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ABSTRACT 

 

Graphene is a two-dimensional (2D) material that exhibits exceptional electric 

and optical properties. The high electron mobility and thermal conductivity of graphene 

are of great interest for interconnects, electronic devices and radio frequency devices. In 

spite of the extensive experimental and theoretical studies on single layer graphene 

(SLG), its thermal properties have not yet been fully addressed and vast work need to be 

done to reveal the phonon transport mechanism within this micro/nanoscale material. 

 

A transient molecular dynamics technique is developed to characterize the 

thermophysical properties of two-dimensional graphene nanoribbons (GNRs). By 

directly tracking the thermal relaxation history of GNR that is heated by a thermal 

impulse, we are able to determine its thermal diffusivity fast and accurate. In the right-

angle bended GNR system, three peculiar features about the phonon energy transport 

have been observed for the first time. An energy inversion phenomenon has been 

observed during the transient thermal transport in GNR system. Phonon energy coupling 

among different phonon modes are investigated and it is found that both dynamic and 

static heat sources can evoke the energy inversion in GNR. The unique thermal 

properties of GNR enable it to support a bi-directional heat transfer in the system. And 

when the bi-directional heat conduction reaches steady state, a single thermal 

conductivity cannot be used to reflect the relation between the heat flux and the 

temperature gradient. The calculated thermal conductivities are dependent on the net 
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heat fluxes and the app of graphene are calculated at positive, negative, zero and infinite 

values, depending on the proportions of each phonon mode energy added/subtracted 

to/from the heating/cooling areas. The dynamic response of graphene to a thermal 

impulse is investigated and the interfacial thermal resistance between graphene and Si is 

evaluated. A transient pump-probe method is designed for interfacial thermal resistance 

characterization. 
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CHAPTER 1. INTRODUCTION 

 Extremely high thermal conductivity of graphene 1.1.

Graphene is a monolayer of graphite arranged in a honeycomb lattice of sp2 

bonded carbon atoms [1] and it has attracted much attention due to its extraordinary 

electronic and thermal properties [2-5] over the past decade. Graphene nanoribbon 

(GNR), which is a narrow strip (typically < 20 nm) of graphene, also becomes the 

subject of significant research because of extraordinary electrical, thermal, and 

mechanical properties with significant application potential in future nanoelectronic and 

mechanical devices. The distinguished properties of GNRs have been extensively 

studied both theoretically and experimentally [2, 6-9], which indicate that GNRs are a 

promising material for nanoelectronic applications. Owing to the edge effect and 

quantum confinement, GNRs are expected to exhibit outstanding thermal properties 

[10]. 

 

Both experimental and numerical methods have been conducted to study the 

thermal properties of GNR and ultra-high thermal conductivity has been observed [11, 

12]. Recent measurements of the thermal conductivity (k) of a partially suspended 

graphene sheet revealed a thermal conductivity as high as 5300 W/mK at room 

temperature (RT) [11]. Other experiments [12] suggest graphene has thermal 

conductivity of 30005000 W/mK for a length l of ~10 µm. This high thermal 

conductivity exceeds that of graphite and is partly attributed to the long phonon mean 



2 

 

free path (MFP) in carbon nanostructures. Several research groups [10, 13] using the 

Brenner potential and non-equilibrium molecular dynamics (NEMD) simulations found 

much lower values of k in the order of several hundreds of W/mK depending on the 

width, edge type (armchair or zigzag), and roughness. First principle calculations by 

Nika et al. [14] and Kong et al. [15] obtained k values of graphene in the range of 2000–

6000 W/mK. In several previous MD simulation investigations, however, the results 

turned out to be contradictory to that study. Hu et al. [16] calculated the thermal 

conductivity of GNRs (up to ~4 nm wide and ~10 nm long) around 2000 W m-1 K-1. The 

size of GNRs explored by Hu et al. is much smaller than graphene’s phonon mean free 

path (MFP), which is about 775 nm at RT [12]. Therefore the thermal conductivity result 

in Hu’s work is much higher than expected since the value is beyond the upper ballistic 

bounds [17]. It has been pointed out that quantum ballistic transport could not be fully 

described by MD simulation and violation of the ballistic upper bounds may be observed 

when calculating thermal conductance [18]. 

 

 Phonon thermal transport in graphene 1.2.

The exceptional thermal properties of graphene are partially due to its unique 

phonon transport mechanism in the 2-D system. The challenge of accounting for these 

phonon features gives the starting impetus to the study of graphene. There are three 

acoustic phonon branches, i.e. the in-plane longitudinal (LA) and transverse (TA) 

branches and the out-of-plane flexural (ZA) branch, which contribute to the thermal 

conductivity in graphene. Although for a long time it has been tacitly accepted that the 



3 

 

in-plane acoustic phonons are dominant in the thermal transport of graphene [19-22], 

recent studies have proven that the fact is quite different. Saito et al. [23] calculated the 

ballistic thermal conductance of graphene by investigating the dispersion relation of 

phonons and electrons. They proved that the ballistic phonon conductance of graphene 

below about 20 K is mainly determined by the out-of-plane acoustic mode (ZA branch) 

and the in-plane acoustic modes (LA and TA branches) cannot be ignored above 20 K. 

By measuring the thermal transport of SLG supported on amorphous SiO2, Seol et al. 

[24, 25] performed a revised calculation and they showed that the ZA branch can 

contribute as much as 77% at 300 K and 86% at 100 K of the calculated thermal 

conductivity for suspended graphene due to the high specific heat and long mean 

scattering time of ZA phonons. Based on the exact numerical solution of the linear 

Boltzmann transport equation (BTE), Lindsay et al. [26, 27] calculated the lattice 

thermal conductivity (L) of graphene at 300 K and it turned out that the dominant 

contribution to L comes from the ZA branch, which is greater than the combined TA 

and LA contributions. A symmetry-based selection rule and the anomalously large 

density of states of flexural phonons are used to explain their results. Our study revealed 

the fact that in a GNR system, the ZA branch has peculiarly higher thermal conductivity 

than the LA and TA branches [28]. Also, ZA↔ZA energy transfer is much faster than 

the ZA↔LA/TA phonon energy transfer. We have proved that under the influence of a 

moving or static localized heat source, the flexural mode (FM) phonons dissipate heat 

much faster than the longitudinal mode (LM) and transverse mode (TM) phonons, which 

gives rise to an energy inversion phenomenon at the system level. 
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 Scope of present work 1.3.

In this work, dynamic response of graphene to thermal impulse is studied and 

non-Fourier heat transfer is found during ultrafast heat transfer in graphene . Phonon 

thermal transport is studied in three-dimensional (3D) bent graphene nanoribbons and 

three peculiar phenomena are reported. An energy inversion phenomenon at the system 

level is reported for the first time in the graphene system. Co-existing heat currents in 

opposite directions are observed in the graphene system. At last, thermal transport across 

graphene-substrate interface is studied. 

The Debye model discussed in Chapter 2 is derived by Dr. Xiaopeng Huang. The 

diffusive heat transfer simulation in Chapter 2 is performed by Prof. Yanan Yue.  
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CHAPTER 2. DYNAMIC RESPONSE OF GRAPHENE TO THERMAL 

IMPULSE 

In this chapter, MD simulation is performed to study the dynamic response of 

GNR to thermal impulse based on the second generation of Brenner potential [29]. A 

transient technique is developed to numerically measure the thermal diffusivity of GNR 

based on its thermal response. This technique features comparable fast MD simulation 

implementation and low data uncertainty. To study the size effect on dynamic thermal 

conductivity of GNR, different lengths (from 14.9 nm to 999.9 nm) GNR structures of 

1.99 nm width are used. Quantum correction is applied to both GNR’s thermal 

conductivity (k) and specific heat (cp) calculation. In Section 2.1, we first introduce the 

pulsed laser-assisted thermal relaxation (PLTR) technique, from which our numerical 

method is derived. Details of this numerical method are then discussed with its 

application to numerically measure GNR’s dynamic thermal conductivity. Section 2.2 

provides MD simulation results and our analysis of size effect on GNR’s thermal 

conductivity. Non-Fourier heat conduction is analyzed in details and thermal wave 

propagation in GNR’s in-plain direction is studied. 

 

 Physics of the dynamic response 2.1.

In MD simulations to determine the thermal conductivity of materials, non-

equilibrium and equilibrium techniques can be applied. Traditional numerical methods 

like non-equilibrium molecular dynamic (NEMD) simulation employs heat sources and 

sinks to generate temperature gradient for thermal conductivity calculation. Based on the 
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Fourier’s law of heat conduction, the thermal conductivity can be calculated from the 

temperature gradient and heat flux. An alternative approach to determine the thermal 

conductivity is equilibrium molecular dynamic (EMD) simulation based on the Green-

Kubo expression that relates k to the integral over time t of the heat flux autocorrelation 

function by 

2 0

1
( ) (0)

3 B

J t J dt
Vk T




  , (2-1) 

where kB is the Boltzmann constant, V the volume, T temperature of the sample, and the 

angular brackets denote an ensemble average. The thermal conductivity can be 

calculated using Eq. (2-1) once the heat flux vector J(t) is known. A detailed comparison 

of the MD techniques for computing thermal conductivity was conducted by Schelling et 

al. [30] Generally speaking, the NEMD approach requires large temperature gradients 

which takes relatively long simulation time and has significant boundary condition 

issues at interfaces. Results calculated by using the EMD method depend sensitively on 

the initial conditions of each simulation, thus necessitating a large ensemble of 

simulations. The slow convergence of the autocorrelation function further increases the 

computational demand, requiring long integration time periods [31]. Therefore in present 

study, a transient cooling method is developed to evaluate the dynamic thermal 

conductivity of GNR with much less computational time requirement while bears higher 

accuracy [32]. 

 



7 

 

2.1.1. Dynamic method and mathematical model 

 

 

Figure 2.1. Schematic of experiment and MD simulation methods for PLTR. (a) A 

sample is suspended over two electrodes in experiment. The temperature of the two 

bases is kept at T0 (RT). (b) Changes of sample temperature after pulsed laser 

heating. The sample temperature is T0 at initial state, and then rises to T1 quickly 

because of the induced heating by laser pulse. Cooling relaxation continues until 

sample’s temperature reaches T0 again. (c) Numerical principles derived from the 

PLTR technique. Temperature of the system is set at T1 initially. Then one end of 

the GNR is kept at a low temperature (T0) to represent the sample base contact 

point. 

 

The numerical method used in our MD simulation process is derived from the 

pulsed laser-assisted thermal relaxation (PLTR) technique, which is developed by our 
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group to measure the thermal diffusivity of one-dimensional micro/nanoscale structures 

in experiment [32, 33]. In the PLTR technique, the to-be-measured sample is suspended 

over two copper electrodes. When running the experiment, a nanosecond laser pulse is 

used to irradiate the sample wire uniformly to induce a temperature increase (T). 

Configuration of this experiment is shown in Fig. 2.1(a). Right after the pulsed laser 

heating, temperature of the sample will gradually go down. Temperature evolution of the 

sample is shown in Fig. 2.1(b). Such temperature relaxation is strongly determined by 

the samples’ thermal diffusivity and length. From this temperature relaxation history, the 

thermal diffusivity of the wire can be determined with sound accuracy. In experiment, 

the length of the wire is significantly greater than its diameter, which will simplify the 

physical model to one-dimensional. The thermal conductivity is determined via 1-D heat 

transfer equation 

2

2

pc T T
k q

t x

 
 

 
, (2-2) 

with homogeneous boundary conditions and initial conditions, T (x = 0, t) = T (x = L, t) = 

0 and T (x, t = 0) = 0. Here T only represents the temperature variation induced by the 

thermal impulse and q  the rate of thermal energy generation induced by the laser pulse 

(pulse width: t) heating. The solution to the partial differential equation described by 

Eq. (2-2) can be obtained from the integral of the Green’s function, 

2 2 2

11

1

2
( , , ) exp[ ( ) / ] sin( )sin( )X

m

x x
G x t x m t L m m

L L L
     






     . (2-3) 

The average temperature of the wire T (t) for 0 t t    is expressed as 

(

a) 
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2 2 2 2

4 40
1

1 8 1 exp[ (2 1) / ]
( ) ( , )

(2 1)

L

x
m

qL m t L
T t T x t dx

L k m

 








  
 


 . (2-4) 

For time t larger than t, we have, 

2 2 2 2 2 2 2

4 4
1

8 exp[ (2 1) / ]{exp[(2 1) / ] 1}
( )

(2 1)m

qL m t L m t L
T t

k m

   







    



 . (2-5) 

After normalizing as 
*

min max min[ ( ) ] / ( )T T t T T T    (Tmin is 0 and Tmax is the maximum 

temperature increase of the sample calculated as / pq t c ), and using the relation k = 

cp, where   is mass density, cp specific heat and  thermal diffusivity, the normalized 

temperature relaxation simplified using Taylor expansions can be written as 

2 2 2
*

2 2
1

8 exp[ (2 1) / ]

(2 1)m

m t L
T

m

 







 



 . (2-6) 

Equation (2-6) shows that for any kind of material of arbitrary length, the normalized 

temperature relaxation follows the same shape with respect to the Fourier number Fo (= 

t/L2) [32, 33]. Further convergence study shows that to make the summation in Eq. (2-

6) converge, the value of the term related to m should be less than 10-3 of the summation 

from terms 1 to m-1. When m = 15, the summation in Eq. (2-6) will converge to a stable 

value with negligible error. The thermal diffusivity of the sample is determined by 

global data fitting of the temperature relaxation curve. In this method, the normalized 

temperature decrease is calculated using Eq. (2-6) by using different trial values of 

thermal diffusivity. The trial value giving the best fit (least squares) of the experimental 

data is taken as the sample’s thermal diffusivity.  
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2.1.2. Atomic potential and MD domain construction 

 

 

Figure 2.2. Structure of LJ walls in the x direction. The GNR is placed in the 

middle of upper and lower LJ walls. The distance between the wall and GNR plane 

is 3.35 Å. 

 

In our MD simulation, the second generation Brenner potential [29] (REBO) 

based on the Tersoff potential [34, 35] with interactions between C-C bonds is used. The 

time step is 0.5 fs for all calculations. To avoid any stretching or compressing stress on 

the GNR structure, free boundary conditions are applied to the y and z directions. The 

simulation domain is bounded with two Lennard-Jones (LJ) walls in the x direction that 

enclose all the atoms. By applying LJ walls to the system, the GNR structure could be 

fully relaxed during the thermal equilibrium calculation and will not have folding effect. 

The energy E of wall-particle interactions is given by the 9-3 LJ potential 

9 32
[ ( ) ( ) ]
15

E
r r

 
 

   
cr r , (2-7) 

where r is the distance from particle to the wall, and ε and σ are the usual LJ parameters, 

which are set to be 0.00284 eV and 3.4 Å respectively. rc represents the cutoff distance 

specified in simulation. The distance from each LJ wall to the GNR plane is set to be 

0.335 nm, which is the distance between two neighboring carbon layers in graphite 

d = 3.35 Å 

  
 

  

cooling area 
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structure. Configuration of the LJ walls is shown in Fig. 2.2. 

 

Based on the PLTR technique, a numerical method is constructed to investigate 

the dynamic response of GNR and its thermophysical properties. In MD simulation, a 

two-dimensional GNR with free boundary conditions is initially created. The GNR used 

in MD simulation is of half- length compared to that used in PLTR experiment, since MD 

simulation only applies the transient cooling process to one end of the GNR, while in 

experiment, both ends of the sample is maintained at RT. In numerical method [Fig. 

2.1(c)], the cooling area of GNR stands for one of the sample-base contact point in the 

PLTR experiment and the rest part represents half length of the sample which has been 

irradiated by a pulsed laser. For example, if the sample used in the PLTR experiment has 

a length of L, then only a L/2 GNR structure needs to be built in the simulation, which 

significantly reduces the computational time. The system is first heated to a higher 

temperature (325 K in our work) and reaches thermal equilibrium state before a cold 

impulse is added to one end of the GNR. The cooling area [shown in Fig. 2.1(c)] will 

maintain at a lower temperature (275 K) so the system will have thermal relaxation and 

reach thermal equilibrium again. To reach a steady state at 325 K before cooling 

relaxation starts, a canonical ensemble (NVT) is applied to the system for 500 ps. In the 

following 100 ps, a microcanonical ensemble (NVE) is performed to assure the system’s 

stability. After thermal equilibrium calculation, four layers of carbon atoms at one end of 

GNR structure are chosen to form a “cooling group”, whose temperature is “rescaled” to 

a value of 275 K and remains at this value through the relaxation process. The cooling 
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procedure is accomplished by a velocity rescaling approach. The “rescaling” process is 

only applied to the translational degrees of freedom for all atoms. This is an important 

consideration since extended spherical or aspherical particles which have rotational 

degrees of freedom may also reach equilibrium state with this method. To assure total 

momentum of the system is conserved during this rescaling process, a net velocity from 

the cooling group atoms is removed from the translational degrees of freedom before 

thermal rescaling takes place. The relaxation time used to reach a uniform temperature 

for the system is dependent on the length of GNR and its thermal diffusivity. The data 

analysis method used in the PLTR technique could also be applied to this numerical 

approach. From the temperature relaxation history, the thermal diffusivity of GNR can 

be calculated by global data fitting. 

 

Compared with the NEMD and EMD approaches, this dynamic method takes 

much less time to measure the thermal diffusivity and has significantly reduced data 

uncertainty since more data points are used in calculation (the average temperature of the 

whole system is used). 

 

2.1.3. Quantum correction 

In MD simulations, the temperature can be easily calculated from the time 

average kinetic energy of atoms in the sample section within the simulation time using 

the energy equipartition theorem: 
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2

1

1 3

2 2

N

i B MDE mv Nk T  , (2-8) 

where E  is the mean kinetic energy, vi the velocity of atoms, m the atomic mass, N the 

number of atoms in the system and kB the Boltzmann constant [36, 37]. However, it is 

worth pointing out that this method is valid only at high temperatures (T TD, TD is the 

Debye temperature). When the system temperature is lower than the Debye temperature, 

it is necessary to apply quantum correction to both the MD temperature and thermal 

conductivity calculation. In present work, we derived the quantum correction equation 

for two-dimensional GNR model as 

2 2
3 3 2

0 0 0

2 2 1

3 1 3 1 3 1

LA TA ZAx x x

MD LA LA TA TA ZA ZAx x x

x x x
T T x dx T x dx T x dx

e e e

    
     , (2-9) 

where TMD is the temperature in MD simulation, TLA, TTA, TZA are the Debye 

temperatures of three different acoustic modes in GNR, which are 2840 K, 1775 K, and 

1120 K respectively, xLA, xTA, xZA are the ratios of corrected temperatures (temperatures 

after quantum correction, denoted as T) and Debye temperatures. Given the values of 

TMD, which are generated in the MD simulation process, xLA, xTA and xZA values can be 

determined by the inverse form of Eq. (2-9). In our work, first of all, a wide range of T 

values are substituted into Eq. (2-9) to get xLA, xTA, xZA, and calculate the corresponding 

TMD. After we obtain the relations (a curve) between TMD and T, the corrected 

temperatures can be calculated by interpolation based on a specified TMD. Corresponding 

temperatures are then used to calculate GNR’s thermal conduc tivity and specific heat. 

Large differences between TMD and T are observed in our work. For example, when TMD 
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decreases from 325 K to 275K in MD simulation, corrected temperatures range from 

725.8 K to 658.8 K. It concludes that quantum correction is of great importance in 

GNR’s thermal property calculation. 

 

 Results and Discussion 2.2.

To calculate GNR’s thermal diffusivity, initial and final temperatures of the 

system need to be provided. Therefore, NVE conditions are applied to the system both 

before and after cooling relaxation. The average temperature values in two NVE 

calculations are then used as the upper and lower limits in global data fitting. During 

cooling relaxation, the temperature of GNR’s cooling area is kept at 275 K constantly, 

and temperatures of the rest part are recorded for each time step. Several millions of data 

sets will be recorded before the system reaches thermal equilibrium. The huge amount of 

temperature results not only makes it difficult for data analysis, but also induces 

significant noises to the results. To reduce the impact of this problem, the recorded 

temperature data are averaged each 100 time steps before global fitting, and so as in the 

thermal diffusivity and specific heat calculations.  

