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ABSTRACT 

 

In order to keep abreast with the rapid development of portable electronic 

equipment, improving the performance of polymer electrolytes has therefore become our 

goal of research. This work improved performance of Li-ion polymer batteries through 

advanced gel polymer electrolytes (GPEs). Comparing with liquid type Electrolyte, Gel 

type Polymer Electrolyte (GPE) had the advantage of a wide variety of shape, size and 

dimensions so that GPE was selected as our target. The GPE is a membrane synthetized 

by trapping ethylene carbonate, and propylene carbonate in polyvinylidene fluoride and 

1-Methyl-2-pyrrolidone solutions.  

Advanced GPEs were synthesized by incorporating an organic electrolyte 

solution (LiPF6-EC-PC) with ionic liquid (EMI-Tf) into polyvinylidene fluride-base 

membranes. Among a series of test including ionic conductivity, film resistance, cell 

voltage, cyclic voltammetry, and charge/discharge efficiency, 50 volume percent of ionic 

liquid (EMI-Tf) in an organic electrolyte solution showed the best performance.  

We also introduced the nanoparticle-polymer techniques that gold nanoparticles 

were adding to the GPE membranes as the fillers in order to higher capacity, stronger 

mechanical strength, and lower internal resistances. 

 

Keywords: GPE, Ionic liquids, Lithium batteries, PVdF, AuNPs 
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CHAPTER 1 

BACKGROUND AND LITERATURE REVIEW 

 

1.1 Introduction and Motivation 

According to the first law of thermodynamics, in any isolated system, energy is 

conserved. That is, energy is neither created nor destroyed, but converted from one form 

to another. Energy has always been an interesting and critical aspect of human life. 

Human being has learned to store and convert energy as one of the essential skills of 

survival. Building dams to store the energy of flowing water, and, hydroelectric turbines 

to convert mechanical energy of the flowing water to electrical energy are good 

examples of energy storage and 

conversion by humans. 

Electricity can be easily 

transferred from power plants to 

consumers via power grid; 

however, more recently need for 

mobile sources of electrical 

energy have been increased due 

to recent changes in our life styles.  

Reliable energy storage is a 

critical need for a wide variety of applications such as transportation, notebook 

computers, portable electronics, medical devices, satellites, spacecraft and elsewhere. In 

Figure 1.1 Average price of crude oil from 1945 
– 2013 (up to September 2013) 
Figure is generated based on data from Illinois Oil 
& Gas Association 
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most applications, high energy density, high charge/discharge efficiency, cycle 

durability, time durability, high nominal cell voltage and environmental safety are of 

significant importance and special interest. Secondary cell batteries have attracted 

significant attention in the last two decades. There are two main motives behind the 

increasing attention to secondary cell batteries: 1) portable electronic; and 2) clean 

energy. As portable electronics are becoming more and more common in our society, 

and many aspects of our lives are now depended on the performance of our portable 

electronics, demand for a safe, reliable and efficient mean to store electrical energy for 

portable devices has increased. Also, recent advances in processing power, screen size 

and urge for thinner and lighter devices, have increased the demand for lighter batteries 

with higher energy density. In addition to portable electronics, secondary cell batteries 

are widely used in hybrid and electric vehicles. Due to environmental concerns and ever-

increasing price of fossil-fuels interest on hybrid, and more recently all-electric, vehicles 

has significantly increased in the U.S. and around the world. According to the U.S. 

Department of Energy, in 2012 more than 36% of all hybrid and electric vehicles were 

registered in the U.S. alone. Many automobile companies like Toyota, Hyundai, Honda, 

Ford and Chevrolet have invested significant resources on development of hybrid and 

electric vehicles. The price of oil has increased significantly (about 3 folds) in the past 

two decades (see Figure 1.1), which is directly proportional to the price of fuel for 

vehicles, airplanes, and fossil-fuel power plants. The increase in the price of fossil-fuels 

increases the need and urge for a clean and inexpensive alternative sources of energy, 

such as wind and solar, for transportation, residential and industry sectors. However, 
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wind and solar energy sources are not continues sources and along with development of 

more efficient wind turbines and solar cells, need for research on the storage 

mechanisms is paramount. According to a report published by the U.S. Energy 

Information Administration in 2011, capacity factor for wind farms and photovoltaic 

power plants are 20-40% and 13-19% respectively, depending on the location of the 

power plant; which are among the lowest capacity factors of power plants (see Table 

1.1). Offshore wind farms and photovoltaic power plants located in deserted areas have 

higher capacity factor. However, it has been demonstrated at commercial level that 

capacity factor of photovoltaic power plants can be increased to 75% by addition of a 

power storage mechanism; which will place them at the second highest capacity factor 

rate among power plants, after nuclear power plants with capacity factor of more than 

90%.  

Table 1.1 Capacity factor of different types of power plat 
Table is generated based on the data reported by the U.S. Energy Information 

Administration 
 

Plant Type  Average Capacity Factor 

Nuclear  90.3% 

Solar (with storage) 75% 

Coal  63.8% 

Hydroelectric 39.8% 

Wind  20-40% (vary by location) 

Solar  13-19% (vary by location) 
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Currently, secondary cell batteries are widely used in portable electronics and 

hybrid and electric vehicles and limitedly for storage of wind and solar energy. 

Secondary cell batteries have the potential to continue to fulfill the needs for the fast 

growing energy needs, only if their efficiency can grow accordingly.  

Secondary cell batteries can be categorized into two general categories. The first 

is liquid electrolyte metal-ion batteries where the cell design is cylindrical, and the 

metal-ion is lithium-ion, sodium-ion and rarely potassium-ion or other metal-ions; 

whereas the second category is gel polymer electrolyte (GPE) metal-ion batteries (also 

known as metal-ion polymer batteries) where the electrolyte is gel or solid and the 

metal-ion is lithium-ion. 

Generic AA and AAA rechargeable batteries are among the first category. 

Battery cells used in hybrid and electric vehicles, smartphones, tablets and most of 

laptops belong to the second category. Unlike the liquid electrolyte cells that are limited 

to cylindrical rigid metal cases, 

metal-ion polymer batteries can 

have flexible, polymer laminate 

case of different shapes that allow 

more freedom in design of the cell 

for particular applications. In 

metal-ion polymer batteries the 

electrode sheet and the separator 

sheet are laminated onto each other 

 
Figure 1.2 Burned Li-ion Polymer battery 
from Boeing 787 Dreamliner  
Source: Reuters 



5 

 

thus the external pressure, provided by the metal casing in liquid electrolyte metal-ion 

batteries, is not required. Absence of the heavy metal casing significantly increases the 

energy density of the battery cell as a whole; thus, metal-ion polymer batteries are 

preferred for portable electronics and vehicles. For instance, Korean automaker, 

Hyundai, is using lithium-ion polymer (Li-poly) batteries in its 2012 Sonata Hybrid 

model with a lifetime battery warranty. Li-poly batteries benefit from a relatively long 

lifespan and highest cell voltage among secondary cell batteries. Although very efficient 

and widely used, Li-poly batteries are associated with several issues such as high cost, 

safety concerns and strict charging/discharging guidelines to prevent damage to the 

battery cell. Some of these issues are arose from the physical properties of the batteries, 

such as expansion/contraction while charging and discharging which results in 

delamination of electrodes, and may also cause damage to the casing and result in 

exposure of the lithium to the ambient; and some other are due to chemical properties of 

the materials uses, mainly chemical properties of lithium, such as high reactivity in 

ambient. Lithium, the backbone of secondary cell batteries, is highly reactive and 

unstable in ambient. When punctured, Li-poly batteries react quickly and vitally with the 

moisture in the ambient and may catch on fire. Battery problem of the Boeing 787 

Dreamliner is one of the most famous examples of safety issues of Li-poly batteries. 

Shown in Figure 1.2 is a heavily burned Li-poly battery from the Boeing 787 

Dreamliner. Deformation of the protective casing suggests changes in the physical 

properties of the enclosed battery cells. This particular Li-poly battery consists of eight 
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battery cells (hard to see from this picture) that are placed in one larger protective cell 

(the blue box in this picture).   

 

1.2 Historical developments in lithium ion battery research 

Primary lithium cell with lithium metal as the anode was first proposed and 

developed in 1970s [1]. As the lightest metal (Ar = 6.94 g.mol-1), and the least dense 

solid (# = 0.534 g.cm-3, with a desirable electron configuration (1S2 2S1), lithium has 

great potentials and advantages to be used as the backbone of the metal-ion batteries. In 

addition, lithium exhibits a -3.04V potential deference against hydrogen electrode, which 

is desirable for most portable electronic devices. Due to their remarkable advantages 

including high energy density, high capacity, and variable discharge rate, Lithium cells 

were rapidly applied in electronic devices, such as watches, calculators, etc. [2] The 

primary cells are one-off and non-rechargeable power sources, which bring some 

inconveniency for devices that require high current draw rates. In the 1980s, a large 

group of scientists put their effort into developing a rechargeable lithium battery, named 

secondary lithium battery [3]. Additionally, Ennon and Moli Energy made attempts on 

commercializing the Lithium-Titanium disulfide (Li/TiS2) system and Lithium-

Molybdenum disulfide (Li/MoS2) system, respectively, which operated at near 2V [4].  

In the earlier models, both primary and secondary lithium batteries were 

designed based on metallic lithium as positive electrode; however, the interface between 

lithium metal and electrolyte was not stable since the lithium metal could detach from 

the surface of the cathode leading to serious safety issue [5-7]. Concerned about safety 
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issues, lithium metal was replaced by lithiated carbon (graphite and lithium carbonate 

(LiC6)) and other lithiated materials (composite alloys and 3d-metal oxides; nitrides) as 

anodes. Simultaneously, research on cathodes was lead to synthesize metal-oxide 

cathodes to obtain higher potential, examples include (LixMO2), where M indicated 

nickel (Ni), cobalt (Co), or manganese (Mn). For the new system, instead of lithium 

metals, lithium ions rocked back and forth between anode and cathode during 

charging/discharging process, called rocking-chair system [8]. In June 1991, Sony 

Corporation commercialized the first rocking-chair battery - graphite-lithium cobalt 

oxide (C/LiCoO2) system, which had an open circuit potential (4.2V) and an operation 

voltage (3.6V) [1].  

Since then, a huge wave of research has been focused on all aspects of the 

lithium-ion batteries including cell design, electrode materials and electrolytes.  

 

1.3 Principle of lithium ion batteries 

Primary lithium ion battery is a one-direction device that only has discharging 

process. During discharging, reduction happens on the cathode gaining electrons and 

oxidation reacts on the anode losing electrons, displayed in following reaction [9].  

 Cathode: MS2 + Li+ + e-      discharge     LiMS2 

 Anode: Li    discharge      Li+ + e- 

 Full cell: Li + MS2
    discharge     LiMS2  

 (M = Ti or Mo) 
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In contrast to primary cell batteries, secondary cell lithium-ion batteries are 

rechargeable. Metal-ion polymer batteries consist of three layers: anode, electrolyte and 

cathode. The electrochemical properties of the electrode materials strongly depend on 

the physical and chemical properties like size, homogeneity and surface area. Lithium-

ion polymer batteries are by far the most common commercialized secondary cell 

polymer battery; with leading technology among other types of metal-ion polymer 

batteries. 

 

             Figure 1.3 Schematic of traditional lithium ion battery 
 

As shown in              Figure 1.3, typically, Li-ion polymer batteries are consist of 

three parts: 1) Positive electrode which commonly consists of LiCoO2,[10] LiNiO2[11] 

or LiMn2O4[12] . 2) Separator, which is a conducting gel polymer electrolyte (GPE). 

GPEs are prepared by immobilization of organic liquid electrolytes into polymer 
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structures[13]. Polymers such as poly(ethylene oxide) (PEO), polyacrylonitrile (PAN), 

poly(vinylidene fluride) (PVdF), poly(methyl-methacrylate) (PMMA) are among the 

well-studied materials[14-17]. 3) Negative electrode which consists of Li or Li-C 

intercalation compound[18-20]. When charging, lithium ions migrate through electrolyte 

under a certain external potential from anode to cathode. The discharge process reverses 

the moving direction of lithium ions; and simultaneously the electrons flow around the 

external circuit. 

Each combination of the abovementioned materials and compound will slightly 

influence cost, voltage, cycle durability and other characteristics of the Li-poly batteries. 

