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ABSTRACT 

 

       Growing concern over Greenhouse Gas (GHG) emissions from petroleum-based fuel 

consumption have prompted interest in the production of alternative transportation fuels 

from biorenewable sources. As required by the Energy Independence and Security Act of 

2005, the U.S. Environmental Protection Agency (EPA) finalized the Renewable Fuel 

Standard (RFS) and mandated petroleum refineries and oil importers to increase the 

volume of renewable fuel that is blended into petroleum-based transportation fuels. 

Although biomass is a promising renewable energy for fuels and chemicals production, 

the technology, economics and environmental issues for bioenergy systems should be 

extensively evaluated.  

        Other researchers have analyzed bioenergy systems from a number of different 

perspectives but these perspectives have not been combined into an integrated analysis 

methodology because of the large number of disparate disciplinary fields that would have 

to be considered including bioenergy sciences and engineering, environmental sciences, 

economics, optimization, and numerical modeling. Nor is it a simple matter to integrate 

the different analytical methods used in economic assessment, environmental impact 

evaluation, supply chain management, and logistic planning. 

            This dissertation explores the development of integrated assessment platform for 

biofuels production, using separate modules to evaluate process engineering, economic 

feasibility, logistics of supply, and environmental impact within a general framework. 

Four modules are included: process simulation (module A), economics analysis (module 

B), life cycle assessment (module C), and supply chain & logistics optimization (module 

D). In this dissertation, the specific instance of production of drop-in biofuels using fast 
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pyrolysis and upgrading is employed as the case study to examine this methodology. Two 

different bio-oil upgrading pathways are examined using this integrated assessment 

platform: 1. commodity chemicals production via forest residue fast pyrolysis and 

hydrotreating/fluidized catalytic cracking (FCC) pathway 2. Co-production of hydrogen 

and transportation fuels via corn stover fast pyrolysis and hydrotreating/hydrocracking 

pathway. The preliminary results prove that this developed integrated assessment 

methodology is a powerful tool to evaluate the biofuels production via fast pyrolysis 

pathway. This integrated assessment platform could also extended for other energy 

resource examination.  
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CHAPTER I  

GENERAL INTRODUCTION 

 

Biofuels 

Biomass has the potential to become one of the major global primary energy sources 

during the next century and modernized bioenergy systems are suggested to contributing 

to future sustainable energy systems [1]. Growing concerns over Greenhouse Gas (GHG) 

emissions from petroleum-based fuel consumption have prompted interest in the 

production of biofuels from biorenewable sources. The biofuels produced from the 

renewable resources could help to minimize the fossil fuel consumption as well as 

mitigating the global warming [2]. In addition, production of  biofuels and bioproducts 

could supply new employment opportunities and incomes in rural areas [2].  

           The first generation biofuels refer to the fuels that have been derived from sources 

like starch, sugar, animal fats and vegetable oil. Three main types of commercialized first 

generation biofuels are biodiesel, ethanol, and biogas. The production of first generation 

biofuels, such as sugarcane ethanol in Brazil, corn ethanol in U.S., oilseed grape biodiesel 

in Germany, and palm oil biodiesel in Malaysia is characterized by mature market and 

well understood technologies [3]. As 2007 U.S. Energy Independence and Security Act 

required, the total target volume increases to 36 billion US gallons by 2022, from 4.7 

billion U.S. gallons mandated in 2007. This generated incentives for a massive 

investment in U.S. corn-based ethanol plants.  

             Although the first generation of biofuels is mature and commercialized, issues 

such as food competition and land displacement raised the doubts on the benefits of first 
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generation biofuels promotion [3]. At the meanwhile, the U.S. 2007 Energy 

Independence and Security Act further specifies that 21 billion US gallons of the 2022 

total must be derived from non-cornstarch products (e.g. sugar, biodiesel, or cellulose). 

The limitations of first generation biofuels produced from food crops have caused greater 

interest of developing the second generation biofuels.  The second generation biofuels are 

typically made from lignocellulosic biomass or woody crops, agricultural residues or 

waste.  

            There are typically two platforms to convert lignocellulosic biomass to biofuels. 

One platform is biochemical route and the most common types of biochemical processes 

are fermentation and anaerobic digestion [4]. Fermentation uses microorganisms and/or 

enzymes to convert a fermentable substrate into recoverable products (usually alcohols or 

organic acids) [4]. The other platform is the thermochemical route, which typically 

include combustion, gasification, hydrothermal and pyrolysis [5]. Combustion of biomass 

is the most direct and technically easiest process but produces electricity instead of liquid 

transportation fuels [6]. A hydrothermal process is one that involves water at elevated 

temperatures and pressures and the advantage of hydrothermal processing for biomass is 

that hot water can serve as a solvent, a reactant, and even a catalyst or catalyst precursor 

[7]. The other thermochemical pathways are gasification and pyrolysis. For biomass 

gasification, biomass is converted into a combustible gas mixture by the partial oxidation 

of biomass at high temperature, in the range of 800-900
o
C [8]. Gasification can use low-

value feedstocks and convert them not only into electricity, but also into transportation 

fuels [6]. Usually, the Fischer–Tropsch (FT) process is integrated into gasification 

process to form a biomass-to-liquid (BTL) process where syngas from biomass 

http://en.wikipedia.org/wiki/Cornstarch
http://en.wikipedia.org/wiki/Lignocellulosic_biomass
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gasification is synthesized to liquid fuels [9, 10].  Biomass pyrolysis is a process of 

thermal decomposition of biomass in the absence of oxygen. Typically there are three 

types of pyrolysis: slow pyrolysis, flash pyrolysis, and fast pyrolysis. For slow pyrolysis, 

biomass is pyrolyzed at slow heating rates (5-7K/min), which leads to less liquid and 

gaseous product and more of char production [8]. For biomass flash pyrolysis, the heating 

rate is very high and therefore the particle size should be fairly small [8, 11]. Besides, it 

requires special rector configuration in which the biomass residence times are only of few 

seconds [8].  

            Among the three types of pyrolysis, fast pyrolysis has gained more attention due 

to the higher yield of desirable liquid product. Fast pyrolysis is a high temperature 

process in which biomass is rapidly heated in the absence of oxygen and the products of 

biomass fast pyrolysis are vapors, aerosols, and some charcoal [12]. Fast pyrolysis 

product yields are typically reported between 60 –75 wt % bio-oil, 15 –25 wt % bio-char 

and 10 –20 wt % non-condensable gases [13]. Some research show that the maximum 

liquid yields are obtained with high heating, at reaction temperature of 500 
o
C and with 

short vapor residence time [12]. Czernik and Bridgwater [14] reviewed the application of 

biomass fast pyrolysis oil and pointed out that the liquid bio-oil product from fast 

pyrolysis has the considerable advantage of being a storable and transportable fuel as 

well a potential source of a number of valuable chemicals that offer the attraction of 

much higher added value than fuels.  

            Various reactors are designed for performing fast pyrolysis experiments, which 

include bubbling fluidized bed reactor, circulating fluidized bed reactor, rotating cone 

pyrolyzer, ablative pyrolyzer, vacuum pyrolysis, and auger reactor [15].The widely used 
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fast pyrolysis reactor is the bubbling fluidized bed or simply the fluid bed reactor. 

Bubbling fluid beds have the advantages of a well understood technology that is simple in 

construction and operation, good temperature control and very efficient heat transfer to 

biomass particles arising from the high solids density [16]. Much research has been done 

on finding the optimal biomass feedstock and operating parameters for performing fast 

pyrolysis in fluidized bed reactors. Heo et al. [17] have investigated bio-oil production 

and found that the optimal pyrolysis temperature for increased yields of bio-oil was 

450
o
C. Wang et al. [18] conducted fast pyrolysis of algae remnant in a fluidized bed at 

500
o
C and the results show that yields of bio-oil, biochar, and gas were 53, 31, and 

10 wt.%, respectively. A 2.5 kg/h biomass fast pyrolyzer has been developed at 

Agricultural Research Service (ARS) and tested for switchgrass conversion and it is 

found that bio-oil yields greater than 60% by mass have been demonstrated for 

switchgrass, with energy conversion efficiencies ranging from 52 to 81% [19]. Rice rusk 

has also been investigated by Zheng [20] and the experimental result shows that the 

highest bio-oil yield of 56wt% was obtained at 465 
o
C for rice husk. In addition, the 

results showed that bio-oil obtained from rice rusk  can be directly used as a fuel oil for 

combustion in a boiler or a furnace without any upgrading according to the analyzed 

characteristics of heat value, stability, miscibility and corrosion [20].  

            Some researchers have conducted catalytic fast pyrolysis experiments to 

investigate the effects of catalysts on the final product yields and products qualities [21, 

22]. It was found that the presence of the standard ZSM-5 catalyst increased the yields of 

non-condensable gas, water and coke, while decreased the liquid and char yields [21, 22]. 

Besides, the catalytically produced bio-oil contained less carbohydrate degradation 
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products and more aromatic compounds [22]. Cheng et al. [23] tested bifunctional 

Ga/ZSM-5 catalysts for catalytic fast pyrolysis and show that Ga/ZSM-5 catalysts can be 

used to increase the yield of aromatics by catalytic fast pyrolysis by 40% compared to 

that with the standard ZSM-5 catalyst. In addition to standard ZSM-5 and Ga/ZSM-5 

catalysts,  LOSA-1, γ-Al2O3 and spent FCC catalysts are also studied for a novel reactor 

of Internally Interconnected Fluidized Bed (IIFB) and it is found that ZSM-5 shows the 

highest selectivity of naphthalene (12.1%), whereas spent FCC catalyst presents the 

highest selectivity of benzene (45.5%) [24]. 

 

Bioenergy Assessment  

            Although bioenergy systems are very promising, the full evaluations are needed 

before they are commercialized. Many issues must be examined for bioenergy utilization 

including economic feasibility, sustainability, logistics, politics, and social impacts.  

Techno-economic Analysis  

            Techno-economic analysis is a tool for research and development (R&D) for 

biofuels production and can be used to evaluate the economic feasibility of the biofuels 

production. A number of studies focus on the techno-economic analysis of biofuels 

production via biochemical or thermochemical pathways. In these techno-economic 

analyses, usually the net present value (NPV), minimum selling price (MSP) or facility 

internal rate of return (IRR) is evaluated to examine the economic feasibility for various 

biofuels production. Lignocellulose ethanol is expected to be commercialized during the 

next decade as renewable energy for transportation [25]. Many techno-economic analyses 

have been conducted for biochemical ethanol [26-29]. The National Renewable Energy 

Laboratory (NREL) has published two detailed techno-economic analyses on the ethanol 
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production via biochemical pathways [30, 31]. In the two studies,  corn stover and poplar 

wood are studied as the feedstock and the two studies are both based on detailed process 

design, mass and energy balance using Aspen Plus and related economics evaluation. 

Using the same method, Kazi et al. [26] compared various pretreatment (dilute-acid, 2-

stage dilute-acid, hot water, and ammonia fiber explosion); and downstream variations 

(pervaporation, separate 5-carbon and 6-carbon sugars fermentation, and on-site enzyme 

production) for the production of ethanol from corn stover. 

            In addition to the biochemical conversion pathway, the thermochemical pathway 

has also invested by the researchers. Gasification is one of the thermochemical 

conversion technologies. In these techno-economic analyses, ethanol is produced via 

indirect or direct gasification with mixed alcohol synthesis system [32-35]. In addition to 

ethanol, several techno-economic analysis studies related to liquid fuels production via 

gasification and FT synthesis process are reported [9]. Techno-economic analysis on bio-

based products from fast pyrolysis and upgrading are reported by researchers recently due 

to the growing interest in fast pyrolysis technology. Wright et al. [36] designed the 

biomass-to-transportation fuels pathway using corn stover as the feedstock and conducted 

the techno-economic analysis. Johns et al. [37] also designed the process model for 

transportation fuels production via woody biomass fast pyrolysis and hydroprocessing.  

Islam and Ani [38] carried out a techno-economic analysis of the primary pyrolysis 

process and pyrolysis process with catalytic treatment converting rice husk waste to 

pyrolysis oil and solid char  for three different scales and found that fluidized bed fast 

pyrolysis (FBFP) 1000 kg/h scale is most economically feasible with lowest production 

cost. In addition to the transportation fuels, the techno-economic analysis for chemicals 
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and hydrogen production via biomass fast pyrolysis and upgrading are also examined.  

Annex et al. [39] compared the techno-economic analysis for six biomass-to-liquid fuels 

technology scenarios representing three conversion platforms: pyrolysis, gasification, and 

biochemical and found that the stand-alone biomass-to-liquid fuel plants are expected to 

produce fuels with a product value in the range of $2.00–5.50 per gallon ($0.53–1.45 per 

liter) gasoline equivalent, with pyrolysis the lowest and biochemical the highest. 

Life Cycle Assessment  

          Use of biomass-based fuels could reduce the fossil fuel combustion thereby also 

reducing net greenhouse gas emissions.  Life cycle assessment (LCA) is the process of 

evaluation the effects that a product has on the environment over the entire period of its 

operating life and is a tool that supports environmental decision making. Along with the 

growing interest of biofuels production, it is used to quantify the environmental impacts 

along with the biofuels production recently. In LCA, environmental issues such as GHG 

emissions, fossil fuels input, acidification, eutrophication, ecotoxicity are evaluated and 

assessed. A number of LCA studies for biofuels production have been reported and the 

majority of them focus on the net energy and GHG emissions.  

            Previous LCAs focused on the bioethanol production for transportation sector. In 

these studies, variable feedstocks have been investigated for bioethanol production 

including corn stover, sorghum, wheat straw, sugarcane , switch grass, cane molasses 

[40-45]. The life cycle assessment studies of biodiesel have been widely reported. Lardon 

et al. [46] conducted a comparative LCA study of a virtual facility has been undertaken to 

assess the energetic balance and the potential environmental impacts of the whole process 

chain, from the algae production to the biodiesel combustion. A pond-to-wheels life cycle 
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assessment of algae biodiesel was conducted by Passell et al. [47] using current 

commercial data with two scenarios were examined: base case (using commercial data) 

and estimated future case. Stephenson et al. [48] conducted a lifecycle assessment 

comparison between hypothetical operations in either raceways or tubular photo-

bioreactors for biodiesel production from algae. Dufour et al. [49] conducted a life cycle 

assessment of four biodiesel production systems including esterification-

transesterification of waste vegetable oils (used cooking oil) and animal fats (beef tallow, 

poultry fat), and in situ transesterification of sewage sludge. 

            A number of life cycle assessments of biofuels production via fast pyrolysis have 

been reported [50-54]. A well-to-wheel (WTW) analysis of pyrolysis-based gasoline was 

conducted and compared with petroleum gasoline by Han et al. [55]. In this study, the 

probability distributions for key parameters were developed with data from literature for 

life cycle assessment uncertainty analysis of fast pyrolysis. Hsu et al. [52] has conducted 

the life cycle assessment for the gasoline and diesel produced via fast pyrolysis and 

hydroprocessing. It is found that the both gasoline and diesel basis have less GHG 

emissions and fewer net energy input compared to petroleum-based transportation fuels 

production.  Fan et al. [56] compared Life cycle GHG emissions with power generated 

using fossil fuels and power generated using biomass direct combustion in a conventional 

Rankine power plant. It is found that life cycle GHG savings of 77%–99% were 

estimated for power generation from pyrolysis oil combustion relative to fossil fuels 

combustion. Fan et al. [57] also investigated the GHG emissions, criteria pollutants 

emissions, cumulative energy demand, fossil energy demand as well as other 

http://pubs.acs.org/action/doSearch?action=search&author=Stephenson%2C+A+L&qsSearchArea=author
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environmental impacts of using pyrolysis oil as produced in Eastern Quebec to replace 

heavy fuel oil in a heating application.   

Supply Chain Optimization 

            Biomass is a promising energy that could mitigate the fossil energy utilization 

along with the GHG emissions reduction. However, one of the most important barriers in 

increased biomass utilization in energy supply is the cost of the respective supply chain 

and the technology to convert biomass into useful forms of energy [58]. Biomass has the 

character of high volume of low energy density which leads to the high transportation 

cost in the whole biofuels production supply chain design.  

A number of research work focus on the design and optimization of biofuels 

production supply chain as a result of the unique nature of biomass feedstock [59, 60]. 

The general elements of the biofuels supply chain include biomass farms, storage 

facilities, preprocessing facilities, biorefinery facilities, transportation, and demand zones. 

So the decision makings in the biofuels supply chain usually consist of transportation 

modes, capabilities of preprocessing and biorefinery facilities, locations of preprocessing 

and biorefinery facilities. Concepts of economic and environmental impacts are usually 

incorporated into the biofuels supply chain infrastructure [61-63]. For economic analysis, 

the net present value (NPV), the production cost, and annual profitability are usually 

selected as the objective function for economic optimization of biofuels supply chain [64-

66] while carbon or water footprint  are incorporated to economic model to form a multi-

objective function optimization model for optimal planning of biofuels supply chain [61, 

63, 67-71]. In addition to economic and environmental considerations, social aspect such 

as job creation, quality of life or the number of consumer options is also incorporated in 
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several biofuels supply chain design and optimization [72, 73]. Besides, impact on traffic 

is also considered in the social impacts of the biofuel supply chain. Bai et al. [74] 

presented the research that that traffic congestion impact are incorporated into the model 

to decide optimal locations of biofuel refineries.  

           Uncertainties may impact the performance of biofuels supply chain infrastructure 

so many researchers incorporate various uncertainties in decision making for biofuel 

supply chain design and optimization. The uncertainties considered in biofuels supply 

chain usually include the market demands, biomass supply, price uncertainty, conversion 

technologies and other related uncertainties [75-79]. Stochastic models are usually 

developed to design biofuels supply chain with uncertainties. Gebreslassie et al. [80] 

presented a bicriterion, multiperiod, stochastic mixed-integer linear programming model 

to address the optimal design of hydrocarbon biorefinery supply chains under supply and 

demand uncertainties. This model implemented multicut L-shaped method to circumvent 

the computational burden of solving large scale problems burden of solving large scale 

problems and simultaneously determines the optimal network design, technology 

selection, capital investment, production planning, and logistics management decisions. 

Osmani and Zhang [81] presented one two-stage stochastic model for maximizing profit 

of a multi-feedstock lignocellulosic-based bioethanol supply chain with multiple 

uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and 

bioethanol sale price. They found that stochastic parameters significantly affect marginal 

land allocation for switchgrass cultivation and bioethanol production but location of 

biorefineries is found to be insensitive to the stochastic environment [81]. Kazemzadeh 

and Hu [82] developed a two-stage stochastic programming models in which Conditional 

http://www.sciencedirect.com/science/article/pii/S036054421300649X
http://scitation.aip.org/content/contributor/AU1033194;jsessionid=17n7c5iffp4l6.x-aip-live-06
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Value at Risk (CVaR) is utilized as a risk measure to control the amount of shortage in 

demand zones for biofuels supply chain. Using this model, they determined the optimal 

design of supply chain for biofuel refineries in order to maximize annual profit 

considering uncertainties in fuel market price, feedstock yield, and logistic costs [82]. 

 

Dissertation Organization 

            This dissertation is to develop an integrated assessment platform for biofuels 

production via fast pyrolysis. It is composed of five chapters in addition to the 

introduction and conclusions. Chapter 3 describes the integrated assessment platform for 

biofuels production using fast pyrolysis with two bio-oil upgrading pathways as the case 

study. Chapter 4 provides a comparative techno-economic analysis based on the two bio-

oil upgrading pathway. Chapter 5 and Chapter 6 present the life cycle assessments for the 

two upgrading pathways, respectively. Chapter 7 develops a multi-objective optimization 

model to design and optimize the supply chain of commodity chemicals production 

pathway including environmental and economic considerations. 
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CHAPTER II  

BACKGROUND 

 

Methodology 

            This dissertation involves the development of a generalized methodology for the 

integrated assessment of bioenergy systems using separate modules to evaluate process 

engineering, economic feasibility, logistics of supply, and environmental impact within a 

general framework. Specific emphasis on process design and simulation, techno-

economic analysis, life-cycle assessment, and logistic optimization for bioenergy systems 

are investigated in the integrated assessment platform. An integrated assessment 

methodology serves as a decision making tool for assessing the commercialization 

prospects of bioenergy systems, enabling more rational and efficient resource utilization 

and accelerating the diffusion of bioenergy technologies in the U.S. The integrated 

assessment of bioenergy systems is presented in Figure 1.   

            

 

Figure 1. Modular components for the biofuels integrated assessment platform.        
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 The basic modules are incorporated in the integrated assessment platform, which 

included four modules: process simulation (module A), economics analysis (module B), 

life cycle assessment (module C), and supply chain &logistics optimization (module D). 

The four modules are depending on each other which make a general system. 

To better illustrate the methodology, Figure 2 is employed to describe the detailed 

flows for the biofuel integrated assessment platform. The four modules are presented in 

different dashed boxes.  

 
Figure 2. Flow chart of biofuels integrated assessment platform. 
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Process Simulation 

            Module A is a chemicals process model used to help design, test, optimize, and 

integrate concepts for processing of biomass. The proposed chemical process is presented 

as a process flow diagram (PFD), drawing with boxes representing process units and lines 

representing process streams. After the PFD is drawn, the process simulation software 

(e.g., Aspen Plus, ChemCAD) is employed to configure the simulation model. Based on 

the number of components (the chemicals and other materials used in the process), 

process equipment, input and output streams, the mass and energy balance is 

calculated.  The operating parameters (e.g., temperature, pressure) based on results from 

engineering studies, experiment, and estimates for commercial technologies. Also the 

experimental data could be cooperated into the process models to validate the reactor data 

such as pyrolysis yield data. After the mass and energy balance calculations are 

converged in the process modeling software, the mass and energy data for the biofuels 

production pathway could be derived from the process modeling. These mass and energy 

data are the essential data for the whole integrated assessment platform. They could be 

further used to estimate the process utilities through other software (e.g., Aspen Pinch). 

Usually the utilities such as process water for cooling down the streams and the required 

heat for heating the stream to specific temperatures are calculated for economic analysis. 

Using the PFDs and the mass and energy balance information, equipment costs are 

estimated based on a combination of sources such as vendor quotations, cost scaling, and 

cost estimation software (e.g., Aspen Icarus). Vendor quotations are the most accurate 

cost estimation the vendor quotations. Equipment cost could be estimated by cost 

estimation software once the related information is specified such as size, operating 
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parameters, and equipment materials. Cost scaling method could be used if the same 

processes with different plant sizes have been examined before. For each specific 

equipment type, there is a scaling factor based on the mass flow. Details about cost 

scaling are presented in Chapter 3.  

Economic Analysis 

            In module B, the economics analysis is conducted for biofuels production. This 

economic analysis is a typical engineering economics analysis, which applies economic 

techniques to evaluate the design and engineering alternatives [1]. The role of 

engineering economics is to assess the appropriateness of a given project, estimate its 

value, and justify it from an engineering standpoint [2]. Discounted Cash Flow Rate of 

Return (DCFROR) method is employed to conduct the engineering economics analysis. 

The mass, energy, utilities, and equipment cost data from process simulation (model A) 

could be used as the inputs for  DCFROR model, where the production cost or facility 

IRR could be estimated. The costs considered in the engineering economic estimation 

include the capital costs, revenues, fixed operating costs and variable operating costs. The 

capital costs include the direct and indirect capital cost. The fixed operating costs usually 

include the salaries, overheads, and maintenance fees etc. The viable operating costs 

usually contain the utilities costs (e.g., electricity, steam, process water), raw materials 

(e.g. biomass), and operating materials costs (e.g. catalysts, chemicals, waste disposal). A 

detailed economic analysis method description is presented in Chapter 3.  From the 

discounted cash flow analysis, net present value could be obtained for the project. Then 

the production cost could be obtained (which is also known as the minimum selling price) 

to set the zero net present value. The minimum selling price (MSP) is usually calculated 
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based on a fixed interest rate (e.g., 10%).  In addition to MSP, facility IRR also could be 

examined based on the fixed value of the products with zero net present value. After 

baseline results are obtained, several sensitive parameters could be selected for the 

sensitivity analysis of the biofuels production pathway. The selections of the parameters 

are based on the empirical observations or the data in the literatures.   

The risk analysis could also be conducted using Monte-Carlo simulation based on 

the sensitivity analysis results. For sensitivity analysis, there is only one change 

parameter each time. But Monte-Carlo simulation relies on repeated random sampling to 

obtain numerical results. A large quantity of scenarios could be generated due to the 

changing of these parameters. Here Crystal Ball software could be used to build on 

existing Monte Carlo and predictive modeling tools. Also statistic software (e.g., R, JMP, 

and SAS) could be used to interpret the Monte-Carlo simulation results such as data 

distribution or cumulative probability. This will illustrate the significance of project 

investment risk in current technologies.  