 

2.2.1. Fitting results of GNR and specific heat 

In this work, GNRs of different lengths 14.9, 29.6, 59.4, 124.6, 249.6, 499.6, and 

999.9 nm are calculated for their thermal diffusivity. The thermal conductivities of all 

GNRs are calculated with the same MD parameters except the cooling relaxatio n time. 
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Take 124.6 nm long GNR as an example, after the system reaches thermal equilibrium at 

temperature 325 K, a cold impulse is applied and it takes 650 ps for the cooling 

relaxation process to finish. The quantum-corrected temperature results are then used in 

global data fitting to determine its thermal diffusivity, which is 2.9×10-5 m2·s-1. After 

obtaining the thermal diffusivity, the thermal conductivity can be calculated by k = cp. 

The thermal conductivity is 95.8 W/mK for 124.6 nm long GNR.  

 

  

Figure 2.3. Global fitting results of different lengths GNRs at 692.3 K. The lengths 

of GNRs from top to bottom are 14.9 nm, 29.6 nm, 59.4 nm, 124.6 nm, 249.6 nm, 

and 499.6 nm. 

 

Figure 2.3 shows global fitting curves for GNRs of different lengths As we can 

see from Fig. 2.3, with the length of GNR increasing, the MD simulation results will be 

induced by ballistic and non-Fourier effect 
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more identical to theoretical results since more carbon atoms are used in the temperature 

calculation. Take a closer look at the fitting results in Fig. 2.3, it is found that the 

diffusive heat transfer model has a lower temperature than the MD data at the beginning. 

Then as time goes on, the agreement between them becomes better. Such early stage 

large difference could be induced by the non-Fourier effect heat conduction and the 

ballistic effect of phonon thermal transport, which will be discussed later in this paper. 

 

To obtain the dynamic thermal conductivity of GNR, graphene’s specific heat 

needs to be calculated first. Since cp values are the same for GNR structures around TMD 

= 300 K, we choose the 59.4 nm GNR model for our study. After 500 ps NVT and 50 ps 

NVE calculation, the system reaches steady state at 295.5 K. Then a heat flux of 3.3 × 

107 W/m2 is added to the system continuously for 500 ps. After the heating process, the 

system reaches steady state at 305.5 K. The temperature rise by this heating is 13.2 K 

after quantum correction. The specific heat is calculated by Q = cpmT, where Q is the 

total energy added to the system, m the total mass of atoms and T the temperature 

difference with quantum correction. Q is expressed as Q = qAt, where A stands for the 

heating area and t the heating time. The specific heat is calculated at 1.528 × 103 J/kgK 

(at 692.3 K after quantum correction), which is nearly the same as graphite’s specific 

heat of 1.519 × 103 J/kgK (at 700 K) [38]. 
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2.2.2. Thermal transport in GNRs 

Ballistic transport has been observed when the phonon mean free path (MFP) is 

much larger than the size of GNR that contains the medium through which the phonon 

travels, such that the phonon alters its motion only by hitting against the walls. Recent 

experiments suggest that thermal transport at the nanoscale is dominated by a ballistic 

rather than a diffusive mechanism [12]. The power law relationship also implies that 

graphene conducts heat mainly through ballistic transport mode in a  low temperature 

region [39].  

 

In this work, however, by comparing the spatial temperature distribution of GNR 

in MD simulation with the theoretical results calculated from solving diffusive heat 

conduction equation, we could not see strong ballistic thermal transport in GNR’s in-

plane direction. It is probably due to the statistical oscillation of the temperature that 

overshadows the ballistic thermal transport. Based on the diffusive mechanism along the 

in-plane direction of graphene, the transient heat conduction equation 

2 2T t T x      ( is thermal diffusivity) is solved by using the explicit method. 

Since the cooling relaxation curve is dependent on GNR’s length and thermal diffusivity, 

to keep the consistency, initial and boundary conditions used in this calculation are 

identical with those in the MD simulations, including the  values. A short time step (t 

= 10 fs) and high spatial resolution (x = 1 nm) are employed in three different cases 

(14.9 nm, 59.4 nm and 499.6 nm). 
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Figure 2.4. Spatial temperature evolution in GNRs at different times. The solid 

squares stand for MD simulation results and the curves represent theoretical 

results derived from diffusive heat conduction equation. The GNR length is 14.9 

nm, 59.4 nm, and 499.6 nm for figures (a), (b), and (c), respectively. 

 

The MD simulation results agree well with the theoretical curves derived from 

diffusive heat conduction equation. It suggests that the thermal transport mechanism in 

GNR’s in-plane direction is quite close to diffusive situation. The temperature evolutions 

of GNRs are shown in Fig. 2.4. Among the three GNR structures, the case for 14.9 nm 

requires the shortest time to reach the steady state, while the agreement is not as good as 

the other two due to the lack of sufficient temperature data points in space. GNRs of 

59.4 nm and 499.6 nm lengths show a sound agreement between the MD simulation 

results and theoretical curves. This confirms the point that longer sample length could 

give more accurate evaluation of the thermal conductivity. Meanwhile, high accuracy for 

the values of thermal diffusivity derived from the PLTR physical model in MD 

simulation is assured. Given the fact that the thermal transport inside GNR could mainly 
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be diffusive, Eq. (2-6), which is used for global fitting of thermal diffusivity, is still 

within the diffusive limit.  However, ballistic effect is still important when GNR length 

is small. From Fig. 2.3, it is shown that for short GNR structures, the beginning part of 

MD simulation results and fitting curves do not match as well as the longer ones, which 

are mainly induced by ballistic effect.  

 

2.2.3. Size effect on thermal conductivity 

To better compare our MD simulation results with previous experimental and 

numerical data, we also calculated GNRs’ dynamic thermal conductivity and specific  

heat at 300.6 K (after quantum correction). During the cooling relaxation process, the 

MD temperature decreases from 70 K to 50 K, corresponding 324.8 K to 276.6 K after 

quantum correction. Take the 124.6 nm GNR as an example, its thermal diffusivity and 

thermal conductivity values are 4.1×10-5 m2/s and 72.6 W/mK respectively. The specific 

heat of the GNR at 300.6 K is calculated at 827 J/kgK, which is close to graphite’s 

value of 709 J/kgK at the same temperature [38]. Although the thermal diffusivity of 

GNR is higher at 300.6 K than that at 692.3 K (2.9×10-5 m2/s), its thermal conductivity 

decreases due to a smaller specific heat. The calculated high values of the thermal 

conductivity suggest that the MFP in GNR is long even at RT. The latter may result in 

strong dependence of the thermal conductivity on the length l of the GNR and roughness 

of its edges since the phonon boundary scattering starts to play a prominent role when l 

is comparable to MFP. Therefore, the traditional defined thermal conductivity is no 

longer an intrinsic property of materials. Instead, it changes with the length of materials. 
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There are substantial experimental observations showing the thermal conductivity of thin 

films is significantly lower than that of bulk materials [40-42].  Figure 5 depicts GNR’s 

thermal diffusivity and conductivity at different length. It can be concluded that dynamic 

thermal conductivity of GNR increases with its length significantly. 

 

 

Figure 2.5. Thermal diffusivity ( ) and thermal conductivity (k) variation against 

the GNR length. 

 

For bulk materials, the kinetic theory gives the relationship between the 

macroscopic thermal conductivity and microscopic motions [43, 44] as 

1

3
pk c vl , (2-10) 

where k is the thermal conductivity,   the mass density, cp the specific heat, v the 

average phonon velocity and l the phonon mean free path, representing the average 
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distance a phonon travels between successive collisions. In this sense, k is the one used 

in Fourier’s law of heat conduction 

q k T    , (2-11) 

where q is heat flux and T is temperature. Equation (2-10) is derived with the 

assumption that the space of particle motion is unbounded and is valid only if phonons 

can travel very long distance before they hit boundary. Equation (2-11) is simply a 

derivative of the more fundamental rule, the Boltzmann Transport Equation, under 

steady state and quasi-equilibrium conditions.  

 

Given the calculated thermal conductivity results for different GNRs at 692.3 K 

and 300.6 K, we could derive k values for infinite length GNRs using data fitting. 

Although it is no longer meaningful to refer to thermal conductivity as a basic physical 

concept at micro/nanoscales, its effective value is still of great importance from the 

engineering perspective and is expressed for a film structure as /effk q L T  , where 

q is heat flux at steady state in the length direction, L the film length and T the 

temperature difference across the film. A material- independent relation is proposed as 

1/ (1 / )effk k P l L    , where k is the theoretical thermal conductivity of infinite length 

GNR, l the average phonon MFP, L the length of GNR sample, P the correlation related 

to boundary conditions and GNR shape. This equation is a universal relationship 

applicable in both ballistic and diffusive regimes of heat conduction. Since l is only 

related to internal scattering, its value for bulk materials can still be used and is 

calculated using the kinetic theory described by Eq. (2-10). It is worth noting that Eq. (2-
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10) is for three-dimensional and must be adapted as / 2pk c vl  for two-dimensional 

situations for GNR, in which the movement and scattering of phonons are confined in a 

plane. From the above equation, we can get the relationship between l and k for two-

dimensional systems as 2 / ( )pl k c v . Thus keff could be expressed as  

1 2 / ( )
eff

p

k
k

P k c vL


 
. (2-12) 

To carry out this calculation, only phonon velocity v needs to be specified. According to 

Holland [45], the following formula is a good approximation of the average phonon 

velocity within a wide temperature range 

1 1 1 2
( )

3 L Tv v v
  , (2-13) 

where vL and vT are the longitudinal and transverse sound speeds. Recent research by 

Nika et al. [14] indicates that the measured longitudinal and transverse velocities in 

graphene are vL = 21.3 km/s and vT = 13.6 km/s respectively. Using Eq. (2-13), the 

calculated average phonon velocity for GNR is 15.5 km/s. Fitting the calculated thermal 

conductivity values by using Eq. (2-12), P and k values are 14 and 149 W/mK 

respectively at 692.3 K while at 300.6 K, P and k are 20 and 317 W/mK respectively. 

The fitting results are shown in Fig. 2.5, and sound agreement is obtained the fitting 

results and MD data. Majumdar et al. [46] derived the relationship between keff/k and L/l 

as  
1

/ 1 4 / 3effk k l L


 

 

for 2-dimensional heat conduction situation. This equation is 

also based on the Boltzmann Transport theory and indicated that P equals 4/3 for 

diffusive scattering boundary. Our calculated P values of 20 and 14 exceed the upper 
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bound of diffusive scattering. Therefore, the thermal conductivity of GNR has been 

greatly reduced from the theoretical values and the reduction is not only attributed to 

boundary scattering, but also other changes induced by phonon frequency, phonon wave 

length, group velocity of phonons and interactions among phonon branches.  

 

As mentioned above, quantum correction is of great significance in the 

calculation of GNR’s thermal conductivity. Evans et al. [47] applied the EMD method to 

calculate the thermal conductivity of graphene ribbons with dimensions of 2 × 10 nm2 at 

around 2000 W/mK. The temperature they used is 300 K, which corresponds to 692.3 K 

after quantum correction. From Eq. (2-1) we see that their calculated thermal 

conductivity would be more than 5 times smaller than their current results if quantum 

correction is applied. The non-Fourier effect is also observed at the beginning part of 

GNR’s thermal relaxation process, which reduces GNR’s thermal conductivity to some 

extent. From the above discussion, we can conclude that our calculated thermal 

conductivity of GNR is within acceptable range compared with previous studies. 

 

2.2.4. Ballistic and non-Fourier effect in dynamic response 

Most heat conduction problems are described and analyzed using Fourier’s law 

of heat conduction. However, it is well known that for transient problems in an 

extremely short period of time and very high heat flux, this classical diffusion theory 

may break down. The dynamic temperature responses under ultra-high speed heating 

have shown some behavior which could not be predicted by the thermal diffusion theory 
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and many models have been developed to interpret these experiments [48, 49]. Cattaneo 

and Vernotte formulated a well-known macroscopic description of thermal wave 

propagation [50, 51], which is a conventional hyperbolic energy equation expressed as 

2
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where τ is the relaxation time of thermal wave, T and  the temperature and thermal 

diffusivity.  Joseph and Preziosi [48] described the microstructural effects by a 

relaxation function and decompose it into two relaxation times, which lead to a 

description of a transient heat conduction equation in the following generalized form, 
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For dielectric crystals, τq and τθ represent the relaxation times for momentum-

nonconserving and momentum-conserving processes in the phonon system. Comparing 

Eq. (2-15) with microscopic models suggest that if τq and τθ are formulated properly by 

some microscopic quantities, this macroscopic model could fully describe the same heat 

conduction equation as those in microscopic models. Cattaneo-Vernotte’s thermal wave 

law and Fourier’s thermal diffusion law are two special cases of this generalized model 

for τθ = 0 and τθ = τq = 0.  

 

In this work, four layers of carbon atoms at one end of GNR are cooled to a low 

temperature in several time steps by a velocity rescaling method. The use of this rapid 

cooling technique leads to an extremely high heat flux adjacent to cooling area and non-

Fourier effects have been found to exist at the beginning part of thermal relaxation 
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period (Fig. 2.3). To explore this non-Fourier mechanism, numerical simulation based on 

the implicit finite-difference method is employed to study the temperature evolution of 

GNR and make comparison with the MD result. 

 

 

Figure 2.6. Comparison of non-Fourier fitting and diffusive fitting to MD data. MD 

results are above diffusive fitting curve in the first 6 ps due to a decreased effective 

thermal conductivity induced by the non-Fourier effect. The non-Fourier fitting 

curve matches MD results soundly by using two relaxation times τq and τθ. 

 

One-dimensional discretization along the in-plane direction of GNR with spacing 

∆x = 110-2 nm is conducted and a small time step with ∆t = 510-2 ps is used. By fitting 

the MD results of 14.9 nm GNR using Eq. (2-15), we give the values of τq and τθ as 1.85 

and 1.01 ps respectively. The large value of τθ indicates that diffusive heat transfer is 

significant in GNR’s thermal conductivity. The fitting curves are shown in Fig. 2.6. The 

thermal diffusivity of 14.9 nm GNR given by this fitting is 1.44 × 10-5 m2/s, which is 
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larger than the value of 9.55 × 10-6 m2/s calculated by the previous pure diffusion model. 

Tang et al. [52] proved that a larger τθ will produce a higher rate thermal diffusion effect 

and results in rapid temperature response in early time. Since our calculated values of τq 

and τθ are in the same order, we could conclude that both diffusion conduction and 

thermal wave conduction are affecting GNR’s thermal conductivity strongly at the 

beginning part. In Fig. 2.6, it could be seen that the MD temperatures decrease much 

slower than the diffusive fitting curve at the beginning, which could be explained by the 

thermal wave effects in non-Fourier thermal conduction. 

 

To better understand the effects induced by the ballistic thermal transport and 

non-Fourier heat conduction, we plot out the spatiotemporal isothermals of 14.9 nm 

GNR for both the MD results and numerical results that are calculated from Fourier’s 

diffusive heat equation. The results are shown in Fig. 2.7. As mentioned above, the GNR 

system has a cooling impulse of 275 K imposed on a 325 K thermal equilibrium system 

to calculate the GNR’s thermal diffusivity. However, the temperature difference (50 K) 

is very small compared with the data noise, which makes it difficult to justify the 

temperature change in isotherms. Therefore, we initially set the GNR system at 700 K to 

reach thermal equilibrium, and then a cooling impulse of 200 K is added to the cooling 

area. For the full diffusion calculation, we use the thermal diffusivity at 300 K. The 

temperature of the cooling area, which is kept at 200 K, is not included in the contours.  

Figure 2.7(a) depicts the temperature evolution of MD results from 700 K to 200 K 

within the first 10 ps. Comparing the low temperature areas (violet and blue regions) in 
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Figs. 2.7(a) and (b), we notice that at the beginning of the heat conduction, the MD 

temperature diffuses slower than the numerical results, whereas after around 6 ps, the 

MD temperature diffuses faster than the numerical results. The temperature differences 

between the MD and numerical results can be explained by the non-Fourier effect. 

Figure 2.6 shows that the diffusive fitting curve decreases faster than the MD data at the 

beginning, and become flattened after around 6 ps. This is in sound agreement with the 

results shown in Fig. 2.7. 

 

  

Figure 2.7. Spatiotemporal isotherms of 14.9 nm GNR with a cooling area located 

at the lower boundary. (a) MD results, (b) numerical results calculated from 

Fourier diffusive heat conduction equation. The initial system temperatures for 

both cases are 700 K, and then a cooling impulse of 200 K is added below the origin 

area. 

 

To take a further look at GNR’s thermal wave propagations, a thermal impulse is 

imposed upon one end of 14.9 nm GNR. The system is initially kept at 50 K to reach 

thermal equilibrium. Then four layers of carbon atoms at one end are connected to a 
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Nose-Hoover thermostat kept at 1000 K for 0.4 ps.  

 

 

Figure 2.8. Spatiotemporal isotherms of 14.9 nm GNR with a thermal impulse 

imposed at the lower boundary for 0.4 ps: (a) overall temperature, (b) temperature 

of transverse phonons, (c) temperature of longitudinal phonons, (d) temperature of 

flexural phonons. Solid lines represent thermal wave front. 

 

The rest part of GNR is divided into 64 unit cells along the length direction, each 
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containing about 20 atoms. The average energy of each unit cell is then used to calculate 

its temperature. The isotherm contours are shown in Fig. 2.8. The pictures depict how 

heat diffuses from the origin through the entire field. In the GNR system, heat is mainly 

transported by acoustic phonons, while the contribution from high- lying optic branches 

is small and negligible. Figure 2.8(b), (c) and (d) show the transverse, longitudinal and 

flexural component of GNR’s thermal waves respectively. Balandin et al. [53] calculated 

lattice thermal conductivity of GNR and conclude that flexural acoustic phonons (ZA) 

do not make substantial contributions to heat conduction due to their low group velocity. 

However, recent experiments and theoretical analysis have proved that ZA phonons 

provide the dominant contribution to GNR’s thermal conduction [54-56]. Seol et al. [57] 

carried out full quantum mechanical calculations of the three-phonon scattering 

processes to obtain the phonon relaxation time for each phonon mode. They calculated 

the substrate-phonon scattering rate for LA, TA and ZA phonon modes and found that 

due to the large specific heat value of the ZA mode and large mean phonon scattering 

time, the ZA mode contribute as high as 77% and 86% at 300 K and 100 K respectively 

for suspended GNR’s thermal conductivity. By formulating the ballistic thermal 

conductance of phonons in a two-dimensional system and using phonon’s dispersion 

relation, Nakamura et al. [23] calculated the contributions of the LA, TA and ZA 

phonons to graphene’s thermal conductance. They conclude that the ballistic phonon 

conductance is determined by the ZA phonon modes below about 20 K and contributions 

of the TA and LA phonon modes cannot be neglected above 20 K while the ZA phonon 

modes are still in dominant. Although much work has been done to analyze ZA mode’s 
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effect on GNR’s thermal conductivity, however, to our best knowledge, there are no MD 

simulations have been done to prove this valuable theorem. In present work, we can 

clearly see in Fig. 2.8(d) that a strong thermal wave propagates through the 

spatiotemporal isotherms (ZA mode), while in Figs. 2.8(b) and (c) no evident thermal 

waves are observed. When the thermal relaxation time of phonons is large, the thermal 

wave effect will be more prominent. Therefore, we conclude that the ZA mode is more 

significant than LA and TA modes in respect for GNR’s thermal conductivity. Also we 

can conclude that during thermal transport by the ZA phonons, the energy transfer 

among ZA phonons is much faster than that between ZA and LA/TA phonons. This is 

because if the ZA↔LA/TA phonon energy exchange is comparable to ZA↔ZA energy 

exchange, thermal wave could also be observed in the LA and TA temperature 

evolution. However, no thermal wave is observed in the spatiotemporal isotherms of LA 

and TA phonon temperatures.  

 

In these spatiotemporal isotherms, group velocities for TA, LA and ZA mode are 

identified. When the 1000 K thermal impulse is imposed on one end of GNR, a local 

stress will be generated and will propagate in the in-plane directions. The local 

temperatures of GNR will remain unchanged until this stress wave arrives and its 

propagation speed could be measured in Fig. 2.8. Stress wave fronts are denoted by solid 

lines in Fig. 2.8. Since these velocities represent the energy transmission speed in GNR, 

they are also known as group velocities (vg). From Fig. 2.8, the group velocities of TA, 

LA and ZA modes are calculated at 9.8 km/s, 9.8 km/s and 7.0 km/s respectively. Group 
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velocities could be calculated from GNR’s dispersion relation by the expression vg = d 

/ dk, where  is the angular frequency and k the wave number. Wirtz et al. [58] 

compared GNR’s phonon dispersion relations calculated by Dubay et al. [59] and 

Maultzsch et al. [60].  

