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austenite with two slip systems (bbbαωA , nnnαωA ) along the diagonals in

the initial configuration V0. (b) Two dimensional bct lattice of

martensite with two slip systems (bbbαωM , nnnαωM ) along the diagonals in

the transformed configuration VM , which coincide with slip sys-

tems of austenite inherited by martensite (bbbαωAM , nnnαωAM). (c) Slip

systems of martensite inherited by austenite (bbbαωMA, nnnαωMA) during

reverse phase transformation in the reference configuration V0.

They coincide with the slip systems of austenite in austenite in

V0, i.e., (bbbαωA , nnnαωA ). Thus, the only slip systems necessary for so-

lution of the problem are slip systems of austenite in austenite in

V0, i.e., (bbbαωA , nnnαωA ). . . . . . . . . . . . . . . . . . . . . . . . . . 123
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CHAPTER 1. Introduction

Martensitic phase transformations

Martensitic phase transformations play a very important part in material science,

being responsible for formation of unique microstructure, mechanical properties, and

material phenomena in steels, shape memory alloys and ceramics. Martensitic phase

transformation is the first-order, displacive, and diffusionless transformation. During

cooling or mechanical loading, crystal lattice of the cubic phase, austenite (A), transforms

to the lower-symmetry lattice of martensite (M). Due to symmetry of the crystal lattice,

there is always a finite numbers of crystallographically equivalent martensitic variants

Mi (Fig.1.1). Typical microstructure during transformation consists of a fine mixture

of martensitic variants and residual austenite (Fig.1.1). The width of each martensitic

variant plate is of the order of magnitude of several to several tens of nanometers and is

determined by the interplay of elastic energy of internal stresses and interfacial energy

between both martensite and austenite and martensitic variants.

Martensitic phase transformations and plastic deformation

Various material phenomena related to martensitic PTs and plastic deformation due

to twinning and dislocations are of fundamental and technological importance. Exam-

ples are: heat and thermomechanical treatment of material to obtain desired struc-

ture and properties; pseudoelasticity, pseudoplasticity, one- and two-way SME in SMAs;

transformation-induced plasticity (TRIP); synthesis of materials under high pressure and
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Figure 1.1 Scheme of phase transformation of cubic austenitic crystal lattice into three
crystallographically equivalent and symmetry-related tetragonal lattices of
martensitic variants. Martensitic microstructure in a sample is shown in the
lower left corner.

high pressure with large plastic deformations, e.g., during ball milling; and PTs during

friction, surface treatment, and projectile penetration. Even in bulk materials, nucle-

ation of martensite, twin, or dislocation is a nanoscale phenomenon. Typical structure

after PT represents nanotwinned martensite. A semicoherent phase interface has a width

of 1 nm and possesses dislocations, which determine interface mobility and martensite

morphology. With development of the nano science and technology, PT and plasticity

are studied in nano particles, films, and wires, for smart nanosystem applications. The

current trend in the synthesis of materials with high strength and ductility is based on

a combination of nanograined or nanotwinned materials with PTs. The main challenges
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in the above problems are the lack of a deep understanding of the basic physics and

mechanics of the interaction between PTs and plasticity at the nanoscale, because of

luck of the corresponding theory and simulation techniques.

Application of stresses causes transformation between martensitic variants and changes

the resultant deformation. The evolution of a multivariant martensitic nanostructure and

microstructure during PT determines deformational properties of materials and the possi-

bility of actuation and/or energy absorption. Utilization of PT-related phenomena leads

in a number of cases to the unique mechanical properties that combine high strength

with high plasticity, which in some cases is reversible, and consequently high energy

absorption. Since PT parameters can be controllede.g., by alloying or plastic deforma-

tionmechanical properties can be controlled as well. PT causes plastic deformations even

in SMAs, which are assumed to deform elastically. Dislocations are accumulated during

cycling, leading to residual strain and spoiling pseudoelastic properties. Accommodation

of transformation strain in some steels is accompanied by large plastic deformation even

without external stresses. Dislocations generated in a weaker austenite are inherited

by growing martensite, which leads to arrest of martensitic growth and morphological

transition from plate to lath martensite (Fig. 1.2)59.

Phase field theory of multivariant phase transformations

There are a number of continuum theories that determine parameters of nanostruc-

ture during phase transformations1- 5, assuming some geometry. Alternatively, a phase-

field or Ginzburg-Landau (GL) approach was broadly applied to model the evolution

of nanostructure without a priori geometric assumptions and the simulation of vari-

ous aspects of multi-variant martensitic PTs6- 37. The key advantage of the phase-field

approach is that the computation of the microstructure evolution proceeds without addi-

tional efforts being required to guess a possible scenario and to track multiple interfaces.
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Figure 1.2 TEM micrograph of lath martensite microstructure in Ferrium C69 steel
showing dislocation substructure associated with plastic accommodation
during martensitic growth.

The phase-field approach plays a unique role, being intermediate between the atomistic

and continuum thermodynamic approaches. While resolving detail at the nanoscale (e.g.,

interface width and the thickness of transformed surface layer are of the order of 1 nm),

it allows us to consider samples and process time much larger than in atomistic simula-

tions. It also allows loading with a realistic strain rate. On the other hand, it contains

much more information and requires more theoretical effort than traditional thermo-

dynamic approaches, because thermodynamic potential in the phase-field approach is

determined for all intermediate states between phases and at interfaces. Despite the

significant progress in GL simulation6- 37, it is based on models that contain a minimum

of physics – i.e., just conceptual ideas that lead to first-order PT. Such models have been

called by Krumhansl19 pedagogical models. Namely, the local thermodynamic poten-

tial G has minima corresponding to A and Mi , and isotropic gradient energy without

coupling between martensitic variants is used. Thus, this method represented a more
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numerically convenient approach for evolution of martensitic microstructure rather than

physically based modeling; a lot of basic physics and mechanics have to be included. Re-

cently, significant basic and applied interest arose in phase transformations in nanosize

samples – i.e., in nanoparticles, nanowires, and nanofilms, as well as in nanograined poly-

crystalline materials (Figs.1.3, 1.4, 1.5, and 1.6), see38- 41. In this case, surface-induced

pre-transformation and transformation phenomena, interface and surface tension, and

scale effect play essential roles, changing thermodynamics, kinetics, and nanostructure.

Comprehensive study of a combination of multiple nonlinearities and phenomena (large

elastic, transformation strains and rotations; multivariant phase transformations; twin-

ning; nonlocal interaction; surface tension; variable surface energy) will definitely lead

to the discovery of new nanostructures, mechanisms, phenomena, and qualitative and

quantitative regularities of interaction between phase transformations and surface effects

at the nanoscale. As an example, one of the remarkable recent efforts in the literature is

related to studying of nanotwinned materials, in particular copper, that exhibit a com-

bination of high strength (∼ 1GPa) and elongation (up to 0.14)42, 43, see Fig.1.5. In

principle, nanograins with nanotwinned structure can be created as a result of marten-

sitic phase transformations. All these motivated us to study the phase transformations

and surface effects at the nanoscale.

Figure 1.3 Martensite in nanocrystalline NiTi shape memory alloy40.
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Figure 1.4 Tensile stress strain curves of nanostructured TiNi shape memory wire ob-
tained by cold drawing to different degrees of reduction in cross sectional
area during drawing44.

Recently, in45- 47, a sophisticated thermodynamic Gibbs potential is developed that

allowed us to describe some conceptually important features of known experimental

stress-strain curves for shape-memory alloys, steel, and ceramics. Namely, the transfor-

mation strain tensor is independent of temperature (in agreement with crystallographic

theory48), phase transformation starts at nonzero tangent elastic moduli, temperature

dependence of stress hysteresis is controlled and can be negligible, and all thermome-

chanical properties of A and martensitic variants Mi are introduced into the theory for

arbitrary symmetry of Mi. Large-strain formulation and simulations are presented in

49. The importance of dynamics is demonstrated in50. The threshold-type (athermal)

interface friction is introduced in54, 55, which allowed us to describe multiphase station-

ary microstructures and the theory was extended for a microscale in56. Examples of the

phase field simulations are presented in Fig.1.7. Newly, a more sophisticated PF the-

ory to PTs is presented in51, 52 which represents a correct surface tension at interfaces,

introduces a new gradient term to control martensite-martensite interface energy, and
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Figure 1.5 (a) TEM image of the microstructure of Cu sample after tensile strain-
ing showing nanotwins and dislocations; (b) tensile stress-strain curve for
nano-twinned Cu with 20−100nm twin spacing, a nanocrystalline Cu (mean
grain size ∼ 30nm), and a coarse-grained polycrystalline Cu (mean grain
size> 100µm)43.

suggests a noncontradictory expression for variable surface energy. Also, the external

surface layer is introduced in53 and the effect of the width of the external surface layer

and internal stresses on surface-induced pretransformation and phase transformations

(PTs) are revealed.

The evolution of martensitic microstructure is described in terms of the evolution

of the n order parameters ηi associated with ith martensitic variant Mi. Each order

parameter ηi varies from 0, corresponding to A, to 1, corresponding to Mi. The local

Helmholtz free energy depends on elastic strain, temperature, and all order parameters

ηi. In addition to the local contribution, the Helmholtz energy includes a part depending

on the gradient of the order parameter ∇∇∇ηi, which is concentrated at the finite-width

interface between phases and reproduces the interface energy. The evolution of the order

parameters and multivariant martensitic microstructure is described by n Ginzburg-

Landau equations, which represent the linear relationships between the rate of change of

the order parameters, η̇i, and generalized thermodynamic forces conjugate to them.
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Figure 1.6 Nucleation of martensite phase near surface with edges in a sample under
tensile stress is shown. Atoms detected as martensite are larger sphere.
Nucleation sites are emphasized by circles or pointed out by arrows. In
the 1D model they are typically found at the corner edges of the specimen,
whereas in the 3D model they exist everywhere. The 2D model shows the
importance of free surface most intuitively. All of the nucleation sites in 2D
model are found on free surfaces41.

Phase field theory of dislocations

There are significant achievements in the large scale simulation of dislocations based

on the PFA12, 37, 47, 60- 67. However, the PFA to dislocations developed in37, 12 is based

on a formalism similar to the PFA for martensitic PTs developed in16 and shares a

similar shortcomingnamely, that the equilibrium values of the Burgers vector and the

plastic strain depend on the stress. There are a number of additional drawbacks69.

Some of them were resolved in69, including large-strain formulation, stress-independent

Burgers vector, objective (i.e., independent of the numerical mesh) dislocation height,
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Figure 1.7 Examples of the phase field simulations of martensitic nano- and microstruc-
ture. (a) Formation of the stationary multivariant nanostructure (four in-
ternally twinned nanograins) after introduction of an athermal threshold in
the GL theory (54, 55); (b) Distribution of M2 in a cubic sample for dynamic
problem (50); (c) Stress-induced martensite in the polycrystalline sample
based on the microscale theory (56, 57); (d) barrierless nucleation at two
dislocation dipoles; (e) barrierless surface-induced nucleation.

and lack of artificial stress oscillations. Dislocation reactions, such as the combination

and dissociation of complete dislocations into partial dislocations have been addressed

in60- 68but with the drawbacks mentioned above.

Interaction between PT and dislocations

The interaction between PT and dislocations is the most basic problem in the study

of martensite nucleation and growth26, 28, 29, 70- 73. There are a number of analytical

treatments based on PFA to PT74- 76, followed by numerical 2-D28, 77and advanced 3-D

12, 78 simulations. Dislocations are introduced through their stationary stress field rather

than as an evolving phase field. Recently79, a simplified PFA for PT and dislocation

was developed, in which, dislocations were located at the moving phase interface only.

PFA for martensitic PT with continuum dislocation theory is presented in80, but we

are interested in discrete dislocations. Both approaches79, 80 have all drawbacks of the

approaches to PT and dislocations mentioned above. In69, some problems on interactions

between PT and dislocations using a simplified version of PFA are solved.
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Thesis organization

In chapter 2, the PF theory for multivariant martensitic phase transformations is ad-

vanced in three directions: the potential is developed that introduces the surface tension

at interfaces; a mixed term in gradient energy is introduced to control the martensite-

martensite interface energy independent of that for austenite-martensite; and a noncon-

tradictory expression for variable surface energy is suggested. In chapter 3, an in-detail

study of martensite–martensite interface energy and width is presented and the effect

of the martensite–martensite interface energy and grain size on the stationary and non-

stationary nanostructure inside the transforming grain embedded in the austenitic matrix

is determined. Also, the effect of finite element discretization on the interface energy and

width is studied. In chapter 4, the external surface layer as a transition between external

and internal phases is included in GL theory, and the effect of the width of this layer and

internal stresses on surface-induced pretransformation and phase transformations (PTs)

are revealed. In chapter 5, the PF theory to dislocations is conceptually advanced in the

following directions: (a) Large strain formulation is developed. (b) A new local poten-

tial is developed to eliminate stress-dependence of the Burgers vector and to reproduce

desired local stress-strain curve, as well as the desired, mesh-independent, dislocation

height for any dislocation orientation. (c) A new gradient energy is defined to exclude

localization of dislocation within height smaller than the prescribed height but does not

produce artificial interface energy and dislocation widening. In chapter 6, PF theory to

coupled evolution of martensitic phase transformations (PTs) and dislocation is devel-

oped, and the following problems are studied: hysteretic behavior and propagation of an

austenite (A) – martensite (M) interface with incoherency dislocations for temperature-

induced PT; evolution of phase and dislocation structures for stress-induced PT, and the

growth and arrest of martensitic plate for temperature-induced PT.
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Experimental Observation

Here, we present some experimental observations, which can be explained with our sim-

ulations.

1. It is known that in polycrystalline sample not all austenite transforms to martensite

(Fig.1.8)12. We found also that residual austenite remains in single crystalline sample as

well, see Figs.2.1, 3.1, 3.9, and 3.11.

2- For relatively large Mi-Mj interface energy, martensite-martensite interface splits pro-

ducing region of austenite between martensitic variants and the triple junction of two

martensitic variants and austenite, see Fig.2.1. Such a mechanism of a barrierless austen-

ite nucleation at Mi-Mj interface was observed experimentally in58, see Fig.1.9.

3. For the transforming grain embedded in austenitic matrix, for very high overcooling

the nanostructure in Figs. 3.9 and 3.11 resembles the alternating twin structure pre-

dicted by crystallographic theory and observed experimentally, see Fig.1.10 in48.

Figure 1.8 Microscope image of full phase transformation, it is indicated that the spec-
imen contains a combination of martensite and residual austenite12.
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Figure 1.9 Optical micrograph, the triple junction among martensitic phases and
austenite58.
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CHAPTER 2. Surface tension and energy in multivariant

martensitic transformations: phase-field theory, simulations,

and model of coherent interface

Modified from a paper published in the Physical Review Letters

Valery I. Levitas∗ and Mahdi Javanbakht †

Abstract

The Ginzburg-Landau theory for multivariant martensitic phase transformations is

advanced in three directions: the potential is developed that introduces the surface

tension at interfaces; a mixed term in gradient energy is introduced to control the

martensite-martensite interface energy independent of that for austenite-martensite; and

a noncontradictory expression for variable surface energy is suggested. The problems of

surface-induced pretransformation, barrierless multivariant nucleation, and the growth

of an embryo in a nanosize sample are solved to elucidate the effect of the above contri-

butions. The obtained results represent an advanced model for coherent interface.

∗Iowa State University, Departments of Aerospace Engineering, Mechanical Engineering, and Mate-
rial Science and Engineering, Ames, Iowa 50011, U.S.A.
†Iowa State University, Department of Mechanical Engineering, Ames, Iowa 50011, U.S.A.
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Introduction

Phase-field or Ginzburg-Landau (GL) modeling represents a unique approach for

simulation of various aspects of stress-induced multivariant martensitic phase transfor-

mations (PTs)1. Recently2, we developed a much more sophisticated Landau potential

to make the theory conceptually consistent with known experimental data for shape-

memory alloys, steel, and ceramics. The athermal resistance to interface motion is in-

troduced3, and the theory is extended for large strain4, dynamics5, and microscale6. In

these approaches and below, each of the n−order parameters ηi varies from 0 (corre-

sponding to A) to 1 (corresponding to martensitic variant Mi). This part of our work

advances the GL approach in three directions.

a) Since the thickness of martensitic variants is of the order of 1 nm and they possess

sharp tips, surface tension should play a significant role in the nucleation and evolution of

martensitic nanostructure. However, we are not aware of any publications on this topic.

We introduce proper terms in the energy potential, resulting in an expression for the sur-

face tension for multivariant PTs that are thermodynamically consistent and consistent

with a sharp-interface limit. The nontrivial points in this consideration are that even for

negligible small strains we have to use a large strain formulation, consider the gradient of

the order parameters with respect to a deformed configuration, and introduce the ratio

of mass densities in the nondeformed and deformed states ρ0/ρ in some terms. Note

that even for liquid-liquid and liquid-solid interfaces, for which expressions for surface

tension have been known for decades, they are not completely consistent with a sharp-

interface limit because they result in additional hydrostatic pressure7. Inconsistency

with a sharp-interface approach means that a theory contains internal contradictions.

We resolved this problem for liquid-liquid and liquid-solid interfaces as well.

b) Differences in the surface energies of different phases result in surface-induced phe-

nomena – e.g., surface premelting, ordering or disordering, and barrierless nucleation8
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– however, it was not considered for martensitic PTs. The main drawback of previous

works is that the utilized expression for surface energy q(η) = a + bη2 allows for a solu-

tion for the homogeneous parent phase (η = 0) but does not allow for a homogeneous

solution for the product phase – i.e., the product phase always has a surface structure

toward the alternative phase, even when this phase is completely unstable. This also

leads to unphysical regions in the phase diagram8. Here, we derive the expression for

q(η) that does not possess the above problems, generalize it for multivariant PTs, and

study surface-induced pretransformation and barrierless nucleation of multiple marten-

sitic variants.

c) The current form of the gradient energy results in the energy EMM of the Mi-Mj

interface to be twice of energy EAM of A-Mi interface (see below), while in reality it is

independent of the energy of the A-Mi interface and is significantly larger. We generalize

the expression for gradient energy by introducing the products ∇∇∇ηi · ∇∇∇ηj in order to be

able to control the energy of Mi-Mj interface independently. The resultant GL equations

became coupled through Laplacians, in addition to traditional coupling.

Combining all of the above advancements, the coupled system of time-dependent

GL equations for all order parameters, the continuum mechanical equations, and the

boundary conditions are formulated. The finite element method (FEM) approach, al-

gorithm, and subroutines are developed using the COMSOL code9. Model problems of

surface-induced pretransformation, barrierless multivariant nucleation, and nanostruc-

ture evolution in a nanosize sample are solved, and the effect of the above contributions

is elucidated. The obtained results represent a more detailed, flexible, and precise model

for coherent solid-solid interface than current phenomenological models10.

We designate contractions of tensors AAA = {Aij} and BBB = {Bji} over one and two

indices as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji, respectively. The subscripts s, e, and

t mean symmetrization and elastic and transformational strains; III is the unit tensor;
◦
∇∇∇ and ∇∇∇ are the gradient operators in the undeformed and deformed states; and ⊗
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designates a dyadic product.

Model

Let us define the Helmholtz free energy per unit undeformed volume ψ = ψ(BBB, ηi,∇∇∇ηi, θ),

where BBB = 0.5(VVV ·VVV −III) is the finite strain measure, VVV is the left stretch tensor, and θ is

the temperature. Traditional thermodynamic procedure for the thermodynamic poten-

tial depending on∇∇∇ηi and linear relationships between thermodynamic forces and fluxes

leads to

σσσ =
ρ

ρ0

VVV · ∂ψ
∂BBB
· VVV −

n∑
i=1

ρ

ρ0

(
∇∇∇ηi ⊗

∂ψ

∂∇∇∇ηi

)
s

;
1

L

∂ηi
∂t

= − ρ

ρ0

∂ψ

∂ηi
|BBB +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇ηi

)
, (1)

where L is the kinetic coefficient, σσσ is the true Cauchy stress tensor, and ∂ψ/∂ηi is

calculated at BBB = const. While theory was developed for large strains similar to4, to

make it more accessible we simplify it for small elastic and shear transformation strains

and rotations but keep finite volumetric transformation strain, where necessary. This is

the minimum requirement for the correct introduction of surface tension. For this case,

kinematics looks like the following

εεε = (
◦
∇∇∇ uuu)s, εεε = εεεe + εεεt, (2)

where uuu is displacement, εεε = 1/3ε0III + eee is the total strain tensor, and ε0 and eee are the

volumetric and deviatoric contributions to strain. Also, for simplicity we assume that

ψ is an isotropic function of εεεe and ∇∇∇ηi, ψ = ψ̄(εεεe, ηi, θ,∇∇∇ηi) = ψ̄(εεε − εεεt, ηi, θ,∇∇∇ηi) =

ψ(ε0, eee, ηi, θ,∇∇∇ηi). Functions ψ and εεεt are accepted in the form

ψ = ψe(ε0, eee, ηi, θ) +
ρ0

ρ
ψ̆θ + ψθ +

ρ0

ρ
ψ∇;

ψθ =
n∑
k=1

1

3
A0(θ − θe)η2

k(3− 2ηk)−
n−1∑
i=1

n∑
j=i+1

η2
i η

2
j (ηi + ηj)A0(θ − θe); (3)

ψ∇ =
β

2
(
n∑
i=1

|∇∇∇ηi|2 + b

n∑
i=1

n∑
j=1,i 6=j

∇∇∇ηi · ∇∇∇ηj);
ρ0

ρ
= 1 + ε0; (4)
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ψ̆θ =
n∑
k=1

A0(θe − θc)η2
k(1− ηk)2 +

n−1∑
i=1

n∑
j=i+1

Fij(ηi, ηj); (5)

εεεt =
n∑
k=1

εεεkt (aη
2
k + (4− 2a)η3

k + (a− 3)η4
k)−

n−1∑
i=1

n∑
j=i+1

η2
i η

2
j (ηiLLLij + ηjLLLji), (6)

Fij(ηi, ηj) = ηiηj(1− ηi − ηj){B[(ηi − ηj)2 − ηi − ηj] + Cηiηj}+

η2
i η

2
j (ηi + ηj)(Ā− A0(θe − θc)). (7)

Here, LLLij = (a − 3)εεεjt + 3εεεit, ψ
e = 1

2
Kε2

0e + 1
2
µeeee:::eeee is the elastic energy with equal (for

compactness) bulk K and shear µ moduli; θe and θc are the equilibrium temperature

and temperature for the loss of stability of A; εεεti is the transformation strains of the ith

variant; i = 0 corresponds to A; β is the gradient energy coefficient; and A0, Ā, B, C, a,

and b are parameters. Then Eq.(31) looks like

σσσ = σσσe + σσσst; σσσe =
∂ψ

∂ε0

III +
1

(1 + ε0)2/3

∂ψ

∂eee
= Kε0eIII +

µ

(1 + ε0)2/3
eeee; (8)

σσσst = (ψ∇ + ψ̆θ)III − β
n∑
i=1

(∇∇∇ηi ⊗∇∇∇ηi + b∇∇∇ηi ⊗
n∑

j=1,i 6=j

∇∇∇ηj); (9)

1

L

∂ηi
∂t

=
ρ

ρ0

(Kε0eIII + µeeee):::
dεεεt
dηi
− ρ

ρ0

∂ψθ

∂ηi
− ∂ψ̆θ

∂ηi
+ β(∇∇∇2ηi + b

n∑
j=1,i 6=j

∇∇∇2ηj), (10)

where σσσst is the surface tension. For a single order parameter (,e.g., for liquid-liquid and

liquid-solid interfaces) and a phase equilibrium condition, β
2
|∇∇∇η|2 = ψ̆θ

2, and we have

σσσst = β|∇∇∇η|2(III − kkk ⊗ kkk); kkk =∇∇∇η/|∇∇∇η|. (11)

Here, kkk is the unit normal to the interface. Thus, σσσst represents two equal normal stresses

acting along the interface, i.e., like surface tension in the sharp-interface approach. Since

β|∇∇∇η|2 is the total η−related energy, its integration along the kkk gives the total interface

energy, such as for sharp-interface. For liquid-liquid and liquid-solid interfaces7, σσσst

contained extra hydrostatic pressure, which was inconsistent with sharp-interface results.

