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ABSTRACT

A novel Integrated Robust Optimal Design (IROD) methodology is presented in this

work which combines a traditional sensitivity theory with relatively new advancements

in Bilinear Matrix Inequality (BMI) constrained optimization problems. IROD provides

the least conservative approach for robust control synthesis. The proposed methodology

is demonstrated using numerical examples of integrated control-structure design prob-

lem for combine harvester header and excavator linkages. The IROD methodology is

compared with the state of the art sequential design method using the two application

examples, and the results show that the proposed methodology provides a viable alterna-

tive for robust controller synthesis and often times offers even a better performance than

competing methods. Although this method requires linearization of nonlinear system at

each system parameter optimization step, a technique to linearized Differential Algebraic

Equations (DAE) is presented which allows use of symbolic approach for linearization.

This technique avoids repetitive linearizations. For the nonlinear systems with paramet-

ric uncertainties which can not be linearized at operating points, a new methodology

is proposed for robust feedback linearization using sensitivity dynamics-based formula-

tion. The feedback linearization approach is used for systems with augmented sensitivity

dynamics and used to refine control input to improve robustness. The method is demon-

strated using an example of a position tracking control of a hydraulic actuator. The

robustness of controller design is demonstrated by considering variations in fluid density

parameter. The results show that the proposed methodology improves robustness of the

feedback linearization to parametric variations.
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CHAPTER 1. OVERVIEW

The research presented in this thesis is focused on dynamical system-controller design

methodology for linear systems and a robust feedback linearization of a class of nonlin-

ear systems. Robustness of the closed loop system to variations in system parameters,

is characterized by the sensitivity with respect to the parameter. With recent advance-

ments in symbolic computation and automatic differentiation of complex equations, it is

now possible to derive analytical expression for sensitivity dynamics. Expressing robust-

ness in the form of sensitivity provides least conservative design, and it also facilitates

automation of robust control synthesis process. This allows extension to integrated de-

sign of system and controller. It has been shown in the literature that integrated design

provides better overall design as compared to sequential design method. The work in this

thesis presents a methodology for Integrated Robut Optimal Design (IROD) of linear sys-

tems using Bilinear Matrix Inequalities(BMI). This methodology is then demonstrated

by application to the integrated design of combine harvester header control system and

excavator bucket level control. In many cases, for example multibody dynamics, the

equations of motion (EOM) can be expressed in the form of differential algebraic equa-

tions (DAE). Hence, an alternative to linearization of differential algebraic equations

(DAE) in symbolic form along with sensitivity dynamics is presented. Sensitivity-based

robust design method for linear system is extended to include a class of nonlinear systems

which are feedback linearizable with minimum phase zero dynamics.
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1.1 Integrated Design

Traditionally, design of controlled mechanical systems is carried out in the sequential

paradigm; that is, systems’ all structural elements are first designed to meet certain

functionality and strength criteria, and then the control design is accomplished to achieve

some optimal controller performance. In such process, although the design is optimized

at each step, overall design tends to be sub-optimal since the design space (or freedom)

available at each step in the sequential process is smaller. On the contrary, in the

integrated design paradigm, both structural (or mechanical) design and control design

is accomplished concurrently on a much larger design space. The fact that even for

linear systems with system parameter appearing linearly in the dynamical equations,

the integrated design process is NP hard, makes the process challenging. An integrated

design paradigm has been a topic of research since early 1980s. Some noteworthy research

on integrated design includes work done under space station project for the design of

controlled flexible space structures under Control-Structure Interaction (CSI) program at

NASA in late 80’s to early 90’s. [1–4]. H∞and H2 norm bound objective functions were

minimized using integrated design approach in [5–8]. Variety of strategies are discussed

in existing literature on simultaneous control/structure design. Optimization problems

were solved using decomposition strategies in [9], and multistage optimization methods

were used in [10]. The integrated design methods were employed for design of mechanical

systems in [11] where a recursive experimental method using rapid prototyping was

proposed. In [12], the concept of design for control was used for four bar mechanical

linkage design. These researches do not consider robustness aspect of the design. Some

early works in integrated robust design methodology for minimum sensitivity, variability

and maximizing tolerance was proposed and demonstrated in [13,14].
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1.2 Robust Design Via Sensitivity Minimization

The robust optimal control problems were initially considered as the sensitivity mini-

mal design problems until the beginnings of modern robust control theory. The sensitivity

theory can be dated as back as 1945 when Bode in his famous book Network analysis

and feedback amplifier design [15] defined sensitivity of performance with respect to an

infinitesimal change in design parameter. The sensitivity theory was introduced in the

textbooks [16], [17] in early 1960s. Many researchers [18], [19] and [20] and others in

late 1960s considered trajectory sensitivity minimization problems by augmenting the

sensitivity dynamics to the system dynamics. These researches were focused on LQR

control problems, and the solution strategies were some variants of the maximum prin-

ciple. Until the modern robust control theory based on uncertainty characterization was

established, the sensitivity theory was the primary area of interest in robust control re-

search. There is a large body of literature available in this area from the 1970s [21–25].

After the introduction to parametrization of all stabilizing controllers by Youla [26], and

then H∞optimal control by Zames et al. [27] sensitivity theory took a backstage.

Although the uncertainty based techniques are powerful and provide robust design

over a range of uncertain parameters, the design is more conservative as the designer has

to choose an upper bound on uncertainty. Also, it requires designers’ skill deriving upper

bound on uncertainty models, and expressing the uncertainty in form of additive, multi-

plicative or polytopic uncertainty. In the case of complex dynamical systems, uncertainty

models may not be readily available. Hence, in [13,14], the sensitivity minimization ap-

proach was considered for the robust optimal tracking of multi-body system which avoids

estimation of uncertainty bounds on the part of designer. The recent advancements in

the symbolic computation, and automatic differentiation further motivates the use of

sensitivity-based integrated design methodology. In [13, 14], the sensitivity equations

were directly computed by differentiating the equations of motion with respect to the
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uncertain parameters. These articles also include a methodology wherein robust inte-

grated design is achieved for optimal tolerancing in addition to tracking performance and

optimal control. Subsequently, an alternative algorithm for sensitivity minimal robust

optimal control was recently presented for linear systems using Youla parameterization

in [28].

In third chapter of this thesis, the sensitivity theory and integrated design approach

are combined with recent developments in Linear Matrix Inequality (LMI) to propose

a new methodology for integrated locally optimal robust design. This new method

preserves the benefits of sensitivity theory and uses relatively modern LMI methods to

provide faster convergence.

1.3 Linear Matrix Inequalities (LMI)

LMI theory allows use of convex optimization methods in robust control of linear

systems. Most of the robust optimal control design problems for linear systems, can

be converted into a convex optimization problem by adding some conservatism. The

initial research in LMI is well documented in [29], and recent research on the use of

LMI theory in control systems with some applications is compiled in [30]. The LMI

and Bilinear Matrix Inequalities (BMI) have been widely used in sub-optimal robust

control design for last couple of decades. It is well known that the H∞, H2 or mixed

robust control design objectives for linear systems can be written in the form of BMI

constrained optimization problems. Some of these problems can be converted into the

equivalent LMI constrained problems by linearization change of variables [31], [32], or

methods based on projection lemma [33]. These LMI constrained convex optimization

problems are computationally easy to solve and many efficient algorithms have been de-

veloped. There are off the shelf software available, like Matlab robust control toolbox,

which provide an efficient solution tool for LMI problems. Unfortunately, most of the



5

robust optimal control problems do not have equivalent LMI relaxations. Even though,

the change of variables converts non-convex constraints into convex constrains, it adds

conservatism. Hence, significant amount of research has been done on numerical ap-

proaches for BMI constrained optimization problems. The BMI constrained problems

are generally NP-hard, but still, BMI relaxations and some heuristics provide polynomial

time solution strategies. In literature, two types of solutions strategies namely, global

optimization and local optimization can be found. The global optimization strategies are

generally branch and bound algorithms [34], [35]. The global optimization algorithms

suffer from computational issues and they are not polynomial time. Local optimal al-

gorithms usually fix one variable of the BMI and solve the resulting LMI problem, then

fix the other variable and solve the LMI problem, and iterate until the optimal solution

is found. Obviously, the local search methods do not guarantee global minimum, and

the resulting minimum depend on the initial conditions. The other iterative algorithm,

the D-K iterations which iterate between control matrix K and scaling matrix D, is also

not guaranteed to converge even at local minimum [36]. Although, the cone complemen-

tary linearization method [37] guarantees local optimal solution to the BMI constraint

problem, it requires to solve an LMI problem at each step. Hence, in present research, a

method proposed in [38] is modified to solve BMI constraint problems originating from

sensitivity augmented systems. Specifically, the concept of using BMI constraint opti-

mization presented in [38] is extended to solve the robust optimal control problem for

sensitivity augmented linear systems. The theory presented in [38] needs to be modified

since the sensitivity augmented system has special block lower triangular structure.

A sensitivity and performance norm minimization algorithm for full state feedback

controller synthesis problem using LMIs was presented in [39]. In a parallel work [40],

the authors have developed and demonstrated a BMI based algorithm for robust optimal

controller synthesis via sensitivity augmented systems. It was shown that the algo-

rithm is a viable alternative to uncertainty based H∞or H2 or mixed controller design
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techniques. The combination of LMI theory with sensitivity minimization of outputs

preserves all the benefits of sensitivity theory but also makes use of modern convex opti-

mization techniques of solving BMI problems emerging from the H∞norm minimization.

Use of sensitivity theory also keeps the number of complicating variables small as com-

pared to polytopic uncertainty based robust synthesis. In this article, the approach of

robust design is extended to integrated robust design where structure and control are

designed concurrently. A two-step methodology is proposed inspired from existing BMI

constrained optimization algorithm. The sensitivity theory facilitates automatic and less

conservative computation of robustness, which allows evaluation of objective function in

a loop. The method is presented for H∞objective functions, but it can be easily extended

to other objectives like H2 or mixed performance, or general quadratic performance.

1.4 Linearization of Multibody Dynamics

In order to use the IROD method for multibody dynamics, it is first necessary to lin-

earize the EOM at operating point and derive linear sensitivity equations. The derivation

of sensitivity equations requires differentiation with respect to the uncertain parameters.

The multibody dynamical equations could get so large, that the symbolic representation

can overload computer memory. These equations can be represented in form of DAE.

Linearization of DAE requires solving the algebraic part, which is not possible in symbolic

form, hence a method based on coordinate partitioning is developed. Early approaches

for linearization of DAE were numerical [41–43] which do not provide exact lineariza-

tions. Some linearization methods produce linear DAE, but for optimal control design

a different approach is required [44]. A practical approach for linearization is proposed

in [45] which is based on multibody constrained formulation and variational principle.

A similar method for linearizing multibody DAE based on coordinate partitioning and

variational principle is given in [46].
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1.5 Application to Combine and Excavator

The method presented in this thesis is applied to the Combine harvester header

tracking problem and excavator bucket level control design problem.

1.5.1 Combine Header Height Control

Figure 1.1 Picture and schematic diagram of combine harvester

A picture of combine harvester and associated schematic of combine harvester header

linkage is shown in Fig. (1.1). The problem addressed is that of designing a mechanism

and control system for a header linkage system that minimizes the control power, and

at the same time maintains the prescribed height of of the header over rough terrain.

The combine harvester has heavy header and the height needs to be automatically con-

trolled for higher efficiency of harvest and speed of operation as the harvester moves over
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rough terrain. The structure of this harvester imposes fundamental constraints on feed-

back control design [47]. A two DOF controller design using feed forward and feedback

controller was presented in [48] and integrated plant/controller design based on only

performance analysis was presented in [49] to overcome the bandwidth limitations due

to the mechanical structure. In this research, a generalized methodology for Integrated

and Robust Optimal Design (IROD) is applied to this example and it is shown that the

new method provides better tracking, robustness, and minimizes control power than the

state-of-the-art techniques such as robust H∞design method.

1.5.2 Excavator Bucket Angle Control

Figure 1.2 Picture of an excavator linkage

Another example presented is the design of robust control system for control of bucket

angle in excavators. A picture of a representative excavator and a schematic of mecha-

nism controlling bucket motion is shown in Fig. (1.2). The objective is to keep the bucket

horizontal, to avoid spillover, while the operator moves the boom. A design variable is

optimized for tracking error, sensitivity to variations in the mass of bucket and control
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power. The challenge in this problem is to design controller which is robust to variations

in the mass of the bucket, since load in the bucket is different in every operation. Results

obtained using IROD method are compared with the results obtained from the state of

the art robust control design method - polytopic uncertainty based H∞control synthesis

using LMI approach. Previous research on excavator control is mainly focused on au-

tomation of the entire excavator operation, which includes landscape shape sensing and

path determination [50–52], but these studies did not include robust or integrated design.