 

 

Figure 2.9. Phonon dispersion relations of graphene based on ab initio calculation 

[58]. The three phonon dispersion branches, which originate from the   point of the 

first Brillouin zone, correspond to acoustic modes and the rest three branches are 

for optical modes. The regions that correspond to different group velocities in Fig. 

2.8 are denoted by dashed lines. (with permission from Elsevier for use in this 

paper) 

 

The result is shown in Fig. 2.9.  From the TA, LA and ZA dispersion relation 

curves in Fig. 2.9, different group velocities for each phonon branch can be calculated. 

On the TA curve from GNR’s dispersion relation, the average group velocities 

A    B C                                 D  E   F           G 
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calculated in AB and DF regions are 9.7 km/s and 9.8 km/s respectively. For LA mode, 

EF region contributes to group velocity measured in Fig. 2.8(c) and the average group 

velocity in this region is 9.7 km/s. For the ZA mode, regions AC and FG have average 

group velocities at 6.8 km/s and 7.0 km/s and contribute to the group velocity in Fig. 

2.8(d). Theoretical study of the second sound wave under linear approximation for three-

dimensional materials shows that thermal wave propagation velocity is / 3gc v  [61], 

where vg is the group velocity. For two-dimensional GNR, this relation should be 

modified as / 2gc v  [62]. In Fig. 2.8(d), the thermal wave propagation velocity is 

calculated at 4.6 km/s for the ZA mode, as denoted by the dashed line in Fig. 2.8(d). 

Based on the group velocity in Fig. 2.8(d), the thermal wave speed is predicted at 

/ 2 7.0 / 2 4.9gc v  
 
km/s. This value agrees well with the thermal wave speed 

4.6 km/s observed in Fig. 2.8(d). 
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CHAPTER 3. THERMAL TRANSPORT IN BENDED GRAPHENE 

NANORIBBONS 

This chapter reports on a study of the phonon behavior and thermal transport in 

bended graphene nanoribbons (GNRs). Three peculiar phenomena are observed in 

bended GNRs during thermal transport. First, due to the high thermal conductivity of 

flexural mode (ZM) phonons in GNRs, energy separation is observed between the in-

plane and out-of-plane phonon modes after a steady state heat flux is imposed on the 

system. Such energy separation can hold for about 50 nm from the heating region. 

Second, a thermal resistance is observed in the bending region of a 90 bended GNR 

system. This phenomenon is explained by the phonon energy scattering/reflection and 

the compressive stain in the bending structure. Different bending angles are investigated 

and it is proved that the bending resistance decreases with an increas ing bending angle. 

Finally, upon crossing the bending structure in GNR, phonon packages preserve their 

vibrating mode instead of vibrating directions. 

 

 Methodology and results 3.1.

The second generation of Brenner potential [29]: reactive empirical bond-order 

(REBO), based on the Tersoff potential [34, 63] with interactions between C-C bonds is 

applied in our MD simulation. To prevent the free-standing GNR from curling and 

ensure full structure relaxation during the thermal-equilibrium calculation, the GNR 

systems are bounded within Lennard-Johns (LJ) walls in all directions that enclose all 

the atoms. In this work, the GNR systems have zigzag boundaries in the width directio n 
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and armchair boundaries in the length direction. The edge carbon atoms are not 

hydrogen-passivated. The walls interact with the GNR atoms via the 9/3 LJ potential 

9 3[2 /15( / ) ( / ) ]pE r r    ，when cr r . r is the distance from the atom to the wall, 

and ε and σ are the LJ parameters, which are set to be 0.00284 eV and 3.4 Å 

respectively. Since the distance between adjacent carbon layers in graphite is 0.335 nm, 

we set this value as the initial distance between the LJ walls and the GNR boundaries.  

 

3.1.1. Phonon energy transport in right-angle bended GNR 

To ensure effective heat transfer and stable performance of graphene in future 

microelectronics, interconnects and thermal management structure, thermal properties of 

bended graphene systems should be further studied. To our best knowledge, little 

research has been done on this subject. In this section, bended GNR systems of length 

25.0 nm, 50.1 nm, 75.0 nm and 100.0 nm with a fixed width 2.0 nm are built. Each 

structure is warped at the middle plane in the length direction to form a right-angle 

structure. Construction of the GNR system is shown in the inset of Fig. 3.1(b). To keep 

the formation of the GNR system, LJ walls are applied in each direction of the system. 

Along its length direction the GNR is divided into sections each containing about 20 

carbon atoms for later temperature distribution study. The canonical ensemble (NVT) 

and microcanonical ensemble (NVE) conditions are applied to the system in succession 

at temperature 50 K to equilibrate the system. A time step of 0.5 fs is used for all 

calculations.  
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Figure 3.1. Thermal transport in a 2.0   25.0 nm2 right-angle bended GNR system. 

The Ey and Ez exchange their values upon crossing the bending structure, 

indicating phonon mode-conservation in GNR systems. Bending resistance is 

observed around the bending area. Thermal conductivities of two flat GNR regions 

are calculated by linear fitting. The calculated  and R values denoted in Fig. 3.1(b) 

are before quantum corrections. 
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Hot and cold regions are then created in the simulation domain by adding kinetic 

energy Ek in the hot region and removing the same amount from the cold one while 

preserving linear momentum at each time step. Four layers of carbon atoms at each end 

of the GNR system are chosen to add and subtract thermal energies respectively by 

scaling the velocity of each atom by the same factor . Given enough time, the system 

will reach thermal equilibrium state again with a steady state heat flux flow ( q ) in the 

length direction. Thermal energies of different phonon modes and the system are then 

post-processed to obtain the energy distribution along the length direction of the GNR 

system. 

 

Thermal energy (Q) added/subtracted equals 5.9  10-8 W for all structures. Since 

the layer distance in graphite is 0.335 nm, we use this value as the thickness for single 

layer graphene [11, 28, 64-66]. The cross-sectional area (Ac) can then be calculated at 

6.7  10-19 m2. Therefore the heat flux in the length direction can be calculated from the 

equation q = Q/Ac, which equals 8.81  1010 W/m2. To compare the energy evolution of 

different phonon modes and the whole system, a nominal temperature defined as 

Ei/(1/2)kB with unit K is used to represent the energy values in each direction and a value 

ET/(3/2)kB with unit K stands for the system’s total energy. Here Ei is the kinetic energy 

of carbon atoms in direction i (i=x, y, or z), and ET is the total kinetic energy of carbon 

atoms. 

 

The nominal temperature results of the 2.0  25.0 nm2 right-angle bended GNR 
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are shown in Figs. 3.1(a) and (b). Since the GNR is warped at the middle plane, the 

bending structure is located at 12.5 nm position in the length direction. The black, red, 

blue and green data points are for the kinetic energy of the system (ET), x, y, and z 

direction components: Ex, Ey, and Ez, respectively. Three crucial phenomena are 

observed in these two figures. The first one is the phonon energy separation among 

different phonon modes, which happens all the way along the length direction. The 

second one is that upon the phonon energies crossing the bending structure, an energy 

jump between Ey and Ez is observed. After the phonon energies go across the bending 

region at 12.5 nm, Ey and Ez exchange their positions and Ey becomes the lowest energy 

value in the system. Consequently, the phonon energy will flow from Ex and Ez to Ey 

after they pass through the right-angle region until they reach the same level. Based on 

this result, it concludes that when the phonons pass through a bend ing area, the phonon 

modes are preserved, i.e. the flexural phonon branch remains vibrating in the out-of-

plane direction after it passes through the bending structure and the in-plane TM and LM 

branches keep vibrating perpendicular and along the phonon propagating direction. 

Detailed proofs are given in later sections using separated phonon mode excitation. 

Phenomena 1 and 2 are denoted in Fig. 3.1(a). 

 

Last but not least, the third phenomenon is that an energy drop across the 

bending area is observed for each energy mode, indicating an energy barrier exists in the 

bending region which causes a local thermal resistance (R) between the horizontal and 

vertical parts of the GNR system. R can be calculated as R = T/q, where T is the 
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temperature drop (K) and q the heat flux along the path of heat flow (W/m2). T is 

evaluated at 1.3 K in the 2.0  25.0 nm2 GNR system and the corresponding bending 

resistance is 1.48  10-11 Km2/W before quantum correction. Phenomenon 3 is shown is 

Fig. 3.1(b). The thermal conductivity values of the horizontal and vertical parts of the 

GNR are calculated using Fourier’s Law: q= -T, where T is the temperature 

gradient. It is worth noting that in general both electrons and phonons contribute to the 

thermal transport in graphene. In this work the MD temperatures for all GNR systems 

are around 50 K, which correspond to ~300 K after quantum correction. And at this 

temperature, the phonon’s contribution to graphene’s thermal conductivity is nearly 100 

times greater than that of electrons [23]. Besides, according to the Wiedemann-Franz 

law, the estimated contribution of electrons to graphene’s thermal conductivity is less 

than 1% at room temperature [67]. This is also consistent with the observation for the 

thermal conductivity of individual carbon nanotubes (CNT) [68, 69]. From these 

prospects, previous MD simulation studies about the edge and length effect on 

graphene’s thermal conductivity also just consider the phonon contributions and 

electrons contributions are neglected [16, 66, 70-72]. Therefore, in this work we only 

consider the phonon contribution to GNR’s thermal conductivity. By linear fitting the 

data from these two parts, the  values are calculated at 281 W/mK and 252 W/mK for 

the horizontal and vertical parts before quantum correction. It is observed that the 

thermal conductivities for the horizontal and vertical parts are different, which is mainly 

caused by two reasons. First, since the horizontal part has the heat source and vertical 

part has the heat sink, the phonon energy distributions are different in these two parts, as 
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is shown in Fig. 3.1(a). Also, the total temperatures for these two parts are different, and 

the thermal conductivity of graphene is temperature dependent. Second, the calculation 

uncertainty also contributes to the differences. In the linear fitting process, we have to 

manually choose the fitting region to calculate the thermal conductivities and the results 

will be slightly different even if we change the fitting range by several points. We tried 

our best to choose the most reasonable fitting region, yet the calculation uncertainty is 

inevitable. Thus, we think the 10% thermal conductivity difference for these two parts is 

acceptable. 

 

 

Figure 3.2. Nominal temperature distributions in different length 50.1 nm, 75.0 nm 

and 100.0 nm right-angle GNR systems. Each GNR structure has a fixed width of 

2.0 nm. The bending resistance values denoted in the figures are without quantum 

corrections. 
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Nominal temperature results for right-angle GNR of length 50.1 nm, 75.0 nm and 

100.0 nm are shown in Fig. 3.2. The temperature drop in the bending structure of each 

system is 1.7 K, 1.7 K, 4.3 K respectively and the corresponding thermal resistances are 

1.93  10-11, 1.93  10-11, 4.88  10-11 Km2/W before quantum correction. Thermal 

resistance is also calculated for the 200.0 nm right-angle GNR and the results is 4.2  10-

11 Km2/W. Both energy separation and energy drop phenomena are observed in all 

cases. Since the Debye temperature of graphene is around 2300 K [73], while in our 

calculations, the MD temperature for the GNR system is around 50 K. The huge 

difference between them makes it a must in this work to apply quantum corrections to 

the MD temperatures. In chapter 2, we derived the quantum correction equation for two-

dimensional GNR model. After applying quantum correction to previous results of 

thermal conductivity and bending resistance, we get the revised  values at 109 W/mK 

and 92.7 W/mK for the horizontal and vertical parts and revised R values at 3.93  10-11 

Km2/W for the 2.0  25.0 nm2 GNR. The thermal conductivity results are higher than 

our previous calculated  values [28], which could be caused by the difference between 

dynamic and steady state thermal transport processes involved in thermal conductivity 

definition. For low-dimensional systems such as GNR, the definition of cross-sectional 

area has certain arbitrariness. In previous experimental studies of graphene’s thermal 

conductivity, Balandin et al. [11, 64] used the value of 0.350.01 nm as the thickness of 

single layer graphene. Lee et al. [74] and Cai et al. [65] used the SLG thickness of 0.335 

nm in their calculations. Most of the numerical work studying the thermal conductivity 
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of graphene chose the value 0.335 nm as the thickness [16, 28, 66, 72, 75], yet only the 

study by Guo et al. [71] used the value of 0.144 nm in graphene’s thermal conductivity 

calculations. Therefore, our calculations of GNR’s thermal conductivity uses the same 

thickness value (0.335 nm) as most of the experimental and numerical work chose. This 

provides a common base when comparing our results with those by other researchers. As 

for the 50.1 nm, 75.0 nm and 100.0 nm length GNRs, the corrected bending resistance 

values are 5.04  10-11 Km2/W, 5.04   10-11 Km2/W, 1.29  10-10 Km2/W respectively. 

Yue et al. [76] calculated the interfacial thermal resistance between graphene layer and 

4H-SiC substrate at 7.01  10-10 and 8.47  10-10 Km2/W for surface heat fluxes of 3.0  

109 and 1.0  1010 W/m2 respectively. Other groups using the 3 method measured 

contact resistance between graphene and silicon dioxide in the range of 5.6  10-9 to 1.2 

 10-8 Km2/W [77]. It could be seen that our calculated R values are much lower than 

the interfacial thermal resistance between graphene layer and other materials, which is as 

expected since there is no flexural phonon coupling and scattering at those interfaces  

[21, 22]. 

 

3.1.2. Energy separation in flat GNR 

To further explore the phonon energy separation observed in the bended GNR 

systems, different lengths (25.0, 50.1, 75.0 and 100.0 nm) flat GNRs with a fixed width 

of 2.0 nm are built and studied. Schematic construction of a flat GNR is shown in Fig. 

3.3. Following the same routines used in the bended GNR systems, the NVT and NVE 
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conditions are performed to equilibrate each structure at 50 K and a time step of 0.5 fs is 

used for all calculations. Hot and cold regions are then created to induce a steady state  

heat flux flow (q) in the length direction and nominal temperature data are extracted 

and averaged for each unit cell. 

 

 

Figure 3.3. Atomic structure of the flat GNR system studied for energy separation. 

The Lennard-Johns (LJ) potential walls are applied in all dimensions. To make a 

clear schematic description, only the top and bottom LJ walls are shown. Distance 

between each LJ wall and the GNR plane is set as 3.5 Å initially. A thermal energy 

of 5.9   10-8 W is added/subtracted from the red and yellow areas respectively. 

 

Take the 2.0  25.0 nm2 flat GNR as an example, after 200 ps NVT and 50 ps 

NVE thermal equilibrium calculations, the system reaches steady state at 50 K. Then 

another 100 ps is calculated after heat flux is applied to the system. After the system 

reaches steady state, energy data are collected and averaged for the next 50 ps. The 

nominal temperature distribution of the system and its decomposition are shown in Fig. 

3.4(a). It is seen from this figure that Ex and Ey values are almost the same along the 

length direction. However, Ez values are much lower than them. The energy differences 

are decreasing from the heating to cooling region, indicating energy transfer from Ex and 
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Ey to Ez along the flat GNR until the three energy components reach the same level. To 

verify our speculation, nominal temperature distributions of 50.1 nm, 75.0 nm and 100.0 

nm length GNRs are calculated and the results are shown in Figs. 3.4(b), (c) and (d). 

Energy separation is observed in all cases and the three energy components reach the 

same level at around 50 nm. 

 

For this first-time observed phonon energy behavior in graphene, our 

understanding of the driving force behind it is the much higher thermal transport 

capability by the flexural mode phonons. Mechanism of the phonon energy transfer is 

depicted in Fig. 3.4(e). In the hot region, local phonon energies of the GNR will increase 

dramatically when the heat flux is added to the area. This high local energy will then be 

transmitted to the low nominal temperature regions by Ex, Ey and Ez. As mentioned 

above, despite the fact that the ZA phonons have vanishing group velocities for wave 

vector q0, its high specific heat and long phonon mean scattering time make the ZA 

branch dominant in graphene’s thermal conductivity. The large density of states and 

phonon scattering selection rule for the ZA branch also contribute to its anomalously 

large thermal conductivity [24, 26]. Therefore, the local flexural mode phonons in the 

hot region will transfer heat much faster than the in-plane modes phonons, giving rise to 

the lower Ez values along the length direction in which heat is conducted. Consequently 

thermal energies keep transferring from the in-plane phonons to the flexural phonons 

until they reach the same level. 
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Figure 3.4. Nominal temperature distributions in flat GNR systems of different 

length (a) 25.0 nm, (b) 50.1 nm, (c) 75.0 nm and (d) 100.0 nm. Each GNR structure 

has a fixed width of 2.0 nm. A thermal energy of the same value 5.9   10-8 W is 

added/subtracted in the selected regions for all systems. It is observed that energy 

separation happens at short distances in the heat flux flow direction and disappears 

at around 50 nm. (e) A schematic explanation of the thermal transport mechanism 

in short GNRs. The ZM branch has higher thermal transport ability than the in-

plane TM and LM branches. Therefore Ez is lower than the Ex and Ey and the 

latters will keep transferring energies to Ez until they reach the same level. 

 

3.1.3. Phonon mode-conservation 

In general, the thermal conductivity of a solid arises from two distinct 

contributions: one from phonons and the other one from electrons. In this work, only 

faster heat conduction 

slower heat conduction 
Ex   Ey 

   Ez 
E 

cooling region heating region 
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lattice thermal conductivity is considered. Consequently, phonon package propagations 

determine the thermal transport properties in the GNR system. To explain the bending 

resistance in the right-angle bended GNR system, it requires further investigation of 

phonon transport in the bending region. For this purpose, a 2.0  50.1 nm2 right-angle 

GNR system is built. Construction of the GNR is the same as the inset of Fig. 3.1(b). 

The system is equilibrated at 50 K after 300 ps NVT and 50 ps NVE calculations. Then 

four layers of carbon atoms at one end of the GNR system are grouped to apply a 

stretching force (F), which is added to each atom in the group and has a value of 1.0 

eV/Å. The time step is 0.5 fs in the thermal equilibrium calculations and 0.05 fs for the 

stretching. A short period of time 25 fs is used for the stretching process (phonon 

excitation). By applying the stretching force in the x, y and z directions separately, TM, 

LM and ZM phonon packages are generated separately in the GNR system, which 

propagate from the excitation area to the other end along the length direction. 

 

Spatio-temporal energy contours are plotted in Fig. 3.5 for the LM and ZM 

phonon packages. Figures 3.5(a) and (b) show energy contours of Ey and Ez after LM 

phonon excitation (Ey) at the left end. Figures 3.5(c) and (d) show energy contours of Ez 

and Ey results after ZM phonon excitation (Ez) at the left end. The bending position (25.0 

nm) for each structure is denoted by the dashed lines. In Fig. 3.5(a), after the excitation, 

a phonon package wave (Ey) is generated propagating along the length direction until it 

confronts the bending plane. A reflection wave has been observed in the corner. The 

disappearing LM phonon package wave in Fig. 3.5(a) emerges in the right part of Fig. 
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3.5(b) and these two waves are continuous since they share the same starting/ending 

point and have the same slope. This proves the fact that after the LM phonons pass 

through the bending area, their vibrating path changes from the y direction (Ey) on the 

left side to the z direction (Ez) on the right side. The phonon mode is preserved instead of 

the absolute vibrating direction. Reflection waves are also found in the bending plane in 

Fig. 3.5(b). Despite the fact that the phonon package waves in Figs. 3.5(a) and (b) are 

continuous, the phonon package energies are dramatically reduced upon crossing the 

bending corner since the wave fronts in Fig. 3.5(b) are much weaker and thinner than 

those in Fig. 3.5(a). Similar phenomenon is observed for the ZM phonon excitation case 

in Figs. 3.5(c) and (d). After the excitation is applied in the z direction, ZM phonon 

package waves are generated in the left pat of Fig. 3.5(c) and propagate to the right of 

the system. As mentioned above, since the ZM branch is dominant in GNR’s thermal 

conductivity, the ZM phonon packages in Figs. 3.5(c) and (d) are much stronger than the 

LM phonon packages. This confirms the point that energy separation in GNR is caused 

by the strong thermal transport capability of the ZM branch. 

  

From the above discussions, we can safely draw a conclusion that after the 

phonon packages pass through the bending structure in GNR, instead of remaining their 

absolute vibrating directions, they preserve their vibrating modes. To sum up, the spatio-

temporal iso-energy contours indicate that the flexural phonons will always vibrate in 

the out-of-plane direction of the GNR while the longitudinal phonons will always vibrate 

along the thermal conduction direction. Also, phonon scattering and reflections are 
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observed in the bended structure. 

 

 

Figure 3.5. Spatio-temporal iso-energy contours for the right-angle GNR structure. 

