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ABSTRACT

Gas-solid flows are commonly encountered in Nature and in several industrial applications.

Emerging carbon-neutral or carbon negative technologies such as chemical looping combustion

and CO2 capture are examples of gas-solid flows in power generation industry. Computational

fluid dynamics (CFD) simulations are increasingly being seen as a cost-effective tool in the de-

sign of technological applications in power generation industry. Device-scale CFD calculations

that involve gas-solid flow are based on statistical descriptions that require closure models for

the exchange of mass, momentum, energy and heat transfer between the dispersed solid phase

and the gas phase. The predictive capability of multiphase flow CFD simulations strongly de-

pends on the accuracy of the models used for the interphase exchange terms. Particle–resolved

direct numerical simulation (PR–DNS) is a first-principles approach to develop accurate models

for interphase momentum, energy and heat transfer in gas-solid flow. The primary objective

of this work is the development of accurate models for the interphase exchange of momentum,

kinetic energy and heat transfer in polydisperse gas–solid flows using PR–DNS.

A novel computational tool named Particle–resolved Uncontaminated–fluid Reconcilable

Immersed Boundary Method (PUReIBM) has been developed as a part of this work to perform

PR–DNS of flow past fixed and freely moving spherical particles. We designed the appropriate

numerical experiment that can be used to develop closure models for interphase momentum

transfer and formally established the connection between PR–DNS and statistical theory of

multiphase flow for which the models are intended. Using PUReIBM we developed an improved

drag correlation to model interphase momentum transfer in gas-solid flow. The solution fields

obtained from PUReIBM PR-DNS have been used to quantify the velocity fluctuations in the

gas–phase and a simple eddy viscosity model for the gas–phase pseudo–turbulent kinetic energy

has been developed. A novel PR–DNS methodology to study heat transfer in gas-solid flow has

been developed. These results provide insight into the role of fluid heating in gas-solid flow and



xxviii

motivate the development of better models for gas-solid flow heat transfer. From PR–DNS of

freely evolving gas–solid suspensions we developed a stochastic model for particle acceleration

that accounts for the particle velocity distribution. In addition to model development, the

implementation of a parallel algorithm that enables PR–DNS of gas-solid flow on petascale

supercomputers is also discussed.
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CHAPTER 1. Introduction

1.1 Background

Gas-solid flows occur in many industrial applications such as energy generation, as well as

food, chemical, and pharmaceutical processing. Quantitative understanding of gas–solid flows

in fluidized beds is crucial for efficient operation of processes such as fluid catalytic cracking

(FCC), which is now a worldwide trillion dollar industry (Avidan, 1997). Emerging technologies

such as chemical looping combustion (Shen et al., 2008), and CO2 capture from flue gases using

dry sorbents (Yi et al., 2007; Abanades et al., 2004) offer the promise of carbon–neutral energy

generation (Azar et al., 2006). The success of these technologies and their commercialization

depends on the ability of designers to rationally choose from a plethora of design options using

reliable and predictive computer simulations of gas–solid flow in industrial devices.

Gas–solid flow in energy applications is characterized by changing random configurations

of a large number of particles of different sizes, turbulence in the gas–phase, gas–solid heat

transfer as well as particle–particle interactions. Due to the inherent randomness in gas–solid

flows, statistical descriptions are useful to predict the overall behavior of the system. Moreover,

Computational Fluid Dynamics (CFD) simulations of device–scale gas–solid flow applications

are primarily based on such statistical descriptions. Interphase exchanges of mass, momentum

and energy play a pivotal role in determining the overall behavior of gas–solid flow. These

interphase exchanges appear as unclosed terms in the averaged conservation equations for

mass, momentum and energy. Developing accurate models for the average interphase exchange

terms is the primary focus of this dissertation.

Developing predictive models for gas–solid flow in industrial applications is challenging due

to many reasons. Some of the major challenges that are dealt with in this work are listed below:
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1. Polydispersity : The presence of particles of different sizes, or polydispersity, may be a

property of the starting material itself or it may be intentionally utilized in order to

improve process performance. The presence of particles of different sizes introduces a

range of length and time scales and the interaction of these length and time scales with

the gas–phase gives rise to interesting phenomena such as segregation. Polydispersity

also affects interphase transfer of mean interphase momentum, kinetic energy, and heat

transfer, which in turn affect the overall flow behavior.

2. Gas–phase velocity fluctuations: The diameters of the particles found in industrial devices

such as fluidized beds are typically in the range of 50–150 µm and are usually larger than

the Kolmogorov length scale of gas–phase turbulence (Moran and Glicksman, 2003). The

interaction of such finite sized particles with the gas–phase gives rise to fluctuations in

the gas velocity, in addition to the inherent turbulent motions of the gas–phase. These

gas–phase velocity fluctuations play an important role in the transport of the particles to

and from the walls of the device as well as in the mixing of chemical species and interphase

heat transfer.

3. Particle velocity distribution: It is clear from visual observation as well as experimental

measurements that particles have a range of velocities. The particle velocity fluctuations

characterized by the particle granular temperature (particle velocity variance) affect the

mean interphase momentum transfer (Wylie et al., 2003) and also play an important role

in phenomena such as the core–annular structure in riser flows. It is now established

that the prediction of core-annular structure in riser flows requires solving the transport

equation for the particle granular temperature (Hrenya and Sinclair, 1997). Hence, there

is a need for models that accurately predict the particle granular temperature, which in

turn should lead to a better prediction of the mean fields such as solid volume fraction.

In addition to the aforementioned challenges, the nonlinear and multiscale interactions in

gas–solid flow result in a rich variety of flow phenomena spanning many flow regimes. One of the

principal features of gas–solid flow that distinguish it from advection and diffusion of chemical

species in multicomponent flows is the inertia of dispersed phase particles. Outside the Stokes



3

flow regime, particle inertia results in a nonlinear dependence of particle acceleration on particle

velocity and this nonlinearity is important in many applications where the particle Reynolds

number is finite. The influence of the dispersed phase on carrier–phase momentum balance is

another source of nonlinear behavior in the system. Unlike molecular gases, not all multiphase

flows are collision–dominated, and hence it is possible for the probability density function

(PDF) of the particle velocity to depart significantly from equilibrium. These nonlinearities,

multiscale interactions and nonequilibrium effects lead to the emergence of new phenomena

such as preferential concentration and clustering that have a significant impact on gas–solid

flow applications. It is worthwhile to note that the nonequilibrium and multiscale nature of

gas–solid flows cannot be adequately dealt with using existing modeling approaches. In this

work we focus on modeling the unclosed terms that arise in the existing statistical approaches.

The novel feature of the present work is the use of particle–resolved direct numerical simulation

(PR–DNS) to develop closure models for gas–solid flow by establishing an explicit connection

between the quantities computed from PR–DNS solution fields and the unclosed terms that

arise in the statistical approaches.

1.2 Statistical approaches

A complete description of a gas–solid flow requires the state of each particle and each fluid

point at each time instant. However, such level of description contains much more information

than is required for practical applications. Therefore, a statistical description of the gas–solid

flow that provides information on macroscopic average quantities that describe the flow is more

useful for engineers in the design process. Computational fluid dynamics (CFD) simulations

that are based on such statistical descriptions of gas–solid flow are being increasingly used as

a cost–effective approach for rapid evaluation of designs (Halvorsen et al., 2003).

Statistical approaches to multiphase flow can be classified on the basis of three critiera: (i)

whether each phase is represented using a random field or stochastic point process 1 description,

(ii) whether each phase is represented in an Eulerian or Lagrangian reference frame, and (iii)

1The term point process should not be confused with the ’point particle’ assumption. Stochastic point
processes are mathematical descriptors of non–contiguous objects in space that can be spheres of finite radius.
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the level of closure in the statistical theory. The two principal statistical approaches are: (i) the

random field approach in which both dispersed and carrier phases are represented as random

fields in the Eulerian frame, and (ii) the point process approach in which the dispersed phase

is represented as a stochastic point process in the Lagrangian frame and the carrier phase is

represented as a random field in the Eulerian frame.

1.2.1 Random–field Theory

In statistical theories of turbulent single-phase flow, the Eulerian velocity field is represented

as a random vector field (Pope, 2000). A similar approach can be adopted for gas–solid flows,

but in addition to the velocity field it is also necessary to specify the location and shape of the

dispersed-phase elements. The velocity field U(x, t), which is defined in both thermodynamic

phases, is a vector field which is defined at each point x in the flow domain in physical space. The

dispersed–phase elements are described by a dispersed–phase indicator field Id(x, t), which is

unity for all points inside the dispersed–phase elements that are contained in the flow domain,

and zero outside (see Fig. 1.1). Statistical theories based on random–field representations

require the consideration of multipoint joint probability density functions, and these have not

resulted in tractable engineering models even for single–phase turbulent flow (Pope, 2000;

Monin and Yaglom, 1975).

The simplest statistical theory based on the random–field representation that is useful

to modelers is a single–point representation. Figure 1.1 shows the hierarchy of the level of

description in the random–field representation. The single–point representation results in the

single–point Eulerian–Eulerian (EE) two–fluid theory. In this case the statistics of the velocity

field and the dispersed–phase indicator field are considered at a single space–time location,

i.e., the indicator field reduces to an indicator function. The velocity and indicator function

can be treated as random variables (or random vector in the case of velocity) parametrized by

space and time variables. The averaged equations resulting from this approach are described

in Drew (1983), and Drew and Passman (1998). The single–point Eulerian–Eulerian theory

can be developed at the more fundamental level of probability density functions also, and this

theory is described in Pai and Subramaniam (2009).
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1.2.2 Point Process Theory

Stochastic point process theory (Daley and Vere-Jones, 1988; Stoyan et al., 1995; Stoyan

and Stoyan, 1995) enables the statistical description of points that are distributed in space.

This provides the necessary mathematical foundation to describe the statistics of solid particles.

The theory of marked point processes allows us to assign the size of the particle as a “mark” or

tag to the particle location. From this it is clear that stochastic point process theory does not

require that particles are modeled as point-particles that correspond to delta-function sources

of mass and momentum. The statistical representation of a spray as a point process has been

formulated by Subramaniam (2000). It is shown that the complete characterization of all

multi-particle events requires consideration of the Liouville probability density function (pdf).