A robust H∞controller for wheel loader bucket tracking was designed in [53], which in-

cluded hydraulic actuator dynamics, but this research did not consider integrated design.

For the wheel loader system, an integrated design approach was demonstrated in [54].

1.6 Robust Feedback Linearization

The method explained in the third chapter of this theses is applicable to only those

systems which can be linearized at a given operating point. But there is a large class of

nonlinear systems where determining a set of sensible operating points is not possible.

For example, in case of hydraulic actuators determining a practical operating point out-

side the dead band is not possible. In classical nonlinear system control theory, variety

of ways are available to design nonlinear controller for such systems. Feedback lineariza-

tion has been very popular in nonlinear systems control because of its ability to control

systems with most types of nonlinearities [55,56] . Although feedback lienarization does

not guarantee internal stability [57], depending on the zero dynamics, the method can

locally design controllers for challenging nonlinear systems, such as example hydraulic

actuators. While feedback linearization is good for tracking performance, it is known for

not being robust to parametric uncertainties. The effectiveness of this method depends

on the degree of accuracy of the system model. Robust stability of feedback linearization

approach was addressed using Lyapunov design in earlier research, [58,59]. In these ap-
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proaches the uncertainty was assumed to be norm bounded which requires knowledge of

the bounds as well as it adds conservativeness in the design. Robust feedback lineariza-

tion for systems with parametric uncertainties were explained using high gain observers

in [60], where set of integrators was obtained using nonlinear observer. Other approach

towards robust feedback linearization is via Sliding Mode Control(SMC), [61, 62] which

may provide discontinuous control input. Adaptive control is another widely used ap-

proach for robust nonlinear control design. A good compilation of earlier researches is

available in [63]. Recently, a large body of research is concentrated on robustification of

feedback linearization using techniques based on artificial neural networks or fuzzy logic.

A brief literature review is available in a recently published research [64]. Uncertainty

and disturbance estimation based approach is proposed in [65].

In this research, an alternative to existing robust feedback linearization approaches

is proposed using sensitivity theory. This method provides the least conservative design

since it does not require uncertainty estimate. This paper revisits the sensitivity the-

ory along with feedback linearization to propose a new method for robustification by

augmenting the sensitivity dynamics. The sensitivity information is used to update the

control input for robust performance.

The proposed method is demonstrated using an example of linear plant model actu-

ated with hydraulic actuator. Hydraulic systems are known to be very difficult to control,

since there are dead bands, square root, and polynomial nonlinearities. H∞ control de-

sign using polytopic uncertainty for excavator model including hydraulic actuator was

presented in [53]. Mixed H2 and H∞ control design problem for earth moving equipment

hydraulic power train was addressed in [66]. Feedback linearization and backstepping

control design methods were implemented by many researchers for hydraulic actuators,

some examples are - [67–70] but these researches did not include robustness considera-

tions. The robust backstepping design for hydraulic system was proposed in [71]. Current

research uses the proposed sensitivity-base methodology for robust feedback linearization
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for hydraulic system consisting of a linear plant model actuated with a double acting

cylinder with four way spool valve. The objective of this case study is to minimize the

sensitivity of the closed loop system to variations in fluid density.

This thesis is outlined as follows- chapter 2 provides an efficient methodology to

linearize generalized DAE using symbolic computation, chapter 3 gives the algorithm

for IROD of linear systems. Results obtained from applications of IROD to combine

harvester header height control problem and excavator bucket level control problem are

presented in chapter 4. Chapter 5 explains a novel methodology for robust feedback lin-

earization using sensitivity augmented nonlinear systems, and finally, thesis conclusions

with future prospects of this research are discussed in chapter 6.
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CHAPTER 2. LINEARIZATION OF MULTIBODY

DYNAMICS IN SYMBOLIC FORM

In order to synthesize controller, and optimize system parameters simultaneously for

nonlinear system using the method provided in chapter 3, the system dynamics needs

to be linearized at operating point. One challenge is that the operating point changes

as the design variable changes and hence the new linearization is needed. In the case

of integrated design methods, the parameter is changed at each step in the parameter

optimization loop, and optimal controller is found at each step. This method requires

repetitive linearization of nonlinear systems. The process of linearization at each step

can be reduced to a single one-time linearization if the linear system can be obtained as

a function of design variable. With recent advancements in symbolic computation, it is

feasible to differentiate equations in analytic form and keep functions in symbolic form.

But, specifically for multibody systems, finding operating point and linearization as a

function of design variable, may not be trivial due to equation swelling and large matrix

inversions. There are various methods to derive EOM of multibody dynamics, which can

be broadly classified into two groups, Newton’s method and Lagrange method. Newton’s

method generally suffer from equation swelling, which means the equations could get very

large. Lagrange equations generally provide DAE instead of ODEs, but this method can

handle systems with large number of constraints and bodies. The DAE can be linearized

at operating point to give linear DAE, but then the optimal control design requires

additional theory. Hence, an efficient way of finding operating point and linearization of

DAEs arising from multibody constraint formulation [72] is proposed in this chapter.
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2.1 Multibody Constrained Formulation

Consider a planar multibody system with n of bodies and m constraint equations.

This system has 3n−m degrees of freedom (DoF). Let the position states of multibody

dynamics be q =

[
q1 q2 q3 . . . q3×n

]T
in a non inertial frame of reference, and let

the constraint equations be φ(q, t) = 0 where φ : <3×n → <m is a continuous function.

Position states include X and Y coordinates of the CG of each body and angle of each

body centered coordinate systems with respect to global coordinate system.

Notation: In this chapter, full derivatives are represented by subscript. For example,

dφ
dq

is written as φq.

For an unconstrained system of bodies the equations of motion are -

Mq̈ = Q (2.1)

where, M(3n×3n) is the mass matrix and Q(3n×1) is the vector of external forces.

For constrained multibody dynamics, the constrained forces can be added to the

EOM using Lagrange multipliers.

Mq̈ + φTq λ = Q (2.2)

where λ ∈ <m is a vector of Lagrange multipliers. This vector equation has 3n + m

unknowns (3n states and m Lagrange multipliers) and only 3n linearly independent equa-

tions. Other m equations can be obtained by differentiating the constraints equations

twice -

φ = 0

⇒ φ̇ =
∂φ

∂t
+ φq q̇ = 0

⇒ φ̈ = φq q̈ − γ = 0 (2.3)
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Eq. (2.2) and Eq. (2.3) can be combined together to get DAE with 3n number of

second order differential equations and m number of algebraic equations -

M φTq

φq 0


q̈
λ

 =

Q
γ

 (2.4)

2.2 Linearization

In order to linearize the differential algebraic equations, lets first solve for λ.

From equation Eq. (2.2)

q̈ = M−1Q+M−1ΦT
q λ (2.5)

Substitute for q̈ in Eq. (2.3).

Φ̈ = ΦqM
−1Q+ ΦqM

−1ΦT
q λ− γ = 0 (2.6)

⇒ λ = −(ΦqM
−1ΦT

q )−1ΦqM
−1Q+ (ΦqM

−1ΦT
q )−1γ (2.7)

Now, substitute λ in Eq. (2.5).

q̈ = M−1Q+M−1ΦT
q (ΦqM

−1ΦT
q )−1γ −M−1ΦT

q (ΦqM
−1ΦT

q )−1ΦqM
−1Q (2.8)

Equation (2.8) is a set of 3n second order differential equations. These equations can

be linearized at operating point by finding jacobian with respect to q, but the resulting

linear system has 6n states although the DOF of the system is 3n−m. We expect that the

minimal realization of resulting linear system should be of order 2(3n−m), because there

are 2(3n−m) independent states and rest 2m states are dependent due to position and

velocity constraint equations. The expected order of linear system can be achieved by

minimal realization, but in practice minimal realization may not remove all dependent
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states. This is because, Eq. (2.8) requires inverses of large matrices. This may add

numerical issues depending on matrix condition numbers. Hence this method may not

give desirable results. In order to get the linear model with order equal to 2(3n−m), the

nonlinear system needs to be partitioned into dependent and independent coordinates.

Next section explains linearization of multibody constrained equations using coordinate

partitioning [44].

2.3 Coordinate Partitioning

The equation of motion obtained from virtual work is given in [44] -

δqT (Mq̈ −Q) = 0 (2.9)

The vector δq is virtual displacement in the system coordinates. The coefficient

of virtual displacements can not be set to zero here, because the coordinates are not

independent due to constraint equations. It can be assumed that all the constraint

equations in φ are linearly independent, otherwise the dependent constraints can be

removed to get a set of linearly independent constraint equations.

For virtual displacement in coordinates -

φqδq = 0 (2.10)

Since not all coordinates are independent, the state vector (system coordinates) can

be partitioned as -

q =

[
qTd qTi

]T
(2.11)

where, qd are m dependent states and qi are 3n−m independent states. Hence from

Eq. (2.10) -
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φqdδqd + φqiδqi = 0

⇒ δqd = −φ−1qd φqiδqi

δqd = φdiδqi (2.12)

(2.13)

where, φdi = −φ−1qd φqi . The matrix φqd is always invertible because the constraints

are linearly independent. From the partitioning, the system coordinates can be written

in form of virtual displacement of independent coordinates as -

δq =

δqd
δqi

 =

φdi
I

 δqi = Biδqi (2.14)

Now substituting for δq in Eq. (2.9), and since qi are independent,

BT
i (Mq̈ −Q) = 0 (2.15)

Similarly, from Eq. (2.3),

q̈d = φdiq̈i − φ−1qd γ

q̈d = φdiq̈i + φd

⇒ q̈ =

φdi
I

 q̈i +

φd
0


= Biq̈i + γi (2.16)

where, φd = φ−1qd γ.

Now, substituting for q̈ in Eq. (2.15)

BT
i MBiq̈i −BT

i Q+BT
i Mγi = 0 (2.17)
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which can be written as -

M̄iq̈i = Q̄i

q̈i = M̄i(qi, qd)
−1Q̄i(qi, qd) (2.18)

where, M̄ is a (3n−m)× (3n−m) mass matrix associated with independent states.

and Q̄i is generalized external force vector associated with independent states.

Equation 2.18 along with constraint equations φ(qi, qd) = 0 give system of DAE,

where there are 3n−m number of second order differential equations and m constraint

equations. This can be written as 2(3n −m) first order differential equations, and 2m

constraint equations by adding φ̇ = 0 into constraint equations, i.e. the multibody

dynamics EOM can be written in standard form of DAE as -

M(q)

 q̇i
q̇2i

 = Q(q)

Φ(q) = 0 (2.19)

where, in case of multibody dynamics: Q(q) =

[
qT2i Q̄T

]T
, Φ =

[
φT φ̇T

]T
, and

M =

I 0

0 M̄

 (2.20)

where, I is a 3n × 3n identity matrix. This Eq. (2.19) needs to be linearized at

operating point. A generalized process to linearized DAE is proposed in next section.

2.4 Linearization of DAE

Let us express the DAE in general form as -
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M(x)ẋi = Q(x, u)

Φ(x) = 0 (2.21)

where, x ∈ <η are the states of the system, Φ : <η → <ηd are the constraints, u

is the external control input, xi ∈ <ηi are the independent states, and xd ∈ <ηd are

dependent states, where ηi + ηd = η. Let the operating point of the system be x = x0,

where ẋ|x0 = 0. Assume that M is invertible at operating point x = x0. Now, x can

be partitioned as x =

[
xTi xTd

]T
. The linear system, from differential part of the DAE,

can be written as -

δẋi = Aδxi +Bδu (2.22)

where,

A =

[
∂M−1Q

∂xi
+
∂M−1Q

∂xd

∂xd
∂xi

] ∣∣∣∣
x=x0,u=u0

B =
∂M−1Q

∂u

∣∣∣∣
x=x0,u=u0

(2.23)

Now, ∂xd
∂xi

can be obtained from the constraint equations. From the principle of

variations we have-

δxTΦx = 0

δxTi Φxi + δxTd Φxd = 0 (2.24)

(2.25)

which, after taking limits as δxd → 0 and δxi → 0, implies

∂xd
∂xi

= −Φ−1xd Φxi (2.26)
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The Φxd matrix is always invertible since all the constraints can be assumed to be

linearly independent.