(a) and (b) represent Ey and Ez evolution after the LM phonon excitation (Ey) at the 

left end. (c) and (d) are for Ez and Ey evolution after the ZM phonon excitation (Ez) 

at the left end. Phonon mode-conservation is observed for the LM and ZM phonon 

branches. Phonon package reflections are also observed in the middle-plane at the 

bending region. 

 

Aside from the phonon packages propagation and reflection phenomena 

mentioned above, phonon coupling between in-plane and out-of-plane phonons is also 

 5                 25                   50                 75               100 
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observed. It could also be seen that Ez values in the left part of Fig. 3.5(b) become higher 

than the Ey in the left part of Fig. 3.5(a) as the LM phonon package propagates. Ez in the 

left part of Fig. 3.5(c) remains higher than Ey in the left part of Fig. 3.5(d). This confirms 

our previous research results that the in-plane TM and LM phonons have a higher energy 

transfer rate to the out-of-plane ZM phonons and the latter are inclined to transport 

thermal energies to themselves rather than to other phonon modes. In the left part of Fig. 

3.5(c), we can clearly see a thermal wave is generated in the length direction as the ZM 

package propagates. When the thermal-relaxation time of the phonons is large, the 

thermal-wave effect will be more prominent. Therefore, the ZM mode is more 

significant than the TM and LM modes with respect to GNR’s thermal conductivity. 

From Figs. 3.5(a) and (c), the group velocities for the LM and ZM phonons are 

calculated at 15.34 km/s and 5.05 km/s respectively. A theoretical study of the second 

sound wave under the linear approximation for three-dimensional materials shows that 

thermal wave propagation velocity is / 3gc v  [61], where vg is the group velocity. 

For two-dimensional GNR, this relation should be modified as / 2gc v  [62]. In Fig. 

3.5(c), the thermal wave propagation velocity is calculated at 3.43 km/s for the ZM 

mode, as denoted by the dashed line. Based on the group velocity in Fig. 3.5(c), the 

thermal wave speed is predicted at / 2 5.05 / 2 3.57gc v  
 
km/s. This value agrees 

well with the thermal wave speed 3.43 km/s observed in Fig. 3.5(c). 
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3.1.4. Energy barrier across the bending region 

Two distinct types of parameters control the effective thermal conductivity of 

GNR: thermodynamic parameters such as temperature and pressure/strain, and extrinsic 

parameters such as impurities, defects and bounding surfaces.  

 

 

Figure 3.6. Radial distribution function (RDF) of the flat and bending areas in the 

2.0   50.1 nm2 right-angle bended GNR system. The black and red lines represent 

the RDF at the bending area and flat area. The RDF for the bending area shows a 

smaller atomic distance than that in the flat area, indicating a compressive strain in 

the bending structure. 

 

In this work, all GNR models are pristine without the influence of the latter 

parameters, thus only temperature and strain/stress effects should be considered. An 

energy barrier is observed in the bending structure of the right-angle GNR and it is 

r (Å) 
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necessary to investigate if there is a local strain in this area. To take a closer look at the 

structure deformation caused by the bending, the radial distribution function (RDF) is 

used to explore the atom structure change in the bending area. The RDF results for both 

flat and bending regions are shown in Fig. 3.6. It is seen that the nearest neighboring 

distance in the bending area of GNR is shorter than that in the flat area, indicating that a 

local compressive strain is generated in this area. By comparing the positions of the first 

peaks in Fig. 3.6, the compressive strain () in the bending area is calculated at -2.14  

10-3. Given the nearest neighboring distance in an exact hexagonal structure, the second 

and third nearest neighboring distances could be calculated accurately. In Fig. 3.6, the 

nearest neighboring distance in the bending region is 1.3995 Å, which corresponding to 

the theoretical second and third nearest neighboring distances of 2.424 Å and 2.799 Å 

respectively. In the RDF results, the second and third nearest neighboring distances in 

the bending region are 2.4195 Å and 2.7945 Å. The slight differences between the 

theoretical and calculated values indicate the hexagonal structure still holds good in the 

bending area. Unlike bulk materials such as silicon and diamond whose thermal 

conductivity will increase due to a compressive strain in the system, the single layer 

nature of GNR makes it have a decreased thermal conductivity under either compressive 

or stretch strains [78, 79]. Because when a compressive strain is applied to the GNR 

structure, buckling in the out-of-plane direction will occur, resulting in an increasing 

phonon scattering rate and thus a reduced thermal conductivity. Therefore, it is 

conclusive that a free-standing GNR system will have a higher thermal conductivity than 

those with stains. In our case, since there is a compressive strain in the bend ing area of 
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the GNR, the local thermal conductivity will drop, which constitute one of the reasons 

for the bending resistance in this region. 

 

The RDF for the 25.0 nm, 75.0 nm and 100.0 nm bended GNRs is also 

calculated. It is worth noting that the local stain in the bended structures cannot only be 

calculated from the position of the first peaks, the second and third peak differences can 

also be used to evaluate the local strain. By comparing the first peak positions, the local 

strain values are calculated at 0, 2.1410-3, 0 and 6.7710-3 respectively for the 25.0 

nm, 50.1 nm, 75.0 nm and 100.0 nm right-angle bended GNRs. From the second peak 

positions, the strains are calculated at 4.7410-3, 2.4710-3, 1.4410-3 and 6.1810-

3 respectively. At last, the third peak positions give strain results of 4.2710-3, 6.410-

3, 9.610-3 and 6.2210-3 respectively. The zero strain based on the first-peak position 

means the nearest atomic distance is not altered in the bending area. Instead, the 

structure is twisted, and the extent of twisting is reflected by the strains calculated from 

the second and third RDF peaks. From the above results, it is ready to see that the local 

strain of the 100.0 nm case is much larger than the others with respect to the first and 

second peaks. This much larger strain will give much stronger phonon scattering than 

other cases, and lead to a larger thermal resistance. And according to Li et al. [78], the 

thermal conductivity of graphene decreases with an increasing local strain and the 

phonon scattering becomes stronger as the local strain increases. Therefore, the thermal 

resistance in the bending structure will also increase with the local strain. This explains 

the highest thermal resistance for 100.0 nm bended GNR shown in Fig. 3.2(c) in our four 
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calculated cases. 

 

In the end, the bending resistance in the right-angle bended GNR is mainly 

caused by two factors: one is the phonon wave package scattering and reflections at the 

bending area; and the other one is the compressive strain in the bending structure which 

increases the phonon scattering and causes a thermal conductivity decrease. 

 

 Discussion 3.2.

 

 

Figure 3.7. Nominal temperature distributions for the 135  bended GNR with 

dimensions of 2.0   50.1 nm2. Atomic structure of the system is shown in the inset. 

Energy separation is observed in this structure, yet no obvious bending resistance 

or energy jump has been found. 
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To further investigate the effect of bending angles on the thermal transport in 

GNRs, a 135 bended GNR system with dimensions of 2.0  50.1 nm2 is built. After 

thermal equilibrium calculations at 50 K, thermal energy of 5.9  10-8 W is 

added/subtracted at each end of the system separately and the nominal temperature 

distribution results are shown in Fig. 3.7. The atomic structure is depicted in the inset of 

Fig. 3.7. No obvious bending resistance or thermal conductivity changes are observed in 

this figure, yet energy separation still exists until the phonon energies reach the same 

level at ~50nm position, similar to the flat GNR cases shown in Fig. 3.4. From above 

cases, it summaries that the energy barrier decreases with an increasing bending angle. 

Actually, we also consider including the bended graphene structures for the range 0° to 

90°. For example, we tried to build a 45° bended GNR structure to compare with 

previous cases but at the beginning stage of our calculations, we found that the initial 

distance between the carbon atoms around the bending corner is too close that they 

bounced away instantly when the thermal equilibration starts. We try to solve this 

problem by reducing the time step from 0.5 fs to 0.05 fs and adjusting the LJ potential 

wall distance, but still the bended structure could not hold. Therefore we did not report 

0° to 90° bending cases in this work and our conclusions just apply to 90° to 180°  

bended GNRs. In our future work, effort will be taken to obtain 0° to 90° bended GNR 

structures by increasing either the GNR length or the strength of the GNR-wall 

interaction potential. 

 

In the end, we discuss the 9-3 LJ potential walls’ effect on the thermal transport 
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in GNR. It is true that the LJ potential walls will affect the out-of-plane form of the GNR 

and also the radius of curvature in the bending structure, which makes above reported 

thermal conductivity and thermal resistance results dependent on the 9-3 LJ potential 

parameters chosen in this work. Intuitively, the strength of the LJ potential controls the 

degree of bending for a GNR and its effective curvature in the bent region. The stronger 

the potential is, the larger the curvature and thermal resistance will be. This logic is 

supported by the results calculated above for different GNR lengths. A decrease in the 

GNR length would decrease the torque from GNR-wall interaction forces that 

counterbalance the internal straightening forces in the GNR due to bent deformations 

and, thus, should decrease the radius of curvature and the thermal resistance of the bent 

region. Since the bended GNR are enclosed by potential walls in all directions, the 

bending position is fixed for a specific GNR system, which also contributes to the 

variation of thermal resistance values since the bending position will also affect the R 

results for bended GNRs. The LJ parameters used in this work are balanced results that 

are able to keep the formation of the bended GNR while ensuring the system is not over 

suppressed by the LJ walls. In other words, the LJ potential we applied is not an extreme 

case but properly adjusted. This could be seen from the fact that the atomic 

configurations for the obtuse angle (90-180) bended GNRs are well maintained while 

the LJ potential is not so strong to be able to hold an acute angle (0-90) bended 

structure. To study the thermal properties of a bended GNR, it is necessary to apply the 

L-J walls to the system. Otherwise the system will have spurious global rotation in the 

simulation. The LJ potential walls are intrinsically different from a substrate used in a 
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supported graphene [80]. The 9-3 LJ potential is commonly used to model the 

interaction between atoms with a flat structureless solid wall or vice versa. This soft 

repulsive potential wall will generate a force on the atoms in the direction perpendicular 

to the wall. The Van der Walls force between the GNR and the LJ wall is much weaker 

than the covalent bond force between the carbon atoms in graphene.  

 

 

Figure 3.8. Thermal resistance and thermal conductivity comparison with   and   

reduced to half separately. It is observed that when   is reduced to half, the R 

values are suppressed to zero for the 25.0 nm, 50.1 nm and 75.0 nm cases. While 

when   is reduced to half, the R values just change slightly. The thermal 

conductivities vary in a small range when different   or   are used and increase 

with the GNR length. All the results are without quantum corrections. 

 

Since the potential walls are fixed in position (motionless), no external work will 

be done to the walls or to the GNR system, i.e., there are no energy exchange between 

the GNR and the LJ walls. And this is the most important difference between the LJ wall 



56 

 

and a substrate. The thermal conductivity of a supported graphene will decrease due to 

the out-of-plane (ZA) phonon scattering and energy coupling with the substrate. 

However, when the graphene is sandwiched between structureless LJ potentials, the 

phonons will have specular reflections on the walls. This specular reflection of phonons 

will not affect the thermal conductivity and thermal resistance of graphene. 

Nevertheless, the application of the LJ walls will affect the phonon dispersion relations 

of graphene and different choices of  and  could lead to different phonon energy 

distributions in the sandwiched GNRs. Under such scenario, the existence of potential 

walls will affect the calculated thermal conductivities and thermal resistances. From 

above discussions, it is conclusive that the LJ walls used in this work affect the 

calculated thermal properties of bended GNR to a very limited extent. 

 

Extra calculations have been done to elaborate on the above explanations. The  

and  values of the 9-3 LJ potential are reduced to half (=0.00142 eV, =0.17 nm) 

separately to compare the thermal resistance (R) and thermal conductivity (h and v) 

change with previous cases (right-angle bended). The comparison results are shown in 

Fig. 3.8. Firstly, it is observed that the parameter  plays a more important role than  on 

the determination of bended GNR’s thermal resistance. For example, when  is reduced 

to half, thermal resistances of the 25.0, 50.1 and 75.0 cases are suppressed to zero, yet 

when  is reduced to half, the R values remain almost the same. It is known that in the 9-

3 LJ potential 
9 3[2 /15( / ) ( / ) ]pE r r    ,  stands for the depth of the weakly 
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attractive well and  represents the separation distance at which the LJ potential changes 

sign. When  is reduced to half, the first and second parts in the bracket are reduced to 

0.002 and 0.125 times their original values separately. While when  is reduced to half, 

the Ep value just changes by 0.5. Therefore, it is clear to see that the strength of the LJ 

potential is more sensitive to . Thermal conductivities of the horizontal (h) and vertical 

(v) parts of the bended GNRs are also calculated with different  and  values. It is 

found that the thermal conductivities do not change much with either  or  reduced to 

half. Take the 2.0100.0 nm2 GNR as an example, by only reducing  to 0.17 nm, the 

thermal conductivity for the horizontal part of the 100.0 nm bended GNR changes from 

561 W/mK to 525 W/mK while the thermal conductivity for the vertical part changes 

from 565 W/mK to 574 W/mK. The thermal resistance in the bended region changes 

from 4.8810-11 Km2/W to 4.9910-11 Km2/W. By only reducing  to 0.00142 eV, the 

thermal conductivity becomes 553 W/m·K and 550 W/m·K for the horizontal and 

vertical parts, and the thermal resistance in the bended region is 4.65×10-11 Km2/W. The 

h and v values with half  or  values are shown in Fig. 3.8. The thermal resistance and 

thermal conductivity values are without quantum corrections. Therefore, it is conclusive 

that the change of 9-3 LJ potential parameters does not make a substantial effect on the 

phonon thermal transport in bended GNR, unless a very strong wall potential and very 

narrow wall-GNR distance is used. The LJ potential wall’s effect on the thermal 

conductivity of flat GNRs is also investigated systematically. The 25.0 nm and 50.1 nm 

flat GNRs are used to calculate the phonon energy distributions with =0.00142 eV and 
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=0.17 nm. Compared with previous cases, the thermal conductivity of the 25.0 nm flat 

GNR changes from 355 W/mK to 325 W/mK after the  and  are reduced by 50%. As 

for the 50.1 nm flat GNR, the thermal conductivity just changes very little: from 399 

W/mK to 393 W/mK. From the above comparisons, it is concluded that the 9-3 LJ 

potential walls applied in this work do not have substantial effect on the thermal 

transport in bended or flat GNRs. 
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CHAPTER 4.  PHONON ENERGY INVERSION IN GRAPHENE DURING 

TRANSIENT THERMAL TRANSPORT 

This work reports on the phonon energy evolution in graphene nanoribbons 

during transient thermal transport. Phonon energy inversion is observed: after initial 

localized thermal excitation, the energy of initial cold phonons (flexural mode: FM) 

becomes higher than that of local hot phonons in the in-plane direction (longitudinal and 

transverse modes: LM and TM). This energy inversion holds for about 50 picoseconds. 

Two physical factors combine together to give rise to this phenomenon. One is the much 

faster heat conduction by FM phonons than that by LM/TM phonons. This process 

induces a large energy difference between FM and LM/TM phonons. The other factor is 

that the energy exchange rate between FM and LM/TM phonons increases with their 

temperature: 3.7×1010 s-1 at 84 K to 20.3×1010 s-1 at around 510 K. This gives rise to a 

fast energy flow from LM/TM to FM phonons in the hot region and slow energy flow 

back from FM to LM/TM phonons in the cold region. The energy inversion becomes 

weaker with the increasing layer number of graphene. Our observation points out a novel 

way for temporal energy storage in FM phonons, energy conversion and isolation. 

 

 Results and discussion 4.1.

4.1.1. Phonon energy inversion after localized phonon excitation 

First of all, we study the phonon energy evolution after localized phonon 

excitation in a graphene nanoribbon (GNR) as shown in Fig. 4.1(a). A single layer GNR 
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with dimensions of 2.0 × 25.0 nm2 (x  y) is constructed. The second generation of 

Brenner potential [29]: reactive empirical bond-order (REBO), based on the Tersoff 

potential [34, 63] with interactions between C-C bonds is applied in our MD simulation 

reported in this paper.  

 

Periodic boundary condition is applied to the y direction and free boundary 

conditions are applied to the x and z directions. To compare the energy evolution of 

different phonon modes and the whole system, a quantity defined as Ek/[(1/2)kB], where 

Ek is kinetic energy and kB is Boltzmann constant, with unit K is used to represent the 

energy values in each direction and a value Ek/[(3/2)kB] with unit K stands for the 

system’s total energy. “Bias” has been removed from the atomic ve locities when 

energies are calculated. During initial system equilibrium calculation, a time step of 0.5 

fs is used. After 150 ps energy equilibrium calculation, the system reaches the expected 

steady state at 50 K. Then two layers of carbon atoms at each end in the x direction are 

grouped to apply opposite stretching forces (F) to each atom for 25 fs. The stretching 

force is 1.0 eV/Å per atom. Atomic structure of the system is depicted in Fig. 4.1(a). The 

GNR system is left to relax for the next 100 ps until it reaches energy equilibrium again. 

The time step is reduced to 0.05 fs in these phonon excitation and relaxation processes in 

anticipation to capture detailed phonon energy evolution. 

 

Due to the displacement of the outermost carbon atoms, a phonon package is 

excited and propagates to the inside from each boundary in the x direction.  
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Figure 4.1. Atomic configuration and energy inversion characterization in the 2.0   

25.0 (x   y) nm2 GNR system. (a) Periodic boundary condition is applied to the y 

direction and free boundary conditions are applied to the x and z directions. The 

two outermost layers of atoms in the x direction (marked as pink) are grouped to 

apply the stretching force (F = 1.0 eV/Å). This coordinate system is used for all the 

discussions in this work. (b) The Ek,x, Ek,y and Ek,z profiles of the GNR after 25 fs 

phonon excitation at the boundary. (c) The Ek,x and Ek,z energy exchange after the 

GNR is stretched in the width direction. The red area represents phonon package 

propagations induced by the stretch. 

 

Temperatures of the path through which the phonon package propagates will 

stretched atoms are marked pink (F = 1.0 eV/Å) 
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become higher than the rest areas, which gives rise to moving local hot regions in the 

GNR. Due to the phonon excitation in the x direction, the average energy of the system 

increases from 50 K to 194 K immediately after excitation. To take a closer look at the 

energy relaxation process, energies of phonons in all three directions (Ek,x, Ek,y, Ek,z) are 

computed and shown in Fig. 4.1(b). The results are averaged every 100 steps to suppress 

the data noise. At the end of excitation, Ek,x, Ek,y and Ek,z are 478 K, 48 K and 57 K 

respectively. This clearly shows that the excitation almost solely increases the energy of 

phonons in the x direction while the y and z mode phonons stay cold. Since the energy of 

the longitudinal phonons (Ek,x) is much higher than the other two modes (Ek,y, Ek,z), 

energy exchange among the three phonon branches will occur continuously until the 

GNR system reaches energy equilibrium again. 

 

Generally, one would expect in such scenario Ek,y and Ek,z will increase gradually, 

and Ek,x will decrease until the three phonon mode energies reach the same level. 

However, according to our calculated results, the longitudinal phonon energy (Ek,x) 

decreases dramatically at the beginning of the relaxation procedure while the flexural 

phonon energy (Ek,z) rises much faster than the transverse phonon energy (Ek,y) and 

becomes higher than Ek,x at around 2.0 ps. It is seen that the energy exchange between 

Ek,x and Ek,y does not give rise to such inversion phenomenon, and they reach the same 

level after about 15 ps. On the other hand, at the moment Ek,z reaches its peak value, Ek,x 

also reaches its minimum, and the energy inversion (Ek,x-Ek,z) reaches the highest level. 

Then energy flows back from Ek,z to Ek,x and Ek,y,  and it takes a much longer time (~50 
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ps) for them to reach the same level. This points out that the energy exchange between 

Ek,x and Ek,z is much slower than that between Ek,x and Ek,y, agreeing with our previous 

observation in studying the temporal response of a GNR to a thermal impulse [28]. 

 

First of all, for this first-time observed surprising behavior in graphene, our 

speculation of the driving force behind it is the much higher thermal transport capability 

by the flexural (z) mode phonons. As illustrated in Fig. 4.1(c), phonon energies in the 

moving local hot regions of GNR will increase dramatically when the phono n package 

propagates in the lateral direction. This high local energy will induce a high local Ek,z. 

