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Abstract

Users of virtual reality systems oen need to navigate to distant parts of the virtual en-

vironment in order to perform their desired tasks. Unfortunately, physical space restrictions

as well as tracker range limitations preclude the use of fully natural techniques for navi-

gation through an infinite virtual environment. is necessitates the use of a locomotion

interface, and the closer that interface matches the analogous real world actions, the easier

it will be for the user. Unnatural techniques require cognitive effort on the part of the users.

Many authors have aempted to address this problem by creating locomotion interfaces and

techniques that more closely approximate real world counterparts to the extent possible. In

addition to requiring these unnatural movements, current virtual reality systems are inca-

pable of providing the high-fidelity sensory feedback used to guide real-world movements.

is may cause users to resort to more cognitively demanding strategies.

ere is a large body of research in the psychology domain regarding the structure of

cognitive resources. In particular, Baddeley’s multi-component model of working memory

describes a separation between the resources used for verbal and non-verbal storage and pro-

cessing. It is likely that semi-natural locomotion techniques require some of these resources,

which will then be unavailable for concurrent tasks. A pair of studies was conducted, in-

vestigating the cognitive resource requirements of several atomic locomotion movements

by manipulating the user interface and field of view. e results indicate that semi-natural

locomotion interfaces generally require a user’s spatial cognitive resources. Based on the

conclusions from the working memory studies, an adaptive system was designed that can

learn how to adjust parameters of the locomotion technique according to a user’s present

cognitive task load.
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Chapter . Introduction

Interaction with a virtual environment (VE) oen involves compromises as system designers

aempt to provide a “natural” interface for interaction with the virtual world, while confined

by the physical constraints inherent in the hardware and soware implementations of that

interface. Natural interfaces are generally defined as those that use techniques that are similar

to real world movement. is means that the same body segments should be used to actuate

the interface and virtual control actions should have similar cause-effect relations as in the

real world (Templeman & Sibert, ; Wells, Peterson, & Aten, ). A natural interface

is more transparent to the user, enhancing the sense of immersion and potentially increasing

the effectiveness of the VE.

e tasks that a user wishes to perform oen require navigation to distant parts of the VE.

Virtual navigation requires the use of atomic locomotion actions while building, maintaining,

and using a spatial model. It is not possible to navigate an infinite VE from within a finite

virtual reality (VR) system using only completely natural locomotion techniques. Unnatural

locomotion mechanisms are oen necessary but they can negatively impact user experience

and success. An important concept is that navigation, and thus locomotion, is seldom the

purpose of a VE. Users oen wish to navigate to remote virtual locations while performing

other primary tasks along the way (Bowman, Kruijff, LaViola, & Poupyrev, ; Darken,

Cockayne, & Carmein, ). Figure . shows a hypothetical learning curve and illustrates

how locomotion, navigation, and the primary task combine to form overall performance.

Before a user can perform a task, basic navigation must be learned. Before navigating, the

user must figure out how to perform basic locomotion actions using the provided interface.

Both physical and cognitive aspects must be considered when choosing a locomotion in-

terface to be compatible with given primary tasks. For example, if locomotion requires the

use of a handheld controller, the hands will be unavailable for other tasks, such as grab-

bing or gesturing (Wells et al., ). Working memory, mediated by conscious aention, is

thought to be required when humans learn a novel skill. It seems that unnatural locomotion

mechanisms may require working memory to maintain a model mapping possible actions to

expected outcomes. Working memory resources used for locomotion cannot be directed to
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Figure . Hypothetical learning curve, showing how the primary task, navigation, and lo-
comotion combine to form overall performance.

completing a simultaneous primary task. Similarly, working memory that is in use by pri-

mary tasks is generally unavailable for locomotion (Gopher & Donchin, ). Figure .

depicts the flow of information and competition for resources when performing tasks in a

VR system.

move 
forward

rotate 
right duck

Navigation 
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Primary task

Locomotion tasks

Tasks compete for
visuo-spatial, verbal, and/or

aention resources.Each task depends
on the task below it.

Figure . Flow of information and competition for resources when performing tasks in VR.

Clearly, aspects of the VR system may impact navigation through an environment in

terms of spatial performance. For example, a system with a low-resolution display may not

provide enough information for a user to adequately differentiate landmarks. Additionally,

some system specifications may also impact basic locomotion abilities. For example, the field

of view () afforded by the display may change the working memory requirements and, in
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turn, affect performance. Humans use visual information, in conjunction with other sensory

input, to judge distance traveled and relative orientation (Gibson, ). A limited  could

limit the availability of these cues, possibly causing a user to resort to other, cognitively

demanding, strategies to encode and manipulate such information.

Understanding the bi-directional impact of different types of cognitive tasks during a si-

multaneous locomotion task can inform the design of locomotion interfaces and VR systems.

Additionally, this understanding will motivate the design of an adaptive locomotion inter-

face that will use its knowledge of the user’s current abilities, given a particular parallel task

load, to maximize user performance. In doing so, this human-computer interaction research

bridges the fields of psychology and computer engineering.

is was accomplished by first conducting studies related to basic psychology phenomena

and using the results to inform the design of a soware system that can adapt in response to

a user’s changing workload. e flow of the research described in this dissertation is shown

in Figure .. e results from each study informed the details of the next step. e primary

components of this research are as follows.

. Study . is study incorporated a dual-task paradigm to compare gamepad-based

locomotion with a more natural body-based locomotion interface. Information was

gained regarding which aspects of locomotion (rotation, forward, side-step, ducking,

stopping, etc.) suffer from different types of simultaneous working memory load. e

expected result was that a concurrent spatial task would cause greater detriment to

users of the gamepad as compared to users of the body-based interface, because the

gamepad is less natural. However, it was expected that certain aspects of the body-

based interface would also be greatly impaired.

. Study . is study investigated the possibility that locomotion in systems that pro-

vide a reduced  requires more working memory resources than locomotion using a

similar system with a high . In particular, it was hoped that this study would reveal

which particular resource pools were used and to what extent aspects of locomotion

suffered during concurrent cognitive tasks. In this study, the body-based locomotion

interface was used by all participants.

. Adaptive System Implementation. An adaptive system was designed to exploit the

findings from the first two studies and knowledge of a user’s current cognitive task

load to adjust locomotion parameters in real-time. e system learns how to adjust the

parameters of the body-based interface with the objective of maximizing user locomo-

tion performance given current cognitive resource utilization while still allowing for

infinite virtual locomotion from within a constrained physical space.
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Figure . Flow of research described in this dissertation. Results from each study were
used to inform the details of the next step.

. Study . is basic study was intended to test performance when using the adaptive

system described above. e new system was compared to the baseline, non-adaptive

body-based interface, specifically checking if the adaptation helped users in the ways

intended.

Working memory studies

First a pair of studies was conducted to explore the use of working memory in virtual locomo-

tion. In all studies, the dual-task selective-interference paradigm was used to investigate the

impact of simultaneous working-memory-intensive tasks on locomotion ability. e work-
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Figure . Competition for resources in working-memory studies. Large-scale navigation is
not required.

ing memory tasks were chosen strategically to tax specific cognitive resources (spatial or

verbal) and provide insight into which ones are required for locomotion (spatial, verbal, or

more general aention resources). Figure . shows the competition for cognitive resources

that was expected to occur in the working memory studies. Notice that the studies involve

no large-scale navigation task, as would be typical in a practical VE application, because this

research is focused on working memory use during basic locomotion actions. e working

memory tasks were intended to simulate the existence of primary tasks, as might be per-

formed in a “real-world” VE, with known resource demands. Participants were also given

a perspective-taking test beforehand to check if individual differences impacted results. It

was expected that, for example, a participant’s abilities on this test may relate to the ability

to predict the results of a locomotion movement, possibly affecting the choice of strategy

and/or the cognitive demands of a given movement.

In the dual-task selective-interference paradigm, participants are given a working mem-

ory task with known working memory requirements to perform alongside a second task of

interest. If concurrent completion of theworkingmemory task causes decreased performance

at the task of interest, then it can be concluded that interference exists and the two tasks rely

on the same cognitive resources. Specifically, concurrent tasks are known to tax either the

spatial or verbal pools of working memory resources. For example, if performance on a task

of interest declines when a participant is also performing a spatial working memory task

but is not affected by a simultaneous verbal task, then it can be concluded that the task of

interest also requires spatial resources. If either a spatial or a verbal secondary task causes

an equivalent performance decrease, then it may be concluded that the task relies on general
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aention resources. Alternately the task may have equal verbal and spatial working memory

demands.

When using the dual-task selective-interference paradigm, it is important to verify that

participant performance on the working memory task remains high. If performance drops on

the working memory task then it can still be concluded that the task of interest requires the

resource in question. It simply means that the user allocated resources to the task of interest

as opposed to the working memory task.

Some models of working memory combine visual and spatial resources into a single pool,

while many recent models draw a distinction. Because unnatural locomotion is essentially

an unlearned skill, working memory should be used in its performance. More specifically,

it intuitively seems that spatial working memory should be used for this purpose. Addi-

tionally, locomotion certainly relies on visual feedback and when movement is completely

natural, position can likely be updated automatically through perceptual processes. How-

ever, when using an unnatural interface, visual working memory resources may be required

to handle this feedback. Because the focus was on working memory use during skill acqui-

sition, a spatial span task was used in this study. Before each locomotion scenario, a card

was displayed, upon which a randomly ordered sequence of boxes was displayed at different

spatial locations. e participant was instructed to remember the order in which the boxes

were displayed. Aer the locomotion actions, leers were randomly displayed at all possible

locations from the initial display. Because the participant will have moved since the initial

presentation, these leers were presented relative to the user . e participant was prompted

to state, in order, the sequence of leers corresponding to the locations of the boxes in the

remembered sequence.

e verbal memory task was a span task similar to the spatial task described above except

that the cues were verbal. Each participant saw a random sequence of numbers before each

locomotion action. Aerwards, the participant was prompted to recite the numbers from

memory in the order in which they were presented.

ese tasks must be configured to ensure that they have a similar level of difficulty. Based

on the pilot study conducted with help from Research Experience for Undergraduates ()

students in the summer of , a high degree of difference in abilities between participants

was expected. Because both of the tasks required remembering a sequence, the length of

that sequence should be customized to each participant to achieve a fixed, high level of per-

formance in isolation of any other tasks. is was accomplished by adjusting the sequence

length during a practice round to ensure that the user could successfully remember % of

the items. If performance is lower, the task might be too hard, which might lead a participant

not to try hard enough. If the task is too easy, then participants might not need to fully tax
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the working memory resource in question.

Adaptive system

Based on the results from the working memory studies described above, an adaptive system

was created. is system is intended to help users of the body-based interface stop quicker

while also increasing the extent to which locomotion is natural.

Fuzzy system

e adaptive system used fuzzy logic to map the user’s current spatial and verbal working

memory loads (both represented as fuzzy sets) to parameter values for the body-based inter-

face. Starting values for the fuzzy terms were set initially based on expert knowledge gained

from interpreting the results from the first two studies.

Learning

ese initial seings were intended to generally help users, but each user is different and

has a different level of experience. To address this, the system tracked the following user

performance metrics in order to improve itself by adjusting the fuzzy terms.

Collisions. When the user’s virtual body comes into contact with the virtual walls.

Stop time. How long it takes the user to come to a complete stop.

Percent of interface utilization. How much of the physical space was being used.

Adaptive system study

e new adaptive system was tested in a formal user study. Participants were placed into

one of two groups according to locomotion interface: normal body-based or adaptive body-

based. Analysis focused on performance using each interface and also differences in par-

ticipant learning in terms of the performance metrics. Two other measures of performance,

physical distance traveled and virtual distance traveled, were used to assess the efficiency of

participants’ movements.
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Chapter . Literature Review

Many authors have acknowledged and aempted to address the limitations posed by inter-

faces for virtual locomotion. Much of the previous research has aempted to address the

limitations by creating more natural interfaces, in some cases exploiting limitations of hu-

man perception. However, it is generally accepted that none of the current interfaces are

truly natural and achieving such an ideal may be impossible.

Virtual reality

Virtual reality (VR) usually refers to some combination of immersive stereoscopic graphics

display, tracking, interaction devices, and sometimes aural (audio) and haptic (touch/force)

interfaces intended to evoke a sense of presence in a virtual environment (VE). Tracking is a

particularly important factor in producing an “egocentric” user experience because the graph-

ics view frusta are continuously updated based on the user’s head position. Virtual reality is

used in many domains for a wide range of activities, spanning training, the natural sciences,

and the humanities. Frequently, these activities involve using a navigation interface for trav-

eling through a VE to perform tasks. Immersive graphics displays are typically implemented

with either a head-mounted display (), essentially small screens mounted relatively close

to the eyes, or a  (Cruz-Neira, Sandin, DeFanti, Kenyon, & Hart, ), a room-sized

display with walls and floor illuminated with stereoscopic graphics. s generally boast

higher-fidelity graphics and larger field of view than s but they are typically much more

expensive. However, both types of displays offer limited physical mobility of users, due to

tracking system constraints, and, in the case of s, the walls of the device itself.

Virtual navigation

It is useful to speak of interaction within an environment in terms of three scales of space.

In fact, there is evidence that processing may even be scale dependent (Sholl, ). e

following scales of space have been previously proposed (Montello, ).

Figural. Small relative to body.
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Vista. Canmostly be seen from a given vantage point with a possibility of minor movements.

Environmental. Large relative to body.

It is generally not necessary to move about in the figural or vista space so navigation is

not necessary. However, navigation is oen required in the environmental space. In fact,

environmental spaces cannot be seen from a single vantage point, thus requiring movement.

Spatial learning therefore requires a person to mentally store environmental information

(Ielson, ).

Similarly, interaction generally involves some combination of the following spatial tasks

(Kulik, ).

Exploration. Looking around, changing movement direction, and observing the environ-

ment.

Sear. Tends to involve relatively straight trajectories while performing a systematic cov-

erage of an area.

Maneuvering. Usually making fine movements while interacting with a single object or

small area of interest within the environment (Darken et al., ).

Virtual locomotion

In this paper, the term “virtual locomotion” is used to refer to the atomic movements that a

personmakes when navigating through a VE.ere are two basic competing objectives when

designing an interface for virtual locomotion:

. allow for navigation between any two points in the VE; and

. maximize naturalness.

A locomotion technique should maximize the match between proprioceptive information

corresponding to actions and sensory feedback generated by the VR system. A good match

will allow the user to learn a predictive model of interaction within the environment (Slater,

Usoh, & Steed, ). An untrained user already possesses natural perceptual-motor abili-

ties and knowledge of interaction in the real world. erefore, when designing an effective

interface, it is beneficial for virtual techniques to replicate how humans usually move about

in the real world (Kulik, ; Wickens & Baker, ). is includes use of the same

body segments and a similar level of effort. ese requirements will both benefit transfer
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of training. is means that a virtual walking technique should ideally use the legs and be

about as effortful as walking in the real world, meaning that performance will be limited by

the strength and agility of the user (Templeman, Denbrook, & Sibert, ; Templeman &

Sibert, ). ere are some compelling reasons why natural locomotion techniques are

usually preferred. e choice of movement technique has been shown to have a significant

impact on cognition (Zanbaka, Lok, Babu, Ulinski, & Hodges, ) and presence, the subjec-

tive sense of being in a VE (Slater, Steed, McCarthy, & Maringelli, ; Slater et al., ;

Usoh et al., ). ere is also an impact on spatial abilities. Real walking seems to provide

the translational and rotational information needed to accurately update position automati-

cally with perceptual processes (Klatzky, Loomis, Beall, Chance, & Golledge, ). Finally,

the use of natural locomotion techniques provides ecological validity for many of the types

of studies and training exercises for which VR systems are used. Natural techniques may

cause users to use movement strategies based on real-world experience, increasing transfer

of skills learned in VR to the real world (Templeman et al., ). Templeman and Sibert

() used driving as an example:

Learning just the rules and strategies of driving is not enough. A driving

simulator needs a dashboard, steeringwheel, shi controls, control knobs, pedals,

a panoramic windshield, and rear-view mirrors because to learn to drive a car,

you need to learn to coordinate actions as well. A driver must coordinate actions

while applying the rules of the road.

Using wide-area trackers to allow for real walking is the ideal solution in terms of ease

and naturalness (Usoh et al., ). However, it can be challenging to meet both of the stated

objectives simultaneously as the confines of the physical environment oen limit the use of

natural locomotion techniques to navigate through an infinite VE. In some cases, actual sys-

tem boundaries, such as walls, get in the way. In other systems, the range of user tracking

hardware restricts allowable physical movement. Overcoming these constraints oen in-

volves scaling and automation (Kulik, ). Real world properties, such as visual-vestibular

coupling, are oen violated by the system (Wickens & Baker, ). A wide variety of loco-

motion mechanisms have been implemented and studied.

A basic feature of all locomotion techniques is control order. When using zero-order

controls, an input by the user will produce a specific change in the user’s location in the

VE. Zero-order controls, such as walking, are good for precise positioning (Wickens & Baker,

) and such interfaces are oen referred to as “position control.” When using a first-

order, or “rate-control,” controller, a control input will produce a change in the user’s virtual

velocity. First-order controls are found in most hand-operated controllers and are useful for





traveling over long distances. ey work best when visual feedback is present (Sibert et al.,

). First-order interfaces have a characteristic called control-display gain, that refers to

sensitivity in terms of how control input is mapped to output movement (MacKenzie, ).

ere are several handheld locomotion devices currently in use. ese involve hardware

such as a wand, DataGlove, or joystick. Wands and DataGloves are oen used with a push-

buon-fly metaphor where the user presses a buon to travel in the direction in which the

device is pointing (Wells et al., ). Joysticks are so standard that it makes sense to consider

them as baselines for comparison to alternate techniques. ese handheld devices are not

usually considered natural because they use completely different muscle groups than real

walking, yet they are oen appropriate when coupled with a flying metaphor. Additionally,

handheld devices do not facilitate spatial understanding as users are not good at judging

distances while flying (Gibson, ).

