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CHAPTER 1. GENERAL INTRODUCTION

Introduction

Aluminum nanoparticles are of interest due to the variety of their applications, in-

cluding additives for plastics and powder metallurgy. They can also enhance the burning

rate of propellants. Metallic particles in traditional thermites are in the micron size range

1 − 100µm. When the particle diameter reduces to the nanometer range 20 − 120nm,

their reactivity increases by several orders of magnitude. Thus flame rates of 0.9−1km/s

can be reached, while for micron size thermites they are on the order of centimeters or

meters per second. Ignition delay time also decreases by up to three orders of magnitude.

The two main continuum methods to study melting-related phenomena (like surface

melting, size dependence of melting temperature, melting of a few nm-size particles,

and overheating at a very fast heating rate) are the sharp interface method and the

phase field approach. The sharp interface approach fails when nanoparticles and solid-

liquid interface radii are comparable with interface width and also when nanoparticles

are overheated fast. In the phase field model, the interface between phases has a finite

thickness in which physical quantities, such as elastic moduli and entropy, vary between

their values in the adjacent bulk phases. The order parameter, η describe the material

instabilities, such as the instabilities of a crystal lattice in solidsolid phase transforma-

tions, melting, fracture and so on. Phase field method provides smooth description of

the phase interface, rather than discontinuous one, as shown below.
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Figure 1.1 Solid-melt interface, phase field approach vs. sharp interface model.

We developed an advanced phase field model coupled to mechanics to study melting

in the region of metastability and complete instability of solid and melt.

Litereature Review

Experimental studies

It was first shown experimentally in 1954 that the melting temperature of ultrafine

particles is below that of bulk material. Takagi62 used electron diffraction method to

study structure change of thin films of Pb, Sn and Bi. The mean thickness of the films

ranged from 1nm to 100nm. She took the radius of the particle to be equal to the

mean thickness of the film. The study confirmed that the melting temperature decreases

proportional to the reciprocal of the particle radius.

Electron diffraction method was used by Coombes15 to investigate melting tempera-

ture of Pb and In. He also obtained the thickness of liquid layer for Pb at equilibrium

melting to be 3nm. Gladkich et.al.23 used the same technique for Cu, Al and Ge. Further

references to earlier works using electron diffraction and electron microscopy method for

different nanoparticles are mentioned in the paper by Jesser et al.27.

Frenken and van der Veen22 used ion shadowing and blocking measurements to show

that the solid-liquid transition at the surface of a three dimensional crystal, Pb(110),
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starts at 40K below the melting temperature of the bulk lead. Devaud and Willens

17 used transmission electron microscopy and observed a broadened melting transition

of 2nm uniformly flat Pb film, sandwiched between two Ge films. The breadth of the

transition was found to be 40K. The transition was found to be continuous and reversible.

Ajayan and Marks1 presented experimental evidence that small particles on substrate

sit in deep potential energy wells and when floated out, can quasimelt between various

local minima free energy surfaces. The energy needed to nucleate the quasimolten state

was found to be orders of magnitude larger than that needed to sustain the state. The

particles remain in unstable state for a long time before they find another well on the

substrate.

Castro et al.9 considered gold and silver clusters with diameter in the nanometer

range, deposited on tungsten. Although they did not include the effect of substrate on

melting, they obtained good agreement with experimental results for Au and Ag clusters

with diameter greater than 2nm. Lai et al.34 used scanning calorimetric technique for

the melting of nanoparticles of Sn with radii ranging from 5nm to 50nm and showed that

the latent heat is also particle size dependent.

Chattopadhyay and Goswami24, 11 studied melting of nanodispersed Pb and Bi par-

ticles in different matrices and showed importance of the crystallographic shape in the

melting transition. The melting of the embedded particles was studied by differential

scanning calorimetry. Sheng et al.60 used differential scanning calorimetry to show that

the enhancement or depression of the melting temperature of embedded In nanoparticles

(5-45 nm) depends on the epitaxy between the nanoparticles (In) and the embedding

matrix (Al).

Peters et al.49, 50 used x-ray powder diffraction in ultrahigh vacuum for Pb crystallites

of 50nm diameter and compared results with those from Lereah et al.36 who used dark-

field transmission electron microscopy on a 100 nm Pb particle constrained in a solid

silica overlayer. The liquid skin thickness change was much larger from Lereah et al.
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than what they detected in measurements. They mentioned that the large difference in

results can be because of silica matrix, and that the hydrostatic stresses exerted on the

Pb particles due to thermal expansion mismatch can shift the melting temperature. It

was also shown that crystallite reorientation makes the diffraction intensity an unreliable

indicator of melting. Instead of the diffraction intensity, the diffraction peak shape reveals

the size-dependent melting via changes in the crystallite size distribution.

Bachels et al.3 studied melting of isolated tin nanoparticles in a molecular beam

experiment by calorimetrically measuring the clusters’ formation energies as a function

of their internal temperature. They used the analytical method of Kofman32 and verified

the nonlinear dependence of the melting temperature on the inverse cluster radius and

the critical radius for which the cluster will directly transform from the totally solid to

the liquid state at the melting temperature.

Lai et al.35 used calorimetry to obtain melting point depression of Al nanoclusters

which form discontinuous Al films over a range of thicknesses from 6 to 50 Å on Si3N4

surface. The melting point decreased by as much as 140 ◦C for 2 nm clusters. Dippel et

al.19 measured the melting temperature of nanoscale indium islands on a WSe2 substrate

using perturbed angular correlations combined with scanning tunneling microscopy. Di-

ameter of indium islands ranged from 5nm to 100nm. The relatively small melting point

depressions observed in this work were not clearly explained by the classical thermody-

namic considerations of melting and premelting.

Dick et al.18 reported the size dependence of the melting temperature of silica-

encapsulated gold nanoparticles. The melting point was determined using differential

thermal analysis coupled to thermal gravimetric analysis techniques. The gold particles

with sizes ranging from 1.5 to 20 nm were coated with porous silica shells to isolate the

particles from one another. The silica shell acts as a nanocrucible for the melting gold

with little effect on the melting temperature.

Jesser et al.27 studied the melting behavior of isolated nanoparticles of Pb-Bi alloys
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with radii ranging from 5nm to 40nm, by hot stage transmission electron microscopy.

From the experimental data, phase diagrams of individual, isolated nanoparticles were

constructed as a function of the size of the nanoparticle. The liquid and solid phases fol-

low melting paths that form liquidus and solidus bands on the temperature-composition

phase diagram. The range of two-phase coexistence shrinks as the solute concentration

decreases, and the liquidus and solidus bands finally coalesce into a single line at low

solute concentrations in apparent violation of the Gibbs phase rule.

Mei et al.43 studied melting and superheating behavior of Al nanoparticles encap-

sulated in Al2O3 shells by X-ray diffraction. Experimental results revealed that the

encapsulated Al nanoparticles with different particle sizes can be superheated to 7-15K

beyond the bulk equilibrium melting point of Al, accompanied with a suppressed ther-

mal expansion behavior. A value for the pressure build-up on the Al core due to the

constraint of the rigid Al2O3 shell of up to 0.25GPa was derived from the temperature

dependence of lattice spacing for the superheated samples.

Trunov et al.64 investigated the melting and oxidation behavior of nanosized alu-

minum powders by differential scanning calorimetry. The oxidation was observed to

begin at the temperatures substantially lower than the onset for the melting and no

correlation between melting and oxidation was observed, similar to the results for the

micron-sized Al powders. Ruan et al.55 have experimentally observed the reversible sur-

face premelting of Au nanoparticles (2-20 nm) under femtosecond laser irradiation using

ultrafast electron nanocrystallography.

Sun and Simon61 studied the melting behavior of aluminum nanoparticles having

an oxide passivation layer using differential scanning calorimetry. The melting point

depression, both corrected and uncorrected for the effects of the oxide shell, was linear

with the reciprocal of particle radius, as predicted by Gibbs-Thomson equation. The

size-dependent heat of fusion was significantly smaller than that predicted by the effects

of the surface tension, indicating that the solid nanoparticle was at a higher energy
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than expected, presumably due to the presence of defects or irregularities in the crystal

structure at or emanating from the surface.

Levitas et al.40 studied the dependence of aluminum melting temperature on particle

size for particles encapsulated in an oxide shell using differential scanning calorimeter and

thermogravitmetric analyzer. Mechanical damage in the oxide shell was shown to reduce

the melting temperature due to a decrease in generated pressure within the Al core. Zou

et al.72 studied synthesized tin nanoparticles by differential scanning calorimetry. The

results showed that the cube root of the latent heat of fusion of Sn nanoparticles was

linearly dependent on the reciprocal of the average particle diameter.

In conclusion, the experimental studies show dependence of melting temperature of

nanoparticles on particle size. Also, they show that surface melting occurs only for

particles with radius larger than a critical value which depends on the material.

Theoretical studies

The size dependence of melting temperature of a very small crystal was discussed by

Pawlow48 using a homogeneous melting model without a liquid skin. He obtained an

equation for the melting point (triple point) in which spherical solid and liquid were in

equilibrium with vapor, The relative surface energies of the liquid and crystal phase are

such that a decrease of the melting temperature would be expected.

Rie53 mentioned that because the solid sphere is covered by a layer of melt, Pawlow’s

assumption of solid-liquid-vapor equilibrium is not correct. He derived an equation for

the melting temperature that showed an inverse relation between the decrease of the

melting temperature and the particle size. Reiss and Wilson54 used the standard theory

of equilibrium thermodynamics to obtain an equation for the equilibrium temperature

between molten layer and solid core for a indefinitely thin shell. Blackman and Curzon5

extended this equation to describe their experimental results for Sn where transmission

electron diffraction was used to detect melting. Wronski68 pointed out that in the case
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of a real liquid it is necessary to assume a finite size for a critical nucleus of liquid.

The magnitude of this critical thickness was determined by fitting the theory to the

experimental results and the value obtained from experiment was about 3nm for tin. He

obtained an equation in which the melting temperature decreased more rapidly than the

increase in 1/R, as opposed to the results of Blackman and Curzon who obtained a linear

relation between melting temperature and l/R.

Buffat and Borel8 used scanning electron diffraction technique for gold particles with

diameters down to 2nm and compared their results with two models. The first model

describes the equilibrium condition for system formed by a solid particle, a liquid having

the same mass and their saturation vapor phase. The second model assumed the preex-

istence of a liquid layer surrounding the solid particle which describes the equilibrium of

such system in the presence of a vapor phase. The experimental results were found to

agree closely with predictions of the first model provided that physical constants for gold

were the known values appropriate to the massive metal. The results were in agreement

with the second model if the thickness of the liquid layer was given the value of 6.2Å.

Couchman and Jesser16 considered the formation, nucleation and growth of liquid

layer in their model and compared the predictions of this theory with experimental results

for Sn, In and Au. They concluded that the critical liquid thickness is not constant for

each metal but decreases monotonically with decreasing the particle size. Vanfleet and

Mochel65 reexamined a thermodynamic model for small particles and added a surface

melting interaction. This model predicts an energy barrier between the liquid and solid

states. For particles below a certain size this barrier is easily surmounted in either

direction. Above this critical size the barrier results in a difference between the melting

and freezing points. They proposed to use the same nucleation and growth requirement

for freezing as Couchman16 required for melting.

Johari30 mentioned previous analytical equations for melting temperature suppression

and analytically calculated change in physical parameters like entropy and enthalpy of
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Au particle with a radius of 1µm. Kofman et al.33 introduced a short range interaction

between both solid/liquid and liquid/vapor interfaces. This interaction was described

by a characteristic length, to obtain a minimum in the free energy of the three-phase

system. They32 used their earlier model to compare with experimental results for Pb

and concluded that when the inner solid core reaches a critical radius, melting occurs

discontinuously and irreversibly.

Nanda et al.45 established an empirical relations between the cohesive energy, surface

tension and melting temperature of different bulk solids. On the basis of an analogy

with the liquid-drop model and these empirical relations, and compared with other the-

oretical models and available experimental data, an expression for the size-dependent

melting was derived. Jiang et al.28 described a model for size-dependent melting of or-

ganic nanocrystals, and checked it with experimental results for benzene, heptane and

naphtalene nanocrystals. They also extended the model29 for polyethylene. As diame-

ter decreased below 3nm, the model could not interpret experimental data because the

interaction between the lamellae and the surrounding was neglected.

Qi52 obtained melting temperature of nanoparticles using size-dependent cohesive

energy, as it is known that both the cohesive energy and the melting temperature are

parameters to describe the bond strength of materials, and it is reported that the cohesive

energy has linear relation to the melting temperature for a material. Wautelet67 studied

the variation of the melting temperature of polyhedral elemental nanosolids theoretically.