Now the linear system is given by -

A =

[
∂M−1Q

∂xi
+
∂M−1Q

∂xd

(
−Φ−1xd Φxi

)] ∣∣∣∣
x=x0,u=u0

B =
∂M−1Q

∂u

∣∣∣∣
x=x0,u=u0

(2.27)

The advantage of this method is that, the resulting linear system has ηi number of

states, in other words, the resulting system has minimal realization. Also, this method

requires finding only one inverse of M. With advancements in symbolic computation,

the derivatives can be computed in symbolic form. In some cases, for example multibody

dynamics,Mmay not be inverted in symbolic form without computational overload. The

computational problem can be avoided by a simple mathematical manipulation using the

following identity -

(M−1)x
∣∣
x=x0

= −Mx|x=x0 (M|x=x0)
−1Mx|x=x0 (2.28)

In above equation, the right hand side does not have derivative of inverse. That

means, now we do not require to find inverse of M in symbolic form, instead, x can be

substituted by x0 and then inverse can be found in numerical form. This eliminates the

need of inverting large matrices in symbolic form. Hence combining Eq. (2.27) with the

numerical trick Eq. (2.28) gives a way to linearize the nonlinear DAE at operating point

using symbolic differentiation, without overloading memory. For integrated design, where

a system parameter, for example mass or a link length, is to be designed concurrently

with controller parameters, the parameter can be kept in symbolic form. In this case,

M remains symbolic, but since has only a few symbolic variables it is still possible to

invert M without computational overload. If a parameter is kept in symbolic form,

resulting linear system is a function of the parameter and hence repetitive linearizations
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can be avoided. For integrated design, where a system parameter, for example mass or

a link length, is to be designed concurrently with controller parameters, the parameter

can be kept in symbolic form. In this case, M remains symbolic, but since has only a

few symbolic variables it is still possible to invert M without computational overload.

If a parameter is kept in symbolic form, resulting linear system is a function of the

parameter and hence repetitive linearizations can be avoided. Next chapter focuses on

robust control synthesis for linear systems with parametric uncertainties.
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CHAPTER 3. SENSITIIVITY BASED IROD

METHODOLOGY

In the previous chapter a method was proposed to linearize nonlinear DAE that can

be used with symbolic programming tools, like SymbolicMath toolbox of Matlab. This

method facilitates linearization of complex DAE, keeping uncertain parameters in sym-

bolic form. In this chapter a new method for Integrated Robust Optimal Design (IROD)

is proposed based on sensitivity minimization and Bilinear Matrix Inequalities(BMI). If

the linear system is expressed as a function of design variable and uncertain variable,

then sensitivity dynamics of the linear model is obtained by differentiating the model

with respect to uncertain parameter.

3.1 Sensitivity Based Robust Control Synthesis

3.1.1 Introduction to Parametric Sensitivity

The knowledge of sensitivity behavior plays a key role in robust analysis and synthe-

sis of control systems. For a continuous plant model, the parametric sensitivities can be

obtained by differentiating the dynamical equations with respect to the variables repre-

senting uncertain parameters or parameters that are subject to change over operating

envelope of the system. Here, the continuity is implied in both, the time and parameter

arguments. Performance sensitivity of a dynamical system can be defined as a small

change in the performance for an arbitrarily small change in the design parameter.

Consider a system represented by differential equations
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ẋ = f(x, u, b, t) (3.1)

From the definition, the sensitivity equations can be written as -

dẋ

db
=
df

db
=
∂f

∂b
+
∂f

∂x

∂x

∂b
(3.2)

If the function f ∈ C2 i.e. f is second-order continuous, then the order of derivatives

with respect to time and parameter b can be interchanged due to Clairout’s theorem [73]

(which is also known as Schwarz’s theorem) and Eq. (3.2) becomes,

ẋb(x, xb, u, b, t) =
∂f

∂b
+
∂f

∂x
xb (3.3)

where, xb = dx
db

is the sensitivity of the states x with respect to the parameter b. The

plant dynamics in Eq. (3.1) can now be augmented with sensitivity dynamics in Eq. (3.3)

and solved simultaneously to obtain the system states, x, and sensitivity states, xb. As

a special case, consider a linear system -

G(b) =


A(b) B1(b) B2(b)

C1(b) D11(b) D12(b)

C2(b) D21(b) 0

 (3.4)

where, b is a vector of parameters which are uncertain, or subject to change due to

wear and tear. The order of the system is n and there are nz number of exogenous

outputs, nw number of exogenous inputs, and ny number of output channels and nu

number of input channels which are used in the feedback. We assume differentiability

of system matrices with respect to the parameters b. Given the controller dynamics

in state space form - K(Ac(nc×nc) , Bc(nc×ny)
, Cc(nu×nc) , Dc(nu×ny)

) the parameter dependent

closed-loop system can is given by -
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A(b)(n+nc)×(n+nc) =

 A(b) +B2(b)DcC2(b) B2(b)Cc

BcC2(b) Ac


B(b)(n+nc)×(nw) =

 B1(b) +B2(b)DcD21(b)

BcD21(b)


C(b)nz×(n+nc) =

[
C1(b) +D12(b)DcC2 D12(b)Cc

]
D(b)nz×nw = D11(b) +D12(b)DcD21(b)

(3.5)

Differentiating the closed loop system in Eq. (3.5) with respect to parameter b gives

closed-loop parameter sensitivity dynamics. The augmented closed-loop system with this

sensitivity dynamics can be written as -

Gsen =

 Ẋ

Ẋb

 =

Â(2(n+nc)×2(n+nc))︷ ︸︸ ︷ A 0

dA/db A


 X

Xb

+

B̂(2(n+nc)×nw)︷ ︸︸ ︷ B

dB/db

w
 z

zb

 =

Ĉ(nz×2(n+nc))︷ ︸︸ ︷ C 0

dC/db C


 X

Xb

+

D̂(nz×nw)︷ ︸︸ ︷ D

dD/db

w
(3.6)

(The dependence of system matrices on parameter b is not explicitly written hereon, but

it is assumed.) where, X ∈ <n+nc is a vector of closed loop states with X = [x;xc], xc

being the controller states. Xb are the closed loop sensitivity states with Xb = [xb;xcb ].

Again subscript b indicates derivative w.r.t. b. Please note that -

• The matrix Â has block lower triangular structure, with the same blocks on diag-

onal. Hence, the augmented system has repeated Eigen values.

• The exogenous inputs of the system are parameter independent, hence derivative

of input dw/db is zero.

• The two outputs of the system include the nominal system response and the sen-

sitivity response of the system.
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3.1.2 H∞-Norm Bound Objective

If the objective is to find only the optimal controller that minimizes the H∞norm

bound of system in Eq. (3.6), then the constraint can be written as a BMI [29]


sym(P1Â) P1B̂ ĈT

∗ −γI D̂T

∗ ∗ −γI

 ≺ 0 (3.7)

where,

[
x; xc; xb; xcb

]T
P1

[
x; xc; xb; xcb

]
is the quadratic Lyapunov func-

tion forGsen and γ is theH∞norm bound to be minimized. The BMI constrained problem

is written in standard optimization form as -

minimize
vec(Ac),vec(Bc),vec(Cc),vec(Dc),vec(P1)

γ

subject to (3.7),

P1 � 0

(3.8)

The BMI constrained optimization problem in Eq. (3.8) can not be equivalently con-

verted into an LMI constrained problem using linearization change of variables or pro-

jection lemma. Linearization change of variables is done by doing a state transformation

and then replacing all the nonlinear terms by new variables. The resulting constraint

is an LMI in new variables. The LMI problem is then solved to obtain the optimal

parameters. The actual design parameters can be obtaiend by inverse relation between

the new variables and design variables. This requires a one-one and onto relationship

between new and actual variables. In the case of problem in Eq. (3.8), the one-one and

onto relation does not exist. Hence the linearization change of variables fails in this case.

Next section explains why change of variable fails.
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3.1.3 Linearization Change of Variables (Failed)

In order to solve the sensitivity based robust optimal control problem, we can try

linearization of the BMI in Eq. (3.7) via change of variables.

For simplicity, lets assume that P1 has block diagonal structure according to Â as -

P1 =

 P 0

0 P


This assumption adds conservatism, but this linearization fails even after adding

conservatism.

Lets define P and Q as -

P =

 X U

UT ∗

 and, P−1 =

 Y V

V T ∗

 (3.9)

and

Q =

 Y I

V T 0

 Z =

 I 0

X U

 (3.10)

Note here that QP = Z and XY + UV T = I.

With these definitions lets define the transformation on sensitivity augmented system

Gsen. 

QT (PA)Q 0 QTPB

QT (PAb)Q QT (PA)Q QTPBb

CQ 0 D

CbQ CQ Db


(3.11)

Note here that, in addition to the terms including nominal plant model, now there

are additional terms which include derivatives of the plant model. From Eq. (3.7), the

sensitivity augmented system -Gsen has H∞norm less than γ iff ∃P � 0 such that
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sym(QT (PA)Q) QT (ATb P )Q QTPB QCT QCTb

∗ sym(QT (PA)Q) QTPBb 0 CQ

∗ ∗ −γI DT Db

∗ ∗ ∗ −γI 0

∗ ∗ ∗ 0 −γI


≺ 0 (3.12)

Now, lets define Kb,Lb, Mb and Nb such that -

QT (PAb)Q = AbY +BbM +BMb Ab +BbNC +BNbC +BNCb

Kb X + LbC + LCb

 (3.13)

Using the change of variables in Eq. (3.13), the BMI in Eq. (3.12) can be transformed

into an LMI, with controller decision parameters K,L, M , N , Kb,Lb, Mb, and Nb, and

Lyapunov paramters X and Y . The control decision parameters are now 8, and unfortu-

nately there is no bijection from these parameters to control parameters Ac, Bc, Cc, and

Dc. The relationship between new parameters Kb,Lb, Mb, and Nb and actual control

parameters is given by -

 Kb Lb

Mb Nb

 =

 XAbY 0

0 0

+

 U XB2b

0 I


 Ac Bc

Cc Dc


 V T 0

C2bY I

 (3.14)

Also there is a bijection from the control parameters to K,L, M , N . - K L

M N

 =

 XAY 0

0 0

+

 U XB2

0 I


 Ac Bc

Cc Dc


 V T 0

C2Y I

 (3.15)

There is no constraint which guarantees that the controllers obtained from the relation

Eq. (3.14) and Eq. (3.15) are same. Hence, the linearization of BMI has failed in this

case. We did not get a unique controller from linearization of the BMI.
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This requires to solve the BMI problem using numerical techniques.

The next section is a modification in the algorithm presented in [38] to solve BMI

constrained problem arising from the sensitivity augmented systems.

3.2 Solution Strategy

The algorithm presented here gives a locally optimal solution to BMI constrained

minimization problems.

3.2.1 Locally Optimal Robust Control Design

A general BMI can be written as -

M(x, y) = F00 +
Nx∑
i=1

Fi0xi +

Ny∑
j=1

F0jyj +
Nx∑
i=1

Ny∑
j=1

Fijxiyj ≺ 0 (3.16)

where x ∈ RNx and y ∈ RNy are the design variables, M is the BMI and F are the

real matrices of dimension equal to the BMI. Also, Fij = F T
ij ∀i, j. Note here that the

variables x or y includes the Lyapunov function, control parameters and the norm bound

γ. The generalized BMI constrained robust optimal control problem can be written as -

min γ
x,y,γ

such that M(x, y) ≺ 0

〈c, x〉+ 〈d, y〉 < γ

x ≤ x ≤ x, y ≤ y ≤ y

(3.17)

where, (·) and (·) represent the lower and upper bounds on the variable (·). The vec-

tors c and d define the performance objective. This restriction comes from the technical

details, which can be found in [38].