The simplest point–process theory (Williams, 1958; Subramaniam, 2000, 2001), also known

as the Lagrangian–Eulerian (LE) statistical approach considers the evolution equation of the

one–particle distribution function. The one–particle distribution function is also commonly

known as the droplet distribution function (ddf) in spray literature. The one–particle distribu-

tion function is a function of the sample space of particle positions, velocity, and radius. There

are several approaches that are available to obtain a solution for the distribution function. The

moments of the distribution function imply various average quantities such as the average solid

volume fraction, average solid–phase velocity etc. Therefore, by taking the moments of the

evolution equation for the ddf, one can derive conservation equations for the average mass,

momentum and energy of the solid phase. This is the approach taken in the classical theory of

molecular gases (Liboff, 2003) as well as in the kinetic theory of granular flows (KTGF) (Jenk-

ins and Savage, 1983; Lun et al., 1984; Serero et al., 2006; Sela and Goldhirsch, 1998; Garzo

et al., 2007a).

Another approach to solve the evolution equation of the distribution function is via the

Quadrature Based Moment Methods (QBMM) introduced by Fox (2008). In this approach, the

distribution function is represented as a sum of δ–functions at time–varying abscissa locations

with corresponding weights that also evolve in time. Transport equations for the moments

are derived in a fashion similar to the KTGF approach, which results in unclosed terms. The



6

moments of the distribution function are related to the quadrature abscissae and the moment

transport equations are closed in terms of the quadrature abscissae.

There are also a suite of simulation techniques, commonly termed as the LE simulation

methods (Amsden et al., 1989) that solve for the distribution function in an indirect way. In

the LE simulation approach, the solid phase is represented by an ensemble of computational

particles and the velocities and positions of these computational particles are evolved in time.

This methodology is popularly known as Lagrangian particle tracking and it requires models

for the acceleration of the particles in order to evolve the particle velocities.

Both random–field and point–process statistical descriptions of gas–solid flow result in a

closure problem similar to that encountered in the statistical theory of single-phase turbulence.

The averaging procedure results in unclosed terms that need to be modeled. Recently, Pai

and Subramaniam (2009) established equivalence relations between the unclosed terms in the

EE and LE statistical representations. For instance, in the random field description, the mean

momentum conservation equation in the particle phase requires closure of the average fluid–

particle interaction force (mean drag force) and the average stress in the solid particle phase.

Similarly, in the point process description, closure model for the acceleration of the particles

in terms of the particle velocity is required. Therefore, it is clear that accurate models for the

unclosed terms are needed for the effective use of gas–solid CFD simulations that are based on

statistical descriptions.

1.2.3 Use of PR–DNS for modeling gas–solid flow

From the foregoing discussion of the modeling challenges, it is clear that a first–principles

approach is needed to develop accurate physics–based models. Theoretical approaches become

intractable due to the randomness in the particle configuration as well as the nonlinearity of the

governing equations at finite Reynolds numbers that are encountered in practical applications.

Although experiments provide valuable insights for modeling, it is difficult to obtain detailed

information of the flow fields and particle velocities needed for accurate model development due

to poor optical access in gas–solid systems. The exponential rise in computing power provides

the application of advanced numerical methods as an attractive option to obtain detailed and
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Figure 1.1 Role of PR–DNS in gas–solid flow model development.

accurate information in gas–solid flow. Figure 1.1 depicts the role of PR–DNS in gas–solid

fow model development. The attractive aspect of PR–DNS is that it can be used to develop

models in the context of both the random field and stochastic point process descriptions. In

the following section we discuss recent advances in using PR–DNS for gas–solid flow model

development.

1.3 PR–DNS approaches

PR–DNS is a first–principles approach to developing accurate models for interphase mo-

mentum, energy and heat transfer in gas–solids flow. In the PR–DNS approach the governing

Navier–Stokes (NS) equations are solved with exact boundary conditions at each particle sur-

face. It produces a model–free solution with complete three–dimensional time–dependent ve-
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locity, pressure and temperature fields. It is worthwhile to note that the PR–DNS approach is

significantly different from the point particle direct numerical simulation methodology (Squires

and Eaton, 1991; Elghobashi and Truesdell, 1993; Boivin et al., 1998; Sundaram and Collins,

1999; Mashayek and Taulbee, 2002) (DNS) in which the particles are treated as points and

the effect of the particles on the gas–phase is represented by a force applied at the particle

center. Clearly the point particle approach is valid only when the particle size is much smaller

compared to the Kolmogorov length scale. When the particle size is larger or comparable to the

Kolmogorov length scale, the effects of the wake generated by the particles become important

and hence it is important to resolve the boundary layers around the particle.

Recently, a variety of numerical approaches have been developed to perform PR–DNS of

gas–solid flow. These can be broadly classified as those that rely on a body–fitted mesh to

impose boundary conditions at particle surfaces, and those that employ regular Cartesian

grids. The body–fitted methods include the arbitrary Lagrangian Eulerian (ALE) approach (Hu

et al., 2001; Nomura and Hughes, 1992) as well as the method used by Balachandar and co–

workers (Bagchi and Balachandar, 2003, 2004). Also Burton and Eaton (2005) used the overset

grid technique to study the interaction between a fixed particle and decaying homogeneous

isotropic turbulence. The principal disadvantage with approaches based on body-fitted meshes

is that repeated re-meshing and solution projection are required for moving interfaces.

For methods that employ regular Cartesian grids, this need for re-meshing and projection

is eliminated, resulting in much faster solution times for moving particle simulations. The

wide range of parameters encountered in gas–solids flow and the need to perform multiple

independent simulations (MIS) (due to the random arrangements of the particles) makes it

impractical to use body–fitted meshes. However, because the grid does not conform to the

particle surface, special attention is needed to generate an accurate solution. Popular methods

based on regular Cartesian grids include the fictitious domain method (Patankar et al., 2000;

Glowinski et al., 2001; Sharma and Patankar, 2005; Apte et al., 2009), the lattice Boltzmann

method (LBM) (Hill et al., 2001a,b; Ladd and Verberg, 2001; Ten Cate et al., 2004; van der Hoef

et al., 2005; Beetstra et al., 2007), and the immersed boundary method (IBM) (Peskin, 1981;

Yusof, 1996; Uhlmann, 2005; Garg, 2009; Kim and Choi, 2006; Lucci et al., 2010). Besides these
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widely used techniques, there are other methods such as PHYSALIS (Oguz and Prosperetti,

2001; Takagi et al., 2005; Zhang and Prosperetti, 2003, 2005) that use a general analytic solution

of the Stokes equation in the flow domain close to particle boundaries to impose the no-slip

velocity boundary condition on the particle surface.

In this work we employ a DNS approach based on the Particle–resolved Uncontaminated–

fluid Reconcilable Immersed Boundary Method (PUReIBM) that is used to solve for flow past

arbitrary arrangements of solid spherical particles. PUReIBM is a particle-resolved direct

numerical simulation approach for gas-solid flow where the Navier-Stokes equations with no-

slip and no-penetration boundary conditions on each particle’s surface are solved using a forcing

term that is added to the momentum equation. The salient features that distinguish PUReIBM

from other immersed boundary method approaches are as follows:

1. Uncontaminated fluid: In PUReIBM the immersed boundary (IB) forcing is solely re-

stricted to those grid points that lie in the solid phase, and therefore the flow solution

in the fluid phase is uncontaminated by the IB forcing. Consequently the velocity and

pressure in the fluid phase is a solution to the unmodified Navier-Stokes equations (in

contrast to IB implementations that smear the IB forcing on to grid points in the fluid

phase adjoining solid boundaries, resulting in solution fields that do not correspond to

unmodified Navier–Stokes equations).

2. Reconcilable: In PUReIBM the hydrodynamic force experienced by a particle is com-

puted directly from the stress tensor at the particle surface that is obtained from this

uncontaminated fluid flow solution (in contrast to IB implementations that calculate the

hydrodynamic force from the IB forcing field). This feature of PUReIBM enables us to

directly compare the DNS solution with any random-field theory of multiphase flow. In

particular, for statistically homogeneous suspensions it is shown in Tenneti et al. (2011)

that PUReIBM DNS reconciles with multiphase flow theory.

It is also shown that PUReIBM is a numerically convergent and accurate particle-resolved DNS

method for gas-solids flow and its performance has been validated in a comprehensive suite of

tests. The PR–DNS tool developed in this work is used to achieve the research objectives
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Figure 1.2 Schematic showing the research objectives of this work. PR–DNS will be used to

probe the effects of particle size distribution, gas–phase velocity fluctuations and

particle velocity distribution. The data obtained from carefully performed DNS

will be used to propose models for the mean interphase momentum transfer, tur-

bulent kinetic energy and heat transfer. Another objective of this work is to use

PR–DNS to provide a closure at the level of the one–particle distribution func-

tion, which is the starting point of kinetic theory for gas–solid flows (KTGF) and

quadrature method of moments (QMOM). The improved models and kinetic the-

ory closures can be used in more accurate EE and LE gas–solid CFD simulations.

described in the next section.

1.4 Research objectives

The principal objective of this work is to use PR–DNS to achieve the following goals (see

figure 1.2):

1. Develop a model for mean interphase momentum transfer in polydisperse gas–solid flow

2. Quantify the level of gas–phase velocity fluctuations and develop a model to account for

gas velocity fluctuations in polydisperse gas–solid flow

3. Develop a formulation to study heat transfer due to forced convection in gas–solid flow
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4. Account for the distribution of particle velocities and provide a closure at the level of the

one–particle distribution function.

These principal research objectives are discussed below in further detail.

1.4.1 Modeling mean interphase momentum transfer in polydisperse gas–solid

flow

A gas–solid flow with a particle size distribution is usually represented in terms of a collec-

tion of particles belonging to discrete classes of different sizes. In the EE approach, conservation

equations for the mean momentum are written for each size class, and the mean interphase

momentum transfer between particles belonging to a size class and the gas–phase appears as

an unclosed term in the mean momentum conservation equation of that size class. Even in

LE simulations, the total force acting on the particles in a computational grid cell is needed in

order to solve the momentum equation in the gas–phase. Therefore, an accurate model for the

mean interphase momentum transfer is needed in terms of the average properties namely the

solid volume fraction ϕ and the Reynolds number Rem based on the relative or slip velocity

between the solid and the gas–phase. The closure for the mean interphase momentum transfer

is popularly known as a “drag law”.