He concluded that in most cases, the size variation of the melting temperature of a sphere

is less than for the other shapes, however, there is no general rule regarding the order

of the shape parameters of the polyhedra. Safaei et al.56 considered cohesive energy to

obtain melting temperature, taking into account the effect of lattice and surface packing

factors, and the coordination number of the lattice and surface crystalline planes. A

general equation was proposed, having nonlinear form as a function of the reciprocal of

nanosolid size.
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Eroshenko21 obtained results that show clusters consisting of 17 gallium atoms do

not undergo melting even at a temperature of 800K, but clusters consisting of 40 atoms

are melted at 550K, whereas the melting temperature of macroscopic gallium samples

is only 303K. To explain this, Balmakov4 mentioned a theoretical explanation for the

possibility of melting a nanoparticle at a higher temperature as compared to the melting

temperature of a macroscopic sample of the same chemical composition.

Wu et al.69, 70 studied the two-phase Stefan problem for the melting of a spherical

nanoparticle by including the effects of interfacial tension and by solving the resulting

model with a numerical method. The predictions of the model indicate that it is possible

for the temperature in the core particle to be higher than the temperature at the solid-

melt interface, and even higher than the temperature in the melted liquid phase near

the interface. Also increasing the interfacial tension increases the speed of the solid-melt

interface, and thus speeds up the entire melting process.

Due to their different hypotheses, theoretical models, agree well or less well with the

experimental results. A linear relationship between melting temperature and 1/R is most

commonly proposed. Still not all models support such linear relation.

Molecular dynamics simulations

Ercolessi et al.20 used molecular dynamics simulations to obtain melting temperature

of small gold particles of 100-900 atoms. The results they obtained were consistent

with experimental results of Buffat and Borel8. They also predicted size dependent

depression of latent heat. They showed that in this size range, a sharp melting transition

can be identified in contrast to the behavior of clusters with 10-20 atoms. Chushak and

Bartell14 used molecular dynamics simulations to study structures and properties of gold

nanoclusters during heating and cooling. The increased depression of melting point as

particle size decreases was interpreted in terms of Pawlow’s triple point theory, the liquid

shell model, and extensions of the two.
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Zhao et al.71 studied the melting properties of isolated silver nanoparticles using

molecular dynamics simulations. Three distinctive melting mechanisms were identified.

The melting of Ag with 258-3871 atoms were explained well by the surface premelting

models while the melting of Ag with 13-178 atoms could be described as a transition

from a low-energy solidlike structure at low temperatures to a higher-energy liquidlike

structure at high temperatures. Acting as a connecting link between such two distinctive

melting mechanisms, a new intermediate melting mechanism, in which the melting tem-

perature depressed very slowly while the latent heat of fusion had a great enhancement

with N decreasing, was identified in Ag with 120-240 atoms.

Alavi and Thompson2 used molecular dynamics simulations to determine the melting

point of aluminum nanoparticles. Nanoparticles with less than 800 atoms (≈25Å) showed

bistability between the solid and liquid phases over temperature ranges below the point

of complete melting. This bistability is characteristic of dynamic coexistence melting.

The temperature range of bistability becomes narrower and shifts to higher temperatures

as the size of the nanoparticle increases. Nanoparticles of Al larger than 25Å exhibited

surface premelting behavior. Puri and Yang51 used molecular-dynamics simulations to

predict the melting of nanosized aluminum particles. Sharp variations in structural and

thermodynamic properties were found across the melting point for a bulk material. In

contrast, only smooth changes were observed for nanoparticles, due to the presence of

surface premelting.

Wang et al.66 used molecular dynamics simulations for reversible nonhomogeneous

surface premelting of Au nanoparticles with radii of 1.22 to 4.49 nm. They concluded

that the melting initiates on the surface of a nanoparticle and liquid-like atoms start

to appear on edges of surface facets. For larger Au nanoparticles like N > 7164 (R >

3.07nm), the surface was completely premelted whereas for smaller nanoparticles like N

= 456 (R = 1.22nm) , it was only partially premelted. In correspondence with the exper-

imental evidence surface premelting was demonstrated to be a reversible process. Surface
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premelting was found to progress into the inner region of Au nanoparticles without a

completely premelted surface.

Hu et al.26 employed molecular dynamics simulation to investigate the rapid melting

and subsequent cooling process of zinc oxide nanoparticles in liquid tetradecane upon

picosecond laser heating. The radius of the nanoparticle varies from 10 to 30 Å which

corresponds to the number of ZnO atoms ranging between 408 and 9456. The coalescence

of two neighboring melted nanoparticles into a larger particle and the recrystallization

of the latter upon cooling were studied. for nanosized particles in a liquid medium, the

solidification temperature was far below the melting point, which was the sign of under-

cooling. The solidification temperature exhibited the same trend as the melting point

when the particle size decreases. The difference between the melting and solidification

temperatures was almost the same across the entire particle radii range studied. Joshi et

al.31 used molecular dynamics simulations to study melting of Ni and Fe nanoparticles

with diameters in the range of 2-12nm. They obtained a linear relationship for melting

temperature with the inverse of nanoparticle diameter. The simulations demonstrated

that melting is surface initiated and that a finite temperature range exists in which

partial melting of the nanoparticle occurs.

Sankarasubramanian and Kumar58 studied the effect of surface anisotropy on the

melting temperatures of free-standing gold nanofilms with thicknesses in the range of

1-40nm using molecular dynamics simulations. Among the films with low index crystal-

lographic surfaces, those with 110 surface (least close-packed and highest surface energy)

showed lowest melting temperatures whilst those with 111 surface (most close-packed and

lowest surface energy) showed highest melting temperatures. Prolonged isothermal heat

treatment demonstrated that there is no coexistence of equilibrium thickness of liquid

layer with solid, in the case of free-standing nanofilm, below its melting temperature.

Shao et al.59 investigated the structure, phase transition, and nucleation of Au

nanoparticles with N = 467-2230 atoms, confined within armchair single-walled car-
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bon nanotubes. The melting started from the innermost layer and freezing started from

outermost layer for confined Au nanoparticles. Tang et al.63 studied the melting behav-

iors of aluminum (111) perfect/nonperfect surfaces, characterized by structure ordering

parameter. Al perfect surface had a superheating temperature above bulk Al melting

point by about 80K. Al nonperfect surface had somewhat different local lattice structure

from that on perfect surface. Al nonperfect surfaces tempt to premelt when temperature

was less than melting temperature of bulk Al, in this simulation, by about 45K.

Phase field model

Sakai57 used Landau theory for the melting of Sn nanoparticles and showed the

nonlinear relationship between the melting point and the reciprocal of radius. He also

showed that surface melting state becomes difficult to observe as particle radius decreases

down to a critical value which was in contrast to the common belief that surface-induced

melting becomes more dominant for smaller particles.

Chang and Johnson10 presented an analytical solution to the two-parabola Landau

model, applied to melting of metal particles with sizes in the nanoscale range. The liquid

skin formation was found to occur only for particles with radii greater than an explicitly

given critical radius. For particles with size comparable to the correlation length, a non-

linear dependence on size was found for both the melting temperature and the latent heat

of fusion. For large systems compared to the correlation length, classical thermodynamic

results was found.

Chernyshev12, 13 determined the temperature of surface premelting in terms of the

Landau mean field model. For the definition of the order parameter, the Lindemann

criterion was employed, which states that crystal will melt when the root-mean-square

displacement of the atoms in the crystal exceeds a certain fraction of the interatomic

distance. It was shown that if the radius of a particle exceeds 10 nm approximately, the

dependence of surface premelting temperature on size is weak.
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Small particles

Small nanoparticles, usually less than 5nm in radius, experience different behavior in

melting. Ercolessi et al.20 predicted the existence of critical radius for Au nanoparticles

using molecular dynamics simulations. They found that Au particles with R < 1 nm, do

not experience quasi-liquid layer. Oshima and Takayanagi44 observed pseudo-crystalline

phase for tin clusters with R < 2.5nm. Clusters with 2.5 nm < R < 3.5nm were mainly

observed to be crystalline while a small fraction were still in the pseudocrystalline phase.

Kofman et al.33 showed that for Pb clusters of sizes smaller than 5nm, surface melting

disappears and the melting process is discontinuous and the solid-liquid transition is

sharp (no surface melting). Bachels et al.3 experimentally obtained the critical radius

of Sn to be 3.5nm. Chang and Johnson10 concluded that the liquid skin formation as a

precursor of melting, occurs only for particles with radii greater than a critical radius.

Alavi and Thompson2 showed that aluminum nanoparticles smaller than 2.5nm show

bistability between the solid and liquid phases. Nanoparticles larger than 2.5nm exhib-

ited surface premelting behavior. Puri and Yang51 showed that for Al particles with size

less than 3nm, the solid and liquid phases coexist.

Wang et al.66 showed that for Au nanoparticles with R > 1.22nm, surface is partially

premelted. Chernyshev13 showed that if the radius of a particle is less than 5 nm, the

dependence of surface premelting temperature on size is strong. To define the critical

radius below which surface melting does not occur, he deduced a relationship. For Al and

Sn, the critical radius was 4.91nm and 3.83nm respectively. So it can be concluded that

if the size of nanoparticles is less than the critical size, surface melting is not observed.

For most materials, this critical radius is less than 5nm.
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Thesis Organization

In chapter 2, phase field method coupled to mechanics is used to study premelting

and melting of aluminum nanoparticles in the region of metastability and complete in-

stability of solid and melt. Size dependence of melting temperature from this model is

compared to experimental data where results are in better agreement than molecular

dynamics results. In chapter 3, a deviatoric transformation strain is added to the model

which promotes the driving force for phase transformation. In chapter 3, finite width

of external surface layer is added to the phase field model to include transition between

particle and gas at the surface. Barrierless and kinetic melting of aluminum particles are

studied and bistability between solid and surface layer, and solid and melt is studied.
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CHAPTER 2. SIZE AND MECHANICS EFFECTS IN

SURFACE-INDUCED MELTING OF NANOPARTICLES

Modified from a paper published in the Nature Communications

Valery I. Levitas∗ and Kamran Samani †

Abstract

Various melting-related phenomena (like surface melting, size dependence of melting

temperature, melting of few nm-size particles, and overheating at very fast heating rate)

are of great fundamental and applied interest, although the corresponding theory is still

lacking. Here we develop an advanced phase-field theory of melting coupled to mechanics,

which resolves numerous existing contradictions and allowed us to reveal exciting fea-

tures of melting problems. The necessity of introducing an unexpected concept, namely

coherent solid-melt interface with uniaxial transformation strain, is demonstrated. A

crossover in temperature dependence of interface energy for radii below 20 nm is found.

Surface-induced pre-melting and barrierless melt nucleation for nanoparticles down to

1 nm radius have been studied, and the importance of advanced mechanics is demon-

strated. Our model describes well experimental data on the width of the molten layer

versus temperature for the Al plane surface and on melting temperature versus particle

radius.

∗Iowa State University, Departments of Aerospace Engineering, Mechanical Engineering, and Mate-
rial Science and Engineering, Ames, Iowa 50011, U.S.A.
†Iowa State University, Department of Mechanical Engineering, Ames, Iowa 50011, U.S.A.
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Introduction

Numerous melting-related phenomena represent fundamental material problems and

are currently under intense experimental and theoretical study. They include surface

premelting and melting below the thermodynamic melting temperature θe, caused by re-

duction in surface energy and leading to appearance of a molten, nanometer-thick layer

1, 2; reduction in melting temperature θm with reduction of the particle radius R down

to nanoscale3, 4; melting of particles with radii comparable to and smaller than the equi-

librium solid-liquid interface width δe, which is a few nm3, 5; and overheating above θe

during very fast heating6, 7. All of these phenomena allow one to determine properties of

solid and liquid deeply in the region of their metastability and even complete instability

(i.e. above the solid instability temperature θi or below the melt instability temperature

θc, see Supplementary Fig. 9), and to study intermediate states, various scale effects, and

non-equilibrium thermodynamic and kinetic properties. These studies also have impor-

tant applied aspects, e.g., for combustion of Al nanoparticles8 that are the most known

representatives of nanoenergetic materials. However, a consistent theoretical framework

for the description of the above phenomena is lacking. The sharp-interface approach

9 (SIA) is not justified for the above problems. While there are important molecular

dynamics (MD) studies5, 6, 10, we focus on the continuum phase-field approach (PFA),

which allows consideration of larger spatial and time scales and operates explicitly with

thermodynamic and kinetic parameters determined at the macroscale (see Supplemen-

tary Discussion). When mechanics is taken into account, a basic problem of the de-

scription of finite-width, solid-liquid interface appears. Traditionally, solids and liquids

are described in completely different continuum mechanical frameworks (e.g., solids are
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described in undeformed states, while liquids are described in a deformed state), which

sophisticates the description of intermediate state. Some works consider solid as very

viscous liquid13, i.e., neglect elastic shear modulus µ. Such a liquid-liquid interface is

incoherent and does not generate internal elastic stresses, similar to sharp interface (Fig.