Our approach resolves this problem for these interfaces as well.
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Let us discuss obtained equations. The main difference between the current and

our previous formulation for energy Eq.(7)2, 4 is in the underlined terms and in using the

gradient operator∇∇∇ with respect to the deformed state. When ρ0 ' ρ, b = 0, and∇∇∇ '
◦
∇∇∇,

ψ is equivalent to that in2, 4. It looks like it is not a significant change, but that is exactly

what is necessary (excluding b 6= 0) to introduce surface tension for martensitic PT and

to make it consistent with a sharp-interface approach. The nontriviality of the results

is related to the fact that for small strain it is customary to assume that ρ0 ' ρ and

∇∇∇ '
◦
∇∇∇. However, this results in σσσst = 0. The point is that even for absolutely negligible

strain d(ρ0
ρ

)/dε0 = 1, which results in hydrostatic contribution to surface tension. Also,

generalized rate ∇̇∇∇η =∇∇∇η̇ −∇∇∇η · ∇∇∇vvv (where vvv is the velocity vector), due to convective

term, results in additional gradient-related surface tension. Thus, a physical phenomenon

(surface tension) is introduced using simply geometric nonlinearities. In addition to the

luck of the idea that the finite-strain theory should be used, the reason why the surface

tension theory was not developed before is that the finite-strain theory was just developed

in4. Introducing the product ∇∇∇ηi ·∇∇∇ηj allows us to control the width and energy of the

Mi-Mj interface independent of A-Mi interfaces. This, however, complicates GL Eq.(19)

by coupling them through Laplacians. Also, an important consequence of Eq.(19) is

that surface tension does not contribute to the driving force for PT directly; rather, it

affects the driving force by changing stress distribution. The above equations should be

supplemented by the equilibrium equation ∇∇∇ · σσσ = 0.

Variable surface energy

Variable surface energy generates the boundary conditions

ρ

ρ0

∂ψ

∂∇∇∇ηi
· nnn =

∂ψ∇

∂∇∇∇ηi
· nnn = β(∇ηi + b

n∑
j=1,i 6=j

∇∇∇ηj) · nnn = − dq
dηi

, (12)

which generalize known conditions8 for the 3D case, multiple order parameters, and

mixed terms in the gradient energy. Here, nnn is the normal to the boundary. We assume
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that in the simplest case q(ηi) depends on single ”equivalent” order parameter p =

(
∑n

i=1 η
2
i )

0.5. Then, q(p) has the following properties: q(0) = γA; q(1) = γM ; dq(0)
dp

=

dq(1)
dp

= 0, with γ for the surface energy of phases. The last condition ensures that

homogeneous states ηi = 0 and ηi = 1 satisfy boundary conditions, which was not the

case in previous works8. The simplest polynomial expression that satisfies the above

condition is

q(p) = γA + ∆γ(āp2 + (4− 2ā) p3 + (ā− 3)p4),

where 0 < ā < 6 guarantees the monotonic character of q(p) and ∆γ = γM − γA.

It is possible to show that to make a condition of barrierless surface-induced nucleation

consistent with a sharp-interface result ∆γ > E, where E is interface energy, we need to

choose ā = 3. Then q(p) = γA + ∆γ(3p2 − 2p3).

Examples

We use in the calculations material parameters for cubic to tetragonal PT in NiAl

found in2, L = 2596.5m2/Ns, ∆γ = −0.4J/m2, and b = 0.5, unless otherwise stated.

The FEM approach and code COMSOL9 were used. For plane stress 2D problems, two Mi

are considered with the components of εεεt (0.215,−0.078,−0.078) and (−0.078, 0.215,−0.078).

A rectangular sample was considered and quadrilateral and triangle Lagrange elements

with quadratic approximation were employed.

Verification

To test numerical procedure, plane interface propagation was considered. Good

correspondence with analytical solutions in2, 3 was found. To avoid internal stresses,

εyt = 0 was chosen along with εxt = 0.05 and γt = 0.1. For example, for temperature

θ = θe = 215K, normal σx = 1GPa, and shear stress τ = −0.3GPa the interface velocity

is 993.4 m/s (998.0 in3). The energy of the A-M interface is E = 0.2244J/m2 (0.2244 in
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2). For the limit case of liquid-liquid interface, jump in pressure ∆p = 2E/r, where r is

the radius of an interface.

Effect of b on M-M energy

The effect of b on the energy EMM of Mj-Mi interface was studied. Condition ψ∇ ≥ 0

implies that b ≤ 1. We found that EMM = kEAM with k = 2 for b = 0, k = 1.523

for b = 0.5, k = 0.692 for b = 0.9, k = 0.486 for b = 0.95, and k = 0 for b = 1.

Interface width reduces with the growth of b to zero at b = 1. Variation of b changes the

nanostructure evolution significantly since it changes the energy balance.

Surface-induced nucleation for single martenistic variant

For a NiAl single variant, surface-induced nucleation was considered in a 10× 10nm

sample for free boundaries and θ = 0K (see animation 1 in the supplementary materials

11). Surface energy was constant everywhere, excluding a 1nm part from each side of the

x (symmetry) axis at the right-hand boundary. Only half of the sample is considered.

For the case with surface tension, a small surface-induced nucleus appeared and reached

stationary shape. Without surface tension, the nucleus slowly grows mostly along the

side, and after reaching some size, grows fast under 400 to the y axis and reaches the

upper horizontal side. Then the interface reaches the upper corner, after which PT

propagates toward the left-hand side and completes in the entire sample. For the same

sample at θ = 180K, but with γ = const everywhere and a preexisting surface nucleus

with 2× 2nm size symmetric with respect to the x axis at the right-hand boundary, the

nucleus disappears for the case with surface tension (see animation 2 in11). Without

surface tension, it almost disappears, but a small value η = 0.2 propagates along the

vertical side. After it reaches the corner, the completely transformed region propagates

from the symmetry axis up and then propagates through the sample as a vertical diffuse

interface.
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Surface-induced nucleation for two martenistic variants

For two variants and a sample with 100× 100nm, the following boundary conditions

were applied. Vertical sides are stress-free, zero displacement is applied to the upper

horizontal side, and symmetry boundary conditions are used for the x axis. Boundary

condition (12) with ∆γ 6= 0 is applied to the right vertical line and with ∆γ = 0 to other

lines. The initial conditions are ηi = 0.001 and zero stresses in the entire sample. The

lowest temperature, when a nontrivial stationary surface-induced nanostructure exists,

is 90.5K without surface tension and 81.1K with surface tension [Fig. 2.1(a)] (for b = 0

in Eq.(12), it is 87.95K for σσσst = 0 and 80.90K for σσσst 6= 0 [Fig. 2.1(d)], and the

transformation path is quite different. At 90.4K for σσσst = 0 and at 81.0K for σσσst 6= 0,

this nanostructure becomes unstable, and PT spreads in the entire sample with nontrivial

path (see animation 3 in the supplementary materials11). A wedge-type nanostructure

consisting of two variants propagates from the free surface and forms the stationary

solutions, which consist of two intersecting M2 plates inside a M1 matrix for σσσst = 0 and

four plates forming a quadrilateral shape for σσσst 6= 0. Surprisingly, regions of residual

A are observed at the intersection of plates, forming a triple junction. Surface tension

leads to a curved A-M2 interface, change in the width of the M2 plate, and some other

details [Figs. 2.1(b) and 2.1(c)].

Preexisting embryo with two martenistic variants

The evolution of a preexisting embryo of 2 nm radius with ηi = 0.1 at the center of

a 60× 60nm sample under biaxial tensile stresses of 20GPa at θ = 100K and γ = const

everywhere was considered [Fig. 2.2 and11]. The evolution starts with the splitting of the

embryo into two martensitic variants separated by austenite. Without surface tension,

new nuclei appear at the surface near the corners and the symmetry axis and grow faster

than the preexisting nucleus. With surface tension, such a nucleation occurs at a later

stage, martensitic variants grow along the symmetry axis and reach the surface. Thus,
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Figure 2.1 Distribution of η1 − η2 for the upper part of a 100 × 100nm2 sample and
variable surface energy at the right vertical line. (a) At the lowest tempera-
ture, when stationary surface-induced nanostructure exists at 90.5K without
surface tension and 81.1K with surface tension (the 10 nm part of the sam-
ple is shown); (b) and (c) stationary nanostructures at 90.5K for σσσst = 0
and at 81.1K for σσσst 6= 0; (d) At the lowest temperature, when station-
ary surface-induced nanostructure exists for b = 0 in Eq.(12) at 87.95K for
σσσst = 0 and 80.90K for σσσst 6= 0.The variant M1 (M2) correspond to positive
(negative) values of η1 − η2 as indicated by the shade (color) box.

the PT paths for the two cases are completely different. A complex multiconnected

nanostructure passes through the coalescence stage and finally ends in a single-variant

state that is different for the two cases.

Note that various phenomenological models of coherent interface exist (see reviews

10) based on the theory of thin shell and interface constants that are unknown. As a

byproduct of the current work, we obtained a much more detailed, flexible, and precise

model of a coherent interface, which takes into account the heterogeneity of all properties

and εεεt, σσσst, εεε, and σσσ along the interface thickness, as well as heterogeneous surface tension

and surface stresses. The importance of finite interface width and surface tension is
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Figure 2.2 Evolution of η1 − η2 for preexisting embryo of 2 nm radius with ηi = 0.1 at
the center of a 60×60nm2 sample under biaxial tensile stresses of 20GPa at
θ = 100K with and without surface tension. Quarter of sample is considered.

demonstrated in the example of the A-M interface, in which M1 is rotated by 36.50 to get

εyt = 0 [Fig. 2.3]. In this case, for sharp interface we obtained a stress-free solution. For a

diffuse interface and σσσst = 0, even while εyt = 0 everywhere, there is a significant σy stress

with concentration near the corner. The surface tension σyst exceeds this σy by a factor

of more than 2, and it changes the distribution of σy, increasing significantly the tensile

stress and moving its concentration to the center of the sample. In general, interface

thickness and structure adjust themselves during loading; the interface can appear and

disappear, and there are intersecting interfaces, triple junction, and corner points, which

are separate problems for the sharp-interface approach.

In summary, GL theory for multivariant PTs is advanced to describe surface ten-

sion, Mi-Mj interface energy, and variable surface energy in a noncontradictory manner.

FEM solutions for surface-induced, pretransformation, barrierless, multivariant nucle-

ation, and the growth of the embryo and nucleus in a nanosize sample allowed us to

elucidate the effect of the above contributions. Note that for smaller external stresses

and transformation strain, the effect of surface tension will be even more pronounced.

Stationary multivariant surface structures, residual A in the region of intersection of
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Figure 2.3 (a) Plots of component σyst of surface tension, as well as total stress σy for
the case without and with surface tension, along the line passing through
the center of a 10 × 10nm2 sample. Variant M1 is rotated by 36.50 to get
εyt = 0 at the A-M1 interface; (b) and (c) show the distribution of σy for the
case without and with surface tension, respectively.

martensitic plates, the junction of three phases, and the nontrivial dynamics of PT are

revealed.

Note that the residual austenite observed in NiTi shape memory alloy under con-

ditions when it was completely unexpected12, can be at least partially explained by

our simulations. The obtained results also represent an advanced model for coherent

interface. Similar developments can be applied for various phenomena involving inter-

faces, such PTs (liquid-liquid, melting, amorphization, evaporation, electromagnetic, and

reconstructive PTs), diffusive PTs described by Cahn-Hilliard theory, twinning, dislo-

cations, fracture, grain growth and recrystallization, as well as gradient plasticity and

damage.

The support of NSF, ARO, DTRA, and ISU, as well as help of W. Hong and K.

Samani, are gratefully acknowledged.
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CHAPTER 3. Phase-field approach to martensitic phase

transformations: effect of martensite–martensite interface

energy

Modified from a paper published in the International Journal of Materials Research

Valery I. Levitas∗ and Mahdi Javanbakht †

Abstract

A generalization of the phase-field theory for multivariant martensitic phase trans-

formations is suggested that allows one to vary martensite–martensite interface energy

independent of energy for austenite–martensite interface. The finite element method is

utilized to solve the coupled phase-field and elasticity equations. Width and energy of the

austenite–martensite interfaces are determined. Splitting of the martensite-martensite

interface into two austenite-martensite interfaces, leading to barrierless austenite nucle-

ation, is obtained. The effect of the martensite–martensite interface energy and grain

size on the stationary and non-stationary nanostructure inside the transforming grain

embedded in the austenitic matrix is determined. Some nano-structures differ essen-

tially from the prediction of crystallographic theory. Relationships between the number

of twins in grain vs. grain size and width of twin vs. its length are found. Two unex-

pected stress-relaxation mechanisms at the boundary of transforming grain are revealed.

∗Iowa State University, Departments of Aerospace Engineering, Mechanical Engineering, and Mate-
rial Science and Engineering, Ames, Iowa 50011, U.S.A.
†Iowa State University, Department of Mechanical Engineering, Ames, Iowa 50011, U.S.A.
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Introduction

Martensitic phase transformations play a very important part in materials science,

being responsible for formation of unique microstructures, mechanical properties, and

material phenomena in steels, shape memory alloys and ceramics. Martensitic phase

transformation is a first-order, displacive, and diffusionless transformation. During cool-

ing or mechanical loading, the crystal lattice of the cubic phase, austenite (A), transforms

to the lower-symmetry lattice of martensite (M). Due to symmetry of the crystal lattice,

there is always a finite number of crystallographically equivalent martensitic variants Mi.

The typical microstructure during transformation consists of a fine mixture of marten-

sitic variants and residual austenite. The width of each martensitic variant plate is of

the order of magnitude of several to several tens of nanometers and is determined by

the interplay of elastic energy of internal stresses and interfacial energy between both

martensite and austenite and martensitic variants. There are a number of continuum

theories that determine the parameters of such a nanostructure1- 4, assuming some ge-

ometry. Alternatively, a phase-field or Ginzburg–Landau (GL) approach was broadly

applied to model the evolution of nanostructure without a priori geometric assumptions

6- 13. However, some basic mechanics and physics are still missing in the phase-field equa-

tions. Recently, in14- 16, we developed a sophisticated thermodynamic Gibbs potential

that allowed us to describe some conceptually important features of known experimental

stress–strain curves for shape-memory alloys, steel, and ceramics. Namely, the transfor-

mation strain tensor is independent of temperature (in agreement with crystallographic

theory17), phase transformation starts at nonzero tangent elastic moduli, temperature

dependence of stress hysteresis is controlled and can be negligible, and all thermome-



34

chanical properties of A and martensitic variants Mi are introduced into the theory for

arbitrary symmetry of Mi. Large-strain formulation and simulations are presented in18.

The importance of dynamics is demonstrated in19. The threshold-type (athermal) in-

terface friction is introduced in20, 21, which allowed us to describe multiphase stationary

microstructures. The interface tension is introduced in22, 23. Surface-induced phenomena

caused by the reduction in surface energy during transformation are described in22, 23

and the theory was extended for a microscale in24.

The evolution of martensitic microstructure is described in terms of the evolution

of the n order parameters ηi associated with ith martensitic variant Mi. Each order

parameter ηi varies from 0, corresponding to A, to 1, corresponding to Mi. The local

Helmholtz free energy depends on the elastic strain tensor, temperature, and all order

parameters ηi. In addition to the local contribution, the Helmholtz energy includes a

part depending on the gradient of the order parameter∇∇∇ηi, which is concentrated at the

finite-width interface between phases and reproduces the interface energy. The evolution

of the order parameters and multivariant martensitic microstructure is described by n

Ginzburg–Landau equations, which represent the linear relationships between the rate

of change of the order parameters, η̇i, and generalized thermodynamic forces conjugate

to them.

One of the remaining problems is related to the current form of the gradient energy,

ψ∇ = β
2
(
∑n

i=1 |∇∇∇ηi|2), where β is the gradient energy coefficient. Since ψ∇ depends

on the single material parameter β only, it is clear that it is impossible to vary the

energy EMM of the martensitic variant Mi – martensitic variant Mj interface independent

of the energy EAM of the austenite A – martensitic variant Mi interfaces. In fact, as

will be shown below, for neglected coupling with mechanics, EMM = 0.5EAM, while in

reality energy EAM is independent of the energy EMM and may be essentially larger. In

this chapter, the expression for gradient energy is generalized by adding the products

∇∇∇ηi ·∇∇∇ηj with an additional material parameter b, which allows us to change the energy
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of the Mi–Mj interface independently of that for A – Mi interfaces. This results in

more sophisticated GL equations, which become coupled through Laplacian operators,

in addition to the usual coupling due to local energy terms. Note that while models with

multiple gradient energy parameters had already been introduced for martensitic14 and

ferroelectric transformations28, 29, they never were applied for study of Mi–Mj interface.

The finite element method (FEM) approach, algorithm, and subroutines are developed

using COMSOL Multiphysics code25.

Detailed analytical study of the M1–M2 interface has been performed in7, 16, 26 for

the case in which it is described by a single-order parameter that has opposite signs for

the two variants. Both elastic stresses and surface tension were neglected. Here, we will

numerically study the M1–M2 interface for cubic to tetragonal transformation, when each

variant is described by a separate order parameter and both elastic stresses and surface

tension are taken into account. A coupled system of two GL equations and equations of

elasticity theory, suggested in22, are used. Solutions are found in a nanosize slab under

stress-free boundary conditions and plane stress formulation. The effect of the material

parameter b that changes M1–M2 interface energy with respect to A – M interface energy

is studied in detail, and analytical approximations for M1-M2 interface energy and width

are obtained. Heterogeneous internal stress fields (both elastic and surface tension) are

obtained for the case in which a sharp-interface approach suggests a stress-free solution.

For relatively large M1–M2 interface energy, barrierless austenite nucleation within the

M1–M2 interface is obtained in the region of stability of martensite, when temperature

reduces to the thermodynamic equilibrium temperature. The width of the austenitic

region increases toward the free surface, and triple a junction between austenite and two

martensitic variants is observed.

Multivariant nanostructure in a nanograin embedded in austenitic matrix was studied

as well. For very large overcooling, it resembles finely twinned structure (in agreement

with crystallographic theory17). However, the small grain size causes deviation from
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straight interfaces, the width of martensitic variants varies, and non-complete marten-

sitic variants and broadened interfaces are observed. For smaller overcooling, the nanos-

tructure contains a lot of residual austenite, split M1–M2 interfaces and triple junctions,

as well as incomplete martensite, and it is much different from the prediction of crystal-

lographic theory. Reduction in martensite–martensite interface energy leads to reduction

in twin width, increase in the number of completed variants, reduction of residual austen-

ite, and to sharper interfaces. Some quantitative characteristics of nanostructure as well

as specific stress-relaxation mechanisms are found. The effect of the finite element size

on the martensite-martensite interface width and energy is studied, and conditions for

mesh-independence of the solution are found. It is demonstrated that when element

size exceeds the interface width, the obtained nanostructure differs significantly from the

correct solution and leads to a wrong conclusion that it is independent of the M1–M2

interface energy.

The obtained results represent a more sophisticated and precise model for coherent

solid–solid interface than current phenomenological sharp-interface models reviewed in

5, 27. Our phase-field solution resolves interface structure and heterogeneities of all fields

along and across the interface, exhibits heterogeneous elastic stresses and surface tension,

and demonstrates the evolution of the interface structure including splitting the interface

into two interfaces and the formation of a triple junction as well as the effect of crossing

of a free surface.

The chapter is organized as follows. In Section 2, a system of coupled phase-field and

elasticity equations is presented and discussed. The numerical procedure is outlined in

Section 3. Section 4 contains a description of all our results and concluding remarks are

presented in Section 5.

Contractions of tensors AAA = {Aij} and BBB = {Bji} over one and two indices are

designated as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji, correspondingly. The subscript s

designates symmetrization of a second-rank tensor; the subscripts e and t are utilized
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for elastic and transformational contributions to the total strain; ⊗ is used for a dyadic

product of two vectors; III is the second-rank unit tensor; and
◦
∇∇∇ and ∇∇∇ designate the

gradient operators in the undeformed and deformed states. Some preliminary results

have been presented in the short letter22.