What remains unchanged is the safety concern due to instability of lithium. When in 

contact with water (ambient moisture) lithium, due to its volatile nature, exhibits fast 

reaction with water that can easily lead to fire and/or explosion[21]. This is not much of 

a concern in case of consumer electronics as robust casings are developed to protect the 

battery pouch from damage. However, in case of transportation applications, such as 

electric/hybrid vehicles the extent of an accident may cause the protective casings to 

crack or break. As a result a massive fire/explosion may happen. What is concerning in 

both small-scale (portable electronics) and large-scale (transportation, vehicles and 

planes) batteries is the expansion/contraction of the cell while charging and discharging; 

which, over time, causes 1. delamination of  electrodes; and 2. physical damage to the 

casing and possibly exposure of the battery contents to the ambient.   

A permanent solution to this problem is to eliminate use of rigid materials in 

lithium-ion polymer batteries and find a set of alternative soft functional materials for 
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electrodes and electrolyte that 1) does not require the pressure from casing (thus can be 

placed in a larger case, taken into account expansion of the materials), and 2) can expand 

and contract when remain laminated.     

There has been an extraordinary work on rocking-chair lithium ion batteries that 

selected variable materials for electrodes. For instance, Bellcore worked on secondary 

lithium ion batteries, which Li1+xMn2O4 spinel phase was chosen as cathode and graphite 

as anode [22-24] . During charging/discharging process, the oxidation and reduction 

process occurred at two electrodes as shown below [25, 26]. 

Cathode: LiMn2O4
                     Li1+xMn2O4  + x Li+ + x e-     

Anode: x Li+ + x e- + C6
    LixC6 

Full Cell: LiMn2O4 + C6    LiC6 + LiMn2O4 

The secondary lithium ion batteries, in general, operate 3.7V voltage and 

demonstrate a capacity of 150mAh/g [27].  

 

1.4 Design of lithium ion batteries 

 In the earlier days, cylindrical cell configuration (Figure 1.4a) has been the 

common design for lithium ion batteries [28]. Within the cylinder, all components could 

be soaked in liquid electrolyte; positive electrode, separator, and current collectors could 

be rolled around the central cylindrical negative electrode, usually came with carbon. 

This design saved spaces and maximized the capacity so that it has been one of the most 

popular cell configurations in the market, especially for primary cell batteries [29, 30].  

charge 
discharge 

charge 
discharge 

charge 
discharge 
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 In order to meet the requirement of portable electronics, such as watches, remote 

controller, and calculators, etc., smaller, thinner, and lighter design of coin cell (Figure 

1.4b) has been developed [31]. The cell can contained anode, separator, and cathode, 

which were lying from bottom to top and soaking in liquid electrolyte [32].   

 

Figure 1.4 Schematic drawing of various lithium ion battery configurations. a). 
Cylindrical; b). Coin; c). Thin 
 

 In 1999, polymer electrolytes replaced the liquid electrolyte in secondary cell 

lithium ion batteries, which eliminated the shape restriction of cylindrical cell [30]. A 

thin film polymer battery (Figure 1.4c), with multiple advantages including shape 

versatility, flexibility, and lightness, was consisted of anode current collector, anode, 

polymer electrolyte, cathode, and cathode collector [33], a schematic is shown in  Figure 

1.5. Each part of a thin film lithium ion polymer battery is a thin membrane; some thin 

film batteries are less than 0.3mm thick [34]. 
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Figure 1.5 Schematic cross-section structure of a thin film lithium ion polymer 
battery 
 
 
 
1.5 Anode and Cathode 

Carbonaceous materials, which are able to reversibly intercalate/deintercalate 

lithium ions into/from the graphite lattice, have been the first choice for anode of lithium 

ion batteries [35, 36]. Since late 1980s, graphite has been drawn attentions on because of 

its low redox potential and excellent structural stability [37]. Other non-graphitic carbon, 

such as soft carbons, carbon nanotubes, and graphene, has also been researched in the 

recent years [30].  

LiCoO2 was the most common cathode in 1970s, by seeking a more stable, less 

expensive, and safer material, a few alternatives such as LiNiO2, LiNixCoyO2, three-

dimensional LiM2O4 (M = Ti, V, Mn) spinel phase, were synthesized[35, 38]. 

Comparing with two-dimensional compounds, three-dimensional framework is more 

stable, the space group of LiM2O4 is Fd3m, and enhances the diffusion of lithium ions.  

Also, LiMn2O4 cells could provide around 4V discharge potential versus lithium, so that 

LiMn2O4 became the most common cathode material[39, 40].  
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1.6 Electrolyte 

Electrolyte materials separate anode and cathode and play the significant role of 

transmitting electrons and lithium ions during charging and discharging processes[41]. 

Also, electrolyte is one of the key components that define the battery’s performance – 

charging/discharging capacity, safety, cycling performance, and current density. The 

basic desired qualities of electrolyte materials are listed below [27, 42, 43].  

1. High ionic conductivity at wide range of temperatures: increase the lithium 

ions diffusion and resist polarization during charging/discharging 

2. Good thermal stability: ensures the battery operation under appropriate 

temperature 

3. Wide electrochemical window: prevents side reactions between electrodes 

and electrolyte 

4. Good mechanical property: ease of manufacturing and enhanced safety 

5. Low cost 

6. Safety: high flashing point 

7. Non-toxic: environmental friendly  

Depending on the physical state of electrolyte, electrolytes can be divided into 

three major categories: liquid electrolyte, solid electrolyte, and gel electrolyte.  

Most primary cell lithium ion batteries and some secondary cell lithium ion 

batteries are designed based on liquid electrolytes, containing a lithium salt, such as 

LiPF6, LiBF6, LiClO4, LiBC4O8, or Li[PF3(C2CF5)3], dissolved in organic alkyl 

carbonate solvent. Due to low interfacial resistance, low cost and ease of synthesis, 
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LiClO4 was the most common lithium salts used in the earlier designs. However, the 

high oxidability of anions (ClO4
-) caused some safety issue; thus LiPF6 replaced LiClO4 

in the newer designs and became the major material for electrolytes, which exhibits 

better overall performance including higher ionic conductivity. One of the shortcomings 

of LiPF6 is the low thermal stability compare to other lithium salts. LiPF6 can 

decompose at 80°C in the following way [44]. 

LiPF6 (s)  LiF (s) + PF5 (g) 

The PF5 gas has a high Lewis acidity, which leads to side reactions between PF5 

gas and solvent and increases the internal pressure of the cell. Meanwhile, LiPF6 is very 

sensitive to moisture and react with H2O as shown below [45]. 

LiPF6 (s) + H2O  LiF (s) + POF3 (s) +2HF (s) 

PF5 (s)          2HF (s) + POF3 (s) 

LiF is barely conductive so it will increase the interfacial resistance on the 

surface of the electrodes [46]. In order to control the level of moisture and minimize the 

side reaction during manufacturing the batteries, it has become necessary that every 

process involving LiPF6 be carried under a close environment of inert gasses with low 

(preferably 0) moisture content. 

Since commercial Li-ion batteries use LiPF6 as lithium salt, and as mentioned 

above LiPF6 is sensitive to H2O, it requires a non-aqueous solvent to improve the 

performance and safety of the battery, an organic alkyl carbonate can be a suitable 

solvent [47, 48]. The most common organic alkyl carbonate solvents are one or mixture 

of the following: propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate 
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(DEC), dimethyl carbonate (DMC), or ethyl methyl carbonate (EMC). The cyclic 

carbonates, PC and EC, have high dielectric constant ($(EC at 40°C)=89.78 and $(PC at 

25°C)=64.92), which is a significant feature for dissolution of lithium salt, and high flash 

point (FP(EC)=150°C and FP(EC)=132°C), which is an important factor for the safety of 

the cells[49]. According to Li et al, a mixture of EC and PC could dissolve larger 

amount of lithium salt compare to other possible mixtures[50].  

Instead of a liquid electrolyte, using a polymer overcomes the constraint of cell 

configuration and make thin film lithium ion polymer batteries possible. For the solid 

electrolyte, the lithium salt is containing in the polymer membrane, such as Polyethylene 

oxide (PEO) containing LiPF6 [27, 34, 51]. Both solid electrolyte and gel electrolyte are 

using polymer membrane as a host matrix, but the difference between solid electrolyte 

and gel electrolyte is the solvent content. Gel electrolytes are synthesized by 

incorporating liquid electrolyte into polymer base membranes by soaking membranes in 

lithium-based organic electrolytes.  

 

1.7 Gel Polymer Electrolyte 

Comparing to solid electrolytes and liquid electrolytes, Gel polymer electrolytes 

(GPEs) have several advantages, including no shape restrictions, faster 

charging/discharging, and higher power density [42, 52, 53]. Currently, there are four 

major polymer host materials for GPEs: polyethylene oxide (PEO), polyacrylonitrile 

(PAN), polymethyl methacrylate (PMMA), and polyvinylidene fluoride (PVdF) [42].  

  



16 

 

In the past two decades, PEO-based electrolytes were the major polymer host 

matrix used in batteries; and significant research efforts have been placed on there 

development and improvement. The conduction of PEO-based gel polymer electrolytes 

is mainly though the complexes between lithium-ion and ether oxygen atom [54]. PEO-

based electrolyte is the first studied system, which could be easily casted as thin 

membranes. However, due to PEO’s high degree of crystallinity, the ionic conductivity 

of PEO-based electrolytes is low and varies from 10-8 S cm-1 to 10-4 S cm-1 at 

temperature between 40°C and 100°C [53]. Ito et al observed that the ionic conductivity 

increases as the plasticizer increase, but the interfacial properties become worse due to 

the presence of hydroxyl end-groups [55].  

In the later studies PAN was used as the electrolyte host matrix material because 

of its small thermal resistance and flame-retardant property. According to Feuiliade et al, 

the ionic conductivity of PAN-based gel electrolyte is between 10-5 S cm-1 and 10-3 S 

cm-1; and the amount of transferred lithium ion is larger than PEO-based gel polymer 

electrolyte [56]. The negative side of PAN-based GPE is the increasing internal 

resistance of the lithium-ion polymer battery. Choi et al observed that combining PAN 

and PEO together, which is (10PEO-40PAN-12LiClO4-38EC/BL), could improve the 

mechanical flexibility, ionic conductivity, and interfacial properties of GPE [57].  

PMMA-based GPEs are also used due to their enhanced interface stability and 

lower cost, due to rich raw materials and simple synthesis process, among other host 

matrix materials. However, its poor mechanical flexibility narrowed down the 

applications. Copolymerization between PMMA and other polymer provides better 
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performance to lithium-ion polymer battery. As Ramesh et al showed, PVC 

copolymerized with PMMA could increase the conductivity of GPEs [58]. According to 

Lee et al, porous PDMS-CNT nanocomposites with PMMA could improve the 

flexibility and successfully control the degree of phase separation between PDMS and 

PMMA [59].  

Recently, the most common polymer used in today’s lithium-ion polymer 

batteries is PVdF, containing strong electron-withdrawing functional groups (-C-F) to 

induce a net dipole moment [60]. PVdF also have a high dielectric constant ($ = 8.4) that 

supports high concentration of charge carriers. Cheo et al found that PVdF-PC-

LiN(SO2CF3)2 electrolyte system could offer ionic conductivity of 1.74 x 10-3 S/cm[61].  

Due to the semi-crystalline structure of PVdF, lithium ions are drafted into the PVdF 

membrane when they stay on the surface [62-66]. Thus, a gel polymer electrolyte 

membrane with fully interconnected open microspores, i.e. higher interfacial surface 

area, enhances ion storage and mobility [13, 64, 67-70]. Although the mobility of PVdF-

based GPEs is greater than other polymer host matrix materials, the ionic conductivity of 

GPEs is still lower than liquid electrolytes. Introducing ionic liquids or nanosize fillers 

in GPE system could help to improve the performance of lithium-ion polymer batteries.  

 

1.6.1 Gel Polymer Electrolytes with ionic liquids 

Application of ionic liquids in lithium-ion batteries has been focus of several 

studies in the recent years. Fernicaola et al., incorporated ionic liquids in an organic 

electrolyte solution to increase the ionic conductivity and stabilize the lithium ions 
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carried on the surface of PVdF-base membrane [71]. In one study Egashira et al have 

shown that the ion mobility through the GPE containing ionic liquids depends on the 

miscibility of polymer component in the ionic liquid.  