First, the feasibility problem with BMI in Eq. (3.16) is written as a optimization

problem using the Frobenius norms and projection properties. Define a function for
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fixed value of γ

νγ(x, y) =
∥∥[M]+

∥∥2
F

(3.18)

The projection of a symmetric matrix on positive definite matrix essentially keeps the

positive eigenvalues and all the negative Eigen values are replaces negative eigen values

with zeros. The Frobenius norm is square root of sum of singular values, hence it can

be seen that ν is essentially a sum of all positive singular values. Therefore, if ν is zero

then the BMI M is less than or equal to zero. Also, the converse is true i.e. if the M ≺ 0

is feasible then ν is zero. Hence,

∃x, y s.t. M ≺ 0⇔ min
x,y

νγ(x, y) = 0 (3.19)

In Eq. (3.19) we have converted the BMI feasibility problem into an optimization

problem. The basic idea is to find the initial feasible solution of M ≺ 0 for some γ, then

use bisection on γ to find the local minimum. Now consider a minimization problem -

min
x,y

νγ(x, y) (3.20)

The gradient of the objective function can be computed using a lemma that can be

found in [38]. A cautious BFGS method, or quasi-Newton type methods can be used to

solve the minimization problem in Eq. (3.20) with gradient derived in the lemma.

In order to start the bisection method to minimize γ, upper bound and lower bounds

on γ need to be determined.

3.2.2 Lower Bound

The lower bound can be computed using the so-called relaxed LMI problem [34].
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γLB = min
x,y
〈c, x〉+ 〈d, y〉

subject to x ≤ x ≤ x, y ≤ y ≤ y w ≤ w ≤ w

M(x, y, w) ≺ 0

(3.21)

where, wij = xiyj and w = min(xy, xy, xy, xy) and w = max(xy, xy, xy, xy)

If this problem is not feasible for any γ ≥ 0, then the original problem in Eq. (3.17)

is also not feasible, but the feasibility of this problem does not guarantee the feasibility

of the original problem. In other words, lower bound may not be feasible.

3.2.3 Initial Robust Control Design (Upper Bound)

It is not trivial to find the initially feasible solution. In this sub section we demon-

strate a way to find initially feasible solution. The initial feasible solution to the BMI

of H∞norm bound can be found by first finding the feasible solution for full state static

gain feedback case, and then the output feedback case. Consider the plant model in

Eq. (3.4) and controller model K(Ac, Bc, Cc, Dc).

3.2.3.1 Static Gain Feedback

Consider a full state static gain feedback i.e. assume K = F . The closed loop system

with full state static gain feedback is given by -

Gcl(AF ,BF , CF ,DF ) =

A+B2F 0 B1

Ab +B2bF A+B2F B1b

C1 +D12F 0 D11

C1b +D12bF C1 +D12F D11b


(3.22)

The H∞norm of the closed loop system, ‖Gcl‖∞ < γ, iff ∃P1 � 0 such that the BMI

in Eq. (3.23) is feasible.
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sym(P1AF ) P1BF CTF

∗ −γI DTF

∗ ∗ −γI

 ≺ 0 (3.23)

Note that P1 is pre multiplied and F is post multiplied toB2 in the term P1AF . Hence,

the change of variables is not helpful immediately. Let Q1 = P1
−1 � 0. Transform Gcl

using Q1. The BMI in Eq. (3.23) becomes


sym(AFQ1) BF Q1CTF

∗ −γI DTF

∗ ∗ −γI

 ≺ 0 (3.24)

Partition Q1 = Q ⊕ Q ⊕ Q ⊕ Q according to AF . Additional conservatism is added

due to this assumption, but in this section we are finding only the feasible solution. Now

parameterize the nonlinear terms - FQ = L. The change of variables converts the BMI

in Eq. (3.24) into an LMI - 
sym(A) B CT

∗ −γI DT

∗ ∗ −γI

 ≺ 0 (3.25)

where,

A =

 AQ+B2L 0

AbQ+B2bL AQ+B2L

 B =

 B1

B1b



C =

 C1Q+D12L 0

C1bQ+D12bL C1Q+D12L

 D =

 D11

D11b


The Eq. (3.25) is an LMI in L and Q. If the optimal control problem

minimize
L,Q

γ

subject to (3.25)

Q � 0

(3.26)
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is solved to obtain the lowest norm bound γmin, then no other controller can give

better performance (i.e. γ) than γmin. Knowing the static gain feedback controller, the

output dynamic feedback controller can be determined by solving an LMI problem.

3.2.3.2 Dynamic Feedback

Now, fix Cc = F and Dc = 0 in K. Consider an output feedback control -

The closed loop system Gcl is defined in Eq. (3.5). The control input for full state

static gain feedback controller is ustatic = Fx, and the control input for dynamic feedback

controller is udynamic = Ccxc. When Cc = F , the performance of dynamic output feedback

controller will be comparable to the full state static gain feedback controller, if only if the

controller states xc → x. When this is true, udynamic → ustatic. Similarly, the sensitivity

output in first case will be similar to the second case only if xcb → xb. This leads to a

change of states x̃ = x − xc and x̃b = xb − xcb . Now define the linear transformation T

such that [x, x̃, xb, x̃b] = T [x, xc, xb, xcb ]
T .

T =

 I 0

I −I

⊕
 I 0

I −I

 (3.27)

The closed loop system in Eq. (3.6) is transformed using matrix T .

 Ã B̃

C̃ D̃

 =

 T ÂT T B̂

ĈT D̂

 (3.28)

The matrices Ã B̃, C̃ and D̃ are obtained by Eq. (3.29)
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 Ã B̃

C̃ D̃

 =



A+B2F −B2F 0 0 B1

A+B2F −BcC2 − Ac Ac −B2F 0 0 B1 −BcD21

Ab +B2bF −B2bF � � B1b

Ab +B2bF −BcC2b −B2bF � � B1b −BcD21b

C1 +D11F −D11F 0 0 D11

C1b +D11bF −D11bF C1 +D11F −D11F D11b


(3.29)

where, � terms follow from the fact that Ã is lower block triangular and diagonal

blocks are identical. The H∞norm of the closed loop system, ‖Gcl‖∞ < γ, iff ∃P1 � 0

such that the BMI in Eq. (3.30) is feasible.


sym(P1Ã) P1B̃ C̃

∗ −γI D̃

∗ ∗ −γI

 ≺ 0 (3.30)

Now, partition P1 = P ⊕ Pc ⊕ Pb ⊕ Pc � 0 according to Ã. Here, F is kept fixed and

the only design variables are Ac, Bc and P , Pc, Pb. Combining the non linear terms the

BMI in Eq. (3.30) can be transformed into an LMI.


sym(M) N C̃T

∗ −γI D̃T

∗ ∗ −γI

 ≺ 0 (3.31)

where M is shown in Eq. (3.32)
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M = P1Ã =

P (AF ) −PB2F 0 0

Pc(AF )− Z −GC2 Z − PcB2F 0 0

Pb(AFb) −PbB2bK Pb(AF ) −PbB2F

Pc(AFb)−GC2b −PcB2bF Pc(AF )− Z −GC2 Z − PcB2F


(3.32)

where, AF = A+B2F and AFb = Ab +B2bF .

N = P1B̃ =



PB1

PcB1 −GD21

PB1b

PcB1b −GD21b


where, Z = PcAc and G = PcBc.

Note here that the parameters P , Pc, Pb, Z, and G appear affinely in the LMI (3.31).

This LMI can be solved for P1 � 0, Z and G. Then the control parameters Ac and Bc

can be obtained. The control parameters, Ac, Bc, Cc = F and Dc = 0 obtained from this

LMI feasibility problem give a feasible solution which is considered as an upper bound

(γUB) to the original BMI problem (3.7). This solution is treated as an initial feasible

solution for starting the bisection.

3.3 Integrated Robust Sub-Optimal Design

In integrated design, both control parameters and structural parameters are opti-

mized for performance in a single optimization problem. In the form of the equation,

the integrated design problem can be written as-

minimize
b,vec(Ac),vec(Bc),vec(Cc),vec(Dc)

Performance function

subject to b ≤ b ≤ b̄

(3.33)
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Note that the set of optimization variables include the vector of structural design pa-

rameters. The H∞norm bound optimization problem in Eq. (3.8) can be extended to an

integrated problem by adding the vector of structural parameters b into the optimization

variables as-

minimize
vec(Ac),vec(Bc),vec(Cc),vec(Dc),vec(P1),b

γ

subject to (3.7),

P1 � 0

b ≤ b ≤ b̄

(3.34)

In the integrated design problem settings, the matrix inequality in Eq. (3.7) is not a

BMI because now it includes additional variable terms in b. In general, the integrated

design problems can not be written as BMI constrained problem, therefore a two step

algorithm for integrated design is proposed in this section.

3.3.1 Algorithm

This section summarizes the algorithm for integrated robust optimal design (IROD)

methods to solve the problem in Eq. (3.33) using BMI method explained in section 3.

The integrated design problem can be split into two nested optimization problems as -

minimize
b

γmin

subject to


γmin = minimize

vec(Ac),vec(Bc),vec(Cc),vec(Dc),vec(P1)
γ

subject to (3.7),

P1 � 0


b ≤ b ≤ b̄,

(3.35)

The algorithm to solve the inner problem is given below:

Define a vector of all decision variables d = [vec(Ac), vec(Bc), vec(Cc), vec(Dc), vec(P1), b].

Then, the solution steps are:

1. Step 1: Find the lower bound γ0LB by solving problem in Eq. (3.21).
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2. Step 2: Find upper bound γ0UB and initially feasible variables d∗ by first solving the

full state static gain feedback control problem in Eq. (3.25) and then solving the

output feedback control problem in Eq. (3.31).

3. Step 3: Set maximum number of iterations Nitr and allowed tolerance Tol. Set

k = 0

4. Step 4: Compute new γ by bisection method, γk+1 = (γkLB + γkUB)/2. Check the

feasibility of γk+1 by solving the BMI problem in Eq. (3.20). BFGS methods or

quasi-Newton methods can be used to solve this problem to get locally optimal νγ(d).

5. Step 5: If νγ(d) = 0 then the BMI is feasible for γk+1. Change the upper bound

to γk+1
UB = γk+1 and keep the lower bound same γk+1

LB = γkLB. Change d∗ = d. If

νγ(d) > 0 then the BMI is not feasible for γk+1, then Change the lower bound to

γk+1
LB = γk+1 and keep the upper bound same i.e. γk+1

UB = γkUB and keep the value of

d∗ same.

6. Step 6: If k = Nitr or γk+1
UB − γ

k+1
LB ≤ Tol then the locally optimal value of γ is γk+1

and the optimal decision variables are d∗. Otherwise, go to Step 4.

The outer problem can be solved using algorithms that guarantee local convergence;

for example, interior point methods. Since, the algorithm used for solving BMI con-

strained problems guarantee local convergence, the integrated design is guaranteed to be

locally optimal. In most cases the upper bound obtained by solving convex optimization

problems in Eq. (3.25) and Eq. (3.31), is very close to the local minimum, hence in many

practical cases, the bisection can be avoided and the upper bound can be assumed as

the minimum. The algorithm of IROD is shown in Fig. (3.1)

Next chapter presents simulation results from application of this algorithm to Com-

bine harvester header height control problem.
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Figure 3.1 Algorithm of IROD
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CHAPTER 4. APPLICATION TO COMBINE HARVESTER

AND EXCAVATOR

4.1 Combine Harvester Header Height Control

IROD methodology proposed in the previous chapter is employed to simultaneously

design controller and a mechanical linkage design parameter for header height tracking

problem of combine harvester. The integrated design objective relates to an improved

terrain tracking, which directly relates to increased productivity, and reduced control

power, which directly translates to reduction in fuel costs. Also robust design allows

reduced manufacturing costs and better performance for longer period of time. In the

second section, the methodology is used to simultaneously design excavator link param-

eter and bucket level controller.

Schematic diagrams of combine machine and header link are shown in Fig. (4.1) and

Fig. (4.2), respectively.

The objective of this case study is to synthesize a robust controller and optimize

a header linkage parameter to maintain a constant header height above the sinusoidal

terrain, minimize the sensitivity of performance with respect to changes in the same

plant parameter and reduce control power. The plant design variable is chosen to be

location of a pin joint (LB) between feeder house and hydraulic piston in body centered

coordinate system as shown in Figure 4.2. Nominal value of LB is 1.541m. The un-

certain parameter was chosen to be LB because this parameter has wider range due to

less physical constraints. The header height control problem is important because even
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Figure 4.1 Schematic diagram of combine harvester

small improvement in tracking is directly related to higher crop harvest due to improved

precision, better speed of combine harvester which then relates to leveraged profit for

farmer. In this study, we assumed the speed of combine machine to be 10 mph (16.1

km/h) and designed two controllers using two methods namely, robust H∞design using

LMI and integrated robust optimal design (IROD) method. The plant parameter LB

was re-designed using IROD method. The parameters of the linkage are for 9870STS

combine machine of Deere and company. The rough terrain is the reference input for

tracking (Input 1) and the header height is controlled through hydraulic actuator (Input

2). The hydraulic actuator is assumed as a perfect source of force. The four tires are

modeled as a spring-mass-damper system. The height sensor is attached at the tip of

the header, and there is a natural delay between header and front tires and rear tires.