Life Cycle Assessment 

            A life cycle assessment (LCA) is the assessment of the environmental impact of a 

given product throughout its lifespan [3]. There are four phases for life cycle assessment: 

definition of the goal and scope of the LCA, life cycle inventory analysis, life cycle 

impact assessment, and life cycle interpretation [3].  In the phase of definition of the goal 

and scope, the definition of functional unit could provide a suitable comparison criterion 

for alternative products or services. Based on the functional unit, alternatives products 

could be compared in quantities. The scope of a LCA is related to the level of 

sophistication for the goal of the study. In the phase of life cycle inventory, each process 

http://en.wikipedia.org/wiki/Random
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for a product system requires an input and produces an output, creating inventory flows. 

Inputs of water, energy, and raw materials, and releases to air, soil, and water are 

considered in inventory flows of LCA. Also the system boundary and allocation method 

should be selected accurately based on the goal and scope of particular LCA study. After 

the first two phases, life cycle impact assessment and life cycle interpretation could be 

conducted.  The phase of life cycle impact assessment is conducted to evaluate the 

potential environmental impacts based on the life cycle inventory results. Three steps are 

included in the life cycle assessment: classification, characterization, and valuation. In the 

classification, all environmental impacts are classified according to their contributions to 

the categories of environmental problems (e.g., global warming, human toxicity, ozone 

depletion, resources depletion).  In the characterization, the contributions to the 

environmental problem are quantified. It is not easy to compare the contributions to 

different categories of environmental problems since they have different quantity units. 

Therefore a normalization step is usually included in the characterization, from which all 

environmental problems are normalized to the standard unit for convenient comparison. 

The last step of valuation involves the overall comparison of the environmental problems. 

The single environmental index is used to weight each environmental problem. The 

scores of each environmental problems are multiplied by their weighting factor and can 

be added together to provide an overall environmental index. In the life cycle 

interpretation, all the results from life cycle inventory and life cycle impact assessment 

are summarized to draw conclusions and make recommendations to the sustainable 

development. This phase is the basis process for the decision makers considering the 

environmental aspects for products. 
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Module C is a life cycle assessment module, where the environmental impacts 

such as carbon footprint or fossil energy demand are estimated for the selected biofuels 

production pathway. Life cycle assessment software such as SimaPro could be used to 

develop and link primary unit processes related to the current chemicals production 

pathway. Materials and energy associated with the unit processes are collected as the 

inventory data which is set as primary materials and energy in SimaPro. Then the built-in 

databases in SimaPro provide life cycle inventories for secondary materials and energy 

required in those primary unit processes. The required primary materials and energy 

inputs associated with the unit processes of the LCA is a combination of the energy and 

mass data derived from the process modeling, GREET (Greenhouse gases, Regulated 

Emissions, and Energy use in Transportation) [4] model and related literatures.  

Supply Chain & Logistics Optimization 

            A supply chain is an integrated manufacturing process wherein raw materials are 

converted into final products, then delivered to customers [5]. A supply chain at its 

highest level is consists of two integrated processes: (1) the production planning and 

inventory control process,  and (2) the  distribution  and  logistics process[5]. Supply 

chain optimization is an important component in supply chain design since it will 

determine how an effective supply chain design is achieved based on performance 

measures [5]. Biomass energy is complicated due to the bulky, distributed nature of 

biomass feedstocks and the high volumes of the relatively low energy density materials 

that have to be moved to the conversion equipment [6]. So the supply chain and logistic 

activities related to biorefinery processes play an important role in the infrastructure of 

biofuels industry. The unique natural of biomass leads to the development of sustainable 
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biofuels and biomass supply chain system. Thus, supply chain and logistics activities 

(e.g., biomass collection, delivery planning, and freight forwarder and delivery mode) 

selection should be optimized to achieve a profitable and sustainable supply chain of 

biofuels. For supply chain& logistics optimization, the performance measures should be 

clearly defined, expressed as the objective function. In biofuels supply chain modeling, 

the objective function is expressed as functions of one or more decision variables. The 

decision variables usually contain the feedstocks types, mass allocation, plant size, 

delivery modes etc.  The objective of the biofuels supply chain is usually to minimize the 

total cost or maximize the profitability along with the whole supply chain of biofuels 

industry. Some environmental or social considerations may also be incorporated into the 

biofuels supply chain design such as minimizing the total carbon footprint or maximize 

the created jobs [7]. The constrains for biofuel supply chain design and optimization 

usually include the mass and energy balances, capacity allowance, budget constraints , 

supply and demand constrains and so on. 

            Module D is logistic optimization, where the supply chain of the biofuels 

production is optimized. In this module, the input data are from module A, B, and C, 

which combine the mass, energy, economic, and environmental data together for multi 

objective optimization. The politics considerations can be also added to the constraints of 

the optimization problem such as carbon tax or RFS2 issues. In module D, mathematical 

programming software is used to process the data (e.g., Matlab, Python) and the GIS 

software is used for data availability exploration for the feedstocks. The optimization 

software (e.g., CPLEX or Gurobi) could be employed to solve this logistic problem. 

Through module D, the plant size, plant location, mass allocation or feedstock type can 
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be optimized. This could be used as a feedback for the module A which designs and 

simulates the proposed biofuels production pathways. For logistic optimization, variable 

mathematical models could be used to optimize the logistic problem such as linear 

programing, non-linear programing, stochastic programming, multi-objective 

programming etc. The mathematical model selections should be based on the characters 

of the optimization problems.  

 

Case Study 

            The methodology is generalizable and can be extended to the integrated 

assessment of other bio-fuel production pathways.  In this dissertation, the specific 

instance of production of drop-in biofuels or chemicals using fast pyrolysis and 

upgrading is employed as the case study to examine this methodology. Recently, fast 

pyrolysis has attracted considerable interest as a means for converting biomass into 

valuable fuels or energy. At this time fast pyrolysis appears to be more economically 

viable than gasification and fermentation processes [8]. Fast pyrolysis  can generate up to 

75 wt.%  of liquid bio-oil, which can then be used in various applications such as 

transportation, heating, and electricity generation [9]. A variety of products can be 

produced through bio-oil upgrading, including hydrogen, transportation fuels, and sugars 

[10-15]. While researchers work to incorporate fast pyrolysis into their development of 

biorefinery concepts, they are simultaneously investigating the conversion of bio-oil into 

chemicals through versatile upgrading processes. With the addition of water to the 

pyrolysis oil, the pyrolysis oil can be separated into an aqueous phase and a water-

insoluble phase. Technologies such as aqueous phase processing and catalytic pyrolysis 
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processing are used to convert the bio-oil or its fraction into valuable chemicals [16-18]. 

Researchers have also found that olefins and aromatics (i.e., benzene, toluene, xylene) 

can be generated through FCC of hydrotreated bio-oil over zeolite catalysts [10, 19-25]. 

Through hydrotreating, the bio-oil is deoxygenated to produce a partially-upgraded oil 

with reduced oxygen content and improved stability [26]. Vispute et al. [27] combined a 

two-stage hydrotreating process with FCC to form an integrated catalytic process for the 

high-yield production of green commodity chemicals (i.e., olefins and aromatics). The 

team found that integrated catalytic processing of aqueous-phase bio-oil has higher 

carbon selectivity for commodity chemicals production when compared to simple FCC of 

the whole bio-oil or FCC of one-stage hydrotreated bio-oil [27].  

  So two different bio-oil upgrading pathways are examined using this integrated 

assessment platform. One is the FCC of hydrotreated water-soluble bio-oil to produce 

commodity chemicals as stated by Vispute et al. [27]  and the other is 

hydrotreating/hydrocracking the bio-oil to produce hydrogen and transportation fuels. 

The technology details related to the two upgrading pathways are presented in Chapter 3-

6. In Chapter 3, techno-economic analysis has been done for the two different upgrading 

pathways. Chapter 4 evaluated the environment impacts of co-generation of hydrogen 

and transportation fuels via corn stover fast pyrolysis with hydrotreating/hydrocracking 

pathways. Chapter 5 evaluated the environment impacts of commodity chemicals 

production from forest residue fast pyrolysis and hydrotreating/FCC pathway. Finally, 

Chapter 6 combines the results from Chapter3-5 and developed a multi-objective 

optimization model to design and optimize the supply chain of commodity chemicals 

production. 
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CHAPTER III  

TECHNO-ECONOMIC ANALYSIS OF BIOMASS FAST PYROLYSIS WITH 

TWO UPGRADING PATHWAYS 

A paper published in Chemical Engineering Journal 

Yanan Zhang, Tristan R. Brown, Guiping Hu and Robert C. Brown 

Abstract 

            We evaluate the economic feasibility of fast pyrolysis and upgrading facilities 

employing either of two upgrading pathways: two-stage hydrotreating followed by a fluid 

catalytic cracking (FCC) stage or single-stage hydrotreating followed by a hydrocracking 

stage. In the hydrotreating/FCC pathway, two options are available as the hydrogen 

source for hydrotreating: merchant hydrogen or hydrogen from natural gas reforming. 

The primary products of the hydrotreating/FCC pathway are commodity chemicals 

whereas the primary products for the hydrotreating/hydrocracking pathway are 

transportation fuels and hydrogen. The two pathways are modeled using Aspen Plus® for 

a 2000 metric tons/day facility. Equipment sizing and cost calculations are based on 

Aspen Economic Evaluation® software.  

            The fast pyrolysis bio-oil yield is assumed to be 65% of biomass. We calculate 

the internal rate of return (IRR) for each pathway as a function of feedstock cost, Fixed 

Capital Investment (FCI), hydrogen and catalyst costs, and facility revenues. The results 

show that a facility employing the hydrotreating/FCC pathway with hydrogen production 

via natural gas reforming option generates the highest IRR of 13.3%. Sensitivity analysis 

demonstrates that product yield, FCI, and biomass cost have the greatest impacts on 

facility IRR. Monte-Carlo analysis shows that two-stage hydrotreating and FCC of the 
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aqueous phase bio-oil with hydrogen produced via natural gas reforming has a relatively 

low risk for project investment. 

 

Introduction 

Thermochemical conversion has attracted recent attention as a biorenewable 

pathway for its ability to produce hydrocarbons [1]. Pyrolysis, liquefaction, gasification, 

and combustion are frequently investigated as thermochemical pathways, and each 

generates a different range of products [2]. This paper investigates fast pyrolysis as a 

route for the production of hydrocarbon-based fuels and hydrocarbon-based commodity 

chemicals. A primary benefit of fast pyrolysis over other thermochemical pathways (i.e., 

liquefaction, gasification, combustion) is its conversion of solid biomass feedstocks to 

bio-oil, which is a more convenient and thus more readily marketable liquid product [3]. 

Bio-oil is attracting attention due to its lower sulfur and nitrogen content compared with 

fossil fuels [4]. Fast pyrolysis rapidly heats biomass feedstock in a high-temperature and 

oxygen-free environment, yielding a mix of a liquid (bio-oil, combustible gases, and solid 

char) [3].  

            Bio-oil has been considered as an alternative fuel in turbines and diesel engines or 

a co-firing feedstock with fossil fuels in heat and power generation plants [5], but bio-oil 

may also be upgraded to produce a variety of  energy products, including hydrogen [6] 

and transportation fuels [7]. Bio-oil is a viscous and oxygenated mixture of compounds 

with a wide range of molecular weights. Polymeric and oligomeric bio-oil compounds 

must be depolymerized to yield hydrocarbons in the gasoline and diesel fuel ranges. Fast 

pyrolysis and upgrading facilities can utilize one of two upgrading pathways for this 
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purpose: fluid catalytic cracking with a zeolite catalyst [8] or hydrocracking [7]. Both 

upgrading methods usually employ one or more hydrotreating steps to stabilize and 

deoxygenate the bio-oil prior to cracking. 

            Elliott et al. [7] found that hydrotreating to  deoxygenate bio-oil greatly improves 

yields of hydrocarbons from hydrocracking. Hydrocracking of hydrotreated bio-oil 

produces alkenes (i.e., napthene) and aromatics, which are valuable molecules for 

transportation applications [7, 9, 10]. Vispute et al. [11] found that increasing bio-oil’s 

hydrogen content via hydrotreating also greatly improves yields of hydrocarbons from 

fluid catalytic cracking (FCC). FCC of hydrotreated bio-oil produces olefins and 

aromatics (i.e., BTX) [12-19]  In Vispute’s study, fi e scenarios are in estigated: FCC of 

whole bio-oil; one-stage hydrotreating and FCC of whole bio-oil; FCC of the aqueous 

phase of bio-oil; one-stage hydrotreating and FCC of the aqueous phase; and two-stage 

hydrotreating followed by FCC of the aqueous phase. The results found that initial 

hydrotreating with a Ru/C catalyst at 398 K and 52 bar pressure, followed by a second, 

higher-temperature stage of hydrotreating with a Pt/C catalyst at 523 K and 100 bar 

pressure, followed finally by FCC resulted in the highest carbon selectivity for the final 

products. The final products of FCC of hydrotreated bio-oil include olefins and aromatics 

(i.e., BTX), which have high market values [20].  

            High carbon utilization during the conversion of bio-oil to hydrocarbons is 

desirable as it results in greater hydrocarbon yields. However, high utilization is generally 

only achieved via the consumption of large quantities of hydrogen during upgrading. 

Hydrogen can be produced from a number of sources: steam reforming of natural gas; 

coal gasification; and partial oxidation of hydrocarbons, to name a few. Steam reforming 
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of natural gas (mainly methane) is a well-developed and important technology for large-

scale hydrogen production. It typically includes natural gas desulfurization, steam 

methane reforming, and water gas shift processes [21]. However, the utilization of fossil 

fuels by a biofuel pathway increases its lifecycle Greenhouse Gas (GHG) emissions. In 

the U.S., which defines biofuel pathways under the revised Renewable Fuel Standard 

(RFS2) according to their lifecycle GHG emission reductions relative to gasoline [22], 

such an increase in emissions can prevent a pathway from qualifying for high-value 

Renewable Identification Numbers (RIN) under the RFS2.To reduce CO2 emissions 

associated with hydroprocessing, production of hydrogen from biorenewable sources is 

of interest. Bio-oil derived from biomass fast pyrolysis consists of an aqueous phase and 

a water-insoluble phase. Following phase-separation, the aqueous phase can be reformed 

to produce the hydrogen while heavy molecules in the water-insoluble phase can be 

hydrocracked to lighter hydrocarbons. The aqueous phase, mostly derived from the 

carbohydrate in biomass, often contains highly-decomposed light compounds that are not 

only highly oxygenated, but often contain too few carbon atoms to permit efficient 

conversion to gasoline-range fuels. Thus, the aqueous phase is attractive as a source of 

hydrogen for upgrading through steam reforming [23]. The water-insoluble phase, mostly 

derived from the lignin in biomass, is attractive for upgrading because of its low oxygen-

to-carbohydrate ratio [24].  

            Previous techno-economic analyses (TEA) have attempted to quantify the 

economic feasibility of each upgrading pathway [25-27]. Brown et al. [27] calculated the 

20-year internal rate of return (IRR) for a facility employing two-stage hydrotreating and 

FCC to be as high as 14% (assuming a high bio-oil yield of 70 wt% of dry biomass). 
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Wright et al. [25] analyzed transportation fuels production from hydrocracking of 

hydrotreated bio-oil derived from biomass fast pyrolysis and estimated the minimum 

selling price of the transportation fuels based on that analysis. These TEAs found both 

the two-stage hydrotreating followed by FCC pathway and the hydrotreating followed by 

hydrocracking pathway to generate positive returns on investment. However, there are no 

TEAs in the open literature on the production of multiple products (i.e., hydrogen and 

transportation fuels) via upgrading of both bio-oil phases (the aqueous phase and the 

water-insoluble phase). Moreover, previous TEAs on fast pyrolysis and upgrading have 

quantified economic feasibility by calculating a minimum fuel selling price [25, 26, 28], 

which is less suitable than calculation of IRR for multi-year analyses due to the volatile 

nature of energy prices. 

            The objective of this paper is to provide a detailed evaluation of the economic 

feasibility of fast pyrolysis and upgrading facilities by analyzing two upgrading pathways: 

hydrotreating/FCC and hydrotreating/hydrocracking. For the hydrotreating/FCC pathway, 

the aqueous phase undergoes two-stage hydrotreating followed by FCC process. There is 

a large demand for hydrogen during the two-stage hydrotreating process for this pathway. 

To investigate the impact of hydrogen, two options are explored for meeting this demand: 

purchasing hydrogen from the market; and producing onsite hydrogen via natural gas 

reforming. For the hydrotreating/hydrocracking pathway, the water-insoluble phase of 

bio-oil undergoes one-stage hydrotreating followed by one-stage hydrocracking and the 

aqueous phase bio-oil is reformed to hydrogen. Both of the upgrading pathways are 

modeled for facilities with a capacity of 2000 metric tons per day (MTPD) of biomass 

feedstock. The projected prices of commodity chemicals, gasoline, and diesel fuel over a 
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20 year period (2011-2030) are calculated using a Discounted Cash Flow Rate of Return 

(DCFROR) model for both pathways. Facility capital costs and operating costs are 

estimated and used to calculate a 20-year IRR as a measure of pathway economic 

feasibility. 

 

Process Model Description 

            The two bio-oil upgrading pathways are divided into six technical areas (see 

Figure 1) including: biomass pretreatment (A100) where the biomass is chopped, dried, 

and finely ground to particles 3 mm in diameter with 5% moisture; biomass pyrolysis 

(A200) where biomass is converted into bio-oil using a fluidized bed reactor operating in 

an oxygen-free environment at around 500
o
C and ambient pressure; solids removal 

(A300) where ash and char are removed from the pyrolysis gas stream before it is 

condensed to liquid; bio-oil recovery (A400) where bio-oil is condensed and stored to 

preserve the oil compounds and obtain high yield of good quality bio-oil; heat generation 

(A500) where non-condensable pyrolysis gases and part of the char generated from 

pyrolysis are combusted to provide heat for pyrolysis; and bio-oil upgrading (A600) 

where bio-oil is upgraded into various final products including hydrogen, gasoline, diesel 

fuel, and commodity chemicals (i.e., aromatics and olefins).  
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Figure 1. Generalized process diagram for the two pathways 

            The analysis of the bio-oil production through biomass fast pyrolysis (Areas 100 

to 500) is similar to previous TEAs conducted at Iowa State University [25, 27, 29]. Two 

bio-oil upgrading pathways are analyzed in Area 600 in this study. For the first pathway, 

two-stage hydrotreating and FCC processing is employed to upgrade the aqueous phase 

bio-oil to commodity chemicals (olefins and aromatics). In the second pathway, single-

stage hydrotreating and hydrocracking is employed to upgrade water-insoluble bio-oil to 

biobased transportation fuels (synthetic gasoline and diesel fuel).  

            In the hydrotreating/FCC pathway, two-stage hydrotreating followed by FCC of 

the aqueous phase scenario presented in Vispute et al. [11] is adopted. The aqueous phase 

is separated from the bio-oil through a Liquid-Liquid (L-L) extractor before being 

hydrotreated and catalytically cracked. The first stage of hydrotreating is carried out at 

125°C and 100 bar hydrogen pressure over a Ru/C catalyst in a low-temperature 

hydrotreater while the second stage  occurs at 250°C and 100 bar hydrogen pressure over 

a Pt/C catalyst [11]. Following the two-stage hydrotreating process, the hydrotreated 

aqueous phase undergoes fluidized catalytic cracking in an FCC reactor over HZSM-5 

catalyst at 600°C. This converts the hydrotreated aqueous phase to aromatics and olefins. 
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The separated water-insoluble fraction, which has high phenolic oligomer content, is sold 

as boiler fuel.  

            The difference between Options 1 and 2 is the source of hydrogen (See Figure 2 

and Figure 3). In Option 1, hydrogen is purchased from the market while Option 2 

employs natural gas as the hydrogen feedstock via a two-stage steam-reforming process. 

The natural gas is first scrubbed of sulfur in a desulfurizer, and then sent on to the two-

stage steam reforming process. The first stage is a steam methane reformer (SMR) 

operated at 700–1100 °C, where steam reacts with the natural gas to yield syngas. In the 

second stage, further hydrogen is generated through a lower-temperature water gas shift 

(WGS) reaction occurring at about 130°C. A pressure swing adsorption (PSA) unit is 

employed to separate hydrogen from the syngas, and the remaining syngas is treated as a 

fuels gas with commercial value of $5/MMBTU.  

 

 

Figure 2. Bio-oil upgrading process for hydrotreating/FCC pathway under Option 1. 
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Figure 3. Bio-oil upgrading process for hydrotreating/FCC pathway under Option 2. 

 

            Figure 4 describes the bio-oil upgrading process for the hydrocracking pathway. 

The previous TEA study shows that purchasing hydrogen for hydrotreating process is not 

as profitable as producing hydrogen via reforming part of bio-oil [25]. In this pathway, 

the bio-oil is first phase-separated into water-insoluble and aqueous phases through the 

liquid-liquid (L-L) extractor. The aqueous phase undergoes two-stage catalytic reforming. 

First, the aqueous phase is sent to the pre-reformer, where water-gas-shift and steam-

reforming reactions generate syngas. Then the aqueous phase bio-oil is sent to the 

reformer to produce hydrogen through catalytic steam reforming. The steam-reforming 

reaction mechanism used in the reformer is based on Marquevich et al. (see Table 1) [30]. 

It is assumed that all the hydrogen is separated by the PSA and then compressed in a two-

stage process (compressors 1 and 2) for further use. A portion of the hydrogen is 

employed in the hydrotreating/hydrocracking process and the rest is sold to the market. 

The water-insoluble phase with its lower oxygen content is hydrotreated and 
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hydrocracked to produce liquid fuels such as synthetic gasoline and diesel fuel.   

 

Table 1. Main reactions for water soluble phase reforming. 

Number Equilibrium Reactions 

1 C2H4O22H2+2CO 

2 CH2O2 H2O + CO 

3 C5H4O2+8H2O10H2+5CO2 

4 C3H6O2+4H2O7H2+3CO2 

5 C6H6O+11H2O14H2+6CO2 

6 C7H8O2+12H2O16H2+7CO2 

7 C8H10O+15H2O20H2+8CO2 

8 C7H8+14H2O18H2+7CO2 

9 C10H12O2+18H2O24H2+10CO2 

10 CH2O2 H2 + CO2 

11 CO + H2O CO2 + H2 

12 CO + 3 H2 CH4 + H2O 

13 CH4 + H2O CO + 3 H2 

 

 

 

 

 

Figure 4.Bio-oil upgrading process for the hydrotreating/hydrocracking pathway. 



42 
 

 
 

            The Pacific Northwest National Laboratory (PNNL) has conducted several experiments 

on hydrotreating and hydrocracking of bio-oil derived from various biomass feedstocks. The 

pyrolysis products are categorized as solids, gases, and liquid fractions. PNNL researchers found 

that hydrotreating and hydrocracking bio-oil from the pyrolysis of corn stover produces a higher 

yield of stable oil layer products than other biomass feedstocks (mixed wood, poplar, etc.) [7]. 

As a result, corn stover is employed in this paper as the biomass feedstock for synthetic gasoline 

and diesel fuel production through the hydrotreating/hydrocracking pathway.  

            Mixed wood usually has a lower ash content, which results in bio-oil with a lower level 

of metals compared to corn stover bio-oil [7]. Fast pyrolysis produces 60-75wt% of liquid bio-oil 

depending on the feedstock used [4]. For woody biomass, 75 wt% of liquid bio-oil can be 

generated through fast pyrolysis [19], which is higher than for  bio-oils derived from other kinds 

of biomass. To achieve the highest yields of aromatic hydrocarbons, mixed wood is employed as 

the biomass feedstock for commodity chemicals production through the hydrotreating/FCC 

pathway. Table 2 details the properties of mixed wood [31] and corn stover [25].  