Among aprotic ILs, protic ILs, and Zwitter ILs, the aprotic class of ILs with high 

mobility and ion concentration stands out for advanced electrochemical systems, which 

consist of large irregular cations and small anions[72]. Balducci, et al reported the 

aprotic IL, 1-n- Butyl-3-methylimidazolium hexafluorophospate (BMIPF6), used in 

activated cabon/poly(3-methyl-thiophene) hybrid super-capacitor and improved the 

voltage and cycle life of the super-capacitor [73]. For lithium batteries, Sakaebe et al 

studied and compared a few room temperature ionic liquid containing quaternary 

ammonium cation and imide anion and concluded that quaternary ammonium cations, 

including EMI (1-ethyl-3-methylimidazolium) cation, TMPA 

(trimethylpropylammonium) cation, P13 (N-methyl-N-propylpyridinium) cation, PP13 

(N-methyl-N-propylpiperidinium) cation and TFSI (bis(trifluoromethanesulfonyl)imide) 

cation, could stabilize the reduction on the lithium metal [74]. Furthermore, Fuller et al 

demonstrated that 1-ethyl-3-methlimidazolium tetrafluoroborate (EMIBF4) as an 

electrolyte solvent for LiBF4 operate high charge and discharge potentials, 1.46V and 

1.05V with the electrode of LixCoO2 and -2.81V and -2.52V with the electrode of ß-

LiAl, due to its desirable properties including high ionic conductivity, a wide 

electrochemical window, and thermal stability [75]. Based on the study from McEwen et 

al, the acidic proton in C-2 on the imidazolium ring might cause poor stability of 

reduction [76]. Fung et al studied with the addition of C6H5SO2Cl could stabilize the 
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reaction happened on the surface of electrode [77]. Overall, room temperature ionic 

liquids could improve the performance of lithium ion polymer battery [73, 75, 77].  

 

1.6.2 Gel Polymer Electrolytes with nanomaterials 

PG Bruce et al. reported nanomaterials could increase the rate of lithium 

insertion/removal, enhance the electron transport within the particles, and change the 

electrode potentials, but nanomaterials might cause more side reactions and increase the 

energy density [78-80]. Yang et al. demonstrated the ceramic fillers in PVdF-based gel 

polymer electrolytes improves interfacial stability between the electrode and the 

electrolyte, especially the cells with Al2O3 fillers that capacity remained 95% of the 

initial capacity after 100 cycles at a C/2 rate [81]. In order to increase the ionic 

conductivity of GPEs in the meantime, metallic nanoparticles can be used in synthesis 

the PVdF-based membrane. Metallic nanoparticles, mainly gold nanoparticles, are 

commonly used in diagnostics, sensors and other electronic devices, owing to the high 

stability and conductivity of gold[82].  

 

1.7 Summary 

This work is focused on improving the performance of lithium ion polymer 

batteries by introducing ionic liquids and gold nanoparticles in GPEs. Chapter 3 will 

discuss the influence of concentration of ionic liquids in electrolyte solutions; and 

Chapter 4 will discuss the influence of gold nanoparticles on the performance of GPEs.  



20 

 

REFERENCES 

 

[1] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable 
lithium batteries," Nature, vol. 414, pp. 359-367, 2001. 

[2] A. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik, and S.-J. Yoon, "Issue 
and challenges facing rechargeable thin film lithium batteries," Materials 
research bulletin, vol. 43, pp. 1913-1942, 2008. 

[3] D. Wainwright, "Battery incorporating hydraulic activation of disconnect safety 
device on overcharge," ed: Google Patents, 1995. 

[4] J. S. Lundsgaard, "Electrochemical cell," ed: Google Patents, 1989. 

[5] J. Besenhard and G. Eichinger, "High energy density lithium cells: Part I. 
Electrolytes and anodes," Journal of Electroanalytical Chemistry and Interfacial 
Electrochemistry, vol. 68, pp. 1-18, 1976. 

[6] J.-P. Gabano, "Lithium batteries," London and New York, Academic Press, 1983, 
467 p., vol. 1, 1983. 

[7] D. Murphy, P. Christian, F. DiSalvo, and J. Waszczak, "Lithium incorporation by 
vanadium pentoxide," Inorganic Chemistry, vol. 18, pp. 2800-2803, 1979. 

[8] J. Tarascon and D. Guyomard, "The Li< sub> 1+ x</sub> Mn< sub> 2</sub> 
O< sub> 4</sub>/C rocking-chair system: a review," Electrochimica Acta, vol. 
38, pp. 1221-1231, 1993. 

[9] M. S. Whittingham, "Lithium batteries and cathode materials," Chemical 
Reviews, vol. 104, pp. 4271-4302, 2004. 

[10] Z. Chen and J. R. Dahn, "Methods to obtain excellent capacity retention in 
LiCoO2 cycled to 4.5 V," ELECTROCHIMICA ACTA, vol. 49, pp. 1079-1090, 
2004. 

[11] J. Maruta, H. Yasuda, and M. Yamachi, "Low-temperature synthesis of lithium 
nickelate positive active material from nickel hydroxide for lithium cells," 
Journal of Power Sources, vol. 90, pp. 89-94, 2000. 

[12] X. He, J. Li, Y. Cai, C. Jiang, and C. Wan, "Preparation of spherical spinel 
LiMn2O4 cathode material for Li-ion batteries," Materials Chemistry and 
Physics, vol. 95, pp. 105-108, 2006. 



21 

 

[13] Y. Wang, J. Travas-Sejdic, and R. Steiner, "Polymer gel electrolyte supported 
with microporous polyolefin membranes for lithium ion polymer battery," Solid 
State Ionics, vol. 148, pp. 443-449, 2002. 

[14] K. M. Abraham and M. Alamgir, "Room temperature polymer electrolytes and 
batteries based on them," Solid State Ionics, vol. 70–71, Part 1, pp. 20-26, 1994. 

[15] H. C. Shiao, D. Chua, H.-p. Lin, S. Slane, and M. Salomon, "Low temperature 
electrolytes for Li-ion PVDF cells," Journal of Power Sources, vol. 87, pp. 167-
173, 2000. 

[16] K. Murata, S. Izuchi, and Y. Yoshihisa, "An overview of the research and 
development of solid polymer electrolyte batteries," ELECTROCHIMICA ACTA, 
vol. 45, pp. 1501-1508, 2000. 

[17] S. Panero and B. Scrosati, "Gelification of liquid–polymer systems: a valid 
approach for the development of various types of polymer electrolyte 
membranes," Journal of Power Sources, vol. 90, pp. 13-19, 2000. 

[18] J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries†," 
CHEMISTRY OF MATERIALS, vol. 22, pp. 587-603, 2009. 

[19] B. Key, R. Bhattacharyya, M. Morcrette, V. Seznéc, J.-M. Tarascon, and C. P. 
Grey, "Real-time NMR investigations of structural changes in silicon electrodes 
for lithium-ion batteries," JOURNAL OF THE AMERICAN CHEMICAL 
SOCIETY, vol. 131, pp. 9239-9249, 2009. 

[20] S.-H. Yeon, K.-N. Jung, S. Yoon, K.-H. Shin, and C.-S. Jin, "Electrochemical 
performance of carbide-derived carbon anodes for lithium-ion batteries," Journal 
of Physics and Chemistry of Solids, 2013. 

[21] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, "Thermal runaway 
caused fire and explosion of lithium ion battery," Journal of Power Sources, vol. 
208, pp. 210-224, 2012. 

[22] D. Guyomard and J. Tarascon, "Li Metal‐Free Rechargeable LiMn2 O 
4/Carbon Cells: Their Understanding and Optimization," Journal of The 
Electrochemical Society, vol. 139, pp. 937-948, 1992. 

[23] J. Tarascon and D. Guyomard, "Li Metal‐Free Rechargeable Batteries Based on 
Li1+ x Mn2 O 4 Cathodes (0≤ x≤ 1) and Carbon Anodes," Journal of The 
Electrochemical Society, vol. 138, pp. 2864-2868, 1991. 

[24] J. Tarascon, W. McKinnon, F. Coowar, T. Bowmer, G. Amatucci, and D. 
Guyomard, "Synthesis Conditions and Oxygen Stoichiometry Effects on Li 



22 

 

Insertion into the Spinel LiMn2 O 4," Journal of The Electrochemical Society, 
vol. 141, pp. 1421-1431, 1994. 

[25] S. Chitra, P. Kalyani, T. Mohan, R. Gangadharan, B. Yebka, S. Castro-Garcia, 
M. Massot, C. Julien, and M. Eddrief, "Characterization and electrochemical 
studies of LiMn2O4 cathode materials prepared by combustion method," Journal 
of electroceramics, vol. 3, pp. 433-441, 1999. 

[26] X. Li, F. Cheng, B. Guo, and J. Chen, "Template-synthesized LiCoO2, 
LiMn2O4, and LiNi0. 8Co0. 2O2 nanotubes as the cathode materials of lithium 
ion batteries," The Journal of Physical Chemistry B, vol. 109, pp. 14017-14024, 
2005. 

[27] J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable 
lithium batteries," Nature, vol. 414, pp. 359-367, 2001. 

[28] K. Nakai, T. Nakano, and K. Hironaka, "Cylindrical lithium-ion battery," ed: 
Google Patents, 2003. 

[29] K. Nakai, T. Nakano, and K. Hironaka, "Cylindrical lithium-ion battery," ed: EP 
Patent 1,102,342, 2012. 

[30] M. Wakihara, "Recent developments in lithium ion batteries," Materials Science 
and Engineering: R: Reports, vol. 33, pp. 109-134, 2001. 

[31] S. Park, A. Savvides, and M. Srivastava, "Battery capacity measurement and 
analysis using lithium coin cell battery," in Proceedings of the 2001 international 
symposium on Low power electronics and design, 2001, pp. 382-387. 

[32] J. Dahn, U. Von Sacken, M. Juzkow, and H. Al‐Janaby, "Rechargeable 
LiNiO2/carbon cells," Journal of The Electrochemical Society, vol. 138, pp. 
2207-2211, 1991. 

[33] J. L. Souquet and M. Duclot, "Thin film lithium batteries," Solid State Ionics, 
vol. 148, pp. 375-379, 2002. 

[34] W. H. Meyer, "Polymer Electrolytes for Lithium‐Ion Batteries," Advanced 
materials, vol. 10, pp. 439-448, 1998. 

[35] R. Kanno, Y. Takeda, T. Ichikawa, K. Nakanishi, and O. Yamamoto, "Carbon as 
negative electrodes in lithium secondary cells," Journal of Power Sources, vol. 
26, pp. 535-543, 1989. 

[36] M. Mohri, N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitate, S. Nakajima, M. 
Yoshida, Y. Yoshimoto, T. Suzuki, and H. Wada, "Rechargeable lithium battery 



23 

 

based on pyrolytic carbon as a negative electrode," Journal of Power Sources, 
vol. 26, pp. 545-551, 1989. 

[37] E. Peled, C. Menachem, D. Bar‐Tow, and A. Melman, "Improved Graphite 
Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte 
Interface and Nanochannel Formation," Journal of The Electrochemical Society, 
vol. 143, pp. L4-L7, 1996. 

[38] S. Iijima, "Direct observation of the tetrahedral bonding in graphitized carbon 
black by high resolution electron microscopy," Journal of Crystal Growth, vol. 
50, pp. 675-683, 1980. 

[39] G. Amatucci and J.-M. Tarascon, "Optimization of Insertion Compounds Such as 
LiMn2 O 4 for Li-Ion Batteries," Journal of The Electrochemical Society, vol. 
149, pp. K31-K46, 2002. 

[40] J. Tarascon, D. Guyomard, and G. Baker, "An update of the Li metal-free 
rechargeable battery based on Li< sub> 1+ %</sub> Mn< sub> 2</sub> O< sub> 
4</sub> cathodes and carbon anodes," Journal of Power Sources, vol. 44, pp. 
689-700, 1993. 

[41] W. van Schalkwijk and B. Scrosati, Advances in lithium-ion batteries: Springer, 
2002. 

[42] M. Armand and J.-M. Tarascon, "Building better batteries," Nature, vol. 451, pp. 
652-657, 2008. 

[43] K. Xu, "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries," 
Chemical Reviews, vol. 104, pp. 4303-4418, 2004. 

[44] S. E. Sloop, J. K. Pugh, S. Wang, J. Kerr, and K. Kinoshita, "Chemical 
Reactivity of PF 5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate 
Solutions," Electrochemical and Solid-State Letters, vol. 4, pp. A42-A44, 2001. 

[45] C. Barlowz, "Reaction of Water with Hexafluorophosphates and with Li Bis 
(perfluoroethylsulfonyl) imide Salt," Electrochemical and Solid-State Letters, 
vol. 2, pp. 362-364, 1999. 