System of coupled phase-field and elasticity equations

In this Section, we summarize and discuss the main equations from22. The total

system of equations is presented in Box 1 for n martensitic variants and specified for 2

variants.

To make the theory from22 more accessible and to focus on our main problem, we

simplify it for small-strain formulation. However, to correctly introduce surface tension

we will consider finite displacements and keep some terms, which are usually neglected

in small-strain formulation. The motion of the elastic material with phase transforma-

tions is described by a vector function rrr = rrr(rrr0, t) , where rrr0 rrr are the positions of

material points in the undeformed Ω0 and the deformed Ω states, respectively; and t is

the time. Material in the reference configuration is in the austenitic state. We introduce

traditional decomposition Eq. (6) of the strain tensor εεε = (
◦
∇∇∇ uuu)s into elastic εεεe and

transformational εεεt parts, where uuu is the displacement vector. Eq. (6) also contains

decomposition of strain into volumetric ε0 and deviatoric eee contributions and an expres-

sion for the ratio of the mass density in undeformed ρ0 and deformed ρ states in terms

of volumetric strain ε0. Transformation strain εεεt determines the locally unloaded (i.e.,

stress-free) state of material point. For phase transformation between austenite A and

the ith martensitic variant Mi, the order parameter ηi is unambiguously related to the

corresponding transformation strain εεεti, which is determined by crystallography. When
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the order parameter ηi changes between 0 for A and 1 for Mi, the transformation strain

varies between zero and εεεti. In general, transformation strain εεεt depends on all order

parameters ηi and is determined by Eq. (4); a is the material parameter.

The Helmholtz free energy per unit undeformed volume ψ = ψ̄(εεεe, ηi,∇∇∇ηi, θ), where

θ is the temperature, can be presented with the help of kinematic decomposition Eq. (6)

and Eq. (4) as ψ = ψ̄(εεε − εεεt, ηi,∇∇∇ηi, θ) = ψ(εεε, ηi,∇∇∇ηi, θ). That is, it can be expressed

in terms of total strain or elastic strain and different functions of the order parameters,

which is convenient in transferring some equations from22. The Helmholtz free energy

consists of four contributions (Eq. (6)): the elastic part ψe(ε0, eee, ηi, θ), the thermal

part ψθ that is responsible for the driving force for phase transformation, the thermal

part ρ0
ρ
ψ̆θ that is responsible for the barrier between phases, and the gradient energy

ρ0
ρ
ψ∇. Elastic energy Eq. (7) is accepted in the simplest isotropic form with equal

bulk K and shear µ elastic moduli of phases. Since elastic strains are much smaller

than the transformational strains, neglecting anisotropy and change in elastic moduli

does not change any conclusion. The thermal part of free energy is divided into two

components, ψθ (Eq. (7)) and ψ̆θ (Eq. (10)), one of them ψ̆θ is multiplied in Eq. (6)

by the density ratio ρ0/ρ (the reason will be discussed below). In Eqs. (7)–(11), θe is

the thermodynamic equilibrium temperature for stress-free A and M , θc is the critical

temperature at which stress-free A loses its thermodynamic stability; Ā is the barrier

for transformation between martensitic variants, similar to A0(θe − θc) for austenite –

martensite transformation (A0 is the material parameter); B and C are parameters that

do not affect the phase equilibrium or phase transformation conditions but affect the

thermodynamic potential at parameters ηi away from both the A and Mi minima

and the minimum-energy paths between the minima. The gradient energy in Eq. (9),

in contrast to known publications6- 13, 18- 21, contains the products b∇∇∇ηi · ∇∇∇ηj with a

material parameter b, which allows us to control the energy and width of the Mi–Mj

interface independent of those for A–Mi interface. Gradient energy depends on two
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material parameters: β, which is present in all theories, and the new parameter b.

Thermodynamic procedure for the materials with a thermodynamic potential depend-

ing on gradient of the order parameters∇∇∇ηi in the deformed state and linear relationships

between generalized thermodynamic fluxes ∂ηi
∂t

and conjugate forces Xi lead to the ex-

pression for the true Cauchy stress tensor σσσ

σσσ =
∂ψ

∂εεε
−

n∑
i=1

ρ

ρ0

(
∇∇∇ηi ⊗

∂ψ

∂∇∇∇ηi

)
s

(1)

and to the generalized Ginzburg–Landau equation

∂ηi
∂t

= χXi; Xi = − ρ

ρ0

∂ψ

∂ηi
|εεε +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇ηi

)
(2)

where χ is the kinetic coefficient, and the derivative ∂ψ/∂ηi is calculated at εεε = const.

For the chosen potential, Eq. (31) reduces to Eqs. (15)–(17), in which the stress tensor

consists of two parts. The elastic stress σσσe is related to elastic strain by Hooke’s law

Eq.(16). The second contribution σσσst (Eq. (17)) is concentrated at the interface (i.e. it

is zero if ηi = 0 and ηi = 1) and represents surface tension. There are two reasons for

the appearance of the surface tension. The first is because differentiation of the term

ρ0
ρ

= 1+ε0 with respect to ε0 gives 1 and results in the appearance of hydrostatic pressure

ψ∇ + ψ̆θ even for negligible strain ε0. That is why the term ρ0
ρ

= 1 + ε0, negligible in

small-strain theory, is kept as a multiplier for the selected energy contributions. The

second reason is the presence of the gradient energy ψ∇(∇∇∇ηi). Note that if the energy

ψ∇ depended on the gradient of ηi in the undeformed state,
◦
∇∇∇ ηi, it would not make

a contribution to the surface tension. Thus, again even for neglected strains we have

to keep the difference between gradients in deformed and undeformed configurations to

reproduce the desired surface tension. The criterion for the correct expression for the

surface tension in22 was that for a single-order parameter it reduces to the biaxial tension

along the interface, with the total interface force in each direction equal to the surface

tension.
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The kinetic Ginzburg–Landau Eqs. (2) for n order parameters reduce to Eqs. (19),

which for b 6= 0 are coupled through Laplacians in addition to traditional coupling

through the local energy terms and transformation strain. The reason that we keep the

term ρ0
ρ

, which is usually neglected in small-strain approximation, is the following. We

found that the sum of the first three terms in the right-hand side of Eq. (19) (local

contribution to the driving force) have similar magnitude but the opposite sign to the

terms with Laplacians. Thus, a small difference in any of the terms can lead to significant

change in the total driving force. Another important point that follows from Eq. (19) is

that surface tension tensor σσσst does not appear in the expression for the driving force Xi,

which depends on elastic stresses only σσσe. However, surface tension indirectly contributes

to Xi by affecting stress distribution.

We have to add traditional equilibrium Eq. (22) to complete the total system of

equations. Boundary conditions Eq. (23) for each order parameter correspond to the

case in which surface energy for the external surface is independent of ηi – i.e., of phase

22.

Problem formulation

1. Kinematics

1.1. Decomposition of the strain tensor εεε

εεε = (
◦
∇∇∇ uuu)s; εεε = εεεe + εεεt; εεε = 1/3ε0III + eee;

ρ0

ρ
= 1 + ε0 (3)

1.2. Transformation strain εεεt

εεεt =
n∑
k=1

εεεtk ϕ (ηk)−
n−1∑
i=1

n∑
j=i+1

η2
i η

2
j (ηiLLLij + ηj LLLji )

LLLji = (a− 3)εεεti + 3εεεtj; ϕ(ηi) = aη2
k(1− ηk)2 + (4η3

k − 3η4
k) (4)

For two martensitic variants

εεεt = εεεt1(aη2
1 + (4− 2a)η3

1 + (a− 3)η4
1 − 3η3

1η
2
2 − (a− 3)η2

1η
3
2) +
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εεεt2(aη2
2 + (4− 2a)η3

2 + (a− 3)η4
2 − 3η3

2η
2
1 − (a− 3)η2

2η
3
1) (5)

2. Helmholtz free energy and its contributions

ψ = ψe(ε0, eee, ηi, θ) +
ρ0

ρ
ψ̆θ + ψθ +

ρ0

ρ
ψ∇. (6)

2.1. Elastic energy for equal elastic properties of phases

ψe =
1

2
Kε2

0e + µeeee:::eeee (7)

2.2. The thermal part of the Helmholtz free energy responsible for the driving force for

phase transformation

ψθ =
1

3
A0(θ − θe)

n∑
k=1

η2
k(3− 2ηk)− A0(θ − θe)

n−1∑
i=1

n∑
j=i+1

η2
i η

2
j (ηi + ηj) (8)

For two martensitic variants

ψθ =
1

3
A0(θ − θe){η2

1(3− 2η1) + η2
2(3− 2η2)− 3η2

1η
2
2(η1 + η2)} (9)

2.3. The thermal part of the Helmholtz free energy responsible for the barrier between

phases

ψ̆θ =
n∑
k=1

A0(θe − θc)η
2
k(1− ηk)2 +

n−1∑
i=1

n∑
j=i+1

Fij(ηi, ηj) (10)

Fij(ηi, ηj) = ηiηj(1− ηi − ηj){B[(ηi − ηj)2 − ηi − ηj] + Cηiηj}

+η2
i η

2
j (ηi + ηj)(Ā− A0(θe − θc)) (11)

For two martensitic variants

ψ̆θ = A0(θe − θc){η2
1(1− η1)2 + η2

2(1− η2)2}+

η1η2(1− η1 − η2){B((η1 − η2)2 − η1 − η2) + Cη1η2}+ η2
1η

2
2(η1 + η2)(Ā− A0(θe − θc))(12)
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2.4. Gradient energy

ψ∇ =
β

2
(
n∑
i=1

|∇∇∇ηi|2 + b

n∑
i=1

n∑
j=1,i 6=j

∇∇∇ηi · ∇∇∇ηj). (13)

For two martensitic variants

ψ∇ =
β

2
(|∇∇∇η1|2 + |∇∇∇η2|2 + 2b∇∇∇η1 · ∇∇∇η2) =

β

2
(|∇∇∇η1 +∇∇∇η2|2 + 2(b− 1)∇∇∇η1 · ∇∇∇η2)(14)

3. Stress tensor

σσσ = σσσe + σσσst (15)

3.1 Hooke’s law for elastic stresses

σσσe =
∂ψe

∂εεε
= Kε0eIII + 2µeeee (16)

3.2. Interface tension tensor

σσσst = (ψ∇ + ψ̆θ)III − β
n∑
i=1

(∇∇∇ηi ⊗∇∇∇ηi + b∇∇∇ηi ⊗
n∑

j=1,i 6=j

∇∇∇ηj) (17)

For two martensitic variants

σσσst =

[
β

2
((∇∇∇η1 +∇∇∇η2)2 + 2(b− 1)∇∇∇η1 · ∇∇∇η2) + A0(θe − θc){η2

1(1− η1)2 + η2
2(1− η2)2}+

η1η2(1− η1 − η2){B((η1 − η2)2 − η1 − η2) + Cη1η2}+ η2
1η

2
2(η1 + η2)(Ā− A0(θe − θc))

]
III −

β{∇∇∇η1 ⊗∇∇∇η1 +∇∇∇η2 ⊗∇∇∇η2 + b(∇∇∇η1 ⊗∇∇∇η2 +∇∇∇η2 ⊗∇∇∇η1)} (18)

4. Ginzburg–Landau equations

1

χ

∂ηi
∂t

=
ρ

ρ0

σσσe:::
dεεεt
dηi
− ρ

ρ0

∂ψθ

∂ηi
− ∂ψ̆θ

∂ηi
+ β(∇∇∇2ηi + b

n∑
j=1,i 6=j

∇∇∇2ηj), i = 1, ..., n (19)

For two martensitic variants

1

χ

∂η1

∂t
=

ρ

ρ0

{{2aη1 + 3(4− 2a)η2
1 + 4(a− 3)η3

1 − 2(a− 3)η1η
3
2 − 9η2

1η
2
2}σσσe:::εεεt1 +

{6η1η
3
2 + 3(a− 3)η2

1η
2
2}σσσe:::εεεt2} −

ρ

ρ0

1

3
A0(θ − θe){6η1(1− η1) + 2η1η

2
2(1.5η1 + η2)}+

η1η2(1− η1 − η2){B(2(η1 − η2)− 1) +Dη2}+ 2η1η
2
2(1.5η1 + η2)(Ā− A0(θe − θc))

+β(∇∇∇2η1 + b∇∇∇2η2) (20)
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1

χ

∂η2

∂t
=

ρ

ρ0

{{2aη2 + 3(4− 2a)η2
2 + 4(a− 3)η3

2 − 2(a− 3)η2η
3
1 − 9η2

2η
2
1}σσσe:::εεεt2 +

{6η2η
3
1 + 3(a− 3)η2

2η
2
1}σσσe:::εεεt1} −

ρ

ρ0

1

3
A0(θ − θe){6η2(1− η2) + 2η2η

2
1(1.5η2 + η1)}+

η2η1(1− η2 − η1){B(2(η2 − η1)− 1) +Dη1}+ 2η2η
2
1(1.5η2 + η1)(Ā− A0(θe − θc))

+β(∇∇∇2η2 + b∇∇∇2η1) (21)

5. Equilibrium equation

∇∇∇···σσσ = 0 (22)

6. Boundary conditions for the order parameters

nnn · ∇∇∇ηi = 0, i = 1, ..., n (23)

Numerical procedure

Material parameters. We will consider cubic-to-tetragonal phase transformation in

NiAl alloy. We will use the following material parameters determined and/or collected

from the literature in15, 16, 21, 30:

A0 = 4.40 MPaK−1, Ā = 5.32 GPa, θe = 215 K, θc = −183 K, a = 2.98,

B = 0, D = 0.5 GPa, β = 5.18× 10−10 N, χ = 2600 (Pa · s)−1,

K = 112.62 GPa, µ = 71.5 GPa. (24)

In our plane stress 2-D FEM simulations, we included two of the three possible marten-

sitic variants with the following transformation strains15, 17: εεεt1 = (0.215;−0.078;−0.078),

εεεt2 = (−0.078; 0.215;−0.078). Let us determine the range of variation of parameter b

from the condition ψ∇ ≥ 0 for all arguments in Eq. (14). It is clear that at the Mi–Mj

interface one has ∇∇∇ηi · ∇∇∇ηj ≤ 0, because for transition from ηi = 1 and ηj = 0 to ηi = 0

and ηj = 1 across an interface, ηi reduces and ηj increases. Since we can choose ∇∇∇ηi

arbitrarily to ensure that ψ∇ ≥ 0 for all arguments, we choose ∇∇∇ηi = −∇∇∇ηj. Then, one
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has ψ∇ = −β(b − 1)|∇∇∇ηi|2 and condition ψ∇ ≥ 0 implies b ≤ 1. Note that for b = 1, a

sharp-interface solution with∇∇∇ηi = −∇∇∇ηj is ηi = H(ξ), which gives zero energy ψ. Here

H is the Heavyside step function and ξ is the local coordinate along the normal to an

interface with ξ = 0 at the interface. Indeed, ψ∇ = 0 because of b = 1, and all other

energy contributions, being finite at any point, produce zero interface energy due to zero

interface width. Thus, for the thermodynamic parameters for which martensitic variants

are stable or metastable, for b = 1 the sharp Mi–Mj interface represents the minimum

interface energy solution. Numerical results below confirm that with b → 1 the width

and energy of the Mi–Mj interface tends to zero. We will focus below on the case b ≥ 0

for which the energy of the Mi–Mj interface is less than or equal to the doubled energy

of the A–M interface.

In the current study, the FEM is utilized, which is implemented in COMSOL code

using the arbitrary Lagrangian–Eulerian approach25. The complete system of equations

describing the phase transformation has a similar mathematical structure to the coupled

equations of diffusion and elasticity (or thermoelasticity). The order parameters can

be treated as concentrations of different species; εεεt is a counterpart of concentration

strain with sophisticated dependence on concentrations; Ginzburg–Landau equations are

similar to diffusion equations with complex stress- and concentration-dependent sources

− ρ
ρ0

∂ψ
∂ηi
|εεε and cross-effect between diffusion of different species in Fick’s law. Thus, the GL

equations are programmed and solved using Transient Diffusion equations in deformed

configuration. Elasticity equations are solved statically with the help of a Structural

Application module. Triangle Lagrange elements with quadratic approximation of the

displacements and order parameters have been used. Since for ηi corresponding to A

and Mi extrema ∂ηj/∂t = 0 according to GL Eq. (21), we always include in the initial

condition small deviations from these extrema to avoid a stacking system in them.

We will determine below the width ∆MM(0) = 2.07 nm and energy EMM(0) =

0.5034 Jm−2 of Mi–Mj interface for b = 0. The maximum surface tension stress σyst
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along the Mi–Mj interface has an order of magnitude of 1 GPa. Characteristic phase

transformation time, 1/(Āχ), has an order of magnitude of 0.1 ps and time step in

our problems is of the order of 10−3 ps. All size, stress, energy, and time parameters

will be normalized by 2.07 nm, 1 GPa, 0.5034 Jm−2, and 0.1 ps, respectively.

Normalized parameters e.g., E will be designated by bars, Ē. Temperature is uniform

and constant for all calculations. The thermal driving force for phase transformation

will be characterized by dimensionless overcooling ∆θ = θe−θ
θe

.

To test the numerical procedure, plane vertical interface propagation was considered

in a rectangular sample of the size of 8.12× 2.71. Good correspondence with analytical

solutions in14- 16, 21 was found. To reduce internal stresses and to check the effect of the

external stresses, the following components of the transformation strain have been used:

along the vertical interface εyt = 0; normal to the interface εxt = 0.05; and shear-strain

γt = 0.1. For example, for temperature θ = θe = 215 K, normal σx = 1 GPa, and

shear stress τ = −0.3 GPa the interface velocity is 993.4 ms−1 in our calculations and

998.0 in21.

To verify the A–M energy, a plane vertical interface propagation was considered in a

square sample of the size of 4.83×4.83. The first martensitic variant is considered only –

i.e. η2 = 0. To reduce internal stresses at the vertical A–M interface, crystal lattice of M

is rotated by 36.50 in the right-hand side of the sample to get εyt = 0. This leads to the

components of εxt1 = 0.1113, εyt1 = 0 and εxyt1 = 0.1305 in the coordinate system xy. In

the left half of the sample, initial conditions η1 = 0.001 correspond to A, and in the right

part initial conditions η1 = 0.999 correspond to M1. The temperature θ = θe = 215 K

and the stress-free boundary conditions are accepted. The energy of the A–M interface

is E = 0.2244 Jm−2 and equal to the value 0.2244 obtained with analytical expression

from16.
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Results

Description of the problem for martensite–martensite interface

The sample in the initial state has a square shape, with the side of 4.83. In the left

half of the sample initial conditions η1 = 0.999 and η2 = 0.001 correspond to M1, and in

the right part initial conditions η1 = 0.001 and η2 = 0.999 correspond to M2. Small initial

deviations for ηi from 0 and 1 were used to avoid possible artificial stacking of the system

at Mi minima (as described above), while for this problem it was not necessary. If these

variants would transform back to austenite, they will have the geometry shown in Fig.

3.1a. Crystal lattice of the austenite is rotated by 450, which leads to the components

of εxt1 = εyt1 = εxt2 = εyt2 = 0.0685 and εxyt1 = −εxyt2 = 0.1465 in the coordinate system

xy. External stresses are absent in the deformed state. To avoid rigid-body motion due

to numerical errors, one point of the external surface is completely fixed and another

one is fixed in the x direction. Initial conditions for stresses are σσσ = σσσst. Homogeneous

stationary temperature θ = θe is accepted.

Martensite-martensite interface contours and width

Profiles of the order parameters η1 and η2 vs. x̄ at ȳ = 4.35 are shown in Fig.

3.2 for different values of b. Isobands of η1 − η2 in the sample are presented in Fig.

3.1a. It is clear that the width of the M1–M2 interface decreases with increasing b and

decreasing interface energy. For the case b < 0.8 – i.e., when the energy EMM of the M1–

M2 interface is larger than the energy EAM of the A–M interface, the austenitic region

nucleates barrierlessly at the martensite–martensite interface at the bottom part of a

sample; the smaller b is, the larger is the austenitic region. Such a nucleation does not

require thermal fluctuations and is observed experimentally e.g., in32.

Barrierless austenite nucleation within the M1–M2 interface starts in the region of

stability of martensite (θ > θe), when temperature reduces to the thermodynamic equi-



47

Figure 3.1 Distribution of η1− η2 (a), dimensionless surface tension stress σ̄yst (b), total
stress σ̄y (c), and energy ψ̄ (d) for various parameters b (shown at the left)
in a sample with two martensitic variants. For small b, the austenitic region
appears at the interface between martensitic variants, leading to splitting of
the martensite-martensite interface into two austenite-martensite interfaces
and to a triple-junction point.
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librium temperature. Note that similar nucleation was found in 1-D models with a single-

order parameter16, 26 (so-called soliton splitting). However, in16, 26 martensitic variants

were always separated by the point η = 0 corresponding to austenite, which expanded

into the finite region while approaching the thermodynamic equilibrium temperature.

Figure 3.2 Profiles of the order parameters η1 and η2 vs. x̄ at ȳ = 4.35 for different
values of b for the M1-M2 interface.

In the current 2-D simulations with two order parameters, one martensitic variant

can transform into another without passing through the austenitic point η1 = η2 = 0,

but still the finite austenitic region η1 = η2 = 0 appears between martensitic variants

near one of the free surfaces. Also, 2-D simulations exhibited the variable width of the

austenitic region and triple junction between an austenite and two martensitic variants.

Note that the appearance of an additional phase inside the interface was suggested and

explored in the theory of phase transformation via virtual melting33, 34, in which a molten

layer appears at the interface between two solid phases.
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There are different ways to define quantitatively the interface width even for a single-

order parameter16, 26; it is not trivial to do this for two order parameters using interface

profiles η1 and η2 vs. x. Also, interface width determined with the help of η1(x) and

η2(x) profiles is not physical because interface width determined using εεεt(x) (which is

a potentially measured physical parameter) differs significantly. Since transition from

M1 to M2 occurs by a twinning shear along the interface, we use a profile of the shear

component

εxyt = 0.1465({aη2
1 + (4− 2a)η3

1 + (a− 3)η4
1 − 3η3

1η
2
2 − (a− 3)η2

1η
3
2}

−{(aη2
2 + (4− 2a)η3

2 + (a− 3)η4
2 − 3η3

2η
2
1 − (a− 3)η2

2η
3
1}) (25)

to determine the martensite-martensite interface width ∆MM (Fig. 3.3). Thus, ∆MM(b)

is defined as a length along which transformation shear varies between −0.99 and 0.99

of its maximum magnitude at ȳ = 4.35, where width and interface energy belong to the

region of their small variation along the y direction.