 

Table 2. Properties of mixed wood and corn stover 

Ultimate Analysis (dry basis) 

Element Mixed Wood (wt%) Corn Stover (wt%) 

Carbon 47.51 47.28 

Hydrogen 5.24 5.06 

Nitrogen 0.28 0.8 

Chlorine 0.01 0 

Sulfur 0.21 0.22 

Oxygen 43.07 40.63 

Proximate Analysis (wet basis) 

Element Mixed Wood (wt%) Corn Stover (wt%) 

Moisture 5.23 25 

Fixed Content 12.91 17.7 

Volatile Matter 81.39 52.8 

Ash 0.48 4.5 
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            Equipment sizing and cost estimation are calculated with Aspen Economic Evaluation 

software. The methodology developed by Peters and Timmerhaus [32] for installation costs and 

rate of return analysis is employed for the capital cost analysis (see Table 3). A Lang factor of 

5.46, which has been employed in previous analyses of pyrolysis-based biofuels production, is 

employed to calculate the total investment cost based on the total purchased equipment cost [25, 

27, 29]. A modified Discounted Cash Flow Rate of Return (DCFROR) analysis spreadsheet is 

employed to calculate IRRs for the facilities analyzed in this study.  

 

Table 3. Methodology for capital cost estimation for an n
th

 plant. 

Parameter Assumption 

Total Purchased Equipment Cost (TPEC) 100% 

Purchased Equipment Installation 39% 

Instrumentation and Controls 26% 

   Piping 10% 

Electrical Systems 31% 

Buildings (including services) 29% 

Yard Improvements 12% 

Service Facilities 55% 

Total Installed Cost (TIC) 3.02*TPEC 

Indirect Cost (IC) 0.89*TPEC 

Engineering 32% 

Construction 34% 

Legal and Contractors Fees 23% 

Total Direct and Indirect Costs(TDIC) TIC + IC 

Contingency 20% of TDIC 

Fixed Capital Investment (FCI) TDIC + Contingency 

Working capital (WC) 15% of FCI 

Land Use 6% of TPEC 

Total Capital Investment (with land) FCI + WC + Land 

          



44 
 

 

 

            Table 4 details the major assumptions employed in the DCFROR analysis. The process 

design is based on the current state of technology and is assumed to be an n
th

 plant of its kind 

with a 20 year facility life. All costs are provided in 2010 dollars. 

Table 4. Assumptions for DCFROR analysis. 

Parameter Assumption 

Working Capital (% of FCI) 15% 

Salvage Value 0 

Type of Depreciation DDB 

 General Plant 200 

 Steam Plant 150 

Depreciation Period (Years) 

  General Plant 7 

 Steam/Electricity System 20 

Construction Period (Years) 2.5 

 % Spent in Year -3 8% 

 % Spent in Year -2 60% 

 % Spent in Year -1 32% 

Start-up Time (Years) 0.5 

 Revenues (% of Normal) 50% 

 Variable Costs (% of Normal) 75% 

 Fixed Cost (% of Normal) 100% 

Income Tax Rate 39% 

Facility Type n
th 

facility 

 

Analysis and Results 

            For Options 1 and 2 of the hydrotreating/FCC pathway, the total olefins and aromatics 

yields are 223 metric tons per day and 88.9 metric tons per day, respectively. In addition to the 

commodity chemicals, char and pyrolytic lignin are also produced regardless of the source of 

hydrogen. The yields of char and pyrolytic lignin are 174 MTPD and 166 MTPD, respectively. 

Detailed commodity chemicals yields are shown in Table 5. The chemical yields data is 

calculated based on carbon selectivity and final products yields presented in Vispute et al. [11]. 

For the hydrotreating/hydrocracking pathway, hydrogen yield is 63.2 MTPD, total synthetic 
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gasoline and diesel fuel yields are 165 MTPD, and the yield of the by-product char is 206 MTPD.  

 

Table 5. Commodity chemical yield distributions for Option 1 and Option 2 of 

hydrotreating/FCC pathway. 

Chemicals Yield ( MTPD) 

Ethylene 71.4 

Propylene 120 

Butylene 31.7 

Benzene 23.8 

Toluene 43.9 

Xylenes 17.0 

Ethylbenzene 2.1 

Styrene 1.2 

Indene 0.4 

Naphthalene 0.4 

            

Installed equipment costs for the two pathways are summarized in Figure 5. The total 

installed equipment costs for the two hydrogen source options under the hydrotreating/FCC 

pathway are $130 million and $155 million, respectively, and is $190 million for the 

hydrotreating/hydrocracking pathway. Differences in installed equipment costs result primarily 

from differences in the costs of the bio-oil upgrading process: upgrading costs are $35 million 

for a facility employing the hydrotreating/FCC pathway under Option 1; $58 million for a 

facility employing the hydrotreating/FCC pathway under Option 2; and $69 million for a facility 

employing the hydrotreating/hydrocracking pathway. For the hydrotreating/FCC pathway, 

Options 1 and 2 share some installed equipment costs, including those attributed to pretreatment, 

pyrolysis and oil recovery, combustion, and storage. Differences in bio-oil upgrading installed 

equipment costs for Options 1 and 2 are the result of the $23 million equipment incurred by the 

natural gas reforming process.  
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Figure 5. Installed equipment costs for the two pathways. 

 

            Table 6 details the operating parameters employed in the analysis. The biomass feedstock 

purchase price is assumed to be $83/metric ton. The prices for electricity, natural gas, hydrogen, 

and char are based on the a erages from the U    Energy Information Administration’s (EIA) 

Annual Energy Outlook’s 20-year price forecasts [33]. The price of merchant hydrogen is 

calculated as a function of natural gas prices under the assumption that it is produced via steam 

reforming [34]. It is assumed that the char is sold as a low-value coal substitute with a price of 

$18.21 per metric ton, which is equal to one-half the predicted 20-year average price of U.S. coal. 

Catalyst costs are based on a previous TEA study that calculated the 20-year internal rate of 

return for an integrated catalytic pyrolysis (i.e., hydrotreating/FCC) facility [27].  
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Table 6. Material and operating parameters employed in the evaluation. 

Commodity Price  

Feedstock $0.83/kg 

Hydrogen $3.33/kg 

Pt $56.29/kg 

Ru $5.60/kg 

Zeolite $1.60/kg 

Natural Gas $5MMBTU 

Electricity $0.061/kwh 

Process Water $0.032/MT 

Solids Disposal Cost $19.84/MT 

Char $18.21/MT 

 

            Total annual facility operating costs are calculated based on assumed input costs (see 

Figure 6). Feedstock costs represent the majority of the operating costs at $54.4 million annually. 

For Option 1, hydrogen consumption is the second largest operating cost at $30.2 million on the 

basis of a $3.33/kg market price. This additional operating cost results in a much higher total 

operating cost for Option 1 compared to Option 2 under the hydrotreating/hydrocracking 

pathway. Option 2 has the highest catalyst cost ($4.9 million), which includes the costs of Pt, Ru, 

and zeolite catalysts for two-stage hydrotreating and hydrocracking and WGS catalyst. 

Compared with Option 1 under the hydrotreating/hydrocracking pathway, Option 2 has a higher 

natural gas cost, although this contributes little to the total operating cost because of natural gas’s 

low market price.  
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Figure 6. Annual operating costs for the two pathways. 

           

            Previous TEAs have assumed a fixed product price. In reality the market prices of 

commodity products (particularly energy products) are volatile, fluctuating due to changing 

market conditions or government policies. To account for these fluctuations, the projected prices 

for commodity chemicals, gasoline, and diesel fuel over the next 20 years (2011-2030) are 

incorporated into the DCFROR model for both upgrading pathways. An annual petroleum price 

trend (1995-2035) is detailed based on historical petroleum prices and annual price projections 

provided by EIA [35, 36] (see Figure 7). The price trend shows that petroleum has a history of 

volatility and achieved a recent low in 2010. The EIA also forecasts a steady increase in the 

petroleum price after 2015 due to greatly increased petroleum demand in countries such as China 

and India.  
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Figure 7. Historical and forecasted petroleum prices (2010 dollars) [35, 36]. 

 

            In the hydrotreating/FCC pathway, commodity chemicals, especially olefins and 

aromatics, are the main products. Among all the commodity chemicals, propylene represents the 

largest yield (see Table 5). An analysis of historical monthly spot prices of petroleum (average of 

Brent and West Texas Intermediate [WTI] crude) [35] and propylene from April 1993 to July 

2011 [37] shows a strong correlation (R
2
=0.89) between the two (see Figure 8). Similarly, the 

prices of other commodity chemicals (benzene, toluene, xylenes, ethylene, etc.) also have strong 

positive correlations with petroleum prices. The detailed correlations between the commodity 

chemicals and the petroleum prices are shown in Table 7. For the hydrotreating/hydrocracking 

pathway, the main products are gasoline and diesel fuel and the same analysis shows a strong 

exponential correlation (R
2
=0.96) between the historical monthly spot prices of gasoline and 

diesel fuel from April 1993 to July 2011 [38] and the prices of petroleum over same period [35] 

(see Figure 9).  
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Figure 8. Correlation between the monthly prices of petroleum and propylene [35, 37]. 

 

 

Figure 9.Correlation between the monthly price of petroleum and average price of gasoline and 

diesel fuel [35, 38]. 

y = 1.8894x + 77.817 
R² = 0.8885 

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

M
o

n
th

ly
 p

ro
p

yl
e

n
e

 p
ri

ce
($

/m
e

tr
ic

 t
o

n
) 

Monthly average petroleum price (Brent and WTI) ($/metric ton)  

y = 16.9x0.6188 
R² = 0.9583 

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

M
o

n
th

ly
 a

ve
ra

ge
 g

ao
lin

e
 a

n
d

 d
ie

se
l p

ri
ce

 
( 

$
/m

e
tr

ic
 t

o
n

) 

Monthly average petroleum price (Brent and WTI) ($/metric ton)  
 



51 
 

 

 

Table 7. Correlations between the commodity chemicals and petroleum prices. 

Chemicals Correlations with petroleum R
2
 

Benzene y = 4.5522x
0.8501

 0.8447 

Toluene y = 4.6562x
0.8194

 0.9365 

Xylenes y = 6.5132x
0.774

 0.9107 

Ethylene y= 1.3326x + 284.18 0.7063 

Propylene y= 1.8894x + 77.817 0.8885 

 

            The EIA projects petroleum to have a steadily increasing price over the next 20 years. As 

a result of these strong positive correlations, the prices of commodity chemicals and 

transportation fuels are expected to also increase over the same time period. The projected prices 

of commodity chemicals and transportations fuels for the next 20 years are calculated through 

these correlations and incorporated into the DCFROR analysis.  

            Based on the calculated capital costs, operating costs, and assumptions, facility IRRs of 

7.6%, 13.3%, and 9.8% are obtained for Options 1 and 2 of the hydrotreating/FCC pathway and 

the hydrotreating/hydrocracking pathway, respectively, via a DCFROR analysis setting a goal of 

zero net present value (NPV) at the end of the 20-year project.  

 

Uncertainty Analysis 

            The results of the sensitivity analysis for the two pathways demonstrate the sensitivity of 

facility IRR to parameter values (see Figure 10, Figure 11, and Figure 12). The parameters 

investigated are biomass cost, fixed capital cost, product yield, hydrogen price, catalyst cost, char 

credit value, gas credit value, income tax rate, and working capital amount. The uncertainty 

analysis finds that facility IRRs for the two pathways are most sensitive to hydrogen price, 

product yield, fixed capital cost, and biomass cost.  
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Figure 10. Sensitivity analysis for Option 1 of the hydrotreating/FCC pathway. 

 

 

Figure 11. Sensitivity analysis for Option 2 of the hydrotreating/FCC pathway. 
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Figure 12. Sensitivity analysis for the hydrotreating/hydrocracking pathway. 

            

Commodity chemicals are the main products for both options of the hydrotreating/FCC 

pathway, so the yield of commodity chemicals has a significant impact on facility IRR. 

Increasing the commodity chemicals yield from 75% to 125% of the base case increases facility 

IRR from -7.4% to 16.2% for Option 1 and from 5% to 19.6% for Option 2. A variation of 

biomass cost from $50/ton to $100/ton results in a facility IRR range of 1.8 - 12.6% for Option 1 

and 9 - 16.9% for Option 2. A ±30% range in fixed capital cost results in a facility IRR range of 

5.4 - 10.9% for Option 1 and 10.3 - 17.9% for Option 2.  

            For the hydrotreating/hydrocracking pathway, hydrogen price, fixed capital cost, biomass 

cost, gasoline yield, and diesel fuel yield have the greatest impact on facility IRR. For Option 1 

of the hydrotreating/FCC pathway and the hydrotreating/hydrocracking pathway, the facility 

IRRs are sensitive to hydrogen price. For the hydrotreating/hydrocracking pathway, however, the 

hydrogen price is the most important factor. Figure 13 describes the facility IRR variation and 

the hydrogen market price for the two pathways. The figure shows that the hydrotreating/FCC 
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pathway under Option 1 and the hydrotreating/hydrocracking pathway both have facility IRR of 

8.5% when the hydrogen price reaches $3.02/kg. The hydrotreating/hydrocracking pathway will 

have a higher facility IRR if the hydrogen price exceeds $3.02/kg. When the hydrogen price is 

$4.20/kg, the facility IRR for the hydrotreating/hydrocracking pathway reaches 13.3%, which is 

equal to the IRR of a facility employing Option 2 of the hydrotreating/FCC pathway. The IRR of 

a facility employing Option 1 is 13.3% at a hydrogen price of $1.04/kg. The correlation between 

the IRRs of facilities employing Option 1 of the hydrotreating/FCC pathway and the 

hydrotreating/hydrocracking pathway and the hydrogen price are almost linear, suggesting that 

they will attain equal IRR values only when the hydrogen price is either very low ($1/kg) or very 

high ($4.50/kg).  

 

 

Figure 13. Facility IRR distribution from Monte-Carlo simulation. 
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IRR of 19.6%, and a comparatively low investment risk. However, the hydrogen for Option 2 is 

produced via natural gas steam reforming, and this reliance on a volatile fossil fuel source may 

pose a future challenge to the pathway’s economic feasibility  Among all the fossil fuels, natural 

gas has the advantages of clean burning, lower greenhouse gas emissions, and very low cost. 

However, increased utilization resulting from its current low value in the North American market 

would spur demand and cause natural gas prices to rise, hindering the economic feasibility of the 

hydrotreating/FCC pathway under Option 2.   

            For further risk analysis, Crystal Ball® is employed to conduct a Monte-Carlo simulation 

to generate a facility IRR distribution to quantify the uncertainty of the 

hydrotreating/hydrocracking pathway under Option 2. Commodity chemical yield, fixed capital 

cost, and biomass cost are treated as changing variables since these parameters were shown by 

the sensitivity analysis to have the great impact on facility IRR. All of these variables are 

assumed to follow triangular distributions with the same variation ranges used in the sensitivity 

analysis (see Figure 11). Two thousand random facility IRRs are generated during the Monte-

Carlo simulation and JMP
®

 software is employed to analyze the resulting data. 

            Figure 14 details the facility IRR distribution from the Monte-Carlo simulation. The 

expected value of the mean facility IRR is 13.1% and the standard deviation is 3.8%. The 

minimum IRR is 0% and the maximum IRR is 26.2%. The median, 25% quartile, and 75% 

quartile facility IRRs are 13.1%, 10.6%, and 15.7%, respectively. For the cumulative probability 

distribution of the facility IRR, about 80% of facilities in the analysis have IRRs exceeding 10%, 

and 30% of facilities have IRRs exceeding 15% (see Figure 15). This result shows that the 

hydrotreating/FCC pathway under Option 2 is likely to present a relatively low risk in the future, 

even if some economic parameters are pessimistic.  



56 
 

 

 

 

Figure 14.Facility IRR distribution from Monte-Carlo simulation. 

 

Figure 15.Cumulative probability distribution of facility IRR from Monte-Carlo simulation. 

 

Conclusions 

            This techno-economic analysis e aluates the economic feasibility of biomass fast 

pyrolysis and two bio-oil upgrading pathways  The two bio-oil upgrading pathways are: 

hydrotreating/FCC and hydrotreating/hydrocracking. Both upgrading methods require one or 
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more hydrotreating steps to stabilize the bio-oil prior to cracking. For the hydrotreating/FCC 

pathway, the aqueous phase of the bio-oil is upgraded to commodity chemicals via a two-stage 

hydrotreating and FCC process. In this pathway, two options are developed regarding the 

hydrogen source (Options 1 and 2). Option 1 uses merchant hydrogen purchased from the market, 

and Option 2 uses hydrogen produced via on-site reforming of natural gas. For the 

hydrotreating/hydrocracking pathway, the water-insoluble phase is upgraded to transportation 

fuels (synthetic gasoline and diesel fuel) via a one-stage hydrotreating and hydrocracking process 

and the aqueous phase is reformed to hydrogen. Facility IRR is calculated as a function of annual 

revenues, fixed capital investment, and annual operating costs. The technology is assumed to be 

mature enough from the perspectives of reliability and performance to ensure that the facility 

operates as an nth plant rather than as a pioneer plant.  

            Based on a 2000 MTPD facility, the total olefins and aromatics yields are 223.3 MTPD 

and 88.9 MTPD for the hydrotreating/FCC pathway under Options 1 and 2, respectively. In 

addition to the commodity chemicals, char and pyrolytic lignin are also produced via this 

pathway. The yield of char and pyrolytic lignin is 174 MTPD and 166 MTPD, respectively. For 

the hydrotreating/hydrocracking pathway, the hydrogen yield is 63.2 MTPD, total synthetic 

gasoline and diesel fuel yield is 165 MTPD, and the yield of the by-product char is 206 MTPD. 

The estimated installed equipment costs for the hydrotreating/FCC pathway under Options 1 and 

2, and the hydrotreating/hydrocracking pathway are $130 million, $155 million, and $190 

million, respectively. The fixed capital costs for the two options of the hydrotreating/FCC 

pathway and the hydrotreating/hydrocracking pathway are $203 million, $242 million, and $296 

million, respectively. The 20-year IRR is calculated to be 7.6%, 13.3%, and 9.8% for the two 

options of the hydrotreating/FCC pathway and the hydrotreating/hydrocracking pathway, 
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respectively.  

             ensiti ity analysis is performed to determine the sensiti ity of the facility’s economic 

feasibility to the model parameter values for the two pathways. Sensitivity analysis results show 

that hydrogen price, fixed capital cost, feedstock cost, and product yield are key factors in the 

economic feasibility of the two bio-oil upgrading pathways  Facility IRR ranges from -7  % to 

1  2% and 5% to 19 7% for Options 1 and 2 of the hydrotreating/FCC pathway, respecti ely  For 

the hydrotreating/hydrocracking pathway, facility IRR ranges from 5 3% to 1  1%   

            A Monte-Carlo simulation analysis of Option 2 of the hydrotreating/FCC pathway 

predicts that more than 80% of facilities will have IRRs exceeding 10%, and 30% of facilities 

will have IRRs exceeding 15%, based on 2000 random runs of the simulation. This indicates that 

an in estment in Option 2 of the hydrotreating/FCC pathway would present a relatively low risk.  
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CHAPTER IV  

LIFE CYCLE ASSESSMENT LIFE CYCLE ASSESSMENT OF THE PRODUCTION OF 

HYDROGEN AND TRANSPORTATION FUELS FROM CORN STOVER VIA FAST 

PYROLYSIS  

A paper published in Environmental Research Letters Journal 

Yanan Zhang, Guiping Hu and Robert C. Brown 

Abstract 

            This Life Cycle Assessment (LCA) evaluates and quantifies the environmental impacts of 

the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn 

stover. Input data for this analysis come from Aspen Plus modeling, a GREET model database 

and a U.S Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the 

environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 

MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-

oil production requires the largest fossil energy input. The net Global Warming Potential (GWP) 

is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and 

diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, 

which is the largest GHG footprint of all the unit processes. The net GWPs in this study are 88% 

and 94% lower than for petroleum-based gasoline and diesel fuel (2005), respectively. Biomass 

transportation has the largest impact on ozone depletion among all of the unit processes. 

Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and 

electricity consumption are the key factors that influence GHG emissions. 
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Introduction 

            Growing concerns over Greenhouse Gas (GHG) emissions from petroleum-based fuel 

consumption have prompted interest in the production of alternative transportation fuels from 

biorenewable sources. As required by the Energy Independence and Security Act of 2005, the 

U.S. Environmental Protection Agency (EPA) finalized the Renewable Fuel Standard (RFS) and 

mandated petroleum refineries and oil importers to increase the volume of renewable fuel that is 

blended into petroleum-based transportation fuels. Life cycle assessment (LCA), a standard 

evaluation method of environmental impact, is increasingly being used to evaluate biofuel 

production systems.  In previous life cycle assessments, evaluations have emphasized the 

environmental impacts of ethanol-based transportation fuels [1-10].  The majority of these 

studies found that bioethanol has fewer GHG emissions than petroleum-based gasoline and 

diesel, which can potentially improve the environmental performance of the transportation and 

energy sectors. In these studies, both first generation (such as corn grain) and second generation 

feedstocks, (for example, corn stover, forest residues, and switchgrass) were analyzed for 

bioethanol production using both biochemical and thermochemical pathways.  

            The Energy Independence and Security Act of 2007 amended RFS to RFS2, which 

expanded the mandate for the utilization of 36 billion gallons of biofuel annually in 2022, of 

which no more than 15 billion gallons can be ethanol from corn starch, and no less than 16 

billion must be from cellulosic biofuels [11]. RFS2 also mandates the inclusion of other biofuels 

such as biodiesel into the petroleum-based fuel supply and requires renewable fuels other than 

corn-based ethanol with at least a 50% reduction of GHG emissions (60% for cellulosic biofuels) 

compared to petroleum-based gasoline and diesel [11]. The issue of RFS2 drives a growing 
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interest in advanced biofuels production such as renewable gasoline and diesel fuels from second 

generation feedstocks. 

            Fast pyrolysis, which is carried out at a moderate temperature (around 500
o
C) and short 

reaction time (about two seconds), has attracted considerable interest as a means for converting 

biomass fuels and residues into biofuels [12]. Fast pyrolysis can generate up to 75wt.%  of liquid 

bio-oil, which can then be used in various applications such as supplying energy for 

transportation, heating, and electricity generation [13]. With the growing interest in  fast 

pyrolysis of biomass and catalytic upgrading of the resulting bio-oil into hydrocarbon fuels, a 

number of LCA studies have been recently conducted to explore the environmental impacts of 

this pathway to biofuels [10, 14-18]. In these studies, different types of biomass feedstocks 

(willow, poplar, wood logging residue, corn stover etc.) were investigated and various 

applications of the bio-oil were examined, such as power generation from bio-oil combustion and 

hydrogen production from steam reforming of bio-oil.  

            Catalytic upgrading methods can be employed to upgrade bio-oil to a variety of gaseous 

and liquid fuels including diesel fuel, gasoline, kerosene, and methane [12]. However, only a 

small number of LCAs have been conducted on the production of renewable gasoline and diesel 

fuel from biomass fast pyrolysis and upgrading. Hsu [16] conducted a well-to-wheel analysis of 

transportation fuel from the fast pyrolysis and upgrading of forest residues, based on data from a 

Pacific Northwest National Laboratory (PNNL) process design report [19]. An uncertainty 

analysis for GHG emissions was also conducted in this study and found that all scenarios 

considered had lower GHG emissions than petroleum-based gasoline. Iribarren et al. [18] 

performed an LCA for fast pyrolysis and upgrading of woody biomass using a cradle-to-gate 

approach. Kauffman et al. [10] conducted an LCA for combined ethanol and drop-in fuels 
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production from corn grain and corn stover, respectively, on the basis of an hectare farmland and 

found that a 52% reduction in GHG emissions was possible.  

            In all of these studies, hydrotreating is employed to deoxygenate bio-oil to hydrocarbons. 

Hydrotreating, done either in a single stage or two stages, is a common pretreatment in the oil 

refinery process, but it requires a large amount of hydrogen. Currently, the majority of industrial 

hydrogen is obtained from steam reforming of natural gas [20]. However, hydrogen can be 

produced from other sources. The aqueous phase of bio-oil contains carbohydrate-derived 

compounds that can be catalytically steam reformed to renewable hydrogen [21].  Catalytic 

steam reforming of bio-oil compounds has been investigated in previous studies [21-35]. In these 

studies, various metal-supported catalysts, bio-oil modeling components, pyrolysis reactor 

designs, and biomass-feedstock selections have been tested and compared for their efficiency in 

biohydrogen production.  Through hydrogen production via a bio-oil reforming pathway, natural 

gas consumption could be reduced. In this study, the environmental impacts of the production of 

hydrogen and transportation fuels from corn stover fast pyrolysis and upgrading are evaluated. 