According to Lindsay et al. [26], for a suspended SLG, the ZA phonon mode has a large 

density of states and follows a selection rule for anharmonic phonon scattering, which 

contributes to its anomalously large thermal conductivity. Therefore, due to the large 

thermal conductivity of ZA phonons, the local flexural mode energy (Ek,z) will dissipate 

in space very fast, which allows the local Ek,x to always remain higher than Ek,z. 

Consequently in the local hot regions, thermal energy keeps flowing from Ek,x to Ek,z, 

while in the whole GNR system Ek,z becomes greater than Ek,x. One argument is that in 

regions where Ek,z > Ek,x, energy will flow back from Ek,z to Ek,x, and offset the energy 

flow from Ek,x to Ek,z in the regions of Ek,x > Ek,z. We will prove later that this energy 

flow back is much slower due the fact that the Ek,x-Ek,z coupling is weaker when the local 

temperature is lower [Fig. 4.1(c)]. Energy transfer rates among the three mode phonons 

will be discussed below to give detailed physical analysis of this process. 
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4.1.2. Phonon package propagation and phonon coupling 

From the inset of Fig. 4.1(b) we clearly see that Ek,x decreases in a sinusoidal 

pattern (oscillating). This is caused by the phonon package travelling and reflections at 

the x boundaries. To better analyze the phonon package propagation and energy 

exchange in the GNR, we plot its spatiotemporal contours in respect of Ek,x, Ek,y and Ek,z 

in Figs. 4.2(a), (b) and (c) respectively. The results are presented without any data 

average. It can be seen that the longitudinal (x) phonon packages are travelling between 

the two x boundaries and the wave amplitude decays with time due to the energy transfer 

and phonon scattering. The propagation speed of the longitudinal phonon package is 

calculated at 19.9 km/s.  

 

 

Figure 4.2. Phonon package propagations in the width direction of the 2.0   25.0 (x 

  y) nm2 GNR system. (a), (b) and (c) are for the spatial-energy contours of Ek,x, Ek,y 

and Ek,z respectively. 

 

The local energies at the boundary where the phonons are reflected are higher 

than those at the other places due to the overlap of incident and reflection waves which 
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amplifies the wave amplitude. The local energies in the center are lower since the 

phonon packages from opposite directions cancel out and weaken the local lattice 

vibration. No transverse (y) phonon package propagation is observed in Fig. 4.2(b). In 

Fig. 4.2(c), flexural (z) phonon package propagation is observed. In Fig. 4.2(a), we 

calculate the period of the longitudinal phonon package to be 0.1 ps, corresponding to a 

phonon moving back and forth frequency of 10 THz. In Fig. 4.2(c), the period for the 

flexural phonon package is calculated at 0.2 ps, which corresponds to a phonon moving 

back and forth frequency of 5 THz. 

 

We developed a speculation that the energy inversion in GNR is caused by 

phonon package propagations, which create moving hot local regions where the thermal 

energies keep transferring from the in-plane to out-of-plane phonons until the phonon 

package dies out. The key point for such energy inversion is very localized phonon 

excitation. Therefore if there is no phonon package generated in the GNR system, the 

energy inversion should not be observed among Ek,x, Ek,y and Ek,z. To test this point, we 

use a 2.0 × 25.0 nm2 (x  y) GNR to investigate the energy transfer among the three 

phonon branches without inducing any phonon propagation influence. 

 

The GNR system is initially placed in a Nose-Hoover [81, 82] thermal bath for 

200 ps until the system reaches energy equilibrium at 50 K. Then the velocity of atoms 

in the x direction (vx) is rescaled to two times their original values. Therefore according 

to the energy equipartition theorem, the x mode phonon energy (Ek,x) will become four 
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times the initial value, which is around 200 K in this case. Due to the increase of Ek,x, 

thermal energies will be transferred to Ek,y and Ek,z, and no phonon package is generated 

since the GNR is heated uniformly in the x direction.  

 

 

Figure 4.3. Calculation of phonon coupling time against energy. (a) Energy 

evolutions after Ek,x is rescaled to ~200 K. (b) The characteristic coupling time of 

the in-plane phonons and the flexural phonons at different energy levels. It is 

conclusive Gz increases with the local energy level, meaning if the phonon is more 

excited, the mode-wide coupling will be stronger. 

 

The energy relaxation process is shown in Fig. 4.3(a). The time step is 0.05 fs 

during the relaxation and the results are averaged every 100 steps to suppress the data 
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noise. Compared with Fig. 4.1(b), it is seen that no energy inversion happens between 

in-plane and out-of-plane phonon energies. 

 

In Fig. 4.3(a), three energy transfer processes are observed, which are Ek,x→Ek,z, 

Ek,y→Ek,z and Ek,x→Ek,y respectively. The evolution of Ek,z can be expressed as 

,

, , , ,( ) ( )
k z

xz k x k z yz k y k z

E
G E E G E E

t


   


, (4-1) 

where Gxz, Gyz are the inverse values of the coupling time for Ek,x→Ek,z and Ek,y→Ek,z. 

Since Ek,x and Ek,y are both in-plane phonon energies, to simplify the coupling analysis 

we assume their coupling times with Ek,z are the same (Gxz = Gyz = Gz). The theoretical 

basis of Eq. (4-1) could be explained by the following. After the vx rescaling, the total 

energy of the system remains constant while Ek,x, Ek,y and Ek,z are different, i.e., there is 

no spatial heat conduction in the system but energy transfer among different phonon 

modes. The change in certain phonon energy is only caused by its coupling with other 

phonon modes. The phonon energy exchange happens as long as there are energy 

differences among them. Take Ek,z as an example, the change of Ek,z is caused by its 

coupling with Ek,x and Ek,y. To describe this change, coefficients of Gxz and Gyz with unit 

second-1 are introduced to characterize the coupling rate of Ek,z with Ek,x and Ek,y 

respectively. Then the evolution of Ek,z can be described by calculating the time 

integration of its coupling rate with Ek,x and Ek,y. Since Ek,z is already given by the MD 

simulation results, Gz can be determined by best fitting the MD results using Eq. (4-1). 

Given a proper Gz value, Eq. (4-1) could be used to fully describe the evolution of Ek,z. 

By fitting the MD simulation data of Ek,z with numerical results calculated from Eq. (4-
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1) using the least square method, we calculate the Gz value at 3.96 × 1010 s-1, 

corresponding to a coupling time (τz) of 25.3 ps. Similarly, the equation for the evolution 

of Ek,y is 

,

, , , ,( ) ( )
k y

xy k x k y z k z k y

E
G E E G E E

t


   


, (4-2) 

where Gxy is the inverse of the coupling time between Ek,x and Ek,y. Given Gz = 3.96 × 

1010 s-1, the value of Gxy is calculated at 1.86 × 1011 s-1 based on data fitting of the Ek,y 

evolution, and the phonon relaxation time (τxy) is 5.4 ps. From the above results, we can 

see that τz is 4.7 times τxy, meaning the energy transfer for Ek,x → Ek,z and Ek,y → Ek,z are 

much slower than that between Ek,x and Ek,y. 

 

According to the previous study by Lee et al. [74], the thermal conductivity of 

graphene decreases with temperature. It is expected the characteristic coupling time 

between in-plane and out-of-plane phonons will decrease with time, which should lead 

to an increasing Gz value against temperature in graphene. Therefore we also conducted 

a study on how the phonon coupling constant Gz changes with the local energy level 

(temperature). For this study, we rescale Ek,x and Ek,y simultaneously to the same value 

and use Eq. (4-1) to calculate Gz. The Gz values at different energies are shown in Fig. 

4.3(b). We can see that Gz increases with temperature, from around 3.7×1010 s-1 at 84 K 

to 20.3×1010 s-1 at around 510 K. This indicates that the thermal energy transport 

between the in-plane and out-of-plane phonons becomes faster as temperature increases, 

meaning the phonon coupling between Ek,x/Ek,y and Ek,z in hot local regions is stronger 
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than that in cold regions. From the above discussions, we conclude that the energy 

inversion in GNR is mainly caused by two reasons. First, the out-of-plane phonons make 

substantial contribution to the GNR’s thermal conductivity and dissipate heat much 

faster than the in-plane phonons. Second, in the moving hot local regions where the 

phonon package passes by, the coupling time between in-plane and out-of-plane 

phonons is much smaller than that in the cold area. This leads to a continuous net energy 

transfer from Ek,x/Ek,y to Ek,z. 

 

From above work, we have learned that energy inversion will happen when a 

phonon package is excited in the x direction. However, since the thermal conductivity 

and phonon boundary scattering rate in the x and y directions are different, it is necessary 

to further examine the phonon energy evolution when the phonon package is excited in 

the y direction. A 2.0 × 25.0 nm2 (x  y) flat GNR is built to reach thermal equilibrium at 

temperature 50 K. Periodic boundary condition is applied to the x direction and free 

boundary conditions are applied to the y and z directions. Then two layers of carbon 

atoms at one end in the y direction are grouped to apply a stretching force (F in the y 

direction) for 25 fs. The stretching force is 5.0 eV/Å per atom. Atomic structure of the 

system is shown in the inset of Fig. 4.4. Phonon energy evolutions in each direction are 

shown in Fig. 4.4. The time step is 0.05 fs during the relaxation and the results are 

averaged every 100 steps to suppress the data noise. It is observed that right after the 

phonon package excitation, Ek,y becomes higher than Ek,x and Ek,z. Then at ~18 ps, Ek,z 

exceeds Ek,y to become the highest, which indicates the occurrence of energy inversion. 
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An energy bump at ~1.25 ps is observed in the Ek,y profile. The energy bump is induced 

by the longitudinal phonon package’s reflection on the other end in the y direction, 

which increases the atoms’ kinetic energy in the local area. Based on the appearance 

time of this energy bump, the longitudinal phonon package speed is calculated at 20.0 

km/s, which is nearly the same with previous result of 21.3 km/s [19]. 

 

 

Figure 4.4. Energy inversion characterization in the GNR system with phonon 

package excitation in the y direction. Periodic boundary condition is applied to the 

x direction and free boundary conditions are applied to the y and z directions. Two 

outermost layers of carbon atoms at the right end (marked as yellow) are grouped 

to apply stretching force (F = 5.0 eV/Å). An energy bump is observed in the Ek,y 

profile, which is induced by the phonon package reflection on the graphene 

boundary. 

 

 Energy inversion with a static heat source 4.2.

From the above physics analysis, we predict that phonon energy transfer and 

stretched atoms are marked yellow (F = 5.0 eV/Å) 

x 

z 

y 
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exchange caused by a static localized heating source will also induce energy inversion in 

a GNR system. To prove our prediction, a 2.0 × 75.1 nm2 (x  y) GNR system is built 

[Fig. 4.5(d)]. Periodic boundary condition is applied to the y direction and free boundary 

conditions are applied to the x and z directions. 

 

 

Figure 4.5. Energy inversion characterization with static heating source. Fix 

boundary condition is applied to the y direction and free boundary conditions are 

applied to the x and z directions. (a), (b) and (c) show energy evolutions of the 

whole region, regions A, and region B. (d) Schematic to show the phonon transport 

in the 2.0 × 125.1 (x   y) nm2 GNR. Heat conduction (HC) among FM phonons is 

much faster than those among LM and TM phonons. The red area (region B) is the 

25.0 nm heating region where Ek,x and Ek,y transfer to Ek,z. The thermal energies 

will mainly be transported by Ek,z to the low energy area (region A) where Ek,z 

mostly transfers to itself in space (heat conduction) and partially to Ek,x and Ek,y. 
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The system initially reaches thermal equilibrium at 50 K. Then a region of 2.0 × 

25.0 nm2 [region B shown in Fig. 4.5(d)] in the middle of the GNR is exposed to a 

thermal impulse. The heating time is 2 fs and the final temperature in the heating region 

is 631 K. Figures 4.5(a), (b) and (c) show the energy evolutions of the whole system, 

regions A+C, and region B. The time step is 0.5 fs during the relaxation and the results 

are presented without any data average. First and most importantly, energy inversion is 

observed in Fig. 4.5(a). At around 1 ps, the flexural mode (FM) phonon energy (Ek,z) 

becomes higher than those of the transverse mode (TM) (Ek,x) and longitudinal mode 

(LM) (Ek,y) phonons. It can be seen from Fig. 4.5(c) that in region B, Ek,z decreases faster 

than Ek,x and Ek,y. This is because the FM phonon carries more heat to the low energy 

region (regions A and C) than the TM and LM phonons due to the much higher thermal 

conductivity sustained by FM phonons. As a result, Ek,z regions A and C is higher than 

Ek,x and Ek,y due to the continuous heat current from region B by FM phonons, which is 

clearly shown in Fig. 4.5(b). 

 

In region B, the LM and TM phonons keep transferring thermal energy to the FM 

phonons due to the energy difference between them, as shown in the inset of Fig. 4.5(c). 

This continuous heat transfer between the in-plane phonons and out-of-plane phonons 

eventually causes higher total energies in the z direction and induces energy inversion in 

GNR. During the heat conduction from region B to regions A and C, the FM phonons 

will largely transfer their energy to FM phonons (heat conduction), and transfer very 

little to the LM and TM phonons. One argument is that in regions A and C, the FM 
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phonons have a higher energy than the LM and TM phonons, so the energy could be 

transferred from FM phonons to LM and TM phonons in this region. This could prevent 

the energy inversion from happening. The fact is that in region B, the local energy is 

higher and will lead to faster LM/TM to FM phonon energy transfer (smaller coupling 

time). In regions A and C, the local energy is low, and the energy transfer from FM to 

LM and TM phonons is slow (longer coupling time). Therefore, more energy will stay in 

the FM phonons, leading to energy inversion. 

 

The energy transport rate from the TM and LM phonons to the FM phonons in 

region B is expressed as
  

, 1 , , 1 , ,( ) ( )z in z k x k z z k y k zE G E E G E E     , (4-3) 

where Ek,x, Ek,y, Ek,z are the phonon energies in the 25.0 nm region. Similarly, the energy 

transport rate from the FM phonons to the TM and LM phonons in region A can be 

written as 

, 2 , , 2 , ,( ) ( )z out z k z k x z k z k yE G E E G E E     . (4-4) 

The differences between ,z inE  and ,z outE  will be the rate of energy accumulating in the 

flexural phonons. The FM phonon energy profile of the whole system can be predicted 

as 
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 
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where VA, VB and VGNR represent the volume of region A, region B and the entire GNR 

respectively. The Gz1 and Gz2 values will change with energy as shown in Fig. 4.3(b), 
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while in this case we simplify the calculation by using Gz1 = 22 × 1010 s-1 and Gz2 = 

4.15× 1010 s-1 at the average FM energy for the time range 0-15 ps, and Gz1 = 14.5 × 1010 

s-1 and Gz2 = 5.3× 1010 s-1 for the time range 15-50 ps. By substituting Ek,x, Ek,y and Ek,z 

values into Eqs. (4-3)-(4-5), the predicted Ek,z values is plotted in Fig. 4.5(a) (blue solid 

curve). It is very exciting to observe that the predicted Ek,z curve soundly matches the 

MD simulation results. This strongly proves that the input energy to the FM phonons is 

greater than the output energy, therefore inducing energy inversion in GNR. Also this 

prediction quantitatively proves the physics we proposed for the energy inversion 

phenomenon. 

 

 Energy inversion in multi-layer graphene 4.3.

Klemens [21, 22] clearly distinguished the thermal transport in SLG and in bulk 

graphite. In the latter case there appears strong coupling within the cross-plane phonon 

modes and heat propagates in all directions, which reduces the contributions to heat 

conduction of the low-energy modes along the basal planes to negligible. By following 

the spirit of Klemens [21, 22], Balandin et al. [20] proved that thermal conductivity of 

bulk graphite is much lower than that of single layer graphene. According to Lindsay et 

al. [27], the interaction between graphene layers breaks the selection rule on phonon-

phonon scattering and results in a reduced thermal conductivity in the ZA phonon mode. 

As a result, we expect that the energy inversion in GNR will also be weakened in 

multilayer graphene (MLG). 
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Figure 4.6. Damping energy inversion against growing layers. (a), (b), (c) and (d) 

show energy evolutions for graphene with different layer numbers. The black, red 

and green solid lines represent Ek,x, Ek,y and Ek,z respectively. (e) Ek/Ek,rise with 

different layer numbers from 1 to 10. Definitions of Ek and Ek,rise are illustrated 

in Fig. 4.1(b). 

 

For the MLG systems studied in this work, the interaction between graphene 

layers is described by the Lennard-Jones (LJ) potential as 

12 6( ) 4 [( ) ( ) ]LJv r
r r

 
  , (4-6) 

where r is the distance between carbon atoms and ε and σ are the common LJ 

parameters, which are set to be 0.0046 eV and 3.3276 Å respectively. Only the coupling 
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between adjacent graphene planes is included in all the systems. 

 

Dimension of the MLG system is 2.0 nm×25.0 nm (x×y), with n number of 

graphene layers in the z direction. Coordinates and boundary conditions of the system 

are the same as that displayed in Fig. 4.1(a). A time step of 0.5 fs is used along the whole 

calculation. After energy equilibrium calculation at 50 K, the MLG system is stretched 

in the x direction (2.0 nm side direction) with two opposite forces (1.0 eV/Å per atom) 

applied on each side for 25 fs. Only the outmost two layers of atoms at each end in the x 

direction are stretched, like the scenario shown in Fig. 4.1(a). After the stretching 

process, energy relaxation is performed for the next 100 ps. Energy changes in all three 

phonon modes are calculated during the relaxation process and the results for N = 1, 4, 7, 

10 MLGs are shown in Figs. 4.6(a), (b), (c) and (d). The results are presented without 

any data average. We can see from these figures that as the layer number increases, the 

maximum Ek,z decreases and energy inversion is weakened. To be more specific, we 

calculate the Ek,z difference between the initial and the final state as the denominator 

(Ek,rise) and the difference between the peak Ek,z value and the minimum Ek,x value as 

the nominator (Ek). The Ek and Ek,rise value definition is denoted in Fig. 4.1(b). Ek 

is the maximum energy inversion between Ek,z and Ek,x, and Ek,rise is the final system 

energy rise induced by the initial phonon excitation. The ratio reflects the strength of the 

energy inversion process and their values are plotted in Fig. 4.6(e). The Ek/Ek,rise 

values decrease with an increasing layer number, which further proves that the energy 

inversion is weakened as layer numbers increase. This weakening is most obvious when 
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the graphene layer number changes from 1 to 2, and is moderate with further layer 

number increases. We conclude from Fig. 4.6(e) that energy inversion is weakened due 

to a reduced FM mode thermal conductivity in the MLG. Due to the computational cost 

for multilayer graphene, our calculations only include layer thickness ranges from 1 to 

10. However, for much thicker ones, we expect the energy inversion phenomenon will 

still exist but be much weaker. We believe this is an intrinsic property of graphite. 

However, this energy inversion phenomenon is not a 2-D effect. To observe the energy 

inversion at the system level, the material must have strong mode-wide non-uniform 

thermal conductivity and temperature-dependent inter-mode energy coupling rate. 
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CHAPTER 5. CO-EXISTING HEAT CURRENTS IN OPPOSITE DIRECTIONS 

IN GRAPHENE NANORIBBONS 

The differential form of Fourier’s law of heat conduction is expressed as 

q=T, where q is the local heat flux,  the material’s thermal conductivity and T 

the temperature gradient. The minus sign indicates the heat current flows from higher 

temperature regions to lower ones. For bulk materials,  is size independent and only 

determined by the material’s composition and structure. While for micro/nanoscale 

materials,  is also affected by parameters like dimension and boundary condition. 

Generally, in order to define the local temperature, mode-wide thermal equilibrium 

among different phonon modes should be reached. However, since the thermal 

conductivities of different phonon modes in graphene have huge differences, it is 

possible that there is mode-wide energy difference during steady state heat conduction in 

graphene. In such scenario, the definition of temperature is no longer accurate to 

describe graphene’s local energy level. And strictly speaking, thermal conductivity is 

also not well defined. Therefore, a nominal temperature (ET) with unit K and apparent 

thermal conductivity (app) with unit W/mK are brought up to give a better description. 

 

In this work, phonon thermal transport in GNRs is investigated by using MD 

simulation. A peculiar heating and cooling technique is developed to induce mode-wide 

energy difference during steady state heat conduction. The unique thermal properties of 

GNR enable it to support a bi-directional heat transfer in the system. And when the bi-

directional heat conduction reaches steady state, a single thermal conductivity cannot be 
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used to reflect the relation between the heat flux and the temperature gradient. The 

calculated thermal conductivities are dependent on the net heat fluxes and the app of 

graphene are calculated at positive, negative, zero and infinite va lues, depending on the 

proportions of each phonon mode energy added/subtracted to/from the heating/cooling 

areas. 