Velocity of the combine is assumed to be a constant at 10 mph (4.4707m/s) and since

the distance between the header height sensor and the tires is known, the delay between

header height sensor and front tires is 0.5810s and the delay between header height sensor

and rear tires is 1.37s. These delays are modeled using first order Pade approximation.

The model of the header, feeder-house linkage along with the vehicle and tires is built
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Figure 4.2 Schematic diagram of combine header

in SimMechanics. The dynamics incorporated in the SimMechanics model is shown in

Fig. (4.3).

4.1.1 Sequential H∞Design

In order to design robustH∞optimal controller, parameter LB was varied in the range

of ±0.1m from nominal value with step size of 0.005m. At every discrete value of LB,the

harvester model was linearized to obtain a family of plant models with uncertainty in

the parameter LB. Uncertainty in the model is modeled as polytopic uncertainty. Bode

magnitude diagrams of normalized uncertain plants and upper bound on uncertainty are

shown in Fig. (4.4).

Terrain tracking controller does not require high frequency tracking. The weighting

function wT on reference input is shown in Eq. (4.1).
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Figure 4.3 Schematic of the dynamics included in the system model

wT =
(s+ 10)

(s+ 10000)
(4.1)

H∞optimal control is synthesized for the set of uncertain plant models uG using

LMI method. Another controller without considering uncertainty was designed using

the same method. For nominal controller,the same weighting function is used as shown

in Eq. (4.1)

4.1.2 Integrated Robust Optimal Design (IROD)

The IROD theory is used to derive controller and system parameter LB such that

the sensitivity w.r.t. the same parameter LB, the tracking error and control power are

minimized. The SimMechanics model of combine harvester is linearized at operating

point such that the header is raised to desired height. The linear sensitivity dynamics is

obtained by numerical differentiation of linearized SimMechanics model. The minimum

H∞norm bound problem for the augmented system and sensitivity dynamics is solved
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Figure 4.4 Set of normalized uncertain models: dashed black lines represent uncertain
model and solid blue line represents the upper bound

using IROD method explained in the third chapter. The system is linearized at every

step of the optimization since, when LB is changed, the operating point as well as

linearization of nonlinear system changes. The IROD method proposed the piston joint

location to be moved closer to the header pivot. The proposed change in the position is

δLB = −6.36cm. Integrated design shows 14% improvement inH∞norm from γnominal =

11.64 to γintegrated = 9.9123.

Figure 4.5 shows comparison between performance of controller obtained from robust

H∞control synthesis and closed loop system obtained from IROD. All the three (nominal

H∞, robust H∞and IROD) controllers are used in the loop with full nonlinear system
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Table 4.1 Comparison between H∞controller and IROD
H∞ Robust H∞ Integrated Design

RMS Tracking
0.144934 0.026668 0.008066

Error (m)
Maximum absolute

1.1047 0.1543 0.0172
sensitivity

Total Control
2.264× 106 2.1167× 106 1.9480× 106

Power(J)

developed in SimMechanics. Terrain shape is chosen to be sinusoidal with amplitude

1m and frequency 0.1Hz (0.2πrad/sec) i.e. 0.1406rad/m and period 44.84m, if combine

velocity is 4.4707m/s (10mi/hr). The sensitivity of the closed loop system in all three

cases is computed as a function of angle of header, using numerical differentiation. Figure

4.6 compares the maximum sensitivities of the closed loop systems obtained from different

approaches. Table 4.1 shows that the integrated design method gave better results in

terms of all the three design criteria. All the three measures (RMS error, control power,

and sensitivity) are computed for steady state performance.

4.2 Excavator Bucket Level Control

In this study robust optimal control along with a link length are simultaneously

designed for bucket angle control of an excavator. A diagram of a typical excavator is

shown in Fig. (4.7). The design variable is the length of link (LBe) indicated in the figure.

While moving the load, bucket angle should be maintained such that the bucket angle

is held constant with respect to ground to avoid any spilling of the load. An automatic

controller is needed to control the bucket angle when an operator changes the angle of the

boom. The challenge is to design a controller that is robust to the variations in mass of

the bucket (MB), since the load in bucket is not known and changes in every operation.

Other objective of the study is to minimize the control power required to maintain the

level. All the parameters for excavator are taken from AMEsim excavator demo. The
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hydraulic actuators are modeled as perfect sources of force. The nominal value of design

variable is 1.45m. Two methods are used to design controller, the robust H∞design and

IROD methodology explained in chapter 2 and chapter 3.

Equations of motion for the mechanical system are derived using method explained

in chapter 2. The uncertain parameter MB and the design variable LBe are kept as sym-

bolic variables. The EOM are then linearized at an operating point, which also depends

on MB and LBe, using linearization algorithm explained in chapter 2. The linearized

models are written in generalized linear model form with bucket angle tracking error,

tipping control force, and bucket control force as exogenous outputs. The exogenous

inputs are boom angle and tipping angle reference inputs. Control inputs are the tipping

actuator force and bucket actuator force, and measured outputs are bucket angle and

tipping angle.

4.2.1 Sequential and Integrated Design

An H∞controller is designed for the nominal value of the design variable. The uncer-

tainty in the mass of the bucket is modeled as polytopic uncertainty. The upper bound

and lower bound on the mass is assumed ±10% of the nominal value. The uncertain

mass range from lower bound to upper bound is linearly gridded by 10 points, and linear

systems at all the grid points are obtained by substituting values in the symbolic linear

systems. LMI based algorithm is used to find optimal controller. The IROD method is

used to design another H∞norm minimal controller, and design parameter LBe which

minimizes the sensitivity with respect to change in MB. Method explained in chapter

3 is used to design control variables and LBe. Lower bound on the design variable is set

to be 1.15m and the upper bound is set to 2.16m which is a constraint arising from the

structure of the excavator. Output weighting function on the tracking error for both the

design processes is taken as a low pass filter -
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Table 4.2 Comparison between H∞controller and IROD
Robust H∞ Integrated Design % Improvement

RMS Tracking
1.406 1.289 8.32%

Error (rad)
Maximum absolute

1.3095× 10−4 0.79443× 10−4 39.33%
sensitivity (rad/KG)

Total Control
9.2292× 105 6.0449× 105 34.5%

Power(J)

Wp(s) =
s+ 1

s+ 0.01
(4.2)

The control force output is weighted by scalar function - Wc = 10−5.

4.2.2 Results

IROD method proposed to increase LBe to 1.97m for optimal performance. In order

to compare the two designs, the boom angle is actuated using sinusoidal signal with

frequency 1rad/s, and amplitude 0.1rad. Reference input for bucket angle is set to

πrad to ensure the bucket remains parallel to ground, also the tipping reference angle is

0.6545rad. The comparison between tracking error of sequential H∞design and IROD

are presented in Fig. (4.8). The control inputs, resulting from H∞design and integrated

design, to the bucket and tipping are shown in Fig. (4.9). Table 4.2 shows that the IROD

methodology performs better than the state of the art control synthesis method in terms

of all the three design objectives, i.e. performance, robustness and control power.
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Figure 4.5 Comparison between tracking performance and control power of H∞design
and IROD
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Figure 4.6 Comparison of sensitivities of performance as functions of header angle

Figure 4.7 Schematic diagram of excavator
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Figure 4.8 Comparison between the performance and sensitivity of sequentialH∞design
and IROD of excavator.



48

Figure 4.9 Comparison between control input in sequential H∞design and IROD of
excavator
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CHAPTER 5. ROBUST FEEDBACK LINEARIZATION

For nonlinear systems with parametric uncertainties and which cannot be linearized at

an operating point, a sensitivity based robust feedback linearization method is proposed

in this chapter. The systems considered here are assumed to be feedback linearizable

and minimum phase.

The nonlinear systems considered here are of the form -

ẋ = f(x, b) + g(x, b)u

y = h(x, b) (5.1)

where, x ∈ <n is state vector, b ∈ < is a parameter, f : <n+1 → <n, g : <n+1 → <

and h : <n+1 → < are continuously differentiable functions. The parameter b in system

Eq. (5.1) is uncertain or subject to change due to wear and tear. The robust feedback

linearization is explained for a single uncertain parameter but, it can be extended to

vector of parameters. The sensitivity of a nonlinear system is defined as a change in the

output as a function of small change in the parameter, hence the sensitivity dynamics is

given by-

ẋb = fb(x, xb, b) + gb(x, xb, b)u

yb = hb(x,xb, b) (5.2)

where xb ∈ <n is a sensitivity state vector, subscript b indicates full derivative with

respect to b, that is (.)b = ∂(.)
∂b

+ ∂(.)
∂x
xb, and yb is the sensitivity of output.
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5.1 Feedback Linearization of Augmented Sensitivity

Dynamics

First, we consider only the linear dynamics and assume that the nonlinear system

is minimum phase. The feedback linearized dynamics of the nominal nonlinear system

consists of n integrators and one input. For the nominal system performance, sufficiently

high gain controller used in negative feedback can stabilize the closed loop system and

can be used for tracking. Any other controller can also be designed for better tracking,

but in this research we assumed only gain K used in negative feedback. The closed loop

system dynamics is then -

ζ̇ = Aζ +BK(w − ζ1) (5.3)

since ν = K(w − y) = K(w − ζ1), where w is the exogenous reference input. Also,

for nominal system ν = Lrfh+ Lrghu0, therefore

u =
K(w − h)− Lrfh

Lrgh
(5.4)

5.1.1 Robust Control

With the same gain, ub can be computed from Eq. (5.38), in terms of u and νb. The

same K also stabilizes the sensitivity dynamics since linear sensitivity dynamics is also

a set of n integrators with input νb. In case of sensitivity dynamics the desired signal is

0, since the reference signal is independent of parameter, i.e. wb = 0. As discussed in

the previous section, the control input ub is the direction towards minimum sensitivity.

The step size K2 can be chosen such that the closed loop system remains stable and

the sensitivity dynamics converges fast enough. Fig. (5.1) shows the control signal flow

diagram. In this method, the controller includes sensitivity dynamics which is given by

Eq. (5.5).
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Figure 5.1 Robust feedback linearization control structure

5.2 Robust Control Design

5.2.1 Robust Control Problem Structure

In the sensitivity based robust optimal control synthesis problem, the sensitivity with

respect to the uncertain parameter is minimized. Sensitivity dynamics is either used in

the process of optimal control synthesis, or it can be used within the controller. In

the case of feedback controller, the control input u is considered parameter dependent

because the parameter dependent output is used for control input calculation. The

sensitivity augmented system with parameter dependent control input is given by -

ẋ = f(x, b) + g(x, b)u(x)

ẋb = fb(x, xb, b) + gb(x, xb, b)u(x) + g(x, b)ub(x)

y = h(x, b)

yb = hb(x,xb, b) (5.5)
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where, ub = du
db

is the variation in control input. Let the augmented state vector be-

X = [xT , xTb ]T . The system in Eq. (5.5) has two inputs u and ub, and two outputs y and

yb. The objective of robust feedback control is to design a controller which minimizes

the sensitivity and improve performance. The robustness is added through adapting the

control input, which is assumed parameter independent, to minimize the sensitivity. The

objective function for robustness is set to be -

J(u) =
1

2

(u(b0)− u(b))2

b0 − b
(5.6)

Control input u is depends affinely on output y since a feedback control is designed,

hence minimum of error in u, also gives minimum in error in y. If we take limit as

b0 − b→ 0, then the direction towards minimum of the objective function is -

lim
(b0−b)→0

∇uJ(u) = −ub (5.7)

A suitable step size K2 can be used, such that the closed loop system remains stable.

The stability and feedback linearization for sensitivity augmented system is explained in

next three subsections.