            The objective of this study is to perform a life cycle assessment of the environmental 

impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and 

upgrading of corn stover. An Aspen Plus model of the pyrolysis and upgrading processes in 

combination with a GREET model database and a U.S Life Cycle Inventory Database provide 

data to support the LCA using SimaPro 7.3. 

 

Description for the Biofuel Production Pathway 

            The plant capacity for the fast pyrolysis and bio-oil upgrading facility is assumed to be 

2000 metric tons per day of dry biomass feedstock and the bio-oil yield is assumed to be 65% of 
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the dry biomass, based on a previous techno-economic analysis we have performed [36]. Corn 

stover is selected as the feedstock for the production of hydrogen and transportation fuels. Bio-

oil production from raw feedstock includes biomass preprocessing, biomass fast pyrolysis, bio-

oil recovery, solids removal, and heat generation. All of the five steps are identical to those of 

previous techno-economic analyses [37-40]. In the biomass preprocessing step, biomass 

containing 25 wt.% moisture is chopped to 10 mm particle diameter, dried to 7 wt.% moisture 

content, and ground to 3 mm particle diameter. In the fast pyrolysis step, biomass is converted 

into non-condensable gases, bio-oil vapors, and solid char phases in a fluidized bed reactor 

operating at 500
o
C and ambient pressure. The bio-oil vapors are recovered using a condenser and 

an electrostatic precipitator. In the solids removal step, 90% of the entrained char and ash 

particles are removed from the pyrolysis products through cyclones.  Finally, in the combustion 

step, the non-condensable gases and a portion of the solid char are burned to generate heat for 

operating the pyrolyzer. The remainder of the char is treated as coal substitute locally consumed. 

The complete process diagram is illustrated in Figure 1. 

            The bio-oil is phase-separated into a water insoluble phase and an aqueous phase using a 

liquid-liquid (L-L) extractor.  The insoluble phase is upgraded to gasoline and diesel fuel through 

hydrotreating and hydrocracking. Although some studies assume hydrogen for upgrading is 

obtained from steam reforming of natural gas, this study assumes that hydrogen is produced from 

steam reforming of the aqueous phase of bio-oil [41], which has advantages in decreasing GHG 

emissions, but at the cost of lower carbon yields of gasoline and diesel fuel from bio-oil. The 

water-insoluble phase is first hydrotreated followed by hydrocracking under zeolite catalysts to 

produce gasoline and diesel fuel. The aqueous phase is reformed to hydrogen through a two-

stage catalytic process. A pressure swing adsorption (PSA) unit is employed to separate 
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hydrogen from the reformed gas. A portion of the hydrogen is used to hydrocrack the water-

insoluble phase of the bio-oil, and the rest of the hydrogen is treated as a co-product.  

 

Figure 1. Process diagram for fast pyrolysis of corn stover and upgrading of the resulting bio-oil 

to hydrogen, gasoline and diesel fuel (adapted from [40, 47]). 

 

LCA Goal and Scope Definition 

            The goal of this LCA study is to identify the environmental impacts of the production of 

hydrogen and transportation fuels from corn stover fast pyrolysis with upgrading. This well-to-

wheel analysis is divided into seven unit processes, which include biomass production, biomass 

transportation, biomass preprocessing, bio-oil production, bio-oil upgrading, product distribution, 

and vehicle operations. It includes all resource consumption from biomass production to vehicle 

operations. Figure 2 illustrates the system boundary for the LCA. The bio-oil production unit is a 

combination of the steps of biomass fast pyrolysis, bio-oil recovery, solids removal, and heat 

generation. The bio-oil production unit is shown as a sub-block within the system boundary. 

Initially, corn stover is produced on farms and transported to an integrated biomass fast pyrolysis 

and upgrading facility. In the integrated facility, the biomass is preprocessed and converted to 



68 
 

 

 

intermediate bio-oil that is upgraded to transportation fuels. The transportation fuels are then 

transported and distributed to the customer zones, where the fuel is used for vehicle operations. 

Electricity needed for processing is assumed to be generated from the same fuel mix in the 

Midwest region of the U.S. [42]. Indirect effects such as Indirect Land Use Change (ILUC) are 

not included in this study. The effects of indirect land use change are potentially large [43-45] 

but also highly controversial. ILUC is thought to be too diffuse and subject to too many arbitrary 

assumptions to be useful for rule-making [46]. In addition, severe qualifications are required for 

measurement of GHG emissions associated with ILUC [46]. So the indirect land use change 

effects are not considered in this LCA study.  

 

Figure 2. Life cycle system boundary for the production of hydrogen and transportation fuels 

from corn stover via fast pyrolysis and upgrading. 
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The Aspen Plus process model for the production of hydrogen and transportation fuels 

from fast pyrolysis of corn stover is adapted from a previous model developed as part of a joint 

study by Iowa State University, the National Renewable Energy Laboratory, and ConocoPhillips 

Company [47]. This Aspen Plus model has been adapted for subsequent techno-economic 

analysis of the production of hydrogen and transportation fuels from corn stover [48]. In the 

present study, the model assumes an n
th

 plant facility with mature technology processing 2000 

metric tons per day of dry biomass. The functional unit for interpreting the LCA results is 1 km 

traveled by a light-duty passenger vehicle operated on fuels generated via fast pyrolysis. The 

required materials and energy inputs associated with the unit processes of the LCA are derived 

from an Aspen Plus model [48]  along with GREET model [49] and U.S. Life Cycle Inventory 

Database [50]. SimaPro 7.3 software with an Eco-invent 2.2 database is employed to estimate 

environmental aspects such as climate change, fossil energy input, land use, and ozone layer 

impacts for the primary unit processes. IPCC 2007 GWP 100a, Cumulative Energy Demand 

(CED), and TRACI 2 methods developed by the US Environmental Protection Agency (EPA) 

are used to calculate life cycle impacts. The IPCC 2007 GWP 100a method is employed to 

evaluate life cycle GHG emissions for the production of hydrogen and transportation fuels from 

corn stover [51]. The Cumulative Energy Demand (CED) method [52] is used to estimate the 

energy demand for the production of hydrogen and transportation fuels. The TRACI 2 method 

[53] is employed to evaluate other potential environmental impacts (acidification, eutrophication, 

ecotoxicity, etc.). 
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Inventory Analysis 

Biomass Production  

Biomass production is based on the cultivation and collection of corn stover residue. The 

input energy and GHG emissions associated with corn stover cultivation and collection are 

included in the overall inventory analysis. Inventory data for corn stover collection is compiled 

from a U.S. Life Cycle Inventory Database [50] and a GREET model [49]. The Low Heating 

Value (LHV) for corn stover is assumed to be 15.4 MJ/kg [50]. The yield of corn stover is 

assumed to be 2.1 dry tons/acre [54]. The mass ratio and energy content ratio of stover to corn 

produced in agriculture are roughly 1:1 [55, 56]. We assume a corn stover removal rate of 62% 

from a previous LCA [5]. The ratio of  energy and emissions allocation between corn and stover 

for partitioning is assumed  to be 1:0.62 [5]. Diesel fuel input data for the corn stover production 

is adopted from the GREET model [49].  

Traditionally, the bulk of corn stover has been left in the field to replenish the soil with 

nitrogen (N), phosphorus (P), and potassium (K) [54]. If the corn stover is used for biofuels 

production, it will  require farmers to replenish lost nutrients through supplementary fertilization 

[54]. Based on the GREET model analysis, the replacement rates for N, P, and K-fertilizer 

sources are 7700 g N, 2000 g P2O5 (873 g P) and 12000 g K2O (9957 g K) for 1 ton of removed 

corn stover [49]. Direct N2O and NO emissions from agricultural soil due to N fertilizer 

application are assumed to be 1.325% and 0.65% [49]. Diesel fuel is consumed during biomass 

production. All of the input data for biomass production are detailed in Table 1.  
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Table 1. Inventory data for biomass production 

Item Amount Unit 

Outputs 

Collected corn stover 1 kg 

Resources 

Biomass energy  15.4 MJ 

Materials and fuels 

N fertilizer 8.5 g 

P2O5 2.2 g 

K2O 13.2 g 

Diesel fuel for corn stover loader 0.12 g 

Diesel fuel for corn stover 

collection 
5.15 g 

Emission to air 

N2O 0.085 g 

NO 0.12 g 

 

Biomass Transportation  

For biomass transportation, it is assumed that the wet feedstock, which contains 25 wt.% 

moisture, is transported by 40 ton trucks (one-way). The transportation distance of feedstock is 

60 miles one way for corn stover, based on analysis of the GREET model [49]. The delivered 

wet biomass is 2670 metric tons with 25 wt.% moisture.  Detailed input data for the biomass 

transportation are summarized in Table 2. 

 

Table 2. Inventory data for biomass transportation. 

Item      Amount     Unit 

Outputs 

Delivered corn stover 2670 metric ton 

Input from material 

Truck  40t 284000       tkm 

Collected corn stover 2670 metric ton 
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Biomass Preprocessing 

In the drying step, steam is employed to remove water from the biomass.  For the 

inventory analysis of biomass preprocessing, the electricity and steam usages are considered as 

material inputs and the ejected water vapor from the drying step is considered an emission to the 

air (see Table 3). The electricity requirement for reducing biomass particle size is calculated 

from the correlation developed by Mani et al. [57]. 

 

Table 3.  Inventory data for biomass preprocessing 

Item Amount Unit 

Outputs 

Pretreated corn stover 2150 metric ton 

Materials and fuels 

Delivered corn stover 2670 metric ton 

Steam 184 metric ton 

Electricity for chopping  44600 kwh 

Electricity for grinding 109000 kwh 

Electricity for compressor 124000 kwh 

Emission to air 

Water 519 metric ton 

 

Bio-oil Production 

The inventory analysis of bio-oil production includes the inventory for biomass fast 

pyrolysis, bio-oil recovery, solids removal, and heat generation (see Table 4). In the biomass fast 

pyrolysis and recovery processes, a portion of the generated char is sent to a combustor to supply 

heat for pyrolysis. The heating value of the char is assumed to be 27.5 MJ/kg [47]. The non-

condensable gases and part of the char generated during pyrolysis provide sufficient heat to 

operate the pyrolyzer. . The excess char is treated as a product that displaces coal with an 

assumed heating value that is half that of the coal it displaces.  Local consumption of excess char 

is assumed, so char transport is not considered for local consumption.  
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The electricity, air, and process water are considered to be the inputs while the bio-oil is 

considered to be the output. The electricity inputs include electricity for biomass pyrolysis, bio-

oil recovery, and char combustion, which are collected from the Aspen Plus model [36]. The 

process water is mainly used in bio-oil recovery, and air provides oxygen for combustion of non-

condensable gases and char. The emissions from the bio-oil production unit are gases and solids, 

including carbon oxides, hydrocarbons, nitrogen oxides, sulfide, PM10, and ash. Combustion 

accounts for virtually all of the PM10 particulate emissions from processing-related activities. 

Studies of the emission behavior and characteristics of PM10 from combustion of biochar or coal 

show that there is a correlation between the inherent ash content and the amount of PM10 

emitted [58, 59]. For PM10 emission calculations, linear regression was used to identify the 

correlation between ash content and the wt.% of coal ash transferred into PM10, as reported in 

the literature [59]. The ash separated in cyclones is disposed to sanitary landfills for waste 

treatment.  

Table 4.. Inventory data for bio-oil production. 

Item Amount Unit 

Outputs 

Corn stover bio-oil 1300 metric ton 

Char 216 metric ton 

Avoided Products 

Coal 216 metric ton 

Resources 

Air 4300 metric ton 

Process water 8010 metric ton 

Materials and fuels  

Pretreated corn stover 2150 metric ton 

Electricity for pyrolysis 543000 kwh 

Emission to air 

N2 1330 metric ton 

O2 20.0 metric ton 

H2 1.5 metric ton 

CO 113 metric ton 

CO2 754 metric ton 

Water 114 metric ton 
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Table 4 continued   

NH3 0.000024 metric ton 

NO 2.4 metric ton 

NO2 0.00017 metric ton 

Sulfur 0.059 metric ton 

SO2 0.16 metric ton 

COS 0.00038 metric ton 

H2S 0.00084 metric ton 

N2O 0.00014 metric ton 

HCN 0.000048 metric ton 

PM10 2.7 metric ton 

Waste or emissions to treatment 

Ash 84.9 metric ton 

 

Bio-oil Upgrading  

The final products are gasoline, diesel fuel and hydrogen from bio-oil upgrading. The 

total gasoline and diesel fuel yield is 164.6 metric ton/day (50% share of gasoline and 50% share 

of diesel), and the hydrogen yield is 63 metric ton/day. Hydrogen is assumed to be a co-product 

with product displacement based on the displaced usage of natural gas. Based on a previous 

study, 3.53 kg of natural gas is required for 1 kg of hydrogen production [60]. The environmental 

impacts allocation is based on the mass allocation between gasoline and diesel, which is 50% of 

the total environmental burden. The inventory inputs include air, catalysts, process water, 

electricity, and bio-oil. The process water includes water used for gas cooling and separation. 

The waste water from bio-oil upgrading step is assumed to be sent to a waste water treatment 

plant. The catalysts employed in bio-oil upgrading are zeolite powders (0.45 metric ton) for 

hydrocracking and Ni-based catalysts (0.73 metric ton) for hydrotreating, with consumption 

based on gas hourly space velocities (GHSV). Details of the inventory data are shown in Table 5. 
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Table 5..Inventory data for bio-oil upgrading. 

Item Amount      Unit  

Outputs  

Gasoline 82.3 metric ton  

Diesel fuel 82.3   

Hydrogen 63.2 metric ton  

Avoided Products 

Natural gas                                        223.1          metric 

ton 

 

Natural Gas (in ground)                      223           metric 

ton 

 

Resources  

Air 1500 metric ton  

Process water 12300 metric ton  

Materials and fuels  

Corn stover bio-oil 1250 metric ton  

Electricity for upgrading 291000 kwh  

Zeolite powder 0.45 metric ton  

Ni-based catalyst 0.73 metric ton  

 Emission to air  

N2 1160 metric ton  

O2 234 metric ton  

CO 0.0015 metric ton  

CO2 1070 metric ton  

Water 906 metric ton  

CH4 0.007 metric ton  

C3H6 0.00012 metric ton  

CH2O2 0.00014 metric ton  

NO2 0.00014 metric ton  

Waste or emissions to treatment  

Waste water 582 metric ton  

 

Product Transportation and Distribution  

For gasoline transportation, we assume transportation by barge, pipeline, and rail 

apportioned as 8%, 63%, and 29%, respectively. The distances for the three modes are 520 km, 

400 km and 800 km, respectively. For diesel fuel transportation, we assume transportation by 

barge, rail and truck apportioned as 8%, 29% and 63%, respectively.  The distances for the three 

modes are 520 km, 800 km and 50 km, respectively. Gasoline and diesel fuel are locally 

distributed by truck with an average travel distance of 30 km. All the assumptions and data are 
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based on the GREET model’s fast pyrolysis pathway [49]. Details of the inventory analysis for 

gasoline and diesel fuel transportation and distribution are shown in Table 6 and Table 7. 

 

Table 6. Inventory data for gasoline transportation and distribution 

Item Amount Unit 

Outputs 

  Delivered gasoline 82.3 metric ton 

Input from material/telescope 

  Gasoline 82.3 metric ton 

Barge 6070 tkm 

Pipeline 36800 tkm 

Rail 33900 tkm 

Truck 40t (distribution) 4380 tkm 

 

 

 

Table 7. Inventory data for diesel fuel transportation and distribution 

Item Amount Unit 

Outputs 

  Delivered diesel fuel 82.3 metric ton 

Input from material/telescope 

  Gasoline 82.3 metric ton 

Barge 6070 tkm 

Rail 33900 tkm 

Truck 40t (transportation) 4600 tkm 

Truck 40t (distribution) 4380 tkm 

 

Vehicle Operations 

Gasoline emissions are assumed for a vehicle operated using 50% conventional and 50% 

reformulated gasoline. Gasoline emissions are based on combustion in a spark-ignition engine 

while diesel fuel emissions are based on combustion in a direct-injection compression ignition 

engine using low-sulfur diesel. The mass density and heating value of low sulfur diesel fuel is 

assumed. The fuel economy for gasoline and diesel fuel is 23.4 and 28.1 miles per gallon (MPG), 

respectively. All of the stated assumptions and required data for assumed vehicle operations are 
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based on default values of the GREET model [49]. The inventory data of vehicle operations on 

gasoline and diesel fuel bases are described in Table 8 and Table 9. 

 

Table 8. Inventory data for vehicle operations fueled by 

pyrolysis derived gasoline. 

Name Amount Unit 

Outputs  

Car operation, by gasoline 1 mile 

Materials and fuels   

Delivered gasoline 0.121 kg 

Emission to air   

VOC 0.18 g 

CO 3.75 g 

NOx 0.141 g 

PM10 0.029 g 

PM2.5 0.015 g 

Sulfur oxides 0.00612 g 

CH4 0.0146 g 

N2O 0.012 g 

CO2 371 g 

 

 

Table 9. Inventory data for vehicle operations fueled by 

pyrolysis derived diesel fuel. 

Name Amount Unit 

Outputs  

Car operation, by diesel 

fuel 

1 mile 

Materials and fuels   

Delivered diesel fuel 0.113 kg 

Emission to air   

VOC 0.088 g 

CO 0.539 g 

NOx 0.141 g 

PM10 0.030 g 

PM2.5 0.016 g 

Sulfur oxides 0.002 g 

CH4 0.003 g 

N2O 0.012 g 

CO2 322 g 
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Results and Discussions 

Fossil Energy Input  

Figure 3 shows the breakdown of fossil energy input for various unit processes on the 

bases of gasoline and diesel fuel. The fossil energy input is separated into two parts: required 

fossil energy for various unit processes and co-products credits (shown as negative fossil energy 

input). As indicated in the figure, bio-oil production has the largest fossil energy input.  It 

consumes 32% of the total required fossil energy among all the unit processes. In the bio-oil 

production unit, char is treated as a coal substitute, which contributes to 1.34 MJ/km and 1.25 

MJ/km reductions to the total fossil energy input. Biomass production has the second largest 

fossil fuel demand of approximately 22% of the total required fossil energy for both gasoline and 

diesel fuel bases. Biomass preprocessing also plays a significant role, which demands 

approximately 21% of the total required fossil energy. Electricity consumption during biomass 

chopping, grinding, and drying is responsible for the largest fossil energy input for biomass 

preprocessing. Bio-oil upgrading consumes approximately 20% of the fossil energy input. 

Hydrogen as a co-product is produced from bio-oil steam reforming, which results in avoided 

use of natural gas in the bio-oil upgrading unit. Consequently, 5.1 MJ/km and 4.8 MJ/km are 

subtracted from the total fossil energy input as hydrogen credits. Due to the hydrogen and char 

credits, the net fossil energy input is 0.25 MJ/km and 0.23 MJ/km for gasoline and diesel fuel 

bases, respectively.  
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Figure 3.  Fossil fuel energy inputs for various unit processes per km traveled. Note: Biochar 

and hydrogen credits are treated as negative fossil energy inputs.  

 

GHG Emissions 

Figure 4 details the breakdown of the various contributions of unit process to GWP for 

both gasoline and diesel fuel bases. In the biomass production step, GWP contributions are 

separated into two parts: CO2 absorption during biomass cultivation and CO2 emissions during 

biomass harvesting. For 1 kg corn production, the atmosphere can uptake 1.49 kg CO2 during 

cultivation based on the U.S. Life Cycle Inventory Database (National Renewable Energy 

Laboratory 2012). The amount of CO2 absorption allocated to corn stover is assumed on a basis 

of mass fraction. We assume corn stover occupies 38% mass fraction of total participating corn 

and stover; thus, the CO2 absorption contributed by corn stover is 38% of the whole CO2 

absorption of 1 kg corn production. As a result, 1 kg corn stover could uptake 0.57 kg CO2.  

For a light-duty vehicle fueled by gasoline, the total corn stover CO2 absorption is 0.69 

kg CO2eq/km, and the total positive GWP (excluding feedstock absorption) is 0.73 kg CO2eq/km. 

Vehicle operations exhibit the largest GHG footprint, contributing 33% of total positive GWP for 
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a gasoline basis. Bio-oil production has the second largest GHG emissions, contributing 25% of 

total positive GWP. This is because bio-oil production involves char and non-condensable gas 

combustion, which release direct GHG emissions to the environment. Biomass preprocessing has 

a 16% contribution to total GWP.  

The large quantity of GHG emissions associated with electricity usage in biomass 

preprocessing is the main reason for this large GWP contribution. Bio-oil upgrading contributes 

9% of the total positive GWP because the reduced GWP from avoided natural gas is subtracted 

from the total GWP as a hydrogen credit. This means that hydrogen production from bio-oil 

steam reforming as co-product makes considerable contribution to GWP reduction in this step. 

Biomass transportation and product distribution have the smallest contributions among all of the 

steps, representing 3% and 0.5% of the total positive GWP for both gasoline and diesel fuel 

bases.  

For a light-duty vehicle using diesel fuel, the total corn stover CO2 absorption is 0.66 kg 

CO2eq/km, and the total positive GWP (excluding feedstock absorption) is 0.66 kg CO2eq/km. It 

has a similar breakdown of contributions among the various unit processes but smaller GWP 

compared to travel in a light-duty vehicle using gasoline. This is because diesel fuel has better 

fuel economy than gasoline, even after considering the differences in energy content for gasoline 

and diesel. The net GWP traveled using gasoline and diesel fuel are 0.037 and 0.015 kg 

CO2eq/km, respectively. 
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Figure 4. Contributions of unit process to global warming reported on a per km traveled basis. 

Note: Biomass CO2 absorption is treated as a negative contribution to total GWP. 

 

 

Other Impact Categories 

Other potential environmental impacts such as acidification, eutrophication, and 

ecotoxicity are evaluated by TRACI 2 method. Table 10 presents the potential environmental 

impacts of the gasoline and diesel fuel products.  

Figure 5 shows the relative contributions of different unit process to the potential environmental 

impacts on a gasoline basis. Biomass transportation has the largest contribution (55%) for ozone 

depletion among the unit processes. For smog, acidification, and eutrophication, bio-oil 

production has the largest contribution, which is up to 53% contribution to the total impact.  Bio-

oil upgrading has significant impacts on eutrophication, carcinogenics, non-carcinogenics, 

respiratory effects and ecotoxicity, with contributions ranging from 28% to 46%. Vehicle 

operations have comparatively small contributions to smog, acidification, and respiratory effects, 

representing less than 5%.  
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Table 10. Environmental profile of gasoline and diesel products (based on 

one km traveled by light-duty vehicle) 

Impact category Unit Gasoline Diesel 

Ozone depletion kg CFC-11 eq 6.93E-08 6.07E-08 

Smog kg O3 eq 0.076 0.071 

Acidification mol H+ eq 0.28 0.27 

Eutrophication kg N eq 0.17 0.16 

Carcinogenics CTUh 2.07E-08 1.92E-08 

Non carcinogenics CTUh 7.29E-08 6.82E-08 

Respiratory effects kg PM10 eq 0.00065 0.00061 

Ecotoxicity CTUe 0.45 0.42 

 

 

 

 

 Figure 5.  Contribution of unit processes to potential environmental impacts (gasoline basis). 

Comparison to Previous Studies 

Table 11 compares GHG emissions and fossil energy inputs determined in the present 

study to results from several previous LCAs of biomass-derived transportation fuels. The first 

case is an analysis performed by the National Renewable Energy Laboratory (NREL) [61] based 

on fast pyrolysis of forest residue with bio-oil hydroprocessing to gasoline and diesel fuel (Case 

A in Table 11) as proposed by Pacific Northwest National Laboratory (PNNL) ([19]. Compared 

to this case, the net GHG emissions on gasoline and diesel fuel bases for the present study are 
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lower by 68% and 65%, respectively. This is mainly because the present study assumes hydrogen 

for hydrotreating comes from steam reforming of bio-oil whereas the NREL study assumes 

hydrogen comes from steam reforming of natural gas.  

The next three cases are variations of an LCA for an integrated biorefinery based on the 

GREET model (Cases B1, B2 and B3 in Table11). These cases are: transportation fuels from fast 

pyrolysis of forest residue with hydrogen from natural gas reforming (Case B1), transportation 

fuels from fast pyrolysis of corn stover with hydrogen from natural gas reforming (Case B2) and 

transportation fuels from fast pyrolysis of corn stover with hydrogen from bio-oil reforming 

(Case B3).  Production of both hydrogen and transportation fuels from corn stover has less GHG 

emissions than the other cases. For Case B1, the amount of internal hydrogen production from 

bio-oil reforming is only used for hydrotreating so there is no excess hydrogen as co-product. 