 

 Basis of physical problem and modeling 5.1.

The second generation of Brenner potential:[29] reactive empirical bond-order 

(REBO), based on the Tersoff potential[34, 63] with interactions between C-C bonds is 

applied in our MD simulation. In this work, the GNR systems have zigzag boundaries in 

the width direction and armchair boundaries in the length direction. The edge carbon 

atoms are not hydrogen-passivated. Atomic configuration of the GNR system is depicted 

in Fig. 5.1. The outermost layer of carbon atoms at each end (denoted in black) are fixed 

to avoid the spurious global rotation of the GNRs in the simulation. [83] Free boundary 

conditions are applied to the x and z directions. To compare the energy evolution of 

different phonon modes and the whole system, a nominal temperature Ei defined as 

Ek,i/(1/2)kB with unit K is used to represent the energy values in each phonon mode and a 

value ET defined as Ek,T/(3/2)kB with unit K stands for the system’s total energy. Here Ek,i 

is the kinetic energy of carbon atoms for phonon mode i (i=TM, LM, or FM); Ek,T is the 

total kinetic energy of carbon atoms and kB is the Boltzmann constant. Within the linear 

response regime, one would expect from Fourier’s law of heat conduction that q 

changes proportionally with T.  
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Figure 5.1. Atomic configuration for studying the bi-directional heat conduction in 

graphene nanoribbons. The outermost layer of carbon atoms at each end (denoted 

in black) are fixed in position. (a) Kinetic energy is added to the FM phonons on the 

left side (red region) and subtracted from the right side (blue region). Heat current 

qFM is carried by FM phonons from left to right. (b) The in-plane longitudinal and 

transverse phonons are heated and cooled on the right and left sides respectively. 

Heat current qTM+FM is carried by TM/LM phonons from right to left. (c) By doing 

(a) and (b) simultaneously, a peculiar bi-directional heat conduction phenomenon 

in GNR is created. 

 

However, in many low dimensional systems,[84-88] it is found that q decreases 

with an increasing temperature bias (T), which is known as negative differential 

thermal conductance (NDTC). Recent study by Hu et al[84] revealed a tunable NDTC in 

rectangular and triangular GNRs, which results from the competition between decreasing 

y z 

  

  

E
FM

 heat conduction to right  

E
TM

 and E
LM

 heat conduction to left  

  

E
FM

 heating 

E
TM

, E
LM

 cooling 

q
TM+LM

 

E
FM

 cooling 

E
TM

, E
LM

 heating 

  

  

  

q
FM

 

x 

y 

z 

(b) 

(c) 



81 

 

 and increasing T beyond linear response regime. They proved that the NDTC in GNR 

is intrigued by its temperature dependent thermal conductivity. However, it is worth 

noting that the thermal conductivity of GNR is not only temperature dependent, but also 

deviates much among in-plane and out-of-plane directions.[23, 24, 26, 28]  

 

Inspired by the strong mode-wide difference in sustaining thermal transport in 

GNR, bi-directional heat transfer in a rectangular GNR is explored in this work (as 

shown in Fig 5.1). Four layers of carbon atoms at each end of the GNR system is 

grouped to add/subtract kinetic energy to/from the out-of-plane phonon mode (EFM) and 

in-plane phonon modes (ELM and ETM) respectively. In traditional non-equilibrium 

molecular dynamic methods for thermal conductivity calculation, the hot and cold 

regions are created in the simulation domain by adding kinetic energy Ek in the hot 

region and removing the same amount from the cold one while preserving linear 

momentum at each time step. The velocity of each atom is rescaled by the same factor . 

In this work, we use a modified velocity rescaling method to control the energy variation 

for each phonon mode, i.e., instead of adding/subtracting kinetic energy to all phonon 

modes, we manage to add kinetic energy only to the specified phonon mode and subtract 

kinetic energy from the others in the same region. Specifically, by adding kinetic energy 

to EFM while subtracting kinetic energy from ELM and ETM at the left end of GNR and 

doing the opposite at the right end, a bi-directional heat conduction phenomenon is 

observed. This physical process is demonstrated in Figs. 5.1(a), (b) and (c). The local 

nominal temperature along the GNR is calculated from the kinetic energy of the three 
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phonon modes averaged for 50 ps. 

 

In this work, the phonon-phonon couplings among different phonon modes are 

considered in the graphene system naturally since the MD simulation tracks the full 

movement of each atom and the inter-atomic interaction. In our previous study.[89] it 

has been proved that the energy coupling between TM and LM phonons is much faster 

than that between TM/LM and FM phonons. At temperature ~80 K, it is calculated that 

the phonon relaxation time between FM and TM/LM is 4.7 times larger than that 

between TM and LM, meaning the energy transfer between TM/LM and FM is much 

slower than that between TM and LM. Also, it is concluded that the energy coupling 

between FM and TM/LM phonons is not constant against their energy level: the 

coupling becomes stronger when the phonon energy is higher. 

 

 Results and discussion 5.2.

5.2.1. Negative apparent thermal conductivity in GNR 

A GNR with dimensions of 2.0  50.1 nm2 (x×y) is built. After 400 ps canonical 

ensemble (NVT) and 150 ps microcanonical ensemble (NVE) calculations, the system 

reaches thermal equilibrium at temperature 50 K. For FM phonons, kinetic energy 

,k FME =2.17108 W is added to the left end and subtracted from the right end of the 

GNR constantly for 400 ps, while , ,k TM k LME E  =1.96108 W ( ,k TME = ,k LME ) is 

subtracted from the left TM+LM phonons and added to the right end TM+LM phonons 
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of the GNR respectively for the same time span. A parameter  defined as 

, , ,/ ( )k FM k TM k LME E E    is used to represent the heating and cooling ratio between the 

out-of-plane and in-plane phonons. In this case,  equals 1.11. For simplicity, the value 

, ,( )k TM k LME E  =1.96108 W ( ,k TME = ,k LME ) remains constant for all the heating 

and cooling cases reported in this work, and variations are made by changing ,k FME . 

Since the layer distance in graphite is 0.335 nm, we use this value as the thickness for 

single layer graphene for thermal conductivity evaluation.[90, 91] The cross-sectional 

area (Ac) is calculated at 6.71019 m2. Therefore the heat flux in the length direction can 

be calculated from the equation q=Q/Ac, from which the net heat flux is calculated as 

3.23109 W/m2. The time step is 0.5 fs for all graphene calculations.  

 

After 400 ps bi-directional heating and cooling process, the heat conduction 

reaches steady state. Then another 50 ps is calculated for data collection and average. 

Nominal temperature distributions along the GNR system are shown in Figs. 5.2(a), (b) 

and (c). Figure 5.2(a) shows the ET energy distributions along the GNR while Figs. 

5.2(b) and (c) are for the in-plane ETM/ELM and out-of-plane EFM phonons respectively. 

First of all, we can see from Fig. 5.2(b) that ETM and ELM have a positive gradient, 

meaning heat flux is negative (from right to left) for these modes of phonon energy since 

the heat flux is driven by temperature/energy differentials. On the other hand, EFM has a 

negative gradient, meaning its heat flux is going from left to right. This simultaneous bi-

directional heat conduction is very unique, and proves, for the first time, that graphene as 
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a unique material can support two heat currents in opposite directions at the same time. 

The main mechanism behind this phenomenon is the weak energy coupling between 

ETM/ELM and EFM, and the much higher thermal conductivity by FM phonons.  

 

 

Figure 5.2. (a), (b), (c) Nominal temperature distributions for  = 1.11. q total follows 

the ET increasing direction, indicating an apparent negative app. (d), (e), (f) 

Nominal temperature distributions for  = 0.75. In this case, q total follows the ET 

decreasing direction, and a positive app is calculated. 
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Although the FM mode has an energy differential from the transverse and 

longitudinal modes, due to the very weak energy coupling between them, this energy 

differential can hold for a very long distance. Consequently, the heat current sustained 

by the FM phonons can be different from that sustained by the LM/TM phonons, in both 

magnitude and direction. Since qFM (from left to right) is larger than qTM+LM (from 

right to left), the net heat flux of the system qtotal is calculated at 3.23109 W/m2 in the 

direction from left to right. Generally speaking, under such condition one would expect 

that the temperature decreasing direction is in the same direction as the total heat flux. 

However, we clearly see in Fig 5.2(a) that the positive gradient of ET is from right to left, 

which is in the opposite direction of the total heat flux. This surprising phenomenon is 

caused by the very different heat conduction capacity between FM and LM/TM 

phonons. Although qFM is larger in this case, since the FM phonon sustains a much 

higher thermal conductivity, the temperature/energy gradient of FM phonons is smaller. 

On the other hand, even qLM+TM is smaller, the low thermal conductivity sustained by 

LM+TM phonons requires a larger temperature/energy gradient to sustain this heat flux. 

Therefore, at the system level, we see the heat flux direction is opposite to the prediction 

based on the overall energy gradient. According to Fourier’s heat conduction equation, 

the apparent thermal conductivity 1.11 is calculated at 90.5 W/mK by linear fitting the 

ET profile. 

 

Here we would like to stress this negative apparent thermal conductivity does not 

violate the second law of thermodynamics, nor does it tell the thermal conductivity can 
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be negative for graphene. As discussed above, for each phonon mode, the heat current 

still flows from higher energy level to lower one, meaning its thermal conductivity is 

still positive. The negative apparent thermal conductivity originates from two factors: 

the very weak coupling between the FM and LM+TM phonons, and the much larger 

thermal conductivity sustained by FM phonons than that by LM+TM phonons. It tells 

one very important phenomenon in graphene: if there is phonon energy 

differential/separation between FM and LM+TM phonons during heat conduction, the 

local thermal conductivity based on Fourier’s law of heat conduction will be different, 

depending on how much difference between the FM and LM+TM phonon energies, in 

both magnitude and gradient. The apparent thermal conductivity of graphene can be 

expressed as: 

   / / / / / / / / 3app TM TM LM LM FM FM TM LM FME y E y E y E y E y E y                   
.  

 

Only when the three phonon modes have the same temperature gradient in space, 

the thermal conductivity of graphene is the sum of the three modes thermal 

conductivities. Otherwise, the thermal conductivity of graphene will vary, depending on 

the extent of energy separation among phonon modes. More elaboration on this 

argument will be detailed in the following sections. 

 

For comparison, another bi-directional heat conduction case with =0.75 is also 

calculated. All the calculation procedure and parameter settings are the same as the first 

case except for ,k FME =1.47108 W. The nominal temperature distributions of the 
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system are shown in Figs 5.2(d), (e) and (f). In this case, the net heat flux is calculated at 

7.34109 W/m2 (from right to left), which is in the same direction as the negative 

gradient direction of ET. The apparent thermal conductivity 0.75 is calculated at 139.6 

W/mK. In the above two cases, both positive and negative app are observed in the GNR 

system. In the following discussions, more bi-directional heat conduction cases with 

different  values are calculated to explore the condition under which a negative app 

will appear. 

 

As mentioned in the above discussions, after 400 ps bi-directional heating and 

cooling process, the heat conduction in the 2.050.1 nm2 GNR reaches steady state and 

the nominal temperature gradient for ET becomes constant. However, since there are 

mode-wide energy differences between FME  and /TM LME E , energy exchange happens 

among different phonon modes. Therefore, it could be argued that the system has not yet 

reached thermal equilibrium in respect of individual phonon mode. To prove that 

thermal equilibrium is established for both the GNR system and individual phonon 

branch, atomic velocity distribution at 12.5 nm, 25.0 nm and 37.5 nm locations in the 

length direction of the 2.0  50.1 nm2 GNR is calculated for =1.11. At thermal 

equilibrium, the atomic velocity distribution should follow the Maxwellian distribution 

2 /22 3/24 ( )
2

Bmv k T

M
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m
P v e

k T






, (5-1)

 

where PM is the probability for an atom moving with a velocity v. Since ETM, ELM 

and EFM have different values within each region, the velocity distributions for each 
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phonon mode are calculated. The vTM, vLM and vFM distributions at 12.5 nm area are 

shown in Fig. 5.3, which indicates a good agreement between the velocity distribution 

and the Maxwellian distribution. Although mode-wide energy differences exist, each 

phonon mode has reached steady state heat conduction, which also proves the validity of 

temperature/energy use in the above calculations for each mode. 

 

 

Figure 5.3. Atomic velocity distributions for individual phonon mode in the 

2.050.1 nm2 GNR system at 12.5 nm location for =1.11. Sound agreements 

between the MD simulation and Maxwellian velocity distribution are observed. 

 

Error analysis is performed in our calculations. In this work, all the graphene 

systems reach thermal equilibrium after 400 ps canonical ensemble (NVT) and 100 ps 

microcanonical ensemble (NVE) calculations. In the thermal equilibrium calculations, 

the system temperature varies around the pre-set temperature 50.0 K. Take the  = 0.75 
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case as an example, after 500 ps thermal equilibrium calculation, the average 

temperature of the system is 50.1 K and the standard deviation () of the system 

temperature variation is calculated at 1.2 K. Since the initial setup and calculation 

processes are the same for all the systems, the error bar of temporal averaging will be 

around the same range, which is 1.2 K. 

 

5.2.2. Comparison study in solid argon system 

Our interpretation of the negative app observed in the GNR system is its much 

higher thermal conductivity by FM phonons, and weak energy coupling between the FM 

and LM/TM phonons. Therefore, for a normal material with the same thermal 

conductivity sustained by different phonon modes, the negative total temperature 

gradient should always be in the same direction as the net heat flux and its thermal 

conductivity should remain positive. To elaborate on this speculation, a solid argon 

system with dimensions of 4.34.350.1 nm3 (x×z×y) is used to investigate its app 

under steady state bi-directional thermal conduction. Atomic configuration of the argon 

system is depicted in the inset of Fig. 5.4(b). The outermost layer of argon atoms at each 

end is fixed (denoted in black), and free boundary conditions are applied to the x and z 

directions. Four layers of argon atoms at each end of the system are grouped to 

add/subtract phonon energies. Since the nearest neighbor distance rs in the fcc lattice of 

argon depends on the temperature, we use the expression given by Broughton and 

Gilmer[92] to initialize the rs value, which is calculated at 3.768 Å at temperature 20 K. 

The interactions between argon atoms are described by the 12-6 LJ potential 
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12 64 [( / ) ( / ) ]ij ij ijr r     . The ε and σ are set as 0.01032 eV and 3.406 Å respectively 

and the cut off distance rc is taken as 2.5σ. Time step is 5 fs for all calculations.  

 

After 1 ns NVT and 500 ps NVE calculations, the argon system reaches thermal 

equilibrium at temperature 20 K. Then bi-directional heating and cooling process is 

performed for another 2 ns until the system reaches steady state heat conduction. 

Another 50 ps is calculated for the data collection and average. The nominal 

temperatures in the x, y and z directions are denoted as ETM,x, ELM and ETM,z respectively. 

Three different cases are calculated. Similarly, the , ,k LM k TMxE E   ( , ,k LM k TMxE E   ) 

added/subtracted at each end is kept the same as 1.16108 W for all cases, while 

,k TMzE  are set as 8.71109 W, 1.16108 W and 1.39108 W. Their nominal 

temperature distributions are shown in Figs. 5.4(a), (b) and (c) respectively. Compared 

with the GNR cases above, it is observed in the solid argon system that the mode-wide 

energy differences only exist near the heating and cooling regions. The energy 

differences only exist in a very short distance (~1 nm) from the heating and cooling 

regions and the phonon energies then remain the same along the heat conduction 

direction, indicating strong phonon energy couplings among different phonon modes. Or 

we can say the bi-directional heat conduction only exists in very small regions close to 

the ends, then the heat conduction becomes one-directional. In Fig. 5.4(a), it is seen that 

the net heat flux qtotal and negative temperature gradient follows the same direction 

from right to left. And by linear fitting the ET distribution, thermal conductivity 1 is 
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calculated at 0.637 W/mK.  

 

 

Figure 5.4. Nominal temperature distributions under steady state bi-directional 

heat conduction in the solid argon system. (a) The net heat flux is 1.60108 W/m2 

from right to left. The thermal conductivity 1 is calculated at 0.637 W/mK. The 

inset shows that the mode-wide energy separation only exists within the first 1 nm 

of the system and the bi-directional heat conduction does not penetrate deep to the 

system (b) No temperature gradient is observed when the net heat flux is zero. 

Atomic structure of the solid argon system is shown in the inset. The outermost 

layer of argon atoms at each end (denoted in black) are fixed and free boundary 

conditions are applied to the x and z directions. Then four layers of argon atoms at 

each end (denoted in red and blue) are grouped to add/subtract energy. (c) The net 

heat flux is 1.28108 W/m2 from left to right and thermal conductivity 2 is 

calculated at 0.677 W/mK, which is consistent with 1. 

 

No temperature gradient is observed in Fig. 5.4(b) when qtotal equals zero. 

Figure 5.4(c) gives similar conclusions as Fig. 5.4(a) and the thermal conductivity 2 is 

calculated at 0.677 W/mK, which is consistent with 1. Previous studies reported 
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thermal conductivity is around 1.4 W/mK for solid argon at temperature 20 K.[93-97] 

Our calculated thermal conductivity for solid argon is lower than the experimental 

results.  

 

 

Figure 5.5. Atomic velocity distributions under steady state bi-directional heat 

conduction in solid argon system. Different locations at 12.5 nm, 25.0 nm 37.5 nm 

are used in the calculation and the MD results agree well with the Maxwellian 

distribution. 

 

The small system size and the relative large surface/volume ratios contribute to 

the boundary phonon scattering during thermal conductance, which explains the slightly 

lower thermal conductivity calculated here for argon. Such effect has been confirmed by 

Zhong et al[98] in their work, the thermal conductivity of a round argon wire of 4.3 nm 

diameter at 30 K was calculated to be 0.28 W/m·K, much lower than the bulk value of 

0.78 W/m·K.  Atomic velocity distribution in the solid argon system is also calculated 
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and the results for the ,k TMzE =1.39108 W case are shown in Fig. 5.5.  

 

Three different regions at 12.5 nm, 25.0 nm and 37.5 nm in the length direction 

are chosen. The MD results and the Maxwellian distributions have sound matches, 

indicating that the argon system has reached thermal equilibrium when the data are 

collected. Compared with the GNR cases, no mode-wide energy differences are 

observed under steady state heat conduction in the argon system except a very small (1 

nm) region adjacent to the heating/cooling regions, and the thermal conductivity remains 

positive and consistent for all calculations. This further proves the fact that the negative 

app in GNR is caused by significant mode-wide deviation in thermal conductivity. To be 

specific, the FM phonon thermal conductivity is much higher than those of LM and TM 

phonons. The weak coupling between FM and LM/TM phonons is also an important 

factor that contributes to the negative app in GNR. 

 

5.2.3. app topology for graphene 

By applying bi-directional heat conduction in GNR, both positive and negative 

app have been observed. To further explore this unique thermal transport phenomenon 

of graphene, cases with various ,k FME  values are calculated. Following the same 

calculation process and parameters in previous calculation, bi-directional heat 

conduction systems with  values of 0, 0.12, 0.24, 0.45, 0.75, 1, 1.05, 1.11, 1.17, 1.26, 

1.32, 1.38, 1.41, 1.44, 1.5, 1.65 and  are calculated and their corresponding app values 
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are plotted in Fig. 5.6. The = case means no ,k TME  or ,k LME are added/subtracted 

to/from the GNR system and only ,k FME  is applied, while =0 means the opposite. 

Several very interesting phoenomena are found in the app calculations.  

 

 

Figure 5.6. Apparent thermal conductivity (app) topology for the 2.050.1 nm2 

GNR system. The upper x-axis represents the net heat flux in the GNR system and 

the lower x-axis stand for the corresponding  values. Negative app is observed 

when  is within the range of 1.05-1.38. 

 

First of all, when  equals 1, which means the net heat flux qtotal is zero, a 

nominal temperature gradient with a value of 0.04 K/m is observed in the ET distribution. 

Therefore, the app of GNR has to be zero to satisfy the Fourier’s heat conduction 

equation. And when  equals 1.41, a net heat flux of value 1.2  1010 W/m2 exists in the 
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system. However, after the system reaches steady state, the nominal temperature 

gradient is calculated at 4.210-4 K/m, which is small enough to be considered zero. In 

such scenario, app is calculated to be infinite according to Fourier’s law of heat 

conduction. Based on our calculations, it is observed that when  changes from 0 to 

0.75, app is positive. As  become larger within the range of 1.05-1.38, app is negative. 