Body-based locomotion techniques can oen allow for much more natural movement

because they incorporate the same muscle-groups used in the analogous physical-world lo-

comotion activities. In recent years, much research has been devoted to the development of

hardware-based solutions, such as treadmills (Christensen, Hollerbach, Xu, & Meek, ;

Darken et al., ; Iwata, ; Wang, Bauernfeind, & Sugar, ), unicycles (Darken et

al., ), and even large hamster balls (Medina, Fruland, & Weghorst, ) that allow for

semi-natural movement within a constrained physical space. ese solutions show promise

but they are still expensive, inflexible, and they fail to produce % natural interaction. But

it is also possible to simulate infinite walking using soware-based solutions coupled with

hardware to track the physical location and movements of the user. Walking in place is a

semi-natural technique in which the system monitors head or body movements to detect

steps (Templeman et al., ). Redirected walking (Razzaque, Kohn, & Whion, ) and

motion compression (Engel, Curio, Tcheang, Mohler, & Bulthoff, ) are both soware-

based approaches to exploiting limitations of the vestibular and proprioceptive systems. e

brain combines information from multiple senses to form an estimate of reality. When the

senses report conflicting information, vision is usually trusted because it has the highest

acuity and it may have shorter latency (Mohler, ompson, Creem-Regehr, Pick, & Warren,

). is allows for a user to be “redirected” along a curved physical path while follow-

ing a straight path in the VE. Similarly, motion can be compressed so that steps in the real

world produce slightly larger than normal movements in the VE. e result of each of these

soware-based techniques (or a combination of the two) is that a user can navigate a VE that

is larger than the physical world. Redirected walking andmotion compression are considered

to be very natural because the user is actually walking and does not usually notice the illu-

sion. However, it is less clear how the conflicting perceptual information may subconsciously
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impact factors involving navigation because it has been shown that the vestibular sense of

motion contributes to these activities (Chance, Gaunet, Beall, & Loomis, ). Walking-in-

place is another common body-based technique that relies on both hardware and soware.

Hardware is oen required to keep the user centered and soware is used to convert head

motion from walking-in-place into virtual movement. ese leg-based techniques provide

some kinesthetic feedback and minor cyclical vestibular feedback of real walking, but they

still fail to provide any translational information (Sibert et al., ).

In addition to ease of use, another benefit of using semi-natural, body-based techniques

is that they tend to help with path integration. Path integration allows a person to update

current position and orientation based on velocity and acceleration information. is ability

to use kinesthetic and vestibular input to augment vision is helpful in situations with low

visibility (Sibert et al., ).

It is sometimes desirable to mix real-world locomotion techniques with less natural vir-

tual techniques (Templeman et al., ). In this vein, hybrid rate/position-control systems

have been created in which locomotion is natural to the extent that a given VR system al-

lows. In the Virtual Motion Controller (Wells et al., ), for example, the user wears a belt

that is suspended by elastic straps. When the user moves around the center of the physical

environment all movements are natural as in the “real” world, allowing for precise position

control. When the user steps past a certain threshold distance from the center, the interface

becomes rate-controlled and the user’s virtual velocity increases as a function of the distance

from the physical center. As the user moves away from the center, resistance increases due

to the elastic straps. e vector from the center to the user sets the virtual travel direction.

is scheme allows for rapid movement over large distances as well as natural fine-position

control. In addition to the fact that not all movement is completely natural, problems with

this interface are largely due to the bulky hardware. In this case, the hardware configura-

tion typically requires the use of a head-mounted display () because otherwise the user’s

view would be blocked. Another, similar system tracks the user position but does not have

the force feedback hardware. In this system, a barrier tape metaphor is used to depict the

outer boundaries of the rate-control threshold. If any part of the user’s body crosses the

graphical depiction of barrier tape, rate-control is used as in the Virtual Motion Controller

(Cirio, Marchal, Regia-Corte, & Lécuyer, ).

A similar body-based, position-to-velocity interface (PV), depicted in Figure ., has been

implemented for use in the C  at the Virtual Reality Applications Center () at Iowa

State University. e C surrounds the user with six rear-projected surfaces (four walls, ceil-

ing, and floor), providing .m× .m of horizontal movement area. e PV interface

is particularly well-suited for use in a six-sided  because all virtual rotations can be per-
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Figure . Top-down view of the body-based, position-to-velocity (PV) interface.

formed using the completely natural movement of physically turning one’s body, but without

the need for restrictive headgear. Solutions such as treadmills are not appropriate for use in

the C because the floor is a projection surface.

Motor control

Locomotion requires movements of the body so it is useful to look to the motor control liter-

ature when investigating unnatural locomotion. Body movements can be broken into multi-

ple phases and understanding these phases may be helpful when aempting to quantify user

corrections. Woodworth () formulated the first two-part model describing the phases of

movement. His model specifically applied to the speed and accuracy of upper limb move-

ments in goal-directed aiming. e model was comprised of two stages: ballistic and correc-

tion. e ballistic phase was thought to contain the initial impulse while the correction phase

involved perceptually guided precise control. More recently, Nieuwenhuizen, Martens, Liu,

and van Liere () expanded on this work, creating a five phase movement model:

. latency,

. initiation,
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. ballistic,

. correction, and

. verification.

In this model, additional phases have been added to the beginning and end of the move-

ment. e latency phase encompasses the time before the actual movement starts and the

initiation phase contains only small movements. Aer the actual movement stops is the veri-

fication phase. Some activities that require continuous corrections, such as steering, may not

have an obvious ballistic phase (Nieuwenhuizen et al., ).

Movement intervals can be separated at pauses or times of minimal movement, allowing

for phases to be parsed and analyzed. If significant progress toward the target is made during

a given interval, it will be considered the ballistic phase (Nieuwenhuizen et al., ).

Motor control differences have been found when comparing virtual versus real environ-

ments. In particular, in virtual movements, speed tends to be lower in the ballistic phase

and the correction phase tends to contain longer pauses, as compared to real world motions.

Learning also affects phase characteristics. In particular, performance increases are visible

in the ballistic phase more so than in the correction phase. Also the correction phase will

tend to contain fewer sub-movements as a motor activity is practiced (Nieuwenhuizen et al.,

).

Cognitive limitations

Human cognitive resources are limited and must be shared between simultaneous tasks. Dif-

ferent tasks have different processing demands and therefore impose different amounts of

cognitive load (Gopher & Donchin, ). Current models of working memory vary in

specifics, but they tend to distinguish between verbal and non-verbal storage. Baddeley and

Hitch () created the most widely accepted multi-component working memory model and

it was expanded in  (Baddeley, ). e original model separated working memory

into two systems, the visuo-spatial sketchpad and the phonological store. In this model,

the visuo-spatial sketchpad is used for maintaining visual and spatial information while the

phonological store is primarily used for verbal information. According to the model, access

to both of these is dependent on aention, a limited resource mediated by a third component,

the central executive.

Spatial (but not exclusively visual) information is stored and manipulated in the visuo-

spatial sketchpad (Baddeley, ). ere is some evidence that within the visuo-spatial
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sketchpad, there are two subsystems: one for visual appearance and one for location (Dar-

ling, Sala, & Logie, ). e visual appearance subsystem might be involved with aspects

such as color, shape, or paern while the location subsystem might be used for remembering

locations themselves or movement between locations (Logie, ). is distinction is not

universally agreed upon and thus it has been a popular subject of recent research (Vergauwe,

Barrouillet, & Camos, ).

ere are some tasks that have been used in the past that are known to tax visuo-spatial

workingmemory. One task thought to be primarily visual in nature is the Visual Paerns Test

(), which involves remembering paerns depicted in a grid (Della Sala, Gray, Baddeley,

Allamano, &Wilson, ). Tasks that are thought to be more spatial tend to involve remem-

bering the locations or movements of cues through space. For example, past researchers have

had participants remember spatial locations such as the movements of a ball (Vergauwe et

al., ). Based on the Baddeley and Hitch model, this type of “span” task probably relies

on the capacity of non-verbal working memory as well as the central executive, which may

encode the input and reconstruct it upon recall (Baddeley, ). It is likely that visuo-spatial

working memory is used when performing all but the most natural aspects of locomotion and

specifically, if there is a dissociation between visual and spatial components, it is likely that

locomotion primarily requires spatial resources.

e phonological store is used to maintain verbal information. Some standard tasks that

are known to use the phonological loop are the verbal n-back task or remembering an ordered

list of verbal items, such as digits. Similar to the visuo-spatial, this type of phonological

span task should rely on the capacity of verbal working memory and the central executive

(Baddeley, ). In some cases, phonological strategies, such as verbal encoding or counting,

may be used to aid in tasks that are not phonological by nature.

Researchers in the Psychology field oen use a dual-task selective interference paradigm

to determine which working memory resource is used in a particular task. e idea is to load

a participant’s memory with a task that is known to tax a specific resource (visuo-spatial or

phonological) while the user simultaneously completes a primary task. If performance at the

primary task decreases while the user performs the , for example, then we can conclude

that the primary task also requires visuo-spatial working memory.

It has been shown that additional cognitive resources are required when using unnatural

locomotion interfaces (Suma, Finkelstein, Clark, Goolkasian, & Hodges, ), but the spe-

cific conflicts have not been isolated. Research into skill acquisition has shown that declar-

ative working memory is used when performing a novel task. is is termed “controlled

processing.” It is relatively slow and mentally demanding. If extensive training occurs and

a consistent mapping exists between stimulus and response, the skill is learned. During the
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learning process, a skill becomes proceduralized into long-term memory and performance

will no longer require working memory (Anderson, ). is “automatic processing” is

fast and occurs in parallel with minimal effort (Gopher & Donchin, ; Shiffrin & Schnei-

der, ). If an expert is forced to devote aention to execution of a task, performance

will actually suffer (Gray, ). Users learning an unnatural locomotion mechanism might

follow this same learning progression as they internalize the model mapping control inputs

to movement outputs. Body-based locomotion techniques are usually based on actions that

have already been proceduralized (e.g., real walking), and thus should require minimal work-

ing memory resources. is is a possible benefit to choosing a body-based interface over a

gamepad, for example. However, as discussed above, there is no interface that allows for in-

finite virtual locomotion in a constrained physical space in exactly the same manner as real

locomotion. Some aspects of locomotion will be more natural and more proceduralized than

others.

Individual differences also play a major role in skill acquisition. In particular, general

intelligence and perceptual speed ability are likely to be involved in learning an unnatural

interface. General intelligence involves differences of ability that may vary between individ-

uals across many content domains. It is likely to affect initial performance when confronted

with an unnatural locomotion interface. Perceptual speed is the speed with which simple

cognitive items can be processed and it is likely to be involved as production systems are

created (Ackerman, ).

Some tests have been devised to test some specific individual differences. One such test

is the Perspective Taking and Spatial Orientation Test () (Hegarty & Waller, ).

e  is a -question paper test with a series of top-down spatial layouts of objects in

the world (stop sign, house, car, etc…). For each layout. the participant is asked to imagine

standing at a given object, facing another object, and to imagine pointing at a third object. In

the answer area, the participant must draw a line showing the direction to the third object.

is ability to take an imagined perspective may relate to a user’s ability to understand what

the resulting sensory change due to locomotion will be. Different ability levels may cause

users to employ different strategies, requiring different cognitive resources.

Field of view

Vision is essential for the effective control of locomotion. In some species when visual infor-

mation is unavailable, locomotion stops (Gibson, ). Normal humans have a ° hori-

zontal and ° vertical  (Wandell, ). Many VR systems make use of s to display

all visual information for an environment. ese systems are popular because of their size,
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flexibility, and relative cost. However, s typically suffer from an extremely low . For

example, the  nVisor SX  has a  of °×° (Willemsen, Colton, Creem-Regehr, &

ompson, ). Modern -like systems are much more expensive and lack portability,

but they oen boast a vision-limited . e use of stereoscopic shuer glasses limits this

to about ° × °, but such a system still typically provides a larger  than even very

expensive s.

It is known that users of VEs do not interpret spatial information such as distances as

accurately as in real world scenarios and that this can have an impact on locomotion and

navigation performance (Ruddle & Jones, ). However, it is uncertain what aspects of

VEs lead to these discrepancies (ompson et al., ). ere is evidence that peripheral

vision is important during locomotion and some studies have shown navigation and memory

performance deficits associated with a limited  (Alfano & Michel, ; McCreary &

Williges, ). Users of a system with a reduced  have been shown to perform worse at

walking and search tasks than those with a higher . However there are also findings that

indicate that reduced  does not impair blind walking performance. One common finding

is that users of VR systems tend to underestimate distances but, again, there is no consensus

on the reasons for this. Some authors have shown that a limited , combined with other

 characteristics, does distort perceived distances within an environment (Kline & Wit-

mer, ; Willemsen et al., ) while others have shown no impact of  (Péruch, May,

&Wartenberg, ). Others have indicated that free headmovement is more important than

, finding that  did not negatively affect distance estimations when full head movement

was allowed (Creem-Regehr, Willemsen, Gooch, & ompson, ), but that might be ex-

pected because allowing head movement increases the effective . In any case, it is clear

that  is relevant to the study of locomotion.

When humans interact with the world with unrestricted vision, they normally view the

environment with multiple overlapping fixations, or saccades. As a person moves through

the world or simply looks around, integration of information from one fixation to the next

is generally unnecessary because most of the information is still available in the periphery

(Dolezal, ). A reduced  may require storage and integration of information to be

performed cognitively in visuo-spatial working memory.

Using paerns of visual stimulation, known as optic flow, humans can extract information

about movements and displacements relative to their environment. Kinaesthesis is the sense

of bodily motion and, thus, “visual kinaesthesis” can provide a good source of feedback for

locomotion movements. Specifically, forward and backward movement cause expansion and

contraction flows, respectively. e rate of optic flow corresponds to the velocity of move-

ment. Its influence on human locomotion is profound, and optic flow rate has been shown
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to impact the transition from walking to running and preferred walking speed (Mohler et

al., ). Steering can be accomplished by moving such that the center of the flow paern

is in the desired travel direction (Gibson, ). Humans are capable of locomoting with-

out adequate flow information (Macuga, Loomis, Beall, & Kelly, ; Warren, Kay, Zosh,

Duchon, & Sahuc, ), but they may use alternate strategies to judge distance traveled and

orientation. It is possible that such strategies require additional cognitive resources.

Measuring interface effectiveness

If the user’s desired destination is known, there are a couple of ways to retrospectively

track performance: route completion time and root-mean-squared () error along the path.

However, neither of thesemethodsmakes sense for basic locomotion tasks because such tasks

are comprised of atomic motions and not an entire path. Furthermore, these performance

metrics are bad choices for real-time measurement.

Perhaps the easiest way to detect user locomotion errors is to record collisions with ob-

jects and walls in an environment. It can oen be assumed that a user running into walls

may be having trouble locomoting, regardless of his intended destination. Also it may be

useful to refer back to the phases of movement describe above. Movements during the cor-

rection phase may reflect a user’s problems with geing a locomotion interface to perform as

intended. Delays in the latency or initiation phases may point to additional motor planning

by the user.

Adaptive systems

When designing systems for heterogeneous users with ever-changing abilities, plans, and

needs, it is sometimes useful for the system to learn to change according to a user’s current

state. Adaptive systems have been implemented to predict user needs in seings such as

smart homes (Hagras et al., ; Vainio, Valtonen, & Vanhala, ) and, of particular

relevance here, they have also been used to provide D navigation support according to a

user’s needs (Chiaro & Ranon, ) and to calibrate a locomotion system (Engel et al.,

).

Fuzzy inference systems

In some cases when describing a continuous variable, such as cognitive resource utilization,

it is not useful to define explicit bounds on set membership. In fuzzy logic, continuous nu-

merical values are segmented into overlapping “fuzzy” sets. In this way, instead of describing
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membership in the Boolean sense where states change abruptly, one can speak of degrees of

membership, in that an input variable gradually loses membership in one set while gaining

membership in another. A variable is then a member of several appropriate sets to varying

degrees. e degree of membership in a given set is defined by a membership function for

that set, commonly in the shape of a triangle or trapezoid. Fuzzy logic is complementary to

probability. Probability deals with the likelihood of an event while fuzzy logic aempts to

describe the degree to which it has happened (Kosko, ; Schwartz, ). Fuzzy logic

is generally useful in situations where variables are continuous, a mathematical model does

not exist, a large amount of noise is present, and a group of experts is able to specify rules

that the system follows (Cox, ).

Implementing a simple fuzzy inference system is generally straightforward. It involves

the following basic steps:

. start with one or more continuous numeric input values;

. using the set membership functions, determine the membership of the input variable

in each particular set (known as “fuzzification”);

. using if-then production rules, map input set membership to appropriate output set

membership; and

. produce a single numerical value according to the output set (“defuzzification”).

An inference engine decides which rules to “fire” according to a degree of truth deter-

mined by membership functions and current variable seings. In many cases, more than one

rule may be selected. is set of rules produces multiple output sets according to the degree

of membership of each premise. ese output sets must be combined into a single set and

commonly a logical OR composition is used for that purpose. For the output to be useful,

the inference engine must typically produce a “defuzzified” final result in the form of a num-

ber (Schwartz, ). A frequently used method for arriving at this defuzzified value is by

computing the center of gravity of the combined output set.

ere are some freely available, open-source fuzzy inference system libraries. For the sys-

tem described in Chapter , fuzzy-lite (Rada-Vilela, )was selected because it is lightweight

and has no dependencies aside from the Standard Template Library included in the C++ Stan-

dard Library, making it easy to use and high-performance.

Learning

Learning involves changing a system such that tasks can be done more effectively in the

future (Simon, ). rough learning, as the system interacts with the environment it can
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use past results to increase future success. A domain expert generally specifies initial fuzzy

rules and set membership functions. Such a system can then aempt to minimize error over

time by modifying rules, rule weights, or membership functions. Learning should be based

on multiple error measures, as training data are oen incomplete or noisy. Such a system is

known as an adaptive fuzzy system (Hayashi, ; Kosko, ; Lin & Lee, ).