The amount of GHG emissions for the present study on a gasoline basis is 12% lower than for 

Case B1. The present study showed 62% and 68% reductions in GHG emissions on a gasoline 

basis compared to Case B2 and Case B3, respectively.  

The present study is also compared to ethanol production via indirect gasification of 

forest residue and mixed alcohol synthesis process (Case C in Table 11) [6], which has the 

largest GHG emissions and fossil energy input for biofuels among the previous studies examined 

(0.15 CO2eq/km and 0.258 CO2eq/km on a gasoline basis and diesel fuel basis, respectively). 

Greenhouse gas emissions from petroleum-based gasoline and diesel fuel in 2005 (Case D in 

Table 11) are assumed to be 0.3 and 0.258 kg CO2eq/km which are based on an well-to-wheel 

analysis using the GREET model [53]. Net GWP for the present study are 88% and 94% lower 

than petroleum-based gasoline and diesel fuel GHG emissions in 2005, respectively, which meet 

the criteria of 50% GHG emissions reduction mandated by RFS2. 
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The co-production of hydrogen and transportation fuels in the present study has the 

smallest GHG emissions and fossil energy input compared to the selected previous studies when 

transportation fuels are the only product. This indicates that the co-production of hydrogen, 

gasoline and diesel fuel via fast pyrolysis and upgrading of corn stover, although producing 

lower yields of gasoline and diesel, has lower GHG emissions and fewer fossil energy inputs 

than these other studies because of their use of natural gas as a source of hydrogen for upgrading.  

Table 11. Comparison results of environmental impacts for 1km driven by car operated on 

gasoline or diesel fuel. 

Gasoline basis 
GHG emissions 

(kg CO2eq/km) 

Fossil energy 

input (MJ/km) 

Pyrolysis gasoline for the current study 0.037 0.25 

Case A: Pyrolysis gasoline from forest residue 
a
 0.117 1.7 

Case B1: Pyrolysis gasoline from corn stover 

(hydrogen from bio-oil reforming) 
b
 

0.0422 0.4 

Case B2: Pyrolysis gasoline from corn stover 

(hydrogen from natural gas steam reforming) 
b
 

0.0975 1.22 

Case B3: Pyrolysis gasoline from forest residue 

(hydrogen from natural gas steam reforming) 
b
 

0.115 1.5 

Case C: Ethanol via gasification 
c
 0.15 1.2 

Case D: 2005 petroleum-based gasoline 
d
 0.3 4.5 

   

Diesel fuel basis 
GHG emissions 

(kg CO2eq/km) 

Fossil energy 

input (MJ/km) 

Pyrolysis diesel fuel for the current study 0.015 0.23 

Case A: Pyrolysis diesel  fuel from forest residue 
a
 0.098 1.42 

Case B1:Pyrolysis diesel fuel from corn stover 

(hydrogen from bio-oil reforming) 
b
 

0.0354 0.325 

Case B2: Pyrolysis diesel fuel from corn stover 

(hydrogen from natural gas steam reforming) 
b
 

0.0814 1.02 

Case B3: Pyrolysis diesel fuel from forest residue 

(hydrogen from natural gas steam reforming)
b
 

0.0963 1.22 

Case D: 2005 petroleum-based diesel fuel 
d
 0.258 3.1 

a
 Data is from NREL report [60] 

b
 Data is from GREET model [61] 

c
 Data is from Hsu et al. [6] 

d
 Data is from GREET model [61] 
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Sensitivity Analysis 

The sensitivity analysis of GHG emissions to various operational parameters in the 

production of hydrogen and transportation fuels from corn stover is illustrated in Figures 6 and 7. 

The parameters investigated include fuel economy, bio-oil yield, products yield, electricity 

consumption, biomass transportation distances and nitrogen fertilizer consumption. Sensitivity 

analysis is conducted by changing each operating parameter by a prescribed amount around the 

baseline operating conditions (expressed as a percentage of the baseline case).  

 

 

Figure 6. Sensitivity of GHG emissions to operating conditions on a gasoline basis (changes in 

operating parameters are expressed as a percentage of the baseline case). 

 

As indicated in Figure 6, overall net GWP ranges from -0.086 to 0.2 kg CO2eq/km on 

gasoline basis. Gasoline fuel economy has the greatest impact on GHG emissions. A ±25% 

variation of fuel economy on the baseline results in a -0.086 to 0.16 kg CO2eq/km range of GWP. 

Yields of bio-oil and gasoline have significant impacts on GHG emissions. Low yield of gasoline 

(75% of the baseline) generates the highest GWP of 0.2 kg CO2eq/km. Electricity consumption 
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also has an important impact. If the electricity consumption for biomass fast pyrolysis varies ±25% 

from the baseline, GHG emissions vary from -0.01 to 0.084 kg CO2eq/km. A variation of ± 25% 

in bio-oil upgrading, electricity consumption, or electricity consumption for biomass 

preprocessing would also change GWP in a range of 0.01-0.064 kg CO2eq/km on gasoline basis. 

Nitrogen fertilizer has comparatively smaller impact than the previous parameters.  When 

nitrogen fertilizer is reduced to 75% of the baseline, a GWP of 0.023 kg CO2 eq/km on a 

gasoline basis can be achieved with 92% GHG emissions reduction compared to the 2005 

petroleum-based gasoline baseline.  

The sensitivity analysis on a diesel fuel basis is illustrated in Figure 7. Diesel fuel 

economy, diesel fuel yield and bio-oil yield are the most important parameters for GWP. The 

overall range of GWP based on this sensitivity analysis ranges from -0.1 to 0.17 kg CO2eq/km 

traveled by light-duty vehicle fueled by diesel fuel. If diesel fuel yield is only 75% of the 

baseline, GWP  reaches its highest value of 0.17 kg CO2eq/km. GWP reaches its lowest value of 

-0.1 kg CO2eq /km if diesel fuel economy increases to 125% of the baseline. Generally, the trend 

of the sensitivity analysis for the diesel fuel basis is similar to the gasoline basis. But because 

diesel fuel has a higher fuel economy than gasoline, the GWP for biobased diesel fuel is smaller 

than for biobased gasoline under the same operating conditions.  
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Figure 7. Sensitivity of GHG emissions to operating conditions on a diesel fuel basis (changes in 

operating parameters are expressed as a percentage of the baseline case). 

 

Conclusions 

A life cycle assessment of the production of hydrogen and transportation fuels from fast 

pyrolysis and upgrading of corn stover is examined in this study. The co-production of hydrogen 

and transportation fuels have lower GHG emissions and fossil energy input than scenarios where 

transportation fuels are the only products from pyrolysis of biomass. The results indicate that 

bio-oil production, biomass preprocessing, and bio-oil upgrading are the key drivers in 

determining overall environmental impacts of this biofuels pathway. Among the unit processes, 

bio-oil production has the largest energy demand and contributes the largest GHG emissions. 

The co-products hydrogen and char greatly reduce fossil fuel consumption in the production of 

transportation fuels by this pathway. Fossil energy input is 0.25 MJ and 0.23MJ per km traveled 

by a light-duty vehicle fueled by pyrolysis-derived gasoline and diesel fuel, respectively. The 

fossil energy input for this pathway is 0.25 MJ/km and 0.23 MJ/km for the gasoline and diesel 

fuel bases, respectively. Hydrogen for hydrotreating is produced from reforming of bio-oil 
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instead of reforming of natural gas, so significant quantities of fossil energy are saved compared 

to generating hydrogen from natural gas. The net GWP is 0.037 kg CO2eq and 0.015 kg CO2eq 

per km traveled by light-duty vehicle fueled by gasoline and diesel fuel, respectively. Compared 

to petroleum-based gasoline and diesel fuel, GHG emissions are reduced 88% and 94%, 

respectively, which exceeds the RFS2 requirements. Biomass transportation has the largest 

impact on ozone depletion among the unit processes. Bio-oil production makes the largest 

contribution to smog, acidification, and eutrophication. Sensitivity analysis indicates that fuel 

economy is the most sensitive parameter in determining GWP. Transportation fuel yield, bio-oil 

yield, and electricity consumption also play significant roles in determining the GHG footprint, 

so there is potential to reduce GHG emissions with improvements to electricity generation.  

 

Acknowledgements 

The authors would like to acknowledge useful discussions with Tristan R. Brown in preparing 

this paper and the financial support of the Bioeconomy Institute and the Biobased Industry 

Center of Iowa State University. 

References 

[1] A.J. Kemppainen, D.R. Shonnard, Comparative Life-Cycle Assessments for Biomass-to-

Ethanol Production from Different Regional Feedstocks, Biotechnology Progress, 21 (2005) 

1075-1084. 

 

[2] P.F. Pawelzik, Q. Zhang, Evaluation of environmental impacts of cellulosic ethanol using life 

cycle assessment with technological advances over time, Biomass and Bioenergy, 40 (2012) 162-

173. 

 

[3] A. Singh, D. Pant, N.E. Korres, A.-S. Nizami, S. Prasad, J.D. Murphy, Key issues in life 

cycle assessment of ethanol production from lignocellulosic biomass: Challenges and 

perspectives, Bioresource Technology, 101 (2010) 5003-5012. 

 

[4] S. Spatari, D.M. Bagley, H.L. MacLean, Life cycle evaluation of emerging lignocellulosic 

ethanol conversion technologies, Bioresource Technology, 101 (2010) 654-667. 



89 
 

 

 

[5] S. Spatari, Y. Zhang, H.L. MacLean, Life Cycle Assessment of Switchgrass- and Corn 

Stover-Derived Ethanol-Fueled Automobiles, Environmental Science & Technology, 39 (2005) 

9750-9758. 

[6] D.D. Hsu, D. Inman, G.A. Heath, E.J. Wolfrum, M.K. Mann, A. Aden, Life Cycle 

Environmental Impacts of Selected U.S. Ethanol Production and Use Pathways in 2022, 

Environmental Science & Technology, 44 (2010) 5289-5297. 

 

[7] L. Luo, E. van der Voet, G. Huppes, An energy analysis of ethanol from cellulosic feedstock–

Corn stover, Renewable and Sustainable Energy Reviews, 13 (2009) 2003-2011. 

 

[8] S. González-García, M.T. Moreira, G. Feijoo, Comparative environmental performance of 

lignocellulosic ethanol from different feedstocks, Renewable and Sustainable Energy Reviews, 

14 (2010) 2077-2085. 

 

[9] Y. Bai, L. Luo, E. Voet, Life cycle assessment of switchgrass-derived ethanol as transport 

fuel, Int J Life Cycle Assess, 15 (2010) 468-477. 

 

[10] N. Kauffman, D. Hayes, R. Brown, A life cycle assessment of advanced biofuel production 

from a hectare of corn, Fuel, 90 (2011) 3306-3314. 

 

[11] U.S. congress 2007 Energy Independence and Security Act of 2007 Public Law 110-140 

[12] A.V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass and 

Bioenergy, 38 (2012) 68-94. 

 

[13] S. Czernik, A.V. Bridgwater, Overview of Applications of Biomass Fast Pyrolysis Oil, 

Energy & Fuels, 18 (2004) 590-598. 

 

[14] E. Heracleous, Well-to-Wheels analysis of hydrogen production from bio-oil reforming for 

use in internal combustion engines, International Journal of Hydrogen Energy, 36 (2011) 11501-

11511. 

 

[15] Z.W. Zhong, B. Song, M.B.M. Zaki, Life-cycle assessment of flash pyrolysis of wood waste, 

Journal of Cleaner Production, 18 (2010) 1177-1183. 

 

[16] D.D. Hsu, Life cycle assessment of gasoline and diesel produced via fast pyrolysis and 

hydroprocessing, Biomass and Bioenergy, 45 (2012) 41-47. 

 

[17] J. Fan, T.N. Kalnes, M. Alward, J. Klinger, A. Sadehvandi, D.R. Shonnard, Life cycle 

assessment of electricity generation using fast pyrolysis bio-oil, Renewable Energy, 36 (2011) 

632-641. 

 

[18] D. Iribarren, J.F. Peters, J. Dufour, Life cycle assessment of transportation fuels from 

biomass pyrolysis, Fuel, 97 (2012) 812-821. 

 

[19] S.B. Jones, C. Valkenburg, C.W. Walton, D.C. Elliott, J.E. Holladay, D.J. Stevens, C. 

Kinchin, S. Czernik, Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, 



90 
 

 

 

Hydrotreating and Hydrocracking: A Design Case, 2009. (Available at: 

http://www.pnl.gov/main/publications/external/technical_reports/pnnl-18284.pdf) 

 

[20] A. Milbrandt, M. Mann, Hydrogen Resource Assessment: Hydrogen Potential from Coal, 

Natural Gas, Nuclear, and Hydro Power, 2009. NREL/TP-6A2-42773. (Available at: 

http://www.nrel.gov/docs/fy09osti/42773.pdf) 

 

[21] J.A. Medrano, M. Oliva, J. Ruiz, L. García, J. Arauzo, Hydrogen from aqueous fraction of 

biomass pyrolysis liquids by catalytic steam reforming in fluidized bed, Energy, 36 (2011) 2215-

2224. 

 

[22] A.C. Basagiannis, X.E. Verykios, Steam reforming of the aqueous fraction of bio-oil over 

structured Ru/MgO/Al2O3 catalysts, Catalysis Today, 127 (2007) 256-264. 

 

[23] C.-F. Yan, F.-F. Cheng, R.-R. Hu, Hydrogen production from catalytic steam reforming of 

bio-oil aqueous fraction over Ni/CeO2-ZrO2 catalysts, International Journal of Hydrogen Energy, 

35 (2010) 11693-11699. 

 

[24] E.C. Vagia, A.A. Lemonidou, Thermodynamic analysis of hydrogen production via 

autothermal steam reforming of selected components of aqueous bio-oil fraction, International 

Journal of Hydrogen Energy, 33 (2008) 2489-2500. 

 

[25] T. Hou, L. Yuan, T. Ye, L. Gong, J. Tu, M. Yamamoto, Y. Torimoto, Q. Li, Hydrogen 

production by low-temperature reforming of organic compounds in bio-oil over a CNT-

promoting Ni catalyst, International Journal of Hydrogen Energy, 34 (2009) 9095-9107. 

 

[26] L. Garcia, R. French, S. Czernik, E. Chornet, Catalytic steam reforming of bio-oils for the 

production of hydrogen: effects of catalyst composition, Applied Catalysis A: General, 201 

(2000) 225-239. 

 

[27] M.E. Domine, E.E. Iojoiu, T. Davidian, N. Guilhaume, C. Mirodatos, Hydrogen production 

from biomass-derived oil over monolithic Pt- and Rh-based catalysts using steam reforming and 

sequential cracking processes, Catalysis Today, 133-135  565-573. 

 

[28] S. Czernik, R. Evans, R. French, Hydrogen from biomass-production by steam reforming of 

biomass pyrolysis oil, Catalysis Today, 129 (2007) 265-268. 

 

[29] F. Seyedeyn-Azad, E. Salehi, J. Abedi, T. Harding, Biomass to hydrogen via catalytic steam 

reforming of bio-oil over Ni-supported alumina catalysts, Fuel Processing Technology, 92  563-

569. 

 

[30] S. Thaicharoensutcharittham, V. Meeyoo, B. Kitiyanan, P. Rangsunvigit, T. Rirksomboon, 

Hydrogen production by steam reforming of acetic acid over Ni-based catalysts, Catalysis Today, 

164  257-261. 

http://www.pnl.gov/main/publications/external/technical_reports/pnnl-18284.pdf
http://www.pnl.gov/main/publications/external/technical_reports/pnnl-18284.pdf
file:///E:/phd/Dissertation/(Available%20at:%20http:/www.nrel.gov/docs/fy09osti/42773.pdf)
file:///E:/phd/Dissertation/(Available%20at:%20http:/www.nrel.gov/docs/fy09osti/42773.pdf)


91 
 

 

 

[31] S.-p. Zhang, X.-j. Li, Q.-y. Li, Q.-l. Xu, Y.-j. Yan, Hydrogen production from the aqueous 

phase derived from fast pyrolysis of biomass, Journal of Analytical and Applied Pyrolysis, 92  

158-163. 

 

[32] F. Seyedeyn-Azad, E. Salehi, J. Abedi, T. Harding, Biomass to hydrogen via catalytic steam 

reforming of bio-oil over Ni-supported alumina catalysts, Fuel Processing Technology, 92 (2011) 

563-569. 

 

[33] T. Chen, C. Wu, R. Liu, Steam reforming of bio-oil from rice husks fast pyrolysis for 

hydrogen production, Bioresource Technology, 102 (2011) 9236-9240. 

 

[34] P.J. Ortiz-Toral, J. Satrio, R.C. Brown, B.H. Shanks, Steam Reforming of Bio-oil Fractions: 

Effect of Composition and Stability, Energy & Fuels, 25 (2011) 3289-3297. 

 

[35] S.-m. Liu, M.-q. Chen, J. Wang, F.-f. Min, M.-g. Chen, Hydrogen production by steam 

reforming for glycerol as a model oxygenate from bio-oil, in:  Materials for Renewable Energy 

& Environment (ICMREE), 2011 International Conference on, 2011, pp. 303-307. (Available at: 

http://www.eia.gov/forecasts/steo/query/) 

 

[36] Y. Zhang, T.R. Brown, G. Hu, R.C. Brown, Techno-economic analysis of two bio-oil 

upgrading pathways, Chemical Engineering Journal, 225 (2013) 895-904. 

 

[37] T.R. Brown, Y. Zhang, G. Hu, R.C. Brown, Techno-economic analysis of biobased 

chemicals production via integrated catalytic processing, Biofuels, Bioproducts and Biorefining, 

6 (2012) 73-87. 

 

[38] T.R. Brown, M.M. Wright, R.C. Brown, Estimating profitability of two biochar production 

scenarios: slow pyrolysis vs fast pyrolysis, Biofuels, Bioproducts and Biorefining, 5 (2011) 54-

68. 

 

[39] Y. Zhang, T.R. Brown, G. Hu, R.C. Brown, Techno-economic analysis of monosaccharide 

production via fast pyrolysis of lignocellulose, Bioresource Technology, 127 (2013) 358-365. 

 

[40] M.M. Wright, D.E. Daugaard, J.A. Satrio, R.C. Brown, Techno-economic analysis of 

biomass fast pyrolysis to transportation fuels, Fuel, 89, Supplement 1 (2010) S2-S10. 

 

[41] T.L. Marker, Opportunities for Biorenewables in Oil Refineries, 2005. DOEGO15085 

(Available at: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=861458) 

 

[42] EIA, 2012 short term energy outlook, 2012. (Available at: 

http://www.eia.gov/forecasts/steo/query/) 

 

[43  R    Ple in, M  O’ are, A D   ones, M    Torn,   K  Gibbs, Greenhouse Gas Emissions 

from  iofuels’ Indirect  and Use Change Are Uncertain but May  e Much Greater than 

Previously Estimated, Environmental Science & Technology, 44 (2010) 8015-8021. 

 

http://www.eia.gov/forecasts/steo/query/
http://www.eia.gov/forecasts/steo/query/
http://www.eia.gov/forecasts/steo/query/
http://www.eia.gov/forecasts/steo/query/
http://www.eia.gov/forecasts/steo/query/
http://www.eia.gov/forecasts/steo/query/


92 
 

 

 

[44] T. Searchinger, R. Heimlich, R.A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. 

Hayes, T.-H. Yu, Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through 

Emissions from Land-Use Change, Science, 319 (2008) 1238-1240. 

 

[45] J. Fargione, J. Hill, D. Tilman, S. Polasky, P. Hawthorne, Land Clearing and the Biofuel 

Carbon Debt, Science, 319 (2008) 1235-1238. 

 

[46] J.A. Mathews, H. Tan, Biofuels and indirect land use change effects: the debate continues, 

Biofuels, Bioproducts and Biorefining, 3 (2009) 305-317. 

 

[47] M.M. Wright, J.A. Satrio, R.C. Brown, D.E. Daugaard, D.D. Hsu, Techno-Economic 

Analysis of Biomass Fast Pyrolysis to Transportation Fuels., in, Golden, CO: National 

Renewable Energy Laboratory, 2010, pp. 73. 

 

[48] Y. Zhang, T.R. Brown, G. Hu, R.C. Brown, Techno-economic analysis of two bio-oil 

upgrading pathways, Chemical Engineering Journal. 

 

[49] Argone National Laboratory, The greenhouse gases, regulated emissions, and energy use in 

tranportation (GREET) model, 2011. (Available at: http://greet.es.anl.gov/) 

 

[50] National Renewable Energy Laboratory, U.S. life-cycle inventory database, in, Golden, CO, 

2012. (Available at: https://www.lcacommons.gov/nrel/process/show/a319d03a-5895-47f7-a64b-

9b026df9e3b9) 

 

[51] IPCC 2007 Climate Change 2007:The Physical Science Basis. Contribution of Working 

Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 

(Cambridge: Cambridge University Press) 

 

[52] M. Goedkoop, M. Oele, A. Schryver, M. Vieira, SimaPro Database Manual  

Methods library, PRé Consultants., 2008. (Available at: http://www.pre-

sustainability.com/manuals) 

 

[53] J. Bare, G. Norris, D. Pennington, T .McKone, The tool for the reduction and assessment of 

chemical and other environmental impacts,  Journal of Industrial Ecology, 6 (2002) 49-78. 

 

[54] J. Han, Elgowainy A, Palou-Rivera I, Dunn  JB, Wang MQ, Well-to-Wheels Analysis of 

Fast Pyrolysis Pathways with GREET, 2011. (Available at: http://greet.es.anl.gov/publication-

wtw_fast_pyrolysis) 

 

[55] S. Kim, B.E. Dale, Global potential bioethanol production from wasted crops and crop 

residues, Biomass and Bioenergy, 26 (2004) 361-375. 

 

[56] L.O. Pordesimo, B.R. Hames, S. Sokhansanj, W.C. Edens, Variation in corn stover 

composition and energy content with crop maturity, Biomass and Bioenergy, 28 (2005) 366-374. 

 

http://greet.es.anl.gov/
file:///E:/phd/Dissertation/(Available%20at:%20https:/www.lcacommons.gov/nrel/process/show/a319d03a-5895-47f7-a64b-9b026df9e3b9)
file:///E:/phd/Dissertation/(Available%20at:%20https:/www.lcacommons.gov/nrel/process/show/a319d03a-5895-47f7-a64b-9b026df9e3b9)
http://www.pre-sustainability.com/manuals
http://www.pre-sustainability.com/manuals
file:///E:/phd/Dissertation/(Available%20at:%20http:/greet.es.anl.gov/publication-wtw_fast_pyrolysis)
file:///E:/phd/Dissertation/(Available%20at:%20http:/greet.es.anl.gov/publication-wtw_fast_pyrolysis)


93 
 

 

 

[57] S. Mani, L.G. Tabil, S. Sokhansanj, Grinding performance and physical properties of wheat 

and barley straws, corn stover and switchgrass, Biomass and Bioenergy, 27 (2004) 339-352. 

 

[58] L. Zhang, Y. Ninomiya, Emission of suspended PM10 from laboratory-scale coal 

combustion and its correlation with coal mineral properties, Fuel, 85 (2006) 194-203. 

[59] X. Gao, H. Wu, Biochar as a Fuel: 4. Emission Behavior and Characteristics of PM1 and 

PM10 from the Combustion of Pulverized Biochar in a Drop-Tube Furnace, Energy & Fuels, 25 

(2011) 2702-2710. 

 

[60] C. Koroneos, A. Dompros, G. Roumbas, N. Moussiopoulos, Life cycle assessment of 

hydrogen fuel production processes, International Journal of Hydrogen Energy, 29 (2004) 1443-

1450. 

 

[61] D.D. Hsu, Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and 

Hydroprocessing, 2011. NREL/TP-6A20-49341. 

  



94 
 

 

 

CHAPTER V  

LIFE CYCLE ASSESSMENT OF COMMODITY CHEMICLAS PRODUCTION FROM 

FOREST RESIDUE VIA FAST PYROLYSIS 

A paper submitted to International Journal of Life Cycle Assessment  

Yanan Zhang, Guiping Hu and Robert C. Brown 

Abstract 

This life cycle assessment evaluates and quantifies the environmental impacts of 

replacing chemicals currently produced from fossil fuels with renewable chemicals produced 

from forest residue via fast pyrolysis with hydrotreating/fluidized catalytic cracking (FCC) 

pathway.  