[46] K. M. Abraham, "Directions in secondary lithium battery research and 
development," Electrochimica Acta, vol. 38, pp. 1233-1248, 1993. 

[47] T. Kawamura, A. Kimura, M. Egashira, S. Okada, and J.-I. Yamaki, "Thermal 
stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells," 
Journal of Power Sources, vol. 104, pp. 260-264, 2002. 



24 

 

[48] B. D. McCloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar, and A. C. 
Luntz, "Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery 
Electrochemistry," The Journal of Physical Chemistry Letters, vol. 2, pp. 1161-
1166, 2011/05/19 2011. 

[49] T. Tamura, K. Yoshida, T. Hachida, M. Tsuchiya, M. Nakamura, Y. Kazue, N. 
Tachikawa, K. Dokko, and M. Watanabe, "Physicochemical properties of glyme–
Li salt complexes as a new family of room-temperature ionic liquids," Chemistry 
Letters, vol. 39, pp. 753-755, 2010. 

[50] T. Li and P. B. Balbuena, "Theoretical studies of lithium perchlorate in ethylene 
carbonate, propylene carbonate, and their mixtures," Journal of The 
Electrochemical Society, vol. 146, pp. 3613-3622, 1999. 

[51] F. Croce, G. Appetecchi, L. Persi, and B. Scrosati, "Nanocomposite polymer 
electrolytes for lithium batteries," Nature, vol. 394, pp. 456-458, 1998. 

[52] A. Manuel Stephan, "Review on gel polymer electrolytes for lithium batteries," 
European Polymer Journal, vol. 42, pp. 21-42, 2006. 

[53] J. Song, Y. Wang, and C. Wan, "Review of gel-type polymer electrolytes for 
lithium-ion batteries," Journal of Power Sources, vol. 77, pp. 183-197, 1999. 

[54] P. G. Bruce, "Structure and electrochemistry of polymer electrolytes," 
Electrochimica Acta, vol. 40, pp. 2077-2085, 1995. 

[55] Y. Ito, K. Kanehori, K. Miyauchi, and T. Kudo, "Ionic conductivity of 
electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly 
(ethylene glycol)," Journal of materials science, vol. 22, pp. 1845-1849, 1987. 

[56] G. Feuillade and P. Perche, "Ion-conductive macromolecular gels and 
membranes for solid lithium cells," Journal of Applied Electrochemistry, vol. 5, 
pp. 63-69, 1975. 

[57] B. Choi, Y. Kim, and H. Shin, "Ionic conduction in PEO–PAN blend polymer 
electrolytes," Electrochimica Acta, vol. 45, pp. 1371-1374, 2000. 

[58] S. Ramesh, K. H. Leen, K. Kumutha, and A. Arof, "FTIR studies of PVC/PMMA 
blend based polymer electrolytes," Spectrochimica Acta Part A: Molecular and 
Biomolecular Spectroscopy, vol. 66, pp. 1237-1242, 2007. 

[59] H. Lee, J. K. Yoo, J. H. Park, J. H. Kim, K. Kang, and Y. S. Jung, "A Stretchable 
Polymer–Carbon Nanotube Composite Electrode for Flexible Lithium‐Ion 
Batteries: Porosity Engineering by Controlled Phase Separation," Advanced 
Energy Materials, vol. 2, pp. 976-982, 2012. 



25 

 

[60] D. M. Esterly, "Manufacturing of Poly (vinylidene fluoride) and Evaluation of its 
Mechanical Properties," 2002. 

[61] H. Choe, J. Giaccai, M. Alamgir, and K. Abraham, "Preparation and 
characterization of poly (vinyl sulfone)-and poly (vinylidene fluoride)-based 
electrolytes," Electrochimica Acta, vol. 40, pp. 2289-2293, 1995. 

[62] V. Gentili, S. Panero, P. Reale, and B. Scrosati, "Composite gel-type polymer 
electrolytes for advanced, rechargeable lithium batteries," Journal of Power 
Sources, vol. 170, pp. 185-190, 2007. 

[63] A. Salimi and A. A. Yousefi, "Analysis Method: FTIR studies of &-phase crystal 
formation in stretched PVDF films," Polymer Testing, vol. 22, pp. 699-704, 
2003. 

[64] J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, "Electrospun PVdF-
based fibrous polymer electrolytes for lithium ion polymer batteries," 
Electrochimica Acta, vol. 50, pp. 69-75, 2004. 

[65] H. P. Zhang, P. Zhang, Z. H. Li, M. Sun, Y. P. Wu, and H. Q. Wu, "A novel 
sandwiched membrane as polymer electrolyte for lithium ion battery," 
Electrochemistry Communications, vol. 9, pp. 1700-1703, 2007. 

[66] G.-L. Ji, B.-K. Zhu, Z.-Y. Cui, C.-F. Zhang, and Y.-Y. Xu, "PVDF porous matrix 
with controlled microstructure prepared by TIPS process as polymer electrolyte 
for lithium ion battery," Polymer, vol. 48, pp. 6415-6425, 2007. 

[67] F. Boudin, X. Andrieu, C. Jehoulet, and I. I. Olsen, "Microporous PVdF gel for 
lithium-ion batteries," Journal of Power Sources, vol. 81–82, pp. 804-807, 1999. 

[68] S. W. Choi, S. M. Jo, W. S. Lee, and Y. R. Kim, "An Electrospun 
Poly(vinylidene fluoride) Nanofibrous Membrane and Its Battery Applications," 
Advanced Materials, vol. 15, pp. 2027-2032, 2003. 

[69] R. Montazami, S. Liu, Y. Liu, D. Wang, Q. Zhang, and J. R. Heflin, "Thickness 
dependence of curvature, strain, and response time in ionic electroactive polymer 
actuators fabricated via layer-by-layer assembly," JOURNAL OF APPLIED 
PHYSICS, vol. 109, p. 104301, 2011. 

[70] R. Montazami, D. Wang, and J. R. Heflin, "Influence of conductive network 
composite structure on the electromechanical performance of ionic electroactive 
polymer actuators," International Journal of Smart and Nano Materials, vol. 3, 
pp. 204-213, 2012. 



26 

 

[71] A. Fernicola, B. Scrosati, and H. Ohno, "Potentialities of ionic liquids as new 
electrolyte media in advanced electrochemical devices," Ionics, vol. 12, pp. 95-
102, 2006. 

[72] H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, and M. Kono, 
"Fast cycling of Li/LiCoO< sub> 2</sub> cell with low-viscosity ionic liquids 
based on bis (fluorosulfonyl) imide [FSI]< sup>'</sup>," Journal of Power 
Sources, vol. 160, pp. 1308-1313, 2006. 

[73] A. Balducci, F. Soavi, and M. Mastragostino, "The use of ionic liquids as 
solvent-free green electrolytes for hybrid supercapacitors," Applied Physics A, 
vol. 82, pp. 627-632, 2006. 

[74] H. Sakaebe and H. Matsumoto, "< i> N</i>-Methyl-< i> N</i>-
propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13–TFSI)–novel 
electrolyte base for Li battery," Electrochemistry Communications, vol. 5, pp. 
594-598, 2003. 

[75] J. Fuller, R. T. Carlin, and R. A. Osteryoung, "The Room Temperature Ionic 
Liquid 1‐Ethyl‐3‐methylimidazolium Tetrafluoroborate: Electrochemical 
Couples and Physical Properties," Journal of The Electrochemical Society, vol. 
144, pp. 3881-3886, 1997. 

[76] A. B. McEwen, H. L. Ngo, K. LeCompte, and J. L. Goldman, "Electrochemical 
properties of imidazolium salt electrolytes for electrochemical capacitor 
applications," Journal of The Electrochemical Society, vol. 146, pp. 1687-1695, 
1999. 

[77] Y. Fung and R. Zhou, "Room temperature molten salt as medium for lithium 
battery," Journal of Power Sources, vol. 81, pp. 891-895, 1999. 

[78] P. G. Bruce, B. Scrosati, and J. M. Tarascon, "Nanomaterials for rechargeable 
lithium batteries," Angewandte Chemie International Edition, vol. 47, pp. 2930-
2946, 2008. 

[79] A. Subramania, N. T. Kalyana Sundaram, A. R. Sathiya Priya, and G. Vijaya 
Kumar, "Preparation of a novel composite micro-porous polymer electrolyte 
membrane for high performance Li-ion battery," Journal of Membrane Science, 
vol. 294, pp. 8-15, 2007. 

[80] P. Balaya, A. J. Bhattacharyya, J. Jamnik, Y. F. Zhukovskii, E. A. Kotomin, and 
J. Maier, "Nano-ionics in the context of lithium batteries," Journal of Power 
Sources, vol. 159, pp. 171-178, 2006. 



27 

 

[81] C.-M. Yang, H.-S. Kim, B.-K. Na, K.-S. Kum, and B. W. Cho, "Gel-type 
polymer electrolytes with different types of ceramic fillers and lithium salts for 
lithium-ion polymer batteries," Journal of Power Sources, vol. 156, pp. 574-580, 
2006. 

[82] J. Shan and H. Tenhu, "Recent advances in polymer protected gold nanoparticles: 
synthesis, properties and applications," Chemical Communications, pp. 4580-
4598, 2007. 

 
 



28 

CHAPTER 2 

 MATERIALS AND METHODS 

 

This chapter discusses the materials, techniques, synthesis and activation 

procedures, battery assembly and measurements involved in this research on lithium ion 

polymer batteries. Section 2.1 provides information on materials including the chemical 

properties, chemical structure, and preparation processes. Section 2.2 discusses the 

details of synthesis and activation processes of Gel Polymer Electrolytes (GPE). 

Detailed assembly process of lithium ion polymer batteries is discussed in Section 2.3. 

Finally, the related techniques and equipment used in measurements, recording and 

analysis of the data are discussed in Section 2.4. 

 

2.1 Materials 

PVdF 

Poly(vinylidene Fluoride) (PVdF) (CAS Number: 24937-79-9, Average 

Molecular Weight: ~530,000, pellets) (Sigma Aldrich) was 

used as polymer host of the gel polymer electrolytes. 

Chemical structure of PVdF is shown in Figure 2.1. The 

strong electron-withdrawing functional groups (-C-F-) could 

induce a net dipole moment [1]. Also, its high dielectric 
Figure 2.1 Chemical 
structure of PVdF 
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constant (! = 8.4) supports high concentration of charge carriers. Due to those excellent 

properties, PVdF was used as the major polymer host for the lithium ion polymer 

batteries studied in this work.  

 

NMP 

 1-Methyl-2-pyrrolidone (NMP) (CAS Number: 872-50-

4, Molecular Weight: 99.13) (Sigma Aldrich) was used as the 

solvent for PVdF because of its excellent virtue including non-

toxicity, high boiling point (202°C - 204°C), low viscosity, low 

volatility, and high solubility. Chemical structure is shown in 

Figure 2.2. 

 

LiPF6 

 Lithium hexafluorophosphate (LiPF6) (CAS Number: 21324-40-3, Molecular 

Weight: 151.91) (Sigma Aldrich) was the core material in electrolytes for lithium ion 

batteries, which transmitted lithium ions and electrons for anode and cathode. Based on 

the low associating ability of anions (PF6
"), LiPF6 has high ionic conductivity that could 

enhance the electrolytes’ ability of transmitting lithium ions and electrons.  

 

EC & PC 

 Ethylene carbonate (EC) (CAS Number: 96-49-1, Molecular Weight: 88.06) 

(Sigma Aldrich) and propylene carbonate (PC) (CAS Number: 108-32-7, Molecular 

Figure 2.2 Chemical 
structure of NMP 
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Weight: 102.09) (Sigma Aldrich) was the plasticizer for PVdF membrane and the 

solvent for LiPF6. Chemical structures are shown in Figure 2.3. The cyclic carbonates, 

PC and EC, have high dielectric constant (!(EC at 40°C)=89.78 and !(PC at 

25°C)=64.92), which is a significant advantage for dissolution of lithium salt; and, high 

flash point (FP(EC)=150°C and FP(EC)=132°C), which is an important factor 

considering the safety[2]. 

 

 

EMI-TF 

 1-Ethyl-3-methylimidazolium 

triluoromethanesufonate (EMI-TF) (CAS Number: 

145022-44-2, Molecular Weight: 260.23) (Sigma 

Aldrich) was used as solvent for LiPF6. The 

molecular formula of EMI-TF is C7H11F3N2O3S and 

the chemical structure is shown in Figure 2.4. Chapter 

3 discussed the influences of the concentration of 

EMI-TF as the solvent for LiPF6 for lithium ion polymer batteries.  