The average force acting on the particles belonging to a size class in a polydisperse gas–

solid flow is usually modeled in terms of the average force acting on an equivalent monodis-

perse suspension. Hence, the accuracy of polydisperse drag models depends on the accuracy

of the monodisperse drag law. Several drag correlations have been proposed for monodis-

perse gas–solid suspensions by simulating steady flow past random arrangements of stationary

spheres (Hill et al., 2001a,b; van der Hoef et al., 2005; Beetstra et al., 2007). Hill, Koch and

Ladd (Hill et al., 2001a,b) referred to collectively as HKL in this work, studied the steady flow

past ordered and random arrays of monodisperse spheres using the lattice Boltzmann method

(LBM). While van der Hoef et al. (2005) extended HKL’s LBM simulations to account for

polydispersity in the Stokes flow regime, Beetstra et al. (2007) collectively referred to as BVK

in this work, proposed a drag correlation for mono– and bi–disperse random arrays at higher
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Reynolds numbers. Yin and Sundaresan (2009a) proposed a new drag correlation for Stokes

flow in fixed assemblies of monodisperse spheres to account for particle–particle relative mo-

tion. All the computational drag laws for flow past random arrays of spheres discussed so far

are based on the lattice Boltzmann code SUSP3D developed by Ladd (1994a,b).

In the SUSP3D code used by HKL and BVK, a spherical particle is represented by a stair–

step lattice approximation and so the exact value of the particle diameter is not known a

priori. The drag values obtained from SUSP3D simulations are assumed to correspond to an

effective hydrodynamic diameter that is obtained a posteriori by calibrating the simulations

against the analytical solution of Hasimoto (1959) for Stokes flow in a dilute simple cubic

arrangement of spheres. This hydrodynamic diameter depends on the fluid viscosity as well as

the particle size. So the momentum transfer at boundary lattice nodes does not correspond

to the force density at the surface of the particle and the magnitude of this surface force

density is calibrated. It must be noted here that recent developments in LBM have removed

the need for calibrating the hydrodynamic diameter (Ginzburg and d’Humières, 2003). It has

not been demonstrated that solutions obtained from SUSP3D reconcile with the random–field

multiphase flow theory. Furthermore, in the study of BVK a constant grid resolution of 21.5

lattice units was used to simulate Reynolds numbers ranging from 21 to 1000 at a given volume

fraction while the boundary layer thickness δ reduces by 30–fold. The grid resolution should

be increased with increasing Reynolds number to properly resolve the boundary layers as the

boundary layer thickness δ ∼ D/
√

Rem. This casts doubt on the accuracy of the monodisperse

drag correlation proposed by BVK at higher Reynolds numbers.

In this work, we study the flow past fixed random assemblies of monodisperse spheres using

PUReIBM. We present a comprehensive set of drag data for mono and bidisperse gas–solid sus-

pensions using an incompressible Navier–Stokes solver. The normalized average gas–solid force

F is obtained as a function of solid volume fraction ϕ (0.1 ≤ ϕ ≤ 0.5) and mean flow Reynolds

number Rem (0.01 ≤ Rem ≤ 300) for random assemblies of monodisperse spheres. Differences

between the drag values obtained from PUReIBM and the drag correlation of Beetstra et al.

(2007) are as high as 30% for Rem in the range 100-300. An improved correlation for F in

terms of ϕ and Rem is proposed that corrects the existing correlations in Rem range 100–300.
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This new monodisperse drag correlation has been used to propose an improved polydisperse

drag correlation.

1.4.2 Quantifying the level of gas–phase velocity fluctuations

The transport of the second moment of fluctuating gas velocity (the gas–phase Reynolds

stress) appears as an unclosed term in the mean momentum conservation equation of the

gas phase. In industrial applications of gas–solids flow such as fluidized beds (Moran and

Glicksman, 2003), the particle diameter D is usually larger than the Kolmogorov length scale

η. However, the vast majority of existing work (Squires and Eaton, 1991; Elghobashi and

Truesdell, 1993; Boivin et al., 1998; Sundaram and Collins, 1999; Mashayek and Taulbee, 2002)

on particle–turbulence interaction addresses particles with D < η. There are relatively few

studies (Uhlmann, 2008; Xu and Subramaniam, 2010; Lucci et al., 2011) for particles with

D > η. Unlike in single–phase turbulence, the mean slip velocity is an important parameter

in gas–solid flows with D > η. This is because the mean slip velocity results in an asymmetric

pressure distribution around the particles and the also in the formation of boundary layers on

particle surfaces. The pressure asymmetry in turn results in the formation of wakes behind

the particles, which contribute to gas–phase velocity fluctuations even in “laminar” gas–solid

flows. It is important to note that the gas–phase Reynolds stress is due to the inherent turbulent

fluctuations in the gas–phase as well as the pseudo–turbulent velocity fluctuations arising due

to the presence of particles. Since the mechanisms for the generation and dissipation of these

fluctuations are different, it is important to distinguish the pseudo–turbulent gas–phase velocity

fluctuations from the inherent turbulent fluctuations in the gas–phase. The gas–phase Reynolds

stress arising from pseudo–turbulent velocity fluctuations has not been quantified over a range

of solids volume fraction and Reynolds number based on the mean slip velocity between the solid

and gas–phase. In the absence of such comprehensive quantification, the gas–phase Reynolds

stress term is sometimes neglected in CFD simulations of dense gas–solid flow on the grounds

that the dominant forces in the gas–phase momentum balance are the pressure drop and drag

force (Hrenya and Sinclair, 1997). However, recent intrusive hot wire measurements have been

performed (Moran and Glicksman, 2003) that indicate that the level of gas–phase velocity
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fluctuations can be significant in a circulating fluidized bed riser at dilute solids volume fraction.

The gas–phase Reynolds stress arising from both turbulent and pseudo–turbulent velocity

fluctuations, is usually modeled using an eddy viscosity model that accounts for the presence

of solid particles (Ahmadi and Ma, 1990b,a; Bolio and Sinclair, 1995; Balzer et al., 1998;

Benyahia et al., 2005). In order to use this model, the turbulent kinetic energy (TKE) kf

and the dissipation rate εf in the fluid phase have to be quantified. Because of the absence

of such quantification, transport equations for kf and εf are written by modifying the single–

phase turbulence models. In particular the models used for the dissipation of turbulent kinetic

energy are based on the Kolmogorov scaling (k
3/2
f /ldiss) used in single–phase turbulence, but

their validity in particle–laden flows is not verified.

For particles of size comparable to or larger than the Kolmogorov length scale, the appro-

priate numerical approach is the particle–resolved DNS methodology in which all the scales of

the inherent turbulence and the flow scales introduced by the presence of large particles are

resolved. In this work we use PUReIBM DNS to quantify the strength of gas–phase velocity

fluctuations in steady flow through a statistically homogeneous fixed assembly of monodis-

perse spheres. Using the data obtained from PUReIBM DNS, we analyzed the implications

for modeling the dissipation of kinetic energy in the gas–phase by considering the energy bal-

ance equation and proposed an eddy viscosity model to account for the transport of average

gas–phase Reynolds stress.

1.4.3 Develop a fomulation to study convective heat transfer in gas–solid flow

Accurate prediction of the average fluid phase temperature is crucial for applications such

as Chemical Looping Combustion (CLC). Average interphase heat transfer and transport of

the the covariance of temperature and gas velocity are the unclosed terms that appear in the

conservation equation of the average gas–phase temperature. The average interphase heat flux

⟨Qg−s⟩ is modeled in terms of an average Nusselt number and the difference between the average

fluid and solid–phase temperature
(⟨
T (f)

⟩
−
⟨
T (s)

⟩)
averaged. This Nusselt number is usually

given by a correlation that depends only on solid volume fraction ϕ, mean slip Reynolds number

Rem and the Prandtl number Pr. In applying this model for the average interphase heat flux
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in gas–solid CFD codes, it is assumed that the heat transfer problem is locally homogeneous.

The average Nusselt number and the average fluid and solid–phase temperatures are assumed

to be constant in the grid cell. This implies that the fluid does not get heated up (or cooled

down) as it flows past the solid particles. In this work we use particle–resolved direct numerical

simulation (DNS) to show that fluid heating can become important, especially at high solid

volume fraction and low mean flow Reynolds numbers, and hence the assumption of statistical

homogeneity of the average temperature field may not be used. We develop a novel DNS

methodology that gives a statistically homogeneous average Nusselt number, even though the

temperature field is inhomogeneous.

1.4.4 Effect of particle velocity distribution and closure at the level of the one–

particle distribution function

In the multifluid theory, the second moment of particle velocity represents the strength of

particle velocity fluctuations. It is now established that the prediction of core-annular struc-

ture in riser flows requires solving the transport equation for the particle granular tempera-

ture (Hrenya and Sinclair, 1997). This informs us that a closure at the level of mean quantities

is not adequate to predict important flow characteristics such as core-annular structure, but

a closure at the level of second moments is necessary. An alternative approach to the closure

of moment transport equations is to consider the evolution of the one-particle distribution

function. Just as closure at the level of the transport equation for the probability density func-

tion (PDF) in single–phase turbulent reactive flow implies a closure for all moment equations,

similarly a kinetic equation that achieves a closure for the one-particle distribution function

in kinetic theory implies a closure for all moment equations. In particular, a closure at the

one-particle distribution level automatically implies closure of the mean momentum and par-

ticle velocity second moment equations. Furthermore, closures at the one-particle distribution

level are guaranteed to satisfy realizability criteria, whereas special care is needed to ensure

the same in the case of moment closures. These considerations motivate the development of

models for the unclosed terms in the transport equation for the one-particle distribution func-

tion corresponding to gas-solid flow. Such closures can also be used directly with Quadrature
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Based Moment Methods (QBMM).