5.2.2 Notation

A Lie derivative of function h(x, b) along f(x, b) with respect to x is defined as -

Lfh = ∂h
∂x

T
f(x, b) The full derivative of Lie derivative with respect to parameter b is

given by -

dLfh(x, b)

db
=
∂Lfh(x, b)

∂b
+
∂Lfh(x, b)

∂x
xb (5.8)

since both function f and h are continuously differentiable, the order of derivatives

can be exchanged, and hence from product rule
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dLfh(x, b)

db
= Lfbh(x, b) + Lfhb(x, b) (5.9)

also,

dLgLfh(x)

db
= LgbLfh(k) + LgLfbh(x) + LgLfhb(x) (5.10)

and

dLkfh(x)

db
=

∂

∂x

d

db
Lk−1f h(x)f(x) (5.11)

where, the subscript b indicates full derivative, i.e.

Lfbh(x, b) =

[
∂h(x, b)

∂x

]T
∂f(x, b)

∂b
+

[
∂h(x, b)

∂x

]T [
∂f(x, b)

∂x

]T
xb (5.12)

Lfhb(x, b) =

[
∂2h(x, b)

∂b∂x

]T
f(x, b) +

[
∂2h(x, b)

∂2x
xb

]T
f(x, b) (5.13)

Dependence of f , h and g on x and b is not explicitly written hereon, but it is assumed.

Another important identity that follows is -

∂fb
∂xb

=
∂

∂xb

(
∂f

∂b
+
∂f

∂x
xb

)
∂fb
∂xb

=
∂f

∂x
(5.14)

Similar is true for Lie derivatives -

∂

∂xb

d

db
Lfh =

∂

∂x
Lfh (5.15)

5.2.3 Feedback Linearization

Theorem 1. If the nonlinear system in Eq. (5.1) has relative degree r then the relative

degree of sensitivity augmented system in Eq. (5.5) is [r, r].
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Proof. From the definition of relative degree - LgL
k−1
f h(x)u = 0, ∀ 0 ≤ k < r and ∀x in

a neighborhood D of operating point x0, b0 and u00 and LgL
l
fh(x)u 6= 0 ∀ r − 1 ≤ l ≤ n

in the neighborhood D.

⇒
dLgL

k−1
f h(x)u

db
= 0 ∀0 ≤ k < r (5.16)

also,

dLgL
l
fh(x)u

db
= LgbL

l
fhu+ Lg

dLlfh

db
u+ LgL

k
fhub (5.17)

In order for above quantity to be zero ∀u and ub, multipliers of u and ub should be

independently zero, but LgL
l
fh 6= 0, hence

⇒
dLgL

l
fh(x)u

db
6= 0 ∀ r − 1 ≤ l ≤ n (5.18)

Now, compute the relative degree for system in Eq. (5.5). The 1st time derivative of

yb is given by-

ẏb =
∂hb
∂x

ẋ+
∂hb
∂xb

ẋb (5.19)

Substituting for ẋ and ẋb from Eq. (5.5) and from identity Eq. (5.14)

ẏb =
∂hb
∂x

(f + gu0 + gub) +
∂h

∂x
(fb + gbu0 + gub)

=
d

db
(Lfh+ Lghu) (5.20)

If dLghu

db
is zero, the second derivative of yb is given by -

y
(2)
b =

∂

∂x

(
dLfh

db

)
ẋ+

∂

∂xb

(
dLfh

db

)
ẋb

=
∂

∂x

(
dLfh

db

)
(f + gu0 + gub) +

∂

∂xb

(
dLfh

db

)
(fb + gbu0 + gub)

=
d

db
(L2

fh+ LgLfhu) (5.21)
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Similarly, the kth derivative of ẏb, if LgL
k−2
f hu is zero, is given by -

y
(k)
b =

d

db
(Lkfh+ LgL

k−1
f hu) (5.22)

Hence,the y
(k)
b is independent of u iff

dLgL
k−1
f hu

db
= 0, i.e. the relative degree of sensi-

tivity dynamics is s if
dLgL

k−1
f hu

db
= 0 ∀ 0 ≤ k < s and

dLgLlfhu

db
6= 0 ∀ s ≤ l ≤ n. From

Eq. (5.16) and Eq. (5.18), s = r. Which proves the theorem.

Theorem 2. Consider the system in Eq. (5.5) and it has relative degree [r, r], where

r < n in D ∈ <2n, then ∀ X ∈ D, there exists a neighborhood N = N ⊕ Nb of X0 and

smooth functions φ1(x, b), φ2(x, b), φ3(x, b), . . . , φn−r(x, b) such that

Lgφi(x, b) = 0, ∀ 1 ≤ i ≤ n ∃[x, xb] ∈ N

and the mapping

T =

 TN

Tb

 (5.23)

restricted to N is a deffeomorphism on N where,

TN(x, xb, b) =



φ1(x, b)

φ2(x, b)

...

φn−r(x, b)

h

...

Lr−1f h



=

 η

ζ

 (5.24)

and
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Tb(x, xb, b) =



φ1b(x, b)

φ2b(x, b)

...

φ(n−r)b(x, b)

hb
...

dLr−1
f h

db



=

 ηb

ζb

 (5.25)

Proof. In order to prove that T is a diffeomorphism, we need to prove that T−1 is non-

singular in N . We know that for a neighbourhood N of x0, the transformation TN is a

diffeomorphism. The Jacobian of T is given by -

∇XT =

 ∂TN
∂x

0

∂Tb
∂x

∂Tb
∂xb

 (5.26)

It can be proved from identity in Eq. (5.14) that ∂Tb
∂xb

= ∂TN
∂x

.

∇XT =

 ∂TN
∂x

0

∂Tb
∂x

∂TN
∂x

 (5.27)

It can be seen in Eq. (5.27) that the matrix is lower block triangular with identical

diagonal blocks. This proves that ∇XT is invertible in a neighborhood N ⊕Nb.

5.2.4 Zero Dynamics

The state vector X is transformed into new states [ηT , ζT , ηTb , ζ
T
b ]T = Ξ by Ξ =

T (X , b). The dynamics of η is -
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η̇ =
∂φ

∂x
(f + gu)

η̇ = f0(η, ζ) (5.28)

since Lgφu = 0 in neighborhood N .

This also imply that -

dLgφu

db
= 0 (5.29)

in a neighborhood N .

The dynamics for ηb is given by -

η̇b =
∂φb
∂x

(f + gu) +
∂φb
∂xb

(fb + gbu0 + gub)

=
∂φb
∂x

f +
∂φ

∂x
fb +

∂φ

∂x
gbu+

∂φ

∂x
gub

Now from identity Eq. (5.14),

η̇b =
d

db

[
∂φ

∂x
f

]
+

d

db

[
∂φ

∂x
gu

]
=

d

db

[
∂φ

∂x
f

]
η̇b = f0b(η, ζ, ηb, ζb) (5.30)

Theorem 3. If the zero dynamics given by f0(η, 0) is asymptotically stable in a neigh-

borhood Dη of operating point η0 then the sensitivity zero dynamics f0b(η, 0, ηb, 0) is also

asymptotically stable at in a neighborhood of operating point [ηT , ηTb ]T = [ηT0 , η
T
b0

]T where

ηb0 =
∂f0(η0, 0)

∂b

[
∂f0(η, 0)

∂η

∣∣∣∣
η=η0

]−1
(5.31)

. In other words if system in Eq. (5.1) is minimum phase in domain Dη then the

sensitivity augmented system in Eq. (5.5) is also minimum phase in domain Dη ⊕Dηb.
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Proof. From [56], a neighborhood of operating point is asymptotically stable if

eig

(
∂f0(η, 0)

∂η

∣∣∣∣
η=η0

)
< 0 (5.32)

The zero dynamics of sensitivity augmented system is given by simultaneously solv-

ing Eq. (5.28) and Eq. (5.30) simultaneously, hence the Jacobian of zero dynamics of

augmented system is -

∇[ηT , ηTb ]
T

 f0(η, 0)

f0b(η, 0, ηb, 0)

 =

 ∂f0(η,0)
∂η

0

∂f0b (η,0,ηb,0)

∂η

∂f0b (η,0,ηb,0)

∂ηb


∣∣∣∣∣∣∣
η=η0, ηb=ηb0

(5.33)

From Eq. (5.30),

f0b(η, 0, ηb, 0) =
d

db
f0(η, 0)

Hence, from identity Eq. (5.14) -

∇[ηT , ηTb ]
T

 f0(η, 0)

f0b(η, 0, ηb, 0)

 =

 ∂f0(η,0)
∂η

0

∂f0b (η,0,ηb,0)

∂η
∂f0(η,0)
∂η


∣∣∣∣∣∣∣
η=η0, ηb=ηb0

(5.34)

The Jacobian in Eq. (5.34) has lower block triangular structure and the blocks on

diagonal are identical. Which means the Jacobian has repeated eigen values, and those

are equal to the eigen values of ∂f0(η,0)
∂η

∣∣∣
η=η0

. Hence from Eq. (5.32) -

eig

∇[ηT , ηTb ]
T

 f0(η, 0)

f0b(η, 0, ηb, 0)


 < 0 (5.35)

which proves the theorem
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5.2.5 Linear System

The linear dynamics in ζ and ζb with minimum phase nonlinear nonlinear dynamics

in η and ηb is -

η̇ = f0(η, ζ)

η̇b = F0b(η, ζ, ηb, ζb)

ζ̇ = Aζ +Bν

ζ̇b = Aζb +Bνb

y = ζ1

yb = ζb1 (5.36)

where, A is a n × n matrix with off diagonal ones, which is a normal form of n

integrators, B1×n = [0, 0, . . . , 1]T and

ν = Lrfh+ LgL
r−1
f hu (5.37)

and

νb =
d

db
Lrfh+

d

db
(LgL

r−1
f hu) (5.38)

5.3 Application to Hydraulic Actuator

The sensitivity based robust feedback linearization method is implemented for hy-

draulic nonlinear system with linear spring mass damper plant model. The hydraulic

actuator consists of piston, cylinder and 4-way spool valve. The schematic diagram of

the hydraulic system is shown in Fig. (5.2). The explanation and values of variables are

given in table 5.1. The values of states, input, output and flow are the initial operating

conditions. The fluid density ρ is assumed to be uncertain. Hence the objective is to
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Table 5.1 Explanation of variables

Variable Description Value
ma Mass 10 Kg
me Mass 5 Kg
ke Spring constant 100 N/m
ks Spring constant 100 N/m
do Damping constant 1000 Ns/m
ds Damping constant 10 Ns/m
de Damping constant 100 Ns/m
Ps Pump pressure 2× 107pa
Pe Tank pressure 0
QA Flow through chamber orifice 0
QB Flow through piston side orifice 0
ρ Fluid density 961.87 Kg/m3

β Bulk modulus 1.2485× 109 Pa
V OA Cylinder chamber dead volume 1× 10−4 m−3

V OB Piston chamber dead volume 1× 10−4 m−3

w Valve maximum width 0.005 m
Cd Discharge coefficient 0.62
AA Cylinder cross section area 0.125 m2

AB Piston area 0.125 m2

lmax Piston stroke 3m
xsp Spool valve position (control input) 0 m
PA Chamber pressure (state) Ps/2
PB Piston side pressure (state) Ps/2
xp piston position (state) 1.5 m
fa Hydraulic force (output) 0 N

track the desired xe and minimize the sensitivity of tracking with respect to variations

in fluid density. The nominal system dynamics is taken from [74]

The spring mass damper part of dynamics is given by -

maẍp = fa − ds(ẋp − ẋe)− d0ẋp − ks(xp − xe)

meẍe = ds(ẋp − ẋe)− deẋe + ks(xp − xe)− kexe (5.39)

where fa is the force applied by the hydraulic actuator. The hydraulic dynamic

equations are -
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Figure 5.2 Hydraulic system dynamics schematic diagram

fa = PAAA − PBAB (5.40)

ṖA =
β

V 0A + AAxp
(QA − AAẋp) (5.41)

ṖB =
β

V 0B + AB(lmax − xp)
(−QB + ABẋp) (5.42)

and the flow equations are -

QA = Cdwxsp

√
2

ρ
(
√
Ps − PAsg(xsp) +

√
PA − Pesg(−xsp)) (5.43)

QB = Cdwxsp

√
2

ρ
(
√
PB − Pesg(xsp) +

√
Ps − PBsg(−xsp)) (5.44)

where
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sg(xsp) =


1 if xsp > 0

0 if xsp ≤ 0

(5.45)

The controller for the full system is designed in two steps; in the first step, tracking

controller is designed for linear mechanical system assuming force as the input and then

force tracking controller is designed for hydraulic actuator using sensitivity based robust

feedback linearization. Figure 5.3 shows the structure of the nominal feedback linearized

controller, where Ktrack is the tracking controller and Kinner is the force controller.