The assessment’s input data are taken from Aspen Plus and GREET (Greenhouse Gases, 

Regulated Emissions, and Energy Use in Transportation) modeling.  SimaPro 7.3 software is 

employed to calculate the environmental impacts.  

The results indicate that the net fossil energy input is 49.1 MJ to produce one kilogram of 

chemicals and the net Global Warming Potential (GWP) is 0.79 kg CO2eq per kg chemicals 

produced under the current chemicals production pathway. Sensitivity analysis indicates that bio-

oil yields and chemical yields play the most important roles in determining the greenhouse gas 

footprints. 

Fossil energy consumption and GHG emissions could be reduced if commodity 

chemicals are produced via forest residue fast pyrolysis with hydrotreating/FCC pathway instead 

of conventional petroleum-based production pathways. 
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Introduction 

Aromatics and olefins are two main types of petrochemicals and have a wide range of 

applications. Aromatics can be used to produce a number of petrochemical intermediates 

including styrene, phenol, purified terephthalic acid (PTA), and phthalic anhydride (PA) [1]. The 

most important commercial olefins are ethylene, propylene, and butadiene, all of which can be 

used to manufacture rubbers, polymer resins, and other chemical intermediates [2]. In 2012, the 

aromatics production capability of the U.S. petroleum refining sector reached 296,911 barrels per 

day [3].  The demand for light olefins in the U.S. is expected to increase at a compounded annual 

growth rate (CAGR) of 3.4% over the period 2010-2020, reaching approximately 68.4 million 

tons by 2020 [4]. Petrochemicals are generally produced from fossil feedstocks such as the 

refining of crude oil or the processing of natural gas. Global petrochemicals feedstock 

consumption is projected to rise through 2025 with the greatest proportion coming from naphtha 

and coal, increasing about 100 million tons and 70 million tons by 2025, respectively [5]. Among 

all the regions, North America leads in the feedstock consumption, accounting for 17% of world 

feedstock consumption in 2010 [5]. The U.S. Energy Information Administration (EIA) has 

projected a 2.4% annual growth rate for crude oil prices from 2010-2035 [6]. Increasing oil 

prices and projected growth in consumption of fossil feedstocks together drive a growing interest 

in investigating alternative feedstocks for commodity chemicals production. A variety of 

alternative feedstocks are under consideration, including coal, unconventional natural gas, plastic 

waste, tar and heavy oil, and biomass [7, 8]. Feedstocks of non-fossil resources (lignocellulosic 

biomass, etc.) within the petrochemical industry have also gained increasing interest [9-13].  

Biomass can be converted into basic chemicals through thermochemical conversion 

(gasification, pyrolysis, and liquefaction/hydrothermal upgrading) or biochemical conversion 
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(fermentation and anaerobic digestion) [14]. The biochemical process is a complex process, and 

there are technical issues and challenges, such as low bulk density feedstock, high viscosity 

substrate, high enzymes cost, and low fermentability of some substrates [15-17]. The energy use 

and CO2 emissions for basic chemicals production from biomass is fully examined by Ren and 

Patel [7]. The pathways examined in that study include steam cracking of naphtha derived from 

the Fischer-Tropsch processing (FT) of biomass, dehydration of ethanol (ethanol is derived from 

biomass via syngas fermentation or via direct fermentation), and the processing of methanol to 

olefins (methanol is derived from biomass via syngas). For thermochemical conversion, the 

process of chemicals production from biomass gasification is relatively slow and typically 

requires large, complicated, and expensive equipment [18, 19].  

Brehmer et al. [9] has utilized a limited energetic and exergetic analysis using life cycle 

assessment (LCA) to evaluate the maximum fossil fuel feedstock replacement potential and 

concludes that the best potential for biomass to replace fossil fuel is as an alternative feedstock 

source for the petrochemical industry.  Hermann et al. [20] analyzed the CO2 emissions and 

fossil energy use for bulk chemicals production using industrial biotechnology and found that 

more than 100% savings in nonrenewable energy use and greenhouse gas emissions are already 

possible with current state of the art biotechnology. Hipolito [21] evaluated the environmental 

loads associated to the production of chemicals (phenolic compounds, acetone, 

polyhydroxybutyric acid and polylactic acid) from lignocellulose biomass scenarios and 

compared these environmental loads to the petrochemical equivalents. Hipolito [21] concluded 

that the production of chemicals from biomass could contribute to possible reductions between 

37% and 48% on greenhouse gas emissions and up to 80% fossil fuel can be saved while 

ecotoxicity indicators present much lower values for the production of chemicals from biomass. 
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But chemicals from biomass may increase other impact categories such eutrophication and 

acidification, human toxicity, photochemical oxidant formation, water depletion, and particulate 

matter formation. A number of other similar LCA studies discussed the environmental impacts of 

biopolymers or bioplastics production from biomass [22-27]. Yates and Barlow [28] made a 

thoughtful review from these existing biopolymers production LCA studies especially for 

polylactic acid (PLA), polyhydroxyalkanoates (PHA), and starch-based biopolymers. It is 

demonstrated as well that reductions in non-renewable energy use and GHG emissions can be 

achieved from biopolymers production, but higher impacts in other categories were commonly 

reported [28].   

Although some LCA studies have been done on the intermediate chemicals or 

biopolymers, rare LCA studies are reported on basic commodity chemicals (benzene, toluene, 

xylene etc.) production from biomass. Recently, fast pyrolysis has attracted considerable interest 

as a means for converting biomass into valuable fuels or energy. With the growing interest in fast 

pyrolysis technology, the related economic and environmental impacts of pyrolysis-based energy 

systems are under extensive examination [29-36]. Vispute et al. [37] combined a two-stage 

hydrotreating process with FCC to form an integrated catalytic process for the high-yield 

production of valuable commodity chemicals (i.e., olefins and aromatics). For previous study, 

Zhang et al.[36] compared this chemicals production pathway with the transportation fuels 

production from fast pyrolysis pathway and found that the IRR of the chemicals production 

pathway is much higher than that of transportation fuels production pathway. In this paper, life 

cycle assessment is conducted to evaluate and quantify the environmental impacts of renewable 

commodity chemicals production via forest residue fast pyrolysis and hydrotreating/FCC 
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upgrading. A variety of environmental impacts are evaluated, including the fossil energy input, 

GHG emissions, acidification, ozone depletion, ecotoxicity, smog, etc.   

 

Descriptions for the Chemicals Production Pathway 

In the chemicals production pathway, the bio-oil yield is assumed to be 52% of the dry 

mixed wood, based on the previous techno-economic analysis study [37]. Bio-oil generation 

from the raw feedstock includes five steps: biomass preprocessing, biomass fast pyrolysis, bio-

oil recovery, solids removal, and heat generation. In the biomass preprocessing step, the raw 

biomass is assumed to be 25 wt.% moisture and chopped to a 10 mm diameter. It is dried to 7 wt.% 

moisture content and ground to particles of 3 mm diameter. Steam generated in the combustion 

area is used to dry the biomass and then recycled to the combustion area to increase its 

temperature. This consists of a recycling steam process and 1% of the steam input is assumed to 

be the makeup steam. In the fast pyrolysis step, biomass particles are converted into non-

condensable gases, bio-oil vapors, and solid char phases in a fluidized bed reactor operating at 

500
o
C and ambient pressure. Bio-oil vapors are recovered using a condenser and an electrostatic 

precipitator. In the solids removal step, the pyrolysis products are cleaned by removing 90% of 

the entrained char and solid particles through cyclones. Finally, in the combustion step, the non-

condensable gases are combusted to provide the heat for the pyrolysis process. The excess char is 

treated as a low-value coal substitute for local usage such as heat generation. Portion of the 

combusted non-condensable gases are compressed and sent to the pyrolyzer as the carrier gases.  

After bio-oil production, a two-stage hydrotreating and FCC process is employed to 

upgrade the aqueous phase of the bio-oil to commodity chemicals. Process configurations based 

on Vispute et al. [37] are adopted for this pathway. A liquid-liquid (L-L) extractor is employed to 
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separate the whole bio-oil into the aqueous phase and the water-insoluble fraction. The aqueous 

phase undergoes a two-stage hydrotreating process, which consists of a low-temperature 

hydrotreatment and a high-temperature hydrotreatment. The low-temperature hydrotreatment 

stage is carried out in a hydrotreater operating at 125°C and 100 bar pressure and the high-

temperature hydrotreatment stage is carried out at 250°C and 100 bar pressure. After the two-

stage hydrotreating process, fluidized catalytic cracking is performed on the hydrotreated 

aqueous phase of the bio-oil over HZSM-5 catalyst at 600°C. The FCC process converts the 

aqueous phase to commodity chemicals. Natural gas is steam-reformed to produce hydrogen via 

a two-stage catalytic process, and the hydrogen is used for the hydroprocessing steps. Because 

natural gas contains enough sulfur to poison reforming catalysts, reforming is preceded by a 

desulfurization step. In the first stage of reforming, steam reacts with the natural gas in a steam 

methane reformer (SMR) at 700°C –1100°C to yield syngas. In the second stage, low-

temperature Water-Gas-Shift (WGS) reaction occurs at about 250°C to generate t hydrogen from 

the syngas. The hydrogen is separated from the syngas through a Pressure Swing Adsorption 

(PSA) unit and the rest of the gas is treated as exhaust gas.  

 

LCA Goal and Scope Definition 

The goal of this LCA study is to analyze the environmental impacts of the chemicals 

production from forest residue via fast pyrolysis with hydrotreating/FCC upgrading. The system 

for this LCA is divided into five unit processes: biomass production, biomass transportation, 

biomass preprocessing, bio-oil production, and bio-oil upgrading. The system boundary is 

illustrated in Figure 1, which contains land, energy and material resources consumptions as well 

as air emissions, solid waste and water emissions in the process. Bio-oil production unit is a 
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combination of biomass fast pyrolysis, bio-oil recovery, solids removal, and heat generation, 

which is shown as the sub-block in the system boundary diagram. The biomass fast pyrolysis and 

upgrading facility is assumed to be an integrated facility, where the biomass is preprocessed and 

converted to intermediate bio-oil that is ultimately upgraded to the commodity chemicals. 

Electricity usage is assumed to be medium-voltage electricity produced at U.S. The indirect land-

use change effects and chemicals distributions are not considered in the LCA study. This study is 

a general study for chemicals production from forest residue fast pyrolysis and location-specific 

energy carriers associated with feedstocks are not considered.  

 

 

Figure 1. Life cycle system boundary for the chemicals production from forest residue via fast 

pyrolysis and upgrading. 



101 
 

 

 

The Aspen Plus model for the chemical production process is based on a previous process 

model of chemical production via fast pyrolysis [36, 38]. In this study, we have updated the bio-

oil recovery modeling. The modified Aspen Plus model assumes an nth plant facility with mature 

technology processing 2000 metric tons/day of dry mixed wood feedstock. SimaPro 7.3 is used 

to develop and link primary unit processes related to the current chemicals production pathway. 

Materials and energy associated with the unit processes are collected as the inventory data which 

is set as primary materials and energy in SimaPro 7.3. Then the built-in Ecoinvent v.2.2 database 

in SimaPro 7.3 provides life cycle inventories for secondary materials and energy required in 

those primary unit processes. The required primary materials and energy inputs associated with 

the unit processes of the LCA are derived from this modified Aspen Plus model  in combination 

with a GREET model [39]. The functional unit for interpreting the LCA results is 1 kg of 

chemicals. The IPCC 2007 GWP 100a method is employed to calculate the GWP. The 

Cumulative Energy Demand (CED) method is used to estimate the fossil energy input for 

chemical production pathway. Other potential environmental impacts (smog, acidification, 

ecotoxicity etc.) are evaluated by the TRACI2 method.  

 

Inventory Analysis 

Biomass Collection and Biomass Transportation 

We assume biomass is produced through the collection of forest residue. The input data 

for the biomass collection step is detailed in Table 1 and based on data from Fan et al. [33]. In 

this study, forest residue is treated as a waste product. The inputs for biomass collection include 

the fuel consumption associated with the forwarding and the grinding of the biomass and the cost 

of the equipment used [33].  
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Table 1. Inventory data of biomass collection. 

Item Amount Unit 

Outputs 

Collected forest residue 1 kg 

Resources 

Biomass energy  18 MJ 

Materials and fuels 

Diesel fuel 7.38 g 

Building machine 18.4 p 

Note: “p” is one process unit in  imaPro; the process unit incorporates all input resources  

The wet forest residue, which contains 25 wt.% moisture, is transported by 40-ton trucks. 

The total weight of the transported wet forest residue is 2670 metric tons and the transportation 

distance is 150 miles one way, based on the GREET model developed by Argonne National 

Laboratory [39]. Detailed input data for the biomass transportation is summarized in Table 2. 

 

Table 2. Inventory data of biomass transportation. 

Item      Amount     Unit 

Outputs 

Delivered forest residue 2670 metric ton 

Input from material 

Truck  40t 710000       tkm 

Collected forest residue 2670 metric ton 

Note: tkm is one unit in SimaPro and indicates transporting 1 ton commodity by 1km. 

Biomass Preprocessing 

Steam is employed in the dryer to remove water from the wet forest residue. We assume a 

makeup of steam for biomass drying process, representing 1% of the recycling steam. For the 

inventory analysis of biomass preprocessing, electricity and steam usage are considered as the 

material inputs. Water vapor from the drying process is treated as an emission to the environment. 

Detailed inventory data is shown in Table 3. 
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Table 3.  Inventory data of biomass preprocessing. 

Item Amount Unit 

Outputs 

Pretreated forest residue 2140 metric ton 

Materials and fuels 

Delivered  forest residue 2670 metric ton 

Steam 255 metric ton 

Electricity for chopping  44600 

 

     kwh 

Electricity for grinding 109000 

 

     kwh 

Electricity for compressor 170000 

 

     kwh 

Emission to air 

Water 523 

 

metric ton 

 

Bio-oil Production 

The entire inventory analysis for bio-oil production is shown in Table 4. Non-

condensable gases generated during fast pyrolysis process are combusted to provide heat for the 

pyrolyzer. Char generated during pyrolysis is treated as coal substitute with an assumed heating 

value that is 50% of the displaced coal. Char is locally consumed such as combusted in the boiler 

for heat generation, so char transportation is not considered.  Electricity, air, and process water 

are considered to be inputs while bio-oil and char are considered to be outputs. Process water is 

mainly used in bio-oil recovery and air is employed to support combustion of non-condensable 

gases.  Emissions from bio-oil production include carbon oxides, hydrocarbons, nitrogen oxides, 

sulfide, and ash. Ash separated from the cyclones is used in sanitary landfills as waste treatment.  
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Table 4. Inventory data of bio-oil production. 

Item Amount Unit 

Outputs 

Forest residue bio-oil 1040 metric ton 

Char 219 metric ton 

Avoided Products 

Coal 110 metric ton 

Resources 

Air 2165 metric ton 

Process water 9590 metric ton 

Materials and fuels  

Pretreated forest residue 2140 metric ton 

Electricity for pyrolysis 450000 

 

kwh 

Emission to air 

N2 1660 

 

metric ton 

O2 21.7 

 

metric ton 

CO2 928 

 

metric ton 

Water 432 

 

metric ton 

Waste or emissions to treatment 

Ash 11 metric ton 

 

Bio-oil Upgrading  

The final products from the hydrotreating/FCC pathway are aromatics and olefins. The 

total yield of chemicals is 243 metric ton/day. The inventory inputs involved in this step are: air, 

catalysts, process water, electricity, natural gas, and bio-oil. Natural gas is used to produce the 

hydrogen for the two-stage hydrotreating processes. Process water includes the water used for 

gas cooling and separation processes. Waste water from bio-oil upgrading is assumed to be sent 

to a waste water treatment plant. Details of the inventory analysis are shown in Table 5. 

Chemical products include aromatics and olefins like benzene, toluene, and xylene. Table 6 

details the composition of the commodity chemical.  
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Table 5. Inventory data of bio-oil upgrading. 

Item Amount      Unit 

Outputs 

Chemicals 

 

243 

 

metric ton 

 
Resources 

Air 370 metric ton 

Process water 2840 

 

metric ton 

Materials and fuels 

Bio-oil 1040 metric ton 

Electricity for upgrading 103000 

 

    kwh 

Natural gas 60 metric ton 

Zeolite powder  0.79 metric ton 

ZnO catalyst 0.24 metric ton 

Heat  116000      MJ 

Emission to air 

N2 284 

 

metric ton 

O2 14.2 

 

metric ton 

CO 39 

 

metric ton 

CO2 395 

 

metric ton 

Water 388 

 

metric ton 

Sulfur 1.56 

 

metric ton 

SO2 0.263 

 

metric ton 

Waste or emissions to treatment 

Waste water 1010       m
 3
 

 

Table 6. Commodity chemicals composition. 

Chemicals Weight 

Ethylene 22.9% 

Propene 38.5% 

Butylene 10.2% 

Benzene 7.6% 

Toluene 14.1% 

Xylene 5.5% 

Ethylbenzene 0.7% 

Styrene 0.4% 

Indene  0.1% 

Naphthalene 0.1% 
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Results and Discussions 

Fossil Energy  

Figure 2 includes the breakdown of fossil energy input for individual unit processes for 

chemicals production. 

Fossil energy input is separated into two parts: required fossil energy and products credits 

(shown as negative fossil energy input). The bio-oil production step and bio-oil upgrading steps 

consume the largest portion of the required fossil energy, both representing 28% of the total 

fossil energy. Biomass transportation and biomass production consume relatively smaller 

portions, 11% and 7% of the total required fossil energy input, respectively. 

 

 

Figure 2. Fossil energy input for various unit processes  

(Note:  Products credits are treated as negative fossil energy input.) 

Conventional chemicals are petroleum-based products. In this study, chemicals are 

produced from renewable feedstocks and treated as substitutes for petroleum-based chemicals. 

Biochar generated in pyrolysis contributes as a credit, which reduces fossil energy input by 12.1 
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MJ per kg chemicals production. Accounting for all fossil energy inputs and credits, net fossil 

energy input is 49.1 MJ per kg chemicals production.  

GHG Emissions 

The contributions of various unit processes to GWP are shown in Figure 3. Contributions 

to GWP are separated into two parts: positive GWP and negative GWP. Positive GWP 

contributions come from biomass production, biomass transportation, biomass preprocessing, 

bio-oil production, and bio-oil upgrading. Negative GWP contributions come from carbon 

fixation by biomass and char credit. For biomass absorption, it is assumed that the atmosphere 

can take up 0.942 kg CO2 per kg of forest residue during the biomass growth [40]. Biochar is 

treated as products credit since it is used as coal substitute.  

 

 

Figure 3. Contributions of unit process to GWP reported per kg of chemicals production  

(Note: Biomass CO2 absorption and the products credits are treated as negative contributions to 

total GWP.) 

Total positive GWP is 9.1 kg CO2eq per kg chemicals production. Among all of the unit 

processes, bio-oil production step has the largest GHG emissions, contributing 57% of the total 

positive GWP. Bio-oil upgrading and biomass preprocessing steps represent 23% and 14% of 
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total positive GWP, respectively. Biomass transportation contributes 5% of the total positive 

GWP and biomass production makes the smallest contribution to GHG emissions, contributing 

just 0.6% of total GWP. Total CO2 absorption from growth of biomass is 8.3 kg CO2eq per kg of 

chemicals. Biochar makes little contribution to GWP reduction, saving just 0.07 kg CO2eq per kg 

chemicals. As a result, net GWP is 0.79 kg CO2eq per kg chemicals.  

 

Other Impact Categories 

Table 7 presents the potential environmental impacts as evaluated by the TRACI 2 

method and the relative contributions of individual unit processes to potential environmental 

impacts are presented in Figure 4. Biomass transportation has the largest impact on ozone 

depletion, contributing 83% of the total impact. Bio-oil production has the greatest impact on 

eutrophication, contributing 85% to the total impact. Bio-oil upgrading contributes almost the 

rest of 15% of the eutrophication. During the bio-oil production and bio-oil upgrading processes, 

nitrogen gases are emitted which results in the eutrophication impacts. Char has larger 

contributions to reductions of ecotoxicity and carcinogenics compared to other environmental 

impacts.  

 

Table 7. Potential environmental impacts. 

Impact category   Unit Data 

Ozone depletion kg CFC-11 

eq 1.05E-06 

Smog kg O3 eq 0.243 

Acidification mol H+ eq 1.38 

Eutrophication kg N eq 1.21 

Carcinogenics CTUh 1.17E-07 

Non-

carcinogenics 

CTUh 

5.16E-07 

Respiratory 

effects 

kg PM10 eq 

0.0037 

Ecotoxicity CTUe 2.38 
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Figure 4. Potential environmental impacts for various impact categories. 

 

Comparison to Other Chemical Production Pathways 

Table 8 describes several pathways selected for comparison. Generally, steam cracking is 

considered the key petrochemicals conversion pathway [41]. Naphtha steam cracking routes 

based on Ren and Patel [7] are selected for comparison. In these pathways, a variety of energy 

sources, including crude oil, natural gas, coal, and lignocellulosic biomass, are considered for the 

chemicals production. Table 9 compares the GHG emissions and fossil energy input in this study 

to the results from other production pathways. 

-40%

-20%

0%

20%

40%

60%

80%

100%

Char credit

Bio-oil upgrading

Bio-oil production

Biomass preprocessing

Biomass transportation

Biomass production



110 
 

 

 

Table 8. Descriptions for compared chemical production pathways. 

Compared pathways
a
 Descriptions 

Oil byproduct CC Fluidized catalytic cracking of byproducts derived from 

crude oil 

Oil Naphtha SC Steam cracking of naphtha derived from crude oil 

Waste Naphtha SC Steam cracking of naphtha derived  from plastic waste 

gasification 

Ethane SC Steam cracking of ethane derived from natural gas 

Methane FT Naphtha 

SC  

Steam cracking of Fischer-Tropsch naphtha derived from 

gas-to-liquids process of methane 

Ligno FT Naphtha SC  Steam cracking of Fischer-Tropsch naphtha derived from 

biomass gasification 

Coal-ligno FT Naphtha 

SC 

Steam cracking of Fischer-Tropsch naphtha derived from 

coal and biomass gasification 

Coal FT Naphtha SC  Steam cracking of Fischer-Tropsch naphtha derived from 

coal gasification 

Coal direct Naphtha SC Steam cracking of naphtha derived from direct liquefaction 

of coal 
a
 Note: All of the abbreviations of the pathways are adopted from the study of Ren and Patel [7]. 

  

  

Table 9. Comparison results of different chemical production pathways. 

Pathways 
GHG emissions 

( kg CO2eq/kg chemicals) 

Fossil energy input 

(MJ/kg chemicals) 

Current study 0.79 49.1 

Compared pathways
a
   

Oil byproduct CC 1 11 

Oil Naphtha SC 0.9 10.3 

Waste Naphtha SC 1.2 20 

Ethane SC 1 11.4 

Mthane FT Naphtha SC  1 28.7 

Ligno FT Naphtha SC
 
I -3.5 -6 

Ligno FT Naphtha SC II -7.1 -72 

Coal-ligno FT Naphtha SC -1 76.7 

Coal FT Naphtha SC I 5.1 46 

Coal FT Naphtha SC
 
II 7.8 84.7 

Coal Direct Naphtha SC 6.5 77.1 
a
 Note: The fossil energy input and GHG emissions data are calculated based on 

Tables 2-7 and Figures 3 and 4 in Ren and Patel [7]. 

 
 

 

As indicated in Table 9, among all of the pathways, coal-based pathways (Coal FT 

Naphtha SC I, Coal FT Naphtha SC
 
II, and Coal Direct Naphtha SC) have the greatest GHG 

emissions and fossil energy inputs. Coal based pathways are to produce chemicals via steam 
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cracking of coal-derived naphtha. Coal-based pathways can consume three to eight times more 

fossil energy and release five to eight times more GHG emissions than other petroleum-based 

(oil, natural gas, etc.) pathways. Lignocellulose biomass-derived chemicals have the negative 

GHG emissions (included the carbon fixation from biomass growth) and negative fossil energy 

input. Ligno FT Naphtha pathways are to produce chemicals via steam cracking of FT naphtha 

derived from biomass gasification. Ligno FT Naphtha II represents the maximum co-generation 

of electricity and the minimum output of FT liquids and it has the largest saving of GHG 

emissions and fossil energy input. Ligno FT Naphtha I, on the other hand, represents the 

minimum co-generation of electricity and the maximum output of FT liquids. This indicates that 

electricity production from biomass derived synthesis gas could save larger GHG emissions as 

well as fossil energy. Other petroleum-based pathways (oil, natural gas et. al) have comparable 

smaller GHG emissions and fossil energy than coal-based pathways but larger GHG emissions 

and fossil energy than lignocellulos biomass-based pathways. 

Compared to the studied pathways, the GHG emissions related to the current pathway is 

smaller than all the petroleum-based chemicals production pathways (coal, natural gas, oil etc.). 

This is because carbon fixation from biomass growth for current production pathway largely 

reduces the GHG emissions compared to petroleum-based pathways. Also, the fossil energy 

input for the current pathway is smaller than the coal-based pathways. But compared to 

chemicals production via steam cracking of biomass-derived naphtha pathways, fast pyrolysis 

process has larger GHG emissions and fossil energy input. This is because the pyrolytic lignin is 

treated as the waste so bio-oil is not fully utilized. 
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Sensitivity Analysis 

We select bio-oil yield, chemicals yield, electricity consumption, biomass transportation 

distances, and catalysts as the operating parameters for sensitivity analysis according to the 

previous techno-economic analysis [42] as well as their contributions in the inventory input. 

Each of these operating parameters is changed by a prescribed amount in relation to the baseline 

operating conditions (expressed as a percentage of the baseline case ranging from 75% to 125%) 

to see the effect on GHG emissions.  

The overall GWP ranges from -1.0 to 3.8 kg CO2eq, as indicated in Figure 5. Commodity 

chemicals are the main products, so the yield of commodity chemicals has the most significant 

impact on the GHG emissions based on the same amount of emissions. The increase of bio-oil 

yield could raise the final yields of chemicals so it is also a significant parameter for GHG 

emissions. A variation of bio-oil yield from 125% to 75% may result in a -0.6 to 3.1 kg CO2eq 

kg chemicals range of GWP. Electricity consumption for biomass pyrolysis and bio-oil 

preprocessing are the secondary important parameters for GHG emissions. This is because 

electricity consumption for biomass pyrolysis and preprocessing occupy the majority of 

inventory inputs. If electricity consumption for biomass pyrolysis or bio-oil preprocessing has a 

variation of ±25% on the baseline, GWP varies from 0.4 to 1.2 kg CO2eq per kg chemicals. 

Biomass-upgrading electricity consumption and transportation distance have comparable smaller 

impact on the GHG emissions. A variation of ± 25% in biomass-upgrading electricity 

consumption and transportation distance result in a 0.7 to 0.9 kg CO2eq per kg chemicals range 

of GWP. Quantity of catalysts used has very little impact on GWP. 

The results of sensitivity analysis show that chemical yield and bio-oil yield are the most 

sensitive GHG emissions factors which indicates the increase of plant efficiency for pyrolysis 
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process or bio-oil upgrading to chemicals process could largely save the GHG emissions. In 

addition, the reduction of electricity consumptions related to the production processes could also 

reduce the carbon footprints.  

 
 

Figure 5. Sensitivity of GWP to operating conditions for chemicals production from forest 

residue (changes in operating parameters expressed as a percentage of the baseline case). 

 

Conclusions 

The life cycle assessment of chemicals production via forest residue fast pyrolysis and 

hydrotreating/FCC upgrading is examined in this study. Renewable chemicals are evaluated as 

substitutes for fossil-based chemicals and char is treated as a substitute for coal. Among 

production processes, bio-oil production is the key driver of the fossil energy input and GHG 

emissions. Bio-oil production contributes the largest GHG footprint (57% of total positive GWP) 

and the largest fossil energy demand (28% of the total required fossil energy) among all unit 

processes. Total fossil energy input is 49.1 MJ per kg chemicals and GWP is 0.79 kg CO2eq per 

kg chemicals. In contrast to conventional petrochemical production pathways, fossil energy input 

and GWP are smaller for the current chemicals production pathway, which indicates that fossil 
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energy consumption and GHG emissions could be reduced if commodity chemicals is produced 

via forest residue fast pyrolysis with hydrotreating/FCC upgrading processes. Biomass 

transportation makes the largest contribution to and bio-oil production makes the largest 

contribution to eutrophication. Sensitivity analysis indicates that bio-oil yield and chemicals 

yields play the most important roles in determining GHG footprint.  
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CHAPTER VI  

INTEGRATED SUPPLY CHAIN DESIGN FOR COMMODITY CHEMICALS 

PRODUCTION VIA WOODY BIOMASS FAST PYROLYSIS AND UPGRADING 
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Yanan Zhang, Guiping Hu and Robert C. Brown 

Abstract 

This study investigates the optimal production planning and facility locations for 

commodity chemicals (BTX, etc.) production via woody biomass fast pyrolysis and 

hydroprocessing pathway. The locations and capacities of distributed preprocessing hubs 

and centralized biorefinery facilities are optimized by a mixed integer linear 

programming (MILP) model. In this integrated supply chain system, decisions on 

biomass chipping methods (roadside chipping, and facility chipping) are taken into 

account. The objective of this supply chain model is to maximize the profit for a 20-year 

project based on this chemicals production pathway. The capital cost, operating cost, 

revenues for the biorefinery facilities are based on the techno-economic analysis. In 

addition to the economic objective, the objective of minimizing life cycle GHG emissions 

is also incorporated into this model, which forms a multi-objective optimization problem. 

The proposed approach is illustrated through a case study in Minnesota, where 

Minneapolis-St. Paul is set as the chemicals distribution hub. 

 

Introduction 

The growing interest in biofuels production has generated much related research in 

economic analysis, environmental assessment, and supply chain system design [1-12].  Biomass 

logistics are complicated by the bulky, distributed nature of biomass and by the high volumes of 
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low energy density materials to be collected and transported to the conversion facilities [13]. The 

unique nature of biomass feedstock provides great impetus for the exploration of sustainable and 

robust supply chain systems. 

Numerous studies have been devoted to optimal design and operational planning of the 

bioethanol supply chain. You et al. [12] developed a multi-objective mixed integer linear 

programming (MILP) model which addresses the optimal design and planning of the cellulosic 

ethanol supply chain under economic, environmental, and social objectives. Dunnett et al. [14] 

proposed a system model to optimize the lignocellulosic bioethanol supply chain under 

assumptions of energy integration. Bai et al. [15] optimized biofuel refinery location and supply 

chain planning for bioethanol production, taking into account of traffic congestion issues. 

Giarola et al. [11] developed a stochastic modeling framework adopting a scenario-based 

approach to assess the effects of trading Greenhouse Gas (GHG) emissions allowances under 

market uncertainty for bioethanol production.  

Researchers have also been aggressively exploring the supply chain design for biomass-

derived transportation fuels (gasoline and diesel fuel). You et al. [16] presented the optimal 

design and planning of a biomass-to-liquids (BTL) supply chain under economic and 

en ironmental criteria  You’s design was based on a distributed preprocessing and centralized 

conversion network. Kim et al. [17] designed an optimal biomass supply chain network for 

transportation fuels production under uncertainty and then analyzed the robust design with 

Monte Carlo simulation. Elia et al. [18] developed a nationwide supply chain optimization 

framework for a BTL system using hardwood biomass for gasoline, diesel, and jet fuel 

production.  
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While much research is devoted to the use of biomass for fuels, there has been a 

concurrent growing interest in the use of biomass for the biobased products, such as renewable 

chemicals [19-23]. A survey on the alternative feedstocks for commodity chemicals 

manufacturing was conducted by Oak Ridge National Laboratory [24] and biomass was 

recognized as one of the most promising alternative feedstocks for commodity chemicals 

production. Various production pathways, such as gasification, fermentation, and pyrolysis, were 

analyzed. Brehmer et al. [19] evaluated the maximum fossil fuel replacement potential for a 

variety of feedstocks and reported a high potential for biomass to replace fossil fuel in the 

petrochemical industry. Christensen et al. [20] discussed the possibility of establishing a 

renewable chemicals industry and reported that from both economic and ecological perspectives, 

such an industry might be most advantageous to secure the optimal use of abundant, but limited, 

bioresources.  

Vispute et al. [25] proposed a novel integrated catalytic thermochemical pathway to 

convert woody biomass to commodity chemicals, such as benzene, toluene, and xylene aromatic 

hydrocarbons (BTX). In this pathway, the bio-oil produced from woody biomass fast pyrolysis 

undergoes two-stage hydrotreatment followed by fluid catalytic cracking (FCC). Due to the high 

selectivity of commodity chemicals products attainable using this production pathway, the 

pathway has garnered significant attention and has inspired further examination of its economic 

feasibility and environmental effects. A techno-economic study has been conducted to examine 

the fi e commodity chemicals production scenarios, one of which was Vispute’s two-stage 

hydrotreating followed by FCC  Vispute’s pathway is found to be the most profitable among the 

five scenarios [26]. Another techno-economic study concluded that this chemicals production 

pathway is economically feasible, in which the facility internal rate of return was predicted to be 



121 
 

 

 

as high as 13% for a 20-year project [5]. A life cycle assessment was conducted to examine the 

environmental performance and found that chemicals production via the integrated catalytic 

processing pathway could reduce GHG emissions significantly compared to the petroleum-based 

chemicals production [27].  

Although there have been many studies of supply chain design and optimization for 

biofuel production, there have been few papers addressing supply chain design and optimization 

for renewable chemicals production from woody biomass via the thermochemical pathway. In 

this paper, a supply chain network is designed and optimized for the biobased chemical 

production pathway, using MILP modeling to optimize the locations and capacities of distributed 

preprocessing hubs and centralized biorefinery facilities. This paper examines both economic 

and environmental criteria in a multi-objective framework that allows analysis of trade-offs 

between economic feasibility and environmental impact. A case study for the state of Minnesota 

is presented to illustrate the integrated supply chain network design model.  

 

Methodology 

Integrated Catalytic Processing Pathway 

Vispute et al. [25] has proposed an integrated catalytic processing pathway for 

commodity chemicals production via woody biomass (Figure 1). In this pathway, woody 

biomass is preprocessed (chopped, dried, and grinded) and then sent to a pyrolyzer to produce 

bio-oil. The bio-oil undergoes phase separations through a liquid-liquid extractor, resulting in 

separate water insoluble and aqueous phases. The water insoluble phase consists mainly of 

pyrolytic lignin, which is treated as a co-product. The aqueous phase is sent to a low temperature 

hydrotreating process (125
o
C, 100 bar). And then the hydrotreated bio-oil is sent to a high 
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temperature hydrotreating process for further hydrodeoxygenation (200
o
C, 100 bar) over 

catalysts. After the two-stage hydrotreating process, FCC is performed on the hydrotreated 

aqueous phase to produce commodity chemicals. In addition to the primary raw material the 

woody biomass, hydrogen is needed for the two-stage hydrotreating process. Hydrogen is 

produced through the steam reforming of natural gas. Natural gas usually contains sulfur, so the 

gas goes through a desulfurizer for purification before entering the steam methane reformers and 

water gas shift reactors. The produced hydrogen is then separated from the syngas and send to 

the hydrotreaters.  

 

Figure 1. Process diagram for mixed wood fast pyrolysis and bio-oil upgrading to commodity 

chemicals (Adapted from Zhang et al. [30]). 

 

Supply Chain Model Description 

In this paper, the optimal plant sizes, locations, biomass and product flows are considered 

as the decision variables for the integrated supply chain design. Table 1 (shown as Table A1 in 

the Appendix A) shows descriptions for decision variables and the parameters for the economic 

and environmental objectives. 
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Figure 2 illustrates the supply chain network schematics for chemicals production via 

woody biomass fast pyrolysis and upgrading. First, the woody biomass is harvested and collected 

from location i. Two types of woody biomass are considered: raw forest residue and the residue 

chipped with a road-side chipping method. Both woody biomass types need to be preprocessed 

for size and moisture reduction before conversion. For biomass preprocessing, two methods are 

considered. One method is distributed preprocessing, where multiple preprocessing centers are 

located close to biomass sources. The other method is integrated preprocessing, where the 

biomass is gathered into one integrated facility. The integrated facility has a preprocessing 

facility and the biorefinery facility.  All the preprocessing facilities are to chop, dry, and grind 

the biomass to reduce the moisture and sizes. Then the preprocessed biomass is sent to the 

biorefinery facilities.  Chemicals and co-products are produced at the integrated facility location. 

The co-products are char and lignin which are left at the local location and the chemicals are 

transported to the distribution center.  

 

Figure 2. Supply chain schematic for chemicals production via woody biomass fast pyrolysis. 
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Model Formulation 

Economic Objective 

The economic objective is to maximize the net present profit for a 20-year project 

producing commodity chemicals via woody biomass fast pyrolysis and upgrading:  

          ∑   (     
                                            

  
   

         )                                                                                                                        (1)                         

The        is a function of the annual revenue (     
        , annual variable 

operating cost (           ), annual fixed operating cost (           ), annual biomass 

collection cost (           ), annual biomass transportation cost (         ), the plant capital 

cost (            ) and the discount factor (  ).  

The discounted factor    is used to calculate the net present. Annual interest r is assumed 

to be 10% for the 20-year project (2011-2032). The discount factor is shown below: 

   
 

(                                                                                                                                         (2)                               

The annual revenue      
        is the sum of the revenue from chemicals product and 

the revenue from the co-products at individual plant location in year t as described in Equation 3. 

The annual revenue is not same for every year since the selling price of the chemical product m 

in year t (   
     ) is assumed to be changing every year. The prices of chemicals throughout the 

years are predicted based on EIA petroleum price prediction.  

     
        ∑ ∑    

   
     

   
    ∑ ∑    

     
      

     
                            (3)                          

The annual variable operating cost             is a sum of variable operating costs for 

the distributed preprocessing facilities, integrated preprocessing facilities, and integrated 

biorefinery facilities, which is shown in Equation 4. The variable operating costs include the 

costs for plant operation, such as electricity, process water, and catalysts.  
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The annual fixed operating cost             is defined by Equation 5.  The fixed 

operating cost includes the salaries, overhead, and maintenance costs for the distributed 

preprocessing facilities and integrated facilities.  
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 The annual biomass collection cost             is the sum of collection costs for raw 

biomass and roadside chipped biomass given in Equation 6. 
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The annual biomass transportation cost            includes the transportation costs of 

all of the materials (biomass, chemicals, and natural gas), as shown in Equation 7. 
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The plant capital cost, the sum of capital investment for all of the facilities, is assumed to 

be invested in the current year, so the discount factor is not applied (see Equation 8). 

            (∑ ∑    
 
     

      ∑ ∑    
 
   

 
     

      
   )                                                   (8)                            

Environmental Objective 

The environmental objective for GHG-emissions minimization is defined as follows:  
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In Equation 9,            is the CO2-equivalent GHG emissions associated with the 

biomass collection processes. Here   
   is the emission of a collection-unit amount of raw 

biomass from harvest site i, and   
   is the emission of a collection-unit amount of roadside 

chipped biomass. In Equation 10,        is the CO2-equivalent GHG emissions associated with 

the materials transportation processes. The term     is the emission of a transporting-unit 

amount of raw biomass,     is the emission of a transporting-unit amount of roadside chipped 

biomass, and       is the emission of a transporting-unit amount of preprocessed biomass. The 

term     is the emission of a transporting unit amount of natural gas, and     is the emission of 

a transporting unit amount of chemicals. In Equation 11,             is the emissions associated 

with the biomass conversion processes. Here       is the emission of raw biomass preprocessing 

process,       is the emission of roadside chipped biomass preprocessing process and       is 

the emission of a converting unit amount of preprocessed biomass at biorefinery facility location 

k.  
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Biomass Supply Constraints 

In this section, the mass balance of biomass flows and facility capacities constraints are 

included. The total collected biomass    should not exceed the total biomass allowed for 

collection in harvesting location i. In Equation 12,   is the sustainability factor, which illustrates 

the allowed collection percentage of the available biomass.  

                                                                                                                                          (12)                                      

The total collected biomass    can be categorized into two types: raw biomass and 

roadside chipped biomass. They both can be transported to either the distributed preprocessing 

facility location j or the integrated facility location k. In Equations 13-15,     and       are the 

amount of transported raw biomass and roadside chipped biomass from harvest location i to 

distributed preprocessing location j.      and     are the amount of raw biomass and roadside 

chipped biomass transported  from harvest location i to integrated facility location k.    is the 

loss factor for the biomass transportation process.    is the total received biomass (raw biomass 

and roadside chipped biomass) in distributed preprocessing facility location j,  and    is the total 

biomass (raw biomass and roadside chipped biomass) received in integrated preprocessing 

facility location k.  

∑ (       )
 
    ∑ (        

 
      (                                                                         (13)                                                   

∑ (       )
 
                                                                                                                       (14)                                                                

∑ (        
 
                                                                                                                    (15)          

Distributed Preprocessing Facility Constraints 

The distributed preprocessing facility constraints are shown in Equations 16-20.  
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   ∑     
      

 
                                   (16)       

For each candidate location j, there is at most one facility with capacity level l. 

∑    
 
                                                         (17)              

The total number of distributed preprocessing facilities at location j with capacity level l 

should not exceed the maximum number       . 

∑ ∑    
 
     

                                                                                                                    (18)         

For equations 8 and 9, the received biomass    is preprocessed with a yield   of    at 

distributed preprocessing facility location j and then    is transported to the integrated 

biorefinery location k.  

                                                                                                                                         (19)                                      

∑        
 
                                                                                                                             (20)                

Integrated Facility Constraints 

The total biomass (raw biomass and roadside chipped biomass) received in integrated 

preprocessing facility location k is presented as   .  As indicated in Equation 21, the received 

biomass is preprocessed to dry biomass with a yield   of    at location k. The total preprocessed 

biomass    is the sum of preprocessed biomass from integrated preprocessing facility    and that 

from distributed preprocessing facility ∑    
 
   , as described in Equation 22. In the integrated 

biorefinery facility location k, the preprocessed biomass    is converted to various chemicals, as 

shown in Equation 23.    is the conversion rate for specific chemical m, and    
     is the 

production quantity of chemical m at location k. In addition to the chemicals, the co-products 
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pyrolytic lignin and biochar are produced at integrated biorefinery facility. In Equation 24,    is 

the conversion rate for co-products and    
   is the production of co-product v at location k. 

                                                                                                                                       (21)                          

∑    
 
                                                                                                                           (22)                   

        
                                                                                                                             (23)                                     

        
                                                                                                                              (24)       

The total preprocessed biomass for the integrated biorefinery facility at location k should 

not exceed the capacity of the integrated biorefinery     
    if facility level l is selected 

(Equation 25). At most one facility can exist in one location as indicated in Equation 26. In 

Equation 27, the total number of facilities should not exceed the maximum facility 

number       due to budget constraints. 

   ∑       
   

 
 
                                                                                                                 (25)                                              

∑    
 
                                                                                                                                  (26)                           

∑ ∑    
 
   

 
                                     (27)                          

Natural Gas and Chemicals Constraints 

In Equation 28, the total natural gas demand at the biorefinery locations is the sum of 

natural gas flows from various natural gas suppliers. The supplied natural gas from location n to 

all biorefinery facilities should not exceed the available natural gas in supply location n as 

indicated in Equation 29. In Equation 30, natural gas demand is calculated as a factor   of the 

preprocessed total biomass    at biorefinery location k. The total chemicals production      

(Equation 31) is the sum of all types of chemical m produced from all of the integrated facility 
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locations. In Equation 32, the total chemicals production should not exceed the maximum 

chemicals demand.  

∑    
 
                                      (28)         

∑    
 
                                                                                                                       (29)                                       

                                     (30)             

∑ ∑    
     

   
 
                                  (31)                

                                       (32)                 

                                     {   }                                       (33)            

 

Result and Discussion 

Data Sources 

In this paper, forest residue is the feedstock and the state of Minnesota is employed for 

the case study. The amount of available forest residue is obtained from the National Renewable 

Energy Laboratory [28]. Each county in Minnesota is considered as a candidate harvesting site, a 

potential distributed preprocessing facility location, and potential integrated facility location. The 

Minneapolis-St. Paul metro area has the most convenient transportation resources; therefore, 

Minneapolis-St. Paul is selected to be the distribution center. The chemicals demand data are 

based on the commodity flow survey for Minnesota [29]. All of the chemicals are assumed to be 

transported to the distribution center in Minneapolis-St. Paul. The information about the natural 

gas suppliers and their gas availability is obtained from the U.S. Energy Information 

Administration [30].  
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Five capacity levels (L1, L2, L3, L4, and L5) are considered for distributed preprocessing 

and integrated facilities; L1, L2, L3, L4, and L5 correspond to 100, 200, 500, 1000, and 2000 

metric ton/day dry biomass processing capacities. The 2000 metric ton/day capacity plant is 

selected as the reference plant and the bio-oil conversion rate is assumed to be 52 wt.% of dry 

biomass. The capital costs for the distributed and integrated facilities are based on the techno-

economic analysis [5, 26]. A scale factor of n=0.6 is employed to estimate the capital costs. In 

Equation 34,      and    represent the new plant size and the reference plant size, and      and 

   are the capital costs for the new plant and the reference plant.  

        (
    

  
)
 

                                                                      (34)              

For biomass preprocessing, two methods are considered. One is to preprocess biomass in 

distributed preprocessing facilities and the other is to preprocess biomass in integrated 

preprocessing facilities. Table 2 details the capital costs and the fixed operating cost for the 

distributed preprocessing facility and for the integrated preprocessing and biorefinery facility at 

various levels [5]. The fixed operating cost includes salaries, overhead, maintenance, and 

insurance. The maintenance fees are assumed to be 6% of the facility capital cost. The overhead 

and insurance are assumed to be 2% and 1.5% of the total salaries, respectively.   

The variable costs for the distributed preprocessing facility and integrated preprocessing 

facility for same biomass are assumed to be the same. But for raw biomass and roadside chipped 

biomass preprocessing, variable operating costs are different. For roadside chipped biomass 

preprocessing process, the variable operating cost does not include chopping cost in Table 3. For 

the environmental impact assessment, all GHG emissions related to biomass collection, materials 

transportation, and production processes are based on the Aspen Plus, SimaPro and GREET 

models [5, 27]. The emission for the distributed preprocessing facility and integrated 
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preprocessing facility for same biomass are assumed to be the same. But raw biomass 

preprocessing and roadside chipped biomass preprocessing have different emissions. The 

variable operating costs for facilities and emissions data are derived from the reference plant data 

(Table 3) [5, 27].  

The 2012-2035 chemicals prices are based on the techno-economic analysis [5]. The 

correlations between each chemical species and petroleum price are used to calculate the prices 

for the next 20 years. The chemical yield and market prices for the next 20 years are shown in 

Table 4. The co-products yields include char, pyrolytic lignin, and fuel gas. The prices of the co-

products are $18.21, $22.05, and $200 per metric ton for char, pyrolytic, and fuel gas 

respectively.  

 

Table 2. Total capital costs and fixed operating costs for various levels of facilities. 

Level 
Capacity 

(dry metric ton/day) 

Total Capital Cost 

($million) 

  Distributed Preprocessing Facility Integrated Facility 

L1 100 6.6 37.3  

L2 200 10  56.5  

L3 500 17.3  97.9  

L4 1000 26.2   148.3  

L5 2000 39.7   224.9   

Level 
Capacity 

(dry metric ton/day) 

Fixed Operating Cost 

($million) 

  Distributed Preprocessing Facility Integrated Facility 

L1     100 2  3.2  

L2     200 2.2  3.9  

L3     500 2.5  5.3  

L4     1000 2.8   7.1  

L5     2000 3.3   9.8  
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Table 3. Variable unit operating cost and emissions. 

Preprocessing Facility  $/metric ton 

Electricity for chopping  0.83 

Electricity for grinding 2.025 

Electricity for compressor 6.425 

Total 9.28 

  Integrated Biorefinery Facility $/metric ton 

Solid disposal 0.1 

Natural gas 5.58 

Process water 0.18 

Electricity 15.96 

Catalyst 7.17 

Total 28.99 

  

Emissions kg CO2eq/(metric ton mile) 

Raw biomass collection 

(kg CO2eq/metric ton) 

4.76 

Road chipped biomass collection 

(kg CO2eq/metric ton) 

14.2 

Raw biomass transportation 0.55 

Road chipped biomass transportation 0.26 

Preprocessed biomass transportation 0.13 

Natural gas transportation 0.23 

Chemicals transportation 0.26 

Raw biomass preprocessing  

(kg CO2eq/metric ton) 

149.77 

Roadside chipped biomass preprocessing  

(kg CO2eq/metric ton) 

133.4 

Biorefinery facility production 

(kg CO2eq/metric ton) 

215.35 

 

 

The collection costs for raw biomass and roadside chipped biomass are based on 

Leinonen [31]. Forest haulage cost is $9.8/ton for raw forest residue. The stumpage price for the 

forest residue is assumed to be $5/metric ton. So the collection cost for raw biomass is $15.8 

/metric ton. For roadside chipped forest residue, there is a $9.8/ton haulage cost, $9.8/ton 

chipping cost, and stumpage cost of $5/metric ton. Therefore, the collection cost for roadside 

chipped forest residue is $26.6/metric ton. 
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Table 4. Chemical yields and calculated prices for the next 20 years. 

 Yield Chemicals Price ( $/metric ton) 

% of preprocessed biomass y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 

Benzene 0.859 1280 1322 1355 1330 1350 1361 1370 1378 1387 1398 

Toluene 1.587 1068 1102 1128 1109 1124 1133 1140 1147 1154 1162 

Xylenes 0.616 1105 1139 1164 1145 1161 1169 1176 1183 1189 1198 

Ethylene 2.582 1297 1336 1367 1344 1363 1373 1381 1389 1397 1407 

Propylene 4.342 1514 1570 1613 1581 1607 1621 1633 1644 1656 1670 

Butylene 1.146 750 750 750 750 750 750 750 750 750 750 

Ethylbenzene 0.075 1270 1270 1270 1270 1270 1270 1270 1270 1270 1270 

Styrene 0.046 850 850 850 850 850 850 850 850 850 850 

Indene 0.016 850 850 850 850 850 850 850 850 850 850 

Naphthalene 0.016 850 850 850 850 850 850 850 850 850 850 

 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 

Benzene 0.859 1409 1420 1431 1442 1453 1463 1473 1484 1498 1509 

Toluene 1.587 1172 1181 1189 1198 1207 1215 1223 1232 1242 1252 

Xylenes 0.616 1207 1215 1224 1232 1241 1248 1256 1265 1275 1284 

Ethylene 2.582 1418 1429 1439 1450 1460 1469 1479 1489 1502 1513 

Propylene 4.342 1686 1701 1716 1730 1745 1758 1771 1787 1805 1821 

Butylene 1.146 750 750 750 750 750 750 750 750 750 750 

Ethylbenzene 0.075 1270 1270 1270 1270 1270 1270 1270 1270 1270 1270 

Styrene 0.046 850 850 850 850 850 850 850 850 850 850 

Indene 0.016 850 850 850 850 850 850 850 850 850 850 

Naphthalene 0.016 850 850 850 850 850 850 850 850 850 850 

*y1-y20 indicates the year 1 to year 20 (2010-2030) 

*Butylene, ethylbenzene, styrene, indene and naphthalene are assumed to have fixed prices. 

 

The costs of the harvesting methods of forest residues also have been reported by 

Leinonen [31]. The four harvest methods include bundle, terrain chip, road chip, and plant chip. 

The road transportation costs for raw forest residue and roadside chipped forest residue are 

$12.8/ton and $18.3/ton for 80 km. As calculated, the variable transportation costs for raw forest 

residue and roadside chipped forest residue are assumed to be $0.41/metric-ton-mile and 

$0.28/metric-ton-mile. The preprocessed forest residue is transported by the trucks with a fixed 

transportation cost of $3.32/metric ton for wood chips loading and unloading and a variable 

transportation cost of $0.124/metric-ton-mile [32]. The transportation cost of commodity 

chemicals is assumed to be same as the national average truck shipping cost of $0.286/metric-
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ton-mile [33].  The transportation cost of natural gas via pipeline is assumed to be same as the 

national average oil pipeline cost of $0.0297/metric-ton-mile [33]. The distances between 

counties are based on the great circle distances calculated based on the latitudes and longitudes. 

Circuitry factors are incorporated to estimate the actual transportation distances. The circuitry 

factors are assumed to be 1.27 [34] and 1.1 for truck and pipeline, respectively [35].  

This model employs MATLAB to collect the data and uses geographic information 

system (GIS) software to map the biomass availability and locations. The mathematical model is 

coded in GUSEK and solved with Gurobi.  

Results and Analysis for Economic Objective Model  

The economic objective model is developed to determine the economic feasibility and 

optimal capacities and locations of the distributed preprocessing facilities and integrated 

facilities in Minnesota by maximizing the net present profit for a 20-year project. Figure 3a 

shows the forest residue availability. The northern Minnesota has the most abundant forest 

residue sources, especially in Lake, Itasca, St. Louis, Koochiching, Cass, Aitkin, Hubbard, 

Clearwater, and Beltrami Counties. The forest residue in those nine counties represents 70% of 

the total forest residue in Minnesota. Among these counties, St. Louis County has the largest 

amount of forest residue, representing approximately 19% of the total forest residue in 

Minnesota. The optimal locations for the distributed preprocessing, integrated facilities, and 

natural gas suppliers locations are illustrated in Figure 3b. The results predict that three 

integrated facilities (include the preprocess facility and biorefinery facility) and five distributed 

preprocessing facilities would be built in the state of Minnesota.  

http://en.wikipedia.org/wiki/Geographic_information_system
http://en.wikipedia.org/wiki/Geographic_information_system
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(a) 

 

(b) 

Figure 3. Forest residue availability and optimal facility locations for Minnesota State. 
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In St. Louis County and Cass County, two of the integrated facilities with the highest 

capacity level (L5, 2000 metric ton/day) are molded to be built. Although Dakota County 

contains only 6% of the forest residue in Minnesota, it is located very near Minneapolis-St Paul 

and thus reduce significant amount of transportation costs. So an integrated facility is modeled to 

be built in Dakota with capacity L4 (1000 metric ton/day). The five distributed preprocessing 

facilities are modeled to be built in Aitkin (L3), Beltrami (L4), Itasca (L3), Koochiching (L3), 

and Lake (L3) Counties. These facilities are modeled to be built in the counties rich in forest 

residue for convenient collection of biomass. The biomass mass flows for the distributed 

preprocessing facilities and their locations are shown in Table 5.  

 

Table 5. Mass flows for the distributed preprocessing facilities. 

Biomass Location1 Location2 
Mass flow 

(metric ton/year) 

h Aitkin Aitkin 113965.8 

h Carlton Aitkin 51866.1 

h Crow Wing Aitkin 50287.87 

h Morrison Aitkin 11498.38 

h Pine Aitkin 46521.15 

h Beltrami Beltrami 171182.7 

h Clearwater Beltrami 123937.1 

y Lake of the Woods Beltrami 47419.13 

h Mahnomen Beltrami 8135.4 

y Marshall Beltrami 19046.63 

h Pennington Beltrami 1570.725 

y Polk Beltrami 39340.28 

h Red Lake Beltrami 810.225 

y Roseau Beltrami 30625.72 

h Itasca Itasca 248718.6 

h Koochiching Itasca 8882.725 

h Koochiching Koochiching 274139.3 

h Lake Lake 274139.3 

Note: h represents the raw biomass transported from harvest site to distributed preprocessing 

location; y represents the roadside chipped biomass transported from harvest site to distributed 

preprocessing location. 
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The main biomass mass flows to the three integrated facilities (integrated preprocessing 

and biorefinery) are shown in Table 6. Most of the biomass arriving at the St. Louis County or 

Cass County integrated preprocessing facilities is raw biomass or preprocessed biomass from 

distributed preprocessing facilities. The third integrated facility, located in Dakota County, 

receives raw biomass and road chipped biomass from near biomass harvest sites and 

preprocessing biomass from Aitkin County. The raw biomass is preprocessed and converted to 

commodity chemicals at this integrated facility. Each integrated facility has a natural gas supplier 

nearby.  

 

Table 6. Main mass flows for the integrated facilities. 

Biomass Location1 Location2 
Mass flow 

(metric ton/year) 

x Becker Cass 16231.6 

q Cass Cass 114896 

q Crow Wing Cass 10833.9 

q Hubbard Cass 108658.9 

q Wadena Cass 23519 

z Aitkin Cass 80671.5 

z Beltrami Cass 285133.8 

z Cass Cass 176819.8 

z Itasca Cass 164724.8 

q Anoka Dakota 2674.4 

x Blue Earth Dakota 3860 

q Chisago Dakota 2499.9 

q Dakota Dakota 164281.6 

x Fillmore Dakota 29177.9 

q Goodhue Dakota 72581.9 

q Hennepin Dakota 2771 

x Houston Dakota 22204.7 

x Kanabec Dakota 11933 

x Mille Lacs Dakota 11931 

x Morrison Dakota 4305.4 

q Olmsted Dakota 8146.1 

x Renville Dakota 12757.9 

x Sherburne Dakota 3118.05 

q Wabasha Dakota 17722.6 

x Winona Dakota 12728.6 
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Table 6 continued   

z Aitkin Dakota 96148.3 

z Dakota Dakota 257526.7 

q Lake St. Louis 6049.4 

q St. Louis St. Louis 540124.7 

z Koochiching St. Louis 176819.8 

z Lake St. Louis 176819.8 

z St. Louis St. Louis 352282.2 

Note: q means the transported raw biomass from harvest site to integrated preprocessing 

location; x means the road side chipped biomass from harvest site to integrated preprocessing 

location; z means the preprocessed biomass from distributed preprocessed location to the 

integrated biorefinery location. 

 

A breakdown of the total cost is shown in Figure 4. The facility capital cost is the largest 

expenditure, representing 33% of the total cost. The production cost accounts for 30% of the 

total cost, which includes the fixed operating cost (19.4%) and the variable operating cost 

(10.3%). The remainder of the cost comes from the biomass collection and transportation cost, 

which are 18.9% and 18%, respectively. The transportation cost includes the costs of 

transporting the biomass, commodity chemicals, and the natural gas. The biomass transportation 

is the largest among them, representing 13.9% of the total cost.  

 

 

Figure 4. Breakdown of total cost for 20-year project. 
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Factors Influencing Project Profitability 

Figure 5 describe the effect of variable factors on the project profitability. The 

commodity chemicals demand is directly related to project revenues.  Figure 5(a) shows the 

effect of chemicals demand on project profitability. Here the relative chemicals demand in x-axis 

represents ratio of chemical demand to baseline demand. The profitability increases directly with 

increasing chemicals demand from 25% to 75% of the current production. Profitability increases 

to $494 million when chemicals demand reaches 75% of the baseline. After that, profitability 

stays constant even as the chemicals demand increases. This is because the forest residue is not 

sufficient to achieve the largest profitability possible when the chemicals demand is 75% of the 

baseline. So even when the chemicals demand increases, the biomass supply is not sufficient to 

meet the demand.  

Based on the analysis of effect of chemicals demand variation on total profitability, it is 

illustrated that the biomass availability plays a significant role in the total profitability. Seasonal 

and other factors (competition of biomass etc.) cause variation in biomass availability and thus 

lead to different optimal solutions. Figure 5(b) illustrates the effect of variation of biomass 

availability on the project profitability. Here the relative biomass availability in the x-axis means 

ratio of biomass availability to baseline availability. The project profitability increases as the 

biomass availability increases. As discussed, the project profitability is limited by insufficient 

biomass. When there is an increase in biomass availability, the project profitability will increase 

significantly.  

The competition for this feedstock will lead to increasing forest residue price. Biomass 

collection cost is an important parameter for the project profitability, representing 18.9% of the 

total capital cost. The effect of variation in biomass collection cost on project profitability is 
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analyzed in Figure 5(c). Here the relative biomass collection cost in x-axis is ratio of biomass of 

collection cost with respect to the baseline biomass collection cost. It is illustrated that when the 

biomass collection cost is reduced to 25% of the baseline, the maximum profitability for the 

project increases to $812 million. The profitability decreases to just $165 million when the 

biomass collection cost is twice the baseline cost. 

  

  

Figure 5. Effects of chemicals demand, biomass availability, biomass collection cost and facility 

capital cost on project profitability. 

 

Facility capital cost is the largest contributor to project profitability. As indicated in 

Figure 5(d), if the facility cost is double the baseline, there is project profitability will drop to 

zero. Here the relative facility capital cost in x-axis is ratio of facility capital cost with respect to 

the baseline. 
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Results and Analysis for Economic-environmental Multi-objective Model 

The multi-objective model is formulated to analyze the trade-off between minimizing 

G G emissions and while maximizing project profits  The ε-constraint method is used to solve 

this multi-objective problem. The Pareto curve generated by all of the optimal solutions is shown 

in Figure 6. The GHG emissions reduce from 843 million kg CO2eq per year to zero while the 

total 20-year profitability decreases from 494 million dollars to zero.  

 

Figure 6. Pareto curve for the economic-environmental multi-objective optimization for supply 

chain of commodity chemicals production via woody biomass fast pyrolysis. 
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capacity L3 are modeled to be built in Koochiching and Lake. One integrated facility is modeled 

to be built with capacity of L5 level (2000 metric ton/day) in St. Louis. The emissions for Point 

B are 331 million kg CO2eq /year and the profitability is $300 million. From point A to point B, 
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Louis County.  For points C, two integrated facilities are modeled to be built which are located in 

St. Louis (L5, 2000 metric ton/day) and Beltrami (L4, 1000 metric ton/day) and the distributed 

preprocessing facilities are built in Itasca, Lake and Koochiching. Point D is a good point where 

two integrated facilities and five distributed preprocessing facilities are modeled to be built. The 

two integrated facilities are located in St. Louis (L5, 2000 metric ton/day) and Case (L5, 2000 

metric ton/day). The five distributed preprocessing facilities are located in Itasca, Lake, 

Koochiching, Aitkin, and Beltrami. 

The Pareto curve illustrates the trade-offs between economics and environmental effects. 

When the production capacity is comparatively small, the profitability grows fast with a small 

increase of GHG emissions. After a certain production capacity (point B), however, the 

profitability grows much slowly. From point A to point D, the optimal integrated facility 

locations always include St. Louis County, which indicates that St. Louis County is the most 

favorable location to build the integrated chemicals plant.   

 

Conclusions 

This study investigates the economic feasibility and the optimal production planning and 

facility locations for commodity chemicals production via woody biomass fast pyrolysis. The 

economic objective model results show that the distributed facilities biomass chipping is 

preferable to the roadside chipping method for forest residue. The harvest sites rich in biomass 

resources are the preferable locations for building biorefinery facilities. Influences of parameters 

on economic objective model show that the biomass availability and facility capital costs are the 

most important factors for the project profitability. The economic-environmental multi-objective 

model results illustrate the trade-off between economic and environmental considerations.  
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CHAPTER VII 

CONCLUSIONS 

           Work in this dissertation has investigated the development of integrated assessment 

platform for biofuels production. This integrated assessment platform using separate modules to 

evaluate process engineering, economic feasibility, logistics of supply, and environmental impact 

within a general framework. The separated modules include: process simulation (module A), 

economics analysis (module B), life cycle assessment (module C), and supply chain & logistics 

optimization (module D). In this dissertation, the specific instance of production of drop-in 

biofuels using fast pyrolysis and upgrading is employed as the case study to examine this 

methodology. Two different bio-oil upgrading pathways are examined using this integrated 

assessment platform. One is the FCC of hydrotreated water-soluble bio-oil to produce 

commodity chemicals and the other is hydrotreating/hydrocracking the bio-oil to produce 

transportation fuels. The preliminary results prove that this developed integrated assessment 

methodology is a powerful tool to evaluate the biofuels production via fast pyrolysis pathway. 

Through this methodology, the fast pyrolysis technology could be fully examined. Chapter 3 

focuses on Techno-economic analysis of fast pyrolysis technology results show that chemicals 

and fuels production from fast pyrolysis Fast pyrolysis is a promising technology to convert 

biomass to valuable chemicals and fuels.  

            This integrated platform has a wide application. A variety of feedstock can be examined 

for biofuels production including corn stover, forest residue, woody biomass, switch grass, algae, 

and wastes. In addition to fast pyrolysis system, it can be also extended to other biomass 

conversion pathways such as biomass gasification, biomass fermentation, Fischer-Tropsch (FT) 

synthesis, bio-oil reforming. A variety of products can be evaluated by this integrated assessment 
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platform including hydrogen, biodiesel, gasoline, ethanol, biochar, and bio-based chemicals. Via 

the integrated assessment extension, the overall sustainability of bioenergy systems could be 

evaluated for plenty of research projects and commercial applications. In addition to the 

bioenergy system, the other alternative energy sources (e.g. nuclear, natural gas, geothermal, 

hydrogen) can also be evaluated though this integrated assessment platform.  

 

Future Work 

The process simulation (module A) is essential for other modules (module B, C, and D) 

since it supplies all the material and energy data. Although the heating integrations for the 

chemical process models have been done, the heating exchange networks have not been 

optimized. In the future, the heat exchange network could be optimized before the economic 

analysis. The life cycle assessment (module C) examined the chemicals and transportation fuels 

production environmental impacts. For chemicals production via forest residue fast pyrolysis 

pathway, it assumes many generic inputs related to electricity production and feedstock source 

without specific location considerations. However the forest residue availability and electricity 

generation are varied on different locations. So for future research work, the location-specific 

energy carriers associated with those feedstocks should be included. The case study for logistic 

optimization (module D) is about the chemicals production so that there is no related policy 

incorporated into the supply chain design and optimization. For other biofuels research such as 

bioethanol production, the policy constraints could be incorporated into to the supply chain 

design and optimization. In addition, the uncertainties of the biofuels supply chain should be 

explored using robust optimization method.   

  



149 
 

 

 

APPENDIX A 

DESCRIPTIONS OF SUBSCRIPTS, DECISION VARIABLES AND PARAMETERS IN 

CHAPTER 5. 

 

Table A1. Description of subscripts, decision variables and parameters. 

Subscripts   

  1,2, …,   Biomass candidate harvest locations 

  1,2, …,   Candidate distributed preprocessing facility locations 

  1,2, …,   Candidate integrated facility locations 

  1,2, …,   Natural gas candidate supplier locations 

  1,2, …,   Allowed facility capacity levels 

  1,2, …,    Project years 

  1,2, …,   Co-products species 

  1,2, …,   Chemicals species 

Decision 

Variables 

  

    binary Equal to one if a distributed preprocessing facility of 

capacity level   exists in candidate facility location j    

    binary Equal to one if an integrated facility of capacity level 

  exists in candidate facility location k    

    metric ton/year Amount of roadside chipped biomass transported from 

harvest location i to integrated preprocessing facility 

location k   

    metric ton/year Amount of roadside chipped biomass transported from 

harvest location i  to distributed preprocessing facility 

location j 

    metric ton/year Amount of raw biomass transported from harvest location 

i  to integrated preprocessing facility location k 

    metric ton/year Amount of raw biomass transported from harvest location 

i to distributed preprocessing facility location j 

    metric ton/year Amount of preprocessed biomass transported from 

distributed preprocessing facility location j to integrated 

biorefinery facility location k 

    metric ton/year Amount of natural gas transported from natural gas 

supplier location g to integrated biorefinery facility 

location k 

   
     metric ton/year Amount of chemical m transported from integrated 

biorefinery facility location k to fixed distribution center 

   
   metric ton/year Amount of co-product v  in integrated biorefinery facility 

location k 

   metric ton/year Total amount of transported biomass from harvest 

location i to other locations 
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   metric ton/year Total amount of transported biomass from harvest 

locations to the preprocessing facility location j  

   metric ton/year Total amount of preprocessed biomass from the 

distributed preprocessing facility location j 

   metric ton/year Total amount of raw biomass transported to integrated 

preprocessing facility location k  

   metric ton/year Total amount of preprocessed biomass from the integrated 

preprocessing facility location k 

   metric ton/year Total amount of preprocessed biomass for integrated 

biorefinery facility location k 

Parameter   

   metric ton/year Biomass availability in harvest location i 

   metric ton/year Total collected biomass in harvest location i 

    
    metric ton/year Capacity level l for the distributed preprocessing facility 

    
    metric ton/year Capacity level l for the integrated facility 

    metric ton/year Natural gas availability in supply location n  

     metric ton/year The maximum products demand 

  
   $/metric ton Unit collection cost for raw biomass in location i 

  
   $/metric ton 

Unit collection cost for roadside chipped biomass in 

location i 

    $/(metric ton mile) Unit transportation cost for raw biomass 

    $/(metric ton mile) Unit transportation cost for roadside chipped biomass 

      $/(metric ton mile) Unit transportation cost for preprocessed biomass  

    $/(metric ton mile) Unit transportation cost for natural gas 

    $/(metric ton mile) Unit transportation cost for chemicals 

     $/metric ton Fixed transportation cost for unit biomass 

    mile 
Distance from harvest location i to distributed 

preprocessing location j  

    mile 
Distance from harvest location i to the integrated facility 

location k 

    mile 
Distance from distributed preprocessed location j to the 

integrated facility location k 

    mile 
Distance from natural gas supplier location n to the 

integrated facility location k 

  
   mile 

Distance from integrated facility location k to the 

distribution center location 

  
   $/year 

Fixed operating cost for distributed preprocessing facility 

at capacity level l  

  
   $/year 

Fixed operating cost for the integrated facility at capacity 

level l 

  
     

 $ 
Capital cost for distributed preprocessing facility at 

capacity level l  

  
     

 $ Capital cost for integrated facility at capacity level l 

      $/metric ton Variable operating cost for raw biomass preprocessing  

       $/metric ton 
Variable operating cost for roadside chipped biomass 

preprocessing  



151 
 

 

 

       $/metric ton Variable operating cost for biorefinery facility  

   
   $/metric ton Price of co-product v in year t 

   
     $/metric ton Price of chemical m  year t 

  
   kg CO2eq/metric ton Emissions of unit raw biomass collection  

  
   kg CO2eq/metric ton Emissions of unit roadside chipped biomass collection 

    kg CO2eq/(metric ton mile) Emissions of unit raw biomass transportation  

    kg CO2eq/(metric ton mile) Emissions of unit roadside chipped biomass transportation 

      kg CO2eq/(metric ton mile) Emissions of unit preprocessed biomass transportation 

    kg CO2eq/(metric ton mile) Emissions of unit natural gas transportation 

    kg CO2eq/(metric ton mile) Emissions of unit chemicals transportation 

     kg CO2eq/metric ton 
Emissions of converting unit raw biomass in 

preprocessing facility  

      kg CO2eq/metric ton 
Emissions of converting unit roadside chipped biomass in 

preprocessing facility  

      kg CO2eq/metric ton 
Emissions of converting unit biomass in integrated 

biorefinery facility  

    Discounted factor of year t 

   Interest rate  

   Biomass collection factor 

   Biomass loss factor 

   
Preprocessed biomass conversion rate in preprocessing 

facility 

    Conversion rate of chemical m  

    Conversion rate of co-products v 

        
Maximum number of the distributed preprocessing 

facilities  

        Maximum number of the integrated facilities 

   Natural gas demand rate based on preprocessed biomass 
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APPENDIX B 

NOMENCLATURE 

 

CSET               Center for Suitable Energy Technologies  

GHG                Greenhouse Gas 

EPA                 Environmental Protection Agency  

RFS                 Renewable Fuel Standard 

FCC                Fluidized catalytic cracking  

BTL                Biomass-to-Liquid  

FT                   Fischer–Tropsch  

ARS                Agricultural Research Service  

IIFB                Internally Interconnected Fluidized Bed 

R&D               Research and Development  

IRR                 Internal Rate of Return  

NREL             National Renewable Energy Laboratory  

FBFP              Fluidized Bed Fast Pyrolysis  

LCA                Life cycle assessment  

WTW              Well-to-Wheel  

CVaR              Value at Risk  

PFD                 Process Flow Diagram  

DCFROR         Discounted Cash Flow Rate of Return  

MSP                 Minimum Selling Price 

GREET            Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation 

FCI                   Fixed Capital Investment  

RIN                  Renewable Identification Numbers  
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TEA                 Techno-economic Analyses  

MTPD              metric tons per day  

L-L                   Liquid-Liquid  

SMR                Steam Methane Reformer  

WGS                Water Gas Shift  

PSA                  Pressure Swing Adsorption  

PNNL               Pacific Northwest National Laboratory  

EIA                   Energy Information Administration 

WTI                  West Texas Intermediate  

NPV   Net Present Value 

ILUC               Indirect Land Use Change  

GWP                Global Warming Potential  

CED                 Cumulative Energy Demand  

LHV      Low Heating Value  

GHSV               Gas Hourly Space Velocities  

MPG                 Miles per Gallon 

PTA                  Purified Terephthalic Acid  

PA                     Phthalic Anhydride  

CAGR               Compounded Annual Growth Rate  

PLA                   Poly Lactic Acid  

PHA                   Poly Hydroxy Alkanoates  

MILP                 Mixed Integer Linear Programming  
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