VirtuTrace

VirtuTrace is a VR experiment platform developed at the  originally for use in fire-

fighter decision-making studies. Because it is highly configurable, it is an ideal platform

for testing and comparing diverse navigation/locomotion systems. VirtuTrace has recently

been redesigned with the intent to simplify the introduction of new D scenes into a VR sys-

tem, such as the C, and run user studies. Aer creating some configuration files to specify

scenes, navigation interfaces, and characteristics of the physics world, the application han-

dles creation of the scene graph, creation of the physics world, switching between scenes, and

switching between various types of navigation. If desired, multiple scenes can be sequenced

in succession, each with a different locomotion interface and physics model. During an ex-

periment, a participant’s movements can be observed in real time, using the display aached

to the cluster’s head node, and logged to file.

VirtuTrace scenes

ere are several existing scene classes, all inheriting from Scene.h. A basic scene class,

SimpleScene, is provided for users who just want to quickly load a D model and navigate

through the VE with an interface of their choice. Custom functionality is easy to implement

by creating a new scene. Because the scenes are independent of the navigation and physics

components, it is easy to mix and match scenes with various navigation interfaces and phys-

ical worlds. ese choices can be made quickly using  configuration files.

VirtuTrace is built on OpenSceneGraph (OpenSceneGraph, ), and thus supports any

Dmodel format for which an osgDB plugin exists. Typically, the scene models are created in

D Studio Max  -bit or Google SketchUp and exported to Collada (.dae) files or one of

the native OpenSceneGraph formats (.osg or .ive). Scenes can also be created from scratch

in the code. In either case, a physics world can be automatically generated by the application,

ensuring that users do not fall through the ground and allowing for tasks such as climbing

stairs.





Figure . Logitech WingMan gamepad.

Navigation in VirtuTrace

e following navigation classes exist, all inheriting from Navigation.h. ey can be selected

and parameters can be adjusted using  configuration files.

GamepadNavigation. Navigation using a gamepad with two joysticks (one for translation

and one for rotation), such as the Logitech WingMan seen in Figure ..

BodyNavigation. e PV interface described above and depicted in Figure ..

WiiSegwayNavigation. Navigation using a Wii Balance Board and Wii Remote in a manner

similar to a Segway. Leaning on the board affects virtual translation, while turning the

Wii Remote like handlebars affects virtual rotation.

RealWorldNavigation. Navigation using only real-world movements. ere is no additional

gain and navigation to distant areas of the VE is impossible.

e basic purpose of each navigation class is to convert user input from an input device

or position tracker to a desired velocity in the physics world. e chosen physics class then

determines what movement is allowable depending on obstacles and potentially other phys-

ical properties. Having a complete physics model for the VE also allows experimenters to

observe and log when a participant collides with virtual objects, such as walls.
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Chapter . Study : Working Memory Use During Semi-Natural

Locomotion

e literature described in Chapter  suggests that virtual locomotion using a semi-natural

interface requires cognitive resources. e study described in this chapter is intended to

provide insight into the cognitive resource demands of three locomotion interfaces (gamepad,

variant of PV, and real world, in order from least to most natural). Participants were required

to perform basic locomotion movements while simultaneously directing cognitive resources

to either a spatial or a verbal memory task. e concurrent memory task was designed to

simulate the existence of a cognitively demanding primary task in a real-world use case.

Resear questions

e following research questions motivated this study.

. What are the differences in performance under a concurrent working memory load of

two locomotion interfaces (PV and gamepad), and how do they compare to a “real-

world” baseline?

. How are verbal and spatial working memory resources used for the different isolated

aspects of semi-natural locomotion?

Previous literature has not addressed the resource pools required for unnatural locomo-

tion, but it is reasonable that spatial and/or general aentional resources would be required,

because locomotion is an inherently spatial task. Additionally, it was expected that perfor-

mance at the more unnatural aspects of the locomotion interface would suffer the most when

competing with concurrent tasks for finite resources.

Pilot study

A team of three undergraduate students participating in the Summer Program for Interdisci-

plinary Research and Education - Emerging Interface Technologies () Research Ex-

perience for Undergraduates () program in Human-Computer Interaction at Iowa State
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University helped by conducting a pilot study intended to inform the design of the study

described in this chapter. e pilot study compared the PV locomotion interface to the Wii

Segway interface while users, fellow students in the  program, simultaneously performed

spatial and verbal memory tasks.

Several aspects of the experiment and scenario design that came from the team meetings

were used in the formal study. First, a task was designed to require users to travel from point

to point in the virtual environment so their locomotion performance on translation tasks

could be assessed. It was in these meetings that the team decided on having users travel to

a virtual golden nugget, as in a video game. For modeling simplicity, this became a spherical

“golden nugget.” Second, a mechanism was needed for the system to present spatial memory

sequences and allow for their recall. e chosen method should not require use of the hands,

because participants in different groups (in both the pilot and formal study) would be holding

different devices specific to the interface in use. e chosen format for the spatial memory

task presentation phase was a random sequence of boxes highlighted in front of the user

on a virtual “card.” An example card sequence is depicted in Figure .. Aer performing

a series of locomotion tasks, the user was presented with random leers corresponding to

the possible box positions, illustrated with an example in Figure .. To recall the sequence,

the participant was required to use the leers to recite, in order, the sequence of boxes. For

the verbal tasks, a random sequence of number cards, such as that seen in Figure ., was

presented. Participants recited the numbers verbally aer completing the movements.

Figure . Example card sequence from the spatial memory task presentation phase in the
pilot study. Boxes were highlighted in a random sequence.

e pilot study aided in identifying aspects that were likely to pose problems in the for-

mal study. One issue was that users had trouble remembering the seven-item span tasks. It

seemed that the novelty of being in the C interfered with participants’ abilities to remem-

ber the sequences. is phenomenon was so prevalent that one participant reported that he
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Figure . Example spatial recall card from the pilot study.

1
Figure . Random sequence of number cards from the verbal memory task presentation in

the pilot study.

completely forgot to remember the items while doing the movements. Because undergradu-

ate student participants who were also new to virtual reality would participate in the formal

study, a solution to this problem was to reduce difficulty by assigning memory tasks with

fewer items. Also, because there seemed to be extreme individual differences in participant

memory abilities, a pre-test was added in an aempt to customize the difficulty levels. A

second interesting finding was that, on several measures, the pilot results suggest that per-

formance was reduced when participants had no memory task as compared to when they had

either a spatial or a verbal task. ese results suggest that there was increased motivation to

complete the tasks in order to get back to remembering the sequence. ese initial results

will be supported by the findings from the studies described in detail in this dissertation.

e pilot study results also showed that participants were generally very quick at the

locomotion tasks. e average time for all tasks to be completed was  s but it seemed that

the memory sequence could be remembered for a longer period of time. For this reason, the

type of task remained the same but the number of tasks in each block was increased for the

formal study.

Overall, the pilot study results were in favor of the general flow and the tasks used, so

while there were many changes to instructions and aesthetics, the basic experiment design
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in the first study closely resembled that used in the pilot study. Before the formal study, all

models were recreated to make participants feel more comfortable in the virtual environment

and the VirtuTrace code underwent many revisions intended to increase application stability.

Experiment design

e first study incorporated a ×  design with three locomotion interfaces (gamepad, PV,

real world) and three levels of memory task (spatial, verbal, none). Locomotion interface was

a between-subjects variable because it would have been logistically difficult for the partici-

pant to exit the virtual environment, train on a new interface, and then return to the envi-

ronment. On the other hand, memory tasks were relatively quick and could be performed

within the environment, so it made sense for that variable to be manipulated within subjects.

ere were three between-subject groups, in order from least to most natural: gamepad

(GP), PV, and real world (RW). e GP group used a Logitech WingMan Cordless gamepad

for all locomotion tasks. Participants were instructed to stand in one place, facing the front

of the C . e gamepad buon configuration was similar to many first-person video

games, with one stick used to control the direction of “looking” (like “mouse look” on tra-

ditional PC first-person shooters) and the other to control the direction of movement with

respect to that direction of looking. e PV group used a modified version of the PV inter-

face described above. Because all of the required movements were axis-aligned, components

of the velocity vector were computed separately based on the distance from each axis. Calcu-

lating the user’s velocity in this way reduces the chance of driing off course on axis-aligned

tasks, which could make the movement easier. Movement was completely natural (as in the

“real” world) until the user le the dead zone, which was configured, based on pilot testing,

to have a radius of . cm (in -space) for this study. e outer extent of the PV re-

gion was large enough that all movement outside the dead zone affected the participant’s

virtual velocity. Participants in the RW group moved about in the virtual world just as they

would during locomotion in the physical world. No one interface should be superior over-

all, because it is assumed that each may be useful for different types of tasks under different

concurrent task conditions. is is why having a detailed understanding of task interactions

can be useful.

Methods

e study methods were closely modeled aer those used in the pilot study described above.

Aside from the cosmetic changes described above, the study had the same basic design.
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Participants

Fiy-one undergraduate students ( males) were recruited from the Iowa State University

Department of Psychology research participant pool () and word of mouth. Participants

came frommultiple departments andmajors across campus. All participants were required to

have / (corrected) binocular vision and all played less than or equal to . hours of video

games on average per week. Participants with too much gaming experience were not allowed

because they were likely to be familiar with the gamepad. For this reason, users in the GP

group were restricted to no more than than . hours of first-person video games (such as

first-person shooters) per week. In this study, the gamepad was intended to be representative

of a typical unnatural locomotion interface so it was important to ensure that it was, in fact,

unnatural.

Procedures

e study took place at the . e tasks described below took less than an hour for each

participant to complete.

First, participants were asked to complete a pre-questionnaire with topics involving de-

mographic information and video game experience. is document is included inAppendixA.

ey also completed the  described in Chapter . e  was administered in order

to explore the possibility that users with beer spatial abilities may experience less competi-

tion for cognitive resources.

Next, participants entered the C. In the C, participants were given instructions and a

demonstration of how to complete verbal memory tasks in the VE. For verbal tasks, a se-

quence of leers was presented, similar to that shown in the example in Figure .. Aer a

pause, when it was time for recall of a verbal sequence, the card shown in Figure . (“recite”)

was displayed, indicating that it was time to recall the the sequence. Aer the demonstration,

participants were given a series of six verbal memory tasks to assess their individual verbal

spans and allow them to practice so they would feel comfortable when doing the real tasks.

e difficulty was increased from three items to five items, with two tasks at each difficulty

level. Next, participants were trained on the spatial tasks. For these, a sequence of boxes was

presented, similar to that shown in Figure .. When it was time for a spatial sequence to be

recalled, a card populated with random leers, similar to the example shown in Figure .,

was displayed and the participant was required to state the leers that corresponded to the

order in which the boxes were presented. Participants were then given a series of six spatial

memory tasks, increasing in difficulty from three to five items, to allow practice and assess

individual abilities.
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Figure . Study  sample verbal task presentation.

Figure . Study  verbal recall card.

Figure . Study  sample spatial task presentation.
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Figure . Study  sample spatial recall card, with random leers.





e practice tasks were designed for two purposes: ) so the participant would be com-

fortable with the tasks, and ) to assess individual abilities in order to customize the difficulty

during the experimental phase. If a participant was unable to successfully complete the two

tasks at the highest difficulty level (five), the span used during the experimental phase was

dropped to four for that particular type (spatial or verbal) of task. is was done to ensure

that the span used during the real locomotion tasks was sufficient to tax the cognitive re-

source in question but not so hard that the participant was incapable of recalling such a large

sequence.

Before the experimental phase, each participant was given instructions and a detailed

demonstration of the locomotion interface and all locomotion tasks. e VE was viewed

using active-stereo shuer glasses. All tasks were performed in a virtual room with a grid

texture, similar to the rendering of the room from Study  in Figure .. e front wall of

the room was purple and the other walls were black. e user was instructed to always face

the purple wall and to stand in the center of the  in between tasks. e participant

was not allowed to practice the locomotion tasks, but there was a run-through in which the

experimenter demonstratedwhatwould be required to successfully complete all experimental

tasks. e decision to not allow locomotion practice was made to prevent any learning from

taking place before the actual experimental tasks. is would maintain the unnaturalness of

the movements and probably the extent to which cognitive resources would be required. It

was important for the user to feel comfortable and perform at a high level on the memory

tasks and the pre-assessment tests were intended to provide practice.

Figure . Rendered virtual room with grid texture from Study , similar to that used in
Study .

e experimental phase consisted of six experimental blocks. A flow diagram of the ex-

perimental blocks is shown in Figure .. Each was structured as a repeating series of lo-

comotion tasks with a memory task presented beforehand and recalled by the participant

aerward. Each block had a verbal, a spatial, or no memory task, assigned randomly such
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Figure . Flow of six experimental blocks in Study .

that each participant experienced two of each type over the course of all six blocks. e

movement phase lasted at least . s to ensure that participants could not rush through the

movements to get to the recall step quicker. e memory tasks were designed exactly as

described above and depicted in Figures ., ., ., and .. Each sequence of locomotion

tasks was also randomly ordered. e following locomotion tasks were each performed once

during each block.

Translate le. e participant retrieved a nugget to the le. An arrow appeared in front of

the user, indicating the location of the nugget.

Translate right. e participant retrieved a nugget to the right. An arrow appeared in front

of the user, indicating the location of the nugget.

Translate forward. e participant retrieved a nugget to the front.

Rotate le. e environment rotated such that the purple wall was on the le side of the

participant, requiring a ° rotation to the le in order to continue facing the purple

wall.

Rotate right. e environment rotated such that the purple wall was on the right side of the

participant, requiring a ° rotation to the right in order to continue facing the purple

wall.

Du. e participant had to duck to avoid being hit by a virtual I-beam flying overhead.

e nugget model used in the translation tasks had a . cm radius and it was centered

. cm away from the center of the , . cm above the ground. Because the C has

a horizontal movement area of .m× .m, this means that participants in the RW

group were able to reach the nugget because they only had to come within . cm of the

physical wall. e I-beammodel used for the duck task flew . cm above the ground. Duck
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failures were determined according to the height of the head tracking device mounted on top

of the stereo shuer glasses worn by the participant. If the virtual I-beam clipped the head

tracker, a failure was logged.

Between locomotion tasks, there was a . s pause, allowing participants to return to the

center of the  and await the next movement task. e experimental phase consisted of

six such blocks of events described above, with two blocks of each memory task.

Aer completing all experimental blocks in the C, participants were asked to complete

a post-questionnaire, included in Appendix A, and answer questions in an unstructured in-

terview. ese interview questions were intended to uncover any strategies that participants

may have used or any particular problems encountered, specifically involving competition for

cognitive resources, and they were oen tailored to specific problems that the experimenters

observed during the locomotion and memory tasks.

Response variables

Recall that there were six movement tasks per block and six blocks per user so each user

completed  tasks. Relevant metrics were calculated for each of these tasks. As described

above, there were three basic types of movement tasks: translate, rotate, and duck. For rotate

tasks, the only metric recorded was the elapsed time from task presentation (environment

rotated by °) until the participant completed the required rotation. For duck tasks, only

success or failure was recorded.

Four response variables were calculated for each translation task in Study  and Study ,

as shown in Figure .. e elapsed time fromwhen a nugget was presented until movement

began is referred to here as start time. e elapsed time from when movement was detected

until the participant reached the nugget’s virtual location is referred to here as movement
time. e elapsed time from when the nugget location was reached until the participant

came to a stop is referred to as stop time. is measurement includes time to realize that the

task has been completed (nugget reached) and time to manipulate the interface as required

to come to a stop (GP: let go of stick; RW: physically stop; PV: return to dead zone and

physically stop). Additionally, one more variable will be used to refer to the total task time

for a translation goal to be achieved:

translation time = start time+movement time

All participant responses on the spatial and verbal memory tasks were recorded and

checked for correctness.
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Figure . Timeline showing Study  and Study  translation task response variables.

Logging

During a trial, all scene data were logged to comma separated values (.csv) files. e files were

then parsed with a Python parser to extract the variables described in the previous section.

e following raw data were logged:

• participant head position in every third frame;

• timestamp when participant started movement;

• timestamp when participant stopped movement;

• timestamp when movement task was presented;

• timestamp when movement task was completed; and

• success or failure at end of ducking task.

e experimenters were able to watch a participant’s movements on the head node, al-

lowing for a subjective interpretation of the types of problems encountered by users. e

participant’s head position was logged every third frame using data from an InterSense IS-

 tracker. To determine start and stop time, the application calculated a moving average

of the head positions. e length of the moving average window and the threshold for what

would be considered movement were adjusted manually before the study began and, while

these seings were not perfect for all participants, the same values were used throughout the

study and overall the movement detection function was fairly accurate.

Results

e study results enabled analysis of the effects of the different interfaces and memory tasks

on movement performance (start, move, stop, turn, and duck) and on memory task perfor-

mance. In many cases, participants had problems that led to the movements not being atomic.
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For example, if a participant sidestepped le but passed the nugget, a right sidestepmovement

must be performed to complete the task. is means that it would not have been appropriate

to treat that movement simply as a le-sidestep action. For this reason, the le, right, and

forward task data were combined for analysis. Stop time, duck failures, and memory items

missed were most influenced by interface type and/or memory task, and so the following

analysis focuses primarily on those measures.

Data cleanup

Some data points did not exist or had to be removed for experimental consistency reasons.

Data were removed in the following instances.

• In many trials, the participant was not fully stopped before the next task was pre-

sented, so a stop time was not recorded. Likewise, a start time was not recorded if

the participant was already moving when a task was presented. For consistency, the

experimenters did not aempt to record times manually.

• Application crashes or other hardware and soware problems led to incomplete data

for some participants.

• In a few cases, participantsmissed the nugget but thought they had retrieved it. Because

the objective was to measure the ability to successfully complete intended movements,

head position data were manually inspected and discarded where it was clear that the

user had passed the nugget and stopped, preparing for the next task, before realizing

the mistake.

• Some participants reported using a verbal strategy for the spatial tasks (i.e., coding the

locations as numbers). Because the spatial task was intended to tax spatial resources,

the affected data were discarded any time a participant reported using such a strategy.

Across all analyses, the percentage of data missing or removed ranged from .% to .%

with an average of .%.