 

Figure 2.3 Chemical Structure of EC (left) and PC 
(right) 

Figure 2.4 Chemical 
Structure of EMI-TF 
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AuNPs  

  Gold nanoparticles (AuNPs) were purchased from Purest Colloids, Inc. AuNPs 

dispersed in DI water with concentration of 20ppm and has average diameter 3.2nm. 

These AuNPs are functionalized with negatively charged functional groups and have 

Zeta potential of ~-40mV. Since the PVdF-based GPE system is water sensitive, the 

water from AuNP solution was replaced with NMP through an solvent exchange process  

(Figure 2.5), before use as the additive in GPE system. 

 

Figure 2.5 Solvent exchange for AuNPs solutions. a) 100mL AuNPs in DI water b) 
5mL AuNPs in DI water after evaporating and adding new solvent of NMP c) 
AuNPs in 5mL DI water and 20mL NMP d) ultrasonic 20mL AuNPs in NMP after 
evaporating 5 mL water  
 

Firstly, a 100mL of 20ppm AuNPs solution was located placed in the vacuum 

oven (-0.06MPa) under 90°C for 6 hours until the whole solution evaporated to 5mL. 

Then, 20mL NMP has been mixed as new solvent in the AuNPs solution. The new 

AuNPs solution with water and NMP as co-solvent was heated under vacuum to 

continue evaporate the solvent down to the volume of entire solution reached 20mL. 

Since the boiling point of NMP (202°C - 204°C) is much higher than the boiling point 

that of H2O (100°C), the last 5mL solvent that has been evaporated was is assumed to be 
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water; and NMP was the only solvent left in AuNPs solution. In order to avoid prevent 

aggregation between of each AuNPs in NMP, the new 20mL AuNPs solution was placed 

under ultrasonicated for 1 hour. Finally, the AuNPs-NMP solution dispersion with 

concentration of 100ppm would was used in PVdF-based GPE system (section 2.2.2). 

 

Anode and Cathode  

Copper foil single-side coated by 0.1mm of 

Composite Graphite anode and aluminum foil single side 

coated by 0.1mm of lithium manganese oxide (LiMn2O4) 

cathode was purchased from MTI Corporation and used as 

received. The anode material of Graphite was casted on the 

surface of copper foil as the current collector; the cathode 

material of LiMn2O4 was casted on the surface of aluminum 

foil as the current collector (Figure 2.6). The coated foils 

were cut in 20mm # 20mm pieces and used as the anode 

and cathode in assembly the lithium ion polymer battery 

package.  

 

Figure 2.6 Composite 
Graphite anode and 
(LiMn2O4) cathode. a) the 
surface of LiMn2O4 on 
cathode; b) the surface of 
Graphite on anode; c) the 
surface of aluminum on 
cathode; d) the surface of 
copper on anode 
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2.2 Synthesis and activation 

2.2.1 Gel Polymer Electrolytes with ionic liquids 

Synthesis: 

The membrane (Figure 2.7) was synthesized by first preparing a carbonate ester 

mixture. A 1:1 weight ratio mixture of EC and PC was heated to 80°C to achieve 

complete dissolution. The resultant clear carbonate ester solution (40%, weight percent) 

was mixed with PVdF (16%, weight percent) and 1-Methyl-2-pyrrolidone (44%, weight 

percent). The mixture was then heated to 110°C and stirred on magnetic stirrer until a 

clear solution was obtained with a relatively high viscosity. The solution was then casted 

on a glass template and left in vacuum oven under -0.08MPa at 80°C for 2 hours to form 

membranes. The membranes were then soaked in a 10% ethanol aqueous solution 

overnight. Pale yellow membranes with thickness of 50µm were obtained and cut into 

20mm x 22mm squares and stored under ambient conditions. 

 

 

Figure 2.7 GPE fabricate process with ionic liquid (red dots present cations, and 
green dots present anions) 
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Activation: 
The activation of the synthesized membranes was conducted by soaking them in 

organic electrolyte solution (LiPF6 - EC - PC - EMI-Tf) for 24 hours. In order to narrow 

down the range of volume percentage of ILs (EMI-Tf) in the solvent, the activation part 

was separated into 2 steps. At the first step, to observe the effect of the ionic liquid on 

the GPE membrane we prepared five groups of samples containing EMI-Tf at different 

ratios from 0% to 100%, at 25% increments. According to the results from the first step 

that the lithium ion polymer batteries have better performance in the range of 25% EMI-

Tf to 75% EMI-Tf, the volume percent of EMI-Tf in the second step was adjusted to 

30%, 40%, 50%, and 60% for each group. For each group in step 1 and step 2, the 

concentration of organic electrolyte solution (LiPF6) was kept constant at 1M. 

Table 2.1 Solvent in volume percent of each group 
Sample 1 2 3 4 5 6 7 8 

EMI-Tf 0% 25% 30% 40% 50% 60% 75% 100% 

EC 50% 37.5% 35% 30% 25% 20% 12.5% 0% 

PC 50% 37.5% 35% 30% 25% 20% 12.5% 0% 

 
 
2.2.2 Gel Polymer Electrolytes with nanomaterials 

As presented in Figure 2.8, the GPE is a membrane synthetized by trapping 

plasticizers EC and PC in PVdF and NMP solution. Firstly, EC and PC with weight ratio 

of 1:1 were mixed and heated at 110°C to completely dissolute. Then, PVdF was added 

to pure NMP at 4:11 weight ratio as the control group; and PVdF added to 100ppm 

AuNPs-NMP solution with the same weight ratio as the experimental group. Then the 

EC-PC solution was mixed with the control and experimental group at 2:3 ratio. The two 



35 

resultant solutions were heated at 110°C and stirred on a magnetic stirrer until desired 

viscosity was reached. The slurry was then casted onto a flat glass disk. The flat glass 

disk with the slurry was then left in vacuum oven under -0.08MPa at 80°C for 2 hours; 

and then soaked in 10% ethanol solution for 12 hours. Next, a pale yellow membrane for 

the control group and a light purple AuNPs-doped membrane for the experimental group 

were remained in the glass disk. The membranes in both groups had thickness of 0.3mm 

and were cut into 22mm # 22mm square and were stored at ambient conditions. The 

activation of the synthesized membranes was conducted by soaking them in a 1M 

solution of LiPF6 – EC & PC (1:1) for 24 hours. 

 

Figure 2.8 GPE fabricate process with AuNPs (red dots present Lithium ions, and 
purple dots present AuNPs) 
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2.3 Lithium ion Polymer Battery Assembly 

The thin-film cell was assembled as shown in Figure 2.9; with GPE located in 

between the cathode and anode. In the actual model on the left of Figure 2.9, cathode 

and anode are exactly 20mm # 2mm; but GPE film is larger than cathode and anode so 

the cell would not be shorted. The surface of protection cover that faces inside of the cell 

is adhesive, which helped airtight enclosure of the whole system. 

 

Figure 2.9 Structure of LIPB. Insets on the left show photographic images of the 
actual structure 
 
 

2.4 Measurements 

2.3.1 VersaSTAT-4 

 A VersaSTAT-4 potentiostat (Princeton 

Applied Research) (Figure 2.10) was used for 

Figure 2.10 VersaSTAT-4 
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electrochemical and impedance spectroscopy studies of the gel polymer electrolyte.  

 

Ionic Conductivity: 

 The ionic conductivity of GPE was measured by impedance spectroscopy using 

two steel chips (15.5mm D # 0.2mm T) as the blocking electrode cells. The GPE 

membrane was placed between two steel chips; and an enclosing case (Figure 2.11). The 

detailed drawing of the enclosing case is presented in the Appendix.   

   

 

Figure 2.11 Ionic Conductivity testing cell 
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 The impedance spectroscopy studies (Figure 2.12) were carried at frequency 

range of 1.0E5Hz to 0.1Hz and potential difference ($V) of 10mV.  

 

Figure 2.12 Setup of impedance spectroscopy 
 

Interfacial properties: 

The interfacial properties of GPE were measured by impedance spectroscopy 

with thin-film cell after finishing 10 cycles charging and discharging, which was 

assembled as shown in Figure 2.9. The impedance spectroscopy studies were also 

carried at frequency range of 1.0E5Hz to 0.1Hz and potential difference ($V) of 10mV, 

same as the setup for ion conductivity measurement. For the experiments involving GPE 

doped with AuNPs, the impedance of the thin-film LIPB (both control group and 

experimental group) was periodically monitored over 30 days, in order to compare the 

reliability of the batteries. In Chapter 4 we discuss the details of the measurement after 1 

day, 4 days, 7 days, 15 days, and 30 days.  

2.3.2 Ultraviolet 

 The AuNPs were characterized 

by Ultraviolet-Visible spectrometer 

Figure 2.13 PerkinElmer Ultraviolet spectroscopy 
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(PerkinElmer) (Figure 2.13). The Ultraviolet absorbance tests were conducted three 

times in the entire solvent exchange process, which is listed below. 

1. The original AuNPs solution with medium of DI water before solvent exchange 

2. The 5mL AuNPs solution with medium of DI water after evaporation and before 

adding NMP 

3. The final 20mL AuNPs solution with medium of NMP after sonication.  

 Ultraviolet spectrum (Figure 2.14) scanned the sample from 800nm to 400nm 

with scan speed of 480 nm/min. Before running the test, the base line was obtained with 

DI water filled cuvettes.  

Figure 2.14 Setup of Ultraviolet absorbance spectroscopy 
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2.3.3 BST8-MA battery analyzer 

Charge-discharge tests were carried 

out with a computer controlled BST8-MA 

battery analyzer (MTI corporation), between 

1.5V and 4.2V with a constant current of 

0.5mA. Battery analyzer was able to charge 

the battery with constant current or constant 

voltage, and discharge the battery with constant current or constant voltage. Meanwhile, 

this equipment also monitored the capacities, current and voltage of the batteries as a 

function of time. As shown in Figure 2.16, battery tests started with a constant discharge 

current of 0.5mA until the voltage decreased to 1.5V. After the system paused for 2 

minutes, it started charging the battery with a constant current of 0.5mA and then 

constant voltage of 4.2V. A complete charging-discharging process called a cycle. Every 

lithium ion polymer battery was tested for 51 cycles total.   

Figure 2.15 BST8-MA Battery Analyzer 
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Figure 2.16 Setup of BST8-MA Battery Analyzer 
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CHAPTER 3 

INFLUENCE OF IONIC LIQUIDS OF THE GEL POLYMER ELECTROLYTE  

 

3.1 Introduction 

In the recent years application of Li-ion batteries in common electronic devices, 

and thus demand for more efficient and safer batteries, has increased significantly [1-4]. 

Batteries with higher efficiency, superior mechanical properties and smaller size [5] are 

needed for handheld electronics to keep up with the rapidly increasing computing power, 

larger screens and thinner and lighter designs of such devices. There has also been a 

significant increase in concerns regarding the issues associated with such batteries. Use 

of flammable organic solvents as electrolyte, formation of lithium dendrites, and large 

volume change due to poor structural stability are among the main concerns associated 

with Li-ion batteries. Use of gel polymer electrolytes has addressed some concerns 

regarding leakage of liquid electrolytes and the resultant fire hazards; however, charge 

transfer through GPE doped with organic solvents is not as efficient as that in liquid 

electrolytes. Also, doping GPE with organic solvents poses some limiting difficulties.  

Generally, synthesis of GPEs is achieved by incorporating an organic electrolyte 

solution into a polymer matrix with a trapping structure enhanced by carbonate esters [6, 

7]. Polymer matrices with high chemical stability and strong electron-withdrawing 

functional groups to induce a net dipole moment are desirable as the polymer host [8]. 

One polymer commonly used in gel polymer electrolytes is polyvinylidene fluoride 

(PVdF) (containing -C-F functional groups. The PVdF base gel polymer electrolyte 
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membranes attract ions in the organic electrolyte solution due to the electric field at the 

surface of the PVdF membrane, because of the semi-crystalline structure of PVdF part of 

the attracted ions are drafted into the membrane when the rest of ions stay at the 

surface[9-13]. Thus, a gel polymer electrolyte membrane with fully interconnected open 

microspores, i.e. higher interfacial surface area, enhances ion storage and mobility [11, 

14-18].  

Comparing to liquid electrolytes, GPEs have several advantages, such as superior 

mechanical properties, faster charging/discharging and higher power density [19-21]. 

However, ion permeability of GPEs is orders of magnitude lower than that of liquid 

electrolytes, mainly because of the polymeric structure which limits the ion mobility [8, 

22].  