In statistically homogeneous suspensions undergoing elastic collisions, the particle acceleration–

velocity covariance alone governs the evolution of granular temperature. This acceleration–

velocity covariance can be decomposed into a source and dissipation of granular temperature

due to hydrodynamic forces. Koch and co–workers (Koch, 1990; Koch and Sangani, 1999)

quantified the hydrodynamic source and dissipation terms in the granular temperature evolu-

tion using a combination of kinetic theory closure and multipole expansion simulations at very

low Reynolds numbers (Stokes flow regime). In this work, DNS of freely evolving gas–solid sus-

pensions are performed using PUReIBM. Analysis of DNS results shows that the fluctuations

in the particle acceleration that are aligned with the fluctuations in the particle velocity give

rise to source in the granular temperature. It is found that simple extension of a class of mean

particle acceleration models to their corresponding instantaneous versions does not predict the

correct joint acceleration–velocity statistics that are obtained from DNS. Also such models do

not give rise to any source in the granular temperature due to hydrodynamic effects. It is found

that a Langevin equation for the increment in the particle velocity reproduces the DNS results

for particle velocity autocorrelation in freely evolving suspensions. Modeling the increment

in the particle velocity using a Langevin equation implies a closure for the evolution of the

one–particle distribution function in terms of the Fokker–Planck equation. Particle–resolved

simulations of freely evolving gas–solid suspensions are performed over a range of solid volume

fraction (0.1 ≤ ϕ ≤ 0.4), Reynolds number based on the slip velocity between the solid and the

fluid–phase (10 ≤ Rem ≤ 100) and solid to fluid density ratio (100 ≤ ρp
ρf

≤ 2000). Based on

the data obtained from the simulations, correlations for the model coefficients are proposed.

1.4.5 Particle–resolved DNS on peta scale computers

Gas–solid flows exhibit several multiscale phenomenon such as formation of particle clusters

and streamers. Such phenomenon can be studied using particle–resolved DNS by performing

simulations in large computational domains. Therefore, there is a need to perform these highly

resolved simulations on peta scale super computers in order to obtain detailed information

on the mechanism of formation of particle clusters. In this work we developed a strategy for
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the parallelization of PUReIBM on the petascale computer Jaguarpf at Oak Ridge Leadership

Computing Facility (OLCF). Several test cases are presented that confirm the accuracy of the

parallel solver. An idealized riser with a solid volume fraction of 1% has been chosen to assess

the weak scaling behavior of the solver. The parallel PUReIBM solver shows an excellent

scaling with increasing number of processors.

1.5 Report outline

The description of the PUReIBM methodology and the development of the monodisperse

drag correlation are described in chapter 2. Quantification of the gas–phase velocity fluctuations

and modeling of the average gas–phase Reynolds stress is discussed in chapter 3. Chapter 4

describes the PR–DNS formulation to study heat transfer in gas–solid flow. The PR–DNS

methodology to perform simulations of freely evolving suspensions is presented in chapter 5,

while the details of the particle acceleration model are given in chapter 6. Quantification

of interphase momentum transfer and the level of gas–phase velocity fluctuations in fixed and

freely evolving polydisperse gas–solid flow is described in chapter 7. Details of the parallelization

strategy are given in chapter 8 and the current effort towards characterizing the stability of

gas–solid flows and possible future work is presented in chapter 9.
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CHAPTER 2. Drag law for monodisperse gas–solid systems using

particle–resolved direct numerical simulation of flow past fixed assemblies of

spheres

This chapter is an article (Tenneti et al., 2011) titled “Drag law for monodisperse gas–solid

systems using particle–resolved direct numerical simulation of flow past fixed assemblies of

spheres” published in the International Journal of Multiphase Flows’. This article is authored

by S. Tenneti, R. Garg and S. Subramaniam.

Abstract

Gas-solid momentum transfer is a fundamental problem that is characterized by the depen-

dence of normalized average fluid–particle force F on solid volume fraction ϕ and the Reynolds

number based on the mean slip velocity Rem. In this work we report particle–resolved di-

rect numerical simulation (DNS) results of interphase momentum transfer in flow past fixed

random assemblies of monodisperse spheres with finite fluid inertia using a continuum Navier–

Stokes solver. This solver is based on a new formulation we refer to as the Particle–resolved

Uncontaminated–fluid Reconcilable Immersed Boundary Method (PUReIBM). The principal

advantage of this formulation is that the fluid stress at the particle surface is calculated directly

from the flow solution (velocity and pressure fields), which when integrated over the surfaces

of all particles yields the average fluid–particle force. We demonstrate that PUReIBM is a

consistent numerical method to study gas–solid flow because it results in a force density on

particle surfaces that is reconcilable with the averaged two–fluid theory. The numerical conver-

gence and accuracy of PUReIBM are established through a comprehensive suite of validation

tests. The normalized average fluid–particle force F is obtained as a function of solid volume
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fraction ϕ (0.1 ≤ ϕ ≤ 0.5) and mean flow Reynolds number Rem (0.01 ≤ Rem ≤ 300) for

random assemblies of monodisperse spheres. These results extend previously reported results

of Hill et al. (2001a,b) to a wider range of ϕ, Rem, and are more accurate than those reported

by Beetstra et al. (2007). Differences between the drag values obtained from PUReIBM and the

drag correlation of Beetstra et al. (2007) are as high as 30% for Rem in the range 100-300. We

take advantage of PUReIBM’s ability to directly calculate the relative contributions of pressure

and viscous stress to the total fluid–particle force, which is useful in developing drag correla-

tions. Using a scaling argument, Hill et al. (2001b) proposed that the viscous contribution is

independent of Rem but the pressure contribution is linear in Rem (for Rem > 50). However,

from PUReIBM simulations we find that the viscous contribution is not independent of the

mean flow Reynolds number, although the pressure contribution does indeed vary linearly with

Rem in accord with the analysis of Hill et al. (2001b). An improved correlation for F in terms

of ϕ and Rem is proposed that corrects the existing correlations in Rem range 100–300. Since

this drag correlation has been inferred from simulations of fixed particle assemblies, it does not

include the effect of mobility of the particles. However, the fixed–bed simulation approach is a

good approximation for high Stokes number particles, which are encountered in most gas–solid

flows. This improved drag correlation can be used in CFD simulations of fluidized beds that

solve the average two–fluid equations where the accuracy of the drag law affects the prediction

of overall flow behavior.

2.1 Introduction

Gas-solid flows occur in many industrial applications such as energy generation, as well

as food, chemical, and pharmaceutical processing. A fundamental understanding of gas–solid

flows continues to be important, especially due to increasing interest in technologies such as

carbon–neutral energy generation (Azar et al., 2006), chemical looping combustion (Shen et al.,

2008), and CO2 capture from flue gases using dry sorbents (Yi et al., 2007; Abanades et al.,

2004).

Computational fluid dynamics (CFD) simulations (Syamlal et al., 1993; Kashiwa and Gaffney,

2003; Sun et al., 2007) that solve the averaged equations of multiphase flow are increasingly be-
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ing used as an efficient alternative for design optimization because experiments are often costly

and time-consuming. CFD simulations of multiphase flow are based on either the Lagrangian–

Eulerian (LE) or the Eulerian–Eulerian (EE) two–fluid approach (Anderson and Jackson, 1967;

Drew and Passman, 1998). In the EE approach that forms the basis for popular gas–solid CFD

codes (Syamlal et al., 1993; Kashiwa and Gaffney, 2003), averaged equations for mass, mo-

mentum and energy are written for both the solid and fluid phases, with coupling terms that

represent interphase interactions. These coupling terms are unclosed and need to be modeled.

For instance, the mean momentum conservation equation in the particle phase requires closure

of the average fluid–particle interaction force (mean drag force) in terms of average quantities

like the solids volume fraction ϕ and the mean flow Reynolds number Rem. This closure for

the average fluid–particle force is popularly known as a “drag law” and is typically obtained

from a combination of theoretical, experimental and computational studies.

Several studies (Bokkers et al., 2004; Benyahia et al., 2005; Leboreiro et al., 2008) point out

the importance of the fluid–particle drag in determining the characteristics of monodisperse

fluidized beds. Patil et al. (2005) observe that the prediction of injected bubbles in a bubbling,

gas–fluidized bed operated by a jet depends on the choice of the drag law. Also, drag laws for

polydisperse gas–solid suspensions are based on the drag law for an equivalent monodisperse

suspension (van der Hoef et al., 2005; Beetstra et al., 2007; Yin and Sundaresan, 2009a,b;

Holloway et al., 2010). Therefore, the predictive capability of CFD simulations of polydisperse

gas–solid suspensions depend on the accuracy of the monodisperse drag law. Besides CFD

simulations, the functional dependence of drag on volume fraction is important in the stability

analysis of the two–fluid equations and in predicting the stability limits of fluidized beds (Koch,

1990; Koch and Sangani, 1999).

Theoretical studies to predict the average fluid–particle force or the drag force are limited to

dilute solid volume fractions and low mean flow Reynolds numbers (Stokes flow regime). Hasi-

moto (1959) obtained an expression for the drag force in Stokes flow past dilute ordered arrange-

ment of spheres by deriving periodic fundamental solutions of the Stokes equations. Later San-

gani and Acrivos (1982) calculated the drag force in Stokes flow past ordered arrays of spheres

over the complete range of volume fraction. In the Stokes flow regime, the Kozeny–Carman
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relation (Carman, 1937) is widely used for packed beds of monodisperse spherical particles.

At low Reynolds numbers Hill et al. (2001a) used lattice Boltzmann simulations to propose

an expression for the drag force in random arrangements of spheres that is valid at all volume

fractions.

At higher Reynolds numbers the nonlinearity of the governing Navier–Stokes equations

together with the randomness in particle configurations make the theoretical analysis of this

problem very difficult. Widely used closures for the average fluid–particle force in engineering

practice are either obtained from pressure drop measurements in packed beds (Ergun, 1952)

or measurements of terminal velocity in sedimenting suspensions (Richardson and Zaki, 1954).

A limitation of these studies is that they are applicable only in the dense regime. Another

closure equation for the drag force that is widely used in CFD simulations of gas–solid flow is

given by Wen and Yu (1966). This drag correlation is convenient to use in CFD simulations

where a range of solid volume fractions and Reynolds numbers are encountered within the

computational domain. Further modifications to the Wen–Yu equation are proposed by various

researchers (Gidaspow, 1986; Syamlal and O’Brien, 1987).