Yet when  changes from 1.44 to , app turns out positive again. It is concluded that 

app of GNR is highly related with  and the negative app occurs only within a small 

range. 

 

The physical meaning carried by the parameter  indicates that when  is smaller 

than 1, the bi-directional heat conduction in GNR is dominant by the in-plane LM and 

TM phonons, while when  is larger than 1, the heat conduction is dominant by the out-

of-plane FM phonons. It is observed that if the LM/TM phonon conduction is dominant, 

an overlap area among FM, LM and TM phonon energies exists at steady state. As  

increases, the overlap regions become smaller and when  is larger than 1, no energy 

overlap is observed. To give a better description, nominal temperature distributions for  

values of 0.24, 0.75, 1.2 and 1.5 are shown in Fig. 5.7. The reasons for this phenomenon 

are the high thermal transport capacity of the FM phonons in GNR and the weak energy 

coupling between the FM and LM/TM phonons. Since the FM phonons have a much 

higher thermal conductivity in GNR, the thermal energies carried by the FM phonons 

will be transported to the heat sink much faster than those of LM and TM phonons.  
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Figure 5.7. (a), (b) When the in-plane LM/TM phonon heat conduction is dominant 

(1), an energy overlap is observed among different phonon modes. The length of 

the overlap region decreases with increasing . (c), (d) When the flexural phonon 

thermal transport is dominant (1), there is no energy overlap among different 

phonon modes and the mode-wide energy separation increases with . 
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FM and TM/LM phonons, the local EFM values will eventually be smaller than the 

ELM/ETM along the heat conduction direction. Under this condition, the LM/TM phonons 

will keep transferring energy to the FM phonons as long as mode-wide energy 

differences exist. However, if the LM/TM phonon conduction is dominant in GNR 

(1), the FM phonons will only be assigned with a small portion of the total heat 
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conduction. The temperature/energy gradient of FM phonons will be very small. 

Therefore a smaller energy difference emerges between FM and LM+TM phonons. This 

leads to an energy overlap among the three phonon mode, as is shown in Figs 5.7(a) and 

(b). Figures 5.7(c) and (d) demonstrate that when the FM phonon heat conduction is 

dominant (1), the overlap will be suppressed. As the  value increases, more heat will 

be carried by the FM phonons and the mode-wide energy differences will become larger 

and larger. This growing energy difference will enhance the energy transfer from 

ELM/ETM to EFM, which leads to a smaller nominal temperature gradient for the ELM and 

ETM, as is shown in Figs. 5.7(c) and (d). It is worth noting that when energy overlap 

happens among the in-plane and out-of-plane phonons, the bi-directional heat 

conduction does not exist over the entire length and only exists in the energy separation 

regions. In other words, mode-wide energy separation is a necessary condition for the bi-

directional heat conduction. Energy separation among phonon modes is a very important 

phenomenon in graphene, even under normal heat conduction conditions. More detailed 

analysis about energy separation, including the effect of temperature jump/drop from 

heating/cooling regions to the normal heat conduction region will be elaborated in our 

near-future publications since this work is focused on the bi-directional heat conduction 

and the apparent thermal conductivity (app). 

 

5.2.4. Single-end bi-directional heat conduction and the length effect 

To further explore the thermal behavior of graphene under bi-directional heat 

conduction, a single-end heating and cooling method is applied to the 2.050.1 nm2 
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(xy) GNR system. This time, only the left end of the GNR is used to apply the FM 

phonon heating and LM/TM phonon cooling.  

 

 

Figure 5.8. Nominal temperature distributions for the bi-directional heat transfer 

in GNR and solid argon with one-end heating/cooling. The net heat flux equals zero 

for both cases. For the GNR system, the nominal temperature gradient is 0.0232 

K/m, which indicates an apparent zero value app according to Fourier’s law of heat 

conduction. While for the solid argon system at temperature 20 K, the temperature 

gradient is calculated at zero. 

 

The same method is also applied to a 4.34.350.1 (xzy) nm3 solid argon 

system for comparison. After the GNR system reaches thermal equilibrium at 
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temperature 50 K, 
,k FME  of value 1.96108 W is added to the left end and 

, ,k TM k LME E   ( , ,k TM k LME E   ) of the same value is subtracted from the same region 

for 400 ps. Another 50 ps is calculated for the data collection and average. The results 

are shown in Figs 5.8(a), (b) and (c). The nominal temperature distributions show that 

the thermal energy is carried by the FM phonons from left to right and then carried back 

by the LM/TM phonons from right to left. Since the kinetic energy added/subtracted has 

the same amount at the left end, the net heat flux of the system is zero. However, a 

nominal temperature gradient 0.025 K/m is observed from the profile of ET, which 

indicates that app of graphene is zero. As for the solid argon system, after it reaches 

thermal equilibrium at temperature 20 K, bi-directional heating and cooling is applied on 

the left end for 2 ns and the thermal energy added/subtracted equals 1.16108 W. The 

nominal temperature distributions are shown in Fig 5.8(d). It is found that the nominal 

temperature gradient is zero, which satisfies the Fourier’s heat conduction equation. For 

argon, only in a very small region (~ 1.0 nm) next to the left end that we found energy 

separation between ,k TMzE  and , ,/k LM k TMxE E  , meaning the bi-directional heat 

conduction does not penetrate deep to the system. 

 

The calculated high thermal conductivity values of graphene suggest that the 

mean free path in GNR is long even at room temperature. This may result in a strong 

length dependence of GNR’s thermal conductivity. Therefore, the traditionally defined 

thermal conductivity is no longer an intrinsic property of GNR. Instead, it changes with 
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the length. Thus it is necessary to explore the length effect on the bi-directional heat 

conduction of GNR and observe the app change with length. A 2.0100.0 nm2 (xy) 

GNR is built to compare with the former 2.050.1 nm2 case. When  = 0.45, app of 

100.0 nm GNR is calculated at 487 W/mK, which is 16% larger than that of 50.1 nm 

(408 W/mK). When  = 1.14, the calculated κapp of 100.0 nm GNR is 605 W/mK, 

which is 34% larger than that of 50.1 nm (451 W/mK). By comparing the results 

above, it is ready to conclude that the app values of GNR will increase with length while 

preserving the signs. 

 

 

Figure 5.9. Dispersion relations for the 2.050.1 nm2 GNR system. (a), (b), (c) 

represent transverse, longitudinal and flexural modes phonon, respectively. 

 

To better analyze the thermal conductivity in the graphene system, mean free 

paths for individual phonon modes are calculated and the results are shown in Fig. 5.10. 

The phonon behavior in graphene can be well understood from its dispersion relations in 

the k-space. The dispersion relations are computed by taking the two-dimensional 
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Fourier transform of atomic vibration in the space and the energy density in (, k) space 

is expressed as:[99] 

1
| exp( ) |v iky i t dtdy

N
    ( = x, y, z), (5-2) 

where N is the number of atoms in the system and y is the heat conduction direction. The 

velocity vector is projected to the x, y and z directions to calculate the phonon energy 

density for transverse mode (TM), longitudinal mode (LM) and flexural mode (FM) 

phonons respectively. Similar method has been used to analyze individual phonon 

properties for various material systems.[100-105] It has been proved that Eq. (5-2) is a 

linear superposition of Lorentzian functions with centers at phonon frequency 0:[106, 

107] 

2

0[2 ( )] 1

C


  


 
, (5-3) 

where C is the combination of coefficients in the Lorentzian function and  is the phonon 

relaxation time. By fitting the phonon frequencies calculated from Eq. (5-2), the phonon 

relaxation time can be calculated for different k values. Differentiation is then performed 

on the dispersion relation profiles to find out corresponding phonon propagating speed v 

for each . It is worth noting that since k and  are highly correlated in the reciprocal 

space, the phonon mean free path (l) can be directly calculated using the above method 

as  also centers at wave vector k0 as 
2

0/ [2 ( )] 1kC l k k    . However, not all k 

values are available in the calculation of dispersion relation. The minimum increment of 

k depends on the size of the graphene system. Therefore, a large simulation domain is 
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needed to achieve k grid with reasonable resolution, which dramatically increases the 

computation time.  

 

 

Figure 5.10. Mean free path of TA, LA and ZA mode phonons in k-space. 

 

In this work, a time range of 10 ps is used in the calculation of graphene’s 

dispersion relation, corresponding to a resolution of 0.2  THz in the -space. Since the 

thermal transport in graphene is dominant by acoustical phonon modes,[11, 67, 87, 98, 

108] only low frequency (0-20 THz) phonon spectrums are calculated. Dispersion 

relations for the 2.0 × 50.1 nm2 GNR system are shown in Fig. 5.9. The calculated 

results have sound agreement with previous studies. [58] Phonon mean free paths are 

calculated accordingly and the results are shown in Fig. 5.10. It can be seen that the 

phonon mean free path is distributed within the range 0-150 nm, smaller than previous 
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reported value (775 nm)[109] due to the confined dimension of graphene used in this 

study. Qiu et al.[110] also calculated the phonon mean free path of suspended GNR with 

dimensions of 4.44.3 nm2 and their results are in the same range with those reported in 

our work.  
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CHAPTER 6. THERMAL TRANSPORT ACROSS GRAPHENE-SILICON 

INTERFACE 

The limited internal phonon coupling and transfer within graphene in the out-of-

plane direction significantly affects graphene-substrate interfacial phonon coupling and 

scattering, and leads to unique interfacial thermal transport phenomena. A very high 

interfacial thermal resistance of 0.46

0.465.30


  105 Km2/W is observed by using a Raman 

frequency method under surface Joule heating. [76] The thermal contact resistance 

between graphene and SiO2 was measured at 5.6109 – 1.2108 Km2/W using a 

differential 3 method.[111] Using nonequilibrium molecular dynamics (NEMD) 

simulation, Wei et al.[112] calculated the interfacial thermal resistance between two 

neighboring graphene layers at ~4109 Km2/W. Understanding and control of the 

interfacial thermal resistance is crucial to the development and performance of high 

performance graphene-based devices.[113] The thermal resistance is a major limiting 

factor for the related nanoscale thermal engineering. Addressing the thermal resistance at 

the contact is, therefore, an important aspect of microelectronics and thermal 

management structures. 

 

In this work, the thermal transport across the interface of graphene and silicon 

substrate is explored by performing MD simulations. The dynamic response of graphene 

to a thermal impulse is investigated and the interfacial thermal resistance between 

graphene and Si is evaluated. A transient pump-probe method is designed for interfacial 

thermal resistance characterization. Compared to the traditional NEMD method, this 
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pump-probe technique is focused on the dynamic thermal response of the system and can 

greatly reduce the computation time. Energy evolution in transient simulation is tracked 

and discussed for the supported graphene. The silicon substrate is chosen here because 

its vast applications in nanoelectronics.[114-117]  

 

 Methodology 6.1.

6.1.1. Molecular dynamics simulation design 

The second generation of Brenner potential:[29] reactive empirical bond-order 

(REBO), based on the Tersoff potential[34, 63] with interactions between C-C bonds is 

employed to model the graphene system. The Tersoff potential[34, 63] with interactions 

between Si-Si bonds is used to model the silicon system. The REBO potential is chosen 

because its functions and parameters are known to give reasonable predictions for the 

thermal properties of graphene,[76] whereas the adaptive intermolecular reactive 

empirical bond-order (AIREBO) was reported to underestimate the dispersion of ZA 

phonons in graphene.[118] It has been proposed that the interactions between carbon 

atoms and the substrate are primarily short-range van der Walls type (vdW).[119, 120] 

Therefore, the C-Si couplings is modeled as vdW interactions using the Lennard-Jones 

(LJ) potential 
12 6( ) 4 [( / ) ( / ) ]V r r r    , where  is the distance parameter,  the 

energy parameter and r is the interatomic distance. The  parameter determines the 

strength of the specific interactions between graphene and silicon. In this work,  and  

are set as 8.909 meV and 3.326 Å respectively.[121] To save computational time, the LJ 
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potential is truncated at the cut-off distance of rc = 3.5. The initial velocities in each 

direction are extracted from the Gaussian distribution for the given temperature 300 K. 

At the start of simulation, the position of the GNR is located 3.7 Å above the upper layer 

of the Si bulk. Configuration of the system is shown in Fig. 6.1. Periodic boundary 

conditions are applied to the x and y directions and free boundary condition is applied to 

the z direction. Dimensions of the GNR are smaller than those of the silicon to avoid 

boundary interactions through the periodic boundaries. The step for time integration is 

0.5 fs (1 fs = 1015 s). All MD simulations are performed using the large-scale 

atomic/molecular massively parallel simulator (LAMMPS) package.[122] 

 

6.1.2. Physics of the pump-probe method 

The pump-probe transient thermoreflectance method has been widely used to 

study the thermal transport in bulk materials and thin films. [123] The Kapitza resistance 

and heat flow across material interfaces can also be measured using this optical 

technique.[124] In this work, a pump-probe method is developed using MD simulation 

to calculate the interfacial thermal resistance between graphene nanoribbons and silicon 

crystal. As shown in Fig. 6.1(a), after the MD system reaches thermal equilibrium, an 

ultrafast heat impulse is imposed on the supported GNR. In the heating process, non-

translational kinetic energy is evenly added to the GNR system in each direction by 

rescaling velocities of atoms. When the excitation is released, the temperature of the 

GNR (TGNR) will increase dramatically and then gradually reduce during the thermal 

relaxation process. In our work, three layers of silicon atoms beneath the supported GNR 
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are grouped to calculate the surface temperature of the silicon bulk (TSi) as shown in Fig. 

6.1(a). The TGNR, TSi and GNR system energy (Et) are recorded each time step during the 

thermal relaxation. In the MD simulation, the energy decay of the GNR is only caused 

by its thermal energy loss to the silicon system. Therefore, given the energy and 

temperature evolution of the graphene system, the interfacial thermal resistance ( R ) 

between the supported GNR and silicon substrate can be calculated using the equation 

/

t GNR SiE T T

t R A

 



, (6-1) 

where Et is the system energy of the supported GNR and A is GNR’s area. Instant R 

results can be calculated at each time step according to the local energy changing rate 

and corresponding temperature difference. We have tried this method and found it 

subject to the noise in the energy decay and the calculated interface thermal resistance 

has very large uncertainty. If R has little variation within the temperature range during 

thermal relaxation, a constant R value can be substituted into Eq. (6-1) to predict the Et 

profiles. Under such scenario, the interfacial thermal resistance can be calculated by best 

fitting the Et profile using the least square method using an integral form of Eq. (6-1) as 

detailed in next section. 

 

 Results and discussion 6.2.

6.2.1. Thermal resistance evaluation 

To understand the thermal transport across graphene and substrate interface, a 

silicon crystal with dimensions of 5.840.05.4 nm3 (xyz) is built. The size of the 
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supported GNR is 4.138.5 nm2 (xy).  

 

 

Figure 6.1. (a) Atomic configuration of the GNR and silicon system. Periodic 

boundary conditions are applied to the x and y directions and free boundary 

condition to the z direction. A thermal impulse   in is imposed on the supported 

GNR after thermal equilibrium calculation and the top three layers of silicon atoms 

are grouped to calculate the surface temperature of the silicon substrate. (b) 

Temperature evolutions (left y axis) of GNR and Si for 50 fs pulsed thermal 

excitation and 150 ps thermal relaxation. The overall energy and fitting for the 

supported GNR system are shown in the right y axis. The calculated thermal 

resistance from this overall fitting method equals 3.72108 Km2/W. The fitting 

profile calculated from a single R value soundly matches the MD simulation results. 
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After 300 ps canonical ensemble (NVT) and 100 ps microcanonical ensemble 

(NVE) calculation, the whole system reaches thermal equilibrium at 300 K. Then the 

GNR is exposed to a thermal impulse   in=1.27103 W for 50 fs. After the excitation, 

TGNR increases to 559.7 K and the adjacent silicon surface temperature TSi is 299.4 K as 

shown in Fig. 6.1(a). In the following 150 ps thermal relaxation process, energy 

dissipation from graphene to the silicon substrate is recorded and the interfacial thermal 

resistance is calculated. The equilibrium distance between graphene and Si-substrate 

surface is 3.2 Å based on the modeling. Energy and temperature results are averaged by 

100 in the calculation to suppress data noise. Temperature evolutions and energy fitting 

results are shown in Fig. 6.1(b). It is observed that after the 50 fs thermal excitation is 

released, the energy of the graphene goes down quickly due to the energy transfer to the 

Si-substrate. At the same time, the graphene temperature also goes down accordingly 

and a slight temperature rise is observed for the silicon atoms adjacent to the interface. 

The energy decay fitting in Fig. 6.1(b) is performed based on Eq. (6-1) and takes the 

integral form as 0
0

( / ) ( )
t

t GNR SiE E R A T T dt    . Here R is treated as a constant, and 

such assumption will be discussed and validated later. E0 is graphene’s initial energy. 

 

The calculated thermal resistance R40.0 equals 3.72108 Km2/W, which is in the 

same magnitude with previous studies of graphene on 6H-SiC and SiO2.[111, 125] At 

the beginning part of the thermal relaxation process, a faster decay in GNR’s total 

energy is observed. This is caused by the strong energy disturbance induced by the 

thermal impulse to the system. During that period, the potential and kinetic energies 
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have not yet reached equilibrium. Therefore, the initial part (5 ps) of the thermal 

relaxation profile is strongly dominated by the energy transfer from kinetic to potential 

energy in graphene, and is excluded from the fitting process. It can be observed from 

Fig. 6.1(b) that the fitting curves soundly matches the energy profiles using a constnat 

R40.0. This leads to a strong point that the interfacial thermal resistance between GNR 

and Si does not have large changes over the relaxation temperature 300K-500 K. 

 

 

Figure 6.2. Comparisons of the overall fitting result and instant R calculation 

results. Size of the GNR is 4.118.3 nm2 (xy). By integrating the temperature 

differences between TGNR and TSi, the energy relaxation profile of GNR can be 

correlated to Tdt directly and slope of the profile can be linearly fitted to calculate 

the segment interfacial thermal resistance values, which is around the overall 

fitting results. 
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To further assess the validity of the overall fitting method with a constant R, a 

new case with GNR’s dimensions of 4.118.3 (xy) nm2 is built. The silicon substrate 

used is 5.820.05.4 nm3 (xyz). In this case, the heating rate   in equals 6.04104 W 

and both overall and instant R values are calculated and compared. The overall fitting 

results using integration is shown in Fig. 6.2(a) and R is calculated at 3.52108 Km2/W. 

As the energy decay is driven by the temperature difference T=TGNR-TSi, in Fig. 6.2(b), 

we plot out how the graphene energy changes against
0

t

Tdt . It is observed that the Et 

profile has an linear relation with 
0

t

Tdt , which further proves the fact that the thermal 

resistance R is nearly constant during the relaxation process.  

 

In fact, we can use this profile to determine the interfacial thermal resistance. The 

Et profile is divided to many segments as shown in Fig. 6.2(b). For each segment (t1 to 

t2), R can be treated constant, and can be determined by linear fitting of the curve in Fig. 

6.2(b). The determined slope equals A/R, and can be used to determine R. The calculated 

results are shown in Fig. 6.2(c). It is observed that instant R values vary around the 

overall fitting results R20.0. From the above discussions, it is safe to conclude that the 

overall integration fitting method is accurate enough to be used in the pump-probe 

method. 

 

6.2.2. Phonon mode energy decay and thermal rectification discussion 

In the preceding discussions, it has been mentioned that the presence of a 
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substrate will significantly affect the thermal transport in graphene due to the damping of 

ZA phonons. The thermal conductivity of supported graphene is suppressed due to the 

strong phonon coupling at the interface.  

 

 

Figure 6.3. Phonon energy evolutions in the supported GNR system. It is observed 

that Ez decreases faster than Ex and Ey in the early stage, indicating a much 

stronger exchange between kinetic and potential energies for ZA phonons in 

graphene than the LA and TA phonons. 

 

To obtain an insightful understanding of this problem, the decomposed energies 

for each phonon mode is evaluated for a 4.138.5 nm2 supported GNR. The energy is 

normalized to A nominal temperature defined as Ei/(1/2)kB with unit K is used to present 

the energy values in each direction. Here Ei is the kinetic energy in direction i (i=x, y or 

z) and kB is Boltzmann constant. Energy evolutions for the thermal relaxation process are 

shown in Fig. 6.3. Nominal temperatures of the three phonon modes are around the same 
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value 550 K at the beginning point (t = 0) of the thermal relaxation process (inset of Fig. 

