which are 

expected to show additional improvement in the hybrid model include multiple swarming, 

neighborhoods, specific topologies applied in the PSO method, GA elitism, and non-dominated 

population analysis in the GA. Using these simple tools combined with the novel hybrid 

methodology applied herein improvements in the optimization of control parameters on 

experimental engines can be seen. 

 As new technology becomes ready for market optimization will play a larger role in 

integrating that new technology into an already complex system. Improved optimization 

techniques mean that more equipment can be applied simultaneously and more complex 

systems can be optimized using the newly developed methods. This methodology serves to 



61 

improve the optimization of complex fuel delivery strategies which are an important emerging 

technology which also has retrofit potential. 

 

5.2 Combustion Control for Emission Reduction using Heuristic Optimization 

Tier 4 final emissions standards are difficult to achieve using traditional in-cylinder 

control approaches such as EGR and combustion phase control. Improved methodologies which 

accelerate and improve the ability of optimization to reveal tightly curved portions in the 

response surface may have been hidden as older technology was not necessarily designed for 

operation in the particular design space discovered by the optimization. 

 The control parameters varied in this study were well adapted to the technique used 

and by the 4th generation the optimization revealed points compliant with general Tier 4 

emissions standards with respect to NOx and Smoke. Specific techniques used in analysis of 

exhaust gas measurements for Tier 4 compliance were not followed specifically while the 

results are expected to be both accurate and precise, confidence in the results to say that this 

engine would be able to produce Tier 4 compliant emissions under an FTA test cycle or in the 

field is not sufficient. A specific uncertainty is also not attributed to the measurements because 

of a large number of unknown factors, as is commonly the case with engine studies, however, 

since data which was repeated on different days showed less variation than the margin of error 

given by the measurement equipment and data concurred with prior data taken on the 

apparatus throughout previous studies the measurements are valid.  The results indicated that 

a few Tier 4 compliant operating points with regard to NOx and Soot were found on an engine 

which was manufactured using technology a decade older than the Tier 4 emissions standards 
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themselves. The emissions data resulting from this optimization study show that diligent 

optimization strategies can produce dramatically reduced emissions during steady state 

operation. This is more useful as an academic tool for exploration and as a feedback tool for 

designers rather than as a test bed for validation of emissions compliance. 

Based on the results of this study the new hybrid PSO-GA methodology is expected to 

perform as an effective tool for rapid optimization of control parameters in multiple objective 

engine studies. The hybrid approach offered faster convergence and wider spread, allowing 

interactions to be discovered at the same time as finding a very high performing optimum 

neighborhood. The tests are however, limited in scope and application and further study is 

necessary to validate the approach. Continued research on the same apparatus as well as new 

apparatuses will be required to give full confidence to the results of the improvement but 

conference with computational results is reassuring. This hybrid approach will give engine 

research experimentalists a basis for designing their own unique combinations of the PSO and 

GA while offering the simplicity of single-objective function structures with freedom to utilize 

existing variations of the PSO and GA already discovered. 
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