Figure 5.3 Control structure of feedback linearization for hydraulic actuator

5.3.1 Feedback Control Design

Since the plant model is simply a linear spring damper, a PID controller is designed

for Ktrack and force controller is Kinner = 107

Ktrack = 1041 + 3.7s

s
(5.46)
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The feedback linearization is of Eq. (5.40) is achieved by transforming states PA and

PB to new states, P̃A and P̃B. This transformation cancels the velocity terms, ẋp in

Eq. (5.41) and Eq. (5.42). The state transformation used here is -

P̃A = PA + βln(AAxp + V 0A)

P̃B = P +B + βln(AB(lmax − xp) + V 0B) (5.47)

Hence, the force is transformed into -

ỹf = fa + AAβln(AAxp + V 0A)− ABβln(AB(lmax − xp) + V 0B) (5.48)

The feedback linearized system then reduces to

˙̃y = ν (5.49)

From Eq. (5.47) and Eq. (5.48), expression for ν is obtained in therms of states and

actual control input xsp.

ν =


xsp
√

2
ρ
βCdw

(
AA

AAxp+V 0A

√
Ps − PA + AB

AB(lmax−xp)+V 0B

√
PB − Pe

)
xsp > 0

0 xsp = 0

xsp
√

2
ρ
βCdw

(
AA

AAxp+V 0A

√
PA − Pe + AB

AB(lmax−xp)+V 0B

√
Ps − PB

)
xsp < 0

(5.50)

The actual control input xsp can be computed from ν because both have the same

sign. The Kinner is designed to reduce the error between desired ỹ and actual ỹ. That

is input to Kinner is ỹdesired − ỹactual which is ef = fdesired − fa. The control input ν is

therefore -

ν = Kinner(ỹdesired − ỹactual) = Kinneref (5.51)
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5.3.2 Robust Feedback Lineariztion

In order to change the control input to uncertainties in fluid density we need to find

the sensitivity of xsp to changes in ρ. As explained in the previous section, first we

find sensitivity dynamics with respect to ρ. From hereon subsrcript ρ represents full

derivative with respect to ρ.

The sensitivity of force fa is given by differentiating the output equation Eq. (5.40).

faρ = PAρAA − PBρAB (5.52)

Note here, that desired Fρ is zero. The sensitivity dynamics is obtained by differen-

tiating Eq. (5.41) and Eq. (5.42).

ṖAρ =
−β

(V 0A + AAxp)2
AAxpρ(QA − AAẋp)

+
β

(V 0A + AAxp)
(QAρ − AAẋpρ) (5.53)

ṖBρ =
β

(V 0B + AB(lmax − xp))2
ABxpρ(−QB + ABẋ)

β

V 0B + AB(lmax − xp)
(−QBρ + ABẋpρ) (5.54)

The flow sensitivities are calculated separately at xsp < 0 and xsp > 0. At xsp = 0 the

flow is zero hence, the flow sensitivity is zero. The discontinuity at xsp = 0 is included

in the equations as three different continuous cases, instead of differentiating the sg(xsp)

functional.
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QAρ = Cdwxspρ

√
2

ρ
(
√
Ps − PAsg(xsp) +

√
PA − Pesg(−xsp))

−Cdwxsp
√

1

2ρ3
(
√
Ps − PAsg(xsp) +

√
PA − Pesg(−xsp))

+Cdwxsp

√
1

2ρ
(

−1

(Ps − PA)1/2
PAρsg(xsp) +

1

(PA − Pe)1/2
PAρsg(−xsp))(5.55)

QBρ = Cdwxspρ

√
2

ρ
(
√
PB − Pesg(xsp) +

√
Ps − PBsg(−xsp))

−Cdwxsp
√

1

2ρ3
(
√
PB − Pesg(xsp) +

√
Ps − PBsg(−xsp))

+Cdwxsp

√
1

2ρ
(

1

(PB − Pe)1/2
PBρsg(xsp) +

−1

(Ps − PB)1/2
PBρsg(−xsp))(5.56)

The sensitivity of xp and xe can be obtained by differentiating Eq. (5.39). Re-

member that fa and pressures are functions of ρ. The nonlinear dynamical equations

Eq. (5.53) and Eq. (5.54) along with output equation Eq. (5.52) can be output-state

feedback linearized by the transformation obtained by differentiating the transformation

in Eq. (5.48), that is

ỹfρ = faρ + AA
β

AAxp + V 0A
AAxpρ + AB

β

AB(lmaz − xp) + V 0B
ABxpρ (5.57)

This transformation leads to linear system -

˙̃yρ = νρ (5.58)

where, νρ can be obtained from the transformation Eq. (5.57) in terms of xsp and xspρ .

From this relationship, xspρ can be obtained as function of states, sensitivity states and

νρ. The simpler way of obtaining νρ is by separately taking full derivative of Eq. (5.50)

with respect to ρ for all three cases. From the nominal closed loop system, i.e. Eq. (5.51),

and since desired ỹρ is zero -

νρ = Kinnerỹρ (5.59)
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The control input correction xspρ is then used as a correction step in actual control

input xsp.

5.4 Results

A controller was designed for the system shown in Fig. (5.2) for tracking xe and

minimizing sensitivity with respect to variations in fluid density. The desired xe is a

sinusoidal input and variation in ρ was assumed to be 0.1% from nominal value. The

step size, K2, for faster convergence was chosen to be 103.

Figure 5.4 Tracking error between desired and actual xe

Fig. (5.4) shows the tracking errors for nominal design and robust design. The input

was sinusoidal with frequency 1rad/sec, amplitude of 0.1m and bias of 0.2m.

The sensitivity of tracking and force are compared between nominal design and robust

design in Fig. (5.5) and Fig. (5.6), respectively. The figures show that the sensitivity to

variations in fluid density is reduced by adding robustness correction using sensitivity
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Figure 5.5 Comparison between sensitivity of nominal and robust designs

Table 5.2 Comparison between robust and nominal feedback linearization

Nominal Design Robust Design % Improvement
RMS Tracking Error 2.9330× 10−7 1.2619× 10−7 56.97

RMS Tracking Sensitivity 6.0487× 10−5 5.6739× 10−5 6.19
RMS Force Sensitivity 168.93 85.460 49.41
10% Tolerance Band ±4.8490× 10−4 ±5.1693× 10−4 6.6057

dynamics. The RMS tracking error, RMS sensitivity, and RMS sensitivity of force are

given in table 5.2. The tolerance band for nominal design is calculated by allowing

tracking error to increase by 10%, and the tolerance band for robust design is calculated

by letting tracking error go up by the same margin.
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Figure 5.6 Comparison between nominal and robust designs in terms of sensitivity of
force
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In this research, a novel methodology is proposed for Integrated Robust Optimal

Design (IROD) of linear systems using a combination of traditional sensitivity theory

and relatively modern developments in Linear Matrix Inequalities (LMI) and convex

optimization methods. This methodology is a viable alternative to existing sequen-

tial robust control design techniques. Although this method requires linearization of

nonlinear systems at each step in the outer optimization loop, an efficient approach is

proposed to facilitate linearization of DAE using symbolic computation. As this method

provides techniques to model the system with uncertain parameters in a symbolic form,

it eliminates the need of repetitive linearizations. The use of sensitivity theory for IROD

eliminates the need to estimate uncertainty bounds for all possible system configurations.

The uncertainty estimates are generally overly conservative, but sensitivity minimal de-

sign is the least conservative approach for robust synthesis. Since the algorithm used to

solve BMI constrained problem guarantees local convergence, the integrated design is also

guaranteed to be locally optimal. The global solution strategies like genetic algorithm

and particle swarm method do not guarantee convergence in polynomial time since the

problem is non-convex and np-hard. The proposed methodology can also provide Pareto

optimal controllers for performance, robustness and control power. The uncertainties

other than parametric uncertainties can also be used in this formulation using some ap-

proximations; for example, uncertainty in the performance due to unknown delays can

be modeled by Pade’s approximation.

The efficiency of IROD methodology is demonstrated by applications to combine
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harvester header height control problem and excavator bucket level control problem.

The proposed method is compared with the nominal and robust H∞controllers. It is

demonstrated, that the IROD method provides better overall closed loop system than

the sequential design methods, by comparing the tracking performance, sensitivity, and

control power. This example also shows that the IROD method is an effective alterna-

tive to existing integrated design methods and potential can offer better solutions than

existing methods.

For the systems which can not be linearized at operating points, for example hydraulic

actuators, but are feedback linearizable with minimum phase zero dynamics, feedback

linearization provides best controllers. This method is known for not being robust to pa-

rameter variations. A new method for robust feedback linearization is proposed based on

sensitivity dynamics for nonlinear systems with parametric uncertainties. For minimum

phase systems, the stability of sensitivity augmented dynamics is proved. This method

provides least conservative design because it does not require estimates of uncertainty

bounds. A robust feedback linearized controller is designed using proposed method for

hydraulic actuator with double acting cylinder and four way spool valve. The objec-

tive was to minimize the sensitivity of the closed loop system dynamics with respect

to fluid density parameter. It is shown that augmenting control input using sensitivity

information improves the robustness of the system.

The methodology explained in chapter 2 for lineairization of DAE in symbolic form

can be extended to linearization of 3D multibody dynamics. The IROD methodology

can be further extended to include parameter tolerance maximization and variability

minimization problems. IROD has great potential if the linear system is parameter

dependent. A parameter dependent Lyapunov function may be used to convert the

optimal control problems into BMI constrained problems, and for a class of systems this

non-convex problem may be converted into equivalent LMI constrained problem. IROD

methodology can be extended to robust gain scheduling as well.
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The robust feedback linearization method proposed here, can also be extended for

back stepping control and adaptive control. While the methodology is demonstrated

using SISO system example it readily extends to MIMO plant models with multiple

uncertain parameters.
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[9] Bozca, M., Muğan, A., and Temeltaş, H., 2008. “Decoupled approach to integrated

optimum design of structures and robust control systems”. Structural and Multidis-

ciplinary Optimization, 36(2), pp. 169–191.

[10] Fu, K., and Mills, J., 2005. “A convex approach solving simultaneous mechanical

structure and control system design problems with multiple closed-loop performance

specifications”. Journal of dynamic systems, measurement, and control, 127(1),

pp. 57–68.

[11] Pil, A., and Asada, H., 1996. “Integrated structure/control design of mecha-

tronic systems using a recursive experimental optimization method”. Mechatronics,

IEEE/ASME Transactions on, 1(3), sept., pp. 191 –203.

[12] Wu, F., Zhang, W., Li, Q., and Ouyang, P., 2002. “Integrated design and pd control

of high-speed closed-loop mechanisms”. Transactions of the ASME, 124.

[13] Krishnaswami, P., and Kelkar, A., 2003. “Optimal design of controlled multibody

dynamic systems for performance, robustness and tolerancing”. Engineering with

Computers, 19, pp. 26–34. 10.1007/s00366-002-0246-.

[14] Carrigan, J., Kelkar, A., and Krishnaswami, P., 2005. “Integrated design and min-

imum sensitivity design of controlled multibody systems”. ASME Conference Pro-

ceedings, 2005(47438), pp. 601–609.

[15] Bode, H., 1952. Network Analysis and Feedback Amplifier Design. No. v. 8 in Bell

Telephone Laboratories series. Van Nostrand.

[16] Horowitz, I., 1963. Synthesis of Feedback Systems. Academic Press.

[17] Tomović, R., 1963. Sensitivity Analysis of Dynamic Systems. McGraw-Hill electronic

sciences series. McGraw-Hill.



74

[18] Bradt, A., 1968. “Sensitivity functions in the design of optimal controllers”. Auto-

matic Control, IEEE Transactions on, 13(1), feb, pp. 110 – 111.

[19] Sobral, M., J., 1968. “Sensitivity in optimal control systems”. Proceedings of the

IEEE, 56(10), oct., pp. 1644 – 1652.

[20] Sannuti, P., Cruz, J., Lee, I., and Bradt, A., 1968. “A note on trajectory sensitivity

of optimal control systems”. Automatic Control, IEEE Transactions on, 13(1), feb,

pp. 111 – 113.