Room temperature ionic liquids have been used to substitute organic electrolytes 

to increase ion mobility throughout the electrolyte and also to eliminate hazards 

associated with organic electrolytes. Application of ionic liquids in lithium-ion batteries 

has been focus of several studies in the recent years. Fernicaola et al., incorporated ionic 

liquids in an organic electrolyte solution to increase the ionic conductivity and stabilize 

the lithium ions carried on the surface of PVdF-base membrane [23]. In one study 

Egashira et al have shown than the ion mobility through the gel electrolyte containing 

ionic liquids depends on the miscibility of polymer component in the ionic liquid. It was 

shown that, for example, gel electrolyte containing hexyltrimethylammonium 

bis(trifluoromethane sulfone)imide ionic liquid exhibit high lithium ion permeability  

whereas no obvious lithium ion mobility was detected through a gel electrolyte 



45 

contusing 1-ethylk-3-methyl imidazolium bis(trifluoromethane sulfone)imide ionic 

liquid [24].  In other studies it was demonstrated that the ion permeability of the gel 

electrolyte could be improved by addition of carbonate esters. Carbonate esters play the 

role of ion dissociation enhancer and improve ion mobility because of their relatively 

high dielectric constants. Ethylene carbonate (! = 89.78 @ 40°C) and propylene 

carbonate (! = 64.93 @ 25°C) are among the most common carbonate esters used in 

lithium-ion polymer batteries. They both have excellent thermal stability and boiling 

point of above 240  [25]. Ye et al doped the gel electrolyte by a small amount of 

ethylene carbonate and observed a significant increase in lithium ion transport through 

the gel electrolyte [26]. Sirisopanaporn et al demonstrated higher ion permeability and 

interfacial stability by addition of small amounts of ethylene carbonate and propylene 

carbonate to the gel electrolyte [27].  A vapor-free lithium-ion polymer battery with high 

discharge performance based on lithium salt dissolved in ionic liquid and ultra-high 

molecular weight ionic liquid polymer was reported by Sato et al. it was demonstrated 

that the discharge performance is higher than that of a conventional lithium polymer 

battery [28].   

In view of the progress of the technology, as well as the safety of the lithium ion 

battery technology, it is highly desired to further investigate polymer base electrolytes 

doped with ionic liquid induced electrolytes. 

In this work we attempt to fill the gap between efficient systems base on organic 

solvents and safe and reliable systems base on ionic liquids. We have investigated gel 

polymer electrolytes doped with a mixture of organic electrolyte and ionic liquid at 
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different ratios, in presence of carbonate esters, to enhance ion permeability and 

electrochemical properties of the gel polymer electrolytes.  

The traditional organic electrolyte solution of LIPBs is dissolving lithium salt 

into carbonate solvent solution [29-31]. In this case, Lithium Hexafluorophosphate 

(LiPF6) is chosen as the lithium salt due to its high conductivity in carbonates solvent 

mixtures and the ability to prevent aluminum corrosion at the cathode aluminum current 

collector by forming a passivation layer. Also, cyclic carbonates mixture EC and PC 

(wt% 1:1) are considering as the solvent for LiPF6, which  

Li et al found that the radius the complex ion solvent is smaller for the EC/PC 

mixture than either pure EC or pure PC, which will help dissolving lithium salts [32]. 

Among aprotic ILs, protic ILs, and Zwitter ILs, the aprotic class of ILs with high 

mobility and ion concentration stands out as advanced LIPB electrolytes, which consists 

of large irregular cations and small anions [33].  

This work picks 1-ethyl-3-methylimidazolium triluoromethane (EMI-TF) due to 

its high ionic conductivity (10-2 S/cm) and wide electrochemical window. The EMI 

cations’ dangling alkyl groups and the planar imidazolium ring with the delocalization of 

charge over the N-C-N moiety serve to decrease ion-ion interactions and higher the 

mobility [34, 35]. This work discussed the effects of varies volume ratios of ILs to get 

the best improvement on Li-ion batteries.  
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3.2 Experimental 

Materials: 
Copper foil single-side coated by 0.1mm of Composite Graphite anode, 

aluminum foil single side coated by 0.1mm of lithium manganese oxide (LiMn2O4) 

cathode, lithium chips, and Super P (conductive carbon) were purchased from MTI 

corporation and used as received. N-Methyl-2-pyrrolidone (NMP), ethylene carbonate 

(EC), propylene carbonate (PC), lithium hexafluorophosphate (LiF6PO4), polyvinylidene 

fluoride (PVdF), and 1-Ethyl-3-methylimidazolium triluoromethanesufonate (EMI-TF) 

were purchased from Sigma-Aldrich and used as received. 

Synthesis: 

The membrane was synthesized by first preparing a carbonate ester mixture. A 

1:1 weight ratio mixture of EC and PC was heated to 80°C to achieve complete 

dissolution. The resultant clear carbonate ester solution (40%) was mixed with PVdF 

(16%) and 1-Methyl-2-pyrrolidone (44%). The mixture was then heated to 110°C and 

stirred on magnetic stirrer until a clear solution was obtained with a relatively high 

viscosity. The solution was then casted on a glass template and left under -0.08MPa at 

80°C for 2 hours to form membranes. The membranes were then soaked in a 10% 

ethanol aqueous solution overnight. Pale yellow membranes with 50µm thickness were 

stored under ambient conditions. 

Activation: 

The activation of the synthesized membranes was soaked them in organic electrolyte 

solution (1M LiPF6 solvent) for 24 hours. To observe the effect of the ionic liquid on the 
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GPE membrane, we prepared eight group with different volume percent of EMI-Tf in 

the solvent: 0%, 25%, 30%, 40%, 50%, 60%, 75%, and 100%, and the rest solvent was 

EC and PC (1:1).  

Measurements: 

A VersaSTAT-4 potentiostat (Princeton Applied Research) was used for 

electrochemical and impedance spectroscopy studies of the gel polymer electrolyte 

membranes. For these studies GPE membranes were secured between two steel-disks 

electrodes of 200µm thickness and 15.5mm diameter, and two pieces of adhesive plastic 

were used as a pouch to seal and hold each sample.   The electrochemical studies were 

carried out by cyclic voltammetry measurements at 10mV/s scan rate. The impedance 

spectroscopy studies were carried at frequency range of 1.0E5Hz to 0.1Hz and potential 

difference ("V) of 10mV, after completion of 10 charging/discharging cycles. In each 

sample, the membrane was cut slightly larger than the electrodes to prevent short-circuit.  

Charge-discharge tests were carried out with a computer controlled BST8-MA battery 

analyzer (MTI corporation), between 1V and 5V with a constant current of 0.5mA. 

 

3.3 Results and discussion 

3.3.1 Ionic Conductivity: 

GPEs were studied for their ion permeability by AC impedance spectroscopy. 

GPEs doped with electrolytes of different EMI-Tf/EC/PC ratios were secured between 

steel disks and studied at a high frequency range (10000Hz – 100000Hz). As presented 

in Figure 3.1, the Nyquist plot exhibited approximately vertical lines, suggesting nearly 
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pure resistive behavior at high frequencies, for all GPE samples. Here, the effect of 

imaginary part of the impendence can be neglected and the system can be considered as 

a pure resistor with minimum dependence on frequency. The internal resistance of the 

bulk electrolyte can be induced from the intercept of the extended impedance plots with 

the x-axis (Zre). Electrical conductivity of GPEs can be calculated using internal 

resistance, thickness and cross-section area of the GPEs. . The electrical conductivity # 

for each GPE sample was calculated using Equation 1: 

 

                                                   (1) 

 
were t is the thickness of each sample, R is the internal resistance and A is cross section 

area (1.89 cm2). Ionic permeability of GPE samples is presented in Table 1.  

 

Figure 3.1 Bar chart of Ionic conductivity 



50 

 
Figure 3.2 Nyquist plots of steel/GPE/steel with different volume percent ionic 
liquids at high frequency 
 
 
Table 3.1 Values of each term in calculating ionic conductivity 
Cross area (cm2) Percent of ILs (%) Internal resistance (Ohms) Thickness (cm) Electrical conductivity 

(mS/cm) 

1.89 0 11.2379 0.014 0.66 

 
25 3.7595 0.013 1.83 

 
30 3.4118 0.012 1.86 

 
40 3.1770 0.014 2.34 

 
50 3.8264 0.016 2.22 

 
60 3.6806 0.014 2.02 

 
75 3.9111 0.014 1.90 

 
        100 5.9292 0.012 1.07 
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Samples containing EMI-Tf ionic liquid exhibited ~65% to ~250% improvement 

on their ion permeability compare to sample without EMI-TF (100% EC-PC solvent). 

Interestingly, ionic permeability of the GPEs showed an increasing trend as the ionic 

liquid content increased to ~40% and decreased thereafter, suggesting the significant 

contribution of EC and PC to ion permeability of the GPEs. It is important to note that 

the measured ionic permeability in this study is due to the movement of all ions in the 

PVdF-based electrolyte, including Li+, EMI+, TF$, and PF6
$ (EMI+ and Tf$ only when 

ionic liquid was used). Previous studies[17, 36-38] have shown that compare to 

diffusions among cations, the EMI+ always diffuses faster than smaller Li+ , and that Li+ 

and anions are more likely to form ion complexes and diffuse together at a slower rate. 

High electrical conductivity of EMI-Tf  (6.4 mS/cm) at room temperature contributes 

significantly to the ion permeability of the GPE membrane [32, 39]. Yet, GPE’s 

containing EMI-Tf as the only solvent exhibited relatively low electrical conductivity, 

comparable to that of samples containing EC-PC solvent only.  The importance and 

effect of EC and PC should not be neglected, which enhanced to improve the Li ion 

transport and dissociate the Li ion complexes due to their excellent physic-chemical 

properties, such as high dielectric constant and good thermal stability [26]. Although the 

ionic conductivity of GPE with variances of concentration of ILs seems the similar (~2 

mS/cm), at the first glance, there existed an order of ionic conductivities from high to 

low, which is 40 v% ILs, 50 v%, 60 v%, 75 v%, 30 v% and 25 v%. Seeking the balance 

between EC, PC and EMITF, based on the experimental results the electrolytes 

containing 40 v% ~ 50 v% had the most efficient diffusion among Li+, EMI+, TF-, and 
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PF6
-. 40 v% ~ 50 v% provided free EMI cations to enhance the ionic conductivity; and 

60 v% ~50 v% EC and PC solution decomposed Li ion complexes and freed Li ions that 

were relevant for the charge/discharge of LIPBs.  

 

3.3.2 Interfacial properties:  

The interfacial properties of GPE were monitored by impedance spectroscopy 

(1.0E5 Hz to 0.1 Hz, "V=10mV) as thin-film cell pack after finishing 10 cycles charging 

and discharging. The curves of Nyquist Plots for all cells were consist of semicircles and 

followed by an approximately linear plot (Figure 3.3).  

 
Figure 3.3 Nyquist plots of Graphite/GPE/LiMn2O4 with different volume percent 
ionic liquids 
 

At high frequencies, the start points of semicircles, the battery system could be 

considered as “pure resistor” since it was almost a vertical line. Extending the vertical 
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line until interacting the x-axis, the impedance at the intersection represents the value of 

“pure resistor”, called the solution resistance (Rs) in the equivalent circuit. Solution 

resistance depends on the ionic conductivity of the entire system including the 

transportation of ions between anode and cathode; so it would be slightly distinct with 

the ionic conductivity discussed in the previous section. However, according to the value 

in Figure 3.3, second to the 100 v% ILs that exhibited smallest solution resistance (i.e. 

highest ionic conductivity), the solution resistance of GPEs with 40 v% ~ 50 v% ILs was 

the smallest among GPEs with mixed electrolyte.  

Assuming the semicircles are associated with the parallel combination of charge 

transfer resistance (RCT), and double layer capacitance (CDL), and Warburg impedance 

(W) in series, the system could be described as the equivalent circuit in 3.4 [40, 41]. The 

charge transfer resistance is known as the diameter of the semicircle, which could be 

measured by the real impedance difference between the right end point of the semicircle 

and the left start point. When the entire system at equilibrium, the overpotential was very 

small, Equation 2 could be used to define charge transfer resistance (Figure 3.3) that is 

known from the Nyquist plot [42]. I0 (exchange current density), representing the speed 

of charge transfer reaction, was the only factor that depended on charge transfer 

resistance, since others, R (gas constant), T(temperature), n (number of electrons 

involved), and F (Faradays constant), were constant. In this work, LiMn2O4 was the 

cathode that dissolved the Li ions into the GPE, according to the following reaction [43, 

44]. However, GPEs with ILs increased the charge transfer resistance, which means they 
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decreased the speed of reaction, because the protons at C-2 position of imidazolium 

cations constrained the chemical reduction [23]. 