For b = 0, we obtained ∆MM = 2.07 nm, which is used as a parameter for normal-

ization of all spatial dimensions. Since ∆MM(0) = s
√
β with some parameter s16, we

obtain from our simulations that s = 1.286× 10−4. Dimensionless interface width ∆̄MM

vs. b is presented in Fig. 3.4. Approximation of this curve gives the following equation

for the interface width

∆MM = 1.286× 10−4
√
β(1− b1.445)1/2 (26)

Martensite–martensite interface energy

Energy of a thermodynamically equilibrium interface between phases for arbitrary y

is defined as an excess energy with respect to bulk phases, i.e.

E :=

∫ l

0

ψdx0 − ψbl (27)
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Figure 3.3 Distribution of the shear component of the transformation strain along x for
b = 0.5 at ȳ = 3.86, which is used for definition of the martensite-martensite
interface width.

where l is the initial width of a sample and integration is performed in an undeformed

state. Parameters for the bulk phases (designated with the subscript b) can be taken

at the points away from the interface, assuming that they are distributed almost homo-

geneously and are the same from both sides, which is the case for the examples in this

chapter. A more complex situation will be considered elsewhere. We defined EMM for

ȳ = 4.35, which belongs to the region with almost homogeneous energy distribution along

the y axis for all b. For b = 0 we obtained EMM = 0.4490Jm−2, which is twice of the en-

ergy of A–M interface. All energies are normalized by this value. Since EMM(0) = z
√
β,

with some parameters z 16, we obtain from our simulations that z = 3.128× 104. Dimen-

sionless energy of the M1–M2 interface ĒMM vs. b, as well as each energy contribution,

are presented in Fig. 3.5. Approximation of this curve gives the following equation for

the interface energy

EMM = 3.128× 104
√
β(1− b1.445)1/2 (28)
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Figure 3.4 Dimensionless martensite-martensite interface width ∆̄MM vs. b.

It follows from Eqs. (26) and (28) that

EMM(b) = 2.4323× 108∆MM(b) (29)

i.e., energy of the interface is proportional to its width for all b and the ratio EMM(b)/∆MM(b)

is independent of b.

Note that for the equilibrium A–M interface described by a single-order parameter

and neglected mechanics, analytical solutions give ψ̆θ = ψ∇ at each local point16, 26

(note that ψθ(θe) = 0). In our FEM simulations, while total interface energy EAM =

0.2245 Jm−2 coincides with the analytical expression from16, the contribution of the

gradient energy E∇AM = 0.1149 Jm−2 is larger than the contribution of the thermal energy

Eθ
AM = 0.1094 Jm−2; elastic energy Ee

AM = 0.0002 Jm−2 is negligible. In contrast, for the

M1–M2 interface described by two order parameters, the contribution E∇MM of the gradient

energy ρ0
ρ
ψ∇ to the EMM is essentially larger than the contribution Eθ

MM of the thermal

energy ρ0
ρ
ψ̆θ (Fig. 3.5). Thus, local equality cannot be valid as well. Approximation of
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the results of the calculation gives

E∇MM = 0.3049
√
β(1− b)1/2; Eθ

MM = 0.3649
√
β(1− b1.226)1/2 (30)

Figure 3.5 Dimensionless total energy of the M1-M2 interface ĒMM vs. b, as well as
each energy contribution due to gradient Ē∇MM , thermal Ēθ

MM , and elastic
Ēe
MM energies.

For sharp-interface between twins, elastic energy is supposed to be zero (we obtained

this using FEM as well). However, for finite-width interface, elastic energy produces a

contribution of 4.0 % for b = 0, 7.1 % for b = 0.75, and 14.5 % for b = 0.99. Local

energy ψ is distributed symmetrically with respect to the y axis with the sharp maximum

at x = 0 and almost zero value away from the interface (Fig. 3.1d), because the only

possible contribution, elastic energy, is very small outside the interface. For large b, local

energy is almost homogeneous along the y axis, with some reduction for small y due to

increase in the interface width and tendency to potentially split into two A–M interfaces,

but with some concentration at the bottom free surface. For small b, the region with
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almost homogeneous energy distribution along the y axis reduces with reduction in b.

Maximum energy significantly reduces for y near the interface splitting region. After

the interface splits into two A–M interfaces, the local energy maximum is shifted to the

center of theses interfaces.

Figure 3.1 shows the M1–M2 interface width and energy vs. number N of finite

elements per interface width (determined by Eq. (26)) for two values of b. It is clear

that for more than 6 elements per interface width results are practically independent of

the FEM discretization. However, for 3 and fewer elements per interface width, both

interface width and energy exceed essentially the correct value, especially for relatively

large b. These results allow one to choose proper FEM discretization for the solution of

more sophisticated problems with multiple interfaces and complex microstructure and

to avoid wrong solutions (see below).

Figure 3.6 The M1-M2 dimensionless interface width (a) and energy (b) vs. number N
of finite elements per interface width (determined by Eq.(26)) for two values
of b.

Martensite–martensite interface tension and stresses

Distributions of total, elastic, and surface tension stresses in the y direction in the

entire sample and vs. x̄ for ȳ = 4.35 are shown in Figs. 3.1 and 3.7. Note that for
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sharp-interface and neglected surface tension, total and elastic stresses are zero, which

we confirmed by our FEM simulations. In contrast, a finite-width, phase-field solution

always results in significant stresses inside and near the interface. Surface tension is

localized at the interface and its maximum value increases with growing b. In Fig. 3.1,

the total and elastic stresses are significantly larger than the surface tension; they spread

significantly outside of the interface (where they are equal due to the absence of surface

tension). Since total force in the y direction should be zero (or within computational

error), stresses outside the interface are mostly of the opposite sign to those inside the

interface; they have smaller magnitude outside the interface. At the same time, at the

external (almost) horizontal surfaces total normal stress is zero due to the boundary

condition, and thus the elastic normal stress is equal to minus the normal component of

the surface tension. A sharp drop in total stresses near the intersection of the interface

with the free surface of a sample is visible in Fig. 3.1. In the sharp-interface approach,

one would apply concentrated compressive loads equal to the surface tension at the points

of intersection of the interface with free surface of a sample. In the phase-field approach

there are no external concentrated or distributed loads. Surface tension stress is applied

at each point of the interface and zero external normal and shear stresses result in a

concentration of elastic stresses and strains in the region where interface crosses the free

surface of a sample. For small b, when M1–M2 interface splits into two A–M interfaces,

surface tension stress is again localized at the interfaces, while total and elastic stresses

spread into the austenitic region. There is no stress concentration at the triple junction

point (region).

Austenite–Martensite interface

The first martensitic variant is considered only – i.e., η2 = 0. We start with the

rectangular sample of size 4.83× 4.83 in the austenitic state. To reduce internal stresses

at the vertical A–M interface, a crystal lattice of M is rotated by 36.5o in the right-hand
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Figure 3.7 Distributions of dimensionless total σ̄y = σ̄yst + σ̄ye , elastic σ̄ye , and surface
tension stresses σ̄yst in the y direction vs. x̄ for ȳ = 4.35 and several values
of b.

side of the sample to get εyt = 0 (Fig. 3.8). This leads to the components of εxt1 = 0.113,

εyt1 = 0 and εxyt1 = 0.1305 in the coordinate system xy.

In the left half of the sample initial conditions η1 = 0.001 correspond to A and in the

right part initial conditions η1 = 0.999 correspond to M1. When conditions for η1 = 0.999

are applied, the right half of the sample deforms to the state shown in Fig. 3.8.

External stresses are absent in the deformed state. To avoid rigid-body motion due

to numerical errors, one point of the external surface is completely fixed and another

one is fixed in the x direction. Initial conditions for stresses are σσσ = σσσst. Homogeneous

stationary temperature is θ = θe. Again, for sharp-interface we obtained a stress-free
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Figure 3.8 (a) Plots of the y-component of dimensionless surface tension σ̄yst for the
A-M1 interface, as well as total stress σ̄y for the case with and neglected sur-
face tension stress, along the line passing through the middle of an initially
squared sample with a size of 4.83, shown in (b) and (c)22. Variant M1 is
rotated by 36.50 to get εyt = 0 at the A-M1 interface; (b) and (c) present the
distribution of dimensionless total stress σ̄y for the case without and with
surface tension, correspondingly.

solution. For a finite-width interface and σσσst = 0, even while εyst = 0 everywhere, there is

a significant σy stress with concentration near the intersection of the interface and the

free surface. Maximum tensile stresses are in the martensite, and compressive stresses

are in austenite.

The surface tension stress σyst exceeds this maximum value of σy by a factor of more

than 2. Due to asymmetry of the deformed geometry, there is some asymmetry in

surface tension distribution. Surface tension changes the distribution of σy, increasing

significantly the tensile stress and moving its maximum to the center of a sample. The

maximum of compressive stress remains near the lower intersection of the interface and

the free surface, in the austenitic region. Note that due to the stress-free boundary

condition, σy is close to zero at the intersection of the interface and the free surface –

i.e., stress concentration is shifted inside the sample.
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Martensitic nanostructure formation in the grain

To elucidate the effect of martensite–martensite interface energy and FEM discretiza-

tion on the nanostructure formation, we consider a square grain with a size of 6.04, in

which transformation occurs, embedded in the square matrix with a size of 24.15, which

is kept in an austenitic state. The upper and lower external boundaries are fixed in the

y direction and free in the x direction. The lower left corner is fixed in the x direction

and the vertical sides are stress-free. Displacements are continuous across the surface

of the internal square, and the boundary conditions for the order parameters Eq. (23)

are applied at this surface. The following initial conditions were applied: all stresses

are zero everywhere; in the small square, η1 = η2 = 0.999. Since we are interested in a

stationary nanostructure, such initial conditions for ηi allowed us to avoid consideration

of martensite nucleation and led to fast relaxation to the stationary solution. It is known

that small grain size and elastic constraint suppresses martensitic phase transformation

35, 4. That is why three large overcoolings, ∆θ = 1.93, 2.40, and 4.72, have been studied.

Problems for two different b and two different meshes for each b have been considered:

a) for b = 0.25 with 11.4 and 2.4 finite elements per interface width determined by Eq.

(26); b) for b = 0.75 with 9.5 and 1.5 finite elements per interface width – according to

Fig. 3.6, finer mesh should give a mesh-independent solution, but rougher mesh should

increase interface width and energy, and solutions may be wrong.

Results of calculations are presented in Fig. 3.9. First, let us focus on a correct solu-

tion for fine mesh. Crystallographic theory and continuum sharp-interface theory suggest

an alternate twins solution with plain martensite-martensite interfaces. Results that re-

semble this solution are obtained under large overcooling only. Small grain size distorts

this nanostructure, leading to non-planar interfaces and variable width of martensitic

variants, as well as non-complete martensitic variants and broadened interfaces. Most

of these distortions are caused by boundary conditions Eq. (23) according to which ηi

contour lines should be orthogonal to the sides of an embedded square, which confronts
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the 45o inclination of martensitic twins that is expected from crystallographic theory.

Figure 3.9 Stationary distributions of η1 − η2 in a square grain with a size of 6.04, in
which transformation occurs, embedded in the square matrix with a size of
24.15 (not shown), which is kept in the austenitic state. Results are shown
for three different overcoolings ∆θ = 1.93, 2.40, and 4.72 (designated at the
left), for two different parameters b and two numbers of finite elements per
correct interface width N .

Note that the boundary conditions Eq. (23) mean that the surface energy of the

bounding small square is independent of ηi – i.e., of phase state. Also, in the region

where twins intersect the square boundary, martensite is not complete (i.e., ηi < 1), which

reduces the energy of internal stresses. Reduction in M1–M2 interface energy leads to the

expected reduction in the width of twins and an increased number of twins. For lower

overcooling, the nanostructure is much different from the prediction of crystallographic

theory. It contains a large number of residual austenite, split martensite–martensite

interfaces, and triple junctions, as well as incomplete martensite. Reduction in M1–M2

interface energy leads to an increase in the number of completed twins, reduction of
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residual austenite, and to sharper interfaces.

Figure 3.10 Mesh-dependent distributions of η1 − η2 in a square transforming grain
with a size of 6.04, embedded in the square austenitic matrix with a size
of 24.15 (not shown). Results are shown for three different overcoolings
∆θ = 1.93, 2.40, and 4.72 (designated at the left), for two different pa-
rameters b and two numbers of finite elements per correct interface width
N .

Note that the residual austenite observed in NiTi shape-memory alloy under condi-

tions when it was completely unexpected36 can be partially explained by our simulations.

Results for the rough mesh for b = 0.25 are completely different from those for the

fine mesh for ∆θ = 1.93; different for ∆θ = 2.40; and quite close for ∆θ = 4.72. Results

for the rough mesh for b = 0.75 show a smaller number of martensitic variants, either

incomplete or complete, than with the correct solution for finer mesh. Note that for

∆θ = 4.72, results for rough mesh for b = 0.25 and 0.75 are quite close, while correct

solutions for these b’s are different, having different width and number of martensitic

variants.
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For the mesh with the size of finite element larger than the correct interface width,

solutions for some cases became independent of b (Fig. 3.10). Thus, nanostructures for

b = 0.25 and N = 0.95 and for b = 0.75 and N = 0.60 are very close for ∆θ = 2.40 and

4.72. Nanostructures for b = 0.25 and N = 0.45 and for b = 0.75 and N = 0.30 are very

close for ∆θ = 1.93 as well.

To study the scale effect, we consider the same problem but for system size, which is

four times larger than in the previous problem – i.e., transforming square grain with the

size of 24.15, embedded in the non-transforming austenitic square matrix with the size

of 96.62 (see Fig. 3.11). Mesh-independent solutions for ∆θ = 2.40 in Figs. 3.9 and 3.11

are completely different, with finer nanostructure for a larger sample. Mesh-independent

solutions for ∆θ = 2.40 in Fig. 3.11 for different b are completely different as well.

Figure 3.11 Stationary distributions of η1− η2 in a square grain with a size of 24.15, in
which transformation occurs, embedded in the square matrix with a size of
96.62 (not shown), which is kept in the austenitic state.

Thus, in addition to alternating twins structure and chessboard nanostructure37, 38,

novel nontrivial nanostructure is revealed. For larger overcooling ∆θ ≥ 3.79, the solution

represents alternating twins for both samples. While the size of a sample increases by a

factor of 4, the number of twins increases by a factor of 2 =
√

4.

Note that usually the width of the twin w ∼
√
L, where L is the size of a sample37, 39.
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Figure 3.12 Relationship between width of the twin w and its length l. Dots are the
results of simulation, and the curve is the approximation w = l0.38.

Then the number of twins in a sample n ∼ L/w ∼
√
L – i.e., our results correspond to

the known relationship. However, in contrast to previous works37, 39, the width of the

twin w varies within a sample and reduces with reduction of the length of twin l. Figure

3.12 shows the relationship w(l), which can be approximated as w = l0.38. Eqs. (26)

and (28) are approximately applicable for the martensite-martensite interfaces in the

central region in Figs. 3.9 and 3.11 for large overcooling and are not applicable for small

overcoolings.

Note that the grain increases its size during transformation, causing compressive

stresses from the matrix that suppress martensitic transformation. Fine nanostructure

at twinned martensite and grain boundary (Figs. 3.9, 3.11, 3.13) contains both convex

and concave regions. While concave regions locally reduce expansion of the grain, re-

ducing internal stresses, the convex areas increase grain expansion and internal stresses.

Analysis of the nanostructure reveals two stress-relaxation mechanisms at the boundary

of transforming grain, as follows.
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(a) At relatively large overcooling, leading to an alternate twin structure, incomplete

martensite (ηi < 1) is observed at the intersection of twin and grain boundaries. It

appears at locally convex parts of the grain boundary only, where the twin boundary

increases internal stresses, and does not appear at the concave part, where the twin

reduces size and internal stresses.

(b) At relatively small overcooling, significant residual austenite remains between

martensitic variants, and twinned martensite has a relatively small intersection area

with grain boundary. It is worth noting that only the concave regions of the intersection

of twins and grain boundary are observed.

It follows from Fig. 3.11 that rough mesh leads to a completely different nanostruc-

ture in comparison with fine-mesh solution for ∆θ = 2.40 and to larger twin width for

∆θ = 3.79. Surprisingly, the mesh-independent solutions for b = 0.75 are very close to

the solutions for rough mesh for b = 0. The reason is that if the element size is larger than

the correct interface width, it increases interface width and energy and produces a nanos-

tructure corresponding to larger Mi–Mj interface energy – i.e., to smaller b. An example

of the nontrivial evolution of the nanostructure with time for a large sample is presented

in Fig. 3.13. nite elements per interface width that produce mesh-independent solution.

Concluding remarks

In summary, phase-field theory for multivariant martensitic phase transformations

is extended for the case in which Mi–Mj interface energy can be varied independently

of the A–M interface energy. This has been done by introducing the product of the

gradient energy of different order parameters, which results in coupling of the Ginzburg–

Landau equations for the order parameters through Laplacians. Surface tension is also

taken into account. FEM and COMSOL code have been utilized for the detailed study
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of the effect of the material parameter b that characterizes Mi–Mj interface energy on

the solutions and nanostructure evolution. Explicit expressions for the Mi–Mj interface

width and energy are obtained. For relatively large Mi–Mj interface energy, martensite–

martensite interface splits the producing region of austenite and the triple junction of

two martensitic variants and austenite. Such a mechanism of a barrierless austenite

nucleation at Mi–Mj interface has been observed experimentally e.g., in32. Stationary

and non-stationary multivariant nanostructures in a nanograin embedded in austenitic

matrix were studied. Only for very high overcooling does it resemble the alternating twin

structure predicted by crystallographic theory, but with non-planar interfaces, variable

width of martensitic variants, non-complete martensitic variants, and broadened inter-

faces, caused by the small grain size. For lower overcooling, the nanostructure is much

different from the prediction of crystallographic theory. It contains a large amount of

residual austenite, split martensite–martensite interfaces, and triple junctions, as well

as incomplete martensite. Significant residual austenite between martensitic variants

and incomplete martensite at the intersection of twin and grain boundaries (where grain

boundary becomes convex) are two main stress-relaxation mechanisms at the boundary

of transforming grain. Reduction in the M1–M2 interface energy leads to a reduction in

the twin width, an increase in the number of completed twins, a reduction of residual

austenite, and to sharper interfaces. Relationships between the number of twins in grain

and grain size, and between the width of a twin and its length are found. The effect of the

finite element size on the M1–M2 interface energy and width is studied, and conditions

for mesh-independence of the solution are found. Solutions for phase transformation in a

nanograin for rough mesh differs significantly from the correct solution for fine mesh. It

is demonstrated that when element size exceeds the interface width, the obtained nanos-

tructure is independent of the material parameter b, because M1–M2 interface size and

energy are determined by the size of the finite element independent of b.

We would like to mention that numerous phenomenological models of coherent inter-
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face between phases exist in the literature (see reviews5, 27) that are formulated using the

theory of thin shell and interface constants that are unknown. In the current work, we

obtained a significantly more detailed, flexible, and precise model of a coherent interface,

which allows for the non-uniformity of all properties, as well as all types of stresses and

strains along the interface and interface thickness. The interface thickness and structure

vary during thermomechanical loading. The interfaces can appear and disappear, and

they may intersect each other, forming triple-junctions and corner points. While all of

these events require separate complex models for the sharp-interface approach, they can

be treated without extra effort in the phase-field approach. Also, no new parameters

are required for the interface model that are not involved in the phase-transformation

model.
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Figure 3.13 Evolution of nanostructure leading to the stationary solutions in Fig. 3.11.
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CHAPTER 4. Surface-induced phase transformations:

multiple scale and mechanics effects and morphological

transitions

Modified from a paper published in the Physical Review Letters

Valery I. Levitas∗ and Mahdi Javanbakht †

Abstract

Strong, surprising, and multifaceted effects of the width of the external surface layer

∆ξ and internal stresses on surface-induced pretransformation and phase transforma-

tions (PTs) are revealed. Using our further developed phase-field approach, we found

that above some critical ∆∗ξ , a morphological transition from fully transformed layer to

lack of surface pretransformation occurs for any transformation strain εεεt. It corresponds

to a sharp transition to the universal (independent of εεεt), strongly increasing the master

relationship of the critical thermodynamic driving force for PT Xc on ∆ξ. For large εεεt,

with increasing ∆ξ, Xc unexpectedly decreases, oscillates, and then becomes independent

of εεεt. Oscillations are caused by morphological transitions of fully transformed surface

nanostructure. A similar approach can be developed for internal surfaces (grain bound-

aries) and for various types of PTs and chemical reactions.

∗Iowa State University, Departments of Aerospace Engineering, Mechanical Engineering, and Mate-
rial Science and Engineering, Ames, Iowa 50011, U.S.A.
†Iowa State University, Department of Mechanical Engineering, Ames, Iowa 50011, U.S.A.
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Introduction

Reduction in the total surface energy during phase transformations (PTs) may lead

to various surface-induced phenomena—e.g., surface premelting, ordering or disordering,

martensitic PT, PT from martensitic variant Mi to variant Mj, and barrierless nucleation

1, 2, 3. Thus, transformation may start from the surface from stable in bulk to metastable

phases at temperature θ, which may be far from the thermodynamic equilibrium tem-

perature θe between phases, namely below θe for melting and above θe for martensitic

PTs. While some of our results are applicable to most of the above PTs, we will focus

on PTs during cooling, which include martensitic PTs. When the thermal driving force

X = (1 − θ/θe)/(1 − θc/θe) (θc is the temperature of the loss of stability of the parent

phase) for martensitic PT increases and approaches zero, a few nanometers thick trans-

formed layer appears, grows, and looses its thermodynamic stability, and transformation

propagates through the entire sample. Phase-field or Ginzburg-Landau (GL) approach is

widely used for simulation of the surface-induced PTs3, 4, 5, 6. PT in this approach is de-

scribed in terms of evolution of a single or multiple order parameter(s). The martensitic

PT below is described by n order parameters ηi that vary from 0 for austenite A to 1 for

martensitic variant Mi. Melting is described by the same potential for a single order pa-

rameter6. Significant advances were recently achieved in generalization for multivariant

martensitic PTs, formulation of a noncontradictory expression for surface energy versus

ηi, coupling to advanced mechanics, and consistent expression for interface tension5, 6.

Despite this progress, two major contradictions are present in the current GL ap-

proaches to surface-induced phenomena. (a) While the GL approach resolves finite width

∆η of interfaces that are responsible for PTs, the external surface is sharp, although its

width is comparable to ∆η. (b) A sharp external surface also does not permit a cor-

rect introduction of surface tension using the method that we developed for the phase

interfaces5, 6. The goal of this chapter is to introduce and study the effect of the finite
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width of an external surface coupled to mechanics with the help of our further developed

GL approach. Thus, a surface (e.g., solid-gas) layer of the width ∆ξ is described by

a solution of the GL equation for an additional order parameter ξ. Obtained results

(Figs. 4.1-4.6) revealed multiple unexpected effects of the surface layer and mechanics,

including morphological transitions in the nanostructure, which drastically change our

understanding and interpretation of the transformation behavior and results of measure-

ments. Deformation of the crystal lattice of A into the lattice of Mi is described by the

transformation strain tensor εεεti, which in our case is taken for cubic-tetragonal PT in

NiAl. To elucidate the effect of internal stress generated by εεεti in different materials,

we considered transformation strain kεεεti with 0 ≤ k ≤ 1. With increasing X, a station-

ary nanostructure ηi(rrr) (rrr is the position vector) varies (Fig. 4.4). The critical surface

nanostructure ηc(rrr) corresponds to the critical driving force Xc above which the entire

sample transforms.

For neglected mechanics, two branches on the curve Xc versus the dimensionless width

of the surface layer ∆ξ = ∆ξ/∆η are obtained [Fig. 4.1b]. For ∆ξ � 1, the effect of the

surface layer is negligible and Xc and ηc are the same as for the sharp surface. However,

for some critical and quite small ∆ξ
∗

= 0.166, the slope of the curve Xc(∆ξ) has an

unexpected jump and a drastic increase in the critical driving force occurs with increas-

ing ∆ξ. Critical nanostructure undergoes a morphological transition at this point, from

a homogeneous layer along the surface with the maximum value ηmaxc ' 1 [as in Figs.

4.2a-b], to a thin strip in the middle of the surface layer with very small ηmaxc ' 10−5.

This means that as soon as barrierless nucleation starts from the surface, it spreads over

the entire sample.

Allowing for mechanics (i.e., energy of internal stresses) increases Xc with the increas-

ing magnitude of the transformation strain k, as expected. However, for some critical

width ∆∗ξ(k), the curve Xc(∆ξ, k) for any k reaches the master curve for neglected me-

chanics X0
c (∆ξ) (k = 0) and coincides with it for larger ∆ξ. A jump in the slope in all
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Figure 4.1 (a) Plot of the ξ−dependent term ξ2
s (1− ξs)2/∆ξ in GL Eq.(5) vs x̄ = x/∆η

for different ∆ξ. (b) Critical thermodynamic driving force Xc vs ∆ξ for a
single M1 and different cases: neglected mechanics (GL), coupled GL and
mechanics with transformation strain of εεεt/3, 2εεεt/3, and εεεt as well as with
variable elastic properties [εεεt, φ(ξ)], and interface σσσstη and surface σσσstξ tensions

[εεεt, φ(ξ), σσσst]. The curve X0
c is approximated as X0

c = 1− 0.267∆
−2/3

ξ .

curves Xc(∆ξ, k) at ∆∗ξ(k) is accompanied by a morphological transition to very small

ηmaxc ' 10−5, as with neglected mechanics. This transition explains the lack of the effect

of elastic energy on the critical driving force for PT Xc for ∆ξ > ∆∗ξ(k): because for

the critical nanostructure ηmaxc is very small, then the transformation strain and elastic

energy are negligible as well. While for k = 1/3 the critical driving force for PT is prac-

tically independent of ∆ξ < ∆∗ξ (as with neglected mechanics), for k = 2/3 and 1, Xc

surprisingly reduces with increasing ∆ξ before morphological transition and the curve

Xc(∆ξ, k) has a ν-shape at the morphological transition point ∆∗ξ(k). One more finding

is that for k = 1, there is oscillation at the curve Xc(∆ξ) caused by three morphological

transitions in the critical nanostructure (Fig. 4.2). We designate the contractions of

tensors over one and two indices as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji, respectively; ∇∇∇

is the gradient operator in the deformed state.



73

Figure 4.2 Critical nanostructures for the coupled GL and mechanics with εεεt for a single
M1 and some values of dimensionless width of the surface layer ∆ξ. Three
morphological transitions are observed with increasing ∆ξ.

Phase-field model

The current model generalizes our recently developed model5 by including the surface

layer. Thus, an additional order parameter ξ describes a smooth transition between

solid (ξ = 0) and surrounding (ξ = 1), e.g., gas. The full model is presented in the

Supplemental Materials11. Here, we will discuss the structure of new equations only.

The Helmholtz free energy per unit undeformed volume,

ψ = ψe +
ρ0

ρ
ψ̆θ + ψθ +

ρ0

ρ
ψ∇ +

ρ0

ρ
ψξ(ξ,∇∇∇ξ, ηk); (1)

ψe = 0.5(1− φ(ξ))(Kε2
0e + 2µeeee:::eeee); φ(ξ) = ξ2(3− 2ξ),

contains the energy ψξ(ξ,∇∇∇ξ, ηk) for the surface layer and the elastic energy ψe with bulk

K and shear µ moduli, which smoothly reduce to zero within the surface layer. Here, ρ0
ρ

are the ratio of mass densities in the undeformed and deformed states, ψ̆θ, ψθ, and ψ∇

are the contributions to ψ related to the double-well barrier, thermal energy, and energy

related to ∇∇∇ηi, ε0e and eeee are the elastic volumetric and deviatoric strains. The energy

of the surface layer per unit deformed volume is11

ψξ = Jξ2(1− ξ)2 + 0.5βξ(∇ξ)2 =
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q(ηi)/∆ξ

(
16.62ξ2(1− ξ)2 + 0.542∆2

ξ(∇ξ)2
)
, (2)

where βξ and J are the parameters, and q(ηi) is the surface energy of the sharp external

surface. Equations (7) and (14) lead to the GL equations for ξ and ηi:

1

Lξ

∂ξ

∂t
=
q(ηi)

∆ξ

(
1.083∆2

ξ∇2ξ − 66.48ξ(1− ξ)(0.5− ξ)
)

+ 1.082∆ξ∇ξ · ∇q(ηi) (3)

− ρ

ρ0

∂ψe

∂ξ
;

1

L

∂ηi
∂t

= − ρ

ρ0

∂ψ

∂ηi
|εεε +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇ηi

)
, (4)

where L and Lξ � L are the kinetic coefficients. For neglected ψe, Eq.(3) has solution

for a stationary surface layer6: ξs = [1 + exp(5.54x/∆ξ)]
−1. For neglected mechanics and

a single stationary surface layer orthogonal to x, Eq.(3) simplifies to (ψ̄θ = ψ̆θ + ψθ)

1

L

∂ηi
∂t

= β∇∇∇2ηi −
∂ψ̄θ

∂ηi
− 33.24

∆ξ

∂q(ηi)

∂ηi
ξ2
s (1− ξs)2. (5)

Problem formulation

Material parameters, initial and boundary conditions are given in11. The finite el-

ement code COMSOL was utilized for plane stress 2D problems. A rectangular 25 ×

12.5nm2 sample discretized with triangle Lagrange elements with quadratic approxima-

tion was treated. All sides are stress-free, excluding zero vertical displacement at the

upper and lower horizontal sides. The surface layer was introduced at the right vertical

line only. We considered GL equation without mechanics, GL equations with mechanics,

for k = 1/3, 2/3, 1, with elastic properties independent of ξ and without surface stresses,

the same with elastic properties dependent on ξ, and the same with surface stresses.
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Figure 4.3 Profiles of the single order parameter η for ∆ξ = 0 and the order parameters
η and ξ for ∆ξ = 0.066 for different cases [described in Fig. 4.1b] vs x.

Scale effects and morphological transitions

First, the simplest model [Eq.(5)] with neglected mechanics (which is generic for

various types of PTs) is analyzed. Since the magnitude of the local contribution of

the surface layer to the GL Eq.(5) scales with 1/∆ξ [Fig. 4.1a], an increase in ∆ξ

should suppress nucleation. Also, for ∆ξ � 1 the results should coincide with those

for the sharp external surface. Both of these predictions are confirmed by numerical

simulations [Fig. 4.1b]; however, all other results are counterintuitive and unexpected.

The critical thermodynamic driving force for PT Xc vs ∆ξ and some corresponding

critical nanostructures for single M1 are presented in Figs. 4.1-4.2, respectively. For

neglected mechanics, the numerical solution for ξ(x) is well described by ξs(x); thus

simple Eq.(5) is valid. Two branches on the curve Xc(∆ξ) are obtained [Fig. 4.1b]. For

∆ξ � 1, the effect of the surface layer is negligible; Xc, ηc, and interface velocity for

X > Xc are practically the same as for the sharp surface; stationary and nonstationary

solutions are independent of y, ηmaxc = 1, and the width of the transformed surface layer

δsl (determined from ηc = 0.5) is essentially larger than ∆ξ (Fig. 4.3; plots in Figs.

4.3-4.5 are for the middle line of the sample). However, above some critical and quite
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small ∆ξ
∗

= 0.166, an unexpected jump to a completely different regime occurs. Critical

nanostructure undergoes morphological transition to a thin strip in the middle of the

surface layer with very small ηmaxc ' 10−5. Consequently, as soon as surface barrierless

nucleation starts, PT spreads over the entire sample; thus, pretransformation does not

exist.

The slope of the curve Xc(∆ξ) has a jump (explained by a morphological transition),

and a drastic increase in the critical driving force occurs with increasing ∆ξ. For coupled

GL and mechanics formulation (yet with neglected surface stresses and change in elastic

properties), Xc increases with increasing magnitude of the transformation strain k. This

is expected because of the suppressing contribution of the energy of internal stresses. For

critical nanostructure, while it is homogeneous along y, the width of the transformed layer

δsl decreases with increasing k (Fig. 4.3) and ηmaxc is becoming smaller than 1. However,

for some critical width ∆∗ξ(k), the curve Xc(∆ξ, k) for any k reaches the curve X0
c (∆ξ)

for k = 0 and coincides with it for larger ∆ξ [Fig. 4.1b]. That is why we call X0
c (∆ξ)

the universal (i.e., independent of εεεt and internal stresses) master dependence. At ∆∗ξ(k)

a jump in the slope in all curves Xc(∆ξ, k) occurs, which is caused by a morphological

transition to very small ηmaxc ' 10−5, similar to the case with neglected mechanics. This

transition explains the coincidence of the curves for different k, i.e., the lack of the effect

of elastic energy on Xc for ∆ξ > ∆∗ξ(k). Indeed, since for the critical nanostructure ηmaxc

is very small, then εεεt and elastic energy are negligible as well. This result leads to new

intuition for such a complex nonlinear interaction between PT, surface phenomena, and

mechanics.

While for k = 1/3 Xc does not change with the increasing width of the surface

layer (like for neglected mechanics), for k = 2/3 and 1, Xc surprisingly reduces with

increasing ∆ξ < ∆ξ
∗

and the curve Xc(∆ξ) has a ν shape at the morphological transition

point ∆∗ξ(k) [Fig. 4.1b]. For k = 1, there is also oscillation at the curve Xc(∆ξ),

caused by three morphological transitions of the critical nanostructure [Fig. 4.2]. Thus,
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the almost homogeneous along y nanostructure for the sharp surface and ∆ξ = 0.066

changes to three different types of localized structures. Such a structure is a result of

competition between a promoting effect of the surface layer and a suppressing effect of

elastic stresses; localized structure leads to a reduction in elastic energy. When variable

Figure 4.4 Profiles of the single order parameter η vs x for some values of ∆ξ for critical
nanostructures (solid line) and nanostructures for smaller thermodynamic
driving forces (dashed line) for the [εεεt, φ(ξ), σσσst] model.

elastic properties are included for k = 1, results for small ∆ξ are similar to that with

constant properties; i.e., there are some oscillations in Xc(∆ξ). However, a reduction in

Xc with growing ∆ξ is much smaller, critical ∆ξ
∗

for morphological transition to small

ηmaxc is larger, and critical nanostructure is independent of y without morphological

transitions below ∆ξ
∗
. For the complete model, when, in addition, the interface and

surface tensions7 are taken into account, Xc increases for all ∆ξ because of suppressing

effect of additional compression stresses on transformational expansion along the surface.

Pretransformation starts at X which is significantly smaller than Xc (especially for small

∆ξ) but η(r) did not change substantially, while X increases up to Xc (Fig. 4.4). Such

a low sensitivity of surface nanostructure to the driving force, within some range, may
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have practical importance. Critical nanostructure is independent of y up to ∆ξ < 0.664,

above which it advances more at the sample center.

Figure 4.5 Evolution of surface nanostructure for X > Xc and two different values of
∆ξ for the case with the transformation strain of εεεt and a single martensitic
variant.

Examples of the evolution of nanostructure for single and two martensitic variants

after critical nanostructure loses its stability after a slight increase in X are given in Figs.

4.5-4.6 and in the Supplemental Material7. The case with two variants is much more

complicated for analysis due to the possibility of reduction of elastic energy by combining

variants and additional scale parameters (the width of M1-M2 interface). To summarize,

very strong and multifaceted effects of the width of the external surface layer ∆ξ and

internal stresses on surface-induced pretransformation and PT was revealed using our

extended phase-field approach. Obtained results change our understanding of surface-

induced PTs and interpretation of experimental data. For neglected mechanics (which is

an acceptable approximation for melting, amorphization, and for small transformation

strain components along the surface), thermodynamic conditions for the possibility of

surface-induced PT are2, 3 Γ = γM − γA + Eη < 0, where γ is the surface energy. Our

results show that for the chosen material parameters it is true for quite small ∆η ≥ 6∆ξ

only. The fact that surface-induced melting was observed for various materials2, 3 means
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that the solid-liquid interface is much thicker than the solid-gas interface. For a thinner

phase interface, the stationary surface-molten layer cannot exist and surface-induced PT

occurs spontaneously in the entire sample after some overheating. The lack of a surface-

molten layer and necessity for overheating was observed for various materials and specific

orientations2, 3 and was usually interpreted as a consequence of Γ > 0. It is known2, 3

that due to a significant error in determining each of three surface energies in the above

criterion, it is difficult to predict a priori whether surface melting will occur. The same

is valid for other PTs, such as martensitic PTs and amorphization1. Our results show

Figure 4.6 Evolution of surface nanostructure for two martensitic variants for different
values of ∆ξ and the same thermodynamic driving force X = 0.7915.

that surface-induced transformation should not necessarily occur at Γ < 0 and that

∆ξ is an additional key parameter that strongly affects surface-induced transformation
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and Xc. While allowing for finite ∆ξ suppresses surface-induced PT for zero or a small

transformation strain, for larger εεεt there is a range of ∆ξ for which an increase in ∆ξ

promotes PT; however, for larger ∆ξ, PT is again suppressed. Finding ways to control ∆ξ

(e.g., by changing the composition or the surrounding of the surface layer) will allow one

to control the surface-induced phenomena and nanostructures. For example, β−δ PT at

the surface of the β occurs at θe in the presence of nitroplastiziers only8. The revealed low

sensitivity of surface nanostructure to the driving force, within some range, may also have

practical importance. A similar approach can be developed for internal surfaces (grain

boundaries and immobile interfaces inside of composite or multiphase materials) and

for various types of PTs (electromagnetic, diffusive-displacive, and amorphization) and

chemical reactions. Melting and amorphization at grain boundaries for various materials

1 are corresponding examples.

The support of NSF, ARO, DTRA, AFOSR, and ISU is gratefully acknowledged.

Supplementary materials

We designate contractions of tensors AAA = {Aij} and BBB = {Bji} over one and two

indices as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji, respectively. The subscripts s, e, and t

mean symmetrization and elastic and transformational strains; III is the unit tensor;
◦
∇∇∇

and ∇∇∇ are the gradient operators in the undeformed and deformed states; ⊗ designates

a dyadic product.

Phase-field model

The current model generalizes our recently developed model5 by including the surface

layer. Thus, an additional order parameter ξ describes a smooth transition between solid

(ξ = 0) and surrounding (ξ = 1), e.g., gas. Additional energy term ψξ(ξ,∇∇∇ξ, ηk) and GL

equation for ξ are formulated to ensure coupling between different order parameters ηi
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and ξ in a consistent way. Kinematics relationships between displacement uuu and strain

εεε = 1/3ε0III + eee, decomposition of εεε and the equilibrium equation are

εεε = (
◦
∇∇∇ uuu)s, εεε = εεεe + εεεt, ∇∇∇ · σσσ = 0, (6)

where ε0 and eee are the volumetric and deviatoric contributions to strain, and σσσ is the

true Cauchy stress tensor. The Helmholtz free energy per unit undeformed volume ψ

and transformation strain tensor εεεt are accepted in the form

ψ = ψe(ε0, eee, ηi, θ, ξ) +
ρ0

ρ
ψ̆θ + ψθ +

ρ0

ρ
ψ∇ +

ρ0

ρ
ψξ(ξ,∇∇∇ξ, ηk); (7)

ψθ =
n∑
k=1

1

3
A0(θ − θe)φ(ηk)−

n−1∑
i=1

n∑
j=i+1

η2
i η

2
j (ηi + ηj)A0(θ − θe); (8)

ψ∇ =
β

2
(
n∑
i=1

|∇∇∇ηi|2 + b
n∑
i=1

n∑
j=1,i 6=j

∇∇∇ηi · ∇∇∇ηj); (9)

ψ̆θ =
n∑
k=1

A0(θe − θc)η2
k(1− ηk)2 +

n−1∑
i=1

n∑
j=i+1

Fij(ηi, ηj); (10)

εεεt =
n∑
k=1

εεεkt (aη
2
k + (4− 2a)η3

k + (a− 3)η4
k)−

n−1∑
i=1

n∑
j=i+1

η2
i η

2
j (ηiLLLij + ηjLLLji), (11)

ψe = 0.5(1− φ(ξ))(Kε2
0e + 2µeeee:::eeee); φ(ξ) = ξ2(3− 2ξ). (12)

Here, ρ0
ρ

= 1 + ε0 are the ratio of mass densities in the undeformed and deformed states,

LLLij = (a − 3)εεεjt + 3εεεit, Fij(ηi, ηj) = ηiηj(1 − ηi − ηj){B[(ηi − ηj)2 − ηi − ηj] + Cηiηj} +

η2
i η

2
j (ηi + ηj)(Ā−A0(θe− θc)), ψe is the elastic energy with equal (for compactness) bulk

K and shear µ moduli of martensitic variants, which smoothly reduce to zero within the

surface layer;

β is the gradient energy coefficient; and A0, Ā, B, C, a, and b are parameters. For

the sharp external surface with the normal nnn, the boundary conditions for the order

parameters related to the variable surface energy q(ηi) are defined as5

ρ

ρ0

∂ψ

∂∇∇∇ηi
· nnn =

∂ψ∇

∂∇∇∇ηi
· nnn = β(∇ηi + b

n∑
j=1,i 6=j

∇∇∇ηj) · nnn = − ∂q
∂ηi

;

q(ηi) = γA + ∆γφ(p), p = (η2
1 + η2

2 + ...+ η2
i + ...)0.5, (13)
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where γ is the surface energy and ∆γ = γM − γA. For the finite surface layer, the

boundary conditions for ηi correspond to unchanged energy of external surface (q = const

in Eq.(13)).

Surface layer model

The energy of the surface layer per unit deformed volume is

ψξ = Jξ2(1− ξ)2 + 0.5βξ(∇ξ)2 = q(ηi)/∆ξ

(
16.62ξ2(1− ξ)2 + 0.542∆2

ξ(∇ξ)2
)
. (14)

Eqs.(7), (12), and (14) lead to the GL equations for ξ and ηi:

1

Lξ

∂ξ

∂t
=
q(ηi)

∆ξ

(
1.083∆2

ξ∇2ξ − 66.48ξ(1− ξ)(0.5− ξ)
)

+ 1.082∆ξ∇ξ · ∇q(ηi) (15)

− ρ

ρ0

∂ψe

∂ξ
;

(16)

1

L

∂ηi
∂t

= − ρ

ρ0

∂ψ

∂ηi
|εεε +∇∇∇ ·

(
ρ

ρ0

∂ψ

∂∇∇∇ηi

)
=

ρ

ρ0

σσσe:::
dεεεt
dηi
− ρ

ρ0

∂ψθ

∂ηi
− ∂ψ̆θ

∂ηi

+β(∇∇∇2ηi + b
n∑

j=1,i 6=j

∇∇∇2ηj)−
1

∆ξ

∂q

∂ηi

(
16.62ξ2(1− ξ)2 + 0.542∆2

ξ(∇ξ)2
)
, (17)

where L and Lξ � L are the kinetic coefficients and ∂ψ/∂ηi is calculated at εεε = const.

We would like to avoid description of an actual solid-gas PT and want to develop a more

generic model of the surface layer. That is why ψξ has the same structure as ψ̆θ + ψ∇

for single order parameter η, with βξ for the gradient energy coefficient and J character-

izing the double-well energy barrier. Since for homogeneous states ψξ(0) = ψξ(1) = 0,

Eq.(14) corresponds to the thermodynamic equilibrium between solid and surrounding.

For neglected elastic energy, Eq.(16) has a stationary solution for an equilibrium surface

layer6:

ξ = [1 + exp(5.54x/∆ξ)]
−1 ; ∆ξ = 5.54

√
βξ/(2J); Eξ =

√
βξJ/18 = q(ηi). (18)

Here the surface layer width is ∆ξ = |xg − xs|, and xg and xs are determined from the

conditions φ(ξ(x)) = 0.01 and 0.99 respectively; the surface-layer energy Eξ should be
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equal to the variable surface energy q(ηi) to make the surface layer and sharp surface

approaches energetically equivalent. Assuming that ∆ξ is independent of ηi, one obtains

from Eq.(18) βξ =
6Eξ∆ξ

5.54
= 1.083q(ηi)∆ξ and J = 16.62q(ηi)

∆ξ
, which justifies the second

part of Eq.(14). For neglected mechanics, the stationary version of Eq.(16) and its

solution are independent of ηi and 1-D solution Eq.(18) is valid during evolution of ηi as

well. Since the magnitude of the local contribution of the surface layer to the GL for η

(the last term in Eq.(17)) scales with 1/∆ξ, the driving force Xc that causes PT should

increase with growing ∆ξ, which is confirmed by numerical simulations (Fig. 4.1). When

mechanics is taken into account but the last term in Eq.(16) is negligible, stationary

distribution of ηi affects stationary distribution of ξ through a change in the size of the

sample due to transformation strain. However, stationary distribution of ξ mapped into

the undeformed state remains unchanged. For neglected ψe, Eq.(16) has solution for

a stationary surface layer6: ξs = [1 + exp(5.54x/∆ξ)]
−1. For neglected mechanics and

single stationary surface layer orthogonal to x, Eq.(17) simplifies to

1

L

∂ηi
∂t

= −∂(ψ̆θ + ψθ)

∂ηi
+ β∇∇∇2ηi −

33.24

∆ξ

∂q(ηi)

∂ηi
ξ2
s (1− ξs)2,

where we took into account that for the stationary solution ξs the local and gradient

terms in the energy Eq.(14) are equal9.

Stresses in5 are supplemented by the term due to ξ-related surface stresses σσσstξ :

σσσ =
ρ

ρ0

∂ψ

∂εεε
−

n∑
i=1

ρ

ρ0

(
∇∇∇ηi ⊗

∂ψ

∂∇∇∇ηi

)
s

− ρ

ρ0

(
∇∇∇ξ ⊗ ∂ψ

∂∇∇∇ξ

)
s

, (19)

which leads to

σσσ = σσσe + σσσstη + σσσstξ ; σσσe = (1− φ(ξ))(Kε0eIII + 2µeeee); (20)

σσσstη = (ψ∇ + ψ̆θ)III − β
n∑
i=1

(∇∇∇ηi ⊗∇∇∇ηi + b∇∇∇ηi ⊗
n∑

j=1,i 6=j

∇∇∇ηj);

σσσstξ = ψξIII − βξ∇∇∇ξ ⊗∇∇∇ξ = q(ηi)/∆ξ

((
16.62ξ2(1− ξ)2 + 0.542∆2

ξ(∇ξ)2
)
III − 1.083∆2

ξ∇∇∇ξ ⊗∇∇∇ξ
)
.

To obtain a stationary surface layer, ξ = 1 at the external surface and ξ = 0 at the
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distance of ∆ξ from the surface and along the entire external surface are applied as the

boundary conditions.

Material parameters

We will consider cubic-to-tetragonal phase transformation in NiAl alloy. We will use

the following material parameters determined and/or collected from the literature in10:

A0 = 4.40MPaK−1, Ā = 5.32GPa, θe = 215K, θc = −183K, a = 2.98,

B = 0, D = 0.5GPa, β = 2.59× 10−10N, L = 2596.5(Pa · s)−1,

K = 112.62GPa, µ = 71.5GPa. (21)

In our finite element method (FEM) simulations, the components of εεεt (0.215,−0.078,−0.078)

(for M1) and (−0.078, 0.215,−0.078) (for M2) are used10. Also, Lξ = 30000(Pa · s)−1,

∆γ = −0.4J/m2, and b = 0.5. Calculated width and energy of A-M interface for stress-

free conditions are ∆η = 1.5065nm and Eη = 0.2245J/m2.

Problem formulation

The FEM code COMSOL was utilized for plane stress 2D problems. Rectangular

25×12.5nm2 sample discretized with triangle Lagrange elements with quadratic approx-

imation was treated. Length of the sample in the horizontal direction is not important

as the same results were obtained after the length was doubled. All sides are stress-free,

excluding zero vertical displacement at the upper and lower horizontal sides. Boundary

conditions (13) for ηi for sharp interface were applied at the right vertical line only; for

other sides, and for all sides for problems with surface layer, q = const in Eq.(13). With

a surface layer, a stationary solution for ξ was first obtained for ηi = 0, which was used

as an initial condition. Without a layer, initial conditions are ηi = 0.001. The following

models were considered: GL equation without mechanics; GL equations with mechanics,
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for k = 1/3, 2/3, 1, with elastic properties independent of ξ and without surface stresses;

the same with elastic properties dependent on ξ; and the same with surface stresses.

Videos’ descriptions

Video 1. Evolution of surface-induced nanostructure for coupled GL and mechanics

equations with transformation strain εεεt and interface tension σσσstη for ∆ξ = 0 after critical

nanostructure (Xc = 0.6859) loses its stability at slight increase in X (X = 0.6864).

Video 2. Evolution of surface-induced nanostructure for coupled GL and mechanics

equations with transformation strain εεεt and constant elastic properties for ∆ξ = 0.066

after critical nanostructure (Xc = 0.6646) loses its stability at slight increase in X

(X = 0.6658).

Video 3. Evolution of surface-induced nanostructure for coupled GL and mechanics

equations with transformation strain εεεt and constant elastic properties for ∆ξ = 0.199

after critical nanostructure (Xc = 0.6558) loses its stability at slight increase in X

(X = 0.6563).

Video 4. Evolution of surface-induced nanostructure for coupled GL and mechanics

equations with transformation strain εεεt and constant elastic properties for ∆ξ = 0.332

after critical nanostructure (Xc = 0.6432) loses its stability at slight increase in X

(X = 0.6445).

Video 5. Evolution of surface-induced nanostructure for coupled GL and mechanics

equations with transformation strain εεεt and constant elastic properties for ∆ξ = 0.465

after critical nanostructure (Xc = 0.6420) loses its stability at slight increase in X

(X = 0.6432).

Video 6. Evolution of surface-induced nanostructure for coupled GL and mechanics

equations with transformation strain εεεt, variable elastic properties and interface σσσstη and

surface σσσstξ tensions (εεεt, φ(ξ), σσσst) for ∆ξ = 0.199 after critical nanostructure (Xc =

0.6834) loses its stability at slight increase in X (X = 0.6859).
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Video 7. Evolution of surface-induced nanostructure for coupled GL and mechanics

equations with transformation strain εεεt, variable elastic properties and interface σσσstη and

surface σσσstξ tensions (εεεt, φ(ξ), σσσst) for ∆ξ = 1.66 after critical nanostructure (Xc = 0.8116)

loses its stability at slight increase in X (X = 0.8141).

Video 8. Evolution of surface-induced nanostructure for two martensitic variants for

coupled GL and mechanics equations with transformation strain εεεt and constant elastic

properties for ∆ξ = 0 and X = 0.7915.

Video 9. Evolution of surface-induced nanostructure for two martensitic variants for

coupled GL and mechanics equations with transformation strain εεεt and constant elastic

properties for ∆ξ = 0.0166 and X = 0.7915.

Video 10. Evolution of surface-induced nanostructure for two martensitic variants for

coupled GL and mechanics equations with transformation strain εεεt and constant elastic

properties for ∆ξ = 0.033 and X = 0.7915.

Video 11. Evolution of surface-induced nanostructure for two martensitic variants for

coupled GL and mechanics equations with transformation strain εεεt and constant elastic

properties for ∆ξ = 0.133 and X = 0.7915.
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CHAPTER 5. Advanced phase field approach to dislocation

evolution

Modified from a paper published in the Physical Review B, Rapid Communication

Valery I. Levitas∗ and Mahdi Javanbakht †

Abstract

Phase field approach to dislocations is conceptually advanced. Large strain formu-

lation is developed. A local thermodynamic potential eliminates stress-dependence of

the Burgers vector and reproduces desired local stress-strain curve, as well as the de-

sired, mesh-independent, dislocation height for any dislocation orientation. A gradient

energy contains an additional term, which excludes localization of dislocation within

height smaller than the prescribed height but does not produce artificial interface energy

and dislocation widening. Problems for nucleation and evolution of multiple dislocations

along the single and multiple slip systems, and the interaction of dislocations with an

austenite (A) – martensite (M) interface are studied using finite element method (FEM).

An unexpected scale effect in the athermal resistance to the A–M interface motion due

to nucleated incoherency dislocations is revealed.

∗Iowa State University, Departments of Aerospace Engineering, Mechanical Engineering, and Mate-
rial Science and Engineering, Ames, Iowa 50011, U.S.A.
†Iowa State University, Department of Mechanical Engineering, Ames, Iowa 50011, U.S.A.
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Introduction

Phase field approach (PFA) to dislocation evolution was developed just during the

last decade and it is widely used for the understanding of plasticity at nanoscale, see

pioneering papers1- 7 and reviews8, 9. It allows one simulation of a coupled evolution

of multiple interacting dislocations and stress field, without explicit tracking disloca-

tion lines. Despite significant success, there are still a number of points for essential

improvement:

(a) All of the previous studies are based on small strain (i.e., < 0.1) formulation.

At the same time, plastic shear γ for n dislocations is on the order of magnitude of

n, which is huge for multiple dislocations. Elastic strains may also be finite, because

stresses for nucleation of a dislocation are of the order of the theoretical strength. Such

strains are present when the core structure should be resolved and short-range interaction

of dislocations with solute atoms, other dislocations, and dislocation reactions1, 5, 8 are

studied. In these problems, the dislocation height H is taken as interplanar distance

d. For larger-scale simulations2- 4, shear strain is smeared over H ∼ 100d of interplanar

distances (and, consequently, reduced by H/d), which does not allow for representing

the dislocation core correctly but does not affect stresses far from dislocations. Even for

such simulations, shear strain γ ∼ nd/H is finite for n > 0.1H/d. Note that for large

strains, spectral methods for the problem solution, developed in1- 9, are not applicable.

(b) As it was mentioned in10, the equilibrium value of the order parameters ηi (and

consequently, the Burgers vector) depend on stress tensor σσσ. While in5 this dependence

was eliminated, the Burgers vector appears and grows starting with zero stresses, similar

to the case in all other theories. This causes dissipation even in elastic region, which is

contradictory in principle but may be not critical for some cases.

(c) In the models1- 5, the dislocation height H is not defined by a theory but equal to

the mesh size; i.e., the theory is in principle not objective and leads to mesh-dependent
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solutions. When we reduced mesh size, keeping dislocation height H, dislocation prop-

agates within the height of one element. The problem is not in the numerical approach

but in ill-posed problem formulation, which is similar to the problems for shear band

localization11. This is because the component of the gradient of the order parameter

∇n = nnn · ∇∇∇η normal to the dislocation plane, does not contribute to the energy, leading

to the lack of intrinsic length in this direction and theoretically zero dislocation height.

In addition to catastrophic mesh-dependence typical of ill-posed problems, it leads to

high oscillating internal shear stress at the interface Σ (which should be of zero width)

between the dislocation band and the rest of the crystal. This causes two opposite effects:

artificial nucleation of new dislocations and generation of artificial elastic energy at the

interface, which suppresses dislocation motion. Also, there is no description of how to

handle dislocations inclined with respect to the mesh.

In this chapter, a new PFA to dislocation evolution is developed. It is objective (well-

posed) and based on fully large-strain formulation. Our local thermodynamic potential

is designed to eliminate stress-dependence of the Burgers vector and to reproduce desired

local stress-strain curve, as well as to obtain the desired, mesh-independent, dislocation

height for any dislocation orientation. Our gradient energy contains an additional term,

related to ∇n, which excludes localization of dislocation within height smaller than the

prescribed height H but disappears at Σ; thus, it does not produce interface energy

and does not lead to a dislocation widening. It is demonstrated that internal stresses

at Σ can be made negligible by choosing proper numerical approximation; otherwise,

error can be drastic. Problems for nucleation and evolution of multiple dislocations

along the single and multiple slip systems, and the interaction of dislocations with an

A–M interface are studied using FEM. It was found, in particular, that a sharp A–M

interface loses its coherency by nucleating a dozen of dislocations; the stationary spacing

between them is in perfect agreement with an analytical solution. For a finite-width A–

M interface, described by our PFA for phase transformations13, 14, an unexpected scale
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effect is revealed. In the absence of dislocations, the A–M interface is stable only at the

single critical thermal driving force X0
c , and it is almost independent of the interface

width ∆ξ; thus, an athermal resistance to the interface motion is absent. Generated

incoherency dislocations produce an athermal threshold and hysteresis in the driving

force for direct-reverse transformation, which strongly depends on the dimensionless

interface width ∆̄ξ = ∆ξ/H. Thus, for very small and large ∆̄ξ, an athermal threshold

and hysteresis unexpectedly disappear.

We designate contractions of tensors AAA and BBB over one and two indices as AAA···BBB and

AAA:::BBB; the transpose of AAA is AAAT , III is the unit tensor, and ⊗ designates a dyadic product;

summation is assumed over the repeated indices.

General relationships

Kinematics

Let rrr = rrr (rrr0, t) be the location of a material point rrr0 of a body at time t, and

rrr (rrr0, 0) = rrr0. The points rrr0 form the reference (undeformed) configuration Ω0 while

the points rrr form the actual (deformed) configuration Ω . Multiplicative decomposition

of the total deformation gradient, FFF := ∂rrr/∂rrr0 = ∇rrr

FFF = FFF e···FFF p; FFF e := RRR···UUU e := VVV e···RRR (1)

into elastic and plastic parts is used; here RRR the orthogonal proper lattice rotation tensor

(RRRt = RRR−1, det RRR=1); UUU e and VVV e are the the symmetric elastic right and left stretch

tensors. Eq.(1) is generally accepted in crystal plasticity12. After local reduction of

stress tensor to zero and disappearance of elastic strain and rotation (i.e., FFF e = III), an

unloaded configuration, characterized by FFF p, is designated as Ωp . Important point in

unambiguous separation of FFF e and FFF p is that FFF p does not change an orientation of the
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crystal lattice. For small strain and rotation approximation,

FFF ' III + εεε+ωωω; FFF e ' III + εεεe +ωωωe, FFF p ' III + εεεp +ωωωp, (2)

where εεε is the symmetric small strain tensor and its elastic and plastic components, and

ωωω is the skew-symmetric small rotation tensor and its elastic and plastic components.

Then neglecting product of two small tensors, we obtain

FFF = (III + εεεe +ωωωe) · (III + εεεp +ωωωp) ' III + εεεe +ωωωe + εεεp +ωωωp = FFF e +FFF p − III (3)

and comparison with Eq.(2) for FFF implies

εεε = εεεe + εεεp; ωωω = ωωωe +ωωωp, (4)

i.e., the multiplicative decomposition of deformation gradient into elastic and plastic

parts at large strains reduces to additive decomposition of strain and rotations for geo-

metrically linear case. For a single slip at the αth slip plane with the unit normal nnnα in

the ωth slip direction with the Burgers vector bbbαω, FFF p represents a simple shear

FFF p = III +
1

Hα
bbbαω ⊗ nnnαΦ(ηαω) = III + γαωmmm

αω ⊗ nnnαΦ(ηαω), (5)

where γαω = |bbbαω|/Hα is the plastic shear strain in a dislocation band per single dislo-

cation, mmmαω is the unit vector in the direction of bbbαω, ηαω is the order parameter for a

dislocation in the αth plane along the ωth slip direction, which varies between 0 and n

when n dislocations appear; Φ is a function to be found, which satisfies the condition

Φ(n) = n. All parameters (nnnα, bbbαω, Hα, ...) and the gradient operator ∇∇∇ are deter-

mined in the undeformed configuration. Thus, the order parameter is unambiguously

connected to the magnitude of the Burgers vector bbbαωΦ(ηαω) or plastic shear γαωΦ(ηαω)

in transitional state between n − 1 and n dislocations: when ηαω varies between n − 1

and n, the Burgers vector and plastic shear vary between their values for n − 1 and n

dislocations. We define

ḞFF p =
1

Hα
bbbαω ⊗ nnnαΦ̇(ηαω) = γαωmmm

αω ⊗ nnnαΦ̇(ηαω), (6)
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FFF−1
p = III − 1

Hα
bbbαω ⊗ nnnαΦ(ηαω) = III − γαωmmmαω ⊗ nnnαΦ(ηαω), (7)

which can be checked by proving that FFF p ·FFF−1
p = III, since vectors nnnα and bbbαω are mutually

orthogonal (bbbαω · nnnαΦ(ηαω) = 0), and plastic velocity gradient

lllp := ḞFF p ·FFF−1
p =

1

Hα
bbbαω ⊗ nnnαΦ̇(ηαω) = γαωmmm

αω ⊗ nnnαΦ̇(ηαω) = ḞFF p. (8)

When slip occurs simultaneously along several slip planes and systems, an additive de-

composition is usually accepted for small strains:

εεεp +ωωωp =

p∑
α=1

mα∑
ω=1

1

Hα
bbbαω ⊗ nnnαΦ(ηαω), (9)

similar to crystal plasticity. This additivity preserves plastic incompressibility, because

volumetric plastic strain

εvp = (εεεp +ωωωp):::III =

p∑
α=1

mα∑
ω=1

1

Hα
bbbαω · nnnαΦ(ηαω) = 0. (10)

For finite strains, crystal plasticity utilizes additivity of plastic velocity gradients, which

we will accept as well:

lllp :=

p∑
α=1

mα∑
ω=1

lllαωp =

p∑
α=1

mα∑
ω=1

1

Hα
bbbαω ⊗ nnnαΦ̇(ηαω) =

p∑
α=1

mα∑
ω=1

γαωmmm
αω ⊗ nnnαΦ̇(ηαω). (11)

Thus, in contrast to PFA for martensitic phase transformations and twinning at large

strains17, 15, 18, in which the finite expression for the transformation strain in terms of

the order parameters, FFF p(ηi), were accepted, here we formulate differential Eq.(11) for

FFF p, which can be expressed as

ḞFF p := lllp ·FFF p =

[
p∑

α=1

mα∑
ω=1

1

Hα
bbbαω ⊗ nnnαΦ̇(ηαω)

]
·FFF p =

[
p∑

α=1

mα∑
ω=1

γαωmmm
αω ⊗ nnnαΦ̇(ηαω)

]
·FFF p.(12)

Thus, FFF p as a solution of Eq.(12) does not only depend on the all order parameters but

on the entire history of their variation. If, e.g., plastic strain occurs along some single

slip system 1 producing FFF p1, then along some single slip system 2 at fixed FFF p1 producing

FFF p2 on the top of FFF p1, and so on, then Eq.(12) can be integrated as

FFF p = FFF pn · ... ·FFF p2 ·FFF p1; FFF pi = III +
1

H i
bbbi ⊗ nnniΦ(ηi). (13)
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Indeed, if FFF pn varies only while all previous slips are fixed, then

ḞFF p = ḞFF pn · ... ·FFF p2 ·FFF p1; FFF−1
p = FFF−1

p1 ·FFF
−1
p2 · ... ·FFF

−1
pn ;

lllp := ḞFF p ·FFF−1
p = ḞFF pn ·FFF−1

pn = ḞFF pn =
1

Hn
bbbn ⊗ nnnnΦ̇(ηn), (14)

where Eq.(8) was utilized for a simple shear FFF pn. The last Eq.(14) can be integrated

FFF pn = III +
1

Hn
bbbn ⊗ nnnnΦ(ηn), (15)

and it is independent of previous FFF pi. Thus, it can be multiplicatively superposed on

the deformation gradient due to previous shears. Formally, Eq.(13) can be applied when

each shear occurs along the same slip system with increasing number of dislocations. In

this case, it transforms to an additive rule, e.g.,

FFF p = FFF p2 ·FFF p1 = (III +
1

H i
bbbi ⊗ nnni(Φ(ηi)− Φ(η1

i ))) · (III +
1

H i
bbbi ⊗ nnniΦ(η1

i )) =

III +
1

H i
bbbi ⊗ nnniΦ(ηi), (16)

because nnni · bbbi = 0, i.e., our initial assumption of additivity of shears along the same slip

direction is noncontradictory.

In addition, Eq.(11) guarantees plastic incompressibility for any values of the order

parameters. Indeed, plastic volumetric strain is εp0 := detFFF p and its rate ε̇p0 = III:::lllp = 0

because mmmαω · nnnα = 0.

To summarize, Eq.(11) (or Eq.(12)) will be used as our main kinematic relationship.

Thermodynamics

We will consider an arbitrary volume V0 of material bounded by a surface S0 with

unit external normal nnn in the undeformed configuration. To make derivations compact,

we will use the expression for the second law of thermodynamics for an isothermal case

for the volume V0:

D̄ =

∫
S0

(vvv···PPP ···nnn+ ΘΘΘαωη̇αω···nnn)dS0 −
d

dt

∫
V0

(ψ + 0.5ρ0vvv···vvv) dV0 −
∫
V0

ρ0fff···vvvdV0 ≥ 0, (17)
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where D̄ is the global (i.e., for the entire volume) dissipation rate, vvv = ṙrr is the material

velocity, PPP is the nonsymmetric first Piola-Kirchoff (nominal) stress tensor–i.e., the force

per unit area in the undeformed state, ρ0 is the mass density in the reference state, ψ

is the specific (per unit undeformed volume) Helmholtz free energy, and fff is the body

force per unit mass. We included an extra generalized surface forces ΘΘΘαω···nnn conjugate

to η̇αω in order to balance terms that appear due to dependence of the free energy on

∇∇∇ηαω. As it will be seen below, without ΘΘΘαω, Eq.(17) will not applicable for an arbitrary

volume. Transforming the surface integral into a volume integral with the help of the

Gauss theorem and applying the balance of momentum, one obtains from Eq. (17):

D̄ =

∫
V0

(
PPP :::ḞFF

T

+∇∇∇ · (ΘΘΘαωη̇αω)− ψ̇
)
dV0 ≥ 0. (18)

Due to arbitrariness of the volume V0, Eq. (18) can be localized for an arbitrary point

D = PPP :::ḞFF
T

+∇∇∇ · (ΘΘΘαωη̇αω)− ψ̇ ≥ 0, (19)

where D is the local dissipation rate.

Let ψ = ψ̄(FFF e, ηαω,∇∇∇ηαω)–i.e., the free energy is independent of the plastic defor-

mation gradient and the temperature is omitted for compactness. Under superposition

of the rigid-body rotation FFF ∗ = QQQ···FFF , where QQQ is the arbitrary proper orthogonal ten-

sor, one has FFF ∗e = QQQ···FFF e and ψ = ψ̄(QQQ···FFF e, ηαω,∇∇∇ηαω). Utilizing QQQ = RRRT and the

polar decomposition Eq. (1), one has ψ = ψ̄(UUU e, ηαω,∇∇∇ηαω) = ψ(EEEe, ηαω∇∇∇ηαω), where

Ee = 0.5(Ue ·Ue − I) = 0.5(FT
e ·Fe − I) is the Lagrangian strain tensor. Differentiating

Eq.(1), we obtain ḞFF
T

= ḞFF
T

p ···FFF
T

e +FFF T

p ···ḞFF
T

e . Using

∇∇∇ · (ΘΘΘαωη̇αω) = (∇∇∇ ·ΘΘΘαω)η̇αω + ΘΘΘαω · ∇∇∇η̇αω, (20)

∇∇∇η̇αω = ˙∇∇∇ηαω and substituting these equations in Eq.(19), one transforms

D =

(
PPP ···FFF T

p −
∂ψ

∂FFF e

)
:::ḞFF

T

e +

(
FFF T

e ···PPP :::
∂FFF T

p

∂ηαω
+∇∇∇ ·ΘΘΘαω −

∂ψ

∂ηαω

)
η̇αω(

ΘΘΘαω −
∂ψ

∂∇∇∇ηαω

)
· ˙∇∇∇ηαω ≥ 0. (21)
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Assuming that the dissipation rate is independent of ḞFF
T

e and ˙∇∇∇ηαω, one obtains the

constitutive relationship for stresses and definition of ΘΘΘαω;

PPP ···FFF T

p =
∂ψ

∂FFF e

; ΘΘΘαω =
∂ψ

∂∇∇∇ηαω
. (22)

Then, the dissipation inequality reduces to

D = Xαωη̇αω ≥ 0; Xαω := PPP T···FFF e:::
∂FFF p

∂ηαω
+∇∇∇ ·

(
∂ψ

∂∇∇∇ηαω

)
− ∂ψ

∂ηαω
, (23)

where Xαω is the thermodynamic force conjugate to η̇αω or the driving force for change

in ηαω. Let us elaborate the transformation work term in Eq.(8) with the help of Eq.(12).

Thus, according to Eq.(12)

∂FFF p

∂ηαω
=

[
p∑

α=1

mα∑
ω=1

γαωmmm
αω ⊗ nnnα ∂Φ

∂ηαω

]
·FFF p. (24)

Then

PPP T···FFF e:::
∂FFF p

∂ηαω
= PPP T···FFF e:::

[
p∑

α=1

mα∑
ω=1

γαωmmm
αω ⊗ nnnα ∂Φ

∂ηαω

]
·FFF p = (25)

p∑
α=1

mα∑
ω=1

nnnα ·FFF p ·PPP T···FFF e ·mmmαωγαω
∂Φ

∂ηαω
=

p∑
α=1

mα∑
ω=1

ταωγαω
∂Φ

∂ηαω
; ταω := nnnα ·FFF p ·PPP T···FFF e ·mmmαω,

where ταω is the resolved shear stress for slip system αω. For small strains and rotations,

PPP ' σσσ, where σσσ is the true Cauchy stress (force per unit deformed area), FFF p ' FFF e ' III,

and ταω = nnnα · σσσ ·mmmαω simplifies to the usual resolved stress.

Kinetic equations and gradient energy

It is traditional in nonequilibrium thermodynamics that one has to assume a general,

nonlinear kinetic equation η̇αω = f(Xβγ) connecting the slip rate in αωth slip system with

the driving force for βγth force–i.e., including cross effects. In the linear approximation

η̇αω = LβγαωXβγ, where Lβγαω are positive definite kinetic coefficients, which satisfy the

Onsager reciprocal relationships Lβγαω = Lαωβγ . We will use usual decomposition of the

free energy ψ = ψl + ψ∇ into local energy ψl and gradient-related ψ∇ parts. Gradient
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energy is localized at dislocation core region, thus contributing to the core energy. We

decompose

∇∇∇ηαω = ∇ηmαωmmmαω +∇nηαωnnn
αω; ∇ηmαω :=∇∇∇ηαω ·mmmαω; ∇ηnαω :=∇∇∇ηαω · nnnαω (26)

into contributions along the slip direction and along the normal to the slip plane. It

is generally accepted that free energy should be independent of the contribution ∇ηnαω

along the normal to the slip plane, because slip planes do not posses any dislocation-

related energy away from the dislocation cores1- 9. This distinguishes gradient energy

of dislocations from that for martensitic units and twins, because all their interfaces

posses energy. As we mentioned in Introduction, this, however, leads to the lack of a

characteristic length in the directions nnnαω, ill-posed system of evolutionary equations

for ηαω, catastrophic mesh-dependence of the solution. Thus, one has to introduce a

characteristic length in the directions nnnαω and regularize the problem, still keeping energy

of the interface Σ between dislocation band and the rest of the crystal zero. In the

approximation of the quadratic form, the simplest expression is

ψ∇ = 0.5

p∑
α=1

mα∑
ω=1

p∑
ς=1

mς∑
γ=1

(
βςγαω∇ηmαω∇ηmςγ +M(1− η̄αω)2νςγαω∇ηnαω∇ηnςγ

)
, (27)

If ψ∇ = 0.5∇∇∇ηi ·βββij ·∇∇∇ηj, where βββij are positive definite gradient-energy second-rank

tensors, then, the kinetic equation η̇j = LjiXi has the form

η̇j = Lji

(
PPP T···FFF e:::

∂FFF p

∂ηj
− ∂ψ

∂ηi
+∇∇∇ · (βββik · ∇∇∇ηk)

)
. (28)

FFF p = III +

p∑
α=1

mα∑
ω=1

1

Hα
bbbαω ⊗ nnnα [φ(η̄αω) + Int(ηαω)] , (29)

where φ(η̄) = η̄2(3− 2η̄), index α designates the αth slip plane with the unit normal

nnnα and index ω is for ωth Burgers vector bbbαω in each slip plane; ηαω is the order parameter

for dislocations in the αth plane along the ωth slip direction, which varies between 0 and
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n when n dislocations appear; Int(ηαω) and η̄ := η − Int (ηαω) ∈ [0, 1] are the integer

and fractional parts of ηαω.

The Helmholtz free energy per unit undeformed volume is accepted as ψ = ψ(BBBe, ηαω,∇∇∇ηαω),

where BBBe = 0.5(VVV e · VVV e − III). The thermodynamic procedure similar to that for phase

transformations13, 14, 15 and linear relationships between thermodynamic forces and fluxes

result in expression for stresses

σσσ =
ρ

ρ0

VVV e ·
∂ψ

∂BBBe

· VVV e (30)

and Ginzburg-Landau equations

1

L

∂ηαω
∂t

= PPP T···FFF e:::
∂FFF p

∂ηαω
− ∂ψ

∂ηαω
+∇∇∇ · ∂ψ

∂∇∇∇ηαω
, (31)

where L is the kinetic coefficient, σσσ and PPP are the true Cauchy stress tensor and the

nonsymmetric Piola-Kirchoff stress tensor (force per unit area in the undeformed config-

uration). We accept the expression for

ψ = ψe(BBBe) +

p∑
α=1

mα∑
ω=1

Aαη̄
2
αω(1− η̄αω)2 +

β

2

p∑
α=1

mα∑
ω=1

{
∇∇∇η̄2

αω + [M(1− η̄αω)2 − 1](∇∇∇η̄αω · nnnα)2
}
, (32)

as the sum of elastic, crystalline, and gradient energy. The coefficient Aα is a periodic

step-wise function of the coordinate along the normal to the slip plane nnnα, which is

equal to A0α within the dislocation band of the height Hα and kA0α (k � 1) in a thin

boundary layer between dislocations of the width wα = pHα (p � 1). This function

determines the dislocation height independent of the computational mesh, which makes

our equations objective. The ηαω dependence of FFF p and the crystalline energy is obtained

from conditions that for homogeneous states, the stationary solutions of Eq.(31) are

ηαω = n for any stresses, which provides independence of the Burgers vector of the stress.

Another solution results in the equilibrium resolved shear stress τ − η̄ relationship:

ταω = nnnα ·PPP T···FFF e ·
bbbαω

|bbbαω|
= τ cαω(1− 2η̄αω), (33)
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where τ cαω = Aαω/3γαω is the critical shear stress; γαω = |bbbαω|/Hα is the plastic shear

strain. Eq.(33), in contrast to previous models, has the following desired features: dis-

location does not nucleate (i.e., η̄αω = 0) for −τ cαω < ταω < τ cαω, i.e., there is no artificial

dissipation in elastic region; after nucleation (i.e., η̄αω 6= 0), stress reduces monotonously

with the increasing η̄αω, i.e., material instability will lead to η̄αω → 1.

If M = 0, gradient energy in Eq.(32) coincides with known expressions2- 5. However,

for M = 0, after nucleation, dislocation propagates within band of one finite element

high, which is unphysical. An additional term with M � 1 penalizes gradients along

the normal nnnα, which leads to dislocation propagation within entire band of the height

H. It is localized at the propagation front, disappears when dislocation is completed

(η̄αω = 1), and does not produce artificial surface energy at the boundary Σ.

Equilibrium equation ∇∇∇ · PPP = 0 is included. Isotropic linear elasticity was used for

simplicity in all examples. To resolve a dislocation core and interaction between the

phase interface and dislocations, we use Hα = 2dα in all problems. However, for larger-

scale simulations, one can use Hα = 100dα like in2- 4. The following parameters for all

slip systems have been used in all problems, unless stated differently: β = 8.76×10−11N ,

A0 = 1.43 × 109N/m, L = 104(Pa · s)−1, M = 0.1, γ = 0.5, k = 100, H = 0.7nm, w =

0.1H, |bbb| = 0.35nm, shear modulus µ = 71.5GPa, and bulk modulus K = 112.6GPa.

In our simplified PFA to interaction of dislocations and phase transformations, we

use FFF = FFF e···FFF t···FFF p and all equations and properties for phase transformations from14,

including equation for transformation deformation gradient FFF t. It is not our goal here

to develop a general theory for interaction of dislocations and phase transformations.

However, to make the first step toward such a theory and to illustrate our PFA to

dislocations with the nontrivial and challenging problems, we included problems that do

not require a general theory for such an interaction. Namely, we consider dislocations

either solely in austenite (assuming, e.g., much higher yield strength of martensite) or

at the austenite-martensite interface.
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Numerical solutions

FEM approach and code COMSOL with embedded remeshing procedure were used.

Plane strain problems for straight edge dislocations are considered. All size, stress, and

time parameters are normalized by the dislocation height H, τc, and characteristic time

1/(A0L), respectively. The η profile for a single dislocation practically coincided with an

analytical expression from16.

Parametric study of the accuracy of numerical solution

Comprehensive parametric study of the accuracy of numerical solution was performed.

As an example, a rectangle with the size of 5 × 21.5 is considered with the upper side

fixed in the y direction and the lower side in both x and y directions; lateral sides

are stress-free. Macroscopic simple shear strain is applied: the horizontal displacement

ū = 0.4t̄ is applied at the upper side from t̄ = 0 to 5, and then ū = 2 from t̄ = 5

to 10. Multiple potential horizontal dislocation bands are introduced by prescribing

corresponding periodic function for the threshold Aα. Initial condition is η = 0.01 in

a small region at the left side of the bands and zero everywhere else. The material

properties are listed above except A0 = 0.36 × 109N/m and γ = 0.25. Unstructured

FEM mesh was used.

In Fig. 5.1, distribution of the order parameter and shear stress σxy at t̄ = 10 are

presented for the 5th degree polynomial in space coordinates for both η and displace-

ments (solid red line, mesh-independent solution), and for the 2nd degree polynomial

for η and 5th degree polynomial for displacements (blue dashed line). Results differ

drastically. One of the main natural requirements to the solution is that after passing of

dislocations through any chosen region, boundaries of the dislocation bands Σ do not gen-

erate internal stresses. For the lower degree polynomial, significant unphysical internal

shear stresses (oscillations) at the boundaries Σ are present even after appearance of the
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Figure 5.1 Distribution of the order parameter (a) and shear stress σxy (b) at t̄ = 10 in
a rectangular sample for the 5th degree polynomial in space coordinates for
both η and displacements (solid red line, mesh-independent solution), and
for the 2nd degree polynomial for η and 5th degree polynomial for displace-
ments (blue dashed line).

first dislocation. These oscillations produce artificial interface energy, which suppresses

propagation of dislocations; that is why solutions for different FEM approximations are

very different, including different number of dislocations and, consequently, degree of

relaxation of elastic stresses. They cause artificial nucleation of dislocations for other

situations. At the same time, for 5th degree polynomial for both fields, internal stresses

and oscillations are negligible even after appearance of multiple dislocations. Obtained

results illustrate potential danger of obtaining physically wrong solutions unless their

correctness is proven.

Sharp A-M interface and incoherency dislocations

A rectangle with the size of 7.14×57.14 was considered with the sharp A–M interface

in the middle of it and in the middle of a dislocation band (Fig. 5.2). A misfit (transfor-

mation) strain of δ = 0.1 in the x direction is applied in the upper martensitic half of the

sample. The upper and lower sides are fixed in the y direction; all other external stresses

are zero. Initial condition was η = 0.01 inside the dislocation band. Interface loses its
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Figure 5.2 Stationary distribution of dislocations that appeared at free surface and
propagated along the sharp A–M interface with a misfit strain of 0.1 in the
x direction. Right symmetric half of a sample is shown.

coherence by nucleating dislocations at the free surface, one by another, which propagate

along the interface16. In the stationary state, distance between any of two neighboring

dislocations is 5, in perfect correspondence with analytical expression |bbb|/(δH). Eleven

dislocations produce a step at the free surface with shear strain of nγ = 5.5, which clearly

requires large-strain formulation.

Parallel dislocation system

A rectangle with the size of 7.4 × 14.26 was considered with the upper and lower

sides fixed in the y direction and the left bottom corner fixed in both directions. This

problem models dislocation activity near the lath martensite unit, which is located at

the left side of the sample and possesses transformation shear strain 0.3 (Fig. 5.3 and16).

Initially, there are no dislocations (η = 0), except in a small region along the inclined

A–M interface with η = 0.01. Elastic stresses lead to nucleation and propagation of

parallel dislocations, one after another, with 2 or 3 in each system in the stationary

state. Relaxation of elastic stresses leads to straightening of initially curved interface.

Dislocations do not move outside the prescribed bands, have clear horizontal boundaries

(despite the unstructured FEM mesh), and propagate acceptably quasi-homogeneously
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(similar to the problem 1). Moreover, the solution is mesh-independent for more than 6

elements per band.

Figure 5.3 Evolution of a parallel dislocation systems in austenite under prescribed
transformation shear strain in the martensitic part of a sample.

Interaction of the evolving A-M interface and dislocations

Both phase transformation and dislocation evolution are described by a PFA. A

sample and boundary conditions are the same as for problem 1. First, stationary solution

for the horizontal finite-width A-M interface, described by the order parameter ξ and

located at the center of a sample, was obtained without dislocations, which was taken

as an initial condition for a coupled problem with dislocations. Transformation strain

of δ = 0.1 in the x direction is applied in the upper martensitic half of the sample, like

for problem 1. A dislocation band is located at the middle of the sample (Fig. 5.4).

Initial condition is η = 0.01 inside the dislocation band. Various interface widths ∆̄
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Figure 5.4 Coupled evolution of the phase transformation order parameter ξ and cor-
responding dislocation order parameter η for the interface width ∆̄∗ξ = 7.37
and the driving force X = 0.008 for initially coherent A-M interface in a
half of a sample. Thin band above the sample shows evolution of edge
dislocations along the A-M interface. Finally, both martensite and misfit
dislocations disappear.

have been obtained by varying the magnitude of the potential barrier A0 for martensitic

transformation (similar to Aα in Eq.(32)).

Coupled evolution of the PT and dislocations for the interface width ∆̄ξ = 7.37 and

the thermal driving force X = (1 − θ/θe)/(1 − θc/θe) = 0.008 for martensitic PT for

initially coherent A-M interface is shown in Fig. 5.4 and16; here θ, θe, and θc are the

temperature, the phase equilibrium temperature for A-M, and the critical temperature for

the loss of A stability. While dislocations nucleate from the free surface and propagate,

at the central part of the sample the interface broadens and finally material transforms to

A. Dislocations stabilize horizontal interface, however, vertical interface propagates into

M region, pushing dislocations back. Finally, both martensite and misfit dislocations

disappear.

Dependence of the critical driving force Xc to cause complete transformation in a
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sample vs. ∆̄ξ is presented in Fig. 5.5. We considered an A-M interface width range of

0.49 < ∆̄ξ < 9.83. In the absence of dislocations, the coherent A-M interface is stable

only at the specific thermodynamic driving force Xc and it is almost independent of ∆̄ξ.

Small nonzero X0
c ' ±0.005 is caused by internal stresses and geometric changes due to

transformation strain. In the presence of dislocations and for a range of ∆̄ξ, the A-M

interface is stabilized within a range of X (XA
c < X < XM

c ); at X > XM
c , material

transforms to M and at X < XA
c , it transforms to A.

Figure 5.5 Critical thermodynamic driving force Xc to cause complete transformation
in a sample vs. relative interface width ∆̄ξ for the problem in Fig. 5.4.
Middle line is for coherent interface, which does not exhibit any hysteresis.
Upper and lower lines are for transformation to M and A, respectively, cou-
pled to dislocations evolution. In the region between these lines interface
does not evolve, i.e., dislocations produce scale-dependent hysteresis region.

Thus, incoherency dislocations produce athermal resistance to the interface motion,

which is expected. What is surprising is that this athermal threshold is strongly size de-

pendent, with maximum at ∆̄ξ = 4.91 for transformations in both directions. Hysteresis

disappears at the critical ∆̄∗ξ = 7.37, which is completely unexpected. Also, for small
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∆̄ξ, hysteresis reduces to a small value. The asymmetry of the curves in Fig. 5.5 with

respect to zero is caused by an asymmetry of the deformed geometry.

To summarize, an advanced PFA to dislocations is developed and a number of prob-

lems on dislocation evolution and interaction between phase transformations and dislo-

cations are solved. Strong scale dependence of the athermal threshold for the interface

propagation due to generation of dislocation is revealed. A similar approach can be

developed for partial dislocations and extended for dislocation reactions, and detailed

interactions between phase transformations and plasticity. The support of NSF, ARO,

DTRA, and ISU is gratefully acknowledged.
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CHAPTER 6. Phase field approach to interaction of phase

transformation and dislocation evolution

Modified from a paper published in the Applied Physics Letters

Valery I. Levitas∗ and Mahdi Javanbakht †

Abstract

Phase field approach (PFA) to coupled evolution of martensitic phase transformations

(PTs) and dislocation is developed. A fully geometrically nonlinear formulation is uti-

lized. The finite element method (FEM) procedure is developed and applied to study the

hysteretic behavior and propagation of an austenite (A) – martensite (M) interface with

incoherency dislocations, the growth and arrest of martensitic plate for temperature-

induced PT, and the evolution of phase and dislocation structures for stress-induced PT.

A similar approach can be developed for the interaction of dislocations with twins and

diffusive PTs described by Cahn-Hilliard theory.

Introduction

Various material phenomena related to interaction between martensitic PTs and dislo-

cational plastic deformation are of fundamental and technological importance. Examples

are: heat and thermomechanical treatment of material to obtain desired structure and

∗Iowa State University, Departments of Aerospace Engineering, Mechanical Engineering, and Mate-
rial Science and Engineering, Ames, Iowa 50011, U.S.A.
†Iowa State University, Department of Mechanical Engineering, Ames, Iowa 50011, U.S.A.
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properties; transformation-induced plasticity1; synthesis of materials under high pres-

sure and high pressure with large plastic deformations, e.g., during ball milling2 and in

rotational diamond anvil cell3, 4; and PTs during friction, indentation, surface treatment,

and projectile penetration. With the development of nano science and technology, PT

and plasticity are studied in nano particles, films, wires, and for smart nanosystems.

The interaction between PT and dislocations drastically changes PT thermodynamics,

kinetics, and microstructure and is the most basic problem in the study of M nucle-

ation and growth kinetics, PT hysteresis and irreversibility, i.e., region of metastability

of phases5, 4. In particular, M nucleation occurs at various dislocation configurations.

An A–M interface loses its coherency through the nucleation of dislocations. Interaction

between PT and plasticity is also a key point in developing materials with high strength

and ductility6, in particular, utilizing transformation toughening.

PFA is broadly used for simulations of PTs7, 9, 8 and dislocation evolution10, 11. There

are a few simplified PFA approaches to study the interaction between PT and dislo-

cations. There are a number of analytical treatments of M nucleation on dislocations

based on PFA to PT12, followed by numerical13 simulations. Dislocations are introduced

through their stationary stress field or are located at the moving phase interface only14

and therefore do not require additional PFA equations. In11, we solved some problems

on interactions between PT and evolving dislocations using a simplified version of PFA.

Thus, there currently is no PFA to interaction between PT and evolving dislocations.