Stop time

Recall that the stop time was calculated aer each translation task was completed (the nugget

was reached). Mean stop time values for all translation tasks and interfaces are shown in

Figure .. A two-factor mixed-model analysis was performed with fixed effects for loco-

motion interface group and memory task combinations ( means) and random effects for

subject, as shown in Table .. e analysis shows significant main effects of interface group
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Figure . Study  mean stop time as a function of interface and memory task. Error bars
show ± standard error of the mean.

[F(, ) = ., p < .] and memory task [F(, ) = ., p = .] as well as an

interaction between locomotion interface and memory task [F(, ) = ., p = .]. A

significant difference between locomotion interface groups was expected, because stopping

with the gamepad (let go of stick) or real-world (stand still) locomotion was trivial, while

stopping with the PV interface required locating and returning to the center of the .

is prediction is supported by the analysis. Also, because stop times were so low in the GP

and RW groups, a difference should not exist between memory tasks in those groups. is is

also supported by the analysis. AMarkov chainMonte Carlo () simulation from the pos-

terior distribution for the model was used to obtain estimates and p-values for comparisons

of interest. e most interesting results were found in the PV interface group. Participants

using this interface stopped significantly faster when performing a spatial memory task than

when performing no task (p = .), and significantly faster when given a verbal memory

task as compared to a spatial memory task (p = .).

An explanation for performance being slowest when there was no concurrent task is

that participants were motivated to stop faster in order to end the competition between the

locomotion task and the cognitive task for working memory resources. is conclusion is

supported by the general trends found in the  pilot study as well as visual inspection

of no-task vs. with-task performance on other measures (for example, start time described
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Table . anova table for Study  stop time.

Source df F p

Between subjects
Interface (I)  .** <.
Error 

Within subjects
Memory task (M)  .* .
M × I  .* .
Error  ()

Note. Value enclosed in parentheses represents
mean square error. *p < ., **p < ..

below) and participant feedback indicating a subjective sense that the tasks competed for

resources.

e most intriguing result is the difference in stop time when performing spatial and

verbal tasks. ere are at least two possibilities that could lead to this difference. First, the

participants could have been motivated to stop faster when given a verbal task than a spatial

task if, for example, there was a subjective sense of competition for resources when perform-

ing a verbal task but not when performing a spatial task. Second, the participants could have

been equally motivated during both types of memory tasks but they may have been inca-

pable of stopping as fast during the spatial task, presumably due to competition for spatial

resources. e second possibility is supported by a visual inspection of the start time results,

which shows the same general trend but did not reach statistical significance, as explained

in the following section. is result is intuitive, because it seems that returning to the 

center would be an inherently spatial activity. Self-reported feedback also supports the idea

that spatial memory tasks interfered with movement performance to a greater degree than

verbal tasks. Because stopping is trivial when using a gamepad (one must simply let go of

the stick), the stop time data for the GP group do not show this trend.

Start time

Ameasure that did not reach significance, but seemed to exhibit relevant trends was the start

time, with means ploed in Figure .. A two-factor mixed-model analysis was performed

with fixed effects for locomotion interface group and memory task combinations ( means)

and random effects for participants. e analysis, seen below in Table ., shows a very sig-

nificant effect of interface group [F(, ) = ., p < .], which is potentially interesting

(though not surprising or directly relevant to the initial research questions) because it indi-
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cates that participants take longer to plan and/or begin full-body movements than to plan

and/or begin moving a finger to control a gamepad joystick. e memory task also had a

marginally significant effect [F(, ) = ., p = .]. Looking at the plot, it seems that

this was mostly driven by the low performance in the no-task case, which provides more ev-

idence to support the conclusion about motivation described above because the difference is

not exhibited in the fully-natural, RW group. e plot also shows a trend in the spatial versus

verbal PV performance that is not significant but is visually similar to that seen previously

in the stop-time data.

ough there was no significant interaction of factors in the start time data, the start times

in the PV interface group seem to follow a paern similar to that seen above in the stop time

results. e evidence supporting the second interpretation of the stop data (that participants

were incapable of stopping as fast during the spatial task) is in the GP groupwhere we can see

that the no-task performance was much slower and there was no real difference between the

performances during a concurrent spatial or verbal task. If participants were more motivated

to complete the movements quickly during a verbal task, then we would expect them to start

faster as well. erefore, this set of results supports the notion that participants are equally

motivated when given spatial and verbal tasks.
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Table . anova table for Study  start time.

Source df F p

Between subjects
Interface (I)  .** <.
Error 

Within subjects
Memory task (M)  . .
M × I  . .
Error  ()

Note. Value enclosed in parentheses represents
mean square error. **p < ..

Du failures

Mean failure rates at the duck task are ploed in Figure .. Recall that the duck task re-

quired participants to avoid an overhead virtual I-beam. A failure at this task is defined

as being hit by the beam. Because there were zero failures for some combinations of inde-

pendent variables, two single-factor mixed-model analyses were performed, treating failures

as binomial responses. ese showed a significant effect of interface on chance of success

[F(, ) = ., p = .] and a marginally significant effect of memory task condition on

chance of success [F(, ) = ., p = .]. ese results indicate that participants had

trouble ducking when performing a spatial task, even when performing the action as they

would in the physical world. Additionally, it seems that participants had particular problems

using the gamepad to duck. Recall that participants using the in the GP group were allowed

to duck as in real life, or using a buon on the gamepad. Observation during the experi-

ment revealed that many participants seemed to accidentally release the buon prematurely,

before the I-beam had passed.

Memory items missed

When a user simultaneously performs two tasks requiring common cognitive resources, this

competition may cause a detriment on performance at either task, or both. For this analysis,

the performance on each participant’s two spatial tasks was combined into a single average.

e number of missed items on the memory tasks is ploed in Figure .. A two-factor

mixed-model analysis ( means) showed a significant main effect of memory task [F(, ) =
., p < .]. is significant effect could lead us to conclude that the spatial tasks were

simply harder than the verbal tasks and so participants missed more items. While that is
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a possibility, recall that participants performed at ceiling on both types of memory tasks

with no concurrent task during the practice phase. Perhaps the extra time made the spatial

task harder but, based on the expected results, overall paerns in the data, and self-reported

participant feedback, it is likely that the difference is largely due to the concurrent locomotion

movements. For this reason, analysis proceeded on the spatial results in isolation.

Recall that the gamepad was expected to be the least natural interface, PV to be slightly

more natural, and real world to be a completely natural baseline. To test this hypothesis in

terms of the missed memory items, the paern of performance across interfaces was tested

using contrast weights (, ,−) determined by the hypothesis, corresponding to GP, PV,

and RW conditions, respectively. e predicted contrast significantly described the data

[F(, ) = ., p = .].

Other interesting findings

All analysis that was directly related to the initial research questions has been described

above. Additional analyses were performed on other variables that had a potential to provide

insight into virtual locomotion and the problems users have when using unnatural interfaces.
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Perspective taking and spatial orientation test ()

e  responses were scored and analyzed. Recall that each participant was given five

minutes to complete  paper-based tasks. Using a protractor, angles were measured between

each participant response and the correct response for the given question. A participant’s

score was then the average deviation from the optimal responses on the aempted ques-

tions. Only .% of the questions were unanswered in this study. e scores were used to

divide participants into high- and low-ability groups, as described in Kozhevnikov, Motes, and

Hegarty (). Participants were divided into high and low ability groups with the boom

quartile (°–.°) in the “high” ability category ( males,  females) and the upper quartile

(.°–°) in the “low” ability category ( males,  females), discarding participants in the

middle. For the following analyses,  ability was added as an independent variable to

the mixed models used above, resulting in new three-factor mixed models ( means). Recall

that these models treated interface group and memory task as independent variables and also

included a term for between-subject error. As in the analyses above, le, right, and forward

movements were all treated as repetitions of the same translation task.

Because analysis of the stop time dependent variable produced interesting results, it was

the first dependent variable that was examined for an effect of  ability. In addition to the
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Table . anova table for Study  stop time, including ptsot ability and associated interac-
tions.

Source df F p

Between subjects
Interface (I)  .** <.
ptsot ability (P)  . .
I × P  .* .
Error 

Within subjects
Memory task (M)  . .
M × I  . .
M × P  . .
M × P × I  . .
Error  ()

Note. Value enclosed in parentheses represents
mean square error. *p < ., **p < ..

effects described above, a three-factor mixed-model analysis, shown in Table ., revealed a

marginally significant interaction between interface group and  ability [F(, ) = .,

p = .]. e means are ploed in Figure .. We can see that participants in the PV group

with a low perspective-taking ability took longer to stop than those with high ability. An

 simulation from the posterior distribution for the ploed model was used to obtain an

estimate and p-value to confirm significance of this comparison and it was, in fact, significant

(p = .). is makes sense, as stopping requires locating and returning to the center of the

, an inherently spatial task. It is not clear why the paerns exist in the GP and RW

groups though stopping is trivial in both, resulting in very fast performance.

Another three-factor mixed-model analysis ( means), shown in Table ., was con-

ducted, revealing a significant effect of  ability [F(, ) = ., p = .] on translation

time, beginning at task presentation (includes start time). Looking at Figure ., we can

see that participants with low perspective-taking ability took longer to complete translation

tasks than their counterparts with high ability. Most of this difference seems to be in the PV

group and an  simulation confirms marginal significance (p = .).

Finally, while a three-way mixed-model analysis revealed no significant effects involving

 ability, the plot of rotation time shown in Figure . seems to indicate that participants

in the GP group with a low perspective-taking ability may have taken longer to rotate than

those with high abilities. Rotation in the other two groups is expected to be completely

natural, so this paern makes sense and might warrant further future investigation.
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Table . anova table for Study  translation time, including ptsot ability and associated
interactions.

Source df F p

Between subjects
Interface (I)  .** .
ptsot ability (P)  .* .
I × P  . .
Error 

Within subjects
Memory task (M)  . .
M × I  . .
M × P  . .
M × P × I  . .
Error  (.× )

Note. Value enclosed in parentheses represents
mean square error. *p < ., **p < ..
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Table . anova table for Study  translation time, including sex and associated interactions.

Source df F p

Between subjects
Interface (I)  .** .
Sex (S)  . .
I × S  . .
Error 

Within subjects
Memory task (M)  . .
M × I  . .
M × S  .* .
M × S × I  . .
Error  ()

Note. Value enclosed in parentheses represents
mean square error. *p < ., **p < ..

Sex and locomotion performance

Because the assigned  categories were so closely aligned with participant sex, there was

a concern that  ability may be a proxy for sex. us, more analyses were conducted

in which sex was substituted for  ability in the previous three-factor mixed models.

e following models all include interface group, memory task, and sex. e new models

have more degrees of freedom than the  models because the middle two quartiles were

removed in the laer. at was not necessary for this sex analysis, so all participants are

included.

A three-factor mixed-model analysis of stop time ( means) revealed no significance of

sex or the associated interactions.

A three-factor mixed-model analysis ( means), shown in Table ., was conducted on

translation time (from task presentation until the nugget was reached). e analysis revealed

a significant interaction between memory task type and participant sex [F(, ) = .,

p = .]. A plot of the interaction is shown in Figure .. ese results do not seem to

mirror those found in the  analysis above, meaning that, with regards to translation

time,  ability does not seem to be a proxy for sex.

Next a three-factor mixed-model analysis ( means), shown in Table ., was conducted

on rotation time. e analysis revealed a marginally significant main effect of sex [F(, ) =
., p = .] and a significant interaction of sex and group [F(, ) = ., p = .]. is

paern of results does seem similar to the  analysis above.
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Table . anova table for Study  rotation time, including sex and associated interactions.

Source df F p

Between subjects
Interface (I)  .**<.
Sex (S)  . .
I × S  .* .
Error 

Within subjects
Memory task (M)  . .
M × I  . .
M × S  . .
M × S × I  . .
Error  ()

Note. Value enclosed in parentheses represents
mean square error. *p < ., **p < ..
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estionnaire responses

Additional analyseswere performed on the self-reported post-questionnaire responses. s

on self-reported performance and immersion revealed no significant effects of interface group

or participant sex. An , shown in Table ., on self-reported adaptation to the environ-

ment indicates a significant effect of sex [F(, ) = ., p = .]. ese means are shown

in Figure .. e plot shows greater scores for males than females when using either the

PV or RW interface, but no difference is seen in the GP group. ese paerns motivated an

additional  with the two body-based interface groups (RW and PV) condensed. e

resulting graph is shown in Figure .. In this analysis, shown in Table ., the interaction

between group and sex is marginally significant [F(, ) = ., p = .]. ough this does

not directly relate to the primary questions posed in the study, it provides potentially valu-

able insight into body-based interfaces. It seems that females may be less confident in their

ability to adapt to body-based systems as compared to a gamepad while males may show the

opposite paern.
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Table . anova table for Study  self-reported adaptation.

Source df F p

Between subjects
Interface (I)  . .
Sex (S)  .* .
I × S  . .
Error  (.)

Note. Value enclosed in parentheses
represents mean square error. *p < ..

Table . anova table for Study  self-reported adaptation with PV and RW groups com-
bined.

Source df F p

Between subjects
Interface (I)  . .
Sex (S)  .* .
I × S  . .
Error  (.)

Note. Value enclosed in parentheses
represents mean square error. *p < ..
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Conclusions

e findings from the study described in this chapter can be used to inform the design of

future VR systems, particularly with respect to the choice of locomotion interfaces. It is

interesting that users in the study tended to let cognitive task performance suffer in order

to allocate additional resources to locomotion activities. is alone indicates that this is a

worthy area of inquiry because in real-life use cases there would be no contrived memory

task and instead performance on a critical primary task (such as balefield operations) might

suffer.

e stop-time results confirmed expectations because stopping with the PV interface

requires returning to the center of the , an inherently spatial task. is study showed

that users of that interface are slower at stopping when given a concurrent spatial task as

compared to a verbal task. In Chapter  this knowledge was used to motivate the design of

an adaptive system that can adjust dead-zone size according to the user’s concurrent task

load. Specifically, knowledge of the impact of a concurrent spatial task guided the initial

definition of rules for the fuzzy system.

Another interesting finding was that participants had problems ducking during a concur-
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rent spatial task, regardless of how natural the interface was. It might be interesting to study

this phenomenon in the physical world.

e individual differences analysis highlights the importance of an adaptive system’s abil-

ity to learn about a user’s needs, as opposed to being a one-size-fits-all solution. It is unclear

to what extent the individual differences findings were due to  ability or sex. e re-

sults show different translation-time paerns for sex and  ability, indicating different

effects are at play in each analysis. However, the rotation results seem to be very similar for

 and sex, indicating that one may be a proxy for the other. In any case, it is clear that

individual differences play a role and should be accounted for in future studies.

e sex differences in self-reported adaptation indicate that, while self-reported perfor-

mance was statistically the same, females are less confident in their ability to adapt to body-

based locomotion interfaces. ese results can potentially inform the design of systems.

Specifically it may help when choosing a locomotion interface to be used predominately by

people of a given sex.

is study has also revealed some trends that will help in the design and analysis of future

studies and, indeed, even the one described in Chapter . First, several participants reported

employing a verbal strategy to remember spatial memory sequences. is phenomenon is

hard to avoid (Brandimonte, Hitch, & Bishop, ), but the memory card design was modi-

fied in Study  in an aempt to reduce the participant’s temptation to try this. Second, because

participants seemed to sacrifice performance at the memory tasks in favor of maintaining

high performance on the locomotion tasks, the training phase in study two was modified

in an aempt to further emphasize the relative importance of the concurrent tasks. Finally,

there is evidence that participants may be more motivated to complete movements quickly

when performing concurrent memory tasks. ere probably is not much that can be adjusted

to directly change this in the future but as the tasks become less contrived, andmore like what

a user would see in the real world, this effect is likely to diminish. Generally, the dual-task

selective-interference paradigm worked well for answering the questions posed.
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Chapter . Study : Working Memory Use During Locomotion With a

Constrained Field of View

Humans use sensory feedback, particularly visual, to guide movements through the world.

Unfortunately, VR systems fail to provide the visual fidelity available during locomotion in

the physical world. is likely leads to lower locomotion performance, but it may also cause

users to resort to more cognitively demanding strategies when traveling through a VE.ese

strategies may compete with other ongoing tasks for finite cognitive resources.

A second study was conducted to investigate the connection between the ideas explored

in the first study and  limitations. It seems reasonable that interfaces with a reduced 

might decrease a user’s locomotion performance and increase working memory load because

reduced environmental movement cues, such as optic flow, may cause the user to resort to

verbal strategies, such as counting. If so, these verbal strategies would require verbal working

memory resources. Additionally, users providedwith a limited may be forced to store and

manipulate perspective information in working memory rather than in the world, causing

increased use of spatial working memory resources during locomotion activities. Finally, it

is possible that the alternate strategies employed may require additional general aention

resources.

e VirtuTrace codebase underwent many changes between Study  and Study . Ad-

ditionally, the experiment scenes were completely rewrien to improve stability and user

experience. e models were also recreated to improve aesthetics. Even so, the general study

flow and look and feel were very similar to that experienced in Study .

Resear questions

e following research questions motivated this study.

. Does limited  cause users to resort to verbal locomotion strategies?

. Does limited  during locomotion force users to store and manipulate spatial infor-

mation in working memory that may have otherwise been available in the world?
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ere are two basic reasons why virtual locomotion may require working memory re-

sources. e first, the use of semi-natural interfaces, was explored in the previous chapter.

e second reason involves the fidelity of sensory feedback provided by VR systems. Pre-

vious research, described in Chapter , has shown that sensory feedback is used to guide

locomotion and that humans, when using interfaces that involve real walking, are able to

use automatic processes to update their position in the world. erefore, when using a semi-

natural locomotion interface, the fidelity of sensory feedback should be even more important.

In the absence of real walking and adequate sensory feedback, users may be forced to resort

to strategies that compete with ongoing tasks for finite cognitive resources.

Experiment design

A ×  (, working memory load) design was used for this study. Working memory load

was a within-subjects variable while  was manipulated between subjects. Participants in

both groups viewed the VE through CrystalEyes shuer glasses, which provided stereoscopic

vision. Vision for participants in the high- group was restricted only by these glasses

(° × °). Participants in the low- group wore the same type of shuer glasses, but

with cardboard pieces aached in front of the lenses, limiting  to approximately °×°.

Field of view was a between-subjects variable because participants in each group wore a

different pair of shuer glasses. is decision eliminated the need to enter and exit the 

between tasks to switch glasses. As in the study described in Chapter , working memory

load was a within-subjects variable, because it was easy to present both types of tasks (verbal

and spatial) quickly without requiring the participant to exit the .

All participants used the PV interface described in Chapter . e dead zone was set to

a radius of . cm and the outer extent radius was set to . cm.

Methods

is study had a very similar design to that described in Chapter  for Study . In this study,

instead of manipulating the locomotion interface,  was changed between subjects. e

PV interface was used throughout in this study. According to the lessons learned when

conducting the first study and analyzing the results, the following changes were made to the

tasks that participants were asked to perform in the environment.

• Because several participants reported using verbal-coding strategies for the spatial

working-memory tasks in Study , the graphical presentation of the spatial sequence
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Figure . Sample spatial task from Figure ., staggered for Study .
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Figure . Sample spatial recall card from Figure ., staggered for Study .

was changed such that each column was staggered, as seen in Figures . and .. In

this study the boxes were not arranged in a neat grid-like paern, aiming to reduce the

usefulness of a verbal strategy.

• Because participants generally seemed to perform well on the working memory tasks

andmost were pre-tested to have a span of five items (themaximum allowed) in Study ,

participants in this study were asked to remember between four and six items.

• Because no participants used real-world locomotion in this study, there was no need

for task performance to be possible within the .m× .m area of the C. For

this reason, the distance to the center of each nugget was increased to . cm.

• Because participants seemed to have relatively lile trouble with the duck task when

using the PV interface in Study , the height of the I-beam was lowered to . cm.
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Participants

irty-one undergraduate students ( males) were recruited from the Iowa State University

Department of Psychology research participant pool (), through word of mouth, and an

announcement in an undergraduate course. In this study, participants were required to have

/ (corrected) visual acuity. In contrast to Study  recruiting, there was no restriction on

allowable video game experience, because the gamepad was not used in this study.

Procedures

e procedures were very similar to those in Study . First, participants were asked to com-

plete a pre-questionnaire with topics covering demographic information and video game ex-

perience. Also they completed the Perspective Taking and Spatial Orientation Test ().

en they entered the C and were given instructions and a demonstration of how to com-

plete working memory tasks in the VE. ey were then presented with a series of six verbal

working memory tasks, similar to the one depicted in Figure . to assess their individual

verbal spans and allow them to practice so they would feel comfortable when doing the real

tasks. e difficulty was increased from four items to six items, with two tasks at each dif-

ficulty level. Next, participants were trained on the spatial tasks and given a series of six

spatial practice tasks, similar to the one depicted in Figure ., again increasing in difficulty

from four to six items. If a participant was unable to successfully complete the two tasks at

the highest difficulty level (six), the span for the real tasks was dropped to five for that par-

ticular type (spatial or verbal) of task. If a participant was unable to successfully remember

five items, then the span was dropped to four. is was done to ensure that the span used

during the real locomotion tasks was sufficient to tax the cognitive resource in question but

not so hard that the participant was incapable of recalling such a large span.

Before the experimental tasks, the participantwas given instructions and a detailed demon-

stration of the locomotion interface and all locomotion tasks. All tasks were performed in a

virtual roomwith a grid texture, rendered in Figure . and similar but not identical to the one

used in Study . e room model was recreated for this study in an aempt to improve the

quality of the visual feedback. e models were intended to be more aesthetically pleasing

but also the room was smaller, intended to give the user more visual feedback to guide the

locomotion tasks. e front wall of the room was blue and the other walls were black. e

participant was instructed to always face the blue wall and to stand in the center of the 

in between tasks. e participant was not allowed to practice the locomotion tasks, but there

was a run-through in which the experimenter demonstrated what the participant would be

required to do. As in Study , the decision to not allow locomotion practice was made to
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prevent any learning from taking place before the actual experimental tasks. is would

maintain the unnaturalness of the movements and probably the extent to which cognitive

resources would be required. e intent was to make the participant feel comfortable and

perform at a high level on the working memory tasks and the pre-assessment tests provided

practice.

As in Study  (Figure .), the experiment was structured as a repeating series of locomo-

tion tasks with working memory tasks interleaved. In each of six blocks, the participant was

presented with a working memory span sequence, then a sequence of movement tasks, and

then asked to recite the working memory sequence. Each block had a verbal, a spatial, or no

working memory task, assigned randomly (two of each) and the movement phase lasted at

least . s to ensure that participants could not rush through the movements to get to the

recall step quicker. Each sequence of locomotion tasks was also randomly ordered. In each

block, participants completed two of each translation task, one of each rotation task, and a

single duck task.

Response variables and logging

e response variables were defined and calculated the same as they were in Study . e

logging format was also nearly identical to that described for Study , with the minor excep-

tion that participant head positions in Study  were logged every frame instead of every third

frame. In Study , each participant completed  blocks of  tasks each, for a total of  tasks.

Results

Clearly, if all aspects of Study  and Study  were identical, one would expect to see similar

findings in the high- group, considering that the interface was similar and the  was

the same. But, because of the improvements described above based on problems encountered

in Study , it was not appropriate to compare the results directly in this way. However one

paern in particular from Study  did provide insight when interpreting results from Study .

Participants still tended to perform worse when they were given no concurrent working

memory task, presumably due to some motivation effect. is similarity to the previous

study helped when interpreting the results.

Data cleanup

As described above, numerous data points were collected for each user. In some cases, due to

hardware problems, soware problems, or participant confusion, affected data points were
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discarded. Across all analyses, the percentage of data removed ranged from % to %. Data

were discarded or non-existent for the following reasons.

• In many trials, the participant was not fully stopped before the next task was pre-

sented, so a stop time was not recorded. Likewise, a start time was not recorded if

the participant was already moving when a task was presented. For consistency, the

experimenters did not aempt to record times manually.

• Head tracker malfunctions and graphical anomalies affected a small subset of trials.

Data points were removed where it seemed likely that task performance was impeded.

• A bug prevented failures on the duck task from being be properly logged for three

participants.

• Several participants reported using a verbal strategy (i.e., assigning a number to each

position) to remember the spatial tasks. Because the intent was to load a given cognitive

resource, data from affected trials were discarded.

• Some participants missed the nugget and thought they got it on a subset of tasks. is

led to the participant standing still, waiting for the next task. Because the intent was

to measure intended movements, these affected data points were discarded.

• Some participants got close enough to the virtual walls that nuggets were displayed on

the other side so, due to confusion, some data points were discarded.

• One participant reported disobeying directions and playing around. All data were dis-

carded for this individual.

Across all analyses, the percentage of data missing or removed ranged from .% to .%

with an average of .%. If either a start time or translation time was missing, no movement

time was calculated. For this reason, a higher percentage of movement times were missing

from the analysis. Without considering the movement times, the percentage of data missing

or removed ranged from .% to .% with an average of .%.

Memory items missed

e primary observation from an initial analysis of the data was that participants seemed to

be sacrificing performance on the memory task instead of the locomotion movements. As in

Study , incorrect answers were scored by counting the minimum number of replacements

or swaps required to convert the participant’s answer to the correct answer. Because the
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Figure . Study  mean number of memory items missed as a function of field of view and
memory task. Error bars show ± standard error of the mean.

difficulty in this study was customized to between four and six items depending on individual

abilities, allowing for awider range (as compared to Study ) of items possible tomiss between

participants, there was concern that those who had higher abilities would be penalized with

the chance to miss more items. However, inspection of the data revealed only one trial in

which a participant missed five items and no trials in which six were missed. e following

analysis was re-run with that trial omied but the conclusions were the same.

e paern of memory items missed (shown in Figure .) in this study is very similar to

that in Study . Incorrect answers on the verbal tasks were very rare and on the spatial tasks

they were much more common. e number of items missed on each memory sequence was

treated as a Poisson distribution and a two-factor mixed-model analysis showed significant

effects of  group [F(, ) = ., p = .] andmemory task [F(, ) = ., p < .],

with a marginally significant interaction [F(, ) = ., p = .]. It seems that restricting

the  led to a decrease in both verbal and spatial performance, though note that the verbal

performance dropped by a much larger percentage.
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Figure . Study  mean start time for le and right translation tasks as a function of field
of view and memory task. Error bars show ± standard error of the mean.

Start time

Individual aspects of movements were also analyzed independently. e mean start times for

sidestepping le or right are ploed in Figure .. Recall that start times were measured from

translation task presentation until participant movement was detected. is means that start

time reflects the time required to identify the task to be performed as well as motor planning.

A two-factor mixed-model analysis, seen in Figure ., shows memory task [F(, ) = .,

p = .] and the interaction between memory task and  group to be marginally signif-

icant [F(, ) = ., p = .]. An  simulation from the posterior distribution for the

ploed model was used to obtain estimates and p-values for the comparisons between verbal

and spatial for each  group. is comparison revealed a marginally significant difference

between verbal and spatial in the low- group (p = .). Finally, an  simulation was

also used to obtain an estimate and p-value for the difference between the average of verbal

and spatial with low  and that with high . e analysis revealed marginal significance

of the comparison (p = .).
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Table . anova table for Study  start time on le and right translation tasks.

Source df F p

Between subjects
Field of view (F)  . .
Error 

Within subjects
Memory task (M)  . .
M × F  . .
Error  ()

Note. Value enclosed in parentheses represents
mean square error.

Other interesting findings

As in Study , a model was created to investigate the effect of  group and sex on self-

reported adaptation, performance, and immersion scales. An  showed no significance

so those results are not reported here. Individual spatial-ability differences revealed by the

 did have some interesting relationships to locomotion performance.

Perspective taking and spatial orientation test

e  answers were scored as in Study , with an average angle of deviation from the

correct answer recorded for each participant. Only .% of the questions were unaempted

in this study. As in Study  and in Kozhevnikov et al. (), participants with scores in the

boom quartile (.°–.°) were placed in the “high” ability category ( males,  females)

and those with scores in the upper quartile (.° – .°) were placed in the “low” ability

category ( males,  females). All participants in the middle two quartiles were eliminated

from the analysis that follows.

A three-factor mixed-model analysis, shown in Table ., was conducted on the start time

for le and right translation tasks, adding  ability as an additional variable to the model

used for the le/right start time analysis above. In this new model, memory task [F(, ) =
., p < .] and the interaction between memory task and  ability [F(, ) = .,

p = .] are both significant. We can see in Figure . that the paern of results is potentially

interesting. First, observe that participants with low perspective-taking ability started slower

when given a concurrent spatial task than when given a verbal task or no task. is makes

sense, as somebody with a lower spatial ability should be expected to perform worse on some

types of spatial tasks and it is reasonable that planning and initiating bodily movements
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Table . anova table for Study  start time on le and right translation tasks, with ptsot
ability and associated interactions.

Source df F p

Between subjects
Field of view (F)  <. .
PTSOT ability (P)  . .
F × P  . .
Error 

Within subjects
Memory task (M)  .** .
M × F  . .
M × P  .* .
M × P × F  . .
Error  ()

Note. Value enclosed in parentheses represents
mean square error. *p < ., **p < ..

might require spatial resources. e results for participants with high perspective-taking

ability need more interpretation. First notice that these users do not seem to exhibit the same

detriment from a concurrent spatial task that was present in the low-ability category. e

big difference here is the slower performance when given no concurrent memory task. is

may indicate that users with high spatial abilities use more time-consuming strategies when

planning and initiating locomotion movements, if resources are not being used for another

simultaneous task.

Another three-factor mixed-model analysis, seen in Table ., was conducted on move-

ment time. is analysis revealed a significant interaction between  ability andmemory

task [F(, ) = ., p = .]. e plot is shown in Figure .. More research is needed

to draw conclusions, but the paern of means indicates that different strategies were em-

ployed according to  ability. e plot in Figure . indicates that the benefits of having

a high perspective-taking ability are lessened when the  is restricted, though there is no

significant interaction between  ability and .

A final three-factor mixed-model analysis, seen in Table ., was conducted on translation

distances, revealing a significant effect of  ability [F(, ) = ., p < .]. e plot,

shown in Figure ., indicates that participants with low perspective-taking scores traveled

greater average distances than those with high scores, regardless of  group. ese re-

sults support the premise that users with a low spatial ability perform worse on semi-natural

locomotion tasks.





..



.



.



.



.

High

.

Low

.
PTSOT ability

.

St
ar
t
ti
m
e
(m

s)

.

Memory task

.

None

.

Spatial

.

Verbal

Figure . Study  mean start time for le and right translation tasks as a function of ptsot
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Table . anova table for Study  movement time, with ptsot ability and associated interac-
tions.

Source df F p

Between subjects
Field of view (F)  . .
PTSOT ability (P)  . .
F × P  . .
Error 

Within subjects
Memory task (M)  . .
M × F  . .
M × P  .* .
M × P × F  . .
Error  ()

Note. Value enclosed in parentheses represents
mean square error. *p < ..
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Table . anova table for Study  distance, with ptsot ability and associated interactions.

Source df F p

Between subjects
Field of view (F)  . .
PTSOT ability (P)  .** <.
F × P  . .
Error 

Within subjects
Memory task (M)  . .
M × F  . .
M × P  . .
M × P × F  . .
Error  (.)

Note. Value enclosed in parentheses represents mean
square error. **p < ..
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Figure . Study  mean distance as a function of field of view and ptsot ability. Error bars
show ± standard error of the mean.
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Sex and locomotion performance

Recall that in Study , there was reason to believe that  score may have been a proxy for

sex. Based on the number of males and females in each  ability in this study, there was

lile reason for concern. However, for completeness, the analyses from the previous section

were re-run with sex replacing  ability in the models. No significant main effects or

interactions were found. Recall that the connection between  ability and sex in the first

study was uncertain. ese results indicate that spatial ability in itself is more relevant when

considering cognitive resource usage during virtual locomotion, as opposed to sex.

Conclusions

e study described in this chapter showed that virtual locomotion with a constrained 

causes a nearly equivalent detriment to performance on a concurrent spatial or verbal task,

beyond the problems due to semi-natural locomotion already seen in Chapter . is sym-

metric performance decrease across memory tasks indicates that it is likely that general at-

tentional resources are in use, as opposed to either the spatial or verbal resource pool. An

alternate theory is that locomotion with a small  requires an equal amount of both verbal

and spatial resources. In either case, the reason for this additional resource usage when  is

reduced may be due to alternate strategies employed by users in the absence of high-fidelity

sensory feedback. Even though the resource usagemay be the same, for real-world applicabil-

ity it may be useful to note that the verbal detriment increases by a much larger percentage

than spatial when going to a reduced . As in Study , this set of results highlights the

importance of gaining a greater understanding of and mitigating problems stemming from

resource competition during virtual locomotionwith a reduced . In the scenario described

here, performance dropped on a contrived representative task. In a real-world use case, per-

formance might be sacrificed on a cognitively-demanding task that is critical to success in

the application domain.

Additionally, there may be an impact of a concurrent working memory task on start time

when using a locomotion interface with a limited . ese results were not quite signifi-

cant, but the data paerns followwhat might be expected, particularly in light of the memory

task results. It makes sense that planning or initiating movements may require spatial work-

ing memory resources, as these locomotion tasks are inherently spatial in nature. However,

previous research did not show an additional demand under low- conditions. is differ-

ence could indicate a change in planning strategies when the  is reduced. e relationship

between  and start time also points to a possible difference in strategies between users
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with high perspective-taking ability and those with low ability. It seems that users with high

spatial abilities may use more extensive movement planning strategies, unless a concurrent

task requires general aention resources. Users with low spatial ability, on the other hand,

seem to employ different planning strategies that are interrupted by a concurrent spatial task.

e relation of cognitive resource usage to planning and initiation of movements should be

investigated further because it could have implications for the design of VR systems and ap-

plications. In addition, future work should investigate if similar effects exist for other aspects

of sensory fidelity, such as resolution.

ese results may be used in system design, as described above, but they can also inform

the design of an adaptive system that aempts to mitigate these problems. Such a system is

described in Chapter .
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Chapter . Design of Fuzzy Navigation Engine

e previous chapters have described studies and findings involving the impact of two types

of simultaneous cognitive tasks (verbal and spatial) on the different aspects of locomotion

performance. ese studies showed that the cognitive task performance can also be affected

by the competition for resources during semi-natural virtual locomotion. e second objec-

tive of this research is to use that knowledge to mitigate the dual-task detriment. To some

extent, in domains with a well-defined set of tasks, it may be possible to choose a locomotion

interface according to the expected cognitive demands of those tasks. Because no interface is

perfect, and choosing will always involve trade-offs, an adaptive interface should be benefi-

cial. e final portion of this work involves the creation and basic testing of an interface that

is able to make use of information about a user’s current working memory load to modify pa-

rameters of the locomotion interface. e adaptive system described in this chapter, referred

to as “Fuzzy PV,” is based on the PV interface from previous chapters, but with the addition

of the “Fuzzy Navigation Engine,” which incorporates a fuzzy inference system. Figure .

shows a general conceptual model of how the system works to adjust the dead-zone radius

for the new interface, not yet including details on how the system learns.

Relevant study findings

Recall that Studies  and  were designed to identify specific movement problems that result

from dual-task competition for resources. Because participants seemed to sacrifice perfor-

mance on the cognitive tasks to maintain a high level of performance on the locomotion

tasks, lile information was aained about specific movement problems. However, there

were findings that were informative when designing the adaptive system.

First, results show that the more unnatural the locomotion interface a user is required to

use, the lower performance will be on a simultaneous spatial task. is means that when a

user is performing a spatial task, it should be beneficial if locomotion becomes more natural.

is clearly amounts to a trade-off, as the system cannot always allow completely natural

movement, so it will be important to lower the naturalness once the concurrent spatial task

has been completed.
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Second, results also show that users have more trouble stopping with the PV interface

when they are performing a concurrent spatial task than when they are performing a verbal

task. Although the results above also showed that users with no task stopped slower than

those who had a spatial or verbal task, it is likely that this paern will not hold in real-world

use cases. Users in real world scenarios are likely to sacrifice less on the cognitive task than

they did in these studies, as the other task will not be contrived but will be of real-world

importance to a user’s objectives in the environment. us, if the type of load maers, as the

spatial-verbal difference indicates, a user with a necessary resource truly loaded should not

exhibit higher performance, regardless of factors such as motivation.

ird, the results of Study  indicate that performing locomotion tasks with a restricted

field of view requires additional spatial and verbal resources. is provides us with evidence

that some aspects of locomotion, particularly when sensory fidelity is reduced, may be hin-

dered by a concurrent spatial or verbal load.

Finally, while a one-size-fits-all approach to adaptation may be beer than a non-adaptive

baseline interface in terms of the results discussed above, the findings related to individual

differences make it apparent that such an approach will be sub-optimal. Also, both studies

above examined first-time users. As users learn to use an interface more effectively it will

become more natural, meaning that less adjustment should be needed as users improve. An

effective system should adapt its parameters through learning.

Approa

Informed by the study results listed above, the Fuzzy Navigation Engine adjusts the size of

the dead zone according to the user’s current cognitive task load. As the dead-zone radius

increases, the outer extent radius increases at the same rate, cappingmaximumpossible speed

only if it is larger than the . Because the inside of the dead zone represents an essentially

natural interface, this increases the extent to which movements are natural. Additionally, it is

plausible that a larger dead zone will be easier to find, which will facilitate stopping. Because

both spatial and verbal resources have been shown to be used for locomotion, the Fuzzy

Navigation Engine considers both types of load when determining an appropriate dead-zone

radius. However, because spatial load plays a greater role, it has been given more influence

on the dead-zone radius than verbal load.

e basic input-output flow of the Fuzzy Navigation Engine is shown in Figure .. For

a given memory-load-changed event (i), the system takes two inputs, spatial load (Si) and
verbal load (Vi), and produces a dead-zone radius (Di).

e Fuzzy Navigation Engine learns at discrete times when it receives a learn event. It
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Navigation 
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dead-zone radius (Di)

user

virtual environment

spatial load (Si)
verbal load (Vi)

Figure . Basic input-output flow of the Fuzzy Navigation Engine.

then checks to see if certain key aspects of locomotion performance are outside of the desired

ranges. To facilitate learning, a set of error values are introduced. ese error values are

combined and used to adjust the membership functions for the fuzzy input variables.

Fuzzy inputs

Hardware specifications rarely change when an application is running, so aributes such as

 can not usually provide ameaningful input to an adaptive system. e abilities of the user

with respect to the locomotion technique will change as the user learns how to move about

more effectively, but it is not clear how to detect and quantify skill acquisition. However,

the system does have access to some level of information about concurrent tasks that the

user is being asked to complete. is knowledge is used as input to the Fuzzy Navigation

Engine. Because it is difficult to effectivelymeasure task load, for the purposes of this research

concurrent tasks were simple but well validated in the cognitive psychology domain. In fact,

they were nearly identical to the working memory tasks that were used in Studies  and .

For this research, the following input variables were used to drive the fuzzy inference system:

• number of spatial items currently being remembered (Si) and

• number of verbal items currently being remembered (Vi).

Using the tasks from the previous studies, it is straightforward to obtain a rough estimate

of load using the number of items in a given domain (spatial or verbal) that a user is currently

required to maintain in working memory.
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Before a fuzzy logic solution can be used, appropriate sets must be defined to map nu-

merical values to fuzzy linguistic terms. To define set membership functions (μ), the Fuzzy

Navigation Engine implements overlapping trapezoid functions, with a general template de-

fined as follows, where, for example, x represents a specific verbal or spatial load (Si or Vi),mL

represents the slope of the le-hand side of the trapezoid, and bL represents the y-intercept
of the le-hand side of the trapezoid:

μtrap,L =

mL × x+ bL if x ≤ x ≤ x

 if x < x ≤ x

μtrap,R =

 if x ≤ x ≤ x

mR × x+ bR if x < x ≤ x

μtrap := μtrap,L ∪ μtrap,R

e Fuzzy Navigation Engine uses these overlapping trapezoid functions to define each

linguistic level of memory load (low, medium, and high); for both spatial and verbal memory

loads: μS,, μS,, μS,, μV,, μV,, and μV,.
us membership functions, μ(S) and μ(V), map numeric values to linguistic (fuzzy)

terms. In the Fuzzy Navigation Engine, fuzzy sets are configurable using an  file. ese

input-variable membership functions change as the system learns.

μS :=
{
μS,, μS,, μS,

}
μV :=

{
μV,, μV,, μV,

}
S̃ := { Si, μS | Si ∈ S }

Ṽ := { Vi, μV | Vi ∈ V }

Fuzzy rules

Fuzzy logic is a good choice for systems that are difficult to model in precise mathematical

terms but which can be described linguistically by experts. In the Fuzzy Navigation Engine,

the fuzzy rules are configurable with an  file. For the user study that follows, they are

defined according to the findings from the first two studies. Locomotion performance is

thought to continually decrease as spatial load increases but performance oen is not affected

much by verbal load. It is likely that, in some cases, general aention resources of some sort

are required and in this case verbal load may have an effect on locomotion performance.

e rules have been defined accordingly, with spatial load being given a greater influence
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on dead-zone size. e production rules (Ri) used in the studies described in this chapter are

based on the results of Studies  and . ey are defined as:

R : IF Si ∈ μS, THEN Di ∈ μD,

R : IF Si ∈ μS, THEN Di ∈ μD,

R : IF Si ∈ μS, THEN Di ∈ μD,

R : IF Vi ∈ μV, THEN Di ∈ μD,

R : IF Vi ∈ μV, THEN Di ∈ μD,

R : IF Vi ∈ μV, THEN Di ∈ μD,

RS :={ R, R,R }

RV :={ R, R,R }

Fuzzy outputs

e Fuzzy Navigation Engine adjusts the radius of the dead zone based on the current values

of the input variables Si and Vi. Figure . shows a top-down depiction of a , with circles

illustrating how changing the dead-zone radius affects velocity. Increasing the size of the dead

zone while increasing the outer extent of the PV region by the same amount accomplishes

the following three things.

• It provides a greater area in which movement is completely natural. In effect, a greater

percentage of movements will be natural when accomplishing navigation tasks. Be-

cause the C is exactly ten feet in width, it is useful to describe the dead-zone size in

feet. In this way, it is easy to see that a dead zone with a radius of one foot provides

natural movement for / of the distance from the center of the  to the wall. For

this reason, all dead-zone sizes in this chapter are listed in feet, as opposed to meters.

According to the conclusions in Studies  and , an interface with a greater proportion

of natural movement will require a smaller quantity of cognitive resources, leaving

them available for concurrent tasks.

• A larger dead zone provides a larger area to return to when stopping. is should make

stopping easier and finding the dead zone should require a smaller quantity of spatial

cognitive resources, leaving them for concurrent tasks. A disadvantage is that a user

may not truly be in the center when stopped, potentially hindering the start of next

movement.
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dead 
zone
v = 0

v = max

v' = 0
v' < max'

Figure . Top-down depiction of a cave, with circles illustrating how changing the
dead-zone radius affects velocity. v: velocity; max: maximum possible velocity.

• It limits themaximum velocity at the outer edge of the PV region. is will act as a sort

of “training wheels” when the user cannot expend the necessary cognitive resources

but will allow for higher performance when the user is capable. Note that this could

increase the risk of running into physical walls if the outer bounds provide a speed that

is much slower than the user desires.

A reasonable starting point, and the one chosen for Fuzzy PV, is to use a symmetric dead

zone. e following fuzzy output terms have been used in the fuzzy inference system (low,

medium, and high) defined by the following trianglemembership functions: μD,, μD,,

and μD,.
ese triangle functions are a special case of the more general trapezoid function de-

scribed above in the Input Variables section, so they can be specified using the same param-

eters.

Operation of the Fuzzy Navigation Engine

Every time that the user’s assigned load changes, the Fuzzy Navigation Engine calculates

a new dead-zone radius. e new radius is then immediately updated in Fuzzy PV and

reflected in the user interface. In the experimental scene described below, the dead-zone is
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surrounded by a red circle drawn in the center of the  floor, indicating the current size.

e calculation is performed as follows, using the fuzzy-lite fuzzy logic library.

Recall from Chapter  that a fuzzy inference system evaluates the premise of each rule

according to the set membership functions for the input variables. Because each of the rules

used in this system has a single premise, no combination is necessary to determine the out-

put of a given rule. However it is still likely that multiple rules may fire. Aer a firing set

has been constructed based on the results of rule evaluation, inference is performed. In the

inference step, an OR composition is used to combine the outcomes of all fired rules. Aer

a combined set has been constructed, defuzzification finds the center of gravity to return an

actual numeric value for use as the dead-zone radius. e center-of-gravity method was se-

lected for this system because it is commonly used and it has the convenient property that

output values vary smoothly along the output scale as degrees of membership change.

Figure . shows the operation of the Fuzzy Navigation Engine through an example with

sample input values. In the example scenario, the current spatial load is  items, the current

verbal load is  items, and the sets have been configured as shown in Table .. In the fuzzi-

fication step, the system determines that spatial load Si =  is a member of the medium set

with degree . and of the high set with degree .. Because of these memberships, Rules R

and R fire in the inference step, with a firing strength of . and ., respectively. In parallel,

fuzzification is performed on the current verbal load (Vi = ), which reveals a membership

of degree . in the verbal medium set. Because of this membership, Rule R fires with a

firing strength of .. e sets resulting from the firing of the spatial and verbal rules now

must be combined using an OR operation. Finally, in the defuzzification step, the center of

gravity is computed, resulting in a defuzzified output value of . feet (. cm), which will

immediately become the dead-zone radius.

Learning

When a scenario begins, the initial dead-zone radius must be set and all fuzzy sets must be

configured with some initial values. To prevent surprising the user, conservative values are

chosen. No two users of an interface will have the same ability level so the system must

learn at runtime how to beer adjust its parameters. As a scenario unfolds, the rules stay

the same but the system shis the membership sets based on user performance. e system

uses windowed averages so a large amount of error in a short period of time indicates that

adjustment is needed.

If a user has problems with locomotion then it may indicate, regardless of how the current

implementation has adjusted the navigation, that the dead zone may be too small. If the user
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Table . Parameter configuration for the example scenario.

trap,L trap,R

Function m b range m b range

µS,low – – – −. . .–.
µS,medium . −. .–. −. . .–.
µS,high . −. .–. – – –
µV,low – – – −. . .–.
µV,medium . −. .–. −. . .–.
µV,high . −. .–. – – –
µD,small . . .–. −. . .–.
µD,medium . −. .–. −. . .–.
µD,large . −. .–. −. . .–.

has a concurrent task, it may also be concluded that it is possibly due to competition for

resources. If so, this means that the system’s current fuzzy sets are inappropriately sized

and that the user’s load should be viewed as greater than the linguistic fuzzy terms indicate.

Adjusting the sets using a negative correction term makes the fuzzy inference system view a

given numeric load as higher linguistically. If the sets for the input variables are corrected in

this way, assuming the same production rules described above are in place, then the output

variable (the dead-zone radius) will tend to be larger.

Sometimes a user may be having very few problems with the interface and could benefit

from a smaller dead zone, to increase the maximum possible velocity. is also means that

the fuzzy sets may be inappropriately sized. In this case it seems that the user’s load should

be less than the linguistic fuzzy terms currently indicate. Adjusting the sets using a positive

correction term will make the fuzzy inference system view a given numeric load as lower

linguistically. When the input sets are corrected in this way, the dead-zone radius will lend

to be smaller.

Learning is accomplished by adding a correction term to the input variable as shown

by example in Figure .. e amount of correction is determined according to the outputs

of the error function described below aer a description of the error terms and associated

calculations. e Fuzzy Navigation Engine only adjusts the correction term on a working

memory resource (verbal or spatial) that was in use at the time that the error was measured.

e correction term “expands” or “shrinks” the trapezoid membership functions. For example

in the case of spatial correction, the x-intercept for the right side of the low term and the x-
intercept for the le side of the medium term will both shi by cs. e x-intercept for the

right side of the medium term and the x-intercept for the le side of the high term will both
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Figure . Example of variable correction. The spatial-load input variable is being corrected
by ..

shi by cs × . In the figure, the spatial sets have all been corrected by −.. e solid lines

are used to depict the new membership functions while the dashed lines depict the original

membership functions (pre-correction).

Adaptive system pilot study

To determine initial parameters and ranges for learning, a pilot study was conducted with

learning disabled. e fuzzy inference system was able to adjust the dead-zone radius prop-

erly, but it did not learn from user error. During the pilot study, many problems were discov-

ered involving the experiment procedures. e design was iterated as issues were encoun-

tered. For example, the length of the rounds and the number of tasks that each participant

was asked to complete were adjusted. e results from this pilot study are referenced below

in the discussion about error metrics.

Configuration of Fuzzy Navigation Engine

For the pilot study and the formal study, the fuzzy subsets were configured as shown in Fig-

ures ., ., and .. Table . shows the parameters for the trapezoid membership functions.

As described above, the output values for the dead-zone radius are in feet. e correction

magnitude (cm) was set to . and the minimum correction (cmin) was set to −..

Participants

Ten participants were recruited through word of mouth and announcements in an under-

graduate course. All participants were undergraduate students at Iowa State University. Data

from one participant were not used due to a head-tracker malfunction.
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Figure . Initial fuzzy sets used in Study  for the spatial load input variable.
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Figure . Initial fuzzy sets used in Study  for the verbal load input variable.
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Figure . Fuzzy sets used in Study  for the dead-zone radius.





Table . The parameter configuration for the adaptive system pilot study and Study .

trap,L trap,R

Function m b range m b range

µS,low – – – −. . .–.
µS,medium . −. .–. −. . .–.
µS,high . −. .–. – – –
µV,low – – – −. . .–.
µV,medium . −. .–. −. . .–.
µV,high . −. .–. – – –
µD,small . . .–. −. . .–.
µD,medium . −. .–. −. . .–.
µD,large . −. .–. −. . .–.

Methods

A new scene, CogScene, has been created which allows users to traverse a brick corridor,

shown in Figure ., while periodically seeing and reciting memory tasks, intended to sim-

ulate the existence of concurrent cognitive tasks. e corridor walls were tall enough that

users could not see over them, meaning that a participant only saw a small portion of the

environment at a given time. Figure . shows the basic task flow that was repeated some

number of times (n). During each trial, the participant should always be moving through the

corridor until the stop-sign card is displayed. At the end of each trial, when the stop-sign

card is displayed, the participant should come to a stop as quickly as possible. e memory

tasks are similar to those used in the previous studies, except for changes to the spatial recall

which is described below.

In this study, participants were asked to remember spatial and verbal items at the same

time. However, the verbal recall of the spatial positions that was used in the last two studies

was not ideal. For this reason, all spatial recall was done using the Logitech Wingman Cord-

less gamepad that was used for locomotion in Study . e six buons on the right side were

covered with red tape so the leers were occluded but the buons would be clearly visible.

e task presentation was a sequence of virtual cards with each circle corresponding to a

buon on the gamepad. For example, in Figure ., the highlighted circle corresponds to the

“Y” buon. When it was time to recall the spatial sequence, the card shown in Figure .

was displayed and participants were tasked with pressing the same sequence buons.

Before the training and experimental scenarios began, each participant completed the

same pre-questionnaire used in Studies  and  (included in Appendix A). Next the user was
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Figure . The brick corridor traversed in Study .
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Figure . Basic task flow for the adaptive system pilot study.

Figure . Study  spatial task presentation card, with the highlighted circle corresponding
to the “Y” buon on the gamepad.
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Figure . Study  spatial recall card.

given a demo of how to move about and complete working memory tasks in the corridor

environment. e importance of success on the memory tasks was stressed and the user was

also told that movement efficiency, collisions, and stop times would be recorded. Next the

participant completed a sequence of practice working memory tasks in the corridor scene,

with locomotion disabled. ese tasks were intended to give users practice at the memory

tasks so they would be comfortable with them in the experimental scenario.

Aer completing the practice memory tasks, the experimental trials began. One objective

of the pilot study was to determine howmany trials a participant could comfortably complete

in the alloed time (one hour minus questionnaires and training). Because many users ex-

ceeded the one-hour time frame or became fatigued, the number of experimental trials was

adjusted as the study progressed. For the pilot study, each trial was  s long. Experience dur-

ing the pilot study indicated that incorporating an intermission would allow the participant

to complete a greater number of tasks.

When a memory sequence is presented or recalled, CogScene fires an event indicating

a change in cognitive resource requirements by the primary tasks. e levels of spatial and

verbal resource usage are passed as parameters with the event, indicating the number of

spatial and verbal items, respectively, that are currently being remembered by the user.

e Fuzzy PV interface is currently designed to adjust the dead-zone radius only when

the load levels change. Coupled with the logic in CogScene, this means that learning takes

place at the end of each trial (using the error function described below), but the dead zone only

changes size when a newmemory task is presented or an old one is recalled. For the purposes

of the study this is ideal for two reasons. First, the user should be standing still in the center

of the  during memory task presentation and recall, so there was no change in velocity

during active movement or confusion about how far back one must step in order to stop.
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Second, changing the dead-zone radius only when the cognitive task changed allowed for

more straightforward analysis because a given dead-zone radius could be linked with a given

task difficulty and performance measurements. If the system changes very conservatively it

may be possible to adjust parameters on the fly but, for many systems, waiting until the user

is known to be stopped may be the best solution.

Error and performance metrics

Some error metrics were devised and tested for feasibility in the pilot study. e results from

the pilot study also provided an indication of the ranges of values to be expected. e Fuzzy

Navigation Engine uses the following three raw error metrics to drive learning:

• the number of collisions in a  s window (rc);

• the time to stop aer a stop sign was presented (rs); and

• the average percent of C used over  s window (rp).

Overall locomotion efficiency is the ratio of virtual distance to physical distance. While

this ratio is used as a measure of efficiency when evaluating the Fuzzy PV interface, it is

problematic for use in system learning because the range of possible efficiency values is af-

fected by the current dead-zone radius, which is what the fuzzy inference system adjusts.

Collision error term (ec)

If a user collides with the virtual walls frequently, virtual movement distance is likely to be

limited. Also collisions are unlikely to be intended and in some domains locomotion precision

may be critical to successful task completion. For these reasons, the number of collisions

within a  s window is used as a metric for system learning. An examination of the plot

of virtual distances versus collisions in Figure . shows that the above premise seems to

be true. e users that achieve very high distances do not typically have a high number

of collisions. On the other side of the plot, it appears that some participants had very few

collisions but they did not go very far. ese users may have been more careful, not pushing

the limits of their locomotion abilities.

In Figure ., the variation of dead-zone radius versus number of collisions is presented.

is plot generally supports the idea that a larger radius is associated with fewer collisions.

In particular notice that participants did not have six collisions in the time window except

when they had a very small dead zone (-foot radius). When moving with a very large dead

zone (.-foot radius), participants had two or fewer collisions.
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Figure . Number of collisions as a function of virtual distance traveled in the adaptive
system pilot study.
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Figure . Number of collisions as a function of dead-zone radius in the adaptive system
pilot study.
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Based on these results, a goal was set to make it possible for participants in the study to

be able to travel a virtual distance .m ( feet) in  s. is is higher than the mean, but

many users did exceed it in the pilot study. is objective led to capping the upper bound

of the error function at  collisions. Because the third quartile ends at  collisions, that is

where the lower bound on the error function was set. is range should effectively capture

the outliers, mapping the collision counts of – to error values of –.

ec =


 if rc ≤ 
rc − 


if  < rc < 

 if  ≤ rc

Adding collision events is fairly straightforward with the existing VirtuTrace experiment

platform. e RealWorldPhysics class was modified to keep track of all physics bounding

boxes that are currently overlapping. Whenever a new overlap is detected, a collision event

is fired. is event is received by the FuzzyNavEngine class, which tracks all locomotion

problems.

Stop error term (es)

It is known from the results of Study  that users have problems stopping quickly using

the PV interface when completing a simultaneous spatial memory task. It was expected

that increasing the radius of the dead zone will help users stop more quickly. A plot was

constructed (see Figure .) showing the dead-zone radius versus stop time for all pilot trials.

e plot shows that the mean is similar for all dead-zone sizes, but when the dead zone is

smaller there seem to bemore outliers with large stop times. ese outliers are what the fuzzy

inference system design will seek to prevent and, based on this plot, it seems that adjusting

the dead-zone radius will help.

e third quartile of pilot study stop times ends at  ms so it makes sense to start the

error function near there. Only three data points are above   ms so that is a reasonable

number for the error function upper bound in the formal study. Based on this rationale, the

function for the stop error term in the learning system linearlymaps stop times of – 

to error values of –.

es =


 if rs ≤ 
rs − 


if  < rs < 

 if  ≤ rs
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Figure . Stop time as a function of dead-zone radius in the adaptive system pilot study.

Percent-of- error term (ep)

e final metric that used for learning is a windowed measure of the extent to which the

horizontal movement area of the C is being utilized. is is equal to the windowed average

percent of the .m (-foot) distance between the center of the C and each wall. It is

possible for this value to be greater than % because a user could move toward the corner

of the  and have an average distance of greater than .m from the center.

Figure . shows the relationship between dead-zone radius and percent-of- mea-

surements from the pilot study. e largest dead-zone radius possible in the fuzzy inference

system was  feet (. cm). When the dead zone is set to this largest size, a user must use

% of the C in order to activate translation in the PV locomotion interface. e plot seems

to reflect this expectation and larger dead-zone sizes generally lead to higher values for this

metric. Because the objective is to capture outliers, the lower bound for the error function

was set at %. It is important to prevent users from running into the physical walls and be-

cause the corridor scene is axis-aligned, meaning that movements to the corners of the 

are infrequent, the upper bound on the error function was set to %, or . cm (. feet)

from the  wall.

ep =


 if rp ≤ .
rp − .

.
if . < rp < .

 if . ≤ rp
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Figure . Percent of cave as a function of dead-zone radius in the adaptive system pilot
study.

Combining the error terms

With the above error metrics, the basic input-output flow of the Fuzzy Navigation Engine is

shown in Figure ..

e three error terms above are always between  and . ese terms must be combined

in a meaningful manner in order to drive learning. e stop error (es) and collision error (ec)
terms indicate that the user is performing poorly, so these can be thought of as user error (eu).
e percent-of- (ep) error term indicates that the usermay be restricted by an overly large

dead zone, so this term can be thought of as interface error (ei) and should serve to counteract

user error. e user error and interface error are combined and multiplied by the correction

magnitude (cm). e result is added to the total verbal correction if the current verbal load (lv)
is greater than zero, with the restriction that total verbal correction must never be less than

cmin. If the current spatial load (ls) is greater than zero, the result is added to the total spatial

correction, also with the restriction that total spatial correction must never be less than cmin.

eu = ec + es

ei = ep

ctemp = cm × (ei − eu)
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Figure . Basic input-output flow of the Fuzzy Navigation Engine, including error metrics.

cv =


cv + ctemp if lv >  and cv + ctemp > cmin

cmin if lv >  and cv + ctemp ≤ cmin

cv if lv = 

cs =


cs + ctemp if ls >  and cs + ctemp > cmin

cmin if ls >  and cs + ctemp ≤ cmin

cs if ls = 

Study 

A third formal study was conducted, testing the Fuzzy PV interface with users to verify

that it is beneficial. e adaptation should be considered a success if users of the new fuzzy

inference system are able to outperform users of the baseline system at basic locomotion tasks

during a concurrent cognitive task load. It was considered likely that results could be mixed,

with some benefits and some problems resulting from the use of such a system. Participants

in this study were divided into two groups according to the locomotion system in use: Fuzzy

PV (Fuzzy) and PV. As they were moving through the VE, a series of concurrent spatial and

verbal span tasks of random difficulties were presented and recalled.

e ranges for the error metrics were configured as described above. e cm was set to

. and cmin was set to −..
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Experiment design

is study was a ×  design with two locomotion systems (Fuzzy and PV) and three levels

of working memory load (spatial, verbal, none). Locomotion system was a between-subjects

variable due to time constraints and the expected impact of learning. Working memory load

involved relatively quick tasks that could all be performedwithin the environment, so it made

sense for that variable to be manipulated within subjects.

ere were two between-subject groups: Fuzzy and PV. Participants in the Fuzzy group

used the new fuzzy inference system (with learning enabled) for the entire time that they

were in the VE. e fuzzy system started with default baseline seings and adjusted itself

in response to problems exhibited by the participant. e PV group used the same PV

interface that was used in Study . It was configured with seings that remained unchanged

throughout the participant’s travels through the VE.

Methods

Participants

Twenty-six undergraduate students were recruited from the Department of Psychology re-

search participant pool, word of mouth, and announcements in undergraduate courses. Par-

ticipants came from multiple departments and majors across campus. All participants were

required to have / (corrected) binocular vision.

Procedures

First, participants were asked to complete a pre-questionnaire with topics involving demo-

graphic information and video game experience. en they entered the C and were given

instructions and a demonstration of how to complete working memory tasks in the VE.ere

were no pre-assessment memory tasks in this study, because tasks of varying difficulty (–

items) were presented during the experimental phase. However, because it was desirable for

memory task performance to be high, users were given an opportunity to practice so they

would be comfortable and confident when remembering the items during the experimental

phase.

Before the experimental phase, the participant was given instructions and a detailed

demonstration of the PV interface and all locomotion tasks. e demonstration took place in

a corridor scene similar to the one used in the experimental phase. e user was not informed

about the adaptation of the navigation system parameters. e participant was not allowed

to practice the locomotion tasks, but there was a run-through in which the experimenter
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demonstrated what the user would be required to do. e decision to not allow locomotion

practice was made to prevent any learning from taking place before the actual experimental

tasks. is would maintain the unnaturalness of the movements and probably the extent to

which cognitive resources would be required.

In the experimental phase, the participant was required to traverse a winding corridor,

completing memory tasks along the way. e corridor traversal was intended to simulate the

types of basic navigation tasks that a user might encounter in a “real-world” VE. Scenes were

not switched from locomotion task to memory task as they were in the previous two studies.

e memory tasks were similar to those experienced in Studies  and , except in this case

they popped up along the path as the participant traveled through the corridor. e recall

cards were also similar to those from previous studies and they were also presented within

the same scenario. Participants were instructed to move through the corridor whenever there

was no memory card displayed, to stop whenever a stop-sign shape appeared, and to stay

stopped whenever a memory task was being presented or recalled. Participants were told

that the memory tasks were the most important priority and movement performance would

also be recorded. Specifically participants were told that movement efficiency, stop times,

and the number of collisions with virtual walls would be recorded.

e study was divided into two halves, with an intermission in between. e task flow

of one half is pictured in Figure .. Both halves were identical in structure but all memory

tasks were of random difficulty and the sequences were random as well. For the memory task

presentation, one of the following was displayed (randomly):

• a spatial task;

• a verbal task;

• a spatial task followed by a verbal task; or

• a verbal task followed by a spatial task.

Two of each of the preceding possibilities was experienced during each half, for a total

of eight task loads in each half. Each memory task was of random difficulty (length), con-

taining between one and seven items. Each half took approximately  minutes to complete.

In the intermission, the scene was paused and participants were given the opportunity to

rest if needed. ey were also asked to complete just the Likert scale portion of the post-

questionnaire included in Appendix A.

Aer both halves ( trials) were complete, the participant exited the C and was asked

to complete a post-questionnaire identical to that used in Studies  and  (included in Ap-

pendix A). Aer completing the questionnaire, the experimenter asked some questions in
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Figure . Task flow for one half of Study . This flow was repeated twice with an inter-
mission in between.

an unstructured interview. Topics covered involved strategies used on the working memory

tasks as well as overall opinions and suggestions regarding the locomotion interface.

Response variables

In this study there were only two types of task: memory and locomotion. No aempt was

made to differentiate translation from rotation. All participant responses on the spatial and

verbal memory tasks were recorded and checked for correctness. e following response

variables were used for the locomotion tasks.

Stop time Time from presentation of the stop card until the user was completely stopped.

Number of collisions Number of collisions in a  s window preceding presentation of each

stop card.

Percent of  Average percentage of  used in a  s window preceding presentation

of each stop card.

Physical distance Total physical distance traveled in a  s window preceding presentation

of each stop card.

Virtual distance Total virtual distance traveled in a  s window preceding presentation of

each stop card.

As described above, the physical distance and virtual distance measurements were used

to calculate efficiency.

Logging

Recall that there were two halves with  movement trials each, for a total of  trials. e

participant’s head position was logged in every frame and the experimenters watched the
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scenario on the head node for a subjective interpretation of problems encountered by the

user.

Due to the length of the experimental phase and the heat generated by the  projectors,

several participants experienced simulator sickness and were excused early. Even in these

cases, participants completed many trials so the measurements up to that point were still

included in the analysis. One note, however, is that this led to fewer participants completing

trials in round two than in round one. is affected the Fuzzy group slightly more than the

PV group but it was not clear if the Fuzzy PV interface led to increased simulator sickness.

In the PV group,  participants (out of ) made it to the second round and  of those

completed the entire scenario. In the Fuzzy group,  participants (out of ) made it to the

second round and  made it to the end of the scenario. e total number of trials with the

PV interface was  and the total number with the Fuzzy PV interface was .

ere were many instances of the tracking system losing track of a participant’s physical

position in the . In some cases this was isolated to interference with cellular phones and

in other cases it may have been because of strategies employed by a participant involving

rapid movements near the extents of the tracked area. For example, some users employed a

lunging technique which sometimes evaded the tracker because the user’s head was near the

physical wall and relatively low to the ground. is position is far from the optimal tracking

area in the center of the . e  experiment log files were parsed with a Python script

which was capable of identifying likely head-tracker malfunctions. e script inspected the

participants’ alleged head positions to see if they were within reasonable bounds. If not, the

affected results were flagged and discarded if they corresponded with subjective observations

by the experimenters. Note however that even if the data points were removed, they were

still used to drive system learning in some cases. For example, if the head tracker failed and

caused a user to collide with a virtual wall, that collision was still included in the online error

calculations.

Results

Data analysis focused on verifying that the Fuzzy Navigation Engine was functioning prop-

erly, checking for an improvement in user performance with the Fuzzy PV interface over

the PV interface, and assessing the choice of error metrics and ranges.

Dead-zone radius

edead-zone radius was fixed at . feet (. cm) for all trials of the PV group. is radius

was chosen as a nominal “best” based on experience from past studies and pilot studies. e
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Table . anova table for Study  efficiency.

Source df F p

Between subjects
Interface (I)  . .
Error 

Within subjects
Round (R)  . .
R × I  <. .
Error  (.)

Note. Value enclosed in parentheses
represents mean square error.

mean dead-zone radius for trials in the Fuzzy group was . feet (. cm). e results

reported in the following subsections should be taken in context with this information. All

other things being equal, it is generally a positive thing for the dead zone to be small because

it gives users more performance capability, i.e., higher potential maximum velocity.

Efficiency

Because the dead-zone radius for the PV group was larger, on average, than that for the

Fuzzy group, it was expected that those users would travel larger physical distances. e

larger dead-zone radius also meant that the PV region was slightly smaller due to the 

boundaries, though it was unlikely to have much impact because users rarely get close to the

physical walls.

A two-factor mixed-model analysis was conducted on efficiency with fixed effects for lo-

comotion interface group and round combinations ( means) and a random effect for subject.

e results are shown in Table .. e analysis showed a marginally significant main effect

of interface [F(, ) = ., p = .]. e means are ploed in Figure ., showing that

users of the Fuzzy PV interface moved more efficiently than users of the PV interface.

To beer understand the efficiency results above, additional information was needed re-

garding the physical and virtual distance. First a two-factor mixed-model analysis was con-

ducted on physical distance. e analysis, shown in Table ., revealed a significant main

effect of round [F(, ) = ., p = .], a significant interaction between interface

group and round [F(, ) = ., p = .], and a marginally significant main effect of

group [F(, ) = ., p = .].

Next, a two-factor mixed-model analysis was conducted on virtual distance. e anal-

ysis, shown in Table ., revealed a significant interaction of interface group and round
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Table . anova table for Study  physical distance.

Source df F p

Between subjects
Interface (I)  . .
Error 

Within subjects
Round (R)  .** .
R × I  .** .
Error  (.)

Note. Value enclosed in parentheses
represents mean square error.
**p < ..
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[F(, ) = ., p = .], but the main effects were not significant. A plot of the means

is shown in Figure ..

is paern of distance and efficiency results indicates that users of the Fuzzy PV inter-

face were more efficient. It seems that participants used less physical input and, even with

the lower virtual distance, achieved a higher efficiency. It is unclear why the interaction ex-

ists in the physical and virtual distance data. It appears that users in the Fuzzy group may

not have tried to (and thus did not) move as far in the second round. Taken together with

second-round performance improvements described below, a trade-off may exist, warranting

additional research.

Stop time

If all other aspects were equal, the larger mean dead-zone radius in the PV group should

have made stopping easier, leading to lower stop times. However, one objective of the Fuzzy

PV interface was to increase the dead-zone radius when needed due to the user’s concurrent

task load. is means that the interface should be considered a success (at least with respect

to stopping) if stop times are lower.

A two-factor mixed-model analysis was conducted with fixed effects for locomotion inter-

face and round ( means) and a random effect for subject. is analysis, shown in Table .,
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Table . anova table for Study  virtual distance.

Source df F p

Between subjects
Interface (I)  . .
Error 

Within subjects
Round (R)  . .
R × I  .** .
Error  (.)

Note. Value enclosed in parentheses
represents mean square error.
**p < ..
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Figure . Study  mean virtual distance as a function of interface and round. Error bars
show ± standard error of the mean.
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Table . anova table for Study  stop times.

Source df F p

Between subjects
Interface (I)  . .
Error 

Within subjects
Round (R)  .* .
R × I  . .
Error  ()

Note. Value enclosed in parentheses
represents mean square error. *p < ..

Table . anova table for Study  stop error.

Source df F p

Between subjects
Interface (I)  .* .
Error 

Within subjects
Round (R)  .* .
R × I  . .
Error  (.)

Note. Value enclosed in parentheses
represents mean square error. *p < ..

indicates a significant main effect of round [F(, ) = ., p = .] and a marginally

significant main effect of interface group [F(, ) = ., p = .]. A corresponding plot is

shown in Figure ..

Recall that the system was not configured to directly lower the mean stop time, but to

reduce the occurrence of outliers whichwerewere quantified using an error term that linearly

mapped the range – to –. ese outliers represent users who had particular

problems using the PV interface to stop. Another two-factor mixed-model analysis was

conducted with this error term as the response variable, revealing significant main effects

of interface [F(, ) = ., p = .] and round [F(, ) = ., p = .], as shown in

Table .. e paern of means in Figure . indicates that the stop error term is lower for

users of the Fuzzy PV interface than for users of the PV interface.
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Number of collisions

A mixed-model analysis was conducted on the number of collisions, treated as a Poisson

response. is revealed a significant main effect of round [F(, ) = ., p = .] and

a significant interaction between interface group and round [F(, ) = ., p = .].

A plot of these results, shown in Figure ., indicates that participants in the Fuzzy group

reduced collisions in round two while those in the PV group did not.

While it can be argued that any number of collisions is oen a bad thing and they should

be minimized, recall that the system was configured to specifically prevent collision counts

greater than two, which were mapped to an error term. A two-factor mixed-model anal-

ysis was conducted with this collision error term as the response variable. As shown in

Table ., the analysis revealed a significant interaction between interface group and round

[F(, ) = ., p = .]. e plot in Figure . shows that the significant interaction

seems to be due to a reduction in collisions from round one to round two in the Fuzzy group

while the opposite paern exists in the PV group. It seems that participants in the Fuzzy

group did beer at learning to avoid collisions, perhaps because more cognitive resources

were available to be allocated for this purpose. Alternately, the changing dead-zone size

may have made collision avoidance easier by restricting the users’ maximum speed when
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Table . anova table for Study  collision error.

Source df F p

Between subjects
Interface (I)  . .
Error 

Within subjects
Round (R)  . .
R × I  .** .
Error  (.)

Note. Value enclosed in parentheses
represents mean square error. *p < ..

resources were in demand by concurrent tasks. In any case, collisions impede virtual travel

so this is a promising result.

Incorrect memory sequences

In this study, there was a large range of possible memory spans (–). For this reason, the

analysis treated the responses as binomial, simply reflecting correctness of the entire se-

quence.

A two-factor mixed-model analysis was conducted on incorrectness of spatial tasks with

fixed effects for locomotion interface and group ( means), and a random effect for subject.

e analysis revealed no significant main effects or interactions. It seems that using the

Fuzzy PV interface had no impact on a participant’s ability to remember a spatial sequence.

However, the performance was very low in both groups, possibly indicating problems with

using the gamepad to respond. For example, it is possible that some users did not press the

buons firmly enough so that all responses were recorded.

Another two-factor mixed-model analysis was conducted, this time with incorrectness on

the verbal memory tasks as the response variable. e analysis revealed a significant main

effect of interface group [F(, ) = ., p = .] and a marginally significant effect of

round [F(, ) = ., p = .] and of the interaction between round and interface group

[F(, ) = ., p = .]. e plot in Figure . indicates that these differences are driven

primarily by extremely low performance in round two of using the Fuzzy PV interface. As

mentioned above, it should be noted that only eight participants (out of  total) in this group

made it to round two without being dismissed early due to simulator sickness. Previous

results fail to predict this paern of means so it is possible that the inaccuracy is indicative

of fatigue, boredom, or reduced motivation in the later trials.
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Effectiveness of learning

Participants in the formal study did not tend to use as much of the C as was used during the

pilot study. is resulted in very few participants ever having percent-of- values greater

than zero. Of those trials that did have larger values, there was oen a known or suspected

head-tracker malfunction. For this reason, no analysis was performed on the percent-of-

metric. As mentioned above, the pilot study led to changes in various aspects of the flow of

the experiment and also a different corridor model was used in the formal study than was

experienced by most pilot users. Some combination of these factors may have led to users

not needing or wanting to use as large a physical area.

e results above provide evidence that adjusting the dead-zone radius according to the

defined fuzzy rules and sets has been generally helpful in terms of locomotion performance,

but these analyses have not directly assessed the extent to which the system was effective at

improving itself. One way to measure how well the system learned is to look at the absolute

value of both the new verbal and spatial set corrections for each trial. As the system con-

verges on an optimal seing, the absolute value of new correction in each trial should tend to

decrease, meaning that values should be lower in the second round if the system is learning

effectively.

Recall that there were two broad types of error described above: participant error (colli-

sion error and stop error) and interface error (percent-of error). User error means that

the dead zone should be larger while interface error means that the dead zone should be

smaller. Unfortunately, because interface error was rare, lower absolute new correction val-

ues may really mean that the user error is decreasing. In this way, participant learning may

be confounded with system learning. However, a lower absolute correction value in round

two than in round one would still reflect positively on the system.

Recall that error was calculated in each trial but correction was only calculated for a given

memory type (spatial or verbal) if a task was assigned in that trial. A two-factor mixed-model

analysis was conducted on absolute new spatial correction in only those trials where spatial

correction was possible (a spatial task was assigned), with fixed effects for locomotion inter-

face and round ( means), and a random effect for subject. e analysis, shown in Table .,

revealed no significant main effects but a significant interaction was found between interface

group and round [F(, ) = ., p = .]. As seen in Figure ., there is a large drop in

correction values from round  to round  in the Fuzzy group. Lower absolute new correction

values are an indication that the system may be converging on more appropriate fuzzy input

sets. is reduction is not seen in the PV group.

An identical model was set up for an analysis of absolute new verbal correction values.
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Table . anova table for Study  absolute new spatial correction.

Source df F p

Between subjects
Interface (I)  . .
Error 

Within subjects
Round (R)  . .
R × I  .* .
Error  (.)

Note. Value enclosed in parentheses
represents mean square error. *p < ..
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Figure . Study  mean absolute new spatial correction as a function of interface and
round. Error bars show ± standard error of the mean.





..

.

.

.

.

.

.

.

.

Fuzzy

.

PV

.
Interface

.

A
bs
ol
ut
e
ne
w
ve
rb
al
co
rr
ec
ti
on

.

Round

.



.



Figure . Study  mean absolute new verbal correction as a function of interface and
round. Error bars show ± standard error of the mean.

e paern of means, shown in Figure ., looks similar to that seen above for the absolute

new spatial correction, however the analysis revealed no significant main effects or interac-

tion.

Follow-up trials

Aer analyzing the results from the fuzzy system study, some parameters were modified and

two more participants used the system. e following changes were made:

• the dead-zone membership functions were configured as shown in Figure . and Ta-

ble .; and

• the rp range for the percent-of- error termwas changed to .–., as shown below.

ep =


 if rp ≤ .
rp − .

.
if . < rp < .

 if . ≤ rp

e primary objective of these adjustments was to make the range of the percent-of-

error term more appropriate so that positive and negative new correction values would be
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Figure . Dead-zone membership functions for the follow-up trials.

Table . Configuration of dead-zone membership functions for the follow-up trials.

trap,L trap,R

Function m b range m b range

µD,small . −. .–. −. . .–.
µD,medium . −. .–. −. . .–.
µD,large . −. .–. −. . .–.

generated, allowing the system to begin to converge. e output set sizes were adjusted as

well because observations during the formal study indicated that the dead zone may have

confused some users by changing too drastically. Follow-up trials were conducted in order

to test these new seings. Both participants in these follow-up trials used the Fuzzy PV

interface. e demographics of these users were different than for the formal study described

above. e first user was a graduate student who was somewhat familiar with the C but had

not spent much time in it and had never used the PV interface. e second user was an

undergraduate student who had more experience with the operation of the C and had a

basic understanding of the PV interface. He had used the interface previously but in several

short segments totaling less than  minutes. e performance of the two participants was

expected to be different due to the difference in experience with the interface. e following

changes were made to the experiment flow:

• only  trials were assigned (the first user only made it through  before experiencing

simulator sickness);

• there was no intermission because there were fewer trials; and

• there were no post-questionnaires.





..



.



.



.



.



.



.



.

-.

.

-.

.

.

.

.

.

.

. Trial.

To
ta
lc
or
re
ct
io
n

.

spatial

.

verbal

Figure . One participant’s total spatial and verbal correction with the new configuration.

ese trials were intended for the sole purpose of examining the total variable correction

values aer the configuration change. A plot, shown in Figure ., was created to track these

total correction values for the first user. e plot shows that the error function drove the total

verbal and spatial correction in somewhat different directions. First, recall that there is no

change to a total correction value if there is currently none of the respective type of load

(verbal or spatial). is is why there is no change to the spatial for the first  trials and no

change to the verbal for the last  trials. e plot shows how this allows the total correction

of each variable to behave differently, in this case with total verbal correction being negative

and total spatial correction being positive. e plot shows that the participant had some

locomotion troubles at first. He generated some collision error and some stop error that

counteracted his percent-of- error, meaning he would potentially benefit from a larger

dead zone. Aer about – trials (about  minutes), it appears that he improved to the

point where the percent-of- error was greater than the sum of the collision error and

stop error. Using a large percentage of the interface but not making many mistakes means

that he may benefit from a smaller dead zone.
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Conclusions

A fuzzy inference system has been created based on the results of Studies  and . e system

adjusts the dead-zone radius for the PV interface based on knowledge of the user’s current

cognitive task load. e experiment results described above show that users of the Fuzzy

PV interface performed beer on key performance metrics than users of a baseline, PV

interface. On some metrics, it also appears that users of the Fuzzy PV interface improved

more from round one to round two. ese results show the potential of the fuzzy inference

system to improve users’ locomotion performance.

ere were some results that are not easily explainable based on past research and ex-

pectations. For example, there was inexplicably low verbal memory task performance in the

second round when using the Fuzzy PV interface. If this effect is real, it will be important

to do more research to beer understand the implications for future systems. It would be

interesting to explore if there was a trade-off in which users resorted to a verbally demand-

ing strategy to improve upon stopping and collisions while using the Fuzzy PV interface.

Another possible explanation for this paern of results is that participants did not perceive

resource competition during a verbal task so in the second round they were trying to figure

out how the interface was adapting, which may have required verbal resources or general

aention resources.

Unfortunately, due to what seems to have been an inappropriate configuration of the

percent-of- error function, learning typically only went one way for participants in the

study. Results from an additional follow-up user did seem to follow expected trends aer

adjusting the problematic seings. Also the analysis of absolute new correction values does

provide evidence that the fuzzy inference system may be adjusting itself effectively, thus

reducing the amount of needed correction to the input sets. e head-tracker problems that

were encountered during the experiment actually demonstrate robustness. Because these

new correction values were affected by extraneous head positions, it is encouraging that the

absolute correction values are still relatively low. is may be an indication that the system

adjusts itself conservatively enough that an occasional outlier does not hinder the learning.

In the future, the same basic fuzzy inference system can possibly be extended by adding

additional output variables. One example involves the problems that users had when duck-

ing with a concurrent spatial task. Perhaps a future version of the Fuzzy PV interface could

incorporate a ducking gain of some sort, to facilitate ducking when users were likely to expe-

rience problems. e challenge in implementing such an addition will likely be making the

application detect when a user intends to duck.

Improvements may also be possible to the dead-zone adaptation demonstrated here. For
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example, only the dead-zone radius was manipulated in this research and it was a symmetric

adjustment. It is possible that other aspects of the PV interface could be adjusted, such as

the control-display gain, though care must be taken not to hinder the user’s learning process.

Technically, it is also possible that the dimensions of the dead zone could be asymmetric. For

example, perhaps natural walking is more important for forward/backward movement than

le/right movement. is presents some possible implementation problems, such as how to

differentiate between the direction a user’s head is facing, the direction the body is facing,

and the direction of intended movement. It may also confuse the user, particularly in the case

of rotations performed while outside of the position-to-velocity region.

For real-world use, more research should be conducted to learn how to more accurately

assess current utilization of working memory resources. In some domains, such as piloting

unmanned aerial vehicles on search and rescue missions, keeping count of the entities that

a user must track may be sufficient for a rough estimate of load. However, once unexpected

combat occurs, load would become very unpredictable and impossible to estimate using naive

methods. A future possibility would be to incorporate pupillometry or other physiological

measures, as described in (Grimes, Tan, Hudson, Shenoy, & Rao, ; Hirshfield et al., ;

Yun, Shastri, Pavlidis, & Deng, ), for a true augmented cognition system. However, the

power of the system described in this chapter lies partly in its use of basic, easily assessed

metrics.
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Chapter . Conclusion

is research shows that competition for cognitive resources can influence the effectiveness

of locomotion interfaces for VR systems while reducing performance at concurrent tasks.

It then shows that the problems can be mitigated by an adaptive system. is dissertation

first described two studies, using the dual-task selective interference paradigm, aimed at un-

derstanding specific cognitive demands of locomotion tasks and the associated detriment to

performance on locomotion activities as well as concurrent tasks. e problems identified in

the studies were then used to inform the design of an adaptive system intended to mitigate

those problems. e adaptive system was tested in pilot trials and a formal user study.

Contributions

e contributions from this work lie in two main areas: understanding the impact of concur-

rent cognitive tasks on locomotion performance when using an unnatural interface; and the

design of an adaptive interface in an aempt to mitigate those performance problems.

All three studies made use of the dual-task selective-interference paradigm from the Psy-

chology domain to assess cognitive demands while using a locomotion interface. is in

itself is novel. While the paradigm has been used extensively to study basic tasks in the Psy-

chology realm, it has not been used for this type of immersive VR study. Previous research

has acknowledged the cognitive demands associated with manipulating an unnatural inter-

face. It is also widely accepted that those demands would interfere with concurrent ongoing

tasks. Finally, previous research has identified the problem that virtual locomotion poses

with respect to infinite navigation and unnatural interfaces. However, no aempt was previ-

ously made to understand the details of these demands. is dissertation has shown that the

dual-task selective-interference paradigm is effective for isolating the specific competition

for cognitive resources that exists when using a semi-natural locomotion interface.

ese findings indicate that unnatural aspects of locomotion require spatial cognitive re-

sources as opposed to verbal resources or general aention resources. First, the work showed

that completing simultaneous cognitive tasks does indeed hinder performance using a semi-

natural locomotion interface, and the reverse is true as well. Specifically, a clear decrease in
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performance at a spatial memory task was shown when using semi-natural interfaces, with

interfaces that are generally regarded as being less natural causing greater problems. Ad-

ditionally, reduced performance was observed on aspects of locomotion while the user was

concurrently completing a spatial memory task. Stopping was shown to be slower when us-

ing a body-based interface that required locating and returning to the center of the  and

ducking to avoid overhead objects was shown to be less successful in all studied interfaces.

ey also reiterate the importance of understanding specific aspects of resource usage when

making interface decisions as a developer, as some interfaces may have a greater impact on

a particular type of ongoing task.

e results from the second study are a strong indication that the reduced  provided by

many VR systems causes additional cognitive resources to be used during basic locomotion

tasks. e nearly equivalent decrease in verbal and spatial memory performance indicates

that general aention resources are required. An alternate explanation is that both verbal and

spatial resources are required. It is likely that the reduced performance resulted from a switch

to more cognitively demanding strategies in the absence of high-fidelity sensory feedback, as

would be found in the physical world. Because a typical head-mounted display has an 

even smaller than that in the study, this finding will be important when considering display

technology options.

Together, the results from the first two studies can be used to inform the design of future

systems. A more complete understanding of the specific movement detriments associated

with different types of concurrent tasks can aid in the selection of an appropriate interface.

It may also inform the design of other aspects of the system that have an impact on feedback

fidelity, specifically .

For the third contribution, it has been shown that a fuzzy inference system is an appropri-

ate solution to adapt a locomotion interface, enhancing the user’s movement performance.

Further, it was shown that a user’s current verbal and spatial load are sufficient to drive such

adaptation and that modifying the dead-zone size can increase performance using the PV

interface. Appropriate error metrics and a mechanism for adjusting fuzzy input sets have

also been identified. A formal user study showed that the adaptive system does improve lo-

comotion performance in terms of the identified metrics. e realized fuzzy inference system

described here can be extended, but it serves as an excellent proof of concept for the use of

fuzzy logic to mitigate dual-task locomotion problems. is adaptation can be used to address

problems that cannot be solved with the type of careful interface selection described above.
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Future work

e dual-task selective-interference paradigm as implemented was useful in answering the

questions posed in this research. However, the memory task specifics can be improved. Tasks

in these studies were virtual cards displayed graphically in front of a participant, but this type

of task can be administered using other senses as well. VR is well suited for such alternate

modalities so tasks should be designed to take advantage of the rich multi-sensory experi-

ences that are possible.

Additionally, the dual-task paradigm should be applied to more locomotion interfaces in

order to develop a taxonomy of interfaces in terms of cognitive demands. Such a taxonomy

would be very useful when selecting locomotion interfaces for use in specific types of projects

and for understanding problems that may arise as a result of these choices.

More research is also needed on the interfaces described in this dissertation. For example,

it is interesting that ducking was negatively impacted by a concurrent spatial task in Study 

evenwhen the interface allowed ducking just as in the physical world. It is not surprising that

“real-world” activities are impacted by competition for resources. Using a cell phone while

driving is a prominent example. However, the basic locomotion tasks that users performed in

these studies should have been very natural and did not require any high-level understanding

of the scenario.

e studies described here did not explore high-level navigation activities such as path

integration or wayfinding, but those tasks may also compete with locomotion interfaces for

cognitive resources. erefore, an experiment should be carried out involving a capture-the-

flag task using a very unnatural locomotion interface. is will require the user to construct

a mental model of the VE in order to return to the beginning aer finding the flag. It is likely

that interface performance will suffer as the user’s mental model of the scene grows.

More investigation is needed into aspects other than  that may impact cognitive re-

source usage. Locomotion with a reduced  requires additional resources, which may be

due to reduced optic flow information, but additional studies are needed to verify this. Once

verified, perhaps it can be shown that low resolution has a similar impact on cognitive de-

mands. e same ideas can also be applied to other sensory modalities. e cognitive re-

source usage resulting from reductions in auditory feedback, for example, may cause similar

problems to those identified in this paper. ese other modalities should be investigated in

additional studies similar to those described here.

e results from the first two experiments provide strong confirmation of the importance

of individual differences in terms of cognitive strategies during virtual locomotion. While

these individual differences were not directly included in the research questions posed, it is
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impossible to proceed with this research without making further aempts to isolate differ-

ences in locomotion strategies between users with diverse demographics and abilities.

e adaptive system described in this dissertation relied solely on naive task-load metrics

(memory span). is was sufficient to increase user performance and such a light-weight

solution may be ideal in some seings. However, more advanced metrics will be required in

many domains of interest. Such metrics may include physiological measures which have the

potential to provide much more information about a user’s current task demands, but care

must be taken to mitigate the weaknesses of these technologies.

In addition to improving the adaptive system’s understanding of a user’s concurrent task

load, other aspects of the interface should be added to the system as output variables. For

example, control-display gain is a possible candidate for adaptation, though it may hinder the

user’s ability to learn the interface. Also it may be possible to help with ducking, possibly

by adding a “ducking gain” to the system, though it may be difficult to detect when the user

intends to duck. ere are probably many other variables that can be identified through

future dual-task studies that may benefit from adaptation. VirtuTrace in general and the

Fuzzy Navigation Engine specifically are easily configurable and the existing components can

be easily extended to includemore input variables, output variables, or rules in the adaptation

process.
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Appendix. Study Documents

Participants in all three studies completed the following documents.

Pre-questionnaire. is contained questions about basic demographic information, includ-

ing video game and athletic experiences.

Post-questionnaire. is contained questions about the participant’s experienceswhile com-

pleting the tasks. It included Likert scales to assess perceived performance and wrien

questions regarding problems using the interface and suggestions for improvements.

In some cases, the answers on this questionnaire steered the questions asked during

the unstructured exit interview.
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