1). Alternatively14, solid-melt interface is considered as a coherent interface (Fig. 1), in

which shear modulus varies from that for solid to zero, and this results in generation of

internal elastic stresses at the interface. When particle size is comparable to or smaller

than the interface width, a coherent interface is the only reasonable choice. While this

model is supposed to be more precise, the surface tension in it is not consistent with

sharp-interface limit, even if µ = 0. Also, even for liquid-liquid interface, expression for

surface tension in PFA differs by a hydrostatic pressure from that in SIA11−13. This is a

fundamental thermodynamic inconsistency, which is especially important for nanoscale

interface radii.

Surface pre-melting and melting were studied using PFA15−17 without involving me-

chanics. However, the employed equation for surface energy γ(η) = a+ bη2 did not allow

homogeneous solution for solid (η = 1) (Fig. 2), exhibiting a surface disordered structure

even below melt instability temperature θc, when the energy minimum corresponding to

melt does not exist. Such an inconsistency also exhibits itself in unphysical regions in

the phase diagram15.

The goal of this paper is to develop a unified PFA coupled to mechanics and reveal

nontrivial features of the above melt-related phenomena. Thus, a model with coherent

solid-melt interface is developed (see Fig. 1), in which shear modulus µ varies from

that for solid to zero, and this results in generation of internal elastic stresses at the

interface. Thermodynamic potential in this model results in surface tension stresses

consistent with the SIA, in contrast to known models with incoherent interface (for

which µ = 0)11, 12, 13 and coherent interface14. Also, the necessity of introducing a

non-spherical transformation strain, which in addition to volumetric expansion during
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melting describes change in shape, is demonstrated. Our model resolves fundamental

thermodynamic inconsistency and includes more advanced mechanics, which is especially

important for nanoparticles. Also, a model for surface energy that varies during melting

is developed, which resolves the aforementioned non-physical effects in existing models

15, 16, 17 and adds to them mechanics.

                                                                                

                     

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Different types of interfaces between solid and molten phases. (a) Traditional
sharp incoherent solid-melt interface, which does not generate internal elastic
stresses. (b) Incoherent, finite-width, solid-melt interface with zero shear
modulus µ = 0 that does not generate internal elastic stresses. (c) Coherent
finite-width interface between two solid phases. Continuity of crystal lattice
across the interface along with a change in the size of one of the lattices
during transformation (due to transformation strain tensor εεεt) generates
internal elastic stresses. (d) Coherent, finite-width, solid-melt interface with
nonzero shear modulus µ 6= 0 that generates internal elastic stresses.

It is demonstrated that our model describes well experimental data on the width of

the molten layer vs. temperature for the Al plane surface, and then it is applied to

surface-induced pre-melting and barrierless melt nucleation for nanoparticles. It also

describes well experimental data on θm vs. R, even better than MD simulations5. Then,
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non-equilibrium and small-scale regimes were treated, i.e., interface profile, width, energy,

and velocity have been determined and analyzed vs. R, interface position ri, and large

overheating and heating rates h. Thus, the derived analytical expression for interface

velocity v describes well simulation results well outside of an expected range, namely

even for θ > θi, h up to 1013K/s, and ri ≥ 2δe. It also describes well the effect of

large compressive and tensile pressure. Homogeneous melt nucleation competes for h =

1013K/s with interface propagation. For R = 1 and 3nm, premelting occurs in the

entire particle rather than at the surface only. Allowing for mechanics increases melting

temperature by 70K for R = 1nm particle due to pressure induced by surface tension.

For R ≤ 1.5nm, θm < θc, i.e., the particle melts more than 200K below θe while there

is no local energy minimum corresponding to melt. While for a liquid-liquid interface

our calculations reproduce the Laplace relationship for jump in radial stresses ∆σr, for

coherent solid-melt interface, ∆σr does not follow the Laplace relationship and even

may possess the opposite sign, causing tension in the solid core instead of compression.

Interface energy varies in a nontrivial way for ri ≤ 4δe ' 12nm with decreasing ri,

increasing for θ > θe and decreasing for θ < θe; this is opposite to the behavior for

ri > 12nm.

Theory

We designate contractions of tensors AAA = {Aij} and BBB = {Bji} over one and two

indices as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji, respectively. The subscript ∗ means

symmetrization; the subscripts or superscripts e, θ, and t are for elastic, thermal and

transformational contributions to strain and energy; III is the unit tensor; ∆A = As−Am

for any property A, with subscripts s and m for solid and melt;
◦
∇∇∇ and∇∇∇ are the gradient

operators in the undeformed and deformed states; and ⊗ designates a dyadic product.

To develop a unified approach to solid and liquid, we will consider liquid as the limit
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case of isotropic viscoelastic solid with µ = 0. For simplicity, viscosity is neglected,

isothermal processes are considered, and shear strain is small. However, even if volumet-

ric strain ε0 is small, in order to reproduce surface tension one has to use fully large-strain

formulation (see below). We will modify our recently developed theory of martensitic

transformations in solids18, 19 to describe melting. The Helmholtz free energy per unit

undeformed volume of solid ψ = ψ(εεε, η,∇∇∇η, θ), where εεε is the strain tensor and η is the

order parameter that varies from 1 in solid to 0 in melt. Using an irreversible thermody-

namic procedure based on the application of the first and second laws of thermodynamics

to the system with energy depending on the gradient of the order parameter (see12 and

references in it) and assuming linear relation between thermodynamic force and flux, one

obtains expression for the stress tensor σσσ and the Ginzburg-Landau (GL) equation:

σσσ =
∂ψ

∂εεε
− J−1

(
∇∇∇η ⊗ ∂ψ

∂∇∇∇η

)
∗
,

1

χ

∂η

∂t
= −J−1∂ψ

∂η
|εεε +∇∇∇ ·

(
J−1

∂ψ

∂∇∇∇η

)
, (1)

J =
ρ0
ρ

= 1 + ε0 (2)

where ρ0 and ρ are the mass densities in the nondeformed and deformed states, χ is

the kinetic coefficient, and εεε = const while evaluating ∂ψ/∂η. Kinematics relationships

between displacement uuu and strain εεε = 1/3ε0III+eee, decomposition of εεε and the equilibrium

equation are

εεε = (
◦
∇∇∇ uuu)∗, εεε = εεεe + εεεt + εεεθ, ∇∇∇ · σσσ = 0, (3)

where eee is the deviatoric strain. Energies and strains are defined as follows:

ψ = ψe(ε0, eee, η, θ) + Jψ̆θ + ψθ + Jψ∇;

ψe = 0.5(Km + ∆Kφ(η))ε20e + 0.5µφ(η)eeee:::eeee; ψθ = H(θ/θe − 1)φ(η);

ψ̆θ = Aη2(1− η)2; ψ∇ = 0.5β|∇∇∇η|2; A := 3H(1− θc/θe); (4)

εεεt = ε̄εεt(1− φ(η)); εεεθ = (αm + ∆αφ(η))(θ − θe))III; φ(η) = η2(3− 2η). (5)

Here, K is the bulk modulus, β and α are the gradient energy and linear thermal

expansion coefficients, H is the heat of fusion, ψ̆θ is the double well energy, and ε̄εεt is the
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transformation strain that transforms the elemental volume of solid to melt under σσσ = 0.

While for martensitic phase transformations ε̄εεt is a tensor connecting two crystal lattices,

for melting it is always pure volumetric strain, ε̄εεt = 1/3ε0tIII
14, 11, 12, 13, 9. We will show

that the usual assumption causes very high internal stresses and elastic energy within

interface, which suppresses melt nucleation and contradicts to experiment. Development

of a complete theory for ε̄εεt is not a goal of this letter, but we consider an alternative

expression for uniaxial ε̄εεt = ε0tkkk ⊗ kkk, where kkk = ∇∇∇η/|∇∇∇η| is the unit normal to the

interface. In this case, the component of transformation strain along the interface is

absent, which minimizes internal stresses and their energy. Then Eq.(2) looks like

σσσ = σσσe + σσσst; σσσst = (ψ∇ + ψ̆θ)III − β∇∇∇η ⊗∇∇∇η; (6)

σσσe = (Km + ∆Kφ(η))ε0e + µφ(η)eeee; (7)

1

χ

∂η

∂t
= β∇2η − 6J−1[H

(
θ

θe
− 1

)
+ σeε0t − 3pe∆α(θ − θe) +

1

2
∆Kε20e +

1

2
µeeee:::eeee]η(1− η)

−4Aη(1− η)(0.5− η); 3pe := σσσe:::III, (8)

where σσσe and σσσst are the elastic stress and surface tension, σe = pe for volumetric

transformation strain and σe = kkk · σσσe · kkk for uniaxial transformation strain. For a

phase-equilibrium condition in the stress-free case, β
2
|∇∇∇η|2 = ψ̆θ

20, and we have σσσst =

β|∇∇∇η|2(III −kkk⊗kkk), i.e., it represents two equal normal stresses along the interface. Thus,

σσσst is consistent with the SIA, unlike previous approaches14, 11, 12, 13, which resolves a

long-standing problem in PFA for melting.

In contrast to previous works on melting and other transformations in solids14, 18, the

gradient operator ∇∇∇ with respect to the deformed state was used, and the finite-strain

factor J was included in the proper places. While use of ∇∇∇ is natural for liquids11, 12, 13,

this is not the case for solids. One of the unexpected points is that even for small strains,

one cannot assume that J ' 1 and ∇∇∇ '
◦
∇∇∇, because this leads to zero surface tension.

The same thermodynamic procedure19 that led to Eq.(2) also results in the boundary
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conditions

J
∂ψ

∂∇∇∇η
· nnn = β∇η · nnn = −dγ

dη
, σn =

2γ(η)

R
+ p̄, (9)

where nnn is the unit normal to the boundary, σn is the normal to interface stress, 1/R is

the mean curvature, and p̄ is the external pressure. Eq.(7) represents a generalization

for the 3-D case and coupling with mechanics of known condition16, 15. We require the

following properties of the surface energy: γ(0) = γl; γ(1) = γs;
dγ(0)
dη

= dγ(1)
dη

= 0. The

last equation guaranties that homogeneous melt η = 0 and solid η = 1 satisfy Eq.(7) and

removes contradiction in the known papers16, 15 (see Fig. 2). These properties are met

for polynomial γ(η) = γl + ∆γ(aη2 + (4− 2a) η3 + (a− 3)η4) of the lowest degree with a

parameter a.

Figure 2.2 Stationary solutions for Ginzburg-Landau equation with different models for
surface energy. Previous models15, 16, 17 (blue line) did not allow a homoge-
neous solution for the solid (η = 1), exhibiting a surface disordered structure
at any temperature. Our model Eq.(8) (red line) is developed using the con-
dition that it allows a homogeneous solution for the solid. The green line
represents melt (η = 0).

One can demonstrate that a criterion of barrierless surface-induced melt nucleation

is consistent with a sharp-interface condition, ∆γ > γs−l, when a = 3. Then γ(η) =

γl + ∆γφ(η). If surface energy does not change during melting, then γ = const and

Eq.(7) reduces to traditional boundary condition ∇η · nnn = 0.
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We focus on Al nanoparticles; material parameters are given in Supplementary Dis-

cussion. In particular, θe = 933.67K, θc = 0.8θe = 746.9K, and θi = 1.2θe = 1120.4K,

δe = 2.97nm. Note that all material parameters have been obtained for a macroscopic

sample with no fitting parameters left. None of our developments (coherent interface

with uniaxial transformation strain, expressions for free energy that results in correct

expression for surface tension, and expression for surface energy) require additional ma-

terial parameters.

Results

First, homogeneous heating of particles of radius R was considered and stationary

solutions were found for each temperature. The thickness h of pre-molten and completely

molten surface layer (determined by an interphase radius ri, i.e., by point with η = 0.5)

have been plotted vs. θe − θ (Fig. 3). At melting temperature, θm, the stationary,

two-phase solution ceases to exist and interface propagates to the center.

Size-dependence of melting temperature

In Fig. 4, the lowest curve is for GL equation only, i.e. for neglected mechanics.

Below radius R∗ = 6.12nm, results for volumetric εεεt give slightly lower θm and are closer

to experimental points, while for R > R∗ results for uniaxial εεεt are much lower. For

R > 21.2nm and volumetric εεεt, θm > θe. This is in contrast to experiments for flat

interface, for which θm = θe. That is why uniaxial transformation strain was used, in

contrast to known models11, 12, 13. For neglected mechanics and for uniaxial εεεt melting

temperature tends to θe for infinite radius. Experimental points are between curves with

neglected mechanics and for uniaxial εεεt for R > R∗ and for volumetric εεεt for R < R∗.

Coupling with mechanics for 2 − 3nm particles increases melting temperature by

30 − 40K (see also Fig. 5) and makes it closer to the experiments. Surprisingly, our

results are in better correspondence with experiments than known MD approaches (Fig.
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Figure 2.3 Thickness of molten surface layer versus temperature for different particle
radii. Each color represents a particle radius shown in nm near curves.
Solid lines are results of GL model without mechanics. Dotted and dashed
lines are obtained for coupled GL and mechanics model with volumetric and
uniaxial transformation strains, respectively. Black dots are experimental
data1 obtained using medium energy ion scattering. Experimental points
for a plane surface are close to the calculations for infinite radius for GL and
coupled models with uniaxial transformation strain. All curves, excluding
those interrupted at 0.1K, are ended at the melting temperature.

4b). Thus, we can conclude that the model of coherent solid-melt interface has good

potential for the description of experiments; traditional volumetric εεεt is not adequate for

large particles, i.e., there is interface restructuring, driven by the internal stress relax-

ation; and a thermodynamic and kinetic theory for eeet should be developed.

Surface pre-melting and melting

As shown in Fig. 3, for plane interface (R → ∞), plots for thickness of the molten

layer vs. θ for GL and uniaxial εεεt almost coincide and are very close to experimental

points, which justifies validity of our model for surface energy.

Results for volumetric εεεt are inconsistent with experiments. For nanoparticles, h(θ)

plots consist of two parts: an almost straight line with small slope at high temperature

with transition to an almost vertical line for temperatures close to θm. The maximum

thickness of the molten layer is very close for the GL model and the model with uniaxial
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Figure 2.4 Melting temperature of Al versus particle radius. (a) Curves are calculated
using three models: GL equations only (GL, green line), GL equation cou-
pled to mechanics with volumetric (εt0) (red line) and uniaxial (εtr) (black
dotted line) transformation strain. Dots are experimental data from3 ob-
tained using thin-film differential scanning calorimetry. The horizontal line
is the equilibrium temperature (the same curve designations are used in Fig.
4(b)). (b) Molecular dynamics results are added for particles with radii in
the 1-6 nm range. Gray and blue lines are MD results5 using glue and
embedded atom potentials, respectively.

Figure 2.5 Stationary interface profiles φ(η) for Al particles for different temperatures.
(a) R = 1nm; (b) R = 3nm. Solid lines are the results obtained with
the GL model. Dotted and dashed lines are obtained using coupled GL
and mechanics models with volumetric and uniaxial transformation strains,
respectively. Different temperatures are considered for each model, which
are designated on the graphs. The lowest curve for each model corresponds
to the melting temperature.
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εεεt. While curves for these models look also close, for some temperatures the difference

in thickness is by a factor of two or larger. For R ≤ 5nm, curves for volumetric and

uniaxial εεεt are very close.

Stationary distributions of interface profiles φ(η) (note that φ(η) rather than η de-

scribes the variation of all properties, see Eq.(2)) in particles of R = 1 and 3nm are

presented in Fig. 5. For all cases, the complete liquid phase (η = 0) is not reached.

For 1 and 3nm, stationary premelting (i.e. φ(η) < 1) occurs in the entire particle rather

than at the surface only. Allowing for mechanics increases melting temperature by 70K

for R = 1nm particle, mostly due to pressure induced by surface tension. Note that for

R < 1.5nm, one has θm < θc, i.e., particle melts even when bulk melt is unstable.

Surface tension

Distributions of radial stresses along r are shown in Fig. 6. When internal elastic

stresses can be neglected (for equal thermoelastic properties of phases and µ = 0, i.e., for

liquid-liquid transformation, or for εεεt = 0), our calculations at θe reproduce the Laplace

relationship for jump in radial stresses ∆σr = −2γs−l/ri within the error of 0.14% for

ri > 11nm and 1.03% at ri = 5nm. For actual solid-melt properties and volumetric

εεεt, ∆σr does not follow the Laplace relationship and even possesses the opposite sign,

causing tension in the solid core (Fig. 6). For uniaxial εεεt, ∆σr = −k2γs−l/ri with k > 1.

Interface profile and energy

For plane interface, θ = θe, and neglected mechanics, the GL equation allows analyt-

ical solution for an equilibrium interface:

ηe = [1 + exp(5.54x/δe)]
−1 ; δe = 5.54

√
β/(2A); γs−l =

√
βA/18, (10)

where the interface width is δ = |rl−rs| and rl and rs are determined from the conditions

φ(η) = 0.01 and 0.99, respectively. Surface energy in non-equilibrium state γns−l is
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Figure 2.6 Distribution of radial stresses for three interface positions. The blue line cor-
responds to the interface radius at 30nm, the red at 20nm, and the green at
10nm. Distributions are calculated at θe using models with volumetric (εt0)
(dotted line) and uniaxial (εtr) (dashed line) transformation strains, as well
as with equal thermoelastic properties of solid and melt (solid line), i.e. for
liquid-liquid transformation. Dots designate pressures in melt ps + 2γs−l/ri
based on the Laplace equation that coincides with results of calculations for
equal thermoelastic properties of the solid and melt.

defined as an excess energy with respect to solid (where 0.5 < η ≤ 1) and liquid (where

0 ≤ η ≤ 0.5)

γns−l =

(∫ ri

0

(ρψ − ρsψs)r2dr +

∫ R−h

ri

(ρψ − ρlψl)r2dr
)
/r2i . (11)

With neglected mechanics, interface width is described by Eq.(10) within 2.5% error for

ri ≥ 2δe and θ ≤ 1.25θe, i.e., even above θi. For ri = 2nm, δ = 3.99nm = 1.34δe.

Mechanics slightly (< 1%) increases the width for θ = θe, but this difference grows

with increasing temperature; e.g., δ =3.03 and 3.06 nm for ri = 30nm, θ = 1.2θe and

1.25θe, respectively. Still, the interface profile differs from Eq.(10) within ∆φ = 0.03

error for ri ≥ δe/2 and θ ≤ θi. Interface energy γns−l vs. interface radius for different

temperatures is shown in Fig. 7. For equilibrium temperature, interface energy starts

growing for ri < 10nm and maximum deviation from γs−l = 0.1J/m2 is 11.2% for

the smallest ri = 2.41nm, for which full interface exists. For ri > 20nm expected

decrease in γns−l with growing temperature is observed. For ri < 20nm, unexpected
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opposite relation is found, which means change in sign of the interface entropy. Note

that for ri > 4δe ' 12nm, deviation of γns−l from γs−l does not exceed 3% in the entire

temperature range θc < θ < θi, which is well below of inaccuracy of experimental data

for interface energy.

Figure 2.7 Non-equilibrium interface energy γns−l versus interface radius for different
temperatures. Results are obtained for both volumetric and uniaxial trans-
formation strains and practically coincide. At the position of ri = 10nm,
curves from top to bottom correspond to temperatures of 1.2θe, 1.1θe, θe,
0.9θe and 0.8θe. A crossover in temperature dependence of interface energy
for radii below 20 nm is evident.

Interface velocity

When internal stresses inside an interface are neglected, the following linear relation-

ship is obtained for ri � δe between interface velocity v0 and the thermodynamic force

for interface propagation per unit deformed volume of solid X:

v0 = 6Xχ
√
βρm/(2Aρs),

X =
ρs
ρ0s

H

(
1− θ

θe

)
+ pm

(
ρs
ρm
− 1

)
− 1

2

(
p2m
Km

− p2s
Ks

)
+

2γs−l
ri

. (12)

It can be seen from Fig. 8, that Eq.(8) describes well (error ≤ 3%) results of our

simulations even for ri > 2δe for neglected internal stresses and for heating rates as high as

1013K/s. Due to small particle size, homogeneous temperature is assumed, see analytical
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justification in8. The temperature at some points in Fig. 8 significantly exceeds the

instability temperature θi and reaches 1344K for 1013K/s; that is why interface does

not reach the center of the particle, because homogeneous reduction of η in the central

part completes melting faster. Even for high compressive and tensile pressures, Eq.(8)

works well when internal stresses are negligible: for external pressure p = 4GPa and

θ = 1225K deviations from simulations for ri = 30 and 20nm are within 2.14% and for

p = −4GPa and θ = 750K it is within 1.05%. Velocities for volumetric εεεt are higher,

and for uniaxial εεεt they are lower than for the case with µ = 0.

Figure 2.8 Interface velocity versus position for three heating rates. The heating rate
is 109K/s at the bottom, 1012K/s in the middle, and 1013K/s at the top.
Curves correspond to PFA with different models (red line for GL model,
green and black lines for models with volumetric and uniaxial transforma-
tion strains, respectively, and blue line for volumetric transformation strain
with equal solid and melt properties). Points correspond to SIA, namely to
Eq.(8).

Discussion

Note that the SIA21 to melting/solidification at the nanoscale, which includes surface-

induced melting and coupled to mechanics, can be applied to our problems down to some
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radius, which is to be determined by comparison with PFA. However, when the interface

region is a significant part of the particle, PFA is more precise and does not require any

adjustments. In contrast, SIA should incorporate the size-dependence of surface melt-

ing (Fig. 3), size- and temperature-dependence of surface energy (Fig. 7), and surface

stresses not equal to surface tension (Fig. 6). To summarize, an advanced phase-field

approach to pre-melting and melting coupled to mechanics is developed. It is applied to

study melting deeply in the region of metastability and complete instability of solid and

melt, intermediate states at the surface and in few nm-size particles, scale effect, and non-

equilibrium thermodynamic and kinetic properties. The importance of mechanics effects

(even without external pressure) is elucidated. Crossover in temperature dependence of

the interface energy for radii below 20nm and violation of the Laplace relationship for

the jump in pressure is obtained. Conceptual validity of the coherent solid-melt is proven

and necessity for its further development, namely formulation of the evolution equation

for the deviatoric part of εεεt, is demonstrated.

Methods

15 to 30 elements per interface width and an adaptive time step with a minimum

of 1000 time steps for a typical nonstationary problem are used. To check the model,

interface profiles are compared to analytical results for plane interface at equilibrium

temperature22. Even with interface radius of 30nm, difference between planar analytical

solution and COMSOL GL result is less than 0.1%. Also the solid-liquid interface energy

in Al practically coincides with its analytical value of 0.1J/m2, see Fig. 7.

Supplementary Discussion

Short review of existing approaches and problems

There are two main continuum methods of studying melting: (a) the sharp-interface

approach9 (SIA) with jump of thermodynamic parameters across an interface with δ = 0,
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and (b) the phase-field approach (PFA), in which melting is described by continuous vari-

ation of an order parameter η from 1 to 0 across the interface of finite width δ11−17; all

other thermodynamics parameters are continuous across an interface as well. The evolu-

tion of η is described by Ginzburg-Landau (GL) or phase-field equation, which represents

the linear relationship between η̇ and conjugate thermodynamic force X. The PFA is

more detailed than the SIA but requires more advanced thermodynamic potential that

describes intermediate states between solid and liquid in terms of the order parameter

η (figure 9) and interface energy in terms of gradient ∇η. One of the requirements for

PFA is that for the sample size L/δ � 1, equations of PFA should transform to those

of SIA. This is, however, not the case in known publications for surface tension, because

expressions for surface tension in both approaches differ by a hydrostatic pressure11,13.

This is a fundamental thermodynamic inconsistency, which is especially important for

nanoscale interface radii. In the paper, we find expression for thermodynamic potential

for PFA, which results in consistent expression for surface tension, and we derive the

kinetic relationship for interface velocity, v, for L/δ � 1, i.e., v0(X).

For nanoparticles and solid-liquid interface radii ri that are comparable with interface

width δ, SIA fails and PFA is the only reliable continuum approach. It is expected that

interface energy may depend on the interface radius and that the interface velocity v may

deviate from the kinetic relationship v0(X) obtained for r̃ = r/δ � 1. SIA also fails when

nanoparticles are overheated fast to temperature θ close or even above the crystal lattice

instability temperature θi, at which energy minimum corresponding to solid disappears

(supplementary figure 1). One of our goals is to study numerically these non-equilibrium

and small-scale regimes, i.e., determine and analyze interface profile, width, energy, and

velocity.

Material parameters for aluminum

We will focus on Al nanoparticles and use the following material parameters obtained
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Figure 2.9 Thermal part of the thermodynamic potential ψθ vs. order parameter η
for different temperatures. At equilibrium temperature θc , potential has
two equal minima η = 0 and η = 1, corresponding to liquid and solid. For
lower temperature (for example, 0.9θe), minimum corresponding to solid
reduces (solid is thermodynamically stable), but there is an energy barrier
between phases, i.e., liquid is metastable. At and below the melt instability
temperature θc, the minimum corresponding to liquid disappears and melt
is unstable. Similarly, at and above the solid instability temperature θi, the
minimum corresponding to solid disappears and solid is unstable.

for macroscopic sample1,3,8,15: H = 933.57× 106J/m3, Km = 41.3GPa, Ks = 71.1GPa,

αm = 4.268 × 10−5K−1, αs = 3.032 × 10−5K−1, γs = 1.050J/m2, ∆γ = 0.129J/m2,

β = 3.21×10−10N , χ = 400m2/Ns, θc/θe = 0.8 (which leads to θi/θe = 1.2, θc = 746.9K,

and θi = 1120.40K). To determine β we used γs−l = 0.1J/m2 from3 and Eq.(9), and

to determine χ we used interface mobility 1.283m/(sK) obtained with MD simulation

(Mendelev, M. private communication, 2010) and Eq.(11), both for plane interface. For

such parameters, equilibrium interface thickness δe = 2.97nm (Eq.(9)).

Justification of the model of coherent interface and non-spherical transfor-

mation strain for melting

Below, we will show that in the framework of any phase-field theory, which takes

into account finite interface width and elasticity, our model of coherent interface and

non-spherical transformation strain for melting are straightforward and natural. First,
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as in any phase-field theory, we assume continuity of displacements. Second, as in any

phase-field theory, we assume that within interface any property varies from the value for

solid to that of the melt; these should include shear modulus and transformation strain.

Third, with this model and traditional assumption of pure volumetric transformation

strain, we obtained large elastic stresses and energy inside the interface, which led to

a large deviation of theory from experiments for thickness of the molten layer (Fig. 3)

and size dependence of the melting temperature (Fig. 4). And fourth, it is clear that

the missing physics is in the relaxation of elastic stresses, i.e., introducing an inelastic

deviatoric strain (volumetric transformation strain is completely determined by the ratio

of densities of phases). While it is completely unexpected and new for melting, the

phase-field approach describes intermediate states between solid and melt, and the only

reasons that transformation strain was accepted to be pure volumetric are the tradition

and that the deviatoric part is unknown (in contrast to martensitic transformations).

However, unknown does not mean that it is zero. It is clear that one has to develop a

thermodynamically consistent kinetic equation for deviatoric part of the transformation

strain, but this is a separate and complex problem. Thus, we considered the simplest

limit case of uniaxial transformation strain normal to the interface, which minimizes

internal stresses along the interface and their energy and does not require additional

material parameters.

Since we obtained very reasonable (but not perfect) correspondence with experiments,

we concluded in the paper that: the model of coherent solid-melt interface has good

potential for the description of experiments; traditional volumetric εt is not adequate

for large particles, i.e., there is interface restructuring, driven by the internal stress

relaxation; and a thermodynamic and kinetic theory for εt should be developed.
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Abstract

An advanced Ginzburg-Landau (GL) approach to melting-solidification coupled with

mechanics is developed. It is based on the concept of coherent solid-liquid interface with

transformation strain tensor, the deviatoric part of which is described by a thermody-

namically consistent kinetic equation. Due to relaxation of elastic energy, a promoting

contribution to the driving force for phase transformation in the GL equation appears,

both for melting and solidification. Good agreement with known experiments is ob-

tained for Al nanoparticles for the size-dependent melting temperature and temperature-

dependent thickness of the surface molten layer. All types of interface stress distributions

from known molecular dynamic (MD) simulations are obtained and interpreted. A sim-

ilar approach can be applied for sublimation-condensation, amorphization-vitrification,

diffusive transformations and chemical reactions.
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Introduction

Stresses within the few-nanometer-thick interface become currently a separate topic

of interest in the thermodynamic and MD approaches1 to melting because they affect

significantly the thermodynamics and kinetics of melting. However, they were not studied

in the phase-field or GL approaches. While the GL approach is widely used for modeling

of pre-melting2 and melting3, mechanical issues have been addressed only recently for

pre-melting4 and melting5, 4. Thus, models for coherent solid-melt interface without5 and

with4 surface tension were developed. However, the outstanding problem is related to the

transformation strain tensor εεεt that transforms in unloaded state the elemental volume

of one phase into another. For martensitic phase transformations, εεεt = 1/3ε0tIII + eeet

transforms the crystal lattice of austenite into a lattice of martensite–i.e., the entire

tensor is completely determined when lattices are known. Here, ε0t is the volumetric

transformation strain, III is the unit tensor, and eeet is the deviatoric transformation strain

that characterizes change in shape. For melting and solidification, change in specific

volume (or density) is known only, and it was always assumed the pure volumetric

transformation strain εεεt = 1/3ε0tIII and eeet = 0. Such an assumption works well for

sharp interface approaches6. However, for coherent, finite-width interface in the GL

approach, pure volumetric transformation strain generates huge internal elastic stresses,

which yields multiple contradictions with available experimental and MD results (see

Figs. 1-4 below and4). Thus, the melting temperature for Al nanoparticle for radii

R > 20 nm is getting larger than the bulk equilibrium melting temperature θe (Fig.

1). The relationship for the thickness of surface molten layer h vs. temperature θ for

R > 40 nm is qualitatively different from experiments (Fig. 2). The interface stresses

are an order of magnitude larger than in MD simulations1 and may have an opposite

sign (Fig. 3b). And finally, internal stresses lead to overestimation of the interface

velocity (Fig. 4). These contradictions show the necessity of introducing and defining

the deviatoric transformation strain eeet, which will lead to stress relaxation. The fact
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that it is unknown from geometric consideration does not mean it should be zero. Atoms

during transformations can move in the way that reduces elastic energy and increases the

driving force for transformation; this results in some deviatoric transformation strain in

continuum description. In the paper, we expanded the phase-field theory for melting by

developing the thermodynamically consistent kinetic equations for eeet. This also results

in additional contribution to the driving force for melting in the GL equation. The

theory is applied for resolving all of the above contradictions in melting and pre-melting

of Al nano- and large-size particles. Results are in good agreement with experiments for

melting temperature vs. R and thickness of molten layer vs. θ, as well reproducing all

types of distributions of interface stresses obtained with MD.

We designate contractions of tensors AAA and BBB over one and two indices as AAA···BBB and

AAA:::BBB, respectively; ⊗ designates a dyadic product, and
◦
∇∇∇ and ∇∇∇ are the gradients in the

undeformed and deformed states. The subscripts or superscripts e, t, and θ are for elastic,

transformational, and thermal contributions to energy, strain, and stress; subscripts st

and ∗ are for the surface tension and symmetrization, and ∆A = As − Am is for any

property A, with subscripts s and m for solid and melt.

Model

We will further develop our model with coherent solid-melt interface from4. For

simplicity, viscosity is neglected and shear strain is small. Melting is described with

the help of the order parameter η that varies from 1 in solid to 0 in melt. We will use

decomposition of strain εεε = 1/3ε0III + eee and stress σσσ = pIII + SSS tensors into spherical

and deviatoric parts with p = σσσ:::III/3 for mean stress and ε0 for volumetric strain. The

standard relationship for strain εεε = (
◦
∇∇∇ uuu)∗ in terms of displacements uuu and equilibrium

equations ∇∇∇ · σσσ = 0 is used. The distinguished point in kinematic decomposition

εεε = εεεe + εεεt + εεεθ, εεεt = 1/3 ε0t(1− φ(η))III + eeet; (1)
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with εεεθ = (αm + ∆αφ(η))(θ − θe))III and φ(η) = η2(3 − 2η) is the introduction of the

deviatoric transformation strain eeet for melting, which is defined by a thermodynamically

consistent kinetic equation (derived below)

ė̇ėet = 6Λη(1− η)Se|ε0t||η̇|, (2)

where α is the linear thermal expansion coefficient and Λ ≥ 0 is the kinetic coefficient.

The Helmholtz free energy per unit undeformed volume of solid ψ and its contributions

are:

ψ = ψe(ε0, eee, η, θ) + Jψ̆θ + ψθ + Jψ∇;

J = ρ0/ρ = 1 + ε0;

ψe = 0.5(Km + ∆Kφ(η))ε20e + µφ(η)eeee:::eeee;

ψθ = H(θ/θe − 1)φ(η); ψ̆θ = Aη2(1− η)2;

ψ∇ = 0.5β|∇∇∇η|2; A := 3H(1− θc/θe). (3)

Here, ρ0 and ρ are the mass densities in the nondeformed and deformed states, K and

µ are the bulk and shear modulus, β is the gradient energy coefficient, H is the heat of

fusion, ψ̆θ is the double-well energy, and θc is the melt instability temperature. Despite

the small strain approximation, one cannot simplify J ' 1 and ∇∇∇ '
◦
∇∇∇, because in this

case surface tension disappears. For such an energy, expressions for stress and the GL

equation are:

σσσ =
∂ψ

∂εεε
− J−1∇∇∇η ⊗ ∂ψ

∂∇∇∇η
= σσσe + σσσst; (4)

σσσe = (Km + ∆Kφ(η))ε0eIII + 2µφ(η)eeee;

σσσst = (ψ∇ + ψ̆θ)III − β∇∇∇η ⊗∇∇∇η; (5)

1

χ
η̇ = Xη = −J−1∂ψ

∂η
|εεε +∇∇∇ ·

(
J−1

∂ψ

∂∇∇∇η

)
= β∇2η −

6J−1[H (θ/θe − 1) + peε0t − Λ|ε0t|Se:::Sesign(η̇)−

3pe∆α(θ − θe) + 0.5∆Kε20e + µeeee:::eeee]η(1− η)−

4Aη(1− η)(0.5− η), (6)



45

where χ is the coefficient and Xη is the driving force for changing in η, determined from

the expression for the dissipation rate D = Xηη̇ ≥ 0. Because of the introduction of

deviatoric transformation strain in Eq.(2), an additional promoting (for both melting

and solidification) contribution to Xη, 6J−1Λ|ε0t|Se:Sesign(η̇), appears. Because of this

term, even stationary solution of Eq.(6) for η depends on Λ; due to Eq.(2), it depends

on the entire evolution of Se and eeet toward their stationary solutions. The coupled

Eqs.(1)-(6) are solved for all problems below using the FEM code COMSOL.

To outline derivation of Eq.(2) and its contribution to the GL Eq.(6), we can neglect

surface stresses and dependence of ψ on ∇∇∇η, and put J ' 1 for brevity; the final results

are the same. Substituting ψ and Eq.(1) in the expression for the dissipation rate D =

σσσe : ε̇εε − ψ̇ ≥ 0, and using independence of D of ε̇εεe and θ̇, one obtains Eq.(4) and

D = (peε0tφ
′(η) − ∂ψ

∂η
)η̇ + Se : ė̇ėet ≥ 0 . To allow change in eeet during transformation

only, we put ė̇ėet = 0 for η̇ = 0. We also would like to impose that equation for ė̇ėet is the

same for both direct and reverse transformations. Then, in general, ė̇ėet = f (Se, η, |η̇|).

Inequality D ≥ 0 should be satisfied for all possible processes. Choosing pe that satisfies

peε0tφ
′(η) = ∂ψ

∂η
at least for one time instant, one obtains Se : ė̇ėet ≥ 0. Equation ė̇ėet =

Λ|ε0tφ̇(η)|Se with Λ ≥ 0 is the simplest one that satisfies all the above conditions and

also scales ė̇ėet with the rate of volumetric transformation strain. It coincides with Eq.(2).

Since |η̇| = η̇ sign(η̇), substitution of Eq.(2) in D results in Se related term 6Λ|ε0t|S e :

S eη(1−η)sign(η̇)η̇, which justifies that Xη should have the contribution shown in Eq.(6).

During transformation, the evolution of eeet relaxes elastic deviatoric stress Se and elastic

energy, and this relaxation produces promoting contribution to Xη for both melting

and solidification. Note that Eq.(2) leads to the maximization of the magnitude of the

driving force Xη, which is in line with the postulate of realizability7. The thermodynamic

procedure11 that led to GL equation, also results in the boundary conditions4:

J
∂ψ

∂∇∇∇η
· nnn = β∇η · nnn = −dγ

dη
,

γ(η) = γl + (γs − γl)φ(η),
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σn = −2γ(η)

R
− p̄, (7)

where nnn is the unit normal to the boundary; γ(η) is the specific surface energy with

γl and γs for the surface energy of liquid and solid, respectively; σn is the normal to

interface stress; 1/R is the mean curvature, and p̄ is the external pressure. External

pressure in all cases is considered to be zero. If surface energy does not change during

melting, then γ = const and Eq.(7) reduces to traditional boundary condition ∇η ·nnn = 0.

As initial conditions, values of η and e t in the entire volume are 0.99 and 0, respectively.

For the interface velocity and its dependence on heating rate in Fig. 3, homogeneous

temperature is prescribed by equation θ = 890 K + (heating rate) t, where t is time in

seconds.

We use the following material parameters for Al obtained for macroscopic sample

4, 8, 9, 10: θe = 933.67K, H = 933.57 ×106 J/m3, Km = 41.3 GPa, Ks = 71.1 GPa,

µ = 27.3 GPa, ε0t = 0.06, αm = 4.268 × 10−5 K−1, αs = 3.032 × 10−5 K−1, γs = 1.050

J/m2, γl = 0.931 J/m2, β = 3.21 × 10−10 N (which results in solid-liquid interface

energy γsl = 0.1 J/m2), χ = 400 m2/Ns, θc/θe = 0.8 (which leads to θi/θe = 1.2,

θc = 746.9 K, and the solid instability temperature θi = 1120.4 K). For particles of

radius R, homogeneously increasing temperature is prescribed, and stationary solutions

have been determined for each temperature. Interface position corresponds to the point

with η = 0.5. The thickness h of pre-molten and completely liquid surface layer was

determined and plotted as a function of θe − θ (Fig. 2). Melting temperature, θm, is

defined as the temperature at which the stationary, two-phase solution loses its stability

and the interface propagates to the center.

Results

In Fig. 1a, melting temperatures for models without (Λ = 0) and with (Λ = 4×10−2)

deviatoric transformation strain are compared with experimental results; here and below
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Figure 3.1 (a) Size dependence of melting temperature for Al nanoparticles for two
different values of Λ (in MPa−1) vs. experimental data9 (dots). (b) Tem-
perature dependence of the thickness of the molten surface for Al for different
particle radii (shown in nm near curves) and values of Λ vs. experimental
data8 (dots).

Λ is in MPa−1. This value of Λ represents the smallest one, above which θm does not

practically reduce and θm = θe for R→∞. For particles with R < 10 nm, surprisingly,

both models yield equal melting temperature. For larger particles, neglecting deviatoric

transformation strain introduces large internal elastic stresses that suppress melting,

and consequently, melting temperatures are larger. For R > 20 nm and Λ = 0, melting

temperature becomes larger than θe, which is contradictory and shows that such a model

cannot be used. The model with deviatoric strain corresponds well to experiments. Note

that internal stresses for Λ = 0 are mostly due to the tangential component εtφ = ε0t/3 =

0.02 of volumetric transformation strain, because radial expansion εtr at the interface

does not experience resistance of solid. That is why in4 radial transformation strain

was assumed as the limit case. Here, we obtained that for relatively large particles with

R > 10 µm, maximum εtφ = 0.018–i.e., almost the entire total tangential strain relaxes.

At the same time, for particles with R = 5 and 3 nm, which are under essential pressure

due to surface tension, maximum εtφ = 0.0065 and 0.001 only, respectively. That is why

internal stress relaxation is not essential and does not affect θm.
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In Fig. 1b, thickness h of the surface molten layer is plotted vs. θe−θ. For R ≤ 5 nm,

results based on models with and without stress relaxation are very close. For R ' 20

nm, the difference in h is large. For R ≥ 40 nm, the curves differ qualitatively. While

for the plane interface the results from the model with deviatoric strain are in good

agreement with experimental data, results for Λ = 0 even show saturation (rather than

divergence) in h and differ qualitatively from experiments.

In Fig. 2, distribution of radial σr and tangential σφ stresses with different values

of Λ are shown. The dot in Fig. 2a is for the pressure in solid calculated with the

Laplace equation pl − 2γsl/ri, which corresponds to the lack of elastic stresses (like for

liquid-liquid interface). Such pressure can be achieved for Λ = 3, and it does not change

at further increase in Λ. This value is two orders of magnitude larger than that required

for independence of θm of Λ–i.e., comparison of stress distribution with experiment or

MD results is a much more sensitive method to determine Λ than comparison of θm. The

reason for deviation from Laplace equation is the elastic tangential stresses. At smaller

values of Λ, the pressure jump reduces, then changes sign, and for Λ = 0 it even leads

to tensile pressure in the solid core. At the same time, a realistic curve is between the

curves for Λ = 3 × 10−2 (above which θm is independent of Λ) and Λ = 3–i.e., results

without deviatoric transformation strain are completely inadequate.

In Fig. 2b, distributions of tangential stress σφ and its elastic σe and surface ten-

sion σst contributions across the plane solid-melt interface are shown. For Λ ≥ 4, σe

completely relax, and the total stress coincides with the surface tension σst > 0. Since

volumetric transformational expansion generates compressive elastic tangential stresses

σe, total tangential stress may be completely tensile, or compressive, or may vary from

compressive to tensile stress while moving from solid to melt, depending on the degree of

relaxation of elastic stresses. Plots of total tangential stresses in Fig. 2b reproduce typ-

ical stress distributions and proper magnitude of plots for different crystal faces in MD

simulations1 and allow one to explain the reasons for such a variety and nontrivial shape
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Figure 3.2 (a) Distributions of radial stresses in Al particle with R = 40 nm for interface
position ri = 20 nm at θ = θe for different values of Λ. Dot corresponds to
the pressure in solid calculated with the Laplace equation pl − 2γsl/ri. (b)
Distributions of tangential stress σφ and its elastic σe and surface tension
σst contributions across the plane solid-melt interface at θ = θe. Surface
tension σst (Eq. (5)) is the same for all cases. Four unmarked curves are for
total stresses.

of distributions. Note that the elastic stresses only contribute to GL Eq.(6); surface

tension affects melting by changing the distribution of elastic stresses. For Λ = 0, the

magnitude of compressive stresses is much larger than in MD simulations1; this causes an

unrealistic increase in melting temperature above θe. The model of coherent solid-melt

interface with proper surface tension was introduced in4, but only after introduction of

stress relaxation and the ability to reproduce and explain typical stress distributions in

MD simulations1, can one claim the conceptual validity of this model.

Melting under a high heating rate and overheating are not only of fundamental inter-

est, but have also applied significance–e.g., for the melt-dispersion mechanism of reaction

of Al nanoparticles10. Interface velocities v are shown in Fig. 3 for two heating rates,

1012 K/s and 1013 K/s. Due to small particle size, homogeneous temperature is justified

10. For 1013 K/s, interface propagation stops at ri = 25.9 nm because homogeneous melt

nucleation and reduction of η in the region ri < 25.9 nm completes melting faster. An

increase in Λ decreases interface velocity, and the difference with the case with Λ = 0 is

larger for higher heating rate and smaller interface radii. Dots in Fig. 3 correspond to
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Figure 3.3 Interface velocity vs. interface position for different heating rates and Λ = 0.
Dots corresponds to analytical solution4. The two lowest curves for different
Λ coincide.

the analytical solution4.

Our results for Λ = 3× 10−2 and 3 are close to each other and to the sharp-interface

solution, while for Λ = 0 interface velocity is significantly higher. The promoting effect

of the elastic stresses on interface propagation (which confronts their suppressive effect

on initiation of melting) is consistent with the analytical solution4, i.e. to the linear

relationship between v and the thermodynamic force for interface propagation per unit

deformed volume of solid X when internal stresses are neglected:

v = 6Xχ
√
βρm/(2Aρs),

X =
ρs
ρ0s

H

(
1− θ

θe

)
+ pm

(
ρs
ρm
− 1

)
− 1

2

(
p2m
Km

− p2s
Ks

)
+

2γs−l
ri

. (8)

The elastic energy effectively increases γs−l and, consequently, the driving force. Note

that the temperature at some points in Fig. 3 significantly (up to 200 K) exceeds the

instability temperature of solid θi; still the sharp interface approach gives good results.

In Fig. 4, tangential deviatoric transformation strain and elastic stress are shown for

R = 40 nm and different interface positions at θ = 930.8 K. For all interfaces, there is

the common curve characterizing residual deviatoric strain at each point after interface
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passes through, and the major part of curves for each specific interface position is above

it. This results in compressive elastic deviatoric stresses with the maximum below 10

MPa. However, when the curve for an individual interface in Fig. 4a falls below the

common curve, tensile deviatoric stresses appear in Fig. 4b. With decreasing ri, smaller

deviatoric strain is required to reduce elastic stresses to the same and even a lower level.

Figure 3.4 Tangential deviatoric transformation strain (a) and elastic stress (b) for
R = 40 nm and Λ = 0.04, and θ = 930.8 K at different interface positions.

In summary, an advanced GL model for the coherent solid-melt interface with trans-

formation strain tensor, the deviatoric part of which is described by a thermodynamically

consistent kinetic equation, is developed. Corresponding relaxation of elastic energy pro-

duces a promoting contribution to the driving force for phase transformation in the GL

equation, both for melting and solidification. All types of interface stress distributions

from known MD simulations are obtained as a combination of surface tension and elastic

stresses with different degrees of relaxation. Without deviatoric transformation strain,

elastic stresses are overestimated by a factor of 5 to 10, which leads to qualitative con-

tradictions in the size dependence of melting temperature and temperature dependence

of the thickness of the surface molten layer. With the kinetic equation for eeet, good

agreement for both these relationships with experiments for Al nano- and large-size par-

ticles is obtained. Results can be generalized for large strain using methods developed

in11. A similar approach can be applied for sublimation-condensation12, amorphization-
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vitrification12, chemical reactions7, and other transformations for which eeet is not deter-

mined by geometry, both with and without the phase-field approach.

Support of NSF, AFOSR, and ARO is acknowledged.
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Abstract

While study of surface melting/melting/solidification of nanoparticles is of great fun-

damental and applied importance and a lot of progress is achieved, many of effects and

surprises are still to be predicted. Here we advanced the phase field approach to melting

by introducing the finite width ∆ξ of the external surface layer (particle-gas interface)

as the new scale parameter, which leads to revealing various phenomena and previously

unknown scale effects. Strong dependence of the melting temperature for nanoparticles

of various radii and the width of the molten surface layer on ∆ξ is found and comparison

with experiments led to an estimate for ∆ξ for Al in the range of 0.35 - 0.7 nm. In addi-

tion to traditional continuous barrierless surface melting for ∆ξ = 0, barrierless jump-like
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surface melting and thermally activated surface melting via critical nucleus (CN) are re-

vealed. Very rich temperature θ −∆ξ transformation diagram is found, which includes

various barrierless and thermally activated transformations between solid, melt, and

surface melt, and complex hysteretic behavior under various temperature and ∆ξ trajec-

tories. Bi-stable states (i.e., thermally activated switching between two states) between

solid and melt is found for 2 nm particle and between solid and surface melt for up to 5

nm particles, in a ∆ξ-dependent temperature range. Obtained results open unexplored

direction of controlling surface melting and melting/solidification by controlling width of

the external surface and utilizing predicted phenomena. They also can be expended for

other phase transformations (e.g., amorphization, diffusive and electromagnetic trans-

formations) and phenomena.

Introduction

Melting/solidification of nanoparticles and surface-induced premelting and melting

are fundamental problems with significant applied interest. Thus, melting / amorphiza-

tion / recrystallization of nanostructures are the main processes in the phase changed

materials utilized in memory devices1 and energy-saving technologies2. Melting plays an

important role in the combustion of nanoparticles3. Surface melting increases reactivity

of substances (e.g., explosives4), leads to reshaping of nanoobjects5, and to transforma-

tion from one solid phase to another5, which otherwise cannot nucleate. Fundamental

interest is related to understanding of behavior of materials with comparable bulk and

surface energy; size-dependent melting at temperatures θ, when bulk melt is not only

deeply in the region of stability of solids, but even unstable6, 7, 8, 9, 10, 11, 12; appearance

of the few nm size premolten and molten surface layer much below bulk melting tem-

perature θe
13, 14, 6, 7, 8, 9, 11, 12; melting of the particles with size comparable to the size

of solid-liquid interface and surface melt, which may be in the heterogeneous intermedi-

ate state between solid and melt6, 7, 8, 9, 12; and spontaneous multiple switching between
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solid and melt in the few nm size particles leading to bi-stable state9, 15. While molecu-

lar dynamics (MD) can in principle handle some of the above problems9, 16, phase field

approach (PFA) is an ideal continuum tool to study all the above phenomena. It utilizes

thermodynamic and kinetic parameters (determined by experiment and MD) and may

be applicable at larger time and space scales than MD; in some cases (see7 and here), it

gives even better description of melting of nanoparticles than MD.

Despite the significant progress in PFA to melting of nanoparticles7, 8, 12, there is one

important drawback: while PFA resolves finite width interfaces and surface molten layer,

external surface is considered as the sharp one, while it has comparable width. Recently

17, we developed phase field approach to martensitic transformations which resolves a

finite width of the plane external surface and revealed multiple coupled effects of ∆ξ and

mechanics and morphological transitions in the surface layer. While these effects and

transitions are not relevant for melting, here we will modify theory17 for the description

of melting of nanoparticles and applied it to predictions and comprehensive study of new

scale effects. Note that ∆ξ can be varied by changing external media and by surface

treatment. It is found that this neglected parameter, ∆ξ strongly affects the melting

temperature for nanoparticle of any radius R and the width of the molten layer h. In

fact, for small dimensionless ∆̄ξ = ∆ξ/∆η, where ∆η is the equilibrium width of the

solid-melt interface, melting temperature slightly reduces with increasing ∆̄ξ. There is

a critical ∆̄∗ξ (reducing with reduced particle radius R), above which system behavior

drastically changes. Thus, barrierless melting temperature has jump in slope and grows

significantly with increasing ∆̄ξ. Such a drastic change is caused by the disappearance

of barrierless surface melting, i.e., particle remains solid until it barrierlessly completely

melts. However, for ∆̄ξ > ∆̄∗ξ , other stable solution for the surface molten layer ap-

pears, which cannot be reached barrierlessly, but can be achieved by thermal activation,

provided that the kinetic nucleation criterion is met. Consequently, one more unstable

solution for the surface melt is found, which represents a critical nucleus between solid
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and molten surface layer. While at relatively high temperatures critical nucleus cov-

ers part of the surface, it unexpectedly transforms to the spherical shell with reduced

temperature. One more regime of surface melting below ∆̄∗ξ and above ∆̄d
ξ represents

a jump-like (discontinuous) appearance of the molten layer, which causes temperature

hysteresis in transformations between solid and surface melt. At another, larger, critical

value ∆̄c
ξ, stable surface melt ceases to exists and surface critical nucleus leads directly

to complete melting. Also, for small ∆̄ξ and even for sharp external surface, when bar-

rierless melting through continuous or discontinuous surface melt is possible, thermally

activated melting occurs slightly below barrierless melting temperature (e.g., by 5.4 K

for Al nanoparticles with radius R = 5 nm), which should be taken into account in

interpretations of experiments. All these and other results are summarized into quite

sophisticated temperature-∆ξ transformation diagram for barrierless and thermally acti-

vated melting, which also includes barrierless and thermally activated solidification and

transformation from melt to surface melt. While some of transformations are possible at

fixed ∆̄ξ and variable temperature, other can occur at variable ∆̄ξ only. In particular,

surface melting at large ∆̄ξ is achievable during the ∆̄ξ increase only, leading to complex

processes for different θ− ∆̄ξ trajectories. Finally, in one of the regions of θ− ∆̄ξ trans-

formation diagram, transitions in both directions can occur via thermal fluctuations.

This leads to bi-stable states and switching between them. Thus, switching between

solid and melt is found for 2 nm particle, which is in agreement with MD simulations

9 and experiments15. Bi-stable state between solid and surface melt is predicted for up

to 5 nm particles. Obtained results introduce thermally activated nucleation in PFA

for melting/surface melting/solidification of nanoparticles; change interpretation of ex-

perimental data, which is different for slow and very fast heating, and open unexplored

direction of controlling surface melting and melting/solidification by controlling θ − ∆̄ξ

through changing surrounding medium and surface treatment.
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Phase field model

In addition to the order parameter η for melting with the values of 0 and 1 for melt

and solid, respectively, we introduce the order parameter ξ that describes transition

between particle (solid or melt) and surrounding material (e.g., gas) at external surface

layer, which is 0 for particle and 1 for surrounding. The Helmholtz free energy per unit

volume can be written as:

ψ = ψθ + ψ∇ + ψξ (1)

ψθ = H(θ/θe − 1)φ(η) + 3H(1− θc/θe)η2(1− η)2 ; ψ∇ = 0.5β|∇η|2 (2)

φ(η) = η2(3− 2η) (3)

where ψθ and ψ∇ are thermal energy and gradient energy, respectively, θc is the

melt instability temperature, ∇ and β are the gradient operator and gradient energy

coefficient, H is the heat of fusion, and ψξ is energy of the external surface layer. Since

we do not intend to study evaporation of particle, we assume the simplest expression for

ψξ for equilibrium evaporation temperature:

ψξ = Jξ2(1− ξ)2 + 0.5βξ(∇ξ)2 =
γ(η)

∆ξ

(0.542∆2
ξ(∇ξ)2 + 16.62ξ2(1− ξ)2) (4)

where J and βξ are the material parameters. They are expressed through the width of

the surface layer ∆ξ and the variable surface energy γ(η) of the external surface (different

for solid and melt) from the condition that stationary planar particle-gas interface ξs(r)

(see Eq.(7)) has energy γ(η)17. Width ∆ξ is defined as the distance between points where

φ(ξs(r)) = 0.01 and 0.99. Using an irreversible thermodynamic procedure based on the

application of the first and second laws of thermodynamics to the system with energy

depending on the gradient of the order parameter, and assuming linear relation between

thermodynamic force and flux, the following expressions for the Ginzburg-Landau (GL)

equation for η and ξ can be obtained17:

1

χ

∂η

∂t
= −∂ψ

∂η
+∇. ( ∂ψ

∂∇η
) (5)



59

1

χξ

∂ξ

∂t
=
γ(η)

∆ξ

(1.083∆2
ξ∇2ξ − 66.48ξ(1− ξ)(0.5− ξ)) + 1.084∆ξ∇γ(η).∇ξ (6)

where χ and χξ >> χ are the kinetic coefficients. We assume a quasi-stationary

surface layer profile:

ξs = [1 + exp(5.54(R− r)/∆ξ)]
−1 (7)

and neglect its slight variation with heterogeneous variation of η. This is equivalent to

consideration of stationary solution to Eq.(6) with neglected last term. Strictly, Eq.(7)

is an analytical solution for a planar interface; however we found numerically that it

describes well profile for a spherical interface down to few nm particles. Only half of

particle-surrounding interface with 0 ≤ ξs ≤ 0.5 belongs to the particle r. Thus, we

prescribed this part with double energy and applied boundary condition dη/dr = 0 at

r = R. This is equivalent to the consideration of the entire surface layer, but more

convenient for computations. Numerical approach is described in the Method section.

For aluminum nanoparticles, the following material properties are used8: H = 933.57×

106J/m3, β = 3.21 × 10−10N (which corresponds to equilibrium solid-melt interface en-

ergy γsl = 0.1 J/m2 and width ∆η = 3nm), θe = 933.67K, θc = 746.9K,χ = 400m2/Ns,

γ(η) = γs + (γs − γl)φ(η) with γs = 1.05 J/m2 and γl = 0.931 J/m2 for solid and melt.

Results

Barrierless transformations

θ − ∆̄ξ diagram obtained by temperature variation at fixed surface layer

thicknesses

Fig.(4.1) shows transformation curves and regions of existence of different phases

(nanostructures) obtained by increasing/decreasing temperature at different fixed surface

layer thicknesses, ∆̄ξ obtained by solution of Eq.(5), i.e., without thermal fluctuations.

At small ∆̄ξ, solid black curve S↔SM designates continuous hysteresis-free two way
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transformation between solid, S and surface molten layer, SM. Along this line, minimum

value of η reaches ∼ 0.95, which is considered as appearance of the surface melt. This

value continuously decreases down to some critical value ηc with the temperature increase,

and increases up to one with temperature decrease.
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Figure 4.1 Temperature for barrierless transitions between different phases vs. dimen-
sionless surface layer thickness ∆̄ξ, for R = 5 nm.

When increasing temperature, the molten surface layer grows until it loses its sta-

bility (when η = ηc at r = R) and transforms to homogeneous melt (M) along red

curve SM→M, which is usually interpreted as melting temperature θm. Note that for

semi-infinite sample (R→ ∞), ηc = 0 and transition to melt is smooth7, 8. Melting

temperature for small ∆̄ξ slightly reduces with ∆̄ξ: θm= 877.62 - 18.29∆̄ξ and is well

below the bulk melting temperature θe = 933.67 K. This is related to fact that the

dimensionless thickness of the molten layer when it loses its stability is ∼3.3 nm and

much larger than ∆̄ξ. After completely molten phase is obtained, reducing temperature

does not yield phase transformation until dark blue curve M→S is reached, where melt

transforms directly to solid missing surface molten layer. Solidification starts at the
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center and propagates through particle. Note that solidification occurs below the melt

instability temperature θc = 746.9 K, i.e., when free energy even does not have minimum

for bulk melt. Solidification temperature is θs = 733.3 - 5∆̄ξ and slightly reduces with

∆̄ξ. Overcooling for barrierless solidification is also related to higher surface energy of

solid than melt and small particle size. If temperature is reduced after molten layer is

obtained but before reaching melting line SM→M, surface melt transforms to solid along

black curve S↔SM for ∆̄ξ < ∆̄d
ξ = 0.083. Red dot, with ∆̄ξ=∆̄d

ξ , and θd = 830.9 K

represents the point of appearance of jump-like transition from solid to molten layer,

S→SM transformation. Thus, at this point, the minimal value of η jumps from 1 to 0.74

at surface, instead of a continuous reduction.

For larger ∆̄ξ values, solid transforms to molten layer along the green curve S→SM

during heating, while with temperature reduction (before complete melting), reverse

transition SM→S occurs along brown curve. Thus, the line S↔SM for continuous trans-

formation splits into two lines for direct and reverse transformations with the hysteresis

region between them. Again, if temperature is increased after surface melt is obtained,

the surface melt transforms discontinuously to melt along the red line SM→M. So, in the

triangular region between green S→SM and brown SM→S curves, designation S↑M↓SM↓

means that the particle is in solid state when temperature is increasing from the solid

state S, in surface melt state when temperature is decreasing from surface melt state SM,

and in molten state, when temperature is decreasing from the melt M. Below the black

and brown curves, designation S↑M↓ (S↓ ←SM) means particle is in the solid state when

temperature is increasing from the solid state S; in the molten state, when temperature is

decreasing from the melt M, and in solid state when temperature decreases from surface

melt state SM.

After intersection of green S→SM and red SM→M curves at ∆̄ξ = ∆̄∗ξ = 0.16, solid

transforms directly to melt along light blue curve S→M, without surface melting. Lack

of the surface melting leads to drastic increase in the barrierless melting temperature
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and jump in slope of the melting curve at ∆̄ξ = ∆̄∗ξ . Note that melting temperature and

∆̄∗ξ reduce with reduction in particle size, starting with θm = θe and ∆̄∗ξ = 0.23 for plane

interface (Fig.4.2). For plane interface, melting temperature is constant below ∆̄∗ξ . After

melt is obtained, reducing temperature changes melt to solid along dark blue line M→S.
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Figure 4.2 Barrierless melting temperature vs. ∆̄∗ξ for particles of different sizes (a) and
vs particle size at different ∆̄∗ξ (b).

Transformation θ − ∆̄ξ diagram at variable surface layer thicknesses and

temperature

When variable surface layer thicknesses is allowable, two additional transformation

curves should be included. Thus, if we start from the surface melt for ∆̄ξ < ∆̄∗ξ and change

∆̄∗ξ and temperature within region between two dotted lines in Fig. 1, it will remain as a

surface melt. If starting from the surface melt we change ∆̄ξ and temperature in a way

that we cross the brown dotted line SM→S, a molten layer transforms to solid. If we cross

the red dotted line SM→M, surface melt completely melts. Note that for ∆̄ξ > ∆̄∗ξ , if we

started with solid or melt, nothing happens when we cross the dotted lines and a surface

melting cannot be obtained. Also note that all solid lines keep their meaning when they

are crossed by simultaneous change in surface layer thicknesses and temperature or any
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of these parameters alone. Arrows ↑ or ↓ mean that the line is crossed from below or

above, but not necessarily at constant ∆̄ξ. Possibility of changing ∆̄ξ adds two more

designations for the phase states in different regions, designated in red. Thus, above

the dotted line SM→M, an additional region (M↑←SM)of melt obtained from a surface

melt appears, and below the dotted line SM→S, an additional region (S↓←SM) of solid

obtained from a surface melt is possible.

Barrierless melting temperatures vs particle size R for various ∆̄ξ values are shown

in Fig.4.2.b along with experimental results from6. While for 5 nm < R < 20 nm results

for all ∆̄ξ < ∆̄∗ξ are close to experiments, for R = 2 nm, the best fit to experiments is

for ∆̄ξ = 0.117. However, ∆̄ξ depends on surrounding medium and conditions at the

surface.

Thermally activated transformations

While for ∆̄ξ > ∆̄∗ξ there is no surface melt solution that can be obtained barrierlessly

by increasing temperature, other stable solution for the surface molten layer appears,

which can be obtained from initial conditions η = 1 for r < r∗ and η = 0 for r∗ 6 r 6 R.

Such solution can be achieved from solid by thermal activation, provided that the kinetic

nucleation criterion is met. That also means that one more unstable stationary solution

for the surface melt should be found, which represents a critical nucleus between solid and

molten surface layer. Thus, solutions for the critical nuclei have been found (see Methods)

for various θ, ∆̄ξ and R and its energy is evaluated. For 5 nm particle and ∆̄ξ = 0.17

(Fig. 3), a non-spherical critical nucleus between solid and molten layer changes to a

spherical one as temperature reduces, which is quite unexpected geometry. The spherical

critical nucleus can be obtained using a 1-D model, which reduces computational time

by at least two orders of magnitude. Melting temperatures obtained using the 1-D model

are within 2 K difference of those obtained from the non-spherical model, which is within

acceptable difference range. It is interesting that the profile does not follow a monotonic
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trend with temperature, as shown in Fig. 4.3.c.
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Figure 4.3 Critical nucleus at 860 K (a) and 850 K (b) and in the temperature range
(c) for 5 nm particle with ∆̄ξ = 0.17.

We accept traditional criterion for thermally activated nucleation, ∆E = ECN −E 6

40kθ, where ECN and E are the energies of the critical nucleus and a specific state from

which it jumps to the critical nucleus, respectively, and k is the Boltzmann′s constant.

In Fig. 4.4.a, below 856.2 K, the difference between energies of critical nucleus and

surface melt is below 40kθ, i.e., system can jump from surface melt to critical nucleus.

After solution for the critical nucleus is introduced as an initial condition, small positive

perturbations in η lead to stationary solid, while small negative perturbations return it

back to surface melt. At 849.38 K, energies of a critical nucleus and surface melt are equal

(Fig. 4). At 849.37 K, molten layer transforms barrierlessly to solid and critical nucleus
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ceases to exist. Above 849.38 K, a jump from solid to CN is possible as well, leading

to appearance of molten layer, which exists up to 873.25 K. An important conclusion is

that in the range 849.38 K and 856.2 K both direct and reverse transformations between

solid and surface melt are kinetically possible. That means that system will switch

spontaneously in time between these two states, exhibiting bi-stable state.

0

1

2

3

4

5

6

848 852 856 860 864 868 872

Δ
E

(1
0

-1
9

J)

θ (K)

40kT

CN - SM

CN - solid

40kθ

2.70

2.75

2.80

2.85

2.90

840 850 860 870 880

E
(1

0
-1

6
J
)

θ (K)  .

CN (S-SM) solid

CN (SM-M) melt

surface melt

0

1

2

3

4

5

720 730 740 750 760 770 780

Δ
E

 (
1
0

-1
9

J)

θ (K)

0.1

0.13

0.17

0.067
0.033

40kθ
CN-SM(S)
CN-melt

 

 

 

 

 

 

 
(a)                                                                (b)                                                        

 

 

 

 

 

 

                                                        (c) 

Figure 4.4 Energy difference between critical nucleus, solid and surface melt (a) and
energies of solid, surface melt, melt and critical nuclei between solid and
surface melt and surface melt and melt (b) for 5 nm particle with ∆̄ξ =
0.17; energy difference between critical nucleus, solid (molten layer) and
melt for 2 nm particle (c).

Energies of solid, surface melt, melt and critical nuclei between solid and surface
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melt and surface melt and melt are shown in Fig. 4.4b. It exhibits all phase equilibrium

temperatures and all transformations in different temperature ranges. As mentioned, at

849.38 K, critical nucleus and surface melt have equal energies while at 876 K which

is slightly below melting temperature (877.05 K), energies of solid and critical nucleus

are equal. With R = 5 nm and ∆̄ξ = 0.17. Solid transforms to melt directly without

appearance of surface molten layer at 877.05 K.

Next we investigated the possibility of bi-stable states between solid and melt. While

for 5 nm particle with ∆̄ξ = 0.17, they cannot be found, for 2 nm particle bi-stability can

happen in the range ∆̄ξ = 0.033 - 0.17 (Fig. 4.4c). E.g., for ∆̄ξ = 0.067, temperature

range for bi-stability is 738.00 K to 758.45 K; above 758.45 K, energies of critical nucleus

and molten layer are equal and no CN exists, since solid transforms barrierlessly to melt.

This is why for ∆̄ξ = 0.033, 0.067 and 0.1, blue curves in Fig. 4.4c do not intersect with

40kθ energy line. Our result for size range of bi-stability between solid and melt are in

agreement with MD simulations9, where they observed bi-stability for nanoparticles with

fewer than 850 atoms (25 Å u 800 atoms). However, the bi-stability temperature range

for 2 nm particle in [11], ∼ 525 K to 590 K is more than 200 K below our bi-stability

temperature range. However, the melting temperature of ∼ 550 K for 2 nm particle in9

is also 240 K below that from experiments6. For the 2 nm particle with ∆̄ξ = 0.12, our

model perfectly describes experiments (Fig. 4.2b).

Transformation diagram

Excluding barrierless two-way continuous transformations S↔SM for ∆̄ξ < 0.083, all

other transformations may occur via critical nuclei at smaller driving forces (Fig. 4.5).

Thus all dashed lines in Fig.4.5 corresponds to the fulfillment of the criterion ∆E=40kθ

for corresponding CN. In particular, along the dashed orange straight line M→SM(CN)

with the slope -3.488 K, homogeneous molten particle fluctuationally transforms to the

SM during cooling. Similar, along the dashed blue straight line M→S(CN) with the
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slope -0.778 K, homogeneous molten particle fluctuationally transforms to the solid.

Solidification via critical nucleus occurs 72 K above the barrierless solidification. Similar,

straight dashed red lines SM→M(CN) of slope -13.46 K below ∆̄ξ = 0.16 and -20.73 K for

∆̄ξ > 0.16 for kinetic transformation of a surface melt to melt is approximately parallel

to the similar line SM→M for barrierless melting of the surface melt and is 5.4 K below.
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The line SM→S(CN) for kinetic solidification of a surface melt is 0.85 - 7.5 K above

the corresponding line SM→S for barrierless solidification. As a result, temperature

range for the existence of a surface melt when thermal fluctuations are taken into ac-

count is essentially narrower than for thermodynamic treatment. The line S→SM(CN),

along which solid is transformed to a surface melt via critical nucleus starts from the same

point A from which thermodynamic S→SM and SM→S curves and kinetic SM→S(CN)



68

curve exit. Close to the point A, kinetic S→SM(CN) curve practically coincides with

thermodynamic curve SM→S for the opposite transformation. At point A, energy of

molten layer, solid, and CN between them are equal and CN and molten layer do not

exist at a lower temperature. Kinetic S→SM(CN) and barrierless SM→S curves coincide

for ∆̄d
ξ < ∆̄ξ < ∆̄∗ξ . For larger ∆̄ξ, kinetic S→SM(CN) curve is essentially higher than the

thermodynamic SM→S one. After the kinetic curve S→SM(CN) intersects and is above

the kinetic line SM→M(CN), a double transformation occurs: first, solid transforms to a

surface melt, then surface melt transforms to melt, both through critical nuclei (shown as

S→SM→M). Above the doted thermodynamic line SM→M, surface melt does not exist

because it melts barrierlessly. That is why along the kinetic blue line S→M(CN), solid

directly melts via a critical nucleus. Remarkably, in the dashed hatched region between

lines S→SM(CN) and SM→S(CN), both appearance of a surface melt at the solid surface

and its reverse transition to the solid are kinetically possible. That means that system

is in a bi-stable state and surface melt will spontaneously appear and disappear in time.

Interpretation of experimental melting and solidification temperatures

There are two main definitions of the melting temperature for nanoparticles in the

sharp-interface approach: based on equality of the free energy of completely molten

and solid or energy of melt and energy of solid with surface melt. However, due to

hysteresis, these are not actual transition temperature. When barrierless surface melting

was suppresses by not fulfillment of the necessary condition γs−γl > γsl, simplified kinetic

approaches have been applied, e.g.,10, 11. They have never been applied when barrierless

surface melting was possible. In the PFA12 melting temperature also was defined by

equality of the free energy of completely molten and solid. In7, 8 we defined melting

temperature as the transformation temperature at which surface melt losses its stability

and transforms to complete melt. Here, in Fig. 4.1, we expended the same definition for

barrierless transformations between solid, melt, and surface melt as function of ∆̄ξ. Since
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in Fig.4.1 thermal fluctuations are neglected, this transformation diagram is valid for very

fast heating/cooling only. Fig.4.5 offers much more realistic transformation diagram for

traditional heating/cooling rates, based on kinetic nucleation criterion. Since CN does

not represent complete phases η = 0 or 1 but some intermediate states, and because

of necessity to resolve external surface, surface melt, and solid-melt interfaces, similar

kinetic sharp interface approach could not be applied.
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Figure 4.6 Kinetic melting temperature vs R at different ∆̄ξ values.

Kinetic results differ essentially from results based on equality of energies and barrier-

less nucleation. Thus, for 5 nm particles, in comparison with barrierless transformations,

kinetic approach extends region when surface melt can be obtained at constant ∆̄ξ from

∆̄∗ξ to ∆̄k
ξ , reduced melting temperature by 5.4 K below ∆̄∗ξ and by 5.4 − 53.7 K above

∆̄∗ξ . It also introduced kinetic transition from melt to surface melt, which cannot occur

barrierlessly. Thermally activated solidification of melt occurs by 72 K higher than bar-

rierless solidification. Comparison of predictions of the kinetic melting temperature with

experiment is presented in Fig. 4.6. It allows us to choose the best value of ∆̄∗ξ for Al.
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Conclusions

Melting of aluminum nanoparticles with surface layer between solid and gas is studied.

The results show that neglecting the effect of surface layer can underestimate thickness

of the surface molten layer and melting temperatures. Small surface layer thicknesses

(∆̄ξ < 0.17) change melting temperatures only for small nanoparticles (R < 5 nm). To

study the possibility of bistability between solid, surface melt and molten phases, crit-

ical nucleus between different phases was obtained. Critical nucleus increases in size

with reduction of temperature. The initial non-spherical critical nucleus can change to a

spherical shape at lower temperatures. While bistability is observed between solid and

surface melt for 5 nm particle with ∆̄ξ = 0.17, for the same model, bistability does not

happen between solid and melt. Only in smaller particles (R = 2 nm) bistability appears

between solid and melt, which is in agreement with MD results. The temperature range

for bistability from our model is different from those obtained in MD analysis, while

melting temperatures from current study are in much better agreement with experimen-

tal data than those from MD simulations.
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CHAPTER 5. GENERAL CONCLUSIONS

General Discussion

To study melting related phenomena in aluminum nanoparticles, We developed an

advanced phase field model coupled to mechanics. In chapter 2, Melting temperature

and thickness of surface molten layer were compared to experimental results and good

agreements were observed. Indeed melting temperatures from our model are in better

agreement with experiments compared to molecular dynamics results. Although the

sharp interface approach can be used for melting of nanoparticles, but when the interface

thickness is comparable to particle size, the phase field approach is more precise. Also for

fast heating rate problems, only the phase field approach can predict the homogeneous

melting of the particle. The coherent solid-melt model was proved to be valid for melting

related problems, but it was also shown more advanced models are needed to compensate

the terms that suppress melting. For this, in chapter 3, deviatoric transformation strain

was added to the model to relax the elastic energy, which suppresses melting. Different

interface stress distributions similar to those from molecular dynamics simulations were

obtained.

In chapter 4, transition between particle and surrounding at the external surface

was included in the model. It was shown that the melting temperature is strongly

dependent on the thickness of the external surface layer thickness. Both barrierless and

thermally activated melting via critical nucleus were studied and transformation diagram

for different transitions between solid, surface melt and melt was obtained. These results
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open new directions for controlling melting-related phenomena by controlling the surface

layer thickness and its interaction with the surrounding.


	2013
	Phase field approach for melting of aluminum nanoparticles
	Kamran Samani
	Recommended Citation


	tmp.1371837277.pdf.Prq7K