The exponential rise of computing power and advances in numerical methods have made it

possible to perform detailed and accurate numerical simulations of flow past random particle

assemblies at higher Reynolds numbers. Particle–resolved direct numerical simulation (DNS)

is a first–principles approach to developing accurate models for interphase momentum transfer

in gas–solids flow. Since DNS solves the governing Navier–Stokes (NS) equations with exact

boundary conditions at each particle surface, it produces a model–free solution with complete

three–dimensional time–dependent velocity and pressure fields.

Recently, a variety of numerical approaches have been developed for particle–resolved DNS.

These can be broadly classified as those that rely on a body–fitted mesh to impose boundary

conditions at particle surfaces, and those that employ regular Cartesian grids. The body–fitted

methods include the arbitrary Lagrangian Eulerian (ALE) approach (Hu et al., 2001; Nomura

and Hughes, 1992) as well as the method used by Balachandar and co–workers (Bagchi and

Balachandar, 2003, 2004). Also Burton and Eaton (2005) used the overset grid technique to

study the interaction between a fixed particle and decaying homogeneous isotropic turbulence.
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The principal disadvantage with approaches based on body-fitted meshes is that repeated re-

meshing and solution projection are required for moving interfaces.

For methods that employ regular Cartesian grids this need for re-meshing and projection

is eliminated, resulting in much faster solution times for moving particle simulations. Even for

fixed particle assemblies, the wide range of parameters encountered in gas–solids flow and the

need to perform multiple independent simulations (MIS) (due to the random arrangements of

the particles) makes it impractical to use body–fitted meshes. However, because the grid does

not conform to the particle surface, special attention is needed to generate an accurate solution.

Popular methods based on regular Cartesian grids include the fictitious domain method, the

lattice Boltzmann method (LBM), and the immersed boundary method (IBM). The fictitious

domain method with Lagrange multipliers has been developed to solve flow past many moving

particles by several research groups (Patankar et al., 2000; Glowinski et al., 2001; Sharma and

Patankar, 2005; Apte et al., 2009). LBM has been used to simulate flow through a fixed bed of

spheres (Hill et al., 2001a,b; van der Hoef et al., 2005; Beetstra et al., 2007). and for particulate

flows (Ladd and Verberg, 2001; Ten Cate et al., 2004). The immersed boundary method first

proposed by Peskin (1981) is used to simulate flexible boundaries in a flow field. More recently,

several researchers (Uhlmann, 2005; Yusof, 1996; Garg, 2009; Kim and Choi, 2006; Lucci et al.,

2010) have modified IBM to study the interaction between flow and rigid particles. Besides these

widely used techniques, there are other methods such as PHYSALIS (Oguz and Prosperetti,

2001; Takagi et al., 2005; Zhang and Prosperetti, 2003, 2005) that use a general analytic solution

of the Stokes equation in the flow domain close to particle boundaries to impose the no-slip

velocity boundary condition on the particle surface. In this work we describe a particle–resolved

DNS methodology based on the immersed boundary method.

In order to specify a closure for the interphase momentum transfer term, it is natural

to simulate a statistically homogeneous suspension flow with freely moving particles and to

then compute volume–averaged estimates of the average fluid–particle force from the particle

acceleration data. Imposing a pressure gradient that balances the weight of the suspension

leads to a steady momentum balance. In this setup the particle positions and velocities sample

a trajectory in the phase space that corresponds to the specified non–equilibrium steady state of
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the system. However, such freely moving suspensions are computationally prohibitive because

in order to propose drag laws these simulations need to be performed over a range of solid

volume fractions and mean flow Reynolds numbers. However, we note that the Stokes numbers

encountered in typical gas–solid flow applications (e.g., coal particles in air) are usually very

high (∼ O
(
105
)
). A convenient simplification for high Stokes number suspensions is to replace

the ensemble of particle positions and velocities sampled by the system in its nonequilibrium

steady state, by a set of particle configurations and velocities that would result from a granular

gas simulation. Steady flow is simulated past fixed assemblies of particles in configurations

(and with velocities) sampled from this set, and drag laws are obtained by averaging over this

ensemble. The idea of extracting computational drag laws from steady flow past fixed random

assemblies of spheres has been successfully exploited by several researchers (Hill et al., 2001a,b;

van der Hoef et al., 2005; Beetstra et al., 2007).

Hill, Koch and Ladd (Hill et al., 2001a,b) referred to collectively as HKL from hereon,

studied the steady flow past ordered and random arrays of monodisperse spheres. While van der

Hoef et al. (2005) extended HKL’s LBM simulations to account for polydispersity in the Stokes

flow regime, Beetstra et al. (2007) collectively referred to as BVK from hereon, proposed a

drag correlation for mono– and bi–disperse random arrays at higher Reynolds numbers. Yin

and Sundaresan (2009a) proposed a new drag correlation for Stokes flow in fixed assemblies of

monodisperse spheres to account for particle–particle relative motion. All the computational

drag laws for flow past random arrays of spheres discussed so far are based on the lattice

Boltzmann code SUSP3D developed by Ladd (1994a,b).

It is worthwhile to examine the requirements that any particle–resolved DNS approach

should satisfy for specifying a closure for the average interphase momentum transfer term

in gas–solids flow. One of these requirements is the consistency of the DNS approach with

the two–fluid theory of multiphase flow. On each realization of a multiphase flow, the fluid

stress at the particle surfaces generates a surface force density τjinjδ
(
x− x(I)

)
where, τ is

the fluid stress tensor and n is the normal vector pointing into the fluid at a point x(I) on the

particle surface. A similar term appears in the so called whole–domain formulation (Scardovelli

and Zaleski, 1999). Averaging over several realizations (particle configurations) results in the
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expected value of the surface force density which is the average interphase momentum transfer

term
⟨
τjinjδ

(
x− x(I)

)⟩
appearing in the two–fluid theory (Drew, 1983). Consistency of DNS

approach with two–fluid theory requires that the method used to estimate the surface force

density in the DNS should be consistent with the definition of the average interphase momentum

transfer term. Otherwise, the model (drag law) inferred from DNS may not be consistent with

the EE equations that arise from the two–fluid theory.

In the SUSP3D code used by HKL and BVK, a spherical particle is represented by a stair–

step lattice approximation and so the exact value of the particle diameter is not known a priori.

The drag values obtained from SUSP3D simulations are assumed to correspond to an effective

hydrodynamic diameter that is obtained a posteriori by calibrating the simulations against the

analytical solution of Hasimoto (1959) for Stokes flow in a dilute simple cubic arrangement of

spheres. This hydrodynamic diameter depends on the fluid viscosity as well as the particle size.

So the momentum transfer at boundary lattice nodes does not correspond to the force density

at the surface of the particle and the magnitude of this surface force density is calibrated. It has

not been demonstrated that solutions obtained from SUSP3D reconcile with the random–field

multiphase flow theory. It must be noted here that recent developments in LBM have removed

the need for calibrating the hydrodynamic diameter (Ginzburg and d’Humières, 2003).

Another requirement of a particle-resolved DNS approach is to ensure that the simulation

approach results in grid independent solutions. If we take steady incompressible flow past a

single particle at a specified Rem, then the flow solution and drag force should converge as the

grid is progressively refined. It is not established by HKL or BVK that for a given physical

problem corresponding to a fixed Rem and fixed level of compressibility their simulations result

in numerically converged solutions as the lattice spacing is reduced progressively.

In any particle–resolved DNS approach, the grid resolution should be increased with increas-

ing Reynolds number to properly resolve the boundary layers as the boundary layer thickness

δ ∼ D/
√

Rem. Respecting the resolution restrictions of LBM, HKL simulated only unto a

Reynolds number of 100 and progressively refined their grid with increasing Reynolds num-

bers. However, BVK used a constant grid resolution of 21.5 lattice units to simulate Reynolds

numbers ranging from 21 to 1000 at a given volume fraction while the boundary layer thickness
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δ reduces by 30–fold. Clearly, the boundary layers cannot be resolved at this resolution.

Besides consistency and numerical convergence, it is necessary to ensure that the simulation

setup using which the drag law is inferred corresponds to a Galilean–Invariant (GI) transfor-

mation of the original physical problem. Moreover, any DNS code used to infer the drag law

should ensure that the total fluid–particle force obtained by solving the physical problem in

various GI simulation setups should be the same. We discuss the various GI simulation setups

to extract computational drag laws in section 2.7 and show that PUReIBM gives the same so-

lution for all GI setups. We also show that using a non–GI simulation setup leads to erroneous

results and these errors are compounded with increasing Reynolds numbers.

In this work, we study the flow past fixed random assemblies of monodisperse spheres using a

Particle–resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method (PUReIBM).

We present a comprehensive set of drag data for monodisperse gas–solid suspensions using an

incompressible NS solver. In PUReIBM flow solution is obtained on a structured Cartesian

grid but, the particle surface is discretized in spherical coordinates and the total force exerted

by the fluid on the particle is computed directly from the stress tensor at the particle sur-

face. This feature enables us to compare the DNS solution with any random–field theory of

multiphase flow. In section 2.2 we derive the ensemble–averaged two–fluid equations and in

section 2.3 we show that the numerical equations solved in PUReIBM are consistent and can

be reconciled with the equations of two–fluid theory. We describe the simulation methodology

and the relevant numerical parameters in section 2.4. In section 2.5 we establish the spatial and

temporal convergence of PUReIBM solutions. The PUReIBM solver is validated for several

test cases in section 2.6. We compare various Galilean Invariant simulation setups that can be

used to extract computational drag laws in section 2.7 and show that PUReIBM results in a

Galilean Invariant solution to the physical problem of flow past a fixed assembly of spheres. In

section 2.8.1 we compare the average fluid–particle force and the velocity and pressure fields

obtained from PUReIBM simulation of flow past a random configuration of spheres (ϕ = 0.4

and Rem = 100) with those obtained from solving the same problem with a body-fitted grid

using the ANSYS–FLUENT CFD package.

As discussed earlier, in PUReIBM the force acting on the sphere is computed by integrating



26

Figure 2.1 A schematic of a realization of gas-solid flow showing a statistically homogeneous

assembly of particles in a representative region V, bounded by surface ∂V. The

region V is composed of the region Vf occupied by the fluid phase that is bounded

by the surface ∂Vf , and the region Vs occupied by the solid phase that is bounded

by the surface ∂Vs, such that V = Vs ∪ Vf . The boundary ∂V is decomposed

as ∂V = ∂Vext
s ∪ ∂Vext

f , where ∂Vext
s = ∂V ∩ ∂Vs (shown by curly braces) is the

domain boundary cut by the solid particles, and ∂Vext
f = ∂V∩∂Vf (shown by dashed

lines) is the remaining domain boundary. The boundary of the solid–phase can be

expressed as the union of external and internal boundaries ∂Vs = ∂Vext
s ∪ ∂V int,

where ∂V int (shown by solid lines) is the bounding surface of the solid particles in

contact with the fluid. Similarly, the boundary of the fluid–phase can be expressed

as ∂Vf = ∂Vext
f ∪ ∂V int.

the pressure and viscous stresses separately over the particle surface and it is possible to inves-

tigate their relative contributions to the drag force. In section 2.8.2 we discuss the normalized

pressure and viscous contributions to the total drag and their dependence on volume fraction

and mean flow Reynolds number. We also investigate the local profiles of pressure and viscous

forces along the surface of the sphere. A new correlation for the average fluid–particle force

in random arrays of monodisperse spheres is presented in section 2.9. Finally, section 2.10

summarizes the principal findings of this work.

2.2 Governing Equations

A schematic describing the problem of flow past a random assembly of particles is shown

in figure 2.1.
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For incompressible flows, the mass and momentum conservation equations for the fluid-

phase are

∂ui
∂xi

= 0, (2.1)

and

ρf
∂ui
∂t

+ ρf
∂uiuj
∂xj

= −gi +
∂τji
∂xj

, (2.2)

respectively, where ρf is the thermodynamic density of the fluid-phase. In (2.2), g represents the

body forces (hydrostatic pressure gradient, acceleration due to gravity etc) acting throughout

the volume of an infinitesimal fluid element, while τ represents the surface stresses (both

pressure and viscous stresses) acting on the surface of an infinitesimal fluid element, so that

∂τji
∂xj

= −g′i + µf
∂2ui
∂xj∂xj

(2.3)

where, µf is the dynamic viscosity of the fluid and g′ is the gradient in the pressure acting on

the surface of a fluid element. At the particle-fluid interface, the no–slip and no–penetration

(for impermeable surfaces) boundary conditions require the relative velocity between fluid and

solid to be zero. We note that equations (2.1) and (2.2) together with the boundary conditions

are true for a single realization of a gas–solid flow, and are valid only in the region Vf occupied

by the fluid.

It is worthwhile to derive equations that are valid in the whole region V because such

equations are the starting point for the derivation of ensemble–averaged equations. Since

particle–resolved DNS methods that employ Cartesian grids solve the governing equations in

the entire computational domain, we can relate the numerical formulation with the governing

equations that are valid in the entire physical domain.

The momentum conservation equation valid in the entire domain is obtained by multiply-

ing equation (2.2) by the fluid–phase indicator function If (x, t) which is unity if the point

x lies in the fluid–phase and zero otherwise. The indicator function obeys the topological

equation (Drew, 1983):

∂If
∂t

+ U
(I)
j

∂If
∂xj

= 0 (2.4)

where, U(I) is the velocity of the fluid–particle interface. This equation simply states that

the indicator function is convected by the velocity of the fluid–particle interface. Using the
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topological equation (2.4) and multiplying (2.2) with If one obtains:

ρf
∂Ifui
∂t

+ ρf
∂Ifuiuj
∂xj

= −Ifgi + ρfui

(
uj − U

(I)
j

) ∂If
∂xj

+
∂Ifτji
∂xj

− τji
∂If
∂xj

. (2.5)

The second term on the right hand side of (2.5) represents momentum source due to the

difference between the interface velocity and the velocity of the fluid at the fluid–particle

interface, which occurs in two–phase flows with interphase mass transfer, e.g. vaporization.

Since we consider gas–solids flow with no mass transfer at the interface, this term is zero.

The gradient of the indicator function ∂If/∂xj can be expressed as −n(f)j δ
(
x− x(I)

)
(Drew,

1983), where n(f) is the unit normal vector pointing outward from the fluid surface into the

particle, and δ
(
x− x(I)

)
is a generalized delta function 1 at the fluid–particle interface x(I).

Substituting the definition of the gradient of the indicator function into (2.5), the momentum

conservation equation valid in the entire domain is:

ρf
∂Ifui
∂t

+ ρf
∂Ifuiuj
∂xj

= −Ifgi +
∂Ifτji
∂xj

− τjin
(s)
j δ

(
x− x(I)

)
. (2.6)

In the above equation n(s) is the normal vector pointing outward from the particle surface

into the fluid, i.e. n(s) = −n(f). The last term on the right hand side of (2.6) namely,

−τjin(s)j δ
(
x− x(I)

)
is the surface force density and it represents momentum transfer at the

fluid–particle interface. We will show in the following section that the average of the surface

force density appears as an unclosed term in the ensemble–averaged equations that can be

quantified by particle–resolved DNS. Equation (2.6) is similar to the momentum conservation

equation solved in the whole–domain formulation of Scardovelli and Zaleski (1999). There are

several ways to solve (2.6) and particle–resolved DNS methodologies differ in the procedure

used to compute the surface force density. We now derive the ensemble–averaged two–fluid

equations corresponding to mass and momentum conservation and identify the unclosed terms.

2.2.1 Ensemble–averaged two–fluid equations

In the Eulerian two-fluid theory, phasic averages are defined as averages conditional on the

presence of fluid or solid phase. If Q (x, t) is any field, then its phasic average
⟨
Q(f)

⟩
(x, t)

1The generalized delta function δ(d),(k)(x − x(I)) allows the representation in R(d) of quantities defined in
R(k), k < d. The dimensions of the generalized delta functions are Lk−d. In this case d = 3 and k = 2, so the
delta function has dimensions L−1 and hence it allows the surface force density to be written as an interphase
momentum transfer term in R(3).
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referred to as its fluid-phase mean, is defined as:

⟨
Q(f)

⟩
(x, t) =

⟨If (x, t)Q (x, t)⟩
⟨If (x, t)⟩

(2.7)

where If is the indicator function described earlier. The solid-phase mean
⟨
Q(s)

⟩
(x, t) is

similarly defined.

The mean momentum conservation equation in the fluid phase (Drew, 1983; Pai and Sub-

ramaniam, 2009) can be derived by ensemble–averaging (2.6) resulting in

∂

∂t

{
ρf (1− ϕ)

⟨
ui

(f)
⟩}

+
∂

∂xj

{
ρf (1− ϕ)

⟨
ui

(f)
⟩⟨

uj
(f)
⟩}

=− (1− ϕ)
⟨
g
(f)
i

⟩
− ∂

∂xj

{
ρf

⟨
Ifu

′′(f)
i u

′′(f)
j

⟩}
+

⟨
∂Ifτji
∂xj

⟩
−
⟨
τjin

(s)
j δ

(
x− x(I)

)⟩
, (2.8)

where, u
′′(f)
i = ui −

⟨
ui

(f)
⟩
denotes the fluctuations in the fluid velocity field with respect to

the phase–averaged fluid velocity and ϕ = ⟨Is⟩ is the average volume fraction of the solid phase

and (1− ϕ) is the average volume fraction of the fluid phase. The terms on the right hand

side are the average body force density, the transport of fluid–phase velocity fluctuations, and

the average interphase momentum transfer respectively, of which the last two are the unclosed

terms that need to be modeled.

In this work we perform particle–resolved DNS of statistically homogeneous suspensions to

model the average interphase momentum transfer. For a statistically homogeneous suspension

the average quantities do not depend on x and hence the convective term on the left hand side

of (2.8), and the transport of fluid–phase velocity fluctuations on the right hand side are zero.

Therefore, the phasic averaged fluid velocity evolves as:

∂

∂t

{
ρf (1− ϕ)

⟨
ui

(f)
⟩}

=− (1− ϕ)
⟨
g
(f)
i

⟩
−
⟨
τjin

(s)
j δ

(
x− x(I)

)⟩
. (2.9)

The mean fluid velocity reaches a steady state when the average interphase momentum transfer

balances the body forces like gravity or an imposed pressure gradient:

(1− ϕ)
⟨
g
(f)
i

⟩
= −

⟨
τjin

(s)
j δ

(
x− x(I)

)⟩
. (2.10)
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As noted earlier
⟨
τjin

(s)
j δ

(
x− x(I)

)⟩
is the unclosed average interphase momentum transfer.

We now describe how this quantity can be computed from solution of flow past statistically

homogeneous suspensions using particle–resolved DNS.

2.2.2 Quantifying average interphase momentum transfer from particle–resolved

DNS

In particle–resolved DNS, statistically homogeneous suspension is approximated by flow

past a random configuration of particles in a periodically repeating unit cell. Let u (x, t;ω)

be the velocity field obtained from particle–resolved DNS of flow past a random configura-

tion of particles represented by the positions and velocities
{
X(i),V(i), i = 1, . . . , Np

}
of Np

particles. This configuration represents a realization ω in the sample space Ω of all possi-

ble configurations. The ensemble–averaged velocity field or the mathematical expectation is

defined as (Subramaniam, 2000):

⟨u⟩ (x, t) =
∫
Ω

u (x, t;ω) dPω, (2.11)

where Pω is the probability measure that is defined on Ω. If the flow is statistically homoge-

neous, ensemble–averaged quantities can be approximated by taking the volumetric mean of

the solution fields, e.g. the volumetric mean of the velocity field over the fluid region is defined

as:

⟨
u(f)

⟩
V
(t;ω) =

1

Vf

∫
V

If (x, t;ω)u (x, t;ω)dV, (2.12)

where Vf is the volume of the region occupied by the fluid–phase. The volumetric mean

approaches the ensemble average in the limit of infinite box size (i.e., V → ∞). A reasonable

approximation is obtained with finite box size provided the two–point correlations in the particle

and the fluid phases decay to zero within the box length2. However, in order to account for

the statistical variability arising from different particle configurations, we require very large

box sizes. Especially for dilute suspensions, since average quantities in the particle phase

2This is simply the two–phase extension of the criterion given by Pope (2000) for single–phase turbulent
flows.
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(such as the average fluid–particle force) converge to their expected values as 1/
√
NP , this

requirement can be computatinally prohibitive. In order to accurately estimate the ensemble–

averaged interphase momentum transfer from finite box sizes, two approaches are available:

(i) simulate freely evolving suspensions and use time–averaging to calculate estimates with

statistically stationary flows or, (ii) simulate fixed particle assemblies and average over different

configurations. The choice of approach depends on the nature of the problem.