[21] Eslami, M., 1994. Theory of Sensitivity in Dynamic Systems: An Introduction.

Springer-Verlag.

[22] Fleming, P., 1973. Trajectory Sensitivity Reduction in the Optimal Linear Regulator.

The Queen’s University of Belfast.

[23] Fleming, P., and Newmann, M., 1977. “Design algorithms for a sensitivity con-

strained suboptimal regulator”. International Journal of Control, 25(6), pp. 965–

978.

[24] Frank, P., 1978. Introduction to System Sensitivity Theory. Academic Press.

[25] Yedavalli, K., and Skelton, R., 1982. “Controller design for parameter sensitivity

reduction in linear regulators.”. OPTIMAL CONTR. APPLIC. & METHODS.,

3(3), pp. 221–240.

[26] Youla, D., Jabr, H., and Bongiorno, J., J., 1976. “Modern wiener-hopf design

of optimal controllers–part ii: The multivariable case”. Automatic Control, IEEE

Transactions on, 21(3), jun, pp. 319 – 338.

[27] Zames, G., and Francis, B., 1983. “Feedback, minimax sensitivity, and optimal

robustness”. Automatic Control, IEEE Transactions on, 28(5), pp. 585–601.



75

[28] Tulpule, P., and Kelkar, A., 2012. “Robust optimal control design using sensitiv-

ity dynamics and youla parameterization”. In ASME DSCC/MOVIC Conference

Proceedings, Fort Lauderdale FL, ASME.

[29] Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., 1994. Linear Matrix

Inequalities in System and Control Theory, Vol. 15. Society for Industrial Mathe-

matics.

[30] El Ghaoui, L., and Niculescu, S., 2000. Advances in Linear Matrix Inequality Meth-

ods in Control, Vol. 2. Society for Industrial Mathematics.

[31] Scherer, C., Gahinet, P., and Chilali, M., 1997. “Multiobjective output-feedback

control via lmi optimization”. Automatic Control, IEEE Transactions on, 42(7),

pp. 896–911.

[32] Iwasaki, T., and Skelton, R., 1994. “All controllers for the general [infinity] control

problem: Lmi existence conditions and state space formulas”. Automatica, 30(8),

pp. 1307–1317.

[33] Pipeleers, G., Demeulenaere, B., Swevers, J., and Vandenberghe, L., 2009. “Ex-

tended lmi characterizations for stability and performance of linear systems”. Sys-

tems & Control Letters, 58(7), pp. 510–518.

[34] Tuan, H., and Apkarian, P., 2000. “Low nonconvexity-rank bilinear matrix in-

equalities: Algorithms and applications in robust controller and structure designs”.

Automatic Control, IEEE Transactions on, 45(11), pp. 2111–2117.

[35] Goh, K., Safonov, M., and Papavassilopoulos, G., 1995. “Global optimization for the

biaffine matrix inequality problem”. Journal of global optimization, 7(4), pp. 365–

380.



76

[36] VanAntwerp, J. G., Braatz, R. D., and Sahinidis, N. V., 1997. “Globally optimal

robust control for systems with time-varying nonlinear perturbations”. Computers

& chemical engineering, 21, pp. S125–S130.

[37] El Ghaoui, L., Oustry, F., and AitRami, M., 1997. “A cone complementarity lin-

earization algorithm for static output-feedback and related problems”. Automatic

Control, IEEE Transactions on, 42(8), pp. 1171–1176.

[38] Kanev, S., Scherer, C., Verhaegen, M., and De Schutter, B., 2004. “Robust output-

feedback controller design via local bmi optimization”. Automatica, 40(7), pp. 1115–

1127.

[39] Yim, S., and Park, Y., 2011. “Design of rollover prevention controller with lin-

ear matrix inequality-based trajectory sensitivity minimisation”. Vehicle System

Dynamics, 49(8), pp. 1225–1244.

[40] Tulpule, P., and Kelkar, A., 2013. “Bmi based robust optimal control synthesis via

sensitivity minimization”. In ASME - DSCC/MOVIC, Stanford University, Palo

Alto, CA, ASME.

[41] Sohoni, V., and Whitesell, J., 1986. “Automatic linearization of constrained dynam-

ical models”. Journal of Mechanisms, Transmissions and Automation in Design,

108(3), pp. 300–304.

[42] Liang, C., 1985. Dynamic Analysis and Control Synthesis of Integrated Mechanical

Systems. University of Iowa.

[43] Kunkel, P., and Mehrmann, V. L., 2006. Differential-algebraic equations: analysis

and numerical solution. European Mathematical Society.

[44] Shabana, A. A., 2013. Dynamics of multibody systems. Cambridge university press.



77

[45] Negrut, D., and Ortiz, J. L., 2006. “A practical approach for the linearization

of the constrained multibody dynamics equations”. Journal of computational and

nonlinear dynamics, 1(3), pp. 230–239.

[46] Ge, X.-S., Zhao, W.-J., Chen, L.-Q., and Liu, Y.-Z., 2005. “Symbolic linearization

of differential/algebraic equations based on cartesian coordinates”. TECHNISCHE

MECHANIK, 25(3-4), pp. 230–240.

[47] Xie, Y., Alleyne, A., Greer, A., and Deneault, D., 2011. “Fundamental limits in

combine harvester header height control”. In American Control Conference (ACC),

2011, IEEE, pp. 5279–5285.

[48] Xie, Y., and Alleyne, A., 2012. “Two degree of freedom controller on combine

harvester header height control”. In ASME - DSCC/MOVIC, Fort Lauderdale,

ASME.

[49] Xie, Y., and Alleyne, A., 2011. “Integrated plant and controller design of a combine

harvester system”. In ASME - DSCC, Arlington, VA, USA, ASME.

[50] Stentz, A., Bares, J., Singh, S., and Rowe, P., 1999. “A robotic excavator for

autonomous truck loading”. Autonomous Robots, 7(2), pp. 175–186.

[51] Singh, S., 1997. “State of the art in automation of earthmoving”. Journal of

Aerospace Engineering, 10(4), pp. 179–188.

[52] Jun, Y., Bo, L., Yonghua, Z., and Haibo, Q., 2013. “A review on modeling, identifi-

cation and servo control of robotic excavator”. International Journal of Engineering,

Science and Technology, 5(4), pp. 14–22.

[53] Fales, R., and Kelkar, A., 2009. “Robust control design for a wheel loader using and

feedback linearization based methods”. {ISA} Transactions, 48(3), pp. 312 – 320.



78

[54] Carrigan, J., 2003. “General methodology for multi-objective optimal design of

control-structure nonlinear mechanisms with symbolic computing”. Master’s thesis,

Iowa State University.

[55] Isidori, A., 1995. Nonlinear control systems, Vol. 1. Springer.

[56] Khalil, H. K., and Grizzle, J., 2002. Nonlinear systems, Vol. 3. Prentice hall Upper

Saddle River.

[57] Hauser, J., Sastry, S., and Meyer, G., 1992. “Nonlinear control design for slightly

non-minimum phase systems: Application to v/stol aircraft”. Automatica, 28(4),

pp. 665 – 679.

[58] Spong, M. W., Thorp, J. S., and Kleinwaks, J. M., 1984. “The control of robot ma-

nipulators with bounded input: Part ii: Robustness and disturbance rejection”. In

Decision and Control, 1984. The 23rd IEEE Conference on, Vol. 23, IEEE, pp. 1047–

1052.

[59] Spong, M. W., 1987. “Modeling and control of elastic joint robots”. Journal of

dynamic systems, measurement, and control, 109(4), pp. 310–318.

[60] Freidovich, L. B., and Khalil, H. K., 2006. “Robust feedback linearization using

extended high-gain observers”. In Decision and Control, 2006 45th IEEE Conference

on, IEEE, pp. 983–988.

[61] Elmali, H., and Olgac, N., 1992. “Robust output tracking control of nonlinear

{MIMO} systems via sliding mode technique”. Automatica, 28(1), pp. 145 – 151.

[62] Levant, A., 2003. “Higher-order sliding modes, differentiation and output-feedback

control”. International Journal of control, 76(9-10), pp. 924–941.

[63] Ioannou, P. A., and Sun, J., 2012. Robust adaptive control. Courier Dover Publica-

tions.



79

[64] Piltan, F., Rezaie, H., Boroom, B., and Jahed, A., 2012. “Design robust backstep-

ping on-line tuning feedback linearization control applied to ic engine”. International

Journal of Advance Science and Technology, 42, pp. 183–204.

[65] Talole, S., and Phadke, S., 2009. “Robust inputoutput linearisation using un-

certainty and disturbance estimation”. International Journal of Control, 82(10),

pp. 1794–1803.

[66] Zhang, R., Prasetiawan, E., and Alleyne, A., 2002. “Modeling and h2/h mimo

control of an earthmoving vehicle powertrain”. Journal of dynamic systems, mea-

surement, and control, 124(4), pp. 625–636.

[67] Li, G., and Khajepour, A., 2005. “Robust control of a hydraulically driven flexi-

ble arm using backstepping technique”. Journal of Sound and Vibration, 280(3),

pp. 759–775.

[68] Nakkarat, P., and Kuntanapreeda, S., 2009. “Observer-based backstepping force

control of an electrohydraulic actuator”. Control Engineering Practice, 17(8),

pp. 895–902.

[69] Alleyne, A. G., and Liu, R., 2000. “Systematic control of a class of nonlinear

systems with application to electrohydraulic cylinder pressure control”. Control

Systems Technology, IEEE Transactions on, 8(4), pp. 623–634.

[70] Jelali, M., and Kroll, A., 2003. Hydraulic servo-systems: modelling, identification

and control. Springer.

[71] Yao, B., Bu, F., and Chiu, G. T., 2001. “Non-linear adaptive robust control of

electro-hydraulic systems driven by double-rod actuators”. International Journal of

Control, 74(8), pp. 761–775.



80

[72] Nikravesh, P. E., 2007. Planar Multibody Dynamics: Formulation, Programming

and Applications. CRC Press, Inc.

[73] Clairaut, A., 1734. Histoire Acad. R. Sci. Paris.

[74] Niksefat, N., and Sepehri, N., 2001. “Designing robust force control of hydraulic

actuators despite system and environmental uncertainties”. Control Systems, IEEE,

21(2), Apr, pp. 66–77.


	2014
	Integrated Robust Optimal Design (IROD) via sensitivity minimization
	Punit Tulpule
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	1.1 Integrated Design
	1.2 Robust Design Via Sensitivity Minimization
	1.3 Linear Matrix Inequalities (LMI)
	1.4 Linearization of Multibody Dynamics
	1.5 Application to Combine and Excavator
	1.5.1 Combine Header Height Control
	1.5.2 Excavator Bucket Angle Control

	1.6 Robust Feedback Linearization

	2. LINEARIZATION OF MULTIBODY DYNAMICS IN SYMBOLIC FORM
	2.1 Multibody Constrained Formulation
	2.2 Linearization
	2.3 Coordinate Partitioning
	2.4 Linearization of DAE

	3. SENSITIIVITY BASED IROD METHODOLOGY
	3.1 Sensitivity Based Robust Control Synthesis
	3.1.1 Introduction to Parametric Sensitivity
	3.1.2 H-Norm Bound Objective
	3.1.3 Linearization Change of Variables (Failed)

	3.2 Solution Strategy
	3.2.1 Locally Optimal Robust Control Design
	3.2.2 Lower Bound
	3.2.3 Initial Robust Control Design (Upper Bound)

	3.3 Integrated Robust Sub-Optimal Design
	3.3.1 Algorithm


	4. APPLICATION TO COMBINE HARVESTER AND EXCAVATOR
	4.1 Combine Harvester Header Height Control
	4.1.1 Sequential HDesign
	4.1.2 Integrated Robust Optimal Design (IROD)

	4.2 Excavator Bucket Level Control
	4.2.1 Sequential and Integrated Design
	4.2.2 Results


	5. ROBUST FEEDBACK LINEARIZATION
	5.1 Feedback Linearization of Augmented Sensitivity Dynamics
	5.1.1 Robust Control

	5.2 Robust Control Design
	5.2.1 Robust Control Problem Structure
	5.2.2 Notation
	5.2.3 Feedback Linearization
	5.2.4 Zero Dynamics
	5.2.5 Linear System

	5.3 Application to Hydraulic Actuator
	5.3.1 Feedback Control Design
	5.3.2 Robust Feedback Lineariztion

	5.4 Results

	6. CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY

