
Graduate Theses and Dissertations Graduate College

2013

Electrostatic actuation based modulation of polar
molecules and associated force interaction studies
Xiao Ma
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Biomechanics Commons, Mechanical Engineering Commons, and the Nanoscience
and Nanotechnology Commons

This Dissertation is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted
for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Ma, Xiao, "Electrostatic actuation based modulation of polar molecules and associated force interaction studies" (2013). Graduate
Theses and Dissertations. 13488.
http://lib.dr.iastate.edu/etd/13488

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/43?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/13488?utm_source=lib.dr.iastate.edu%2Fetd%2F13488&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


i 

 

 

 

 

 

 

 

Electrostatic actuation based modulation of polar molecules and 

associated force interaction studies 

 

 

by 

 

 

Xiao Ma 

 

 

 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

Major: Mechanical Engineering 

 

Program of Study Committee: 

Pranav Shrotriya, Major Professor 

Marit Nilsen-Hamilton 

Sriram Sundararajan 

Shankar Subramaniam 

Monica Lamm 

 

 

 

 

 

 

Iowa State University 

Ames, Iowa 

2013 

Copyright © Xiao Ma, 2013. All rights reserved. 



ii 

 

 

 

TABLE OF CONTENTS 
 

 

LIST OF FIGURES ............................................................................................................ v 

LIST OF TABLES ........................................................................................................... viii 

ACKNOWLEDGEMENTS ............................................................................................... ix 

ABSTRACT ....................................................................................................................... xi 

CHAPTER 1.   INTRODUCTION ..................................................................................... 1 

1.1 Electrical field influence on conformational transition of charged molecules ......... 2 
1.2 Thrombin-aptamer pair as a sample model and micro-contact printing         

technique .................................................................................................................. 4 
1.3 Force spectroscopy on determination of binding forces between                          

bio-molecules ........................................................................................................... 7 
1.4 Molecular dynamics simulation on monolayer thin film under electrostatic    

stimuli ....................................................................................................................... 9 

CHAPTER 2.   ELECTROSTATIC ACTUATION BASED MODULATION OF 

INTERACTION BETWEEN PROTEIN AND DNA APTAMER .................................. 12 

2.1 Abstract .................................................................................................................. 12 
2.2 Introduction ............................................................................................................ 13 
2.3 Methods .................................................................................................................. 17 

2.3.1 Test of binding specificity ............................................................................... 17 
2.3.2 Test of electrical field influence ...................................................................... 19 

2.4 Results and Discussion ........................................................................................... 21 
2.4.1 Test of binding specificity ............................................................................... 21 
2.4.2 Test of electrical field influence ...................................................................... 25 

2.5 Conclusion .............................................................................................................. 28 
2.6 Appendix ................................................................................................................ 29 

CHAPTER 3.   ATOMIC FORCE MICROSCOPE BASED FORCE     

SPECTROSCOPY MEASUREMENTS OF THE THROMBIN-APTAMER 

INTERACTION ................................................................................................................ 31 

3.1 Abstract .................................................................................................................. 31 
3.2 Introduction ............................................................................................................ 32 
3.3 Methods .................................................................................................................. 35 
3.4 Results and Discussion ........................................................................................... 39 
3.5 Conclusions ............................................................................................................ 49 
3.6 Appendix ................................................................................................................ 50 

CHAPTER 4.   DYNAMIC FORCE SPECTROSCOPY STUDY ON  

ELECTROSTATIC ACTUATION OF BINDING INTERACTION BETWEEN 

THROMBIN AND DNA APTAMER .............................................................................. 51 

4.1Abstract ................................................................................................................... 51 
4.2 Introduction ............................................................................................................ 52 



iii 

 

 

 

4.3 Methods .................................................................................................................. 55 
4.4 Results and discussion ............................................................................................ 58 
4.5 Conclusion .............................................................................................................. 66 
4.6 Appendix ................................................................................................................ 67 

CHAPTER 5.   MOLECULAR DYNAMICS SIMULATION OF ELECTRICAL   

FIELD INDUCED CONFORMATIONAL TRANSITION AND ASSOCIATED 

FRICTIONAL PERFORMANCE OF MHA MONOMOLECULAR FILMS ................. 73 

5.1 Abstract .................................................................................................................. 73 
5.2 Introduction ............................................................................................................ 74 
5.3 Method .................................................................................................................... 78 

5.3.1 Initial Ensemble and Interatomic potentials .................................................... 78 
5.3.2 Procedure for conformation simulation ........................................................... 81 
5.3.3 Procedure for indentation and sliding simulation ............................................ 81 

5.4 Results .................................................................................................................... 83 
5.4.1 SAM conformation as function of electrical field ........................................... 83 
5.4.2 Friction simulation ........................................................................................... 92 

5.5 Conclusions .......................................................................................................... 100 
5.6 Appendix .............................................................................................................. 101 

CHAPTER 6.   SIMULATION AND EXPERIMENTAL INVESTIGATION OF 

ELECTRICAL FIELD MODULATED SELF ASSEMBLED MONOLAYER ............ 104 

6.1 Abstract ................................................................................................................ 104 
6.2 Introduction .......................................................................................................... 105 
6.3 Experiment ........................................................................................................... 107 

6.3.1 Preparation of low-density MHA SAM ......................................................... 107 
6.3.2 AFM based experiment for adhesion and friction measurement ................... 108 

6.4 Simulation ............................................................................................................ 109 
6.4.1 Model and interatomic potential .................................................................... 109 
6.4.2 Procedure of simulation ................................................................................. 110 

6.5 Results and discussion .......................................................................................... 110 
6.6 Conclusion ............................................................................................................ 123 

CHAPTER 7.   MOLECULAR DYNAMICS SIMULATION OF PEG SAM’S 

CONFORMATIONAL TRANSITION AND FRICTIONAL PERFORMANCE    

BASED ON ELECTROSTATIC STIMULATION ....................................................... 125 

7.1 Abstract ................................................................................................................ 125 
7.2 Introduction .......................................................................................................... 126 
7.3 Method .................................................................................................................. 132 

7.3.1 Initial ensemble and interatomic potentials ................................................... 132 
7.3.2 Procedure for conformation simulation ......................................................... 135 
7.3.3 Procedure for indentation and sliding simulation .......................................... 135 

7.4 Results .................................................................................................................. 137 
7.4.1 Conformation simulation ............................................................................... 137 
7.4.2 Friction simulation ......................................................................................... 145 

7.5 Conclusions .......................................................................................................... 149 
7.6 Appendix .............................................................................................................. 149 



iv 

 

 

 

CHAPTER 8.   CONCLUSIONS ................................................................................... 153 

REFERENCES ............................................................................................................... 157 

APPENDIX   STATISTICAL TECHNIQUES UTILIZED TO OBTAIN         

PHYSICAL INSIGHTS .................................................................................................. 173 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 



v 

 

 

 

LIST OF FIGURES 
 

 

 

Fig. 1-1 Electrical field influence on charged DNA molecule ........................................... 3 

Fig. 1-2 Thrombin and apatamer structure ......................................................................... 6 

Fig. 1-3 Micro-contact printing technique .......................................................................... 7 

 

Fig. 2-1 Schematic procedure for establishing the binding pair nanostructure ................ 18 

Fig. 2-2 Setup of three electrode system for testing electrostatic interaction ................... 20 

Fig. 2-3 Schematic of bound and dissociated state of the thrombin-aptamer pair ............ 20 

Fig. 2-4 Image processing scheme for height analysis ..................................................... 21 

Fig. 2-5 AFM images of non-electrical field conditions................................................... 23 

Fig. 2-6 Statistical results of AFM surface height measurement results for ..................... 25 

Fig. 2-7 AFM images of electrical field applications ....................................................... 27 

Fig. 2-8 Statistical results of AFM surface height measurement results for ..................... 28 

 

Fig. 3-1 AFM experiment configuration for force interaction measurement ................... 36 

Fig. 3-2 Representative force curves for thrombin coated tip interaction with the    

functionalized surfaces ........................................................................................ 40 

Fig. 3-3 Sample force curve for computing nominal and real loading rate ...................... 43 

Fig. 3-4 Rupture force distribution of the thrombin-aptamer complex for                 

different loading rates imposed prior to final unbinding event ........................... 44 

Fig. 3-5 Rupture force distribution for the thrombin-poly(dA) complex at the           

lowest real loading rates (90pN/s) ....................................................................... 45 

Fig. 3-6 Autocorrelation function of rupture force distribution ........................................ 46 

Fig. 3-7 Force spectrum: linear dependence of unbinding force on logarithm             

loading rate .......................................................................................................... 49 

 

Fig. 4-1 ECAFM setup ...................................................................................................... 58 

Fig. 4-2 Representative force curves under electrical fields ............................................. 59 

Fig. 4-3 Rupture force distribution of thrombin-aptamer complex for different        

loading rate levels under -100mV ....................................................................... 61 

Fig. 4-4 Rupture force distribution of the thrombin-aptamer complex for different 

potentials under lowest loading rate level ........................................................... 62 

Fig. 4-5 Autocorrelation function of rupture force distribution for different          

potentials under lowest loading rate level ........................................................... 63 

Fig. 4-6 Force spectrum under different electrical field conditions .................................. 64 



vi 

 

 

 

 

Fig. 5-1 Schematic representation of the simulation box for loose-packed SAMs,  

periodic along the x and y directions and fixed along the z direction ................. 80 

Fig. 5-2 Energy output for conformation simulation ........................................................ 83 

Fig. 5-3 Top layer snapshot and typical configuration of loose packed MHA             

chains after applying electrical fields .................................................................. 85 

Fig. 5-4 Single chain snapshot and typical configuration of loose packed MHA        

chains after applying electrical fields .................................................................. 86 

Fig. 5-5 Top layer snapshot and typical configuration of close packed MHA             

chains after applying electrical fields .................................................................. 88 

Fig. 5-6 Single chain snapshot and typical configuration of close packed MHA        

chains after applying electrical fields .................................................................. 88 

Fig. 5-7 Oxygen distribution calculation of loose packed MHA chains........................... 90 

Fig. 5-8 Load–displacement profile for SAM indentation with a cylindrical           

indenter and selection of indentation depth for sliding simulations .................... 92 

Fig. 5-9 Frictional coefficient of loosed packed MHA SAMs.......................................... 96 

Fig. 5-10 Frictional coefficient of closed packed MHA SAMs ........................................ 96 

Fig. 5-11 Conformation changes in single chain from SAMs during the sliding          

process .............................................................................................................. 98 

 

Fig. 6-1 Scheme of preparation of low-density MHA SAM .......................................... 108 

Fig. 6-2 Scheme of AFM setup and electrical field application ..................................... 109 

Fig. 6-3 Energy output for conformation simulation ...................................................... 111 

Fig. 6-4 Top layer snapshot of low-density MHA chains after applying electrical       

fields .................................................................................................................. 113 

Fig. 6-5 Single chain snapshot of loose packed MHA chains after applying           

electrical fields .................................................................................................. 114 

Fig. 6-6 Height distribution of double bond oxygen atoms in carboxylic end              

group .................................................................................................................. 115 

Fig. 6-7 Comparison of oxygen and carbon height distribution ..................................... 117 

Fig. 6-8 Pull-off force measurement from AFM experiments ........................................ 118 

Fig. 6-9 AFM friction measurement for various applied electrical fields ...................... 119 

Fig. 6-10 RDF of oxygen atom distribution.................................................................... 121 

Fig. 6-11 Structure factor of carbon atoms in each methylene group ............................. 122 

 

Fig. 7-1 Initial configuration of PEG SAMs ................................................................... 133 

Fig. 7-2 Scheme of indentation and sliding simulation .................................................. 136 

Fig. 7-3 Energy output for conformation simulation ...................................................... 137 

Fig. 7-4 Representative configuration snapshot of individual PEG chains after      

applying electrical fields ................................................................................... 138 



vii 

 

 

 

Fig. 7-5 Top view of typical configuration of PEG SAMs after applying electrical     

fields .................................................................................................................. 139 

Fig. 7-6 Tilt angle calculation of PEG backbone chains ................................................ 140 

Fig. 7-7 2D structure factor of PEG backbone chains .................................................... 141 

Fig. 7-8 RDF calculation of OCCO dihedral groups ...................................................... 143 

Fig. 7-9 Normal density profile of the whole SAM chain .............................................. 145 

Fig. 7-10 Selection of indentation load on load-displacement curve .............................. 146 

Fig. 7-11 Frictional coefficients of closed packed PEG SAMs ...................................... 148 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

 

LIST OF TABLES 
 

 

Table 2-1 Height change summary of μCP experiment .................................................... 23 

 

Table 3-1 Distribution of force curves corresponding to interaction between          

thrombin and aptamer coated surface ............................................................... 41 

Table 3-2 Force quantum corresponding to each real loading rate region ....................... 46 

 

Table 4-1 Summary of force curves under electrical fields .............................................. 60 

Table 4-2 Force quantum corresponding to different potential conditions ....................... 63 

Table 4-3 Kinetic parameter estimation for each potential condition ............................... 66 

 

Table 5-1 Average height of oxygen atoms ...................................................................... 89 

Table 5-2 Percentage change of bonded energy ............................................................... 98 

 

Table 6-1 Average height of oxygen atoms .................................................................... 114 

Table 6-2 Comparison of counts for carboxyl and methylene group in top 6Å ............. 118 

 

Table 7-1 The ratio of dihedral potential change before and after application of     

electrical fields ............................................................................................... 144 

Table 7-2 The ratio of bonded energy change before and after indentation and         

sliding ............................................................................................................. 148 

 

 

 

 

 

 

 



ix 

 

 

 

 ACKNOWLEDGEMENTS 

 

 
First, I would like to express a sincere appreciation to my advisor Prof. Pranav 

Shrotriya for his guidance, help and patience during the past 6 years of research. Without 

his support, the work could not been accomplished.  

 

I would also like to express gratitude and appreciation to all of my committee 

members: Prof. Nilsen-Hamilton, Prof. Sundararajan, Prof. Subrmaniam, and Prof. Lamm. 

They served on my POS committee and provided me with quite a lot valuable 

suggestions and instructions to my research. 

  

My thanks extend to all professors and colleagues in the project, particularly to 

Prof. Curtis Mosher for many useful discussions, technical support and assistance. 

  

I would also like to thank all the lab colleagues, former and present: Janice 

Marquardt, Kyungho Kang, Yue Zhao, Therin Young, Miguel Rodriguez, and Yang 

Hong, with whom I shared and discussed a lot during this professional research route.  

 

I would like to thank my family for their support and love. They carried me 

through these years and provided me with strong support and encouragement. Without 

them, I could not imagine how I can overcome all of the obstacles during this long 

journal and finally reached the shore.   

 



x 

 

 

 

I would also like to express my gratitude on the financial support for this study, 

which was provided by National Institute of Justice and National Science Foundation 

Career grant CMMI-0547280 and US-DOE Ames Laboratory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

 

ABSTRACT 

 

Seamless integration of artificial components with biological systems to form an 

elegant biotic-abiotic interface or smart surface has promising application potential in 

biomedical engineering. The specific aim of this study is to implement the actuation and 

modulation of binding behavior between biomolecules under electrostatic stimuli, and 

investigate the corresponding force interaction between the complementary pairs. The 

nanofabrication technology was utilized to establish the patterned binding pair of 

thrombin and DNA aptamer on gold substrate, and different electrical fields were applied 

on the system to evaluate electrostatic influence. The atomic force microscopy (AFM) 

surface imaging was then used to explicate the surface height change after the removal of 

the electrical fields. The height change of the surface showed that positive electrical 

fields can successfully break the bonds between thrombin and aptamer, while moderate 

negative electrical fields kept the integral structure. The experimental studies implement 

the idea of electrostatic actuation and modulation of the complementary pair. The force 

interaction between the pair was then investigated through AFM based dynamic force 

spectroscopy (DFS). The open circuit DFS experiment was conducted first to clarify the 

magnitude of single molecule level force interaction between thrombin and aptamer, and 

the linear dependence of rupture force on logarithmic loading rate was observed. A single 

energy barrier model was used to understand the binding physics and kinetics. By fitting 

the model with experiment data, we could acquire important kinetic parameters toff and xβ. 

Then in-situ electrochemical atomic force microscopy (ECAFM) based DFS experiment 

was conducted to investigate the electrostatic influence upon molecular force interaction 

between thrombin and aptamer. The force interaction difference showed that positive 
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electrical fields lowered the dissociation force between thrombin and aptamer, while 

negative electrical fields held similar force level with zero potential. The ECAFM 

experimental studies further support the conclusion of electrostatic actuation and 

modulation of the complementary pair. Besides, the root cause for the change of binding 

behavior and force interaction between the biomolecules under electrostatic fields is the 

conformational transition of the molecules, which might be illustrated by the molecular 

dynamics (MD) simulation. Therefore, a MD based computational study was performed 

on self-assembled monolayer (SAM) with polar end group under the application of 

electrical fields to clarify the conformational transition and associated friction change of 

the monomolecular thin films. The simulation results showed that positive electrical 

fields can generate larger conformational transition of the SAMs, which led to a greater 

frictional coefficient drop of the surface, while negative electrical fields kept similar 

conformational state and frictional response as the zero potential. The simulation result 

provides another explanation of the electrostatic actuation based modulation of polar 

molecule functionalized surface.     
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1 

CHAPTER 1.   INTRODUCTION 
 

Seamless and exquisite integration of artificial components with biological 

systems to form a biotic-abiotic interface or a smart surface has recently attracted 

increasing interests. The structural and functional biotic-abiotic interface can lead to 

nanoscale, highly sensitive, and flexible bio-sensors and actuators, which may have broad 

and in-depth applications in biomedical and biomechanical field, such as modulating the 

activity of biological systems and biomolecules, locating disease, and repairing or 

reprogramming genetic information, and establishing brain-machine interface (BMI) to 

control external prostheses (Wong, Almquist et al. 2010), etc. Currently the tools for 

implementing the above objectives are far from complete, and one of the major 

challenges on the biotic-abiotic interface integration is to dynamically translate external 

stimuli into biochemical signals and efficiently transmit such signal into the biological 

processes. 

 

The objective of the proposed research is to investigate the binding behavior and 

force interaction between a ligand / receptor system - thrombin and aptamer - under 

electrical field actuation, and endeavor to obtain a mechanistic understanding of the 

binding mechanism. 

 

The central hypothesis for this study is that if application of electrical field 

induces controllable conformational transition in surface immobilized aptamer, then 

specific binding / dissociation of the counterpart thrombin can be achieved. In order to 

test this hypothesis, characterization of electrical field influence on biomolecular binding 
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via nanofabrication and atomic force microscopy (AFM) surface imaging and 

characterization of electrical field influence on intermolecular forces between thrombin / 

aptamer pair via AFM based dynamic force spectroscopy (DFS)  were carried out. 

 

In addition, in order to further understand the mechanism of conformational 

transition and its influence on the smart surface performance, a computational study of 

self-assembled monolayer conformational transition and friction performance change 

under the application of electrical fields were also carried out based on molecular 

dynamics (MD) simulation, which can provide information of conformational transition 

on upon monolayer thin film influenced by the external electrical fields. The associated 

frictional performance change due to the conformational transition implies the potential 

application of such electrostatic actuation based smart surface design.                 

   

1.1 Electrical field influence on conformational transition of charged molecules  

 

Among various kinds of external stimuli, such as such as pH (Hianik, Ostatna et 

al. 2007), temperature (Nguyen, Pei et al. 2011) and electro-chemical modifications 

(Gray and Winkler 1996; Willner 2005), electrostatic mechanisms have many advantages 

on communicating information in biotic-abiotic interface, allowing massively parallel 

actuation and measurement capabilities that will ultimately be essential for biomedical 

applications (Wong, Footer et al. 2008; Wong and Melosh 2009; Wong and Melosh 

2010). In addition, application of electrostatic fields is an efficient and feasible 

mechanism to induce conformational transition upon charged bio-molecules without 

harmful influence on the chemical stability. Electrostatic actuation provides a means for 
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influencing only near surface molecules, the double layer formed near the electrode leads 

to development of strong electrical fields that only affect the bio-molecules that are close 

or immobilized on the electrode surface, thus the conformational transition of the charged 

bio-molecules can be generated by relatively low external voltages. Rant et al. have 

demonstrated that the conformation of short DNA oligomers immobilized at low grafting 

densities can be reversibly switched by application of electrical fields (Rant, Arinaga et al. 

2004; Rant, Arinaga et al. 2007). Since DNA is negatively charged, positive voltages 

caused the DNA to flatten on the surface, while negative voltages caused the DNA to 

orient vertically, as shown in Fig. 1-1(a). Electrostatic fields can also influence self-

assembly and hybridization of DNA, as shown in Fig. 1.1(b). Positive voltages (+300 mV) 

applied to gold electrodes functionalized with single-strand DNA showed a three-fold 

enhancement in complementary DNA hybridization, while for negative voltage it was an 

order of magnitude lower.  

 

                 

        (a) conformational transition                                         (b) hybridization change 

Fig. 1-1 Electrical field influence on charged DNA molecule 

 

Electrostatic field based conformational transition is not limited to bio-molecules, 

Lahann et al. used an analogous approach to cause alkanethiol molecules to bend from a 
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vertical to a horizontal orientation by applying positive electrical field (Lahann, 

Mitragotri et al. 2003), so that charged functional groups were attracted to the electrode 

surface, exposing the hydrophobic alkane chain on the surface, which realized the 

macroscopic surface chemistry change from hydrophilic to hydrophobic
 
nature. Kanaga 

Karuppiah et al. utilized atomic force microscope (AFM) to evaluate the adhesion and 

frictional response of a low-density mercaptocarboxylic acid SAM under the application 

of electrical fields with different polarities (Karuppiah, Zhou et al. 2009), and discovered 

higher value of adhesion but lower friction level when negative bias electrical fields were 

applied to the SAM. They attributed the contrary observation between adhesion and 

friction to the crystalline order of sparse monolayer films, i.e., the higher friction under 

positive bias is attributed to the relatively disordered structure of the film, whereas the 

relatively ordered structure under negative bias may cause the friction to decrease.  

 

1.2 Thrombin-aptamer pair as a sample model and micro-contact printing 

technique 

 

Besides selecting the type of external stimuli (electrical fields) to induce 

conformational transition on biomolecules, it is also essential to choose an appropriate 

model biomolecular system to investigate the specific response.  

 

The coagulation catalytic enzyme thrombin and its DNA aptamer provide such a 

relevant and suitable sample model. Nucleic acid aptamers are a relatively new 

recognized type of molecules, with similar properties of ligand specificity and affinity to 

antibodies but with several specific advantages as components of sensors and biomedical 
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devices (Cullen and Greene 1989; Ellington and Szostak 1990; Hermann and Patel 2000). 

Aptamers are small (15 to 40 nt) with affinities for proteins and other large biomolecules 

in the picomolar to nanomolar range, and demonstrate exquisite specificity and stability 

for their receptors due to large structural changes in the binding process, which can be 

utilized for detection of the target (Jenison, Gill et al. 1994; Yang, Kochoyan et al. 1996), 

and thus can be a selection for various bio-molecules (Bode, Mayr et al. 1989; Tsiang, 

Gibbs et al. 1995; Tasset, Kubik et al. 1997; Lavrik, Sepaniak et al. 2004; Gronewold, 

Glass et al. 2005; Hianik, Ostatna et al. 2005) and biomedical materials and drugs (Lato, 

Boles et al. 1995; Wallis, Vonahsen et al. 1995; Wang and Rando 1995; Burke, Hoffman 

et al. 1997; Mannironi, DiNardo et al. 1997; Wallace and Schroeder 1998; Berens, Thain 

et al. 2001; Stojanovic, de Prada et al. 2001; Win, Klein et al. 2006). The large structural 

or conformational transition of aptamer associated with binding may be hindered or 

enhanced through application of electrical fields as demonstrated in previous paragraph.  

 

Thrombin, a catalytic enzyme, is involved in the synthesis of fibrin from 

fibrinogen during the blood clotting process, has a wide range of health effects in the 

human system. When thrombin is beyond the normal level, thrombosis may happen due 

to too much fibrin generated in the bloodstream; when thrombin is lower than the normal 

level, hemorrhage may happen due to too little fibrin generated. Thrombin has two 

binding sites to control its catalytic function (Bode, Mayr et al. 1989). The 1st one is the 

fibrinogen binding site, where the conversion of fibrinogen to fibrin occurs so as to 

enhance the coagulation process, and the 2nd one is heparin binding site, where heparin 

binds to thrombin to inhibit the coagulation process, as shown in Fig. 1-2(a). Thrombin 
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1nm 
2nm 

has a well established aptamer, which shows a hairpin structure formed by eight guanine 

bases sequenced in GGNTGGN2-5GGNTGG, known as G-quadruplex, as shown in Fig. 

1-2(b). The aptamer can fit into thrombin heparin binding site and affects the thrombin in 

the similar way as heparin (Bode, Mayr et al. 1989; Bock, Griffin et al. 1992). This 

aptamer has been shown in chemical assays to have high binding specificity (Bode, Mayr 

et al. 1989; Tsiang, Gibbs et al. 1995; Tasset, Kubik et al. 1997). The strong binding 

between thrombin-aptamer pair makes it both relevant and suitable for the study of 

binding behavior and force interaction of the binding pairs. 

.          

                                    (a) Thrombin                                                   (b) Aptamer 

Fig. 1-2 Thrombin and apatamer structure 

 

In order to test the binding specificity and conformational transition between 

thrombin-aptamer pair, micro-contact printing (μCP) is applied to study the height 

changes upon binding of thrombin / aptamer pair, which is a vell widespread methods for 

creating micro and nanoscale structures outlined by Kumar and Whitesides (Kumar and 

Whitesides 1993). To perform micro-contact printing, a flexible polymer poly(dimethyl 

siloxane) (PDMS) stamp is made from a mold. The alkanethiol solution is exposed to the 

stamp as an “ink”, and then the liquid is allowed to dry with a gas such as nitrogen. The 
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dried chemical species is then printed on a substrate with a known pattern. The PDMS 

stamp is then removed, leaving the pattern of the chemical species printed on the 

substrate, as shown in Fig. 1-3. After that solutions containing the objective 

complementary species are exposed to the substrate, and deposit on the adjacent area of 

the printed alkanethiol patterns to form the desired nanostructure subsequently. 

 

  

          (a) Stamp fabrication                                     (b) Printing process 

Fig. 1-3 Micro-contact printing technique 

 

1.3 Force spectroscopy on determination of binding forces between bio-molecules 

 

In the development of micro/nano bio-sensors and architectures, forces between 

biomolecules are a key factor to determine molecular binding specificity and stability. 

Low binding forces between a complementary pair of biomolecules may result in an 

unstable nanostructure, or a lack of sensor sensitivity. In addition, it becomes apparent 

that there was a need to measure the force of the interaction between biomolecules for a 

thoroughly understanding of the binding mechanism between the pairs. There is a variety 

of methods to detect the presence of a certain biomolcules, including charge transfer 
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sensors (Hianik, Ostatna et al. 2005), Love-wave sensors (Gronewold, Glass et al. 2005), 

microcantilever sensors (Lavrik, Sepaniak et al. 2004). While chemical assays and charge 

transfer sensors are not as dependent on binding forces for detection, wave sensors and 

microcantilever sensors require high specificity and stable binding forces.   

 

Dynamic force spectroscopy (DFS) is a method to directly measure binding forces 

between a single pair of complementary chemical species (Florin, Moy et al. 1994). In 

this method a single or multiple ligand/receptor pairs are pulled apart at a controlled rate, 

and the force required for breaking the intermolecular binding is measured as a function 

of the applied loading rate.  For the implementation on an AFM based DFS, the ligand 

molecules are immobilized on the AFM probe, while the receptor species are fixed on the 

substrate. The functionalized AFM probe with ligand is then brought into contact with 

receptor to establish a ligand-receptor bond, and subsequently pulled away at a controlled 

rate to break the bond. The measurements of this bond break force are performed a large 

number of times in order to obtain a statistically significant measure of the force 

interaction between the pair. This method has been used to determine the binding 

specificity and strength for biotin-avidin (Florin, Moy et al. 1994), single-stranded DNA 

pairs (Strunz, Oroszlan et al. 1999), alkanethiols (Oncins, Vericat et al. 2008), and many 

other complementary chemical species. Binding forces for these interactions were 

determined to be in the range of 30 to 150 pN (Basnar, Elnathan et al. 2006). 
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1.4 Molecular dynamics simulation on monolayer thin film under electrostatic 

stimuli 

 

Self-Assembled Monolayers (SAM) have attracted increasing interest as an active 

smart surface for applications in micro/nano electronics (Schon, Meng et al. 2001; Schon, 

Meng et al. 2001; Fan, Yang et al. 2002; Stapleton, Harder et al. 2003; Fan, Yao et al. 

2004), microfabrication (Ulman 1990; Jackman, Wilbur et al. 1995; Wilbur, Kumar et al. 

1996; Azzaroni, Schilardi et al. 2003; Liu and Cui 2005), nanotribology (Srinivasan, 

Houston et al. 1998; Maboudian, Ashurst et al. 2000; Sundararajan and Bhushan 2001), 

and several biomedical fields (Kane, Takayama et al. 1999; Zhao, Wang et al. 2011). 

These monomolecular assemblies can undergo conformational transition through 

application of external stimuli, such as temperature, pH of solvent, application of 

electrical fields, and electrochemical modifications (Vemparala, Kalia et al. 2004).   

Among different external stimuli, application of external electrical fields is a practically 

feasible and effectively controllable method without any detrimental influence on the 

chemical stability of SAM.  

 

All atom molecular dynamics (MD) simulation can serve as a computational tool 

to identify the influence of electrical field on conformational transitions and film 

structure of SAMs.  Vemparala et. al.
 
(Vemparala, Kalia et al. 2004) conducted MD 

simulation to investigate the electrical field induced conformational transition of fully 

packed polyethylene glycol (PEG) SAMs. Due to the polar nature of glycol end groups, 

the electrical field triggered the conformational transition from “all-trans” state to 

“gauche” state in the end groups. However due to the limited spatial availability in the 
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fully packed structures, the overall order and backbone chain orientation remained 

undisturbed during electrical field application.   

 

Several research groups have applied MD simulation to study the structural 

transition and its influence on frictional behavior of SAM. Harrison et. al. (Brenner, 

Harrison et al. 1991; Harrison, White et al. 1992; Harrison, White et al. 1995; Harrison, 

Mikulski et al. 2001; Mikulski and Harrison 2001; Harrison, Schall et al. 2008) 

introduced AIREBO potential to simulate structural and tribological properties of alkane 

SAMs using various materials such as carbon nanotubes, diamond surfaces, amorphous 

carbon surfaces and fullerenes as the indentation and sliding counterfaces. They 

compared odd number carbon (C13) with even number carbon (C14) system which differs 

in the orientation of the last carbon–carbon bond. The analysis of the probability 

distribution of methyl angle showed that the odd system has a comparatively larger extent 

of deformation, and a greater likelihood of gauche defects than the even system. Detailed 

sliding-direction force distribution suggested that the odd system contains a greater 

fraction of atoms that are capable of generating small pushing and resisting forces, while 

the even system prevails in enduring large pushing and resisting forces. They also 

reported that the flexible hydrocarbon SAMs can significantly reduce the mechanical 

excitation in the form of vibrational and rotational energy upon the interface lattice layers 

during sliding, thus effectively lowering the frictional resistance. They also discovered 

the friction coefficient increases with increasing applied normal load and decreasing 

temperature for certain crystallographic sliding directions, whereas it is approximately 

independent of sliding velocity. Chandross et. al. (Chandross, Webb et al. 2004; 
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Chandross, Lorenz et al. 2005) used MD simulation to study the adhesion and friction 

between ordered and disordered SAMs on silicon dioxide substrate. They introduced the 

disorder into SAMs by removing randomly selected chains from the originally well 

ordered crystalline substrate to generate defects and attaching chains onto an amorphous 

substrate. By applying relatively slow shear velocities and constant pressures onto SAMs, 

typical stick-slip motion was observed in full coverage ordered SAMs and disappeared in 

disordered one. Compared with the full coverage ordered SAMs, the friction coefficient 

of the disordered SAMs was found to be not sensitive to the coverage density, chain 

length and substrate.  

 

In summary, polar end groups such as carboxyl and glycol can generate 

conformational transition via application of electrical fields due to the non-concentric 

charge distribution of the polar groups. Simulation results show that the orientation of 

bonds in functional groups and crystallographic directions influence friction responses to 

a large extent for dense and ordered SAMs, and characteristic phenomena such as stick-

slip motion and periodicities of friction were observed. For sparse and disordered SAMs, 

the coverage density and chain length were found not to influence frictional performance. 

However, the study on frictional performance change of sparse and dense monolayer 

films due to large conformational transition induced by external stimuli is far from 

sufficient, which should be further clarified in our research. 
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CHAPTER 2.   ELECTROSTATIC ACTUATION BASED 

MODULATION OF INTERACTION BETWEEN 

PROTEIN AND DNA APTAMER 

(A paper prepared for submission to Nano Letters) 

 

Xiao Ma, and Pranav Shrotriya 

Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 

 

2.1 Abstract 

 

The need to design nanoscale, sensitive and flexible biotic-abiotic interface keeps 

increasing. The essential issue is how to facilitate biological signal transmission and 

modulation through controllable external stimuli. This requires a thorough understanding 

of the binding and dissociation process between bio-molecules under the stimuli. The 

purpose of this study is to demonstrate the binding and dissociation behavior between the 

coagulation enzyme thrombin and single-stranded DNA aptamer with application of 

electrical fields. Micro-contact printing was utilized to prepare compositionally patterned 

gold specimen with adjacent regions covered with alkanethiol and DNA aptamer 

molecules, then thrombin molecules were injected into the system to form the binding 

pair with aptamer. Different electrical field potentials were applied to the nanoscale 

structure by a three-electrode electrochemical cell. Due to the negatively charged nature 

of aptamer DNA strands, positive electrical field can trigger a large bending-down 

conformational transition of the aptamer, thus can break the bonds between binding pair. 
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Through Atomic Force Microscopy, height of the pattern was measured and the 

difference of height under different potentials can show the binding state of the pair. We 

can thus propose a method to actuate and modulate the dissociation behavior between 

thrombin and aptamer through the external electrostatic stimuli. 

 

Keywords micro-contact printing; atomic force microscopy; thrombin; DNA aptamer; 

electrostatic actuation and modulation 

 

2.2 Introduction 

 

Exquisite integration of artificial components with biological systems for building 

seamless biotic-abiotic interface has recently attracted increasing interest and attention. 

The nanoscale, structural and functional biotic-abiotic interface can lead to highly 

sensitive, biocompatible and flexible bio-sensors and actuators, which have enormous 

and broad applications in biomedical, and biomechanical fields, such as modulating 

biological systems and bio-molecule activity, locating disease, and repairing or 

reprogramming genetic information (Wong, Almquist et al. 2010), etc. Currently one of 

the major challenges on the biotic-abiotic interface design is to dynamically translate 

external stimuli into biochemical signals and efficiently transmit such signal into the 

biological processes. 

 

There are various kinds of external stimuli that can be applied to communicate 

information in biotic-abiotic interface and influence biomelecular interactions, and thus 

different mechanisms could be adopted for actuation and modulation of the interactions 
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in biomolecular systems. Hianik et al. (Hianik, Ostatna et al. 2007) investigated the 

influence of electrolyte ionic strength and pH on binding affinities between thrombin and 

32 mer DNA aptamer. They changed the concentration of NaCl in the buffer solution 

from 0 to 500mM,   and found the binding affinity between the pair decreased three folds, 

which might be caused by the shielding effect of the negative charges on DNA aptamer 

as well as on protein surface. They also tested the binding affinities of the pair under 

three electrolyte pH levels: 4.5, 7.5 and 8.8, and found the neutal pH conditions resulted 

in four folds binding affinity as the acidic and basic pH conditions. Nguyen et al. 

(Nguyen, Pei et al. 2011) characterized the temperature-dependent biomolecular 

interactions for the binding between L-arginine vasopressin and its RNA aptamer 

spiegelmer. They observed that the binding affinity of the pair reached the higher level 

under 36 to 45 °C, while maintained the lower level under two temperature zones (25 - 

33 °C and 50 - 65 °C). Willner et al. (Willner 2005) utilized the electron transfer 

mechanisms of redox-active protein to implement electrochemical activation of surface-

attached proteins, and successfully enhanced glucose oxidase and lactate dehydrogenase 

catalysis. However, it should be noticed that this method just applied to small sets of 

proteins and delicate synthetic modification was generally required (Gray and Winkler 

1996). 

  

Compared to above modulation mechanisms, electrostatic actuation has its own 

advantages on allowing massively parallel actuation, measurement capabilities and link 

to extensive semiconductor processing and circuit design, that could ultimately be 

essential for biomedical applications (Wong, Footer et al. 2008; Wong and Melosh 2009; 
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Wong and Melosh 2010). In addition, application of electrostatic fields is an efficient and 

feasible mechanism to induce conformational transition of charged or polar bio-

molecules. When applying electrical fields onto a biological system, the double layer 

formed near the electrode leads to generation of strong electrical fields within several 

nanometers, thus only affects the bio-molecules that are immobilized on or close to the 

electrode surface, which implies relatively low external voltages can induce substantial 

conformational transition of the bio-molecules without generating harmful byproducts. 

Rant et al. (Lahann, Mitragotri et al. 2003; Rant, Arinaga et al. 2004; Arinaga, Rant et al. 

2007) demonstrated that the conformation of short DNA oligomers immobilized at low 

grafting densities can be reversibly switched by application of electrical fields. Since 

DNA is negatively charged, positive voltages caused the DNA to flatten on the surface, 

while negative voltages caused the DNA to orient vertically. Wong et al. (Wong and 

Melosh 2009) found electrostatic fields can influence self-assembly and hybridization of 

DNA. Positive voltages (+300 mV) applied to single-strand DNA functionalized gold 

electrodes showed a three-fold enhancement in complementary DNA hybridization, while 

for negative voltage it was an order of magnitude smaller.  

                       

Besides applicable external stimuli, it is also essential to select an appropriate 

model bio-molecular system to investigate the specific response. The coagulation protein 

thrombin and its aptamer provide such a relevant and suitable sample model. Nucleic acid 

aptamers are a relatively new recognized type of molecules, with similar properties of 

ligand specificity and affinity to antibodies but having several specific advantages as 

components of sensors and biomedical devices (Ellington and Szostak 1990; Tuerk and 
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Gold 1990; Hermann and Patel 2000). They are small (15 to 40 nt) with high affinities to 

proteins and other large bio-molecules (kd values are in the picomolar to nanomolar 

range), and demonstrate exquisite specificities for their receptors due to large structural 

changes in the binding process, which can be utilized for detection of the target (Jenison, 

Gill et al. 1994; Yang, Kochoyan et al. 1996), selection of various bio-molecules(Lavrik, 

Sepaniak et al. 2004; Gronewold, Glass et al. 2005; Hianik, Ostatna et al. 2005) and 

biomedical materials and drugs (Wang and Rando 1995; Stojanovic, de Prada et al. 2001; 

Win, Klein et al. 2006). Thrombin is a catalytic enzyme taking effect in the synthesis of 

fibrin from fibrinogen during the blood clotting process, has a wide range of health 

effects in the human system (Bode, Mayr et al. 1989). Thrombin has a well established 

aptamer, which shows a hairpin structure formed by eight guanine bases sequenced in 

GGNTGGN2-5GGNTGG, known as G-quadruplex. The aptamer can fit into thrombin 

heparin binding site and affects the thrombin in the similar way as heparin (Bock, Griffin 

et al. 1992). This aptamer has been shown in chemical assays to have high binding 

affinity (Bode, Mayr et al. 1989; Tsiang, Gibbs et al. 1995; Tasset, Kubik et al. 1997). 

The strong and specific binding between thrombin and aptamer makes it suitable for 

current study. 

 

In order to verify the actuation and modulation on the model biomolecular system 

via electrostatic stimuli, the binding specificity and affinity between thrombin-aptamer 

pair must be first proved. Micro-contact printing (μCP), a widespread method for creating 

micro and nanoscale structures outlined by Kumar and Whitesides (Kumar and 

Whitesides 1993), is utilized for this purpose by generating the height changes upon 
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binding of thrombin/aptamer pair, and  the height change was characterized by Atomic 

Force Microscopy surface imaging. After the specific binding between thrombin and 

aptamer was verified, different electrical fields were exerted on the pair and AFM surface 

imaging was utilized again to characterize the height changes, and compare to the results 

of nonelectrical field situation so as to acquire the information of binding or dissociation 

state of the pair. 

 

2.3 Methods  

2.3.1 Test of binding specificity 

 

All chemicals required for the experiments were purchased from Sigma Aldrich 

(www.sigma.com), and all oligonucelotides were purchased from Integrated DNA 

Technologies (www.idtdna.com).  All solutions were prepared with double distilled water 

(ddH2O). 

 

The scheme of building nanostructure of hexadecanethiol, aptamer and thrombin 

in a series of steps is shown in Fig. 2-1. To perform micro-contact printing, a flexible 

polymer poly(dimethyl siloxane) (PDMS) stamp was made from a mold using a AZ3514 

photoresist master, with 5 μm diameter pattern and 10 μm spacing among patterns. The 

PDMS was cured at 60°C for a minimum of 12 hours. Then hexadecanethiol was exposed 

to the stamp as a ink in liquid, and the liquid was dried with a gas such as nitrogen. The 

dried hexadecanethiol was then printed and adhered on a substrate with a known 

distributed pattern. The PDMS stamp was removed, leaving the pattern of the 

hexadecanethoil printed on the substrate.  



18 

 

 

 

 

After that a solution containing 3.4 μM 5’ thiolated thrombin aptamer (HS-

GCCTTAACTGTAGTACTGGTGAAATTGCTGCCATTGGTTGGTGTGGTTGG) in 

ddH2O was exposed to the substrate. Due to the strong covalent bonds between gold 

substrate and thiol group, hydrophicility of the aptamer molecules, and well packed 

hexadecanethiol chains, aptamer molecules can only be immobilized on the bare gold 

surfaces, i.e. the spacing area among the hexadecanethiol patterns, leading to a 

compositionally patterned sample. 

 

To bind the aptamer with thrombin, 10 μM concentration of thrombin in binding 

buffer with Tween20 included to decrease non-specific binding (20 mM Tris-HCl, 140 

mM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM MgCl2, 5% glycerol v/v  and 0.05% Tween20 

v/v in ddH2O at pH 7.4) was deposited on the printed surface. The mixture was allowed 

to stand for 1 minute before being rinsed several times in binding buffer with NP40 

included (20 mM Tris-HCl, 140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM MgCl2, 5% 

glycerol v/v and 0.05% NP40 v/v in ddH2O at pH 7.4) followed by rinsing several times 

with ddH2O. 

 

  (a) Hexadecanethiol printed        (b) Aptamer deposited          (c) Thrombin bound with aptamer 

Fig. 2-1 Schematic procedure for establishing the binding pair nanostructure 

in a compositionally patterned sample 
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Atomic Force Microscopy surface imaging was then utilized to measure the 

height change of the surface with 12 runs for each situation independently to acquire 

sufficient statistical significance, and different operators involved in the data analysis of 

the AFM surface topographic image so as to eliminate or reduce the bias of the 

measurement.   

 

In order to test the binding specificity, two control groups of binding pair 

supposed to have non-specific binding or non-binding features were considered in the 

experiment. One is aptamer and γ-thrombin, the other is 5’ thiolated poly A (pHS-A30) 

and thrombin. The nanostructure preparation process and AFM characterization of those 

pairs are similar to the above procedures for objective pair (aptamer-thrombin).   

 

2.3.2 Test of electrical field influence 

 

Based on the nanostructure built as Fig. 2-1 (c), i.e. the bound state of aptamer 

and thrombin, different electrical field strength of -300mV, -100mV, 0mV, 100mV and 

300mV were applied onto the structure respectively for 1min each via regular three 

electrode system, as shown in Fig. 2-2. The sample serves as the working electrode, while 

a silver wire is used as a reference electrode and platinum wire as a counter electrode to 

maintain the constant potential value. After electrical fields were removed, we utilize 

AFM surface imaging again to validate the height change of the surface with 12 runs for 

each potential condition. 
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Fig. 2-2 Setup of three electrode system for testing electrostatic interaction 

 

By applying the electrical field onto the binding pair nanostructure, there might be 

two possible states for the sample, as shown in Fig. 2-3. The binding pair may resist the 

external electrical field influence and maintain the structure, as shown in Fig. 2-3(a), then 

the height stateof the sample measured by AFM surface imaging will keep the same level 

as the case shown in Fig. 2-1(c); or the electrical field can break the pair, as shown in Fig. 

3(b), then the height state of the sample measured by AFM surface imaging will be 

changed and showed as the case shown in Fig. 2-1(a) or (b). 

                                  

                (a) Bound state of the pair                                       (b) Dissociated state of the pair 

Fig. 2-3 Schematic of bound and dissociated state of the thrombin-aptamer pair 
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The data analysis scheme of the AFM topographic images is shown in Fig. 2-4. 

On each AFM image, a 3 um × 3 um section area was selected from the pattern center 

(denoted as the diagonal-line square) to calculate the height for the pattern, and four 3 um 

× 3 um section areas surround the pattern was selected (denoted as the vertical-line 

square) to calculate the average value of background height. Then the subtraction of the 

pattern height from the background height rovided the height difference information for 

each image. 

 

 

 

 

 

 

 

 

Fig. 2-4 Image processing scheme for height analysis 

  

2.4 Results and Discussion 

2.4.1 Test of binding specificity 

 

The AFM surface topographic images under non-electrical field conditions are 

shown in Fig. 2-5, Alkanethiol was first printed onto gold substrate with the assigned 

pattern, the average height difference between alkanethiol and gold surface is -1.7 nm 

(gold height – alkanethiol height) through data analysis. Then aptamer molecules were 

printed on gold surface, since the alkanethiol occupies the position of round pattern, 
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aptamer can only reside on the bare gold substrate area among the alkanethoil patterns, 

and the average height difference between the alkanethoil and aptamer became -0.5 nm 

(aptamer height – alkanethiol height), which implies the height of aptamer is 1.2 nm. 

Finally thrombin molecules were deposited onto the alkanethiol / aptamer surface and 

could specifically bind to aptamer. The binding between thrombin and aptamer increases 

the height to a large extent, so that now the pair shows greater height than alkanethiol, 

and that’s why an inverse image was observed compared to the previous two cases. The 

relative height difference between the thrombin-aptamer pair and alkanethiol became -1.4 

nm (aptamer + thrombin height – alkanethiol height), which implies the height of 

thrombin is 1.9 nm. This height change is summarized in Table 2-1 to show the size scale 

of alkanethiol, aptamer and thrombin in the binding process. 

                    

                      

                 (a) Alkanethiol                    (b) Alkanethiol + Aptamer  (c) Alkanethiol + Aptamer + Thrombin 
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            (d) Alkanethiol + polyA             (e) Alkanethiol + polyA + Thrombin (f) Alkanethiol + Aptamer + γ-Thrombin 

Fig. 2-5 AFM images of non-electrical field conditions  

(The blue coil in (d), (e) is polyA) 

 

Table 2-1 Height change summary of μCP experiment 

 
Alkanethiol vs 

Gold 

Alkanethiol vs 

Aptamer 

Alkanethiol vs 

Thrombin-Aptamer 

pair 

Height difference (nm) -1.7 ± 0.2 -0.5 ± 0.2 1.4 ± 0.2 

 Alkanethiol Aptamer Thrombin 

Height of molecules (nm) 1.7 - 0 = 1.7 1.7 – 0.5 = 1.2 1.7 + 1.4 – 1.2 =1.9 

 

For the control groups, no matter for the case of depositing thrombin onto polyA, 

or the case of depositing γ-thromibin onto aptamer, we didn’t observe a reverse image to 

appear, which implies that there is no specific binding between those pairs, and thus 

confirm the specific binding between aptamer and thrombin. 

 

Detailed statistical results support our conclusion. Through the Shapiro-Wilk W 

Goodness-of-Fit Test (Shapiro and Wilk 1965), all p-values are larger than α = 0.05, 

which implies all samples can be acknowledged as normal distributions. The confidence 

intervals (95%) of those samples based on normal distribution assumption can be found 
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in Appendix Table 2-1. In order to further ensure the inference from the statistical test, 

we adopted another method bootstrap to resample the data (Efron 1979; Efron 1993), 

which does not rely on any distribution assumtions and allows replacement during the 

resampling process to generate the distribution. The resampling number was set to be N = 

1000, then corresponding confidence intervals (95%) of those resampling distributions 

can also be found in Appendix Table 2-1 (More detailed description of bootstrap 

resampling process is also described in Appendix).  It can be seen that the statistical 

results have very good agreement on normal distribution assumption and bootstrap 

resampling, which further confirm the inference from the test. 

 

The summarized statistical results from the bootstrap reampling are shown in Fig. 

2-6. We observed that there is no overlap of the confidence intervals for the three cases in 

objective group, which implies there are statistically significant differences among them. 

Thus we can take the height difference as the indicator of the binding states, and make it 

as a model for determination of the binding states in the next step of the experiments. For 

poly A control group, we observed that no matter adding the thrombin or not onto polyA, 

the confidence intervals have almost overlap with each other, which implies they isn’t 

statistically significant difference between them, so there is no specific binding between 

polyA and thrombin. For γ-thrombin control group, we observed that compare to 

thrombin added to aptamer, after adding γ-thrombin onto aptamer, there is no overlap of 

the confidence intervals for the two cases, which means there is statistically significant 

difference between them, and thus there is no specific binding between aptamer and γ-

thrombin.  
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     (a) Height difference of objective group                  (b) Height difference of control group 

Fig. 2-6 Statistical results of AFM surface height measurement results for 

nonelectrical field application 

 

2.4.2 Test of electrical field influence 

 

After electrical fields were applied onto the aptamer and thrombin pair (as shown 

in Fig. 2-5 (c)), based on the data model showed in Fig. 2-6(a), we can determine the 

influence of electrical fields on the binding states of the pair. AFM surface topographic 

images under electrical field conditions are shown in Fig. 2-7. When 0mV was applied to 

the system, as shown in Fig. 2-7(c), the image has the same feature as Fig. 2-5(c), which 

means the pair structure was well maintained under zero volt condition. When positive 

electrical fields were exerted onto the binding pair (both 100mV and 300mV), due to the 

negatively charged nature of the DNA aptamer, the electrostatic force pulled the aptamer 

down onto the gold substrate, which can break the bonds between thrombin and aptamer, 
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thus led to the case shown in Fig. 2-7(d) and Fig. 2-7(e). The image is inversed and 

height difference value changes from 1.4 nm to -0.5 nm. While negative electrical fields 

exerted onto the system, for a smaller field strength value -100 mV, as shown in Fig. 2-

7(b), we found the height difference value to be 1.4 nm, i.e. keep the bound state level of 

the pair, which means the pair can resist the electrostatic pushing force and maintain the 

structure. However, for a larger field strength value -300 mV, as shown in Fig. 2-7(a), we 

found the height difference value change enormously from 1.4 nm to -1.7 nm, which 

implies not only the thrombin was removed from the surface, but also the aptamer was 

eliminated from the surface due to the much greater electrostatic pushing force. In this 

way, we propose a method to actuate and modulate the binding behavior between 

thrombin and aptamer by applying moderate electrical field strength ranging from -100 

mV to 300 mV. 

 

                 

                            

                        (a) -300mV                               (b) -100mV                                  (c) 0mV 
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                                                  (d) 100mV                                       (e) 300mV 

Fig. 2-7 AFM images of electrical field applications 

 

Detailed statistical results of confidence intervals on both normal distribution and 

bootstrap resampling (N = 1000) could be found in Appendix Table 2-2. The summary of 

those experimental results can be further highlighted in Fig. 2-8. For 0mV and -100mV, 

as shown in Fig. 2-8(b), the confidence intervals almost overlap with the case of 

alkanethiol + aptamer + thrombin shown in Fig. 2-8(a), which implies there is no 

statistically significant difference among them. Thus we can conclude that the binding 

states of the pair can be maintained under 0mV and -100mV. For 100mV and 300mV, as 

shown in Fig. 2-8(b), the confidence intervals almost overlap with the case of alkanethiol 

+ aptamer shown in Fig. 2-8(a), which implies there is no statistically significant 

difference among them. So we can conclude that the thrombin has been removed from 

the aptamer under 100mV and 300mV. For -300mV, as shown in Fig. 2-8(b), the 

confidence interval almost overlaps with the case of alkanethiol shown in Fig. 2-8(a), 

which implies there is no statistically significant difference between them. Hence we can 

conclude that both thrombin and aptamer have been removed from the gold substrate 

under -300mV.  
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 (a) Height difference of nonelectrical field                (b) Height difference of electrical field   

Fig. 2-8 Statistical results of AFM surface height measurement results for 

nonelectrical / electrical field application 

 

2.5 Conclusion 

We could draw the following conclusions based on this studies on electrostatic 

actuation based modulation of the binding behavior of thrombin and DNA aptamers. 

1) Through uCP technique, thrombin-aptamer binding pair can be successfully 

established. 

2) By performing height identification experiment through AFM surface imaging, 

the binding specificity between thrombin and aptamer can be verified. 

3) Moderate electrical fields can be utilized to induce binding change between 

thrombin and aptamer pair, and thus can realize the actuation and modulation of the 

binding behavior between the pair: 

     3a) Positive electrical fields of 100 mV can successfully break the bonds between 

the aptamer-thrombin pair; 
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     3b) Neutral condition does not influence the binding between the pair; 

3c) Negative electrical fields of -100mV can withhold the pair structure; while At 

-300mV, the whole binding pair is stretched away from the gold substrate and the 

nanostructure was destroyed due to the too large electrostatic pushing force. 

 

2.6 Appendix  

 

Bootstrap resampling: 

 

For each sample of 12 data, we treated it as the whole population, and resampled 

the data following the replacement rule, i.e. we picked up a data from those 12 data 

randomly, then put back the data in the pool to allow another data pick-up. Such 

resampling was repeated for many times, in our case, the resampling times N = 1000. 

Then the 1000 resampling data generated a new distribution, and we could perform the 

statistical analysis on this new distribution. The benefit of application of bootstrap 

resampling method is that there is no specific distribution assumption on the data set, and 

the new resampled distribution could have much more data than the original data set, thus 

make the statistical analysis more stable and robust.  

 

Appendix Table 2-1 Statistical results of confidence intervals for height difference under 

non-electrical field conditions based on normal distribution assumption and bootstrap 

resampling 

 
  Average 

Lower 

bound 

Higher 

bound 

Objective 

group 

Alkanethiol 

Normal 

distribution 
-1.66 -1.74 -1.58 

Bootstrap -1.66 -1.73 -1.58 

Alkanethiol  

+ Aptamer 

Normal 

distribution 
-0.53 -0.61 -0.45 

Bootstrap -0.53 -0.60 -0.46 
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Alkanethiol  

+ Aptamer  

+ Thrombin 

Normal 

distribution 
1.40 1.30 1.50 

Bootstrap 1.40 1.32 1.48 

Control 

group 

Alkanethiol  

+ polyA 

Normal 

distribution 
-0.92 -1.04 -0.80 

Bootstrap -0.92 -1.02 -0.82 

Alkanethiol  

+ polyA  

+ Thrombin 

Normal 

distribution 
-0.89 -1.06 -0.73 

Bootstrap -0.89 -1.03 -0.76 

Alkanethiol  

+ Aptamer  

+ γ-

Thrombin 

Normal 

distribution 
-0.55 -0.64 -0.46 

Bootstrap -0.55 -0.62 -0.48 

 

 

 

Appendix Table 2-2 Statistical results of confidence intervals for height difference under 

electrical field application based on normal distribution assumption and bootstrap 

resampling 

  Average 
Lower 

bound 

Higher 

bound 

0mV 

Normal 

distribution 
1.43 1.33 1.54 

Bootstrap 1.43 1.34 1.52 

100mV 

Normal 

distribution 
-0.55 -0.67 -0.43 

Bootstrap -0.55 -0.66 -0.45 

300mV 

Normal 

distribution 
-0.53 -0.63 -0.42 

Bootstrap -0.53 -0.61 -0.44 

-100mV 

Normal 

distribution 
1.41 1.33 1.50 

Bootstrap 1.41 1.32 1.51 

-300mV 

Normal 

distribution 
-1.63 -1.77 -1.50 

Bootstrap -1.63 -1.74 -1.51 
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3.1 Abstract 

 

Force spectroscopy is used to characterize the bond strength and binding energy 

between thrombin and its single-stranded DNA aptamer. Atomic force microscope (AFM) 

based experiments are conducted on the thrombin/aptamer and other non-specific binding 

systems to ensure that the measured binding forces are specific to the dissociation of the 

thrombin/aptamer complex. A thrombin-coated AFM tip is first brought into contact with 

the receptor-functionalized surface and subsequently retracted from the surface at a 

controlled displacement rate to dissociate the thrombin/receptor bound complexes formed 

during contact.  The force response associated with probe retraction is analyzed to 

determine the force and loading rate associated with dissociation of the protein/receptor 

complex. Experimental results show that force curves have the characteristic sequential 

unbinding response and larger dissociation forces only for the combination of thrombin 
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and the specific binding receptor (thrombin aptamer).  The force curves on the non-

specific binding DNAs have lower magnitudes of dissociation forces.  The distribution of 

forces measured for different loading rates on the thrombin aptamer coated surface were 

analyzed to provide estimates of the dissociation force as function of loading rate 

associated with thrombin/aptamer complex.  Experimental results show that the 

dissociation force increased from 20 pN to 40 pN as the loading rate was increased from 

100 pN/s to 40000 pN/s. The measured dissociation force magnitudes for the 

thrombin/aptamer unbinding are lower than for forces associated with G-quadruplex 

unbinding and comparable to forces associated with DNA unfolding. A single energy 

barrier model for the protein/aptamer bond was utilized to compute the spontaneous 

dissociation time and energy barrier width from the measured dissociation forces. 

Computed bond parameters are compared to previously reported values obtained from 

chemical assays and demonstrate the efficacy of force spectroscopy-based analysis of 

molecular binding.  

 

Keywords     Atomic Force Microscopy    Force Spectroscopy    Thrombin    Aptamer       

                     Single energy barrier model     

 

3.2 Introduction 

 

Dynamic Force Spectroscopy (DFS) has been utilized to measure dissociation 

forces between specific complementary chemical and biological molecules (Florin, Moy 

et al. 1994; Strunz, Oroszlan et al. 1999; Oncins, Vericat et al. 2008). Analysis of the 

unbinding forces reveals remarkable insight into energy consumption, binding kinetics 
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and thermodynamic parameters for the molecular bonds (Flyvbjerg 2002).  These 

advantages make it a useful tool for probing the nature and mechanism of biomolecular 

interactions and cellular adhesion.  We report DFS-based analysis of the specific binding 

between thrombin and its DNA aptamer. 

 

Aptamers are engineered nucleic acids that are selected from a random pool using 

the “systematic evolution of ligands by exponential enrichment” (SELEX) procedure 

(Ellington and Szostak 1990; Tuerk and Gold 1990; Hermann and Patel 2000), to have a 

high specific binding affinity towards a target biomolecule (Wallace and Schroeder 1998; 

Berens, Thain et al. 2001; Stojanovic, de Prada et al. 2001; Lavrik, Sepaniak et al. 2004; 

Gronewold, Glass et al. 2005; Hianik, Ostatna et al. 2005). Aptamers display similar 

specific affinity for their target analyte as antibodies and have the following additional 

advantages over antibodies for application to analytical platforms:  stable over a larger 

range of temperatures and conditions; easily regenerated and reused; and easily modified 

or functionalized for different applications.   The aptamer used in this study was selected 

by Tasset, et al. (Tasset, Kubik et al. 1997) to bind human thrombin. Thrombin catalyzes 

the synthesis of fibrin from fibrinogen so as to facilitate coagulation during blood clotting. 

The thrombin aptamer forms a G-quadruplex (Bode, Mayr et al. 1989; Tsiang, Gibbs et al. 

1995; Tasset, Kubik et al. 1997)
 
that fits into thrombin’s heparin binding site (Kelly, 

Feigon et al. 1996).  This aptamer has been shown in chemical assays to have high 

binding specificity to thrombin with a dissociation constant (Kd) of 1 to 6 nM (Wu, 

Tsiang et al. 1992; Tsiang, Gibbs et al. 1995).  The strength of the interaction between 
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thrombin and its aptamer makes it relevant for the study of binding forces and suitable for 

a force spectroscopy study. 

 

Basnar et al. (Basnar, Elnathan et al. 2006) utilized atomic force microscope to 

study the disruption of the thrombin-aptamer complex at a loading rate of 3000pN/s. The 

force quantum associated with dissociation of the complex was calculated to be 4.45 pN 

by taking the peaks from the force distribution histogram and performing linear 

regression. The magnitude of the reported force quantum is close to the thermal force 

level and is significantly lower than the force magnitude of stable bond strengths reported 

for a G-quadruplex interacting with specific binding partners.  Miyachi et al. (Miyachi, 

Shimizu et al. 2010) developed an AFM-SELEX cycle to select stronger affinitive DNA 

aptamer to thrombin under a very high loading rate level (~ 10
5 
pN/s), and acquired much 

higher affinity force between the selected aptamer and thrombin to around hundreds of 

pN. Ge, et al. (Ge, Jin et al. 2012) invented an idea for testing the binding interaction via 

dynamic force spectroscopy between thrombin and a bivalent DNA aptamer which 

contains thrombin’s two aptamers (15apt and 27apt) linked by eight spacer 

phosphoramidites, and showed that the dissociation force ranged from 60 to 150 pN 

under loading rates from 2000 pN/s to 5 × 10
5
 pN/s.  Lynch et al. (Lynch, Baker et al. 

2009) used AFM to investigate the dissociation behavior of G-quadruplex DNA 

composed of 3 and 4 G tetrads, and found the most likely unbinding forces for disruption 

of both the 3G and 4G quadruplex structure to be from 40 to 70 pN, corresponding to 

loading rates from 1000 pN/s to 50000 pN/s.  Pope et al. (Pope, Davies et al. 2001) used 

AFM to study the melting of double strand DNA and obtained the most likely unbinding 
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forces for unzipping a 12-mer double helical DNA to be from 23 to 40 pN, which 

correspond to loading rates from 100 pN/s to 6000 pN/s. Using a biomembrane force 

probe, Erdmann et al. (Erdmann, Pierrat et al. 2008) measured the force magnitude 

associated with dissociation of biotin-streptavidin bonds to be from 50 to 80 pN, 

corresponding to loading rates from 100 pN/s to 10000 pN/s.  The large difference 

between force magnitudes reported for thrombin/aptamer binding (4.45 pN) (Basnar, 

Elnathan et al. 2006) and other binding complexes (23 - 80 pN) indicates a need for 

closer evaluation of the thrombin/aptamer binding interactions. 

 

Here we report the dissociation force for the thrombin/aptamer complex over a 

range of loading rates. The measured unbinding forces are compared to other specific 

binding complexes to suggest a mechanism underlying the dissociation process. The 

dissociation forces are also analyzed using a single energy barrier model to estimate the 

magnitude of spontaneous dissociation time and energy barrier width for the 

thrombin/aptamer interaction. 

 

3.3 Methods 

 

Binding forces were measured between a thrombin-coated AFM tip and three 

different surfaces that were functionalized with either thiolated poly(ethylene)glycol 

(PEG, 2 kDa) or 5’ thiolated single stranded poly(dA) (pHS-A30) or 5’ thiolated 50nt-

thrombin aptamers (HS-GCCTTAACTGTAGTACTGGTGAAATTGCTGCCATTGG 

TTGGTGTGGTTGG) (Tasset, Kubik et al. 1997). The schematic representation in Fig. 

3-1 shows the probe surface interaction during the AFM based experiments. The force 
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interaction with PEG surface was used to verify that tip the surface is functionalized with 

proteins.  Binding forces between thrombin aptamer and single stranded DNA (poly(dA)) 

was used to determine the magnitude of non-specific interactions. The interactions 

between thrombin and thrombin aptamer were investigated to determine the binding 

forces associated with specific binding.  

 

 

Fig. 3-1 AFM experiment configuration for force interaction measurement 

 

All chemicals required for the experiments except PEG were purchased from 

Sigma Aldrich (www.sigma.com), and all oligonucelotides were purchased from 

Integrated DNA Technologies (www.idtdna.com).  Poly(ethylene)glycol was purchased 

from Creative PEGworks (www.creativepegworks.com). All solutions were prepared 

with double distilled water (ddH2O). 

 

http://www.sigma.com/
http://www.idtdna.com/
http://www.creativepegworks.com/
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Atomic force microscope tips were coated with thrombin to measure the protein 

surface interactions. To functionalize the AFM tip, gold-coated silicon nitride tips were 

purchased from Novascan Technologies Inc. (www.novascan.com). The spring constant 

of each AFM tip was determined using Sader’s method prior to functionalization (Sader, 

Chon et al. 1999). Thrombin was immobilized on the gold coated AFM tip as follows: 

The probe was incubated first in 2 mM mercaptohexadecanoic acid for 1 h to form a 

carboxyl-terminated self-assembled monolayer on the gold surface then in freshly 

prepared 10 mg/ml carbodiimide (EDAC) in ddH2O for 30 min to activate the carboxylic 

acid groups for protein attachment. The probe was then immersed in 1 mg/ml human 

thrombin in buffered saline solution (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 5 

mM KH2PO4 in ddH2O at pH 7.4 as adjusted with HCl) for 90 min to immobilize the 

protein on the activated carboxylic acid-terminated SAM surface. Last, the probe was 

washed 3 times for 5 min each in buffered saline solution and 3 times for 5 min each in 

ddH2O. The probe was either used immediately or stored for less than 24 h in ddH2O 

before use.  A single AFM tip was used to collect at the most 200 force curves and a total 

of 25 different AFM tips were used for the experiments reported here. 

 

The three functionalized surfaces - PEG, poly(dA) and thrombin aptamer- were 

prepared by attaching the molecules to a gold-coated silicon wafer using a gold/thiol 

bond.  A template transfer technique was used to form a smooth gold film on the polished 

silicon wafers. To form the PEG functionalized surface, the gold-coated silicon wafers 

were incubated in thiolated PEG (1 mg/mL in ethanol) for 1 min.  The poly(dA)-

functionalized surfaces were prepared by immersion of the gold-coated wafer in 1 mg/ml 

http://www.novascan.com/
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thiolated poly(dA) in binding buffer (20 mM Tris-HCl, 140 mM NaCl, 5 mM KCl, 1 mM 

CaCl2, 5 mM MgCl2, and 5% glycerol (v/v) in ddH2O at pH 7.4) for 1 min (Basnar, 

Elnathan et al. 2006).   Finally, the aptamer-functionalized surfaces were prepared by 

immersion of the gold coated silicon wafers in 1 mg/ml thiolated aptamer in binding 

buffer.  All functionalized surfaces were rinsed several times with ddH2O and grounded 

with copper tape before being used for the unbinding experiments.  

 

Force curve experiments for all the coated substrates were performed in binding 

buffer using a Dimension 3100 atomic force microscope. During the experiments, the 

AFM tip was moved towards the sample to establish contact with surface and then 

retracted back to its starting location at a fixed displacement rate.  The force applied to 

the AFM tip during surface contact and retraction was measured to obtain the force 

curves.  The experimental study was conducted in two steps: 1) force curves were 

acquired on all functionalized surfaces to compare unbinding force responses for specific 

and non-specific interactions, and 2) force curves were acquired to investigate the load 

rate dependence of the force interaction associated with a specific binding event. In the 

initial step, force curves were obtained on the all three substrates at a nominal 

displacement rate of 200 nm/s.  For each functionalized substrate, force curves were 

measured ten times per location, at 5 locations on 5 different samples, resulting in a total 

of 250 force curves for each functionalized surface.  In the second stage, the force curves 

were collected only on thrombin aptamer functionalized surfaces at two different nominal 

displacement rates:  200 nm/s and 2000 nm/s.  A total of two thousand force curves (10 
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samples X 20 locations/samples X 10 force curve/locations) were acquired for each 

displacement rate.  

3.4 Results and Discussion 

 

Representative force curves corresponding to interactions between the thrombin 

coated AFM tip and PEG or poly(dA) functionalized surfaces are shown in Fig. 3-2(a) 

and (b), respectively. Force curves corresponding to interactions between thrombin and 

an aptamer functionalized surface representing sequential unbinding and single unbinding 

are shown in Fig. 3-2(c) and (d), respectively.    

     

                            (a) PEG                                                        (b) poly(dA) 

  

           (c) aptamer (sequential unbinding)           (d) aptamer (single unbinding) 
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Fig. 3-2 Representative force curves for thrombin coated tip interaction with the 

functionalized surfaces  

 

For each functionalized surface, the force curves were collected on five different 

samples, five locations per samples and using 25 different AFM tips.  We did not observe 

a systematic influence of these parameters on the measured force curves.  The force 

curves of the thrombin coated AFM tip against the PEG functionalized surface (shown in 

Fig.3- 2(a)) did not show any difference between the extension and retraction of the tip.  

This indicates that the AFM tip did not form any bonds with PEG functionalized surface, 

which is consistent with the generally observed lack of interaction between PEG and 

proteins (Prime and Whitesides 1991; Vemparala, Kalia et al. 2004). Force curves on 

both thrombin aptamer and poly(dA) functionalized substrates showed binding 

interactions with the thrombin-coated AFM tip during retraction. However, the nature of 

the binding interactions observed on the poly(dA) and aptamer functionalized surfaces 

were very different. For poly(dA) functionalized surfaces, the retraction curves did not 

show obvious discrete drops in forces but rather an elongated displacement that ended 

with a small magnitude of force drop (labeled as non-specific binding events shown in 

Fig. 3-2(b)).  The force curves on the thrombin aptamer functionalized surfaces included 

either multiple discrete stepwise drops (labeled as specific binding events shown in Fig. 

3-2(c)) or a single large drop (shown in Fig. 3-2(d)) of force in the retraction curve. 

Discrete drops in forces have been suggested to be associated with sequential unbinding 

interactions between multiple bonds loaded in parallel (Pope, Davies et al. 2001; 

Erdmann, Pierrat et al. 2008). A comparison of these experimental observations indicates 

the following: 1) The difference in interactions of the aptamer-coated AFM tip with the 

PEG and thrombin functionalized surfaces shows that the tip was functionalized with 



41 

 

 

 

protein molecules; (2) Binding between the protein and poly(dA) requires low magnitude 

forces for dissociation; (3) Binding between the protein and aptamer requires a larger 

magnitude of forces and the retraction curve shows characteristics that are associated 

with dissociation of specific binding (Pope, Davies et al. 2001).  

 

In order to determine the dependence of the unbinding forces on the loading rate, 

the force curves on the aptamer-functionalized surfaces were collected at two different 

displacement rates of the AFM cantilever (200 nm/s and 2000 nm/s).  A total of 4000 

force curves (2000 corresponding to each displacement rate) were collected and could be 

divided into three groups – no binding event, single binding event (as shown in Fig. 3-

2(d)) and multiple binding events (as shown in Fig. 3-2(c)) – and number of force curves 

for each group are presented in Table 3-1.  Multiple discrete load drops were observed for 

approximately 11% of the force curves corresponding to about 452 force curves from 

4000 total measurements (Erdmann, Pierrat et al. 2008). 

Table 3-1 Distribution of force curves corresponding to interaction between thrombin and 

aptamer coated surface 

 No binding Single binding Multiple binding 

Numbers 601 2978 452 

Percentage 14.9% 73.9% 11.2% 

 

The dissociation forces and corresponding loading rates were determined from the 

retraction portion of force curves as shown schematically in Fig. 3-3 in order to 

determine the load rate dependence of the dissociation force associated with specific 

binding.  During the dissociation experiment, thrombin and the aptamer were pulled apart 

at a constant displacement rate using the flexible atomic force cantilever.  It is difficult to 
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a-priori impose a desired loading rate during tip retraction.  Instead, deformation of the 

AFM cantilever was used to determine the forces on the tip so the loading rate can be 

determined as a product of applied displacement rate and the AFM cantilever stiffness 

only when the tip interacts with a rigid surface as indicated by the nominal loading rate. 

Prior to the final unbinding rate, the imposed displacement is distributed between the 

AFM cantilever bending and deformation of protein/aptamer complexes. Hence the 

loading rate corresponding to the final dissociation is determined from the slope of the 

force curve just prior to the unbinding event as indicated by the loading rate for 

unbinding in Fig. 3-3.  The dissociation force corresponding to the final dissociation 

event was determined from the load drop.  The loading rate and dissociation force pairs 

were computed for each force curve that showed multiple binding events during the 

retraction. Only the last unbinding event of the multiple discrete force steps was used for 

analysis, as this last event is likely to have the fewest number of interacting bonds.    

The dissociation forces determined from the force curves were categorized into four 

groups based on the measured loading rate for the last unbinding event – lowest loading 

rate (mean 90 pN/s range: 50 -140 pN/s); lower median loading rate (mean 750 pN/s and 

range 450- 1200 pN/s); higher median loading rates (mean 7000 pN/s and range 4700 - 

9500 pN/s) and highest loading rate (45000 pN/s and range 25700  - 63900 pN/s). 
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Fig. 3-3 Sample force curve for computing nominal and real loading rate 

 

Histograms of the measured dissociation forces corresponding to specific binding 

at different loading rate levels – lowest, lower median, higher median and highest - are 

shown in Fig. 3-4(a), (b), (c) and (d), respectively.  As the loading rates were increased, 

the range of the dissociation forces increased and the peaks in the histograms, which 

identify the most frequent force magnitudes, shifted towards higher magnitudes.  A 

histogram of final load drop levels measured for a non-specific binding complex 

(poly(dA) and thrombin) is also plotted in Fig. 3-5 to compare the distributions 

corresponding to specific and non-specific binding. A comparison of the histograms show 

the differences in magnitude of the measured forces for specific binding (thrombin-

aptamer) and nonspecific binding (thrombin-poly(dA)). For the thrombin-aptamer 

complex, the distribution of rupture forces shows periodic peaks in the histogram, which 

may indicate the existence of an elementary binding force corresponding to dissociation 
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of a single protein/aptamer complex. In the case of thrombin-poly(dA) interaction, there 

are no obvious periodic peaks in the histogram of rupture forces.   

  

            (a) Lowest real loading rate (90 pN/s)         (b) Lower median real loading rate (750 pN/s) 

 

   (c) Higher median real loading rate (7000 pN/s)    (d) Highest real loading rate (45000 pN/s)                  

  

Fig. 3-4 Rupture force distribution of the thrombin-aptamer complex for different loading 

rates imposed prior to final unbinding event 
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Fig. 3-5 Rupture force distribution for the thrombin-poly(dA) complex at the lowest real 

loading rates (90pN/s) 

 

 

Auto correlations of the force distributions in Figures 4 and 5 were computed to 

estimate the magnitude of the elementary binding force as a function of the loading rates 

(Kado and Kimura 2003).  For the sake of brevity, only the auto correlation functions for 

the force distribution corresponding to specific interaction at lowest loading rate (Fig. 3-

4(a)) and non-specific interaction (Fig. 3-5) are plotted in Fig. 3-6(a) and (b), respectively.  

Periodically spaced peaks in auto correlation for the specific interaction (Fig. 3-6(a)) 

confirm the existence of the elementary binding force or the force quantum for specific 

binding. Similar periodically spaced peaks were observed in the autocorrelation function 

for other loading rate levels.  However, the auto correlation function did not show 

periodic patterns for nonspecific binding (Fig. 3-6(b)), indicating no characteristic force 

quantum involved in the force interaction between thrombin and poly(dA). The period of 

the repeating peaks in the autocorrelation curve shown in Fig. 3-6(a) was measured to 

estimate the force quantum for lowest real loading level. Similar analysis was utilized to 

estimate the force quanta for other loading rates and the computed values for the four real 

loading rates are shown in Table 3-2.   
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          (a) Thrombin-aptamer complex                    (b) Thrombin-poly(dA) complex  

Fig. 3-6 Autocorrelation function of rupture force distribution 

at the lowest loading rates (90pN/s) 

 

Table 3-2 Force quantum corresponding to each real loading rate region 

Real loading rate (pN/s) Force quantum (pN) 

90 20 

750 26 

7000 33 

45000 40 

 

The characteristic rupture force of the thrombin-aptamer complex varies from 20 

to 40 pN under real loading rate variations from 90 to 45000 pN/s (Table 1).  The 

magnitude of these characteristic forces is similar to the forces of 23 to 40 pN 

corresponding to melting of a 12 base DNA duplex observed at loading rate ranging from 

100 to 3000 pN/s (Pope, Davies et al. 2001) and 10 to 1200 pN/s (Koch and Wang 2003). 

Lynch et al. (Lynch, Baker et al. 2009) found the most likely unbinding forces for 

disruption of G-quadruplex structure formed between two DNA strands to vary from 40 

to 70 pN over similar loading rates as the current experiments.  Yu et al. (Yu, Schonhoft 

et al. 2009) found that a characteristic force of 23 – 29 pN is required to melt a G-

quadruplex at loading with rates of 5 pN/s that are significantly lower than loading rates 

used in the current experiments. The thrombin aptamer used in this study forms a two G-

tetrad quadruplex both in solution and in binding with thrombin.  For the loading rates 

investigated in the current study, the magnitudes of characteristic forces associated with 

unbinding of the thrombin-aptamer complex measured in the current experiments are 

closer in magnitude to forces required for DNA melting than to those reported previously 



47 

 

 

 

for disrupting G-quadruplex structures.  Hence, unbinding of the thrombin-aptamer 

complex may result from the breaking of bonds between aptamer and thrombin rather 

than disruption of the G-quadruplex structure of the aptamer.   

 

  The dissociation response of protein-aptamer binding with external load may be 

modeled using a single energy barrier model as proposed by Evans and co-workers (Moy, 

Florin et al. 1994; Evans 1998; Evans 1999; Merkel, Nassoy et al. 1999; Evans 2001; 

Evans, Leung et al. 2001).  When the thrombin-aptamer complex is not subjected to 

external loads, this energy barrier is quite high and results in a low probability for the 

complex to dissociate.  When the bound complex is pulled apart under an external force, 

the work done by the force decreases the height of the energy barrier, and consequently 

increases the probability of dissociation. The probability of dissociation, p, may be 

expressed as a function of applied force, F as (Moy, Florin et al. 1994; Evans 1998; 

Evans 1999; Merkel, Nassoy et al. 1999; Evans 2001; Evans, Leung et al. 2001): 

                   

p(F) =
Fb

rf toff
exp

F

Fb

-
Fb

rf toff
exp

F

Fb

æ

è
ç

ö

ø
÷ -1

é

ë
ê
ê

ù

û
ú
ú

ì

í
ï

îï

ü

ý
ï

þï
;where Fb =

kBT

xb
                   (3-1)                               

rf is the loading rate; toff is the spontaneous dissociation time; Fβ is the thermal force that 

dominates the spread of the distribution; and xβ is the width of the transition state barrier.  

According to equation (3-1), a peak in the probability distribution occurs when the 

exponential increase in failure rate due to applied force crosses over to the precipitous 

decline in bond survival with increasing force (Evans 2001). The rupture force, Fpeak, 

corresponding to the peak of the probability distribution with respect to loading rate is 

determined to be: 
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                                                                                                  (3-2) 

  The characteristic force computed used auto-correlation analysis of the force 

histograms corresponds to Fpeak at the different loading rates.  The characteristic force 

values in Table 1 are plotted as a function of the logarithm of the average loading rate in 

Fig. 3-7.  The line obtained by fitting equation (3-2) to the measured peak forces is also 

plotted in Fig. 3-7. The good agreement between the curve fit and the data shows that 

equation (3-2) describes the observed response and that single energy barrier model 

described in equations (3-1) may be used to describe the protein-aptamer interaction.  The 

slope and intercept of the fitted line were used to determine the values of the width of 

transition state barrier, xβ, to be approximately 0.8 nm and spontaneous dissociation time, 

toff, to be approximately 700 seconds.  The estimated magnitude of the transition state 

barrier is comparable to the barrier width of 0.58 nm that characterizes 12 base DNA 

melting (Pope, Davies et al. 2001). The magnitude for the dissociation time is also within 

the previously reported range of 500 to 10,000 seconds measured using electrochemical 

impedence assays for thrombin-aptamer dissociation (Li, Shen et al. 2008).  These two 

results suggest that a single energy barrier model may be used to describe the thrombin-

aptamer dissociation over the range of loading rates used in these experiments. 
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Fig. 3-7 Force spectrum: linear dependence of unbinding force on logarithm loading rate 

 

3.5 Conclusions 

 

  AFM experiments were conducted to determine the characteristic force associated 

with specific binding between thrombin and its DNA aptamer. The measured rupture 

force distributions extend over a large magnitude of forces and demonstrate 

characteristics of force quanta for specific binding (thrombin-aptamer) in comparison to 

non-specific binding (thrombin-polyA). We find that the characteristic force for 

disruption of thrombin-aptamer complexes increases from 20 to 40 pN as the loading rate 

level increase from 100 to 40000 pN/s. The magnitude of characteristic forces is smaller 

than the previously reported force magnitudes associated with metling of the G-

quadruplex structure. This difference suggests that, with the application of external force 

on the thrombin-aptamer complex, the G-quadruplex structure of the aptamer is not 

disrupted and the measured characteristic forces may be associated with dissociation of 

thrombin and the aptamer. The characteristic rupture forces were fitted to a single energy 
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barrier model to extract the bond energy parameters associated with thrombin-aptamer 

binding.   

 

3.6 Appendix 

 

  
          (a) Lowest loading rate (90pN/s)              (b) Lower median loading rate(740pN/s)  

   

  
  (c) Higher median loading rate (6800pN/s)        (d) Highest loading rate (40000pN/s) 

 

Appendix Fig. 3-1 Autocorrelation function of last rupture force distribution for all real 

loading rates 
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CHAPTER 4.   DYNAMIC FORCE SPECTROSCOPY STUDY ON 

ELECTROSTATIC ACTUATION OF BINDING INTERACTION 

BETWEEN THROMBIN AND DNA APTAMER 

(A paper prepared for submission to Biophysical Journal) 

 

Xiao Ma, and Pranav Shrotriya 

Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 

 

4.1Abstract 

 

The application of electrical field has been proved to successfully change the 

binding behavior between coagulation protein thrombin and its binding pair DNA 

aptamer in previous studies. The purpose of this investigation is to utilize Atomic Force 

Microscopy (AFM) to study the force interaction between thrombin and DNA aptamer 

governed by electrostatic modulation. The thiolated aptamer was deposited onto gold 

substrate located in a liquid cell, and then repeatedly brought into contact with a 

thrombin-coated AFM tip under 0mV, 100mV and -100mV electrical fields respectively 

applied by a standard electrochemical cell. Force drop-offs during the pull-off process 

were measured to determine the unbinding force between the pair with loading rates 

spanning from 100pN/s to 40000pN/s. A large number of experiments were conducted to 

obtain statistically significant responses and dissociation forces associated with the last 

binding event were analyzed to understand the influence of electrical fields on molecular 

binding. The results from experiment show that the specific binding events of the pair 
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were drastically reduced under the positive electrical fields. Due to the negatively 

charged nature of DNA aptamer, positive electrical fields can trigger large bending-down 

conformational transition of the strands, thus can inhibit the bond formation. There is no 

harmful influence on the molecular binding by negative electrical fields. The 

autocorrelation function analyses were conducted on all three cases for obtaining the 

elementary dissociation force, and showed that the specific binding maintain the same 

scale and nature of the force. The study confirms the idea of electrostatic modulation of 

the binding interaction between thrombin and DNA aptamer, thus proposes an application 

potential on biotic-abiotic interface design. 

 

Keywords    Atomic force microscopy    Dynamic force spectroscopy    Thrombin         

                    Aptamer     Electrostatic actuation 

 

4.2 Introduction 

 

Previous research revealed that electrostatic fields could successfully actuate and 

modulate the binding behavior between the catalytic enzyme thrombin involved in 

coagulation and its binding pair DNA aptamer. However, the dynamic response and 

associated force interaction could not be characterized by those experiments. It should be 

noticed that explicit measurement and characterization of the binding force between 

thrombin-aptamer complex and unveiling the underlying kinetics which governs the 

molecular binding physics could provide in-depth information and insights on the 

electrostatic actuation based modulation of the conformation and binding behavior of 

biomolecules, thus may result in an important foundation and reference for biosensor, and 

biotic-abiotic interface design (Breisch, Gonska et al. 2005; Dudko 2009).   



53 

 

 

 

Our previous studies of atomic force microscopy (AFM) based dynamic force 

spectroscopy of thrombin-aptamer complex has revealed the binding force scale under 

different loading rates with the open circuit conditions, and implies the potential to 

investigate the force interaction of thrombin-aptamer complex under electrostatic field 

conditions using the AFM based DFS technique. A novel electrochemical cell could be 

designed to mount on the atomic force microscope stage, and then facilitates the 

implementation of such investigation desire.  

 

The so-called electrochemical atomic force microscopy (ECAFM) technology has 

been applied in certain fields to study the electrical field influence and modification on 

the physical and chemical performance of target surface. Boussaad et al. (Boussaad and 

Tao 1999) utilized electrochemical tapping-mode AFM to study the interaction between 

myoglobin (Mb) and self-assembled didodecyldimethylammonium bromide (DDAB) 

mono- and multilayers. They discovered the heme group of the protein undergoes a fast 

electron-transfer reaction, and the structure of DDAB film has a potential dependence 

that it is changed from a solidlike phase to liquidlike phase in terms of the increase of 

potentials from -0.2V to -0.2V, the mechanism of which they accredited to the faster 

diffusion of Mb through the DDAB layers at the raised potentials. Kueng et al. (Kranz, 

Kueng et al. 2003; Kueng, Kranz et al. 2003) developed a new technique that combines 

AFM and scanning electrochemical microscopy (SECM), and enable the simultaneous 

monitoring and investigation of surface topography and the enzyme activity of bioactive 

probes under electrostatic field application. Ciorcea et al. (Chiorcea and Brett 2005) 

utilized ECAFM to investigate the adsorption behavior of guanine on a highly oriented 
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pyrolytic graphite (HOPG) electrode surface with controlled potentials from 0 to 1.3V, 

and found the application of electrical fields provided better attachment of the guanine on 

the HOPG suface compared to natural adsorption. Sekine et al. (Sekine, Kaji et al. 2008; 

Sekine, Kaji et al. 2009) fabricated an AFM probe electrode at the tip by first insulating 

he probe with Parylene C, and then grounding the apex of the tip to expose the electrode. 

By in-situ topographical imaging of this ECAFM on the heparin-coated substrate under 

applied potentials from 0.5V to 1.5V, they observed the detachment of the heparin and 

the adsorption of fibonectin on the substrate. Hao et al. (Hao, Zhang et al. 2012) applied 

ECAFM to study the electrochemical behavior of the redox metalloenzyme copper nitrite 

reductase (CNiR) immobilized on Au(111) surface under controlled potentials from -0.2 

V to 0.2 V. They discovered a strong reductive electrocatalytic signal appeared in the 

presence of nitrite, which indicates the conformational changes in the enzyme upon 

substrate binding, and thus either enhanced the enzyme/electrode contact, or opened 

intramolecular electron-transfer channels between the redox center and the catalytic site. 

The ECAFM applications have also been reported in quite a few fields of studies, such as 

thin film growth and formation (Kepler and Gewirth 1994; Naoi, Ooike et al. 1994; Vidu 

and Hara 1999; Peter, Hempenius et al. 2000; Bloess, Staikov et al. 2001; Peter, 

Hempenius et al. 2001; Schneegans, Moradpour et al. 2004; Geng, Jiao et al. 2006; 

ElKaoutit, Naggar et al. 2009; Ghorbal, Grisotto et al. 2009; Umeda and Fukui 2010; 

Domi, Ochida et al. 2012; Domi, Doi et al. 2013), deposition (Koinuma and Uosaki 1995; 

Semenikhin, Jiang et al. 2000; Tamura, Kondo et al. 2000; Li, Maynor et al. 2001; Li, 

Ben et al. 2002; Kubo, Hirai et al. 2003; Coughlin and Huang 2005; de Abril, Gundel et 

al. 2008), dissolution (Koinuma and Uosaki 1996; Macpherson, Unwin et al. 1996; Vidu, 
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Quinlan et al. 2002; Jones, Unwin et al. 2003; Romer, Plaschke et al. 2003; Doi, Inaba et 

al. 2008; Huitink, Gao et al. 2010), corrosion (Reynaud-Laporte, Vayer et al. 1997; Eick, 

Kahlen et al. 2000; Pan, Femenia et al. 2000; Bearinger, Orme et al. 2001; Chen and Tsai 

2011), phase transition (Lapkowski, Zak et al. 2001), flux generation (Holder, Gardner et 

al. 2005), and membrane proton conductivity (Hink, Aleksandrova et al. 2010). Besides, 

the development and improvement on the ECAFM technology itself have been carried on 

for better simultaneous monitoring of electrical field influence and topography imaging 

(Lugstein, Bertagnolli et al. 2002; Fasching, Tao et al. 2004; Villarroya, Perez-Murano et 

al. 2004; Burt, Dobson et al. 2007; Eckhard, Shin et al. 2007; Moon, Wiedemair et al. 

2007; Shin, Hesketh et al. 2008).   

 

In this study, we conducted in-situ ECAFM based dynamic force spectroscopy on 

thrombin and DNA aptamer binding pair subjected to applied electrical potentials to 

explicate the electrostatic field influence on the binding behavior, and expressed the force 

interaction between the complementary pair as a function of controlled potentials. 

 

4.3 Methods 

 

Binding forces were measured between the thrombin-coated AFM tip and gold 

substrate that was functionalized with 5’ thiolated 50nt-thrombin aptamers (HS-

GCCTTAACTGTAGTACTGGTGAAATTGCTGCCATTGGTTGGTGTGGTTGG) 

(Tasset, Kubik et al. 1997). Different electrical field potentials were applied through three 

electrode system between the working electrode – gold substrate and reference electrode 
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– silver wire, to investigate the electrostatic influence on force interaction between the 

binding pair.\ 

All chemicals required for the experiments were purchased from Sigma Aldrich 

(www.sigma.com), and all DNA oligonucelotides were purchased from Integrated DNA 

Technologies (www.idtdna.com). Gold-coated silicon nitride tips were purchased from 

Novascan Technologies Inc. (www.novascan.com). All solutions were prepared with 

double distilled water (ddH2O). 

  

Prior to thrombin functionalization, the spring constant of each AFM tip was 

determined via Sader’s method (Sader, Chon et al. 1999). Thrombin was then 

functionalized on the gold coated AFM tip using the following method: First, the probe 

was incubated in 2mM mercaptohexadecanoic acid (MHA) for 1 h to form a carboxyl-

terminated self-assembled monolayer on the gold surface, then the probe was incubated 

in freshly prepared 10 mg/ml carbodiimide (EDAC) in ddH2O for 30 min to activate the 

carboxylic acid groups for protein attachment. The probe was then immersed in 10 μM 

human thrombin in buffered saline solution (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 5 mM KH2PO4 in ddH2O at pH 7.4 as adjusted with HCl) for 90 min to 

immobilize the protein on the activated carboxylic acid-terminated SAM surface. Finally, 

the probe was washed 3 times for 5 min each in buffered saline solution and 3 times for 5 

min each in ddH2O. The probe was either used immediately or stored for less than 24 h in 

ddH2O before the experiments.  A single AFM tip was used to collect at the most 300 

force curves and a total of 40 different AFM tips were used for the experiments. 

 

http://www.sigma.com/
http://www.idtdna.com/
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A template transfer technique was used to form a smooth gold film on polished 

silicon wafers. The aptamer-functionalized surfaces were prepared by immersion of gold 

coated silicon wafers in 3.4 μM thiolated aptamer in binding buffer (20 mM Tris-HCl, 

140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM MgCl2, and 5% glycerol v/v in ddH2O at 

pH 7.4) (Basnar, Elnathan et al. 2006) for 1 min.  The functionalized surfaces were rinsed 

several times with ddH2O and grounded with copper tape before being used for the 

unbinding experiments.  

 

Force curve experiments for coated substrates were performed in binding buffer 

using a Dimension 3100 atomic force microscope with a designed electrochemical cell, 

as shown in Fig. 4-1. During the experiments, the AFM tip was moved towards the 

sample to establish contact with surface and then retracted back to its starting location at 

a fixed displacement rate. Three electrical fields strength of -100mV, 0mV, 100mV were 

applied onto the sample surface respectively via regular three electrode system. Open 

circuit force curve experiments were also conducted for comparison. The sample serves 

as the working electrode, while a silver wire is used as a reference electrode and platinum 

wire as a counter electrode to maintain the constant potential value. The force applied to 

the AFM tip during surface contact and retraction was measured to obtain the force 

curves. Loading rate dependence of the force interaction associated with each controlled 

potential was also considered by taking two different nominal displacement rates (200 

nm/s and 2000 nm/s) of the AFM step motor. A total of two thousand force curves (20 

samples × 10 locations/samples × 10 force curve/locations) were acquired for each 

displacement rate.  
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Fig. 4-1 ECAFM setup 

 

4.4 Results and discussion 

 

The representative force curves of multiple unbinding events corresponding to 

interactions between thrombin coated AFM tip and aptamer functionalized surfaces under 

open circuit, -100 mV, 0 mV, and 100mV are shown in Fig. 4-2.  

AFM cantilever 
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                            (a) Open circuit                                            (b) -100mV                          

             

  
                             (c) 0mV                                                        (d) 100mV      

                             

Fig. 4-2 Representative force curves under electrical fields 

 

It can be seen that for 0mV and -100mV, force curves showed similar trend and 

magnitude as open circuit condition. While for 100mV, the magnitude of the last rupture 

force decreased, and the slope of the retraction curve had an abrupt change after the pull-

up phase and the whole displacement tends to be elongated, which implies the substantial 

influence of electrostatic field application on the dissociation process. The percentage of 

force curves out of all attempts corresponding to no interaction, single unbinding and 

multiple unbinding of all four situations are summarized in the Table 4-1. It indicated that 

for open circuit, -100mV and 0mV, the multiple unbinding rates could always be held at 



60 

 

 

 

around 10%, which coincided with Pope. el al.’s studies on force-induced melting of 

12mer double strand DNA (Pope, Davies et al. 2001). However, for 100mV, it implies 

that the electrostatic field can reduce the multiple unbinding rate to one third level of the 

above cases. In other words, we can summarize that the positive electrical field 

application can decrease both the binding strength and numbers of the thrombin-aptamer 

complex. 

Table 4-1 Summary of force curves under electrical fields 

 No interaction Single unbinding Multiple unbinding 

Open circuit 14.9% 73.9% 11.2% 

-100mV 31.4% 59.5% 10.6% 

0mV 23.2% 66.3% 9.15% 

100mV 56.0% 40.7% 3.35% 

 

The rupture force of the last step of multiple unbinding events was analyzed since 

it mostly likely approaches single bond dissociation, and the slope before the last step 

was calculated to acquire the real loading rate. After collecting both of the last rupture 

forces and loading rates, and categorizing the loading rates into four levels, we can 

generate histograms of the measured dissociation force distribution at different loading 

rate levels – lowest (100 ± 40 pN/s), lower median (700 ± 300 pN/s), higher median 

(6000 ± 2000 pN/s and highest (45000 ± 15000 pN/s) , and different potential levels – -

100mV, 0mV, and 100mV), as shown in Fig. 4-3 and Fig. 4-4 respectively (The detailed 

distributions for each loading rate level under different potential conditions could be seen 

in the appendix).  As loading rates increased, the range of the dissociation forces were 

expanded and the peaks in the histograms, which identify the most frequent force 

magnitudes, shifted towards higher magnitudes for different potential conditions. It 
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should be noticed clarified that the counts of rupture force shown in histogram for 

positive potential force measurement were much lower than that of open circuit, zero and 

negative potential situations, which is just resulted from the significant decrease of 

unbinding events, as exhibited in Table 4-1.  

 
            (a) Lowest loading rate (130pN/s)          (b) Lower median loading rate (890pN/s)  

 

 
     (c) Higher median loading rate (8000pN/s)      (d) Highest loading rate (49000pN/s)  

 

Fig. 4-3 Rupture force distribution of thrombin-aptamer complex for different loading 

rate levels under -100mV 
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                        (a) Open circuit                                                   (b) -100mV           

 
                              (c) 0mV                                                        (D) 100mV            

Fig. 4-4 Rupture force distribution of the thrombin-aptamer complex for different 

potentials under lowest loading rate level 

 

For the thrombin-aptamer complex, the distribution of rupture forces shows 

periodic peaks in the histogram, which may indicate the existence of an elementary 

binding force corresponding to dissociation of a single protein-aptamer complex. Auto 

correlation function (ACF) then could be applied on force distributions for estimating the 

magnitude of the elementary binding force as a function of the loading rates under 

different controlled potentials (Kado and Kimura 2003), as shown in Fig. 4-5 (The 

detailed ACF plot for each loading rate level under different potential conditions could be 

seen in the appendix). Periodically spaced peaks in auto correlation function plots 

confirm the existence of the elementary binding force i.e. the force quantum for each 
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potential condition.  The period of the repeating peaks in the autocorrelation plots was 

measured to estimate the force quantum, and the computed force quanta as a function of 

loading rates for all potential conditions are shown in Table 4-2.   

  
                        (a) Open circuit                                                   (b) -100mV           

 

  
                              (c) 0mV                                                        (D) 100mV      

       

Fig. 4-5 Autocorrelation function of rupture force distribution for different potentials 

under lowest loading rate level 

 

 

Table 4-2 Force quantum corresponding to different potential conditions 

 
Lowest loading 

rate 

Lower median 

loading rate 

Higher median 

loading rate 

Highest loading 

rate 

Open circuit 20 26 33 40 

-100mV 21 27 34 40 

0mV 21 26 33 39 
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100mV 16 22 27 33 

 

It can be seen that the positive electrical fields decreased the force interaction 

between the thrombin and aptamer, while the zero and negative electrical fields didn’t 

show significant influence on the binding strength of the complex compared to open 

circuit situation. Those phenomena could be caused by the electrostatic pulling down 

force that generated by positive electrical field on the negatively charged DNA aptamer, 

which weaken the binding between the complex and thus attenuate the force interaction. 

While under negative electrical fields, the pushing up force exerted by negative potential 

on the negatively charged DNA aptamer does not influence the conformation states of the 

aptamer significantly, thus the binding and force interaction between the complex are not 

changed. Based on those force quanta and loading rates, the dynamic force spectrum 

under for different potential conditions can be shown in Fig. 4-6. 

 

Fig. 4-6 Force spectrum under different electrical field conditions 
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The dissociation process of thrombin-aptamer complex with applied load may be 

modeled via a single energy barrier model as proposed by Evans and co-workers (Moy, 

Florin et al. 1994; Evans 1998; Evans 1999; Merkel, Nassoy et al. 1999; Evans 2001; 

Evans, Leung et al. 2001). When a bound complex is not subjected to external loads, the 

energy barrier to be overcome during the dissociation process is very high, and thus 

results in a low probability for the complex to dissociate.  When the bound complex is 

pulled apart under applied loads, the work done by loads could decrease the height of the 

energy barrier, and consequently increases the probability of dissociation. The probability 

of dissociation p, can be expressed as a function of applied force F as (Evans 1998; Evans 

1999; Merkel, Nassoy et al. 1999; Evans 2001; Evans, Leung et al. 2001) 
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In the equation, Fβ is the thermal force that dominates the spread of the distribution; rf is 

the loading rate; toff is the spontaneous dissociation time; and xβ is the width of the 

transition state barrier.  According to equation (4-1), a peak in the probability distribution 

appears as the exponential increase in failure rate due to applied force crosses over to the 

precipitous decline in bond survival with increasing force (Evans 2001). The rupture 

force Fpeak, corresponding to the peak of the probability density distribution as a function 

of loading rate is then determined to be: 

                                                                                                (4-2) 
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  According to equation (4-2), the Fpeak, i.e. the force quantum has a linear 

dependence on logarithm of loading rate, which has a good agreement with the trend 

shown in Fig. 4-6. Thus single energy barrier model described in equations (4-1) and (4-2) 

may be used to describe the thrombin-aptamer interaction.  The slope and x-intercept of 

the fitted data for each potential condition were used to two important kinetic parameters, 

the width of transition state barrier xβ, and spontaneous dissociation time toff, as shown 

in Table 4-3. 

Table 4-3 Kinetic parameter estimation for each potential condition 

 xβ (nm) toff (s) 

Open circuit 0.81 720 

-100mV 0.82 690 

0mV 0.83 740 

100mV 0.85 120 

 

  From Fig.4-6, since the slopes of data trend for each potential condition are all 

similar, thus the values of transition state barrier xβ are comparable. Meanwhile, the data 

trend of positive potential condition has a significantly larger x-intercept then the other 

three conditions, thus results in a much lower spontaneous dissociation time toff, which 

could be the kinetic explanation of the binding-weaken effect due to the application of 

positive electrical fields on the thrombin-aptamer complex.     

 

4.5 Conclusion  

 

1) Through ECAFM technique, in-situ measurement of force interaction between 

thrombin-aptamer binding pair can be successfully acquired. 
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2) Moderate electrical fields can be utilized to weaken or keep the binding 

between thrombin and aptamer complex,  

     2a) Positive electrical fields of 100 mV can decrease the force interaction between 

the thrombin and aptamer, and lower the number of binding significantly; 

     2b) Zero and negative (-100mV) electrical fields can maintain the similar force 

interaction and number of binding between the thrombin and aptamer as the open circuit 

DFS experiment. 

3) Single energy barrier model may be used to illuminate the dissociation process 

of thrombin-aptamer binding, and estimated kinetic parameters from fitting the model to 

experimental data suggest that the significant drop of spontaneous dissociation time is the 

root cause of the bond-weaken effect under positive electrostatic field application.   

 

4.6 Appendix 

 

  
               (a) Lowest loading rate (90pN/s)           (b) Lower median loading rate (750pN/s)  
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      (c) Higher median loading rate (7000pN/s)         (d) Highest loading rate (45000pN/s) 

  

Appendix Fig. 4-1 Rupture force distribution of thrombin-aptamer pair for different 

loading rates under open circuit 

 

 
            (a) Lowest loading rate (130pN/s)           (b) Lower median loading rate (890pN/s)  

 

 

 
(c) Higher median loading rate (8000pN/s)         (d) Highest loading rate (49000pN/s)  

 

Appendix Fig. 4-2 Rupture force distribution of thrombin-aptamer pair for different 

loading rates under -100mV 
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            (a) Lowest loading rate (100pN/s)           (b) Lower median loading rate (900pN/s)  

 

 

 
(c) Higher median loading rate (7200pN/s)         (d) Highest loading rate (52000pN/s)  

 

Appendix Fig. 4-3 Rupture force distribution of thrombin-aptamer pair for different 

loading rates under 0mV 

 

 

 

 
            (a) Lowest loading rate (80pN/s)           (b) Lower median loading rate (650pN/s)  
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     (c) Higher median loading rate (5000pN/s)         (d) Highest loading rate (42000pN/s)  

 

Appendix Fig. 4-4 Rupture force distribution of thrombin-aptamer pair for different 

loading rates under 100mV 

 

 

 

 
               (a) Lowest loading rate (90pN/s)           (b) Lower median loading rate (750pN/s)  

 

 
      (c) Higher median loading rate (7000pN/s)         (d) Highest loading rate (45000pN/s)  

 

Appendix Fig. 4-5 Autocorrelation function of last rupture force distribution for all 

loading rates under open circuit 
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          (a) Lowest loading rate (130pN/s)           (b) Lower median loading rate (890pN/s) 

 
(c) Higher median loading rate (8000pN/s)         (d) Highest loading rate (49000pN/s)  

 

Appendix Fig. 4-6 Autocorrelation function of last rupture force distribution for all 

loading rates under -100mV 

 

 

 

  
            (a) Lowest loading rate (100pN/s)           (b) Lower median loading rate (900pN/s)  
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  (c) Higher median loading rate (7200pN/s)         (d) Highest loading rate (52000pN/s)  

 

Appendix Fig. 4-7 Autocorrelation function of last rupture force distribution for all 

loading rates under 0mV 

 

 

 

  
            (a) Lowest loading rate (80pN/s)           (b) Lower median loading rate (650pN/s)  

 

 
     (c) Higher median loading rate (5000pN/s)         (d) Highest loading rate (42000pN/s)  

 

Appendix Fig. 4-8 Autocorrelation function of last rupture force distribution for all 

loading rates under 0mV 
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CHAPTER 5.   MOLECULAR DYNAMICS SIMULATION OF 

ELECTRICAL FIELD INDUCED CONFORMATIONAL 

TRANSITION AND ASSOCIATED FRICTIONAL PERFORMANCE 

OF MHA MONOMOLECULAR FILMS 

(A paper published on Journal of Physics D: Applied Physics, Aug. 2012) 

 

Xiao Ma, and Pranav Shrotriya 

Department of Mechanical Engineering, Iowa State University, Ames, IA50010, USA 

 

5.1 Abstract 

 

Sparse monomolecular film assemblies with polar end groups such as carboxyl 

have attracted considerable interest because of their ability to undergo conformational 

transition under electrical fields. We report the results from molecular dynamics 

simulation of electrical field induced conformational transitions and associated frictional 

performance of carboxyl-terminated monomolecular films. Simulation results indicate 

that the density of the monomolecular film has a significant influence on the 

conformational transition under electrical fields. In the case of loose-packed 

monomolecular films, carboxyl-terminated chains cluster together to form disordered 

film due to large interchain separation. Under the application of positive electrical field, 

the chain backbone rotates and lies down on the substrate forming disordered clusters, 

whereas under the application of negative electrical fields, the chains stand up and cluster 

together to form disordered clusters. Under shallow indentation with purely repulsive 



74 

 

 

 

indenter, loose-packed monomolecular films subjected to positive electrical field exhibit 

lower level of frictional response compared with films subjected to negative and no 

electrical fields. In the case of close-packed monomolecular films, the molecular chains 

assemble in an ordered film and the space is not enough for backbone chains to generate 

large-scale conformational transition. Due to this spatial limitation, the applied electrical 

field was not found to have any influence on the backbone chain rotation and associated 

frictional response under shallow indentations with purely repulsive indenter. 

 

Keywords    Molecular dynamics simulation    Self-assembled Monolayer     MHA     

                    Electrical field    Conformational transition    Friction   

 

 

5.2 Introduction 

 

Self-assembled monolayers (SAMs) have attracted increasing interest as an active 

smart surface coating for applications in Micro/Nano tribology, microfluidics, lubrication 

and several biomedical fields. These monomolecular assemblies can undergo 

conformational transition through application of external stimuli, such as temperature, pH 

of solvent, application of electrical fields, and light or electro-chemical surface 

modifications. Among different external stimuli, applying external electrical fields is 

practically feasible and effectively controllable method without any detrimental influence 

on the chemical stability of SAMs (Lahann, Mitragotri et al. 2003; Karuppiah, Zhou et al. 

2009). 

 

Lahann et al. (Lahann, Mitragotri et al. 2003) demonstrated electrical field 

induced conformational transition of sparse carboxyl-terminated SAMs. Due to the polar 
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nature of the carboxyl group, it was hypothesized that the application of negative 

electrical field pulled the chains straight, and positive field bent the chains down upon the 

substrate. The conformational transition of the chain was deduced from the change of 

surface from hydrophilic to hydrophobic state under the application of an electrical field. 

 

Kanaga Karuppiah et al. (Karuppiah, Zhou et al. 2009) used an atomic force 

microscope (AFM) to evaluate the work of adhesion and frictional response of low-

density mercaptocarboxylic acid SAM under electrical fields with different polarities. 

They discovered higher work of adhesion when negative bias electrical fields were 

applied to the SAM. Contact sliding experiments showed that a higher friction level was 

obtained when positive bias electrical fields were applied in comparison with neutral and 

negative electrical fields. They attributed the contrary observation between work of 

adhesion and friction to crystalline order of sparse monolayer films, i.e. the higher 

friction under positive bias is attributed to the relatively disordered structure of the film, 

whereas the relatively ordered structure under negative bias may cause the friction to 

decrease. These experimental results indicate that the application of an electrical field 

modifies the surface properties of sparse monolayer films and the observed phenomena 

are attributed to the conformational changes in the films (Lahann, Mitragotri et al. 2003; 

Karuppiah, Zhou et al. 2009). It is, therefore, important to investigate the conformational 

changes and structure of sparse monomolecular films under electrical fields. 

 

All-atom molecular dynamics (MD) simulation can serve as tool to identify the 

influence of electrical field and chain density on conformational transitions and film 
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structure but have not been applied to carboxyl-terminated SAM films. Vemparala et al. 

(Vemparala, Kalia et al. 2004) conducted MD simulation to investigate the electrical field 

induced conformational transition of fully packed polyethylene glycol (PEG) SAMs. Due 

to the polar nature of glycol groups, the electrical field triggered the conformational 

transition from an ‘all-trans’ state to ‘gauche’ state in the end groups. However, due to 

the limited spatial availability in the fully packed SAM, the overall order and backbone 

chain orientation remained undisturbed during electrical field application. 

 

Several research groups have applied MD simulation to study the structural 

transition and its influence on the frictional behaviour of SAMs. Harrison et al. (Brenner, 

Harrison et al. 1991; Harrison, White et al. 1995; Harrison 2001; Harrison, Schall et al. 

2008) introduced the AIREBO potential to simulate structural and tribological properties 

of alkane SAMs using various materials such as carbon nanotubes, diamond surfaces, 

amorphous carbon surfaces and fullerenes as the indentation and sliding counterfaces. 

They compared odd number carbon (C13) with even number carbon (C14) systems that 

differ in the orientation of the last carbon–carbon bond. An analysis of the probability 

distribution of methyl angle showed that the odd system has comparatively larger extent 

of deformation, and greater likelihood of gauche defects than the even system. Detailed 

sliding-direction force distribution suggested that the odd system contains greater fraction 

of atoms that are capable of generating small pushing and resisting forces, while the even 

system prevails in enduring large pushing and resisting forces. They also reported that 

flexible hydrocarbon SAMs can significantly reduce the mechanical excitation in the 

form of vibrational and rotational energy of the interface lattice layers upon sliding, thus 
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effectively lowering the frictional resistance. Mikulski et al. (Mikulski and Harrison 2001) 

examined the periodicities associated with the sliding process between hydrocarbon SAM 

and diamond counterface. They explained the periodicities as result of commensurate 

contact between the SAM and the corresponding structure on the diamond counterface 

that can synchronize the motion of chains during the sliding process, thus friction forces 

also exhibit periodicities in accordance with structural periodicities. White et al. 

(Harrison, White et al. 1992) explored the directional dependence of friction coefficient 

on the sliding between two diamond (1 1) hydrogen-terminated SAMs in different 

crystallographic directions. They found the friction coefficient increases with increasing 

applied normal load and decreasing temperature for certain crystallographic sliding 

directions, whereas it is approximately independent of the sliding velocity. Chandross et 

al. (Chandross, Webb et al. 2004; Chandross, Lorenz et al. 2005) used MD to study the 

adhesion and friction between ordered and disordered SAMs on silicon dioxide substrate. 

They introduced the disorder into SAMs by removing randomly selected chains from the 

originally well-ordered crystalline substrate to generate defects and attaching chains onto 

an amorphous substrate. By applying relatively slow shear velocities and constant 

pressures onto SAMs, typical stick-slip motion was observed in full coverage ordered 

SAMs and disappeared in disordered ones. Compared with the full coverage ordered 

SAMs, the friction coefficient of the disordered SAMs was found to be not sensitive to 

the coverage density, chain length and substrate. 

Experimental reports indicate that polar end groups such as carboxyl can generate 

conformational transition by application of electrical fields due to the non-concentric 

charge distribution of the polar groups. Simulation results show that the orientation of 
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bonds in functional groups and crystallographic directions influence friction responses to 

large extent for dense and ordered SAMs, and characteristic phenomena such as stick-slip 

motion and periodicities of friction were observed. For sparse and disordered SAMs, the 

coverage density and chain length were found not to influence the frictional performance. 

In this paper, MD simulations are conducted to investigate the conformational transition 

and changes in film structure induced due to the application of external electrical fields 

on SAMs of carboxyl-terminated alkanethiol chains. Frictional performance of the SAM 

is investigated as function of the applied electrical field, film density, normal load and 

indenter shape. 

 

5.3 Method 

5.3.1 Initial Ensemble and Interatomic potentials 

 

All-atom MD simulations were conducted using an open source shared parallel 

code - LAMMPS (http://lammps.sandia.gov/) to investigate the conformational 

transitions and frictional performance of carboxyl-terminated alkanethiol monomolecular 

assemblies under applied electrical fields (Luedtkea 1992; Bhushan, Israelachvili et al. 

1995; Plimpton 1995). In order to generate the initial ensemble, 576 molecules of 

carboxyl-terminated alkanethiol - mercaptohexadecanoic acid ((S-(CH2)15-COOH) 

(MHA) - chains were arranged in the (√3 × √3) R30° lattice structure at an approximate 

30° initial tilt angle with respect to the normal vector on the Au(1 1 1) plane (Zhang, 

Goddard et al. 2002; Zhang and Jiang 2002). The initial chain orientation and 

arrangement was chosen to mimic the tilt angles and film structures reported for similar 

SAM systems (Zhang, Goddard et al. 2002; Zhang and Jiang 2002). At full coverage 
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density, the alkanethiol SAMs formed a hexagonal close-packed (√3 × √3) R30° lattice 

structure on the Au(1 1 1) surface with an interchain spacing of 5 Å. 

 

The molecules were arranged in two different interchain spacings of 5 Å (full 

coverage) and 10 (sparse coverage). In order to provide spatial room for the backbone 

chains to undergo conformational transitions the interchain spacing of 10 was chosen for 

sparse coverage ensemble such that the conformational transitions are influenced by 

interchain interactions. At even smaller coverage densities, the chains were either 

nonuniformly distributed or had minimal interactions between neighboring chains. The 

simulation box, boundary conditions and electrical field orientation for loose-packed 

SAMs are shown schematically in Fig. 5-1. For close-packed SAMs, the boundary 

condition and electrical field orientation are similar, but the scale length of the simulation 

box was reduced to half (the length of X-axis was reduced to 207 Å, the length of Y-axis 

was reduced to 60 Å and the interchain spacing was reduced to 5 Å). The simulation box 

was periodic along in-plane directions and the electrical field was applied along the out-

of-plane direction with positive field along the positive axis.  

 

 

 

 

 

 

 

E
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Periodic condition in X axis 
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Fig. 5-1 Schematic representation of the simulation box for loose-packed SAMs, periodic 

along the x and y directions and fixed along the z direction 

 

The interatomic potentials of the simulated system can be divided into three parts: 

bonded, nonbonded and external electrical field terms as shown in the equation below.  

                
 

 
( ) ( )

Bonded Nonbonded Electrical Field

Bond Angle Dihedral Lennard Jones Coulombic Morse ElectricalField

V V V V

V V V V V V V

   

     
      (5-1)  

The covalent bonds in the MHA chains were simulated using appropriate CHARMM 

molecular potentials (Brooks and Karplus 1983; Smith, Jaffe et al. 1993). The bond 

between sulfur and substrate gold atoms was simulated using the Morse potential in order 

to accurately simulate the experimentally observed (√3 × √3) R30° superlattice structure 

and chain orientations (Pertsin and Grunze 1994; Zhang, Goddard et al. 2002). Lennard-

Jones (LJ) potential was used to simulate interactions among atoms other than bonded 

and Morse potential interactions (Sorensen, Liau et al. 1988; Rappe, Casewit et al. 1992; 

Li 2001). The gold atoms forming the Au(1 1 1) plane were fixed and interacted through 

LJ potential with the atoms in the SAM chains. These intramolecular and intermolecular 

potential function parameters have been previously reported to accurately capture the 

equilibrium conformations, vibrational frequencies and excess enthalpies of the simulated 

molecules (Lifson and Warshel 1968; Engler, Andose et al. 1973). Only the atoms in the 

carboxylic acid end group were assigned point charges following the Mulliken charge 

analysis (Mulliken 1955). The long-range electrostatic pair interactions between the 

charged atoms were computed using Ewald summation routines available in LAMMPS. 

Details of potentials, point charges and associated numerical parameters for all the 

interactions simulated in the molecular simulation are presented in appendix.  
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5.3.2 Procedure for conformation simulation  

 

In order to investigate the conformational transition, MD simulations were 

performed with a 1fs time step in three steps: initialization, thermalization and 

application of external electrical fields. For the initialization process, the system was 

given temperature of 0.45 K with NVT ensemble to minimize the initial energy of the 

ensemble. Subsequently, the system was kept at temperature of 200 until equilibrium was 

achieved with NVT ensemble. After that, external electrical fields with different field 

strengths were applied onto the SAM system with NVE ensemble till the system reached 

equilibrium. After equilibrium, the MD simulations were continued for period of 100 ps 

to extract statistical information about chain conformations. The simulations were 

repeated for different electrical field magnitudes ranging from positive maximum value 

of 2 V/Åto negative maximum value of −2V/Å with an increment of −0.5V/Å.  

 

5.3.3 Procedure for indentation and sliding simulation 

 

Contact and frictional response of the SAM systems were investigated with two 

different indenter geometries: cylindrical and spherical. The indenters were modelled as 

rigid and repulsive surface. The repulsive potential simulates hard indenter and has the 

following potential (Kelchner, Plimpton et al. 1998; Shimizu, Eda et al. 1998; Ohzono 

and Fujihira 2000): 

                                                                                                            (5-2) 

where r is the distance between the atoms in the indented SAM and the centre of the 

indenter surface, is the indenter radius and k is the stiffness constant for the indenter 

surface. H is Heaviside step function in order to ensure that only the atoms in contact 
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with the indenter surface are subjected to repulsive force. In the simulations, the indenter 

radius, R, and stiffness, k, are set equal to 50 and 70 Nn/Å
2
, respectively. The value of the 

indenter radius is chosen such that the rigid surface makes contact with multiple chains 

during the indentation and sliding simulations. The value of the indenter stiffness is 

chosen to ensure that the SAM atoms do not penetrate the indenter surface. In order to 

measure the response of the SAM covered surface, the indenter was moved downwards in 

range of velocities from 0.1 to 0.5 Å/ps
 
and the contact load was monitored to determine 

the load–displacement response.  

 

For the simulations, the SAM surfaces were first equilibrated under the desired 

electrical field following the procedure described above. Subsequently, the indenter was 

brought into contact with the SAM surface and frictional performance was determined at 

different normal loads and applied electrical fields. Sliding simulations for the SAM 

surface were performed in three steps: indentation, dwell and sliding. For the indentation 

process, the indenter was moved downwards at velocity of 0.25 Å/ps
 
till it reached 

desired force level. At the dwell stage, the indenter was held stationary till the contact 

loads on the indenter reached steady value. For the sliding process, the indenter was 

maintained at constant height and moved forward at 1 Å/ps
 
sliding velocity along the 

surface of the SAM system. The contact loads applied on the indenter were recorded to 

determine the normal and tangential forces. In order to examine the influence of SAM 

deformation and applied electrical field on friction performance, simulations were carried 

out for a range of indentation loads and applied electrical fields of −2, 0 and +2 V/Å. 
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5.4 Results 

5.4.1 SAM conformation as function of electrical field 

 

The total energy of the chains for typical conformation simulation is shown in Fig. 

5-2. In the first stage of simulation at 0.45 K, the system undergoes energy minimization 

within 20 ps. As the temperature is increased to 200 K during the thermalization process, 

the total energy increases as the kinetic energy increases and reaches an equilibrium 

value after 20 ps. Applying an electrical field onto the system increases the potential 

energy and thus also increases the total energy of the system, which reaches an 

equilibrium value in 20 ps. The simulation was continued for 60 ps to capture statistical 

information on the chain conformation. 

 
Fig. 5-2 Energy output for conformation simulation 

 

The typical configurations of loose-packed MHA chains obtained under 

application of electrical fields of 2, 0 and −2V/Å are shown in Fig. 5-3(a), (b) and (c), 
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respectively. The representative configurations of single chains for similar fields are 

shown in Fig. 5-4(a), (b) and (c). For the sparsely packed SAM, chains cluster together 

due to the intermolecular interaction and form disordered film structure on the gold 

surface. The application of electrical field changes the conformation of individual chains 

and also the chain arrangement in the SAM. The carboxyl head group consists of 

negatively charged oxygen atoms and positively charged carbon and hydrogen atoms, 

thus forming charged dipoles. Under the application of the positive electrical field, the 

force couple generated due to the carboxyl end group pulls the backbone chain down 

parallel to the surface and chains lie down in the form of clusters. The spatial constraints 

and the interchain interaction ensure that the backbone chains forming the cluster align 

parallel and anti-parallel to each other. Under neutral and negative electrical fields the 

chains remain standing up and their head groups cluster together due to the long-range 

attractive interactions. Under the negative electrical field, the moment generated due to 

the head group pulls the chain up but the stiffness of the backbone chain and long-range 

interaction between the neighbouring chains maintain the chain backbone in almost 

similar configuration as the neutral electrical field. However, the head group orientations 

for the chains under neutral and negative electrical fields are very different. The 

negatively charged oxygen atoms are repelled away and are more prominent in the top-

most layers under negative electrical fields as compared with neutral fields. 
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100 Å 

 
(a) 2V/Å 

 

 
(b) 0V/Å 

 

 
(c) -2V/Å 

 

 

Fig. 5-3 Top layer snapshot and typical configuration of loose packed MHA chains after 

applying electrical fields  

[Color representation: sulfur (black), carbon (blue), hydrogen (green) and oxygen (red)] 
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(a)  2 V/Å 

 

                          
 

(b) 0 V/Å                                                            (c) -2 V/Å 

 

Fig. 5-4 Single chain snapshot and typical configuration of loose packed MHA chains 

after applying electrical fields 

[Color representation: sulfur (black), carbon (blue), hydrogen (green) and oxygen (red)] 

 

 

The influence of moment generated due to the polar head group can be clearly 

seen in the conformational transitions of individual chains, as shown in Fig. 5-4. The 

stiffness of the backbone chain ensures that the conformational change occurs only 

through chain rotation about the sulfur atom rather than bending of the backbone. Under 

the positive electrical field the chains are pulled down, whereas the backbone tilt remains 

similar for both neutral and negative electrical fields. The head group orientation in 

individual chains also strongly depends on the electrical field. In the carboxyl head group, 

the negatively charged oxygen atoms were pulled down under the positive electrical field, 

whereas they were pushed away under the negative electrical field. 

10 Å 
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The typical configuration of close-packed MHA SAMs obtained under 

application of electrical fields of 2, 0 and −2V/Å are shown in Fig. 5-5(a), (b) and (c), 

respectively. The configuration of a single chain in the close-packed MHA SAM for 

similar fields is shown in Fig. 5-6(a), (b) and (c). Due to the limited spatial availability, 

the backbone chains of the close-packed SAM maintain their orientation and regular 

arrangement for different fields. 

 

 

 
(a) 2 V/Å 

 

 
(b) 0 V/Å 
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(c) -2 V/Å 

 

Fig. 5-5 Top layer snapshot and typical configuration of close packed MHA chains after 

applying electrical fields 

[Color representation: sulfur (black), carbon (blue), hydrogen (green) and oxygen (red)] 

 

        
 (a) 2 V/Å                                (b) 0 V/Å                          (c) -2 V/Å       

 

Fig. 5-6 Single chain snapshot and typical configuration of close packed MHA chains 

after applying electrical fields 

[Color representation: sulfur (black), carbon (blue), hydrogen (green) and oxygen (red)] 

 

The force couple generated due to the charged carboxylic head group results in 

the chain conformation shown in Fig. 5-6. Under the positive electrical field, the 

negatively charged oxygen atoms are pulled lower, whereas the application of the 

negative electrical field pushes them away from the gold surface. The changes in head 

50 Å 

10 Å 
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group orientations result in different atoms being exposed on the SAM surface, as shown 

in Fig. 5-5. Under the positive and neutral electrical fields, hydrogen atoms as well as 

oxygen atoms are exposed; however, under the negative electrical field, negatively 

charged oxygen atoms are pushed out. 

 

The field-induced conformational transitions of loose-and close-packed MHA 

chains are analysed through the height distribution of oxygen atoms. The average oxygen 

height for the two different SAM arrangements is presented in Table 5-1 as function of 

the applied electrical field. In addition, the height distributions for oxygen atoms in the 

loose-packed SAM are plotted in Fig. 5-7 for different electrical field magnitudes. The 

corresponding height distributions of oxygen atoms for close-packed SAMs did not show 

a large variation with changes in the electrical field and thus are not included in the paper. 

 

Table 5-1 Average height of oxygen atoms 

 2V/Å 1.5V/Å 1V/Å 0.5V/Å 0V/Å -0.5V/Å -1V/Å -1.5V/Å -2V/Å 

Loose 

packed 

SAMs 

6.85Å 7.49Å 11.3Å 18.0Å 18.8Å 18.0Å 17.4Å 17.3Å 17.5Å 

Close 

packed 

SAMs 

19.7Å - - - 19.8Å - - - 20.2Å 

 

 

   
           (a) Positive electrical fields                         (b) Negative electrical fields 
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Fig. 5-7 Oxygen distribution calculation of loose packed MHA chains 

 

 

As the magnitude of the applied positive electrical field increases, the average 

oxygen height in loose-packed MHA SAMs decreases indicating the pulling down of the 

chains under the electrostatic forces. The peaks in the oxygen height distribution 

functions show that at neutral and low electrical fields, the probability of finding the 

carboxylic end group near the average value is high indicating that all of the chains stand 

up. At moderate values of field strength, the average values of oxygen height reduce and 

chain head groups are distributed over a height range indicating that backbone chains 

have range of configurations from slightly bent to completely lying down. As the field is 

increased to the maximum value, the head groups settle around two different heights with 

narrower distributions indicating that most of the chains are pulled down to the surface. 

 

While under negative electrical fields, the height distribution of the oxygen atoms 

did not show significant variation though the average oxygen atom height did show a 

slight decrease associated with the rotation of carboxylic head group to expose the 

negatively charged oxygen atoms. 

 

Thus, positive electrical fields can trigger more prominent conformational 

transition for MHA chains in the sparsely packed SAMs and the chain conformation 

remains almost similar under neutral and negative electrical fields. For close-packed 

MHA SAMs, electrical fields have little influence on the height of the SAMs, all of the 

close-packed MHA chains always maintained their original height of around 20 Å. Thus, 
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it is difficult for close-packed MHA chains to generate significant conformational 

transition. 

 

The simulation results on the conformational transition of MHA SAMs under 

electrical fields are consistent with Lahann et al.’s (Lahann, Mitragotri et al. 2003) and 

Kanaga Karuppiah et al.’s (Karuppiah, Zhou et al. 2009) experimental observation of 

conformational transition. Lahann et al. (Lahann, Mitragotri et al. 2003) used sum-

frequency generation (SFG) spectroscopy to show that for similar magnitude of electrical 

fields applied to sparse monomolecular SAMs, the positive electrical field pulled 

individual chains down to the surface, whereas the negative electrical field maintained 

the chain in the standing configuration. Kanaga Karuppiah et al. (Karuppiah, Zhou et al. 

2009) used adhesion measurements with AFM tips to show that the application of similar 

magnitudes of electrical field resulted in changes in the surface properties indicating 

conformational transition of the SAM. In addition, MD simulation results on close-

packed PEG SAMs (Vemparala, Kalia et al. 2004) show that the application of electrical 

fields on close-packed SAMs does not result in the deformation of backbone chains due 

to the spatial limitation, as observed in our simulation results on close-packed MHA 

SAMs. 

 

In summary, the simulation results presented above show that at full coverage the 

SAM films form regularly packed uniform structure that is not disturbed during the 

application of electrical fields. However, at sparse coverage, the chains are arranged in 

irregular clusters on the surface and the orientation of the chains in the clusters changes 
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with electrical fields. Under positive electrical fields, the chains in the cluster lie parallel 

and anti-parallel to each other. Under neutral and negative electrical fields, the clusters of 

chains are formed through coming together of chain head groups. 

 

5.4.2 Friction simulation 

 

The SAM surfaces were first equilibrated under the desired electrical field 

following the procedure described in the previous section. Subsequently, the SAM 

surfaces were indented with non-repulsive indenter. The load– displacement curve 

obtained from cylindrical indenter of 50 Å radius indenting the sparse SAM surface at 

velocity of 0.25 Å/ps under an electrical field of 2 V/ Å is plotted in Fig. 5-8. A similar 

qualitative response was determined for spherical indenters and sparse SAMs under 

different voltages as well as different indenter velocities from 0.1 to 0.5 Å/ps. 

 

Fig. 5-8 Load–displacement profile for SAM indentation with a cylindrical indenter and 

selection of indentation depth for sliding simulations 
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In the case of rigid surface indenter, only the atoms in contact with the indenter 

are subjected to repulsive force and the number of atoms in contact with the indenter can 

quantify the average force acting on the contacting atoms. The chains may accommodate 

the deformation induced due to indentation either through backbone rotation that changes 

the interchain spacing, or through bending of covalent bonds along the chain backbone, 

or through compression of covalent bonds along the backbone. 

 

The indenter load and the number of atoms in contact with the rigid indenter 

surface are plotted as function of the normalized indentation depth in Fig. 5-8. The 

normalized indentation depth, d, is defined as follows: 

                                                
0

0

0

        0
h h

d h h
h


  

                                        (5-3) 

where h is the height from the gold substrate (the same as the height in Fig. 5-6), and h0 is 

the initial height of the indenter. The initial height for all the simulations was maintained 

to be about 10 Å above the highest atoms forming the SAM. 

 

As the indenter is brought into contact with the SAM surface, the indentation load 

and the number of atoms in contact with the indenting surface increase with depth 

indicating that the average force per atom remains constant. As the indentation depth 

increases, the number of atoms in contact remains constant but the overall indentation 

load keeps on increasing, indicating that the average indention force per atom increases. 

But at critical indentation depth, both indentation load and number of atoms in contact 

suddenly drop before continuing monotonic increase with increasing indentation depth. 

The low coverage density of sparse SAMs allows interacting chain to move away from 
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the indenter, therefore at the critical indentation depth, the repulsive forces are strong 

enough to drive the chains away from the indenter, which leads to the sudden load drop 

and reduction in number of atoms in contact with the indenter. Further indentation leads 

to monotonic increase as more chains and the rigid gold surface start interacting with the 

indenter. In the fully packed SAM film, the indentation response showed similar response 

of load drop at critical indentation depth for indenter shapes, applied electrical fields and 

indentation velocities. The chains do not have spatial room to move away from the 

indenter and thus, almost one magnitude larger indentation loads were associated with the 

observation of load-drop phenomena as compared with indentation loads for sparsely 

packed SAMs. 

 

For both sparse and fully packed SAMs, the frictional behaviour shows two 

distinct responses corresponding to lower normal load and higher normal load level, 

respectively. In the current simulations, the indenter is modelled as repulsive rigid surface, 

therefore the frictional forces are based purely on repulsive forces applied to the atoms in 

contact with the indenter surface. These repulsive forces can either lead to localized 

deformation of the individual chains or at larger magnitudes can move whole chains 

along with the indenter leading to wear and distortion of the SAM structure. In the 

current simulations, the gold substrate is idealized as a rigid substrate, consequently, the 

simulations will lead to non-physical results at large loads since the deformation of the 

gold substrate is not simulated. Therefore, only the frictional results that correspond to 

low loads, shallow indentations and localized deformation of the SAM surface are 

reported. The friction response of the sparsely packed MHA films was measured at 
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indentation load levels ranging from 0 to 0.2nN/Å for the cylindrical indenter and 0 to 2.5 

nN for the spherical indenter, respectively. In the case of fully packed MHA films normal 

loads for sliding simulations varied from 0 to 1.2 nN/Å for the cylindrical indenter and 0 

to 15 nN for the spherical indenter, respectively. The load level and the corresponding 

depths chosen for simulating the friction response are indicated by symbol (×) on the 

load– displacement curve in figure 8. These loads and depths were chosen to characterize 

the friction response before and after the observed load drop during the indentation. 

 

The friction response on the SAM surface subjected to electrical fields was 

simulated in three steps: indentation to the desired load level with the indenting surface 

moving vertically down at speed of 0.25 Å/ps, dwell of indenting surface at the given 

height to reach constant normal load level and horizontal sliding of the indenter at 

constant height at horizontal velocity of 1 Å/ps. During the dwell period, constant load 

level was reached within 2–3 ps of simulation time and the dwell simulation was carried 

out for total of 20 ps to ensure that equilibrium is achieved. At each indentation depth, the 

equilibrium normal load levels reached during the dwell period were consistently lower 

than the indentation loads measured for the same depth. However, the equilibrium load 

levels for different depths still followed the same trend, i.e. initial increase, load drop and 

subsequent monotonic increase. After the dwell period, the indenting surface was moved 

horizontally at constant height with horizontal velocity of 1Å/ps. The ratio of the normal 

and tangential loads was monitored to determine the frictional coefficient on the SAM 

surface. 
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The average values of the friction coefficient measured during sliding simulations 

for shallow indentation of cylindrical and spherical indenters on loose-packed SAMs are 

plotted as function of normalized normal load in Fig. 5-9(a) and (b), respectively. The 

friction coefficients computed for sliding of cylindrical and spherical indenters on close-

packed MHA SAMs are shown in Fig. 5-10(a) and (b), respectively. The range of friction 

coefficient (0.1–0.3) obtained in our simulation is comparable to the reported friction 

coefficient computation results for alkanethiol SAM surfaces in sliding contact (Harrison, 

White et al. 1995). 

  
(a) cylindrical indenter                                       (b) spherical indenter 

 

Fig. 5-9 Frictional coefficient of loosed packed MHA SAMs 

 

  
(a) cylindrical indenter     (b) spherical indenter 

 

Fig. 5-10 Frictional coefficient of closed packed MHA SAMs 
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During sliding simulations at shallow indentation, the repulsive force applied on 

the chains only cause bending and deformation of individual chains but the overall 

structure of the SAM film remains undisturbed. In order to demonstrate the localized 

deformation of individual chains, snapshots of a single chain from sparse MHA SAM 

subjected to an electrical field of 2 V/Å during sliding simulations with cylindrical 

indenter of radius 50 Å are shown in Fig. 5-11. Due to the interaction between the 

indenter and chains, the end group was pushed downwards and after the interaction, the 

chains can rebound to its original configuration. Similar chain deformations due to 

indenter interactions were observed for other indentation depths and applied electrical 

fields at shallow indentation. 

 

 

 

 
(a) Before sliding 

 

 
(b) During sliding 

 

 
(c) After sliding 

 

Sliding direction 
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Fig. 5-11 Conformation changes in single chain from SAMs during the sliding process 

 

For shallow indentation of loose-packed MHA SAMs (shown in Fig. 5-9), the 

frictional coefficients are independent of the applied load but demonstrate strong 

dependence on the applied electrical field. The friction coefficient is the lowest for the 

application of the positive electrical field and increases in value as the applied electrical 

field is changed to neutral and negative values. The dependence of the frictional 

coefficient on the applied electrical field is associated with different chain conformations. 

Changes in energy associated with bond, angle and dihedral potentials during the indenter 

sliding were monitored in order to quantify the deformation mechanism for the chains 

under an indenter load. The change in the respective energies during the sliding of the 

indenter is tabulated in Table 5-2. 

Table 5-2 Percentage change of bonded energy 

Bonded potential 

 
2V/Å 27.4% 

0V/Å 34.7% 

-2V/Å 36.5% 

 

As the electrical field changes from positive to negative values, the total bond 

energies undergo increasingly larger changes. For similar indenter load levels, the chains 

in the standing up conformation undergo much larger energy change and consequently, 

larger deformation than chains in the lying-down conformation. The positive electrical 

field induces lying-down conformational transition, so chains have little space to generate 

a bending deformation. While, under neutral and negative electrical fields, the chains 

b b

after before

b

before

(E - E )

E
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remain in the standing-up conformational status, and thus have more space to generate 

bending deformation and thus can induce more resistance and energy absorption during 

the indenter sliding process. In addition, the large separation between the chains ensures 

that the chain deformation due to the indenter is not constrained due to neighboring 

chains. Thus, as the indentation load is increased, more chains come into contact with the 

indenter but the load required to deform each chain remains nearly the same ensuring that 

the friction coefficient remains nearly constant. 

The close-packed SAMs under shallow indentation show trend of increasing 

friction coefficient with increasing normal load. As the indentaion load is increased, more 

chains come in contact with the indenter and are deformed during sliding. Close packing 

of the chain ensures that the deformation of chains is influenced due to the presence of 

neighbouring chains and hence, the load required to deform each additional chain 

increases as the available space is used up. Consequently, as the indentation load is 

increased additional chains come into contact and the increase in load required to deform 

the additional chains ensures that the friction coefficient keeps on increasing. The chains 

in the close-packed SAMs remain standing and do not undergo significant 

conformational transition under the applied electrical field and consequently, the 

frictional response is found to be independent of the applied electrical field. 

 

Previous simulation results have also shown that the frictional coefficients remain 

independent of normal loads for disordered SAMs (Chandross, Webb et al. 2004; 

Chandross, Lorenz et al. 2005), and increase linearly with indentation loads for fully 

packed regular SAM structures (Harrison, White et al. 1992; Harrison, White et al. 1995). 
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In the case of shallow indentation with repulsive rigid indenting surface, localized 

chain deformation is the primary mechanism that determines the resistance to tangential 

motion. Electrical field induced chain conformation and SAM density determine the 

magnitude as well as the dependence of tangential resistance on the applied normal load. 

The simulations reported in this paper are performed by assuming that the underlying 

substrate is rigid surface. 

5.5 Conclusions 

Simulations of chain conformation and frictional response in SAMs of carboxyl 

head group alkanethiols under an applied electrical field lead us to the following 

conclusions: 

(1) Sparse monomolecular films are composed of clusters that form due to coming 

together of head groups under interchain attraction. The application of an electrical field 

changes the conformation as well as the chain arrangement in the clusters. 

(1a) Under the application of positive electrical fields, the chain backbone rotates 

to undergo transition from standing to lying-down conformation. In addition, the chains 

arrange in parallel and antiparallel arrangements to form disordered clusters on the 

surface. 

(1b) Under the application of negative electrical fields, the chain backbone 

remains in the standing-up conformation and the chains still form the disordered clusters 

on the surface. 

(2) Close-packed SAMs under electrical fields do not undergo any conformational 

transition associated with backbone rotation. 
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(3) Under shallow indentation with repulsive rigid indenting surface, the SAM 

chains provide tangential resistance through localized chain deformation. For sparsely 

packed SAMs, positive electrical fields induce smaller frictional coefficient than neutral 

and negative fields. While for close-packed SAMs, all kinds of electrical fields lead to 

similar frictional coefficients. 

 

5.6 Appendix 

Interatomic potential functions and associated numerical parameters 

 

Bonded 

Bonds Harmonic:  
2

ij ij 0
i,j

k r r   

Angles Harmonic:  
2

ijk ijk 0
i,j,k

k    

Dihedrals Charmm: 
ijkl ijkl 0

i,j,k ,l

k 1 cos(n )   
 

   

Nonbonded 

Lennard Jones Universal Force Field:  

Electrostatic Coulombic: 

 

 

Morse For Au/S interaction:  
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Bond (Harmonic) potential parameters: 

 kij (Kcal/mol) r0 (Å) 

S-C 450 1.81 

C-C 200 1.53 

C-H 300 1.08 
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(O=)C-O 450 1.38 

OH 450 0.96 

 

12 6

ij ij

ij
i,j

ij ij

V  = 4
r r

 


    
     
        

i j

i,j
ij

q q
C

r


ij 0 ij 0-2 (r r ) - (r r )

ij
i,j

D e 2e
  

  
 

i i
q Ez



102 

 

 

 

Angle (Harmonic) potential parameters: 

 kijk (Kcal/mol) θ0 (Degree) 

S-C-H 40 109.5 

S-C-C 50 112.5 

H-C-H 40 109.5 

C-C-H 40 109.5 

C-C-C 45 111 

C-C-C(=O) 70 109.5 

H-C-C(=O) 70 109.5 

C-C=O 85 118.5 

C-C(=O)-O 85 120 

O=C-O 85 120 

C-O-H 50 109.5 

 

 

Dihedral (Charmm) potential parameters: 

 kijk (Kcal/mol) φ0 (Degree) n 

S-C-C-H 1.6 0 3 

S-C-C-C 1.6 0 3 

H-C-C-H 1.6 0 3 

H-C-C-C 1.6 0 3 

C-C-C-C 1.6 0 3 

C-C-C-C(=O) 1.6 0 3 

H-C-C-C(=O) 1.6 0 3 

C-C-C=O 0 0 3 

H-C-C=O 0 0 3 

C-C-C(=O)-O 0 0 3 

H-C-C(=O)-O 0 0 3 

C-C-O-H 1.8 180 2 

O=C-O-H 1.8 180 2 

 

Morse potential parameters: 

 Dij (Kcal/mol) α (Å
-1

) r0 (Å) 

Au-S 3.182 1.378 2.903 

 

Nonbonded intermolecular potential function (LJ potential) parameters: 

 εij (Kcal/mol) σij (Å) 

Au-C 0.06399 3.1726 

Au-H 0.04142 2.7465 



103 

 

 

 

Au-O 0.04837 3.0245 

S-S 0.27400 3.5948 

S-C 0.16962 3.5119 

S-H 0.10980 3.0402 

S-O 0.12822 3.3480 

C-C 0.10500 3.4309 

C-H 0.06797 2.9700 

C-O 0.07937 3.2708 

H-H 0.04400 2.5711 

H-O 0.05138 2.8315 

O-O 0.06000 3.1181 

 

Point charges in carboxyl headgroup: 

C O (double bond) O (single bond) H 

0.53 -0.38 -0.548 0.398 
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CHAPTER 6.   SIMULATION AND EXPERIMENTAL 

INVESTIGATION OF ELECTRICAL FIELD MODULATED SELF 

ASSEMBLED MONOLAYER 

(A paper prepared for submission to Langmuir) 

 

Xiao Ma, Pranav Shrotriya, Kanaga Karuppiah, Sriram Sundararajan 

Department of Mechanical Engineering, Iowa State University, Ames, IA50011 

 

6.1 Abstract 

 

Sparse self assembled monolayers (SAMs) have high feasibility and flexibility to 

undergo conformational transition under various external condition changes. The effect 

of electrical field actuated SAMs conformational transition was investigated by both 

molecular dynamics (MD) simulation and atomic force microscopy (AFM) experimental 

methods. Simulation results showed that under positive electrical field, SAM chains were 

pulled down onto the substrate, and exhibited longer distance order; while under negative 

electrical field SAM chains were pushed straight up from the substrate, and exhibited 

shorter distance order. Experimental results proved the conformational transition that 

illustrated by simulation, and indicated that the order of monolayer structure might be a 

more prominent factor than surface chemistry for frictional performance, which could 

also be supported by the SAM structural analysis from simulation.  

 

Keywords     Molecular dynamics simulation    Atomic force spectroscopy     

                     Self-assembled monolayer    Conformational transition     
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6.2 Introduction 

 

Research on sparse self assembled monolayers (SAM) has recently been a 

promising topic due to their flexibility to undergo conformational transition under various 

external condition changes (Vemparala, Kalia et al. 2004; Pei and Ma 2005; Ghorai and 

Glotzer 2007; Gus'kova, Mena-Osteritz et al. 2007; Osnis, Sukenik et al. 2012), and thus 

implies a potential for smart surface design in micro/nano electronics (Schon, Meng et al. 

2001; Schon, Meng et al. 2001; Fan, Yang et al. 2002; Stapleton, Harder et al. 2003; Fan, 

Yao et al. 2004), microfabrication (Ulman 1990; Jackman, Wilbur et al. 1995; Wilbur, 

Kumar et al. 1996; Azzaroni, Schilardi et al. 2003; Liu and Cui 2005), tribology 

(Srinivasan, Houston et al. 1998; Maboudian, Ashurst et al. 2000; Sundararajan and 

Bhushan 2001), and biomedical applications (Kane, Takayama et al. 1999; Zhao, Wang 

et al. 2011). Among various methods to actuate molecules and induce conformational 

transition, application of electrical field is a compelling and controllable way with 

considerable feasibility and engineering application perspective.  

 

Lahann et al. (Lahann, Mitragotri et al. 2003) invented a way to generate sparse 

mercapto-hexadecanoic acid (MHA) SAM and induced the electrical field on thin film to 

generate conformational transition. Due to the polar nature of the carboxyl group, under 

positive electrical field chains were bent down upon the substrate, while under negative 

electrical field chains were pushed straight up. This conformational transition could shift 

the surface of MHA from hydrophilic to hydrophobic nature. Liu et al.
 
(Liu, Fujisawa et 

al. 2000) utilized scanning force microscopy (SFM) to study the microtribological 

properties of Langmuir-Blodgett (LB) monolayer films under modulation of electric 
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fields. They found the friction force of the film increased with a DC field. However, by 

applying a specific combination of AC voltage and frequency, the friction force almost 

reached zero and the wear-life of the film was greatly extended. 

 

Karuppiah et al. (Karuppiah, Zhou et al. 2009)
 
measured the adhesion and 

frictional response of a sparse MHA SAMs under electrical fields by using atomic force 

microscopy (AFM). Higher adhesion was found under negative electrical fields, while 

lower friction level was obtained. This contrary phenomenon was explained by the 

change in the structural and crystalline order of the SAMs. Specifically, the more ordered 

structure under negative electrical field decreased the friction, though higher adhesion 

was caused by the hydrophilic interaction between the probe tip and SAM end group. 

This indicates that the order of structure for the thin film has a more prominent influence 

on frictional performance than deformation.  

 

Vemparala et al. (Vemparala, Kalia et al. 2004)
 
applied MD to investigate the 

electrical field actuated conformational transition of polyethylene glycol (PEG) SAMs. 

Due to the polar nature of the glycol groups, the conformational transition from “all-trans” 

status to “gauche” status was observed. Under negative electrical field the distribution of 

chains is more ordered with exposed oxygen atoms, while positive electrical field 

introduces considerable disorder in the system and the oxygen atoms are buried inside. 

Pei et al. (Pei and Ma 2005) conducted MD simulation to investigate the electric field 

induced switching behaviors of low-density mixed ω-carboxyalkyl/alkyl covered H-

Si(111) surfaces. They found the reversibly conformation transition between the all-trans 
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state and mixed gauche-trans state triggered by the applied electric fields ranging from -

0.2 V/Å to 0.7 V/Å. They also discovered that by lowering the ionic strength and 

additions of acetonitrile molecules in the surrounding solution, the value of critical 

intensity of the electric field required for triggering the conformational transition was 

substantially decreased, hence switching could be facilitated. Other studies on the SAM’s 

conformational transition and associated tribological performance have also been 

reported (Tupper and Brenner 1994; Bonner and Baratoff 1997; Harrison, Tutein et al. 

1999; Harrison 2001; Bat-Uul, Fujii et al. 2004; Jang, Jang et al. 2005; Leith and Morton-

Blake 2005; Sung and Kim 2005; Hu, Zhang et al. 2006; Wu, Lin et al. 2007; Harrison, 

Schall et al. 2008; Chang, Fang et al. 2009; Fang, Chang et al. 2009; Ramin and 

Jabbarzadeh 2011; Zhao, Duan et al. 2011; Wu, Fang et al. 2013). 

 

In this paper, molecular dynamics simulation is utilized to investigate the 

conformational transition of MHA SAMs actuated and modulated by electrical fields. 

Atomic force microscopy was conducted to validate the conformation transition results of 

simulation and determine the most prominent factor influencing frictional performance of 

SAMs, which can be further explained by the simulation. 

 

6.3 Experiment 

6.3.1 Preparation of low-density MHA SAM 

 

In order to generate the low-density mercaptohexadecanoic acid (MHA) SAM on 

gold substrate for implementation of the comformational transition, a SAM precursor 

mercaptohexadecanoic acid (2-chlorophenyl)diphenylmethyl ester (MHAE) containing a 

bulky end group was adopted to constrain the packing density by immersing the gold 
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substrate in a 1-mM MHAE ethanolic solution for 24 h at room temperature. After 

removal of the solution and drying procedure, the bulky ester end group could be 

removed by incubating the sample in a 50% trifluoroacetic acid (TFA) in anhydrous 

ethanol for 2 min following by the rinsing and drying procedures. Then the substrate 

covered by MHA SAM with low packing density was expected to achieved (Karuppiah, 

Zhou et al. 2009), as shown in Fig. 6-1. X-ray photoelectron spectroscopy (XPS), and 

ellipsonmetry measurements were performed to confirm the complete cleavage of the 

bulky ester end group and presence of MHA SAM on substrate (Karuppiah, Zhou et al. 

2009).  

 
 

Fig. 6-1 Scheme of preparation of low-density MHA SAM 

 

 

6.3.2 AFM based experiment for adhesion and friction measurement 

 

Pull-off force and friction experiments were conducted using Dimension 3100 

(Nanoscope IV, Veeco Instruments, Santa Barbara, CA) AFM to study adhesion and 

friction. under electrical field application of -10V, 0V and 10V respectively. The gold 

coated cantilever/probe was connected to ground, and a electric bias with respect to the 

ground was applied to metallic sample holder which was connected to gold substrate via 

conductive copper tape (Karuppiah, Zhou et al. 2009), as shown in Fig. 6-2. 
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Fig. 6-2 Scheme of AFM setup and electrical field application 

 

 

6.4 Simulation 

6.4.1 Model and interatomic potential   

 

MD simulations were performed by using LAMMPS (http://lammps.sandia.gov/) 

to investigate conformational transitions of MHA SAMs under applied electrical fields. 

576 chains of MHA (S-(CH
2
)

15
-COOH) were generated as the (√3 × √3) R30° lattice 

structure at an approximate 30° initial tilt angle with respect to the normal vector on Au(1 

1 1) plane (Zhang, Goddard et al. 2002).  The molecules were arranged in sparse 

coverage density withinter-chain space of 10Å. 

 

The interatomic potentials applied to the SAMs are composed of three parts: 

bonded, nonbonded and applied electrical field terms. 

      
 

  
( ) ( )

bonded nonbonded electrical field

bond angle dihedral improper lennard jones coulombic morse electrical field

V V V V

V V V V V V V V

   

      
(6-1)  

 

The covalent bond interaction in the MHA SAMs were computed using CHARMM 

potentials (Brooks, Bruccoleri et al. 1983; Jaffe, Smith et al. 1993; Smith, Jaffe et al. 

http://lammps.sandia.gov/
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1993), and Morse potential is utilized to simulate the bond between sulfur and gold atoms 

(Pertsin and Grunze 1994; Zhang, Goddard et al. 2002). Lennard Jones (LJ) potential was 

used to calculate interaction among atoms other than bonded and morse potential 

interactions (Sorensen, Liau et al. 1988; Rappe, Casewit et al. 1992). Point charges were 

assigned to carboxyl group in MHA SAMs following the Mulliken charge analysis 

(Mulliken 1995), and the long-range electrostatic pair interactions between the charged 

atoms were computed using Ewald summation routines available in LAMMPS. External 

electrical fields were used to simulate the influence of electrical field. 

 

6.4.2 Procedure of simulation  

  

MD simulations were performed with time step of 1fs in three consecutive 

procedures: initialization, thermalization and application of electrical field. The MHA 

SAMs were first assigned a temperature as 0.45 K with NVT ensemble to minimize the 

initial energy, then the system was kept at temperature of 200 K with NVT ensemble 

until it reached equilibrium. Finally, electrical fields with different field strength ranging 

from -2 V/Å to 2 V/Å, were applied onto the thin film with NVE ensemble till the system 

acchived equilibrium. After equilibrium, the MD simulations were continued for a period 

of 60ps to apply statistical analysis.  

 

6.5 Results and discussion 

 

Total energy output from MD simulation is shown in Fig. 6-3. In the first stage of 

simulation at 0.45 K, SAMs reached energy minimization state within 20ps.  As the 
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temperature increased to 200 K, the total energy increased along with the increase of 

kinetic energy and achieved an equilibrium state within 20ps. After electrical field was 

applied onto the system, the total energy increased along with the increase of potential 

energy and reached an equilibrium state within 10ps. The simulation was then continued 

for 50ps to apply statistical analysis for illustrating conformational transition.    

 
Fig. 6-3 Energy output for conformation simulation 

 

The top layer snapshot of sparse MHA SAMs under different electrical field 

conditions from MD simulation are shown in Fig. 6-4. For all of the three cases, the 

chains aggregated together and showed clustered configuration no matter whether 

electrical fields were applied. Backbone chains were bent down onto the substrate under 

the positive electrical field, while the chains were pulled straight up under the negative 

electrical field. From the single chain snapshot shown in Fig. 6-5, within the carboxylic 
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acid head group, the negative charged oxygen atoms were pulled downwards and buried 

inside under positive electrical field, while they were pushed up and exposed under 

negative electrical field.  

 

The average height of double bond oxygen atoms in carboxylic end group from 

MD simulation was shown in Table 6-1, and the detailed height distribution of double 

bond oxygen atoms was analyzed and shown in Fig. 6-6. When positive electrical fields 

were applied to SAMs, the average height of oxygen atoms in the carboxylic end group 

of sparse MHA SAMs decreased gradually, and reached the minimum value at 2 V/Å, 

which implied chains were pulled down towards the substrate by electrostatic forces. 

Under zero and negative electrical fields, the peak of height distribution located around 

20Å indicated chains were kept in standing state. At the maximum positive field strength 

of 2 V/Å, the double bond oxygen atoms in end groups showed very sharp peaks in 

height distribution at 2.5 Å and 7.3 Å, as shown in Fig. 6, which indicated the SAMs 

reoriented to achieve those energy-stable states and most of chains had been pulled down 

onto the substrate. For zero electrical field, height distribution of the double bond oxygen 

atoms always exhibited a broader distribution. Under negative electrical fields of -2 V/Å, 

there was no significant variation on the height distribution of double bond oxygen atoms, 

though a slight decrease of the average height was identified with respect to zero 

electrical field, which might be related to the rotation of carboxylic end group so as to 

expose the negatively charged oxygen atoms. In summary, positive electrical fields can 

induce more prominent conformational transition for sparse MHA SAMs compared to 

negative electrical fields. 
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Fig. 6-4 Top layer snapshot of low-density MHA chains after applying electrical fields 

[Color representation: sulfur (black), carbon (blue), hydrogen (green) and oxygen (red)] 
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Fig. 6-5 Single chain snapshot of loose packed MHA chains after applying electrical 

fields 

[Color representation: sulfur (black), carbon (blue), hydrogen (green) and oxygen (red)] 

 

 

Table 6-1 Average height of oxygen atoms  

 2V/Å 1.5V/Å 1V/Å 0.5V/Å 0V/Å -0.5V/Å -1V/Å -1.5V/Å -2V/Å 

Ave. 

Oxygen 

height 

5.3Å 7.5Å 11.5Å 18.0Å 19.0Å 17.8Å 17.6Å 17.6Å 17.5Å 
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Fig. 6-6 Height distribution of double bond oxygen atoms in carboxylic end group 

 

The comparison of height distribution for double bond oxygen atom in carboxylic 

group and carbon in the last methylene group from MD simulation are shown in Fig. 6-7, 

in terms of positive, zero and negative electrical field, respectively. Under positive 

electrical field of 2 V/Å, peaks of carbon atoms in backbone chains shifted to the right 

side of double bond oxygen atoms in end groups, which implied the height of the 

hydrocarbon backbone chain was higher than that of carboxylic end group, thus the 

hydrophobic portion of the SAMs, i.e. backbone chains was exposed as the top surface of 

SAMs. In contrast, under zero and negative electrical fields, peaks of double bond 

oxygen atoms in end group shifted to the right side of carbon atoms in backbone chains, 

which implied the height of carboxylic end group was higher than that of hydrocarbon 

backbone chain, thus the hydrophilic portion of the SAMs, i.e. the carboxylic end group 

was exposed as the top surface of SAMs. In summary, we can postulate that the polarity 
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change of electrical fields can trigger the hydrophilicity transition of MHA SAMs, thus 

alter the surface chemistry. This result is consistent with the adhesion measurement from 

AFM experiments, as shown in Fig. 6-8. 

 

 
(a) Positive electrical field (2 V/Å) 

 

 
(b) Zero electrical field (0 V/Å) 
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(c) Negative electrical fields (-2 V/Å) 

 

Fig. 6-7 Comparison of oxygen and carbon height distribution 

 

 

The pull-off force measurement results shown in Fig. 6-8 exhibit that the adhesion 

under negative electrical fields is much higher than that of positive electrical fields, 

which might indicate that negative electrical field keeps the SAM in a upright 

configuration so that the hydrophilic carboxylic eng group could interact with the 

hydrophilic gold-coated probe, and results in a larger adhesion force. While under 

positive electrical field, the SAMs are pulled down onto the substrate and expose the 

hydrophobic backbones to the probe, thus results in a smaller adhesion force 

corresponding to hydrophobic-hydrophilic interaction. 



118 

 

 

 

 
Fig. 6-8 Pull-off force measurement from AFM experiments 

 

 

Another statistical result for comparing the number of carboxylic end group and 

the last methylene group from MD simulation in the top 6Å layer is shown in Table 6-2. 

It shows that the percentage of carboxylic group increased as electrical field polarity 

shifted from positive to negative, while that of the last methylene group decreased greatly. 

Such a shift demonstrates the fact that under positive electrical field, there are more 

methylene groups in hydrocarbon backbone chains than carboxylic end groups exposed 

on the top surface of the SAMs, while under negative electrical field, there are more 

carboxylic end groups than methylene groups in hydrocarbon backbone chains. This table 

can also accounts the conformational transition of MHA SAMs under different electrical 

fields, and has a good agreement with the adhesion measurement results from AFM 

experiments.   

 

Table 6-2 Comparison of counts for carboxyl and methylene group in top 6Å 

 Carboxyl Methylene 

Absolute counts Percentage Absolute counts Percentage 
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2 V/Å 74 21.57% 269 78.43% 

0 V/Å 429 56.23% 334 43.77% 

-2 V/Å 315 65.35% 167 34.65% 

 

 

As a contrary to our expectation on the friction measurements, i.e. the response of 

friction force as a function of applied potentials match that of adhesion force, the 

interesting results showed that the application of positive electrical fields led to a much 

higher friction force than that of zero and negative electrical fields, as shown in Fig. 6-9. 

The experimental results suggested that the relatively disordered structure of SAMs under 

positive electrical fields caused the friction force to increase, while the relatively ordered 

structure of SAMs under zero and negative electrical fields could maintain a lower level 

of friction. Hence, we postulate that the contribution from the structure order outweighs 

the contribution from surface chemistry, and thus governs the friction performance of 

SAMs under different electrical field conditions.  

 
 

Fig. 6-9 AFM friction measurement for various applied electrical fields 
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From MD simulation, the 2D statistical analysis of radial distribution function 

(RDF) for double bond oxygen atoms in carboxylic end groups were conducted and 

shown in Fig.6-10, which exhibits that under all of the three electrical field conditions, 

RDF had peak values at 5Å. This means the chains showed clustered state and reduced 

the inter-chain distance from 10Å to 5Å, which is governed by the balanced distance 

constraint of Lenard-Jones potential well. The difference among the three cases is that the 

peak value of RDF reached the highest under negative electrical field, which indicates the 

chains were more ordered distributed at the characteristic distance 5Å. For zero electrical 

field, the peak value of RDF at 5Å was quite close to the negative potential case, yet 

showed a bit broader and scattered distribution, which might be due to the less constraint 

on the molecular motion since no electrical field was applied. The peak value of RDF at 

5Å under positive electrical field was lowest among the three cases, which implies the 

chains were less ordered distributed at this characteristic distance compared to negative 

and zero electrical field conditions. Meanwhile we also observed that from 20Å to 30Å, 

the chains under positive electrical field exhibited significantly higher values of RDF 

than the other two potential conditions, which compensates the case that chains had the 

lowest RDF value at 5Å and clarifies the fact that there is more probability for SAMs to 

distribute at this distance region than the other two potential conditions. In summary, we 

may postulate that under negative and zero electrical field condition, the SAMs exhibit 

more extent of shorter distance order, and under positive electrical field condition, the 

SAMs exhibit more extent of longer distance order.  Those results could provide a 

quantitative explanation of the implication from AFM experiments that MHA SAMs 

under positive electrical fields exhibit a relatively disordered structure compared to the 



121 

 

 

 

other two potential conditions, which might be the more prominent factor that governs 

the change of friction response under different electrical fields.  

 
Fig. 6-10 RDF of oxygen atom distribution 

 

Another statistical analysis of structure factor for carbon atoms in each methylene 

group and carboxyl end group from MD simulation could further illustrate the structural 

order of the backbone chains. The expression of structure factor is shown as follows.  

                                                        2

2

1
( ) ( )S k

N
  k

                                            (6-2) 
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i i

i r i k r k r

 
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  k k

              (6-3) 

where ρ(k) is the Fourier transform of the local particle density, and k = (kx, ky) is the 

two-dimensional scattering vector. The analysis results of structural factor under different 

electrical fields are shown in Fig. 6-11. 
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In the Fig. 6-11, number 1 to 16 denote the order of carbon atoms in methylene 

groups and carboxylic end group, e.g. no.1 corresponds to carbon atoms that are 

connected with sulfur atoms, and thus locate at the lowest height in initial configuration, 

while no. 16 corresponds to carbon atoms in the carboxylic end group, and thus locate at 

the highest height in initial configuration. We could see that under zero and negative 

electrical fields, carbon atoms showed apparently greater structure factor values than that 

under positive electrical fields for almost all methylene groups. Thus this result can also 

identify that under positive electrical fields, MHA SAMs show a relatively disordered 

structure compared with the other two potential conditions, which could be a possible 

explanation on friction measurement from AMF experiments.    

 
Fig. 6-11 Structure factor of carbon atoms in each methylene group 
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6.6 Conclusion 

 

Combining molecular dynamics simulation and atomic force microscopy based 

pull-off force and friction, we are able to characterize the conformational transition and 

understand the mechanism that governs the friction response of MHA SAMs under the 

modulation of applied electrical fields, and obtain the following conclusions: 

1) MD simulation shows that applied electrical field can induce conformational 

transition on sparse SAM films, change the surface chemistry and structural order. Under 

positive electrical field, MHA SAMs are pulled down onto the gold substrate, and expose 

the hydrophobic backbone chains on the top surface. While under negative electrical field, 

the chains are pushed straight up from the gold substrate, and exhibit expose the 

hydrophilic carboxylic end group on the top surface. The conformational transition can 

be verified by the AFM pull-off force experiments, in which the lower adhesion force 

between the SAMs and gold coated probe under positive electrical field indicates a 

unfavorable hydrophobic-hydrophilic interaction, and the greater adhesion force between 

the two under negative electrical field implies a favorable hydrophilic-hydrophilic 

interaction. 

2) According to AFM friction measurement, the friction force under positive 

electrical field is much higher than those under zero and negative electrical field, and thus 

implies that the structural order might be a more prominent factor to influence the 

frictional performance than surface chemistry. The underlying mechanism behind this 

unexpected result could possibly explained by MD simulation, i.e. MHA SAMs under 

positive electrical field has less ordered structure compared with zero and negative 

electrical field. More specifically, positive potential induces a relatively longer distance 
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order upon the SAMs, while zero and negative electrical field induce a relatively shorter 

distance order. In this way, we may postulate that it is the structural order serving as a 

more dominant factor on the friction response of MHA SAMs other than surface 

chemistry. 
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CHAPTER 7.   MOLECULAR DYNAMICS SIMULATION OF PEG 

SAM’S CONFORMATIONAL TRANSITION AND FRICTIONAL 

PERFORMANCE BASED ON ELECTROSTATIC STIMULATION 

(A paper prepared for submission to Journal of Physics D: Applied Physics) 

 

Xiao Ma, and Pranav Shrotriya 

Department of Mechanical Engineering, Iowa State University, Ames, IA50011 

 

7.1 Abstract 

 

Recently self-assembled monolayer (SAM) of organic molecules such as 

polyethylene glycol (PEG) terminated alkanethiols have attracted considerable attention 

due to their unique and flexible structure upon which conformational transition can be 

generated under certain applied stimuli. By utilization of Molecular Dynamics (MD) 

simulation, the structural conformation transition of PEG terminated SAMs and 

corresponding frictional performance transformation based on external electrical field 

stimulation were investigated and reported in this research. Harmonic / class2 potentials 

with consideration of gold-thiol interaction as a morse potential were applied in the 

model to simulate the atomic and molecular interaction. Simulation results indicated that 

significant conformational transition of close packed PEG SAMs generated due to the 

electrostatic forces. Under positive electrical fields, the PEG groups were compressed 

and twisted into the helical form which is known as the “Gauche” conformation. While 

under negative electrical fields, the PEG groups were stretched into the straight form 
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which is known as the “All-trans” conformation. Such conformational transition could 

induce substantial transformation of frictional performance upon PEG SAMs. Interaction 

between the SAMs with a repulsive indenter upon penetration and sliding showed that 

under positive electrical field, “Gauche” conformation decrease the inter-chain space for 

deformation, thus led to a comparatively lower frictional coefficient; while under 

negative electrical field, “All-trans” conformation increased inter-chain space for 

deformation, thus generated a higher frictional coefficient. During the simulation of 

interaction of SAMs with indenter, two kinds of frictional phase were observed. Under 

shallow indentation and sliding, a lower level of frictional coefficient was obtained and 

the configuration integrity of the molecular chains was not influenced by the indenter. 

While under deep indentation and sliding, much higher loads caused a greater level of 

frictional coefficient and the backbone chains can be dragged along with the indenter 

away from their original locations. The Molecular Dynamics simulation in this research 

provides meaningful insights upon the structural transition and tribological performance 

transformation of the PEG SAMs based on electrostatic stimulation. 

 

Keywords     Molecular Dynamics Simulation     Self-Assembled Monolayer       

                     conformational transition        tribological performance     

                     electrostatic stimulation 

 

 

7.2 Introduction 

 

Self-Assembled Monolayer has received enormous attention as a feasible means 

to control physical and chemical properties of solid surfaces (Lahann, Mitragotri et al. 

2003), thus has remarkable potentials in microfabrication (Ulman 1990; Jackman, Wilbur 

et al. 1995; Wilbur, Kumar et al. 1996; Azzaroni, Schilardi et al. 2003; Liu and Cui 2005), 
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microelectronics (Schon, Meng et al. 2001; Schon, Meng et al. 2001; Fan, Yang et al. 

2002; Stapleton, Harder et al. 2003; Fan, Yao et al. 2004), tribology (Srinivasan, Houston 

et al. 1998; Maboudian, Ashurst et al. 2000; Sundararajan and Bhushan 2001), and 

biological applications (Kane, Takayama et al. 1999; Zhao, Wang et al. 2011). There are 

several means to induce conformational transition upon SAMs so as to change surface 

properties through applications of external stimuli, such as temperature (Ghorai and 

Glotzer 2007), pH of solvent (Osnis, Sukenik et al. 2012), applied electrical fields 

(Vemparala, Kalia et al. 2004; Pei and Ma 2005), electrochemical modifications (Willner 

2005) and side-chain substitution (Gus'kova, Mena-Osteritz et al. 2007).  

 

Among different external stimuli to induce conformational transition, applied 

electrical field is a feasible, scalable and controllable method without any detrimental 

influence on the chemical stability of SAM. Vemparala et al.
 
(Vemparala, Kalia et al. 

2004) examined the electrical field induced conformational transition of polyethylene 

glycol (PEG) terminated SAMs with high coverage density on gold substrate by using 

molecular dynamics (MD) simulation. Due to the polar nature of glycol groups, the 

electrical field triggered the conformational transition from “all-trans” state to “gauche” 

state. The antiparallel electrical field with respect to the surface normal caused a 

reversible transition and ordered distribution of chains, whereas the parallel electrical 

field with respect to the surface normal introduced a large extent of disorder upon the 

SAMs. Pei et al. (Pei and Ma 2005) applied MD simulation to study the electrical field 

induced surface-switching behaviors of mixed ω-carboxyalkyl/alkyl SAMs deposited on 

H-Si(111) surfaces with low coverage density. They identified the reversibly 
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conformation transition between the all-trans state and mixed gauche-trans state induced 

by the applied electrical fields ranging from -0.2 V/Å to 0.7 V/Å. They also showed that 

the surface switching behavior could be facilitated by lowering the ionic strength and 

additions of acetonitrile molecules in the surrounding solution, since the threshold 

intensity of the electric field required for triggering the surface swithcing was 

substantially decreased. Karuppiah et al.(Karuppiah, Zhou et al. 2009)
 
utilized atomic 

force microscope (AFM) to evaluate the adhesion and friction response of a low-density 

mercaptocarboxylic acid (MHA) SAM under electrical field modulation with different 

polarities. They discovered higher adhesion force when negative electrical fields were 

applied upon the SAMs, and attributed this performance alteration to surface chemistry 

transition. The surface friction showed a contrary trend that higher friction level was 

obtained when positive electrical fields were applied. They explained this phenomenon in 

terms of structural order of the thin film, i.e. the higher friction under positive bias is 

ascribed to the relatively disordered structure of the SAMs, whereas the relatively 

ordered structure under negative bias tends to decrease the friction.  

 

Several research groups have applied MD simulation to study the conformational 

transition and its influence on frictional behavior of SAMs. Harrison et al.(Brenner, 

Harrison et al. 1991; Harrison, White et al. 1992; Harrison, White et al. 1995; Harrison, 

Tutein et al. 1999; Harrison 2001; Mikulski and Harrison 2001; Harrison, Schall et al. 

2008)
 
introduced an AIREBO potential to simulate structural and tribological properties 

of hydrocarbon SAMs using various nanostructures as the indentation and sliding 

counterfaces, such as carbon nanotubes, diamond surfaces, amorphous carbon surfaces 
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and fullerenes. They compared odd number carbon (C13) with even number carbon (C14) 

system which differs in the orientation of the last carbon–carbon bond. The analysis of 

probability distribution of methyl angle shows that the odd system has a comparatively 

larger deformation and shift, and more gauche defects than the even system. More 

detailed sliding-direction force distribution showed that the odd system contains more 

atoms that are capable of generating small pushing and resisting forces than even systems. 

They also identified that the comparatively flexible hydrocarbon SAMs significantly 

reduce the mechanical excitation of the interface lattice layers upon sliding, thus can 

decrease the friction effectively. Chandross et al. (Chandross, Webb et al. 2004; 

Chandross, Lorenz et al. 2005)
 
conducted MD simulation to investigate the adhesion and 

friction between ordered and disordered SAMs on silicon dioxide substrate. They created 

the disorder upon SAMs by removal of randomly selected chains from the ordered 

crystalline substrate, and then deposited chains onto an amorphous substrate. They 

observed stick-slip motion in full coverage ordered SAMs in terms of relatively slow 

shear velocities and constant pressures on the SAMs, while it disappeared in disordered 

one. The friction coefficient of the disordered SAMs was found to be not sensitive to the 

coverage density, chain length and substrate compared with the full coverage ordered 

SAMs. Kapila et al.(Kapila, Deymier et al. 2006)
 
studied the friction between alkylsilane 

SAMs attached to two rigid silica substrates. They investigated friction coefficient, 

friction force and normal load as a function of separation between substrates, temperature 

of films and sliding velocity of substrates. Their results showed that the frictional 

behavior of films as a function of separation between substrates follows the thermal 

activation model proposed by Briscoe and Evans (Briscoe and Evans 1982), while the 
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normal loads on the films depends on the temperature of films and sliding velocity of 

substrates. Tupper et al. (Tupper and Brenner 1994) performed MD simulation to study 

the friction of the relative sliding between two alkanethiol SAMs, and found the friction 

force is proportional to the applied load. They also discovered the chain length and the 

applied load did have effect on the SAM structure but didn’t influence the frictional 

property very much. Wu et al. (Wu, Lin et al. 2007; Wu, Fang et al. 2013) used MD 

simulation to study the friction mechanisms of n-hexadecanethiol SAM adsored on a gold 

substrate and scratched by a gold slider in terms of sliding height, direction, velocity and 

temperature. They discovered the amplitude of the stick-slip action cycle increases with 

the lower sliding height until reaching a critical value. Below the critical sliding height 

the there is irreversible changes in SAM organization and loss of lubricating efficiency. 

They also found a significantly lower friction level for the anti-tilt sliding above the 

critical height, and which is inverted below the critical height. Chang et al. (Chang, Fang 

et al. 2009) investigated the nanoscratched mechanisms of alkanethiol SAM on a gold 

substrate using MD simulation under different nanoscratched depths, the workpiece 

temperatures, the scratched speed, the SAM chain lengths and the shapes of the indentors. 

They discovered that the disorder, plastic mobility and friction coefficient of the SAM 

increased with a larger nanoscratched depth. The friction coefficient is found to be 

increased with a larger scratched speed. Longer chain length lead to larger tilt and 

bending, and a spherical indenter causes higher reaction forces than a Vickers indenter. 

Ramin et al. (Ramin and Jabbarzadeh 2011) applied MD simulation to investigate the 

tribological behavior of dodecanethiol SAM on Au(111) surfaces via different loading  

and shear rate conditions. They discovered that when loading is lower than 700MPa, the 
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fluctuations of the SAM is quite small. Above this loading the SAM backbone chain 

starts to compress and film thickness is significantly decreased. When loading is higher 

than 5GPa, the SAM undergoes disorganization and finally crushes. They also found the 

friction coefficient increases by enhancing the shear rate. Hu et al. (Hu, Zhang et al. 2006) 

applied MD simulation to investigate the atomic friction between SAM on Au(111) 

surfaces with emphasis on the performances of commensurate and incommensurate SAM 

in relative sliding. They found a clean periodic stick-slip friction pattern on 

commensurate SAMs, while random fluctuation and lower shear stress on 

incommensurate SAMs. They always found a higher friction forces on commensurate 

SAMS than those on incommensurate SAMs. The linear dependence of shear stress on 

normal pressure and logarithmic dependence on sliding velocity were also characterized. 

Sung et al. (Sung and Kim 2005) utilized MD simulation to understand the nano-

tribological phenomena of the nano-metric scribing process between the alkanethiol 

SAMs with probe tip. They found the SAM molecules were displaced and dragged by the 

probe tip during the scribing process, and the scribed pattern width was largely dependent 

on the probe shape other than tip-sruface contact size. They also showed that high-speed 

scribing results in excessive removal of the SAM molecules from the surface. Bonner et 

al. (Bonner and Baratoff 1997) applied MD simulation to study the interaction between 

scanning force microscopy (SFM) with alkanethiol SAMs on gold substrate by modeling 

the probe of SFM as a deformable pyramidal cluster connected by orthogonal springs to a 

rigid support. When penetration increased, they found the sliding caused stick-slip 

friction response, and the contact region of SAM tilted collectively towards the scan 
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direction. They also discovered the defects shown in the SAM when the drag was beyond 

a critical load. 

 

In summary, applied electrical fields can induce substantial conformational 

transition upon SAMs with polar end group that has non-concentric charge distributio. 

Simulation results show that the orientation of bonds in end groups, crystallographic 

directions, tilt angle and stick-slip motion could be largely influenced by penetration 

depth, sliding velocity, temperature and indenter shape, and thus leads to distinctive 

friction responses of various SAMs.  

 

In this paper, MD simulation is conducted to investigate the conformational 

transition induced by applied electrical fields on close packed PEG SAM. Associated 

transformation upon frictional performance of PEG SAM is investigated as a function of 

the applied electrical fields, normal loads and indenter shape. 

 

7.3 Method 

7.3.1 Initial ensemble and interatomic potentials 

 

Molecular dynamics (MD) was utilized to calculate the trajectory of all atoms on 

PEG SAM under applied electrical fields through numerical integration of Newton’s 

equations of motion via an open source shared parallel code - LAMMPS 

(http://lammps.sandia.gov) (Plimpton 1995), then associated conformational transition 

and friction response could be computed through post-processing of the above data file.  

 

http://lammps.sandia.gov/
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In order to generate the initial ensemble, 576 chains of polyethylene glycol (PEG) 

terminated SAM  (S-(CH2)13-(O-CH2-CH2)3 -O-CH3 ) were located on fixed Au(1 1 1) 

plane with the (√3 × √3) R30° lattice structure and a approximate 30° initial tilt angle 

with respect to the normal vector (Zhang, Goddard et al. 2002; Zhang and Jiang 2002). At 

full coverage density, the interchain spacing is 5Å which is determined by the lattice 

structure. The 2D initial configuration of the SAMs and the direction of applied potentials 

are shown in Fig. 7-1. 

 
 

Fig. 7-1 Initial configuration of PEG SAMs 

[color representation: gold (green), sulfur (white), carbon (pink), hydrogen (cyan) and 

oxygen (purple)] 
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The interatomic potentials for modeling the SAMs were divided into three parts: 

bonded, nonbonded and external electrical field terms, as shown in the following 

equation. 

            
 

  
( ) ( )

bonded nonbonded electrical field

bond angle dihedral lennard jones coulombic mo rse electrical field

V V V V

V V V V V V V

   

     
      (7-1) 

The covalent bonds in PEG SAMs were simulated via CHARMM / class2 molecular 

potentials ((Brooks, Bruccoleri et al. 1983; Jaffe, Smith et al. 1993; Smith, Jaffe et al. 

1993; Tasaki 1996; Tasaki 1996). More specifically, CHARMM potential was applied to 

simulate bond (stretching) and angle (bending) interactions, and class2 potential was used 

to simulate dihedral (torsion) interaction. The bonds between sulfur and gold atoms were 

simulated via Morse potential (Pertsin and Grunze 1994; Zhang, Goddard et al. 2002). 

Lennard Jones (LJ) potential was used to simulate interactions among atoms of PEG 

SAM other than bonded and morse potiential interactions (Sorensen, Liau et al. 1988; 

Rappe, Casewit et al. 1992). Those intramolecular and intermolecular potential function 

parameters have been previously reported to accurately capture the equilibrium 

conformations, excess enthalpies, and vibrational frequencies of the molecular systems 

(Lifson and Warshel 1968; Engler, Andose et al. 1973). Point charges were only assigned 

on the atoms in the glycol end group following the Mulliken charge analysis (Mulliken 

1955; Mulliken 1955; Mulliken 1955; Mulliken 1955). The long-range electrostatic pair 

interactions between charged atoms were computed using Ewald summation routines 

which are available in LAMMPS. 
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7.3.2 Procedure for conformation simulation   

 

In order to investigate conformational transition of PEG SAM under electrical 

field stimulation, MD simulation was conducted with a 1fs time step in three steps: 

initialization, thermalization and electrical field application. For the initialization, a 

temperature of 0.45K was assigned to the system for 20ps with NVT ensemble to 

minimize the initial energy of the random vibration. Then the temperature was raised to 

200K on the SAMs for thermalization with NVT ensemble until the system reached 

equilibrium. After that, applied electrical fields were exerted onto the SAMs with NVE 

ensemble until the system achieved equilibrium. The simulations were repeated for 

different electrical field strengths ranging from 2V/Å to -2V/Å with an increment of -

0.5V/Å. After equilibrium, MD simulations were continued for a period of 60ps to apply 

statistical analysis. 

 

7.3.3 Procedure for indentation and sliding simulation   

 

The schematic Fig. 7-2 shows the indentation and sliding process. In order to 

consider the influence of indenter shape, two geometries, i.e. cylindrical and spherical 

indenters were adopted in the simulation. The indenters were modeled as a rigid and 

repulsive surface with the following potential functions (Kelchner, Plimpton et al. 1998; 

Shimizu, Eda et al. 1998; Ohzono and Fujihira 2000). 

                                              
2

( ) ( ) ( )F r k r R H R r                                (7-2) 

where r is the distance between the indented SAM atoms and the center of the indenter, R 

is indenter radius and k is the stiffness constant of indenter surface. The value of R is set 
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to 25 Å such that rigid indenter surface makes contact with multiple chains during the 

indentation and sliding simulations.  The value of k is set to 70 nN/Å
2
 such that the SAM 

atoms do not penetrate the indenter surface. H is a Heaviside step function to ensure that 

only the atoms in contact with indenter surface are subjected to repulsive force.  

 

Based on different conformational states under corresponding electrical fields, 

indentation and sliding simulation can be performed consecutively. There are three steps 

in this simulation: indentation, dwelling and sliding. For the indentation, the indenter was 

moved downwards at a velocity of 0.25Å/ps and brought into contact with PEG SAMs to 

achieve desired load level with NVE ensemble. Then the indentor was kept stationary 

with NVE ensemble until the contact load achieved a steady value. After that the indenter 

was maintained at a constant height and moved forward at a velocity of 1Å/ps along the 

contact surface of the SAMs for 100ps with NVE ensemble. In order to examine the 

influence of applied potentials and SAM deformation on friction performance, 

simulations were conducted for a range of indentation loads and different potential levels 

at 2 V/Å, 0 V/Å and -2 V/Å. 

 

 
Fig. 7-2 Scheme of indentation and sliding simulation 
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7.4 Results 

7.4.1 Conformation simulation 

 

The total energy output of the system for a typical conformation simulation is 

shown in Fig. 7-3. The system was first kept at 0.45 K to reach energy minimization 

within 20 ps. When the temperature was raised to 200 K, the total energy increased as the 

kinetic energy was enhanced, and within 20 ps the SAMs could achieve equilibrium state. 

Then applying an electrical field onto the system increased the potential energy, and thus 

also increased the total energy of the SAMs, and the system reached equilibrium within 

20 ps. The simulation was continued for 40 ps to compute statistical results. 

 

 

 

 
Fig. 7-3 Energy output for conformation simulation 

 

 

The representative configurations of individual PEG chains after applying 

electrical field are shown in Fig. 7-4. It can be qualitatively observed that the backbone 

Initialization Thermalization Applied electrical fields 
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chain was kept standing-up configuration under zero potential, and was pushed up under 

both of the positive and negative electrical field with a smaller tilt angle. The glycol end 

group was heavily twisted and showed a “gauche” conformation under positive electrical 

fields, whereas it was stretched straight and showed an “all-trans” conformation under 

negative electrical fields.   

2V/Å 0V/Å -2V/Å 

   
 

Fig. 7-4 Representative configuration snapshot of individual PEG chains after applying 

electrical fields 

[color representation: sulfur (white), carbon (pink), hydrogen (cyan) and oxygen (purple)] 

 

 

By extracting the top layer with a thickness of 6Å, the typical configuration and 

structural transition of PEG SAM surface corresponding to the application of electrical 

fields are shown in Fig. 7-5. Because of the electrostatic interaction exerted on charged 

atoms in glycol end group, the negative charged oxygen atoms were buried inside under 

positive electrical fields, whereas they were exposed outside under negative electrical 
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fields. It can be also found that because of the twisting effect on glycol end group under 

positive electrical fields, some chains fell off the top layer. 

 

2V/ Å 

 

0V/ Å 

 

-2V/ Å 

 
 

Fig. 7-5 Top view of typical configuration of PEG SAMs after applying electrical fields 

[color representation: carbon (pink), hydrogen (cyan) and oxygen (purple)] 

 

 

The orientation of the backbone chains can be exhibited quantitatively through the 

average tilt angle calculation, which is defined as the angle between backbone chains and 

surface normal, as shown in Fig. 7-6. It should be noticed that ±1.5V/Å were likely to be 

the threshold values of tilt angle that at those potential intensities the backbone chain of 

PEG SAMs were raised up sharply. However, considering the configuration of the glycol 

end group shown in Fig. 7-4, we could postulate different raising-up mechanisms upon 

the backbone chains. Under positive electrical fields, the glycol end groups were greatly 



140 

 

 

 

twisted in a helix “gauche” conformation, which was quite space consuming, and thus the 

stronger interchain molecular interactions caused the larger repulsive forces to decrease 

the tilt angle of backbone chains. While under negative electrical fields, the electrostatic 

force exerted on the glycol end groups directly stretched the chains, and thus decreased 

the tilt angle of backbone chains.  

 

   
(a) Positive electrical fields                             (b) Negative electrical fields 

 

Fig. 7-6 Tilt angle calculation of PEG backbone chains 

 

 

Another analysis of two dimensional structure factor on all of the carbon atoms in 

backbone chain and glycol end group could provide useful information on the order of 

the whole chains. The expression of structure factor is shown in the following equations. 

                                                           
2

2

1
( ) ( )S k

N
  k

                                            (7-3) 
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i i

i r i k r k r

 

      
  k k

              (7-4) 

where ρ(k) is the Fourier transform of the local particle density, and k = (kx, ky) is the 

two-dimensional scattering vector. The plots of structural factor under different electrical 

fields are shown in Fig. 7-7. No. 1 to 20 on horizontal axis denote the numbering of 
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carbon atoms in methylene groups and glycol end group, e.g. no.1 corresponds to carbon 

atoms that are connected with sulfur atoms, i.e. locate at the lowest height of 20 carbon 

atoms in a chain for the initial configuration, while no. 20 corresponds to the last carbon 

atoms in the glycol end group, i.e. locate at the highest height of 20 carbon atoms in a 

chain for initial configuration. It is observed that for both positive and negative electrical 

fields applied, structure factors of the SAMs are decreased, i.e. the applied potentials 

induce disorder into the system. Meanwhile, we should also notice that by comparison of 

the extreme positive potential strength 2V/Å and the extreme positive potential strength -

2V/Å, the former one has a much lower structure factor than the latter, which implies that 

positive electrical fields induce much more extent of disorder upon the SAMs, or we may 

conclude that there is more prominent conformational transitional of the whole chain 

under positive electrical fields.  

 

 
(a) Positive electrical fields                             (b) Negative electrical fields 

 

Fig. 7-7 2D structure factor of PEG backbone chains 

 

The conformational transition of the glycol end groups can be shown 

quantitatively through the computation of partial radial distribution function (RDF) of 

OCCO dihedral group, which is defined as the number density of oxygen atoms with 
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respect to the radial distance among different oxygen atoms, as shown in Fig. 7-8. There 

are two previously reported parameter sets of dihedral interaction potential, i.e. from 

Yoon’s group (Jaffe, Smith et al. 1993; Smith, Jaffe et al. 1993) and from Tasaki”s group 

(Tasaki 1996; Tasaki 1996), and we utilized those two parameter sets respectively in the 

MD simulation in order to examine their computational efficiency. Based on Yoon’s 

potential parameter sets, the above conformational transition can be explicitly illustrated 

in Fig. 7-8(i). The RDF of OCCO dihedral group has two significant peak values at 2.7Å 

corresponding to “gauche” conformation, and 3.5Å corresponding to “all-trans” 

conformation. When positive electrical fields were applied to the PEG system with 

increasing field strength, the peaks at 2.7Å increased whereas the peaks at 3.5Å 

decreased gradually, this implied that positive electrical fields triggered the “gauche” 

conformational transition upon glycol end groups. On the other aspect, when negative 

electrical fields were applied with increasing field strength, especially lower than -1V/Å, 

there were even no any peaks at 2.7Å, whereas the peaks at 3.5Å increased further, which 

indicated that negative electrical fields triggered the “all-trans” conformational transition 

by stretching the glycol end groups straight up. 

 

Based on Tasaki’s potential parameter sets, the RDF of OCCO dihedral group is 

shown in Fig. 7-8(ii), under positive electrical fields with increasing field strength, there 

was certain amount decrease of “all-trans” peaks at 3.5Å, but no significant variation of 

“gauche” peaks at 2.7Å was found. Under negative electrical fields with increasing field 

strength, there was certain amount decrease of “gauche” peaks at 2.7Å and increase of 

“all-trans” peaks at 3.5Å, but some other peaks at 3Å also emerged with ambiguity. In 
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addition, the relative values of the RDF peaks based on Yoon’s parameter sets were 

always prominent than that based on Tasaki’s parameter set. Therefore, the comparison 

of two parameter sets showed that Yoon’s potential parameter set is a better selection 

with higher computational efficiency for simulating the torsion and twist behavior upon 

glycol end group than Tasaki’s. 

 

   
                   (a) Positive electrical fields                               (b) Negative electrical fields 

i) Yoon’s potential parameter sets 

  

 

 
                 (a) Positive electrical fields                               (b) Negative electrical fields 

ii) Tasaki’s potential parameter sets 

 

Fig. 7-8 RDF calculation of OCCO dihedral groups 

[color representation for inlet: carbon (pink), oxygen (purple), covalent bond (black)] 
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The dihedral potential energy output also supports such conformational transition 

under electrical fields, as shown in Table 7-1. Under positive electrical fields, there was 

enormous increase of dihedral potential energy, which implies the “gauche” 

conformational transition was generated to a large extent. While under zero and negative 

electrical fields, there was subtle change of dihedral potential energy (even slight 

decrease in negative potential case), which indicated instead of “gauche” conformation, 

“all-trans” conformation was dominant. 

 

Table 7-1 The ratio of dihedral potential change before and after application of electrical 

fields 

Dihedral potential change 2V/Å 0V/Å -2V/Å 

(Edihe_efield - Edihe_thermo) / Edihe_thermo 157% 3.61% -1.69% 

 

 

To understand this “all-trans” to “gauche” conformational transition on the whole 

chain, the analysis of the normal density profile is conducted and shown in Fig. 7-9, 

which compute the number distribution of atoms along the surface normal direction. 

Under zero potential, we observed a doublet pattern upon the normal density profile, 

while indicated that the SAMs were in the “all-trans” conformation, since C-C bond held 

an alternate sequence of two orientations, i.e. along the surface normal and oriented 

approximately 60° with respect to surface normal. When positive potentials were applied 

on the SAMs and reached 1.5V/Å, the doublet pattern totally disappeared, which 

indicated that the “all-trans” conformation on the backbone chain has also been greatly 

altered. While for negative electrical fields, the doublet pattern could be kept well until -

1V/Å, and gradually destroyed at -1.5V/Å and -2V/Å, however we could still observe 
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some vague or residual doublet pattern under those two potential intensities. Through the 

comparison of normal density profiles under positive and negative electrical fields, we 

could draw the conclusion that positive potentials can totally alter the “all-trans” 

conformation on the whole SAM chain, while negative potentials have limited impact on 

this alteration. 

  

 
Fig. 7-9 Normal density profile of the whole SAM chain 

 

7.4.2 Friction simulation 

 

The indentation load exerted by the cylindrical rigid indenter is plotted as a 

function of normalized indentation depth in Fig 10.  Normalized indentation depth, d, is 

defined as follows  

                                                    
0

0

0

        0
h h

d h h
h


  

                                       (7-5)   

where h is the height with respect to the gold substrate (the same as z distance in Fig.9), 

and h0 is the initial height of the indenter with respect to to the gold substrate.  The initial 

height for all simulations was maintained to be about 10 Å above the highest atoms in the 

SAM. 
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Different indentation depths correspond to different normal load levels, so typical 

indentation loads were chosen on the indentation load-displacement curve to initiate 

sliding simulation, as the red forks shown in Fig. 7-10. We observed that the indentation 

load show two phase along the increase of indentation depth. After the contact of the 

indenter and the top surface of the SAMs, indentation load just increased gradually, 

which implies that indenter had a normal interaction with the SAM chains. When the 

indentation depth reached a threshold (around 0.82), there is a short plateau, which 

indicates that the indenter was quite deep in the SAMs and repulsed the around chains too 

much so that the contact load didn’t increase accordingly. After this plateau, we observed 

a abrupt increase of the indentation load that means the indenter even interacted with 

fixed gold substrate, so the indentation load was extremely large. For comparison, we 

choose the same indentation depth from spherical indenter as that from cylindrical 

indenter.  

 

  
Fig. 7-10 Selection of indentation load on load-displacement curve 
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During the sliding, normal and tangential loads were computed to determine the 

frictional coefficients. The frictional coefficients of both cylindrical and spherical 

indenter on PEG SAMs were shown in Fig. 7-11. The scale of frictional coefficients is 

comparable to the nano scale friction simulation on alkyl monolayers and other organic 

monolayers (Harrison, White et al. 1992; Harrison, White et al. 1995; Zhang and Jiang 

2002; Kapila, Deymier et al. 2006; Harrison, Schall et al. 2008).  

 

There were two stages of friction response upon PEG SAMs during the sliding 

with different normal loads. On the lower normal load level (corresponding to the first 5 

indentation depths shown in Fig. 7-10) , the frictional coefficients kept increasing with 

along the increment of normal load, which was also observed from reports for the 

frictional response of other close packed SAMs (Harrison, White et al. 1992; Harrison, 

White et al. 1995). It should be prominently noticed that under zero and negative 

electrical fields larger frictional coefficients were achieved than positive electrical fields. 

This may be caused by the fact that positive electrical fields induced “gauche” 

conformational transition onto PEG SAMs, i.e. chains were twisted into a coil-like 

configuration, so there was little interchain space for the SAMs to generate large 

deformation. While under zero and negative electrical fields, chains were held in “all-

trans” conformation, i.e. a stick-like configuration of the SAMs, thus had more room to 

generate large stick-slip motion and deformation, and induce more resistance and energy 

absorption during the indenter sliding process. (corresponding to the last 2 indentation 

depths shown in Fig. 7-10) However, since in our simulation the gold atoms in substrate 

were fixed, i.e., the deformation of the gold substrate was not simulated, so under those 
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higher normal load levels, the simulation might lead to non-physical response. Therefore, 

only the frictional coefficient results under lower normal load levels should be considered 

as reasonable responses. It can also be pointed out that no matter the shape of indenter as 

cylinder or sphere, similar trends on friction response were observed. 

 

   
a) Cylindrical indenter                                     (b) Spherical indenter 

  

Fig. 7-11 Frictional coefficients of closed packed PEG SAMs 

 

The total bonded energy output could provide the evidence of the above 

postulated mechanism of frictional performance change under electrical fields, as shown 

in Table 7-2. From positive potential of 2V/Å, to zero potential, and to negative potential 

-2V/Å, we observe a significant increase of changes in energy associated with bond, 

angle and dihedral potentials, i.e. total bonded energy, which could explain the reason 

why there is prominent increase of frictional coefficient under negative electrical fields 

than positive electrical fields. 

 

Table 7-2 The ratio of bonded energy change before and after indentation and sliding 

Total bonded energy change 2V/Å 0V/Å -2V/Å 

(Ebonded_after – Ebonded_before) / Ebonded_before 22.3% 69.9% 84.9% 
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7.5 Conclusions 

 

MD simulation on electrical field induced conformational transition and 

associated frictional response change upon PEG SAMs could lead to the following 

conclusions: 

1) Positive electrical fields can trigger the “gauche” conformational transition for 

PEG SAMs by twisting the glycol groups, whereas negative electrical fields are prone to 

keep the “all-trans” conformational transition by stretching the glycol groups straight. 

2) Two stages of friction response were discovered corresponding to lower and 

higher normal load levels. Under lower indentation loads, the frictional coefficient of 

SAMs keeps increasing, while under higher indentation loads exceeding a threshold value, 

the frictional coefficients of SAMs decrease. 

3) Under lower normal load level, positive electrical fields can induce smaller 

frictional coefficient than zero and negative fields, which could be attributed to the 

“gauche” conformation, i.e. limited interchain space constricts the deformation and 

energy absorption of the SAMs, thus lead to a lower friction response.  

 

7.6 Appendix 

 

Interatomic potential functions and associated numerical parameters 

 

Bonded 

Bonds Harmonic:  
2

ij ij 0
i,j

k r r   

Angles Harmonic:  
2

ijk ijk 0
i,j,k

k    

Dihedrals Class2: 
ijkl ijkl 0

i,j,k ,l

k 1- cos(n )  
 

   

Nonbonded Lennard Jones Universal Force Field:  

12 6

ij ij

ij
i,j

ij ij

V  = 4
r r

 


    
     
        
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Electrostatic Coulombic: 

 

 

Morse For Au/S interaction:  

Electrical field  

 

 

Bond (Harmonic) potential parameters: 

 

 kij (Kcal/mol) r0 (Å) 

S-C 410 1.82 

C-C 309 1.51 

C-H 328 1.09 

C-O 370 1.39 

 

 

Angle (Harmonic) potential parameters: 

 

 kijk (Kcal/mol) θ0 (Degree) 

S-C-H 40 109.5 

S-C-C 50 114.0 

H-C-H 40 108.4 

C-C-H 40 109.5 

C-C-C 45 111.1 

C-C-O 70 109.1 

H-C-O 70 110.1 

C-O-C 85 118.0 

 

 

Dihedral (Class2) potential parameters (from Yoon’s group): 

 

 kijk (Kcal/mol) φ0 (Degree) n 

S-C-C-H 0.13896 0 3 

S-C-C-C 0.13896 0 3 

H-C-C-H 0.13896 0 3 

H-C-C-C 0.13896 0 3 

C-C-C-C 0.13896 0 3 

C-C-C-O 0.13896 0 3 

H-C-C- O 0.13896 0 3 

C-O-C-C 0.5 0 1 

C-O-C-C 0.35 180 2 

C-O-C-C 0.16 0 3 

C-O-C-H 0.4 0 3 

O-C-C-O 0.025 0 1 

i j

i,j
ij

q q
C

r


ij 0 ij 0-2 (r r ) - (r r )

ij
i,j

D e 2e
  

  
 

i i
q Ez
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O-C-C-O 1.275 0 2 

O-C-C-O 0 180 3 

 

 

Dihedral (Class2) potential parameters (from Tasaki’s group): 

 kijk (Kcal/mol) φ0 (Degree) n 

S-C-C-H 0.13896 0 3 

S-C-C-C 0.13896 0 3 

H-C-C-H 0.13896 0 3 

H-C-C-C 0.13896 0 3 

C-C-C-C 0.13896 0 3 

C-C-C-O 0.13896 0 3 

H-C-C- O 0.13896 0 3 

C-O-C-C -1.75 0 1 

C-O-C-C 0.7 180 2 

C-O-C-C 0.25 0 3 

C-O-C-H 0.4 0 3 

O-C-C-O 0 0 1 

O-C-C-O -0.675 0 2 

O-C-C-O 0.3 180 3 

 

 

Morse potential parameters: 

 

 Dij (Kcal/mol) α (Å
-1

) r0 (Å) 

Au-S 9.546 1.378 2.903 

 

 

Nonbonded intermolecular potential function (LJ potential) parameters: 

 

 εij (Kcal/mol) σij (Å) 

Au-C 0.06399 3.1726 

Au-H 0.04142 2.7465 

Au-O 0.04837 3.0245 

S-S 0.27400 3.5948 

S-C 0.16962 3.5119 

S-H 0.10980 3.0402 

S-O 0.12822 3.3480 

C-C 0.10500 3.4309 

C-H 0.06797 2.9700 

C-O 0.07937 3.2708 

H-H 0.04400 2.5711 

H-O 0.05138 2.8315 

O-O 0.06000 3.1181 
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Point charges in carboxyl headgroup: 

 

C (in CH2) C (in CH3) H (in CH2) H (in CH3) O 

-0.066 -0.366 0.097 0.122 -0.256 
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CHAPTER 8.   CONCLUSIONS 

 

We utilized nanofabrication technology to establish the patterned nanostructure of 

thobmin and aptamer, and applied controlled electrical fields onto the structure and 

performed height identification experiment through AFM surface imaging.  

 

Specific binding between thrombin and aptamer was first verified. Moderate 

electrical fields was then utilized to induce binding change between thrombin and 

aptamer pair, and thus can realize the actuation and modulation of the binding behavior 

of the pair: a) Positive electrical fields of 100 mV can successfully break the bonds 

between the pair; b) Zero potential condition does not influence the binding between the 

pair; c) Negative electrical fields of -100mV can withhold the pair structure; while At -

300mV, the whole binding pair is stretched away from the gold substrate and the 

nanostructure was destroyed due to too large electrostatic pushing force. 

 

  AFM experiments were conducted to determine the characteristic force associated 

with specific binding between thrombin and its DNA aptamer. The measured rupture 

force distributions extend over a larger magnitude of forces and demonstrate 

characteristics of force quanta for specific binding (thrombin-aptamer) in comparison to 

non-specific binding (thrombin-polyA). We find the characteristic force for disruption of 

thrombin-aptamer complexes increases from 20 to 40 pN as the loading rate level 

increase from 100 to 40000 pN/s. The magnitude of characteristic forces is smaller than 

previously reported force magnitudes associated with disruption of the G-quadruplex 

structure. This difference suggests that, with the application of external force on the 
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thrombin-aptamer complex, the G-quadruplex structure of the aptamer is not disrupted 

and the measured characteristic forces may be associated with dissociation of thrombin 

and aptamer binding pair. The characteristic rupture forces were fitted to a single energy 

barrier model to extract the bond energy parameters associated with thrombin-aptamer 

binding.  

  

Through ECAFM technique, in-situ measurement of force interaction between 

thrombin-aptamer binding pair can be successfully acquired. Moderate electrical fields 

can be utilized to influence the force interaction between thrombin and aptamer pair: a) 

Positive electrical fields of 100 mV can weaken the bonds between the pair; b) Neutral 

and negative (-100mV) electrical fields condition maintain the similar force interaction 

compared to the in-air DFS experiment 

 

Molecular dynamic simulations of chain conformation and frictional response for 

sparse and close packed MHA SAM under applied electrical field lead us to the following 

conclusions: a) Sparse monomolecular films show significant conformational transition 

when different polarities of electrical fields were applied. Under positive electrical fields 

chains undergo transition from standing up to lying-down conformation, while under 

neutral and negative electrical fields chains show regular standing-up conformation. b) 

Close packed SAMs don’t show obvious conformational transition due to their high 

coverage density. c) For repulsive rigid indenting surface, the SAM chains provide 

tangential resistance through two main mechanisms: localized chain deformation and 

SAM structure distortion due to dragging of chains with indenter. d) For loose packed 



155 

 

 

 

SAMs, in lower normal load region, positive electrical fields can induce smaller frictional 

coefficient than neutral and negative fields. While for close packed SAMs, all kinds of 

electrical fields lead to similar frictional coefficients. 

 

AFM force curve experiment was utilized to evaluate the adhesion and friction of 

MHA SAM under electrical field application. Contrary trends on adhesion and friction of 

the SAM were observed in the experiment, i.e. under positive electrical fields, adhesion 

force decrease, while friction force increase compared to zero potential condition, vice 

versa for negative electrical field application. MD simulation could provide good 

explanation and understanding of those phenomena, and confirm the conformational 

transition induced surface chemistry change as the primary factor that governs the 

adhesion shift, and conformational transition induced structural order change as the 

dominant reason for friction performance alteration. 

 

Molecular dynamic simulations of electrical field induced conformational 

transition and frictional response change for close packed PEG SAM lead us to the 

following conclusions: a) Positive electrical fields can trigger the “gauche” 

conformational transition for PEG SAMs by twisting the glycol groups, whereas negative 

electrical fields are prone to keep the “all-trans” conformational transition by stretching 

the glycol groups straight. b) Two stages of friction response were discovered 

corresponding to lower and higher normal load levels. Under lower indentation loads, the 

frictional coefficient of SAMs keeps increasing, while under higher indentation loads 

exceeding a threshold value, the frictional coefficients of SAMs decrease. c) Under lower 
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normal load level, positive electrical fields can induce smaller frictional coefficient than 

zero and negative fields, which could be attributed to the “gauche” conformation, i.e. 

limited interchain space constricts the deformation and energy absorption of the SAMs, 

thus lead to a lower friction response. 
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APPENDIX   STATISTICAL TECHNIQUES UTILIZED TO 

OBTAIN PHYSICAL INSIGHTS 

 

In Chapter 2 (electrostatic actuation of the binding behavior between thrombin 

and aptamer), the idea of experimental design is to first set up a data model – specific 

binding between thrombin and aptamer, then compared the electrostatic actuation 

experiment results with the data model and obtained the electrical field influence on the 

binding behavior of the pair. To confirm the binding specificity, both of the objective 

group (thrombin – aptamer) and control group (thrombin - polyA, and γ-thrombin – 

aptamer) were tested independently and compared to acquire meaningful conclusion 

(detailed description on page 17-19). Regarding the result interpretation, both normality 

test and resampling method boot-strap were applied to compute the confidence intervals, 

and the difference of height measurement between objective and control group could be 

explained by the fact that whether there is overlap of the confidence intervals among any 

groups, i.e. whether there is statistically significant difference among groups (detailed 

description on page 23-24, results shown in Fig. 2-6 on page 25, and Appendix Table 2-1 

on page 29-30). In the electrostatic actuation experiment, similar result interpretation 

procedure was adopted to explicate whether there is statistically significant difference 

among various potential treatments (detailed description on page 27, results shown in Fig. 

2-8 on page 28, and Appendix Table 2-2 on page 30). The outside variables such as the 

composition and concentration of binding buffer, stiffness of AFM cantilever, surface 

roughness of gold substrate, were controlled very strictly to ensure the significant change 
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on sample was purely caused by the objective condition - molecular binding and 

electrostatic potential. 

 

In Chapter 3 and 4 (open circuit AFM based DFS studies on the force interaction 

of thrombin and aptamer, and ECAFM based DFS investigations of the electrical field 

influence on the force interaction of thrombin and aptamer), the idea of experimental 

design is to first set up a data model – force interaction of specific binding between 

thrombin and aptamer, then compared the ECAFM experiment results with the data 

model and obtained the electrical field influence on the force interaction of the pair.  To 

further confirm the binding specificity, both of the objective group (thrombin – aptamer) 

and control group (thrombin - polyA, and thrombin - PEG) were tested and compared to 

acquire meaningful conclusion (detailed description on page 35-38). Regarding the result 

interpretation, histogram was used to present the rupture force distribution according to 

different loading rate levels (detailed description on page 43-44, results shown in Fig. 3-4 

and Fig. 3-5 on page 44), then autocorrelation function (ACF) was applied to acquire the 

force quantum (detailed description on page 45, results shown in Fig. 3-6 on page 45 and 

Appendix Fig. 3-1 on page 50). Finally, linear regression was utilized on dynamic 

spectrum to fit a theoretical model to our experimental results so as to estimate very 

important kinetic parameters (detailed description on page 48, results shown in Fig. 3-7 

on page 49). In ECAFM experiment, similar result interpretation procedure was adopted 

to explicate whether there is statistically significant difference among the force 

interactions under different potential treatments (Histogram: detailed description on page 

60-61, results shown in Fig. 4-3 and Fig. 4-4 on page 61-62, and Appendix Fig. 4-1 – Fig. 
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4-4 on page 67-70; ACF: detailed description on page 62-63, results shown in Fig. 4-5 on 

page 63, and Appendix Fig. 4-5 – Fig. 4-8 on page 70-72; Linear regression: detailed 

description on page 66, results shown in Fig. 4-6 on page 64 and Table 4-3 on page 66). 

The outside variables such as the composition and concentration of binding buffer, 

stiffness of AFM cantilever, surface roughness of gold substrate, were controlled very 

strictly to ensure the significant change on sample was purely caused by the objective 

condition - molecular force interaction and electrostatic potential. 

 

In Chapter 5 and 6 (MD simulation on electrical field induced conformational 

transition and friction response change of MHA SAMs, and comparison with associated 

AFM force curve experiment), energy output was analyzed to describe the overall 

physical process (detailed description on page 83 and page 111, results shown in Fig. 5-2 

on page 83, and Fig. 6-3 on page 111). Average height and height distribution of oxygen 

atoms were analyzed to illustrate the conformational transition under the application of 

electrical fields (detailed description on page 89 and page 112, results shown in Table 5-1 

and Fig. 5-7 on page 89, and Table 6-1 and Fig. 6-6 on page 114-115). Then in friction 

simulation, statistical analysis on frictional coefficients as a function of normal loads and 

applied electrical fields was carried out to explicate the electrostatic influence on friction 

response of SAMs (detailed description on page 96, results shown in Fig. 5-9 and Fig. 5-

10 on page 96). Bonded energy output was computed to further explain the deformation 

mechanism of the SAMs during sliding (detailed description on page 98-99, results 

shown in Table 5-2 on page 98). Regarding the comparison of MD simulation and AFM 

experiment on MHA SAMs, height distribution and counts of the oxygen atom in 
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carboxylic end group and carbon atom in the last methylene group were computed to 

illustrate the conformational transition and explain the experimental results on adhesion 

(detailed description on page 115-116, 118, results shown in Fig. 6-7 and Table 6-2 on 

page 116-117, 118-119). Radial distribution function (RDF) of oxygen atoms (detailed 

description on page 120-121, results shown in Fig. 6-10 on page 121) and structure factor 

of backbone chains (detailed description on page 121-122, results shown in Fig. 6-11 on 

page 122) were calculated to explain the structural order effect for experimental results 

on friction. 

 

In Chapter 7 (MD simulation on electrical field induced conformational transition 

and friction response change of PEG SAMs), energy output was analyzed to describe the 

overall physical process (detailed description on page 136-137, results shown in Fig. 7-3 

on page 137). Average tilt angle of the backbone chains was analyzed to illustrate the 

electrical field influence on hydrocarbon sections (detailed description on page 139-140, 

results shown in Fig. 7-6 on page 140). Then structure factor of the backbone chain was 

calculated to explicate the structural order of the whole chains (detailed description on 

page 140-141, results shown in Fig. 7-7 on page 141). After that RDF of oxygen atoms in 

OCCO dihedral groups were computed to illustrate the conformational transition between 

two states: “gauche” and “all-trans” (detailed description on page 141-143, results shown 

in Fig. 7-8 on page 143). Then dihedral potential change and normal density profile were 

analyzed to depict the conformational transition upon the whole SAMs (detailed 

description on page 143-145, results shown in Table 7-1 on page 144 and Fig. 7-9 on 

page 145). In friction simulation, statistical analysis on frictional coefficients as a 
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function of normal loads and applied electrical fields was carried out to explicate the 

electrostatic influence on friction response of SAMs (detailed description on page 146-

148, results shown in Fig. 7-11 on page 148). Bonded energy output was computed to 

further explain the deformation mechanism of the SAMs during sliding (detailed 

description on page 148, results shown in Table 7-2 on page 148).  
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