For fixed particle assemblies, the ensemble–average can be estimated by averaging over

different configurations or realizations i.e.,{
u(f)

}
V,M

(t) =
1

M

M∑
µ=1

⟨
u(f)

⟩
V
(t;ωµ). (2.13)

In the above equation
{
u(f)

}
V,M denotes an estimate to the true expectation

⟨
u(f)

⟩
and M de-

notes the number of independent configurations. For freely evolving suspensions of statistically

stationary flow, the ensemble–averaged quantities can be estimated using time–averaging:

{
u(f)

}
V,T

=
1

T

t0+T∫
t0

⟨
u(f)

⟩
V

(
t′
)
; dt′. (2.14)

In either case, the evolution equation for the volumetric mean fluid velocity can be derived

by integrating (2.6) over the entire region V to give:

ρfVf
d
⟨
u
(f)
i

⟩
V

dt
+ ρf

∮
∂V

(Ifuiuj)nj dA =− Vf

⟨
g
(f)
i

⟩
V
+

∮
∂V

(Ifτji)nj dA

−
∮
∂V int

τjin
(s)
j dA (2.15)

where n is the unit normal vector pointing away from the domain. In deriving the above

equation, we used the Gauss–divergence theorem and properties of the gradient of the indicator

function under the integral operator (Drew, 1983). The second term on the left hand side

denotes the net convective flux entering the domain while the second term on the right hand

side side denotes the net diffusive flux and surface pressure acting on the domain. Due to

periodic boundaries these terms are zero. Thus the conservation of momentum averaged over

the fluid region reads:

ρf (1− ϕ)
d
⟨
u
(f)
i

⟩
V

dt
= − (1− ϕ)

⟨
g
(f)
i

⟩
V
− 1

V

∮
∂V int

τjin
(s)
j dA. (2.16)
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In writing this equation we used the property that for a statistically homogeneous suspension,

the volume fraction of the fluid phase is given by (1− ϕ) = Vf/V . The volumetric mean fluid

velocity attains a steady value when the surface stresses acting on the fluid–particle interface

balance the body forces i.e.,

(1− ϕ)
⟨
g
(f)
i

⟩
V
= − 1

V

∮
∂V int

τjin
(s)
j dA. (2.17)

Equation (2.17) is the DNS counterpart of the ensemble–averaged momentum balance (2.10),

and it is clear that under the assumption of statistical homogeneity the average interphase

momentum transfer term can be estimated using the volumetric mean of surface stresses. We

now describe how this momentum balance is accomplished for flow past fixed particle assemblies

neglecting the effect of gravity. The corresponding formulation for flow past freely evolving gas–

solid suspensions has been discussed by Tenneti et al. (2010b).

2.2.3 Fixed particle assemblies

There are two approaches to set up the problem of flow past fixed particle assemblies. We

can impose a constant pressure gradient across the domain, in which case,
⟨
g(f)

⟩
V is known a

priori and the volume–averaged fluid velocity evolves to reach a steady state corresponding to

the imposed pressure gradient. Another approach is to specify a desired volumetric flow rate and

the volume–averaged pressure gradient
⟨
g(f)

⟩
V is adjusted to maintain the specified flow rate.

The physical problem corresponding to both these approaches can be simulated in any particle–

resolved DNS methodology. Hill et al. (2001b) proposed their LBM–based drag correlation by

imposing a known constant pressure gradient. In our simulations using PUReIBM DNS, we

specify the desired flow rate and obtain the pressure gradient as an output. In the following

section we describe the governing equations in our numerical method and show that the volume–

average estimate of the average interphase momentum transfer obtained from the simulations

is consistent with the two–fluid theory.
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2.3 Solution Approach

In PUReIBM, we employ Cartesian grids and solve the mass and momentum conservation

equations on all the grid points (including those lying inside the particles). A fictitious flow

is generated inside the particles that does not affect the exterior flow solution. The mass and

momentum conservation equations that are solved in PUReIBM are

∂ui
∂xi

= 0 , (2.18)

and

ρf
∂ui
∂t

+ ρfSi = −gIBM,i + µf
∂2ui
∂xj∂xj

+ fu,i, (2.19)

respectively, where gIBM is the pressure gradient, S = ∇ · (uu) is the convective term in

conservative form, and u is the instantaneous velocity field. In the momentum conservation

equation (cf. 3.10), fu is the additional immersed boundary (IB) force term that accounts for

the presence of solid particles in the fluid-phase by ensuring the no–slip and no–penetration

boundary conditions at the particle–fluid interface.

The surface of the solid particle is represented by a discrete number of points called bound-

ary points. For spherical particles, the boundary points are specified by discretizing the sphere

in spherical coordinates. In figure 3.3, a schematic describing the computation of the IB

forcing is shown for the equitorial plane passing through the spherical particle. Another set of

points called exterior points are generated by projecting these boundary points onto a sphere

of radius r + ∆r, where r is the radius of the particle (see exterior point represented by an

open circle on the dashed line in figure 3.3). Similarly, the boundary points are projected onto

a smaller sphere of radius r−∆r and these points are called interior points. In our simulations

∆r is taken to be same as the grid spacing. The IB force is computed at the interior points.

At these points the fluid velocity is forced in a manner similar to the ghost cell approach used

in standard finite-difference/finite-volume based methods (Patankar, 1980). Specifically for the

case of zero solid particle velocity, the velocity at the interior points is forced to be equal in

magnitude but opposite in direction of the fluid velocity at the corresponding exterior points.

Velocities at the exterior and interior points are obtained by interpolating the velocities from
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Figure 2.2 A schematic showing the computation of the immersed boundary forcing for a

stationary particle. The solid circle represents the surface of the particle at r.

Open dot shows the location of one exterior point at r + ∆r (only one exterior

point is shown for clarity, although there is one exterior point for each interior

point) and filled dots show the location of interior points at r − ∆r where the

immersed boundary forcing is computed. For the special case of a stationary

particle, the velocity at the interior points is forced to be the opposite of the

velocity at the corresponding exterior points. In the schematic, unen represents

the normal velocity and utet represents the tangential velocity at the exterior point.
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the neighboring grid nodes. The computation of IB forcing is similar to the direct forcing

method proposed by Yusof (1996). The IB forcing at the n+ 1th time-step is specified to can-

cel the remaining terms in the momentum conservation, and to force the velocity to its desired

value ud at the interior points:

fn+1
u,i = ρf

udi − uni
∆t

+ ρfS
n
i + gnIBM,i − µf

∂2

∂xj∂xj
uni . (2.20)

The IB forcing at the interior points is then interpolated to the neighboring grid nodes that

do not include grid nodes in the fluid phase. It is noteworthy that the discretization of the

sphere in spherical coordinates is independent of the grid resolution and hence to some extent,

decouples the grid resolution from the accuracy with which the boundary condition is imposed.

The distinctive feature of PUReIBM is that the surface force density is directly calculated

from the surface values of the velocity and pressure fields obtained from the unmodified Navier–

Stokes equations in the fluid phase. This feature of PUReIBM distinguishes it from the so–called

diffuse interface methods (Uhlmann, 2005; Yusof, 1996) where the IB forcing is computed on

the surface of the particle and then interpolated to the neighboring grid nodes that could also lie

in the fluid-phase. They are called diffuse–interface methods because the surface force density

is smeared into the fluid–phase.

The governing equations in PUReIBM (cf. 3.9 and 3.10) are solved by imposing periodic

boundary conditions on fluctuating variables that are now defined. The velocity field is de-

composed into a spatially uniform mean flow that is purely time–dependent and a fluctuating

velocity field u′ that is periodic, i.e.,

u (x, t) = ⟨u⟩V (t) + u′ (x, t) , (2.21)

where the volumetric mean velocity

⟨u⟩V (t) =
1

V

∫
V

u (x, t) dV, (2.22)

is obtained by averaging the velocity field over the entire computational domain. Similar de-

compositions can be written for the non-linear term S, pressure gradient g, and immersed

boundary forcing fu terms. Substituting the above decompositions in the mass (cf. 3.9) and
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momentum (cf. 3.10) conservation equations, followed by averaging over the entire computa-

tional domain yields the volume averaged mass and momentum conservation equations. Since

the volumetric means are independent of spatial location, mean mass conservation is trivially

satisfied. The mean momentum conservation equation in the whole domain becomes

ρf
d ⟨ui⟩V
dt

= −⟨gIBM,i⟩V + ⟨fu,i⟩V , (2.23)

where the volume integrals of convective and diffusive terms are zero because of periodic bound-

ary conditions. The mean IB forcing term ⟨fu⟩V is computed by volume–averaging the IB force

specified by (3.11) over the region V. As noted earlier, the mean pressure gradient ⟨gIBM⟩V is

computed such that we obtain the desired flow rate.

While mean mass conservation is trivially satisfied, the fluctuating velocity field needs to

be divergence free, i.e.,

∂u′i
∂xi

= 0. (2.24)

Subtracting the mean momentum conservation equation (3.14) from the instantaneous momen-

tum conservation equation (3.10) yields the following equation for the fluctuating velocity:

ρf
∂u′i
∂t

+ ρfS
′
i = −g′i + µf

∂2ui
∂xj∂xj

+ f ′u,i (2.25)

Taking the divergence of the above equation and using equation (2.24) results in the following

modified Poisson equation for the fluctuating pressure gradient:

∂g′IBM,i

∂xi
=
∂f ′u,i
∂xi

− ρf
∂S′

i

∂xi
(2.26)

The conservation equations (3.14)–(2.26) are solved on every grid point (including those inside

the solid particles) to yield the flow around immersed bodies that satisfies the no–slip and

no–penetration boundary conditions. In the following section we derive the evolution equation

for the velocity averaged over the fluid–phase using the PUReIBM governing equations and

show that PUReIBM is reconcilable with the two–fluid theory.