          (2) 

    
 

At the middle of the semicircle, the impendence was almost capacitive 

contribution due to the derivative of the curve at this point was nearly zero, so the 

imaginary impedance and the frequency at this point could been used for calculating the 

double layer capacitance (Equation 3) [45, 46]. Also, with the content of ionic liquids 

increasing, the double-layer capacitance (CDL) increased except at 25%. With more ionic 

liquid, the cell was able to contain more ions (smaller solution resistance) and store more 

energy (larger double-layer capacitance). However, there existed exceptions around 25 

v% of ILs with high solution resistance and low double-layer capacitance. In small 

amount of ionic liquid, the organic electrolyte solution was not stable and the ability of 

ions from ILs attaching on GPE membranes is low compare with higher percentages of 

ILs. The battery system preferred higher percentages of ionic liquids.  

         (3) 

 

The linear plot associated with the semicircle at low frequency, called low 

frequency Warburg line, represented the Warburg behaviors - diffusion between two 

electrodes. Based on the experiment results, the Warburg behaviors could be obtained by 

the Warburg coefficient ( ): the slope of the line real impedance verses the radial 
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frequency to the power of (-1/2) (Figure 3.5). Theoretically,  could also be defined by 

Equation 4, where R is the gas constant, T is the room temperature in this experiment, n 

is the number of electrons transferred, F is the Faradays constant, A is the surface area of 

the electrode,  is the bulk concentration of the diffusing species from oxidant, DO is 

the diffusion coefficient of the oxidant,  is the bulk concentration of the diffusing 

species from reductant, and DR is the diffusion coefficient of reductant. Based on the 

equation 4, the Warburg behaviors were more relayed on diffusing properties of the 

reductant and the oxidant, which are the two electrodes, and GPE has few effects on the 

diffusions. It also proved by the number of Warburg coefficients of those 8 groups, since 

there were no certain patterns overall among them. 

                                                                                   (4) 

 
Figure 3.4 Equivalent circuit of Lithium-ion polymer cell 

 
Figure 3.5 Real impedance verses the radial frequency to the power of (-1/2) at low 
frequency (63 Hz ~ 3 Hz) 



56 

Table 3.2 Values of solution resistance and double-layer capacitance in equivalent 
circuit 
Percent of ILs (v%) RS (Ohms) RCT (Ohms) CDL (F)  

0 9.983 98.940 3.99E-04 78.814 

25 7.475 216.578 3.03E-04 95.976 

30 5.517 177.381 4.25E-04 99.088 

40 3.785 136.122 4.43E-04 113.52 

50 2.849 190.677 4.80E-04 97.602 

60 3.968 189.382 4.43E-04 95.877 

75 3.065 155.311 5.36E-04 84.32 

100 2.931 154.235 6.54E-04 98.015 

 

3.3.3 Battery performance: 

Galvan static charging and discharging were used to evaluate to performance of 

the entire system (Graphite/GPE/LiMn2O4). Each cycle included constant current (0.5C) 

discharging, rest (8mins), constant current charging and constant voltage charging in the 

voltage range of 0.5V – 5V. During each process, the Battery Analyzer monitored the 

current, voltage, and capacities every 5 seconds.   

The battery performance could be represented by the value of discharge capacity 

along shelf life and average rest voltages after fully charged. Table 3.3 displayed the 

average rest voltage (RV) of each system after fully charged; 

RV(50v%)>RV(30v%)>RV(40v%)>RV(25v%)>RV(60v%)>RV(0v%)>RV(75v%)>RV

(100v%).  

Figure 3.6 compared the cycling stability of each battery system. At the first 25 

cycles (Figure 3.6), systems with ionic liquid had much higher discharge capacity 

(~90mAh/g) comparing with the system without ionic liquid (~80mAh/g). At the last 25 

cycles, the discharge capacity of system with 75 v% and 100 v% ILs decline rapidly 
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from 90mAh/g to 50mAh/g; and almost 55 v% of discharge capacity lost in the last 25 

cycles comparing with the initial discharge capacity. Low average rest voltage and high 

discharge capacity lost indicated that the systems with high volume percent of ionic 

liquids were not stable at long terms due to the acidic proton in C-2 on the EMI cations 

would damage the protective film on the surface of electrodes [21]. As the protective 

film is damaging, there would be a series of side reactions occurred between GPE and 

the electrodes. In this case that LiPF6 was the main solute; it was highly possible that 

CO2, HF, and LiF would be produced by side reaction. Gas CO2 and HF gases would 

increase the internal pressure of the cell, which would cause safety concerns and even 

lead to explosion. LiF was not in ionic form and barely electrical conductive leading to 

high interface resistance. Other than 75 v% and 100 v%, GPEs, with ILs 0 v%, 25 v%, 

30 v%, 40 v% 50 v% and 60 v%, kept discharge capacity in less than 20% of the initial 

value (Figure 3.6). Overall, the discharge capacity of GPEs increased as the volume 

percent of ILs increasing from 0 v% to 50 v%; however, it declined after 50 v%. GPEs 

with ILs 50 v% reached the peak of discharge capacity. Based on the data in Figure 3.6, 

at ILs 50 v%, there was a balance between ILs and mixture of EC and PC. According to 

Hui et al, ethylene carbonate could form an effective protective layer on the surface of 

graphite as a co-solvent to prevent side reactions [39]. PC and EC were both cyclic 

carbonate; and they enhanced the stability and transport of lithium ions as PC and EC 

mixture. In this case, half volume of the solvent – EC and PC mixture - provided the 

protective film; and the other half - Ionic Liquids – increased the ionic conductivity of 

GPEs. 
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Figure 3.6 Consecutive cycling behavior of Graphite/GPE/LiMn2O4 systems with 
different volume percent of ionic liquids 
 
 
Table 3.3 The average rest voltages of Graphite/GPE/LiMn2O4 systems with 
different volume percent of ionic liquids after fully charged 
Volume percent of ILs (v%) Rest voltage (RV) 

 0 3.342 
25 3.800 
30 3.853 
40 3.807 
50 3.942 
60 3.630 
75 3.202 

100 3.073 
 

In summary, low volume percent of ionic liquids would reduce stability of the 

lithium ions and ionic conductivity of GPE membrane; and high volume percent of ionic 

liquids would damage the protective layer on the surface of electrodes. An organic 
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electrolytes solution with the best battery performance turned out to be 1M LiPF6 in 50 

v% of ionic liquid, 25 v% EC, and 25 v% PC.  

 

3.4 Conclusion 

In previous figures and tables, adding ionic liquids in organic electrolytes 

solution increased the ionic conductivity, lower the solution resistance, higher the 

double-layer capacitance, and improved the charging and discharging performance. 

Combining all the factors, an organic electrolytes solution in the range of 50 v% of ILs is 

the most appropriate. In this entire system, EC and PC provided the protective film on 

the surface of electrodes and freed lithium ions from it compound; EMI-Tf increased the 

ionic conductivity and the stability of GPEs. In this work, EMI-Tf was applied as ionic 

liquids; besides this, other ionic liquids can also be introduced in an organic electrolytes 

solution, which would be discussed in the future. 
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CHAPTER 4 

INFLUENCE OF GOLD NANOPARTICLES OF THE GEL POLYMER 

ELECTROLYTE  

 

4.1 Introduction 

Since the 1960s, lithium secondary batteries have been applied in mobile 

applications as power sources [1-3]. After years of previous effort, lithium secondary 

batteries, especially lithium-ion polymer batteries (LIPBs), are now the major power 

sources for portable electronic equipment such as mobile phones, laptops, electric 

vehicles, etc. [2]  LIPBs rely on numerous advantages including low cost, reliability, and 

durability [4]. Nowadays, with the rapid development of electronic equipment, there is a 

greater demand for energy storage systems; and LIPBs can meet these needs [5, 6]. 

The design of a thin-film LIPB stands out among other LIPBs, because the thin-

film features unique properties, which includes a wide variety of shapes, easy assembly, 

and flexible structure [7]. A thin-film LIPB typically consists of an anode, an electrolyte 

layer, and a cathode [8-11]. In the long term, the improvements on anodes, electrolytes, 

and cathodes are all necessary for progress in LIPBs. However, in the short term, the 

experiment discussed in this paper focuses on improving the Gel Polymer Electrolyte 

(GPE) by studying gold nanoparticle (AuNP) doped GPEs for flixable LIPB. 

Currently, four polymers are identified as most suitable materials for the 

backbone structure of GPEs: polyethylene oxide (PEO), polyacrylonitrile (PAN), 

polymethyl methacrylate (PMMA), and polyvinylidene fluoride (PVdF) [12]. Based on 
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its excellent chemical stability, electrochemical properties, high affinity, and good 

mechanical properties, PVdF-based GPE is the most investigated structure for LIPBs 

[12-14]. Although exhibits promising performance, there is still room for improvement 

of PVdF-based GPEs. In order to form advanced GPEs, a group of researchers [15, 16] 

found that suitable ceramic fillers, such as silica, neutral alumina, acid alumina, and 

basic alumina, enhance the mechanical stability and allow a long and more efficient 

cycling of the battery. Metallic nanoparticles, mainly gold nanoparticles, are commonly 

used in diagnostics, sensors and other electronic devices, owing to gold is the most 

stable noble metal at the nano scale and gold has high electronic conductivity [17]. 

Based on quantum mechanical rules, the nanoparticles within diameter range 1-10nm 

would demonstrate electronic structures [18]. Gold nanoparticles with diameter 1-10nm 

are also considered as electrons, which have negative charge on the surface. The 

hypothesis of this work is that those negative charge carried by gold nanoparticles could 

attract lithium ions in the electrolytes to improve the performance of lithium ion polymer 

battery. To increase the ionic conductivity, reliability, and durability, gold nanoparticles 

are discussed as filler for GPE in this chapter.  

Because of the polymer’s polymorphism and PVdF’s piezoelectric properties, 

lithium electrolytes can be stored in the approximately 50% amorphous structure, which 

is a result of PVdF having a semi-crystalline structure [9-11]. In this case, GPE is 

synthesized in two steps: fabricating porous PVdF membranes and then soaking the 

membranes in lithium electrolytes - lithium hexafluorophosphate (LiPF6) in this work. 
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4.2 Experimental 

Copper foil single-side coated by CMS Graphite (240mm L x 200mm W x 

0.1mm t) was used as anode; aluminum foil single-side coated by LiMn2O4 (240mm L x 

200mm W x 0.1mm t) was used as cathode (MTI Corporation). 1-Methyl-2-pyrrolidone 

(MP) (99.5%), ethylene carbonate (EC) (98%), propylene carbonate (PC) (99.7%), 

lithium hexafluorophosphate (LiPF6) (98%), ethanol (99.5%), polyvinylidene fluoride 

(PVdF) were obtained from Sigma-Aldrich; gold nanoparticles (AUNPs) (diameter 

3.2nm, 99.99%, 20ppm aqueous) were obtained from Purest Colloids Inc. 

To make the AuNPs compatible with PVdF, the medium (water) was exchanged 

through a solvent exchange process as follow:  Firstly, 100 mL original AuNPs solution 

was heated under 90!. When the amount of solution decreased to 5mL, 1-Methyl-2-

pyrrolidone (NMP) was added as the new solvent to increase the net volume to 25mL. 

The solution was heated again until 20mL was left. The solution was then sonicated for 

60 minutes to re-disperse nanoparticles in the solution. Then the resultant solution, a 

100ppm homogeneous AuNPs in NMP, was used for the experiments. Before and after 

the solvent exchange process, the property of solution was determined by ultraviolet 

absorbance spectroscopy. 

The GPE is a membrane synthetized by trapping plasticizers EC PC in PVdF and 

NMP solutions and soaked in lithium hexafluorophosphate (LiPF6). Firstly, EC and PC 

with weight ratio 1:1 was mixed and heated at 110°C to completely dissolution. 

Secondly, PVdF added to pure MP with weight ratio (1:3) as control group; and PVdF 

added to 40ppm AuNP-NMP solution with the same ratio as experimental group. When 



68 

the two solutions prepared individually, the first solution and the second solution with 

weight ratio 2:3 was heated together at 110°C and stirred on a magnetic stirrer until 

desired viscosity was reached. Then, the slurry was casted onto a flat glass disk. The flat 

glass disk with the slurry was then left at 80°C for 2 hours; then soaked into 10% ethanol 

solution for 12 hours. Then, a pale yellow membrane for as control and a light purple 

AuNP-doped membrane for the experiments remained in the glass disk. The membranes 

in both groups with 0.3mm thickness were cut into 22mm x 22mm square and were 

stored at ambient conditions.  Finally, the membranes were activated by soaking into a 

1M LiPF6 dissolved in EC:PC (1:1) solution for 24 hours under Argon.  

  The ionic conductivity of GPE was measured by impedance spectroscopy 

(VersaSTAT 4) using two steel chips (15.5mm D x 0.2mm t) as the blocking electrode 

cells. Impedance spectroscopy (1.0E5 Hz to 0.1 Hz, !V = 10mV) was periodically 

monitored over 30 days. The thin-film cell was assembled as shown in Figure 3; with 

GPE located in between the cathode and anode. In the actual model on the left of Figure 

3, cathode and anode are exact 20mm x 20mm; but GPE film is larger than cathode and 

anode so the cell would not be shorted. The surface of protection cover that face inside 

of the cell is sticky, which helped airtight enclosure of the whole system. Charge-

discharge was carried out with a computer controlled BST8-MA battery analyzer (MTI 

corporation), between 1V and 5V with a constant current of 0.5mA. 
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4.2 Results and discussion 

4.2.1 Property of AuNPs: 

The size of AuNPs used in this paper was sphere with diameter of 3.2nm. We 

used the Ultraviolet spectra to scan the samples: the original 20ppm AuNPs (medium: 

water) solution before evaporation (“before” in Figure 4.1), the 400ppm AuNPs 

(medium: water) solution after first evaporation (“only evaporate” in Figure 4.1), the 

final 100ppm AuNPs (medium: NMP) solution after second evaporation and 

ultrasonication (“after” in Fugure 4.1). According to Mie theory, the optical absorption 

spectra directly depend on the size of nanoparticles: plasmon absorption bands of gold 

sphere nanoparticles solution with larger diameter would center at higher wavelength 

[19, 20]. Since the center of plasmon absorption bands (Figure 4.1) of AuNPs solution 

with water as medium kept constant (510nm) after first evaporation, the evaporation 

process did not affect the property of AuNPs. Meanwhile, AuNPs with higher 

concentration could absorb larger amount of Ultraviolet spectra, due to AuNPs with 

higher concentration would have more AuNPs in a unit volume solution; and the 

Ultraviolet spectra absorbance ability of each AuNP was the same. This indicated that 

the amount of absorbance of 400ppm AuNPs solution (1.8) was almost three times the 

amount of absorbance of the original 20ppm AuNPs solution (0.6).  

For the spectrum of the final 100ppm AuNPs solution with NMP as medium, the 

shapes of its curves were similar to the other two and the peaks are approximately at the 

same wavelength, one can conclude that AuNPs have kept their unique properties in 

NMP. Nevertheless, by drawing a vertical line at the peak point of blue curve, it was 
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obvious that the peak of red curve shifts two minor units towards right. Also, the slope 

of red curves after the peak point was greater than the other two curves. Due to the 

center of plasmon absorption bands was representing the size of AuNPs [21-23], there 

were two probabilities: the size of AuNPs in the AuNPs NMP solution increased; and 

they slightly aggregated. Since the AuNPs is standard and stable by the introduction of 

the product, their size would not change. Thus, the only logical possibility is slight 

aggregating, in the other word, some of sphere AuNPs might gather and form a larger 

size sphere [24]. 

 

Figure 4.1 Comparison of the absorbance measured after solvent exchange (red 
line) with the absorbance measured before the solvent exchange (blue line) and 
absorbance measured by the AuNPs solution only evaporating 
 

4.3.2 Ionic Conductivity: 

At room temperature, GPE is placed between two steel chips as two blocking 

cells to measure the impendence.  In high frequency range (100000Hz - 10000Hz), the 
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Nyquist plots act as a vertical line (Figure 4.2); and the effect of the imaginary part of 

impendence can be neglected.  

 

Figure 4.2 Comparison of the impedance for steel/GPE/steel with AuNPs and 
without AuNPs at high frequency 
 

Then, after extending the vertical lines for both GPE with AuNPs and GPE 

without AuNPs, there are two intersecting points that meet the Zre-axies. At the 

intersecting points, the value of real impendence can be written as the internal resistance. 

Also, the ionic conductivity (") is calculated by the Equation (1): 

t
RA

! = ! (1) 

!  

The value of each term for both GPE with AuNPs and GPE without AuNPs lists 

in Table 1. According to the data, the ionic conductivity of GPE with AuNPs (0.96E-3 

S/cm) is much greater than the ionic conductivity of GPE without AuNPs (1.18E-4 

S/cm). Because of AuNPs, shorter lithium ions’ route in GPEs provides higher efficacy 

of the cell during the charging and discharging process.  
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    Table 4.1 Values of each term in calculating ionic conductivity 
 

 

 

4.3.3 Interfacial properties: 

As Figure 7 showing, the Nyquist Plots for both cell with AuNPs and cell 

without AuNPs consist of semicircles. At high frequency and low frequency, the 

capacitive contribution is neglected; and it acts as pure resistance. Meanwhile, at the 

medium frequency, the semicircle reflects the most capacitive contribution. By assuming 

that semicircle is associated with parallel combination of interfacial resistance and the 

constant-phase element (CPE), the system of can use the equivalent circuit in Figure 6 to 

describe.  

  

Figure 4.3 Equivalent circuit of Lithium-ion polymer cell 
 

The solution resistance indicates the pure resistance at high frequency that also 

relates to bulk resistance of the polymer electrolyte; and the value of Rs locates in the left 

starting points in the Nyquist plots. Rs of the cell without AuNPs (200 Ohms) is 

approximately 100 times the cell with AuNPs (2 Ohms), which proves GPE with AuNPs 

has excellent conductivity comparing with the normal one. At low frequency, the value 

of the right ending points in the Nyquist plots is sum of charge-transfer resistance and 

Sample t (mm) R (ohm)  A (cm2) " (S/cm) 
GPE with AuNPs 0.31 17  1.89 cm^2 0.96 E-3  
GPE without AuNPs 0.35 157 1.89 cm^2 1.18 E-4 
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solution resistance. According to Nyquist plots, Rct for cell without AuNPs is around 

7300 Ohms; and Rct for cell with AuNPs is around 145 Ohms. The double-layer 

capacitance can be calculated by Equation (2) and Equation (3). 

1.0 5 0.1 50,000
2 2

h l
m

E Hz Hz Hz
f ff

+ +
= = =
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In this case, estimated CDL for cell without AuNPs (46.5nF) is significantly 

smaller than estimated CDL for AuNPs (2.28µF). Higher capacitance indicates more 

energy can be stored in each individual cell. In the parallel combination of double-layer 

capacitance and charge-transfer resistance, the lithium-ion polymer cell with AuNPs 

with lower internal resistance and higher capacitance in a certain size improves the 

performance of the whole battery. 

From the Nyquist plots, the diameter of each semicircle shrinks and then extends 

over time. In the first few days, it takes time for LiPF6 flooding the half amorphous 

structure; also the cell is not fully discharged. Between day 4 and day 7, there exists the 

smallest diameter for both cases. In the end of the month, the diameter reaches the 

largest value due to small amount of PVdF is dried. In day 30, the curve of cells with 

AuNPs is not as smooth as other. As this paper mentioned before, aggregating is one of 

the issue in this work; so in long term it will infinitesimally affect the performance of the 

cell. 
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Figure 4.4 a) Nyquist plots obtained for LIPB with AuNPs for 1 month at room 
temperature, b) Nyquist plots obtained for LIPB with AuNPs for 1 month at room 
temperature 
 

4.3.4 Battery performance: 

Galvan static charging and discharging were used to evaluate to performance of 

the entire system (CMS/GPE/LiMn2O4). Each cycle included constant current (0.5C) 

discharging, rest (5mins), constant current charging and constant voltage charging in the 

voltage range of 0.5V – 5V. During each process, the Battery Analyzer monitored the 

current, voltage, and capacities every 5 seconds.   
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The average rest voltages could represent the battery performance after fully 

charged and the value of charging/discharging capacity along shelf life. The average rest 

voltage of GPE with AuNPs (RV=3.8V) is higher than the average rest voltage of GPE 

without AuNPs (RV=3.3V). A higher average rest voltage indicated that the cell could 

operate a higher potential voltage during discharges [16].  

Figure 4.5 compared the cycling stability of each battery system. After adding 

AuNPs as filler in GPE, both charging capacity and discharging capacity during 50 

charging/discharging cycles were increased 30% comparing with the GPE without 

AuNPs. The charging/discharging capacity indicated the energy storage ability of each 

cell. In this case, the materials of cathodes and anodes are exactly the same; so are the 

assembly condition and assembly process. Then, higher charging/discharging capacity in 

this case implied that GPE with AuNPs stored more energy; in the other word, more 

liquids electrolytes (LiPF6) solution was stored inside of GPE membrane [13, 14, 25]. 

According to the information provided by the Purest Colloids Inc., AuNPs used in this 

paper had negative charges on the surface. A small amount of AuNPs within the GPE 

membrane is highly possible to generate an electronic field that could attract more 

Lithium ions during activation process. Then, GPE membrane with AuNPs could 

provide and transmit more lithium ions during the chemical reaction happened between 

cathode and anode. In this case, AuNPs did enhance the performance of Lithium ion 

polymer battery by storing more lithium ions to increase the charging/discharging 

capacity and operate higher potential voltage.  
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Figure 4.5 Consecutive cycling behavior of CMS/GPE with or without 
AuNPs/LiMn2O4 systems 
 

4.4 Conclusion 

The GPE is a membrane synthetized by trapping ethylene carbonate, and 

propylene carbonate in polyvinylidene fluoride and 1-methyl-2-pyrrolidinore solutions. 

Besides applying phase transfer method, gold nanoparticles are added in gel polymer 

electrolyte as fillers, which enhance the ionic conductivity and the performance of the 

whole battery. After applying the AuNPs, the ionic conductivity of gel polymer 

electrolyte increased 10 times the general GPE. As part of lithium-ion polymer cell, the 

gel polymer electrolyte with AuNPs leaded to higher captaincy and lower internal 

resistance. Even if there exist aggregating, the amount is so small that it can be 

neglected.    
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CHAPTER 5 

Conclusion and Future Prospective  

 

Nowadays, due to numerous advantages of this class of batteries, including a 

wide variety of possible cell shape, reliability, and durability, lithium-ion polymer 

batteries are widely established as power sources for portable electronic equipment such 

as mobile phones and laptops, as well as hybrid and electric vehicles [1-8]. This work 

investigates and presents two methods to improve the gel polymer electrolyte efficiency 

in lithium ion polymer batteries by introducing ionic liquids and gold nanoparticles. The 

gel polymer electrolyte is a membrane synthetized by trapping ethylene carbonate, and 

propylene carbonate in polyvinylidene fluoride and 1-methyl-2-pyrrolidinore solutions, 

which is then activated in lithium salt with organic solvent solution. Adding ionic liquids 

to the organic solvent increases the ionic conductivity, lowers the solution resistance, 

and enhances the double-layer capacitance, and improves the charging and discharging 

performance. Combining all the factors, an organic electrolytes solution containing 

approximately 50-volume% of ILs is the most efficient. Gold nanoparticles are added in 

gel polymer electrolyte as fillers, which also enhance the ionic conductivity and the 

performance of the battery as a whole.  

This thesis discussed two ways, added ionic liquids as the solvent of LiPF6 and 

added AuNPs in GPE membrane, to improve the performance of Lithium ion polymer 

battery, however, it has not reported the results of combining two methods. In the future, 

I am planning to compare the Lithium ion polymer battery with both ionic liquid and 
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AuNPs with the one with only one additive. It is highly possible that GPE with both 

ionic liquid and AuNPs will have higher ionic conductivity and larger capacity. Also, the 

minor problem of AuNPs aggregation during solvent exchange process needs to be 

addressed in the future. As I am concerned, add some coating on the surface of AuNPs 

or use a different size of AuNPs might solve the AuNPs aggregation problem.  

The advantage of lithium-ion polymer batteries discussed in this thesis is the 

polymer electrolytes.  The gel polymer or solid polymer electrolytes allow a wide variety 

of designs and provide means for complex nano and micro-structures which in turn can 

improve performance of the device. These structural properties could not be achieved in 

liquid cells.  
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