Here, a coupled PFA to martensitic PT and dislocation evolution is developed as a com-

bination of the most advanced PFA for PT9 and dislocations11 with nontrivial coupling

terms. It is based on large strain formulation and utilizes other advantages of9, 11: ad-

vanced thermodynamic potential that describes some conceptual features of the effect

of the stress tensor, reproducing, in particular, the stress-independent transformation

strain tensor and Burgers vector and desired local stress-strain curve. Also, the desired,

mesh-independent, dislocation height is introduced for any slip orientation, leading to a
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well-posed formulation. Coupling between PT and dislocations includes nonlinear kine-

matics and corresponding mechanical driving forces, inheritance of dislocation during

PT, and the dependence of all material parameters for dislocations on the order param-

eter η that describes PT, which results also in the extra driving force for PT due to the

change in dislocation energy during the PT. FEM procedure is developed and applied to

the following problems: (a) Hysteretic behavior and propagation of an A – M interface

with evolving incoherency dislocations for temperature-induced PT (i.e., without external

stresses). Scale-dependent athermal hysteresis is determined and the mechanism of the

interface motion through dislocation obstacles is revealed. These results can be utilized

for controlling the region of metastability of phases. (b) Evolution of phase and disloca-

tion structures for stress-induced PT. Dislocations are pushed by the moving interface for

small angles between the slip direction and the interface normal and penetrate through

the interface and are inherited by the product phase for large angles. (c) M plate growth

with the generation of dislocations at its tip. At higher temperature dislocations arrest

the plate, exhibiting athermal friction. When this friction can be overcome at lower

temperature, the width of the M plate is larger than in the case without dislocations due

to stress relaxation.

We designate contractions of tensors AAA and BBB over one and two indices as AAA···BBB and AAA:::BBB;

the transpose of AAA is AAAT , III is the unit tensor, and ⊗ is a dyadic product.

Model

Let the motion of an elastoplastic material with PT be described by equation rrr =

rrr (rrr0, t), where rrr and rrr0 are the positions of a material point at time t (deformed config-

uration V ) and t0 (undeformed configuration V0, which is in A state). All equations are

considered in V0. Multiplicative decomposition of the deformation gradient into elastic,
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transformational, and plastic parts is used: FFF = ∂rrr/∂rrr0 = FFF e···FFF t···FFF p. Transformation FFF t

and plastic FFF p deformation gradients are described as9, 11

Ft = I + εεεt(aη
2(1− η)2 + (4η3 − 3η4)), (1)

ḞFF p ·FFF−1
p =

p∑
α=1

mα∑
ω=1

1

Hα
bbbαω ⊗ nnnαφ̇(ξ̄αω). (2)

The order parameter η for PT varies from 0 (in A) to 1 (in M); the order parameter ξαω

for dislocations in the αth plane with the unit normal nnnα along the ωth slip direction with

the Burgers vector bbbαω varies from 0 to n when n dislocations appear; Int(ξαω) = n and

ξ̄αω := ξαω− Int (ξαω) ∈ [0, 1] are the integer and fractional parts of ξαω. In Eqs.(1) and

(2), εεεt = FFF t(1) − III is the transformation strain, a is the parameter, φ(ξ̄) = ξ̄2(3 − 2ξ̄),

and Hα is the dislocation height. For compactness, we consider a single M variant only;

generalization for multiple M variants can be done as in9. The Helmholtz free energy

per unit undeformed volume is accepted as the sum of elastic, thermal, crystalline, and

gradient energies related to PT and dislocations:

ψ = ψe + f + ψ∇η + ψξ + ψ∇ξ ; (3)

ψξ =

p∑
α=1

mα∑
ω=1

Aα(η)ξ̄2
αω(1− ξ̄αω)2; (4)

ψ∇η = 0.5βη|∇∇∇η|2; ψ∇ξ = 0.5βξ(η)× (5)
p∑

α=1

mα∑
ω=1

{
∇∇∇ξ̄2

αω + [M(1− ξ̄αω)2 − 1](∇∇∇ξ̄αω · nnnα)2
}

;

f = A0(θ − θe)φ(η)/3 + A0(θe − θc)η2(1− η)2. (6)

Here, θ, θe, and θc are the temperature, the A-M equilibrium temperature, and the critical

temperature for the loss of A stability, respectively; βξ and βη are the gradient energy

coefficients, and A0 and M are parameters. The coefficient Aα, which determines the

nucleation barrier for dislocations, is a periodic step-wise function of the coordinate along

nnnα
11. The thermodynamic procedure similar to that in8, 9, 11 results in the elasticity rule

for the nonsymmetric Piola-Kirchhoff stress tensor (force per unit area in V0) PPP ···FFF T

p ···FFF
T

t =

∂ψ

∂FFF e
and expressions for the dissipation rate due to PTs Dη = Xηη̇ ≥ 0 and dislocations
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Dξ = Xαω ξ̇αω ≥ 0. Then, the simplest linear relationships between thermodynamic

forces and rates leads to the Ginzburg-Landau equations

1

Lη

∂η

∂t
= Xη = PPP T···FFF e:::

∂FFF t

∂η
···FFF p +∇∇∇ ·

(
∂ψ

∂∇∇∇ηi

)
− ∂ψ

∂η
, (7)

1

Lξ(η)

∂ξαω
∂t

= Xαω = PPP T···FFF e:::FFF t···
∂FFF p

∂ξαω
+∇∇∇ ·

(
∂ψ

∂∇∇∇ξαω

)
− ∂ψ

∂ξαω
, (8)

where Lξ and Lη are the kinetic coefficients. All parameters in the equations for dislo-

cations depend on η according to the rule B = BA + (BM −BA)φ(η), where BA and BM

are the values of a parameter in A and M. This leads to contributions of the dislocation-

related terms in Ginzburg-Landau Eq.(7) for PT. In addition, both processes are coupled

through the mechanical driving force (stress power) in Eqs.(7),(8) and the evolving stress

field.

Slip systems of A (bbbαωA , nnnαωA ) and M (bbbαωM , nnnαωM ) are different and one needs to include both

of them at each point (see Fig. 6.4 in16 for details). Since all equations are defined in

V0, one has to pull back bbbαωM and nnnαωM into the undeformed A state: bbbαωMA = FFF−1
t · bbb

αω
M and

nnnαωMA = nnnαωM ·FFF t/|nnnαωM ·FFF t|. When a diffuse A-M interface passes through dislocations in

A, they are inherited by M and their Burgers vector, and normal to slip plane transforms

into bbbαωAM = FFF t · bbbαωA and nnnαωAM = nnnαωA · FFF
−1
t /|nnnαωM · FFF

−1
t |. However, since all equations are

referred to V0, pulling bbbαωAM and nnnαωAM back into V0 transforms them back into (bbbαωA , nnnαωA ),

i.e., no transformation is necessary. When a diffuse interface passes through dislocations

in M, they are inherited by A and (bbbαωM , nnnαωM ) transform into (bbbαωMA, nnnαωMA), which one

already has, i.e., no transformation is needed. Thus, one has to define at each material

point slip systems of A (bbbαωA , nnnαωA ), and after pulling back into V0, slip systems of M (bbbαωMA,

nnnαωMA) (see Fig. 6.4c in16), neither of which (as well as dislocation height Hα) depends on

η. If inherited dislocations do not belong to the favorable slip system of the given phase,

their yield strength is much higher or their motion may be arrested completely (Lξ=0).

In the particular case when slip systems (bbbαωA , nnnαωA ) and (bbbαωAM , nnnαωAM) coincide (i.e., they

transform together with the crystal lattice during the PT), only one of them should be
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taken into account (see Fig. 6.5 in16). This case will be considered in examples.

The equilibrium equation ∇∇∇ · PPP = 0 completes our system. Cubic-tetragonal PT was

considered. Isotropic quadratic elastic potential ψe in terms of Lagrangian elastic strain

EEEe = (FFF T
e ·FFF e−III)/2 with shear modulus µ = 71.5GPa and bulk modulus K = 112.6GPa

(the same for both phases) was used for below. The following parameters for PT and

all slip systems have been used in all problems9, 11: Lξ = 104(Pa · s)−1, M = 0.1,

H = 0.7nm, |bbb| = 0.35nm, βη = 2.59 · 10−10N , Lη = 2600(Pa · s)−1, a = 3, θe = 215K,

and θc = −183K.

Numerical solutions

FEM approach and the code COMSOL with the embedded remeshing procedure have

been utilized. Plane strain problems and straight edge dislocations are considered below.

All size and time parameters are normalized by 1nm and 1ps, respectively. Boundary

conditions are ∇η · kkk = ∇ξ · kkk = 0, where kkk is the normal to an external boundary in

V0. The upper side of a rectangle is fixed in the y direction and the lower side in both

directions; lateral sides are stress-free; in problems 1 and 3, shear stress is zero at the

upper side. All results are shown in the deformed configuration.

Propagation of a semicoherent A-M interface.

A rectangle with the size of 8 × 24 is considered. First, a stationary solution for

the horizontal diffuse A-M interface was obtained in the middle of the sample without

dislocations (Fig. 6.1). Transformation (misfit) strain of δ = 0.1 in the x direction

is applied only. We use βξ = 8.76 · 10−11N , Aα = 1.43GPa for A, Aα = 4.29GPa

for M, and γ = |bbb|/H = 0.5. A dislocation band with the initial condition ξ = 0.01 is

located at the initial phase interface. Incoherency dislocations nucleate at the free surface
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and propagate along the interface. In the stationary state (Fig. 6.1), spacing between

dislocations is 3.5, in perfect correspondence with |bbb|/δ. Both stationary solutions for

the A-M interface and dislocations are taken as initial conditions for a coupled problem.

To avoid the effect of the free surface on the A-M interface, we excluded PT from the

two regions of the size of 8× 4 at both ends of the sample (Fig. 6.1).

Figure 6.1 ((a) Coupled evolution of the PT order parameter η and dislocations for
semicoherent A-M interface at time instants shown in the corner. Thin
band above the sample shows evolution of dislocations in the slip band
along the initial A-M interface. (b) Dependence of the critical dimensionless
temperature θ̃c (athermal friction) to cause interface motion until complete
PT on the interface width ∆η.

Evolution of the PT for ∆η = 9.17
√
βη/(A0(θe − θc)) = 1.7 and the dimensionless

temperature θ̃ = (θe−θ)/(θe−θc) = 0.18 for semicoherent A-M interface is shown in Fig.

6.1a. Dependence of the critical temperature θ̃c to cause interface motion until complete

PT in a sample vs. ∆η is presented in Fig. 6.1b. Without dislocations, the coherent A-M

interface is stable only at the specific temperature θ̃c ' 0, which is almost independent of

∆η. A semicoherent A-M interface does not move in the range θ̃Ac < θ̃ < θ̃Mc , exhibiting

an athermal friction. Interface starts motion (at θ̃ > θ̃Mc toward A and at θ̃ < θ̃Ac toward
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M) by penetration between two dislocations that increase spacing between them. After

an interface reaches a horizontal sample’s surface, it spreads laterally. In some cases,

such a penetration occurs in two places simultaneously. Thus, an incoherent interface

transforms to a coherent one and leaves dislocations behind. Surprising size dependence

of an athermal friction, with maximum at ∆η = 4.2 is revealed. The unexpected point is

that the macroscopic parameter θ̃c strongly depends on the ratio ∆η of two nanometer

size parameters, which are usually considered to be zero. These results can be utilized

for controlling the region of metastability of phases and can be transferred into a larger

scale sharp incoherent interface model17.

Interaction of A-M interface with evolving dislocations for stress-induced PT.

We consider a rectangular sample of the size of 36 × 15 that contains a rectangular

region of the size of 30× 5.6 at the center in which all equations are solved and outside

of which dislocations are not included; also, outside of the region of the size of 30 × 9

at the center, PT is not included either, and only the elastic problem is solved. A

parallel horizontal dislocation system is considered with initial ξ = 0.01. A horizontal

displacement u = 1.4 + t is applied at the upper side from t = 0 to 1.4 and then

u = 2.8 from t = 1.4 to 1.7. Material parameters are: βξ = 1.09 · 10−10N , Aα =

0.894GPa, γ = 0.25, A0 = 4.4MPaK−1, εyt = 0.1, εxt = −0.05. For PT in shape memory

alloys, M has significantly lower yield strength than A; we will study the limit case

when dislocation evolution is completely arrested in A by using Lξ = Lη. The initial

condition for PT corresponds to the sharp vertical A-M interface at the sample’s center

(Fig. 6.2). Stresses relax by the nucleation and propagation of dislocations in M and

the reorientation of the interface (Fig. 6.2). The interface pushes dislocations into the

M region and they almost do not penetrate into A. At t = 1.1 both M and A nucleate

at the upper right and left corners, respectively. While the A region grows, its interface

is getting almost parallel to the slip direction and up to three dislocations are inherited
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Figure 6.2 Coupled evolution of phase (right) and dislocation (left) systems in a central
30×5.6 part of a rectangular 36×15 sample under simple shear for θ̃ = 1.17.

and arrested in A at the upper left corner. In the middle of a sample, the M embryo

(η ' 0.2) appears, in which the dislocations nucleate, since Lξ > 0 in the embryo. After

parametric study and course graining, these results can lead to the constitutive equations

for inheritance of the plastic strain and dislocation density for sharp interface models17.

Growth and arrest of a matertensitic plate.

A rectangular sample of the size of 67 × 20 is considered. As an initial condition, a

martensitic rectangular nucleus of the size of 5× 3 is located at the lower left corner of

the sample. Four dislocation systems inclined at ±60o (Fig. 6.3) are included. Material

parameters are: βξ = 7.5 · 10−11N , Aα = 0.75GPa for A, Aα = 2.25GPa for M, γ = 0.5,

A0 = 6MPaK−1, εyt = 0.137, εxt = γyx = 0, and γxy = 0.259.

Without dislocations, the martensitic nucleus disappears at θ̃ < 0.39. For θ̃ ≥ 0.39

the M propagates through the entire length of the sample and creates a martensitic plate

of the equilibrium width, which increases with increasing θ̃ (Fig. 6.3a). For the coupled

problem, dislocations nucleate at the tip of the plate and propagate within the sample.

At some stage, dislocation of the opposite sign nucleates and remains within the M plate
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for slip plane 1 and 2. For θ̃ = 0.39, the M plate is arrested by two dislocations in the

middle of a sample. In the region of compressive stresses near dislocations, significant

thinning of the plate is observed. This nanostructure remains stable up to θ̃ = 0.49, after

which growth continues untill the right end of the sample with observable thickening. In

the slip plane 3, dislocation appears near the M tip, then, with propagation of M plate,

it disappears and then dislocations of the opposite sign appear one after another. Since

nucleation near the free surface is easier, two pairs of two dislocations of the opposite sign

appear. Some of dislocations are inherited by M. Two regions of residual A remain in the

regions of compressive stresses near dislocations. Thus, the generation of dislocations

produces athermal friction and arrests the plate at small driving force. For the case

in study, athermal friction is ∆θ̃ = 0.1 (corresponding to undercooling of ∆θ = 40K

or energy barrier of 80MPa), which is smaller than for dislocations within interface in

Fig. 6.1. When athermal friction can be overcome at lower temperature, the width

of the M plate is larger than in the case without dislocations due to stress relaxation.

The obtained results explain the arrest of M by plastic accommodation and possible

morphological transition from plate to lath martensite. This transition is technologically

important and may be used to control nanostructure and properties by controlling the

yield strength5, 6, 15, e.g., by alloying.

To summarize, a PFA to coupled martensitic PT and dislocation evolution is de-

veloped and a number of model problems for temperature and stress-induced PTs in-

teracting with dislocation evolution are solved. Various experimental phenomena are

reproduced and some effects are revealed. These results can be used for the development

of the larger-scale models. A similar approach can be developed for the interaction of

complete and partial dislocations with twins and diffusive PTs, as well as electromag-

netic and reconstructive PTs. Dislocation reactions, especially of inherited dislocations,

can be included as well.

The support of NSF, ARO, DARPA, and ISU is gratefully acknowledged.
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Figure 6.3 Martensitic plate in the intermediate (a, b) and stationary (c, d) states for
θ̃ = 0.39 (left) and θ̃ = 0.49 (right) for the case without plasticity in a part
of a rectangular sample of the size of 67×20. For the case with dislocations,
the stationary solutions are shown in the entire sample with four slip planes,
in the same scale as in (a)-(d), for θ̃ = 0.39 (e) and θ̃ = 0.49 (f).

Supplementary figures
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Figure 6.4 Schematics for Burgers vectors and normals to slip planes in austenite and
martensite in different configurations and their transformations during phase
transformations. (a) Two dimensional fcc lattice of austenite with two slip
systems (bbbαωA , nnnαωA ) along the faces in the initial configuration V0. (b) Two
dimensional bcc lattice of martensite with two slip systems (bbbαωM , nnnαωM ) along
the diagonals in the transformed configuration VM obtained from V0 after
applying transformation deformation gradient FFF t. Slip systems of austen-
ite inherited by martensite (bbbαωAM = FFF t · bbbαωA , nnnαωAM = nnnαωA · FFF

−1
t /|nnnαωM · FFF

−1
t |)

are shown as well. (c) Slip systems of martensite inherited by austenite
(bbbαωMA = FFF−1

t · bbb
αω
M , nnnαωMA = nnnαωM · FFF t/|nnnαωM · FFF t|) during reverse phase trans-

formation are shown in the reference configuration. Even if material is in
the martensitic state, since all calculations are performed in the undeformed
state, all slip systems in the configuration VM should be pulled back to V0

with the reverse transformation deformation gradient FFF−1
t . Since under such

operations slip systems of martensite (bbbαωM , nnnαωM ) transform to (bbbαωMA, nnnαωMA)
and slip system of austenite in martensite (bbbαωAM , nnnαωAM) transform to slip sys-
tem of austenite in austenite (bbbαωA , nnnαωA ), Fig. 6.4 c contains all slip systems
necessary for solution of the problem, namely (bbbαωA , nnnαωA ) and (bbbαωMA, nnnαωMA).
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Figure 6.5 Schematics for Burgers vectors and normals to slip planes in austenite and
martensite in the deformed V0 and transformed VM configurations and their
transformations during phase transformations for the case when slip system
of martensite (bbbαωM , nnnαωM ) coincide with the transformed slip systems austen-
ite (bbbαωAM = FFF t · bbbαωA , nnnαωAM = nnnαωA · FFF

−1
t /|nnnαωM · FFF

−1
t |), i.e., bbbαωM = FFF t · bbbαωA and

nnnαωM = nnnαωA · FFF
−1
t /|nnnαωM · FFF

−1
t |. (a) Two dimensional bcc lattice of austenite

with two slip systems (bbbαωA , nnnαωA ) along the diagonals in the initial configura-
tion V0. (b) Two dimensional bct lattice of martensite with two slip systems
(bbbαωM , nnnαωM ) along the diagonals in the transformed configuration VM , which
coincide with slip systems of austenite inherited by martensite (bbbαωAM , nnnαωAM).
(c) Slip systems of martensite inherited by austenite (bbbαωMA, nnnαωMA) during re-
verse phase transformation in the reference configuration V0. They coincide
with the slip systems of austenite in austenite in V0, i.e., (bbbαωA , nnnαωA ). Thus,
the only slip systems necessary for solution of the problem are slip systems
of austenite in austenite in V0, i.e., (bbbαωA , nnnαωA ).
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CHAPTER 7. Conclusion

In summary, to study the multivariant PTs, dislocation evolution, and finally the

coupled evolution of multivariant PTs and dislocation, we advanced the phase field theory

in the following directions:

1. The Ginzburg-Landau theory for multivariant martensitic phase transformations

is advanced in three directions: the potential is developed that introduces the sur-

face tension at interfaces; a mixed term in gradient energy is introduced to control

the martensite-martensite interface energy independent of that for austenite-martensite;

and a noncontradictory expression for variable surface energy is suggested. The prob-

lems of surface-induced pretransformation, barrierless multivariant nucleation, and the

growth of an embryo in a nanosize sample are solved to elucidate the effect of the above

contributions. The obtained results represent an advanced model for coherent interface.

2. The finite element method is utilized to solve the coupled phase-field and elasticity

equations. An in-detail study of martensite-martensite interface energy and width is

presented. Splitting of the martensite-martensite interface into two austenite-martensite

interfaces, leading to barrierless austenite nucleation, is obtained, which is experimentally

observed. The effect of the martensite–martensite interface energy and grain size on the

stationary and non-stationary nanostructure inside the transforming grain embedded in

the austenitic matrix is determined. Some nano-structures differ essentially from the

prediction of crystallographic theory.

3. The external surface layer as a transition between external and internal phases is

included in GL theory, and the effect of the width of this layer and internal stresses on

surface-induced pretransformation and phase transformations (PTs) are revealed. Using
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our further developed phase-field approach, we found that above some critical ∆∗ξ , a

morphological transition from fully transformed layer to lack of surface pretransformation

occurs for any transformation strain εεεt. It corresponds to a sharp transition to the

universal (independent of εεεt), strongly increasing the master relationship of the critical

thermodynamic driving force for PT Xc on ∆ξ. For large εεεt, with increasing ∆ξ, Xc

unexpectedly decreases, oscillates, and then becomes independent of εεεt. Oscillations are

caused by morphological transitions of fully transformed surface nanostructure. A similar

approach can be developed for internal surfaces (grain boundaries) and for various types

of PTs and chemical reactions.

4. The phase field approach to dislocations is conceptually advanced. Large strain

formulation is developed. A local thermodynamic potential eliminates stress-dependence

of the Burgers vector and reproduces desired local stress-strain curve, as well as the

desired, mesh-independent, dislocation height for any dislocation orientation. A gradient

energy contains an additional term, which excludes localization of dislocation within

height smaller than the prescribed height but does not produce artificial interface energy

and dislocation widening. Problems for nucleation and evolution of multiple dislocations

along the single and multiple slip systems, and the interaction of dislocations with an

austenite (A) – martensite (M) interface are studied using finite element method (FEM).

An unexpected scale effect in the athermal resistance to the A–M interface motion due

to nucleated incoherency dislocations is revealed.

5. PFA to coupled evolution of martensitic phase transformations and dislocation is

developed. A fully geometrically nonlinear formulation is utilized. The finite element

method procedure is developed and applied to study the hysteretic behavior and propa-

gation of an (A) – (M) interface with incoherency dislocations, the growth and arrest of

martensitic plate for temperature-induced PT, and the evolution of phase and dislocation

structures for stress-induced PT. A similar approach can be developed for the interaction

of dislocations with twins and diffusive PTs described by Cahn-Hilliard theory.
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