6.3). However, it is noticed that there is a quick drop of Ez when the thermal excitation is 

released. This is largely caused by the stronger coupling between the kinetic energy and 

potential energy for out-of-plane movements. Due to the strong energy decay in the ZA 

phonons, the in-plane longitudinal (LA) and transverse (TA) phonons will keep 

transferring thermal energies to ZA phonons until the energy difference is gone. This can 

be seen from the decreasing energy gaps between Ex, Ey and Ez along the relaxation time. 

The energy coupling rates among different phonons modes have been discussed in our 

previous study on energy inversion in graphene.[126] 

 

Thermal rectification has been found in asymmetric graphene nanoribbons with 

different chirality.[16, 127-130] However, up to date, the thermal rectification between 

supported graphene and its substrate has not yet been studied. To explore this important 

thermal phenomenon, a silicon substrate with dimensions of 5.810.25.4 nm3 (xyz) 

is built and the supported GNR is 4.18.6 nm2 (xy). After the system reaches thermal 

equilibrium at temperature 300 K, a heat impulse   in=2.84104 W is imposed on the 

GNR system and by fitting the GNR’s energy relaxation profile, the interfacial thermal 

resistance is calculated at 3.31108 Km2/W. In this process, the energy is transferred 

from the heated graphene to the silicon substrate. To investigate the thermal rectification 

across the graphene-Si interface, two more cases are calculated with different initial 

system temperatures. The equilibrium temperature for the first case is 400 K. After 

thermal equilibrium calculation, thermal energy is removed from the GNR system for 50 
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fs with a cooling rate   out=2.48104 W and TGNR drops to 175 K at the end of the 

cooling process. The interfacial thermal resistance (R) is calculated at 3.20108 Km2/W 

based on global data fitting of the cooling process. This R value is only 3% lower than 

that of the heating case with TGNR>TSi. For the second case, the initial system 

temperature is set at 350 K. And after cooling the supported GNR with   out=1.24104 

W for 50 fs, TGNR decreases to 250 K. Following the same calculation procedure, the 

interfacial thermal resistance is calculated at 3.62108 Km2/W, which is 9% higher 

than that of the heating case (TGNR>TSi). It has been observed in the above discussions 

that the thermal resistance between graphene and Si-substrate do not have substantial 

changes against temperature, indicating that the thermal resistance for the cooling cases 

will be around the same values as above two cases. Considering the calculation 

uncertainty, the difference between the heating (TGNR>TSi) and cooling cases (TGNR<TSi) 

are very small. It is safe to conclude that there is no thermal rectification phenomenon in 

thermal transport across the graphene and silicon interface. 

 

6.2.3. Effects of graphene dimension on interface energy transport 

The size dependence of thermal conductivity has been reported in various low 

dimensional nanomaterials.[131-135] As a novel two dimensional material, it is found 

that the thermal conductivity of suspended graphene and graphene nanoribbons is also 

size dependent.[136, 137] The length effect on the thermal conductivity of graphene is 

due to its intrinsically long phonon mean free path, which is up to 775 nm at room 

temperature.[109] The confined dimension in the lateral directions of supported 
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graphene will greatly affect the phonon behaviors at graphene-substrate interface. 

Therefore, it is of great interest to investigate the effects of dimension on the interfacial 

thermal resistance between graphene and silicon. 

 

 

Figure 6.4. Effect of graphene dimension on the interfacial thermal resistance 

between GNR and Si. (a) When the length of the supported GNR becomes longer, 

the interfacial thermal resistance becomes larger due to the reduced edge. (b) 

Square shaped GNR has larger thermal resistance values than the rectangle shaped 

GNR ones. 
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method are shown in Fig. 6.4(a). It can be observed from Fig. 6.4(a) that the length of 

the supported GNR has significant impact on the interfacial thermal resistance between 

Projected area 

Actual energy exchange area 

0 20 40 60 80

2.20

2.75

3.30

3.85

0 50 100 150 200 250 300 350

3.42

3.80

4.18

4.56
(b)

 

 

Length (nm)

 Predicted R curve

 Calculated R values

(a)

 

T
h

er
m

al
 R

es
is

ta
n

ce
 (

1
0

8
 K
m

2
/W

)

Surface Area (nm
2
)

 Square GNR

 Rectangle GNR



116 

 

GNR and Si at short length scales from 0 to 40 nm. When the length is larger than 40 

nm, the calculated R tends to converge to a constant value. To elucidate this length 

effect, the actual energy exchange area on Si-substrate is explored. It has been 

mentioned in above discussions that the cut-off distance between carbon and silicon 

atoms are set as 3.5, which is 11.641 Å in all cases.  The equilibrium distance between 

GNR and Si-substrate surface is ~3.2 Å. This indicates that the actual surface areas 

involved in the thermal transport process are larger than the projected GNR areas on the 

Si-substrate, which are used in the overall fitting method to calculate the interfacial 

thermal resistance. This phenomenon is explained in the inset in Fig. 6.4(a). The relation 

between the thermal resistance (R) calculated by the overall fitting method and the ideal 

one without the edge effect (Rreal) is expressed as 

( )( )

realR W L
R

W L 

 


 
, (6-2) 

where W and L are the width and length of the supported GNR respectively and  

is the effective distance extended from the edge of the projected area, as is shown in the 

inset of Fig. 6.4(a). Such area extension is caused by the long-range vdW interaction. 

The interatomic forces in the extended areas are much weaker compared to those in the 

projected areas, yet these contributions cannot be neglected when the surface area of the 

supported GNR is small. Given the calculated thermal resistance values, we use Eq. (6-

2) to fit the results shown in Fig. 6.4(a) to determine Rreal and . The ideal interfacial 

thermal resistance without the edge effect is determined at 4.68108 Km2/W and  is 

determined at 9.5 Å. The  value determined here is close to, and a little smaller than the 
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cut-off distance used in the calculation (11.641 Å), confirming that the size effect 

observed in Fig. 6.4(a) is largely induced by the extended graphene-Si interaction area 

from the projected area of graphene. 

 

In the above calculations, the supported GNRs are all rectangle-shaped. To 

compare the effects of GNR’s formation on the interfacial thermal resistance, square-

shaped GNRs with the same surface areas are built and the results are shown in Fig. 

6.4(b). It is evident that the interfacial thermal resistances of rectangle-shaped GNRs are 

smaller than those of square-shaped. It is ready to prove that under the same surface 

area, the rectangle formations have larger perimeters than the square formations. 

Therefore, both the phonon boundary scatterings and the effective thermal contact areas 

in the rectangle-shaped GNRs will be larger than those in the square-shaped GNRs, 

which will increase the phonon energy decay rate and lead to a smaller thermal 

resistance. We calculated that the extended distance  from the edges of supported GNR 

is 9.5 Å. Therefore, the effective thermal contact areas for both shapes can be calculated 

and the thermal resistance for the square-shaped GNRs can be predicted. Take the 

4.138.5 nm2  GNR as an example, its interfacial thermal resistance is 3.72108 Km2/s. 

The square-shaped GNR with the same surface area has a dimension 12.5912.59 nm2. 

After adding  to the width and length calculation, their effective thermal contact areas 

ratio Aeff,rec /Aeff,squ is calculated at 1.09. Based on this ratio, the thermal resistance for the 

square-shaped GNR can be predicted at 4.04108 Km2/s. This prediction is very close 

to the calculated result 4.01108 Km2/s by direct MD simulation, which further proves 
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the validity of the effective surface area analysis. One argument would arise that the size 

of the supported graphene will affect the phonon mean free path, which then will affect 

the phonon coupling between graphene and Si. We expect this speculation would hold 

and be more visible for larger size graphenes. In our calculation, the graphene size is 

very small, (4.1 nm width for the rectangular one), so the phonon mean free path in 

graphene is significantly suppressed, and does not have strong/visible effect on the 

phonon coupling between graphene and Si. 

 

6.2.4. Effects of surface roughness 

Graphene is considered a promising nanomaterial with applications in 

nanoelectronics and nanocircuits. Our previous research has revealed that when 

graphene nanoribbons are bent to fit the substrate structures, a thermal resistance will 

emerge in the bending area due to local phonon reflection and scattering.[138] Aside 

from the bending structures in these applications, the substrate surfaces are often dented 

in pattern to achieve maximum thermal radiation and realize various electrical functions. 

In spite of the vast applications of graphene in nanoelectronics, however, to our best 

knowledge, the effects of surface roughness on the thermal transport across graphene-

substrate interface have not been studied. In this section, the interfacial thermal 

resistance between graphene and rough silicon substrate of well-defined roughness is 

studied. 
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Figure 6.5. Interfacial thermal resistance variations with surface roughness. Atomic 

configuration is depicted in the insets for the case of =2.0 nm. 

 

A silicon substrate with dimensions of 5.820.05.4 (xyz) nm3 is built and the 

size of the supported GNR is 4.118.3 (xy) nm2. There are millions combinations of 

roughness patterns on the surface of the Si-substrate and it is impossible to calculate all 

of them. To simplify this study, only one of the patterns is used in this work and 

variations are made by changing the dent depth . The grooves are made in x direction of 

the Si-substrate and the width for each groove is ~2.0 nm, which is the same as the 

separation distance for the neighboring grooves. Atomic configurations of the system 

after thermal equilibrium are shown in the insets of Fig. 6.5. Periodic boundary 

conditions are applied to the x and y directions and free boundary condition is applied to 

the z direction. Take the  = 2.0 nm case as an example, after 300 ps NVT and 100 ps 
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NVE calculations, the whole system reaches thermal equilibrium at 300 K. Then a 

thermal impulse of 46.0 10inq   W is applied to the supported GNR for 50 fs. The 

whole system is then left for thermal relaxation under NVE calculations for anothe r 150 

ps. The calculated thermal resistance R=2.0 nm is 4.42108 Km2 /W, which is 26% larger 

than the flat surface case under the same conditions. 

 

To further investigate the interfacial thermal resistance relations with surface 

roughness, variations have been made on the groove depth  and cases of 0.27, 0.54, 

0.68, 0.81, 1.09 and 1.49 nm cases are studied. Groove depth larger than 2.0 nm is not 

studied because the cut-off distance for the 12-6 LJ potential is only 1.16 nm. Therefore 

it is safe to speculate that the thermal resistance values will not change substantially for 

 > 2.0 nm. The calculated thermal resistance values are shown in Fig. 6.5. It is very 

surprising and interesting to observe that the interfacial thermal resistance decreases 

when  becomes larger when the groove depth is smaller than 7 Å. R reaches the lowest 

value as R=0.54 nm= 3.09108 Km2/W. This is contrary to the traditional thought that a 

rough surface should always give a larger interfacial thermal resistance. To explain this 

novel phenomenon, the interatomic force between graphene and silicon are calculated  

for the  = 0.54 nm case and the results are shown in Fig. 6.6(a). The supported and 

suspended areas are cross-adjacent and each region has a width of 2.0 nm. Due to the 

roughness of the silicon surface, the interatomic forces are not evenly distributed in the 

supported graphene. The gap between the surface dent and suspended graphene causes 

net attractive forces on the local graphene. When the groove depth is small, this 
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attractive force is strong enough to bent the graphene to fit the silicon surface.  As a 

result, net repulsive forces on the supported areas arise. For example, at the location 4~6 

nm in the length direction of the GNR, the graphene is supported and the  net interatomic 

force is calculated at +1.17 eV/Å. The positive sign indicates a repulsive force. This 

force gives a pressure of 228 MPa for the supported graphene. Such very high pressure 

will significantly reduce the local interfacial thermal resistance. At the location of 10~12 

nm, the graphene is suspended. The net force is 2.36 eV/Å and the negative sign 

indicates an attractive force. The contact pressure between the graphene and Si-substrate 

is increased significantly in the supported graphene region due to the increased repulsive 

interatomic forces, thus leads to a decreased thermal resistance between graphene and 

silicon. This thermal resistance decrease offsets the thermal resistance increase in the 

suspended region, giving an overall thermal resistance decrease.  

 

From the above discussions, it is realized that the graphene is kind of stretched 

by the attractive force in the suspended region and repulsive force in the supported 

region. Such stretching could be reflected by the structure of the graphene. Radial 

distribution functions (RDF) for the supported GNRs are calculated and the results are 

shown in Fig. 6.6(b).  
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Figure 6.6. (a) Interatomic forces between supported GNR and   = 0.54 nm dented 

silicon substrate. The blue and red shaded areas indicate the supported and 

suspended GNR regions respectively. (b) Radial distribution functions for the 
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supported GNRs. The peaks are sharper for the dented Si cases, indicating 

stretching forces in graphene. (c) Radial distribution functions between graphene 

and Si-substrate. The g(r) values drop to significant lower levels when the groove 

depth   becomes larger than 0.81 nm, which explains the thermal resistance 

increase observed in Fig. 6.5. 

 

Since all the supported GNRs share the same structure, their RDFs give the same 

formation for all cases. However, at the peak locations, the spike becomes sharper when 

GNRs are supported on the dented Si-substrate. Also a slight shift of the first peak 

location to larger atomic-separation is observed. This demonstrates that the structures of 

the supported GNRs are stretched due to the dented Si surface. When  becomes larger, 

in the suspended region, a lot of graphene atoms have very weak or zero interaction with 

Si atoms. To elucidate this phenomenon, radial distribution functions between graphene 

and silicon are calculated and the results are shown in Fig. 6.6(c). It is observed that the 

g(r) values are evidently larger at small dent depth and drop to lower levels when  

becomes larger than 0.81 nm. This is corresponding to the jump of the interfacial 

thermal resistance from =0.54 nm to =0.81 nm observed in Fig. 6.5. This again proves 

the fact that when the groove depth is small, the supported graphene will stay closely 

with the dented Si surface. When graphene in the suspended region completely separates 

from Si (lose coupling), the thermal resistance will suddenly jump. At the same time, the 

repulsive force in the supported area becomes smaller, and the local thermal resistance 

increases due to the reduced localized pressure. Therefore the graphene will be hanged 

over the dent gaps and the corresponding thermal resistance increases due to significant 

reduction in thermal contact area.  
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

 Conclusions for dynamic response of graphene to thermal impulse 7.1.

A fast transient technique was developed to characterize the thermophysical 

properties of GNRs using MD simulation. A Debye model for two-dimensional GNR 

was derived for temperature’s quantum correction. The specific heat of GNRs was 

calculated by MD simulation and the results are 1528 J/kgK and 827 J/kgK at 692.3 K 

and 300.6 K. These values are very close to those of graphite, and suggest that the 

unique 2D structure of graphene has little effect on its ability to store thermal energy. 

Based on obtained thermal conductivity data at different lengths, the thermal 

conductivity for infinite length GNRs were calculated at 149 W/mK (692.3 K) and 317 

W/mK (300.6 K). These values are much smaller than some data reported in literatures 

for GNRs of similar width. It reflects the fact that the quantum correction of temperature 

is critical for thermal transport study of graphene. The calculated thermal conductivity is 

reduced by boundary scattering and other property changes due to the restriction of small 

width (1.99 nm). Non-Fourier heat conduction was observed to be significant in 14.9 nm 

long GNR and wavelike heat flux is observed in transient heating of GNR system. A 

thermal wave was only observed for the ZA phonon, suggesting that thermal transport 

by ZA phonons is faster than that by the TA and LA modes. It is conclusive that the ZA 

mode is dominant for GNR’s thermal conduction. Also the energy transfer among ZA 

phonons is much faster than that between ZA and LA/TA phonons. The observed 
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propagation speed (c = 4.6 km/s) of the thermal wave follows the relation of / 2gc v  

where vg is the ZA phonon group velocity (7.0 km/s from our calculation). 

 

 Conclusions for thermal transport in bended graphene nanoribbons 7.2.

Phonon thermal transport in bended GNR systems was studied systematically 

and three new phenomena were observed. In the 3D right-angle bended GNR systems, 

energy separation emerged between the in-plane and out-of-plane phonon modes. To 

further exploit the energy separation phenomenon, flat GNR systems of different 

lengths: 25.0 nm, 50.1 nm, 75.0 nm and 100.0 nm with fixed width 2.0 nm were built, 

and energy separations were observed in all structures after a steady state heat flux flow 

was added. Strong thermal transport capability of the ZM phonons was proved to be the 

reason for such energy separation. The observed distance for energy separation was ~50 

nm for flat GNR systems. An energy barrier was observed in the right-angle bended 

GNR, which was caused mainly by two factors: one is the phonon energy scattering and 

reflection at the bending structure, and the other one is that the compressive strain in the 

bending area that could increase the local phonon scattering and reduce thermal 

conductivity. The bending resistance (R) for the 2.0  25.0 nm2  right-angle bended GNR 

was calculated at 1.48  10-11 and 3.93  10-11 Km2/W before and after quantum 

correction. When the phonon packages passed through the bend ing structure, instead of 

keeping the vibrating directions, they preserved their vibrating modes, i.e. the ZM 

phonon branch will always vibrate in the out-of-plane direction, and TM and LM 
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phonon branches will always vibrate perpendicular and parallel to the phonon 

propagating direction. No obvious bending resistance was observed in the 135 bended 

GNR structure. 

 

 Conclusions for phonon energy inversion in graphene 7.3.

Energy inversion in a GNR system during transient thermal transport was 

observed. The observed energy inversion requires localized phonon excitation (single 

mode or mode-wide) and can hold for about 50 ps. There are two main factors that 

contribute to the energy inversion in GNR. One is the much higher thermal conductivity 

of FM phonons than that of TM/LM phonons. The other one is that the energy coupling 

between FM and TM/LM phonons is not constant against their energy level: the 

coupling becomes stronger when the phonon energy is higher. Under the influence of a 

moving or static localized heat source, the FM phonons conduct heat much faster than 

the LM/TM phonons. Consequently thermal energy continuously transfers from LM/TM 

phonons to FM phonons in the heat source region while in the cold region the energy 

flow-back is much slower. We conducted prediction of energy inversion and the results 

agreed very well with the MD observation. With an increasing layer number of 

graphene, the energy inversion was weakened due to a decreasing thermal conductivity 

of FM phonons. Our observation points out a novel way for temporal energy storage in 

FM phonons, and energy conversion from LM/TM to FM mode (energy separation and 

isolation). 
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 Conclusions for co-existing heat currents in opposite directions in GNRs 7.4.

In this work, phonon thermal transport in GNR was investigated under different 

FM and TM/LM phonon heating and cooling. It was observed that over a very long 

distance (up to 100 nm), unprecedented bi-directional heat currents emerged: FM and 

TM+LM phonons carried heat currents in opposite directions at the same time. The very 

weak energy coupling between FM and TM+LM phonons played a critical role in this 

bi-directional heat conduction. Both positive and negative app were observed under 

steady state bi-directional heat conduction in GNR. The calculated negative app does not 

violate the second law of thermodynamics because for each phonon mode, the heat 

current still flows from higher energy level to lower one, meaning its thermal 

conductivity is still positive. The negative app originated from two factors: the very 

weak coupling between the FM and LM+TM phonons, and the much larger thermal 

conductivity sustained by FM phonons than that by LM+TM phonons. It was proved that 

thermal equilibrium was established for each phonon mode during steady state heat 

conduction. The mode-wide energy difference became greater when the heat current was 

dominated by FM phonons. The topology of app for GNR was calculated with different 

 values. When  was within the range 1.05 to 1.38, app was negative. Zero and infinite 

app values were also observed during the steady state bi-directional heat transfer in 

GNR. The length effect on the bi-directional heat conduction was also explored and the 

results showed that if the length of the GNR increases, app will also increase while its 

sign remains unchanged. 
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 Conclusions for thermal transport across graphene-silicon interface 7.5.

In this work, the thermal transport across graphene-silicon interface is studied 

using MD simulations. A pump-probe method focusing on the transient thermal 

transport processes is developed to characterize the interfacial thermal resistances. By 

segmentally fitting the energy relaxation profiles of the supported GNR, it is proved that 

thermal resistance values between graphene and silicon substrate do not have 

substantially changes with temperature. An averaged thermal resistance value is accurate 

enough to be used in the overall fitting process. Thermal rectification across the 

graphene-silicon interface is studied and the thermal resistance values do not have 

substantial changes under different heating directions. Effects of dimensions on the 

interfacial thermal resistances are investigated and it is found that the thermal resistance 

values increase with length. Also, due to the difference between effective and projected 

heating areas, the square-shaped supported GNRs have larger thermal resistance values 

than the rectangle-shaped GNRs. At last, the effects of surface roughness on the 

interfacial thermal resistances are studied. It is proved that the thermal resistance 

decreases at small dent depth and converges to a larger value when the dent depth is 

larger than the cut-off distance of the LJ potential.  
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