2.3.1 Conservation of mean momentum in the fluid–phase

The mean momentum conservation equation in the fluid–phase is derived by averaging the

PUReIBM momentum conservation equation (cf. 3.10) over the fluid region. When performing
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volume–averaging one has to account for discontinuities in the stresses at the particle–fluid

interfaces. The conservation of fluid–phase mean momentum reads:

ρf (1− ϕ)
d
⟨
u
(f)
i

⟩
V

dt
= − (1− ϕ) ⟨gIBM,i⟩V − 1

V

∮
∂V int

τjin
(s)
j dA. (2.27)

We can see that the above equation is identical to (2.16) and thus we conclude that PUReIBM

is consistent with the two–fluid theory. Note that when we average the PUReIBM momentum

conservation equation (cf. 3.10) over the fluid region, the average of IB forcing over the fluid

region is zero since the IB forcing is non–zero only inside the particles. In IBM implementations

where the IB forcing is finite in the fluid–phase (Yusof, 1996; Uhlmann, 2005), an extra term

in the form of fluid–phase volume average of the IB forcing
⟨
f (f)u

⟩
V
will appear in (2.27).

The mean pressure gradient ⟨gIBM⟩V required to obtain a desired fluid-phase mean velocity⟨
u(f)

⟩d
V , is computed using an explicit time discretization of (2.27) such that at the nth time

step the mean pressure gradient is given by

−⟨gIBM⟩nV = ρf

⟨
u(f)

⟩d
V −

⟨
u(f)

⟩n
V

∆t
+

1

(1− ϕ)V


∮

∂V int

τ
(n)
ji n

(s)
j

 dA, (2.28)

where all quantities in the integrand are evaluated on the fluid side of the fluid-particle interface,

and the superscript n implies the relevant quantities at the nth time step. This equation is

obtained by requiring that
⟨
u(f)

⟩n+1

V
=
⟨
u(f)

⟩d
V
, so that the first term on right hand side

drives the volume-averaged mean fluid velocity to its desired value. The equations are evolved

in time until the volume–averaged quantities reach a steady state, at which point the first term

on the right hand side of (2.28) is negligible, and consequently (2.28) reduces to the numerical

counterpart of (2.17). This establishes that the resulting numerical solution to the PUReIBM

governing equations is a valid numerical solution to steady flow past homogeneous particle

assemblies.

The numerical scheme used in PUReIBM is a primitive-variable, pseudo-spectral method,

using a Crank-Nicholson scheme for the viscous terms, and an Adams-Bashforth scheme for

the convective terms. A fractional time-stepping method that is based on Kim and Moin’s

approach (Kim and Moin, 1985) is used to advance the velocity and pressure fields in time.
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Kim and Moin’s algorithm involves a predictor step followed by a corrector step. The velocity

field obtained from the predictor step need not be divergence free. Therefore, a corrector

step is required so that the velocity is divergence free. Since PUReIBM uses this approach,

the maximum divergence of the velocity field obtained at any time step is of the order of

machine precision. A common criticism of this method is that due to the divergence correction

the corrected velocity field does not satisfy the desired boundary condition (Muldoon and

Acharya, 2008). Although the divergence correction changes the velocity of the particle surface

at every time step, the velocity correction at steady state is of the order of 10−10. Therefore,

once steady state is reached the fluid velocity at the particle surface does not change at all.

In our simulations, the maximum difference between the corrected surface velocity and the

desired boundary velocity at steady state is found to be less than 10−3. Since only steady flows

are considered in this work, it suffices to ensure that the velocity field obeys the continuity

equation. The numerical method described in this work must be modified appropriately to

obtain time–accurate solutions for unsteady flows.

2.4 Simulation Methodology

We now describe how the mean flow Reynolds number and solid volume fraction are specified

in the simulation. For flow past homogeneous particle assemblies, a Reynolds number based

on the magnitude of mean slip velocity between the two phases is defined as

Rem =
|⟨W⟩| (1− ϕ)D

νf
, (2.29)

where |⟨W⟩| =
∣∣⟨u(f)

⟩
−
⟨
u(s)

⟩∣∣ is the magnitude of the mean slip velocity, D is the particle

diameter, and
⟨
u(f)

⟩
and

⟨
u(s)

⟩
are the mean velocities in the fluid and solid phases respectively.

For the purpose of generating drag correlations it is more convenient to specify the mean flow

Reynolds number as input to the simulations, rather than the mean pressure gradient. For

fixed particle assemblies
⟨
u(s)

⟩
= 0 and the desired fluid-phase mean velocity

⟨
u(f)

⟩
is known

in terms of the input Reynolds number and other physical properties.

Particles are initialized corresponding to a specified mean solid volume fraction ϕ. For

ordered arrays (where a unit cell is simulated) this is accomplished by simply varying the ratio
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of the computational box length L to the particle diameter D. For random assemblies, the

particles are fixed in a random equilibrium configuration they attain following elastic collisions

(in the absence of ambient fluid) starting from a lattice arrangement with a Maxwellian ve-

locity distribution. The elastic collisions are simulated using a soft–sphere discrete element

model (Cundall and Strack, 1979; Garg et al., 2010a). The pair correlation function at equilib-

rium specifies the particle configuration for random assemblies.

2.4.1 Numerical parameters

The computational domain used is a cube with sides of length L which is discretized using a

regular Cartesian grid with M grid cells in each direction so that ∆x = L/M is the size of each

grid cell. The spatial resolution is represented by the number of grid cells across the diameter

of a particle, which is denoted Dm = D/∆x. For ordered arrays the ratio of computational

box length L to the particle diameter D is not an independent parameter since L corresponds

to a unit cell of the lattice arrangement and is determined by the volume fraction ϕ. Thus Dm

is the only relevant numerical parameter in the simulations of ordered arrays.

For random arrays, the ratio L/D is an independent parameter. The minimum box length

is determined by the criterion that the spatial autocorrelation of flow statistics must decay to

zero within the box. This is to prevent the periodicity of the numerical solution from leading to

unphysical flow fields. The numerical parameter L/D also determines the number of particles

Np in the box such that for a given volume fraction ϕ it is given by

Np =

[
6ϕ

π

(
L

D

)3
]

(2.30)

where, the square brackets denote the nearest integer.

The number of grid cells M along each axis of the computational box determines the

computational cost of the problem that scales as M3. It is related to the grid resolution

parameter Dm and the box length to particle diameter ratio, L/D as follows

M =
L

∆x
=
L

D
Dm. (2.31)

This relation shows that for fixed computational cost, there is a tradeoff between spatial resolu-

tion and box size which determines the effect of periodic boundary conditions on the numerical
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solution through L/D.

The solution algorithm is advanced in pseudo-time from specified initial conditions to steady

state using a time step ∆t that is chosen as the minimum of the convective and viscous time

steps according to the criterion

∆t = CFL×min

{
∆x

umax
,
∆x2 (1− ϕ)

νf

}
. (2.32)

At the beginning of the simulation we set umax =
∣∣⟨u(f)

⟩∣∣, and as the flow evolves umax is set

to the magnitude of the maximum fluid velocity so that the time step adapts itself to satisfy

the above criterion.

Both spatial and temporal discretization contribute to numerical error in the estimation of

the drag force. However, for steady flows the numerical error is determined solely by the spatial

resolution parameter ∆x/D = 1/Dm, which must be sufficiently small to ensure numerically

converged results. The influence of these numerical parameters—the grid resolution parameter

Dm, the ratio of computational box length to particle diameter L/D, and the number of solid

particles Np—on the numerical convergence of PUReIBM simulations is discussed in the next

section.

2.4.2 Estimation of mean drag from simulations

Direct numerical simulation of flow through a particle assembly using PUReIBM results in

velocity and pressure fields on a regular Cartesian grid. In PUReIBM the drag force on the

ith particle, F
(i)
d = m(i)A(i), is reported by integrating the viscous and pressure forces exerted

by the fluid on the particle surface and not from the IB forcing. The average drag force on

particles in a homogeneous suspension for µth realization is computed as

{Fd}µV =
1

Np

{
−⟨gIBM⟩V Vs −

∮
∂Vs

ψdA+ µf

∮
∂Vs

∇u · dA
}
. (2.33)

In the above equation the first term on the right hand side is the body force due to mean

pressure gradient, the second term is the drag force due to fluctuating pressure field, and the

third term is the viscous contribution to the drag force. The pressure and viscous contributions

to the drag force are obtained by integrating the pressure and viscous stresses over the surface
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of each particle. To perform this integration, the pressure and viscous stresses are interpolated

to the boundary points (see figure 3.3) from the surrounding grid nodes and the force acting

on the boundary point is computed by multiplying the interpolated fluid stress with the area

associated with the boundary point. Summation of the forces acting on all the boundary points

of the particle gives the force acting on it. The sum of the last two terms on the right hand

side of Eq. (2.33) is the exact numerical representation of the expectation of the surface force

density. Thus, we conclude that the drag law inferred from PUReIBM simulations is consistent

with the two–fluid theory. It should be noted that HKL proposed their correlation for the total

fluid–particle force (cf. 2.33) whereas van der Hoef et al. (2005) and BVK subtracted the

contribution of mean pressure gradient to propose their drag correlation.

The simulation is carried out until the average drag force per particle reaches a steady state.

The difference in the drag values of successive time steps is monitored and a moving average of

this difference is calculated over 10% of the time required for the fluid to travel the length of

the box. If this moving average is less than a threshold (1× 10−6 in most of the simulations),

we conclude that the drag has reached its steady value. Although some unsteadiness has

been observed in the velocity field particularly for volume fractions less than 0.2, there is no

noticeable unsteadiness in the mean drag.

The mean drag force represents an average over all particle configurations corresponding

to the same volume fraction and pair correlation function. Therefore, the drag from a single

realization (cf. 2.33) is averaged over multiple independent realizations (MIS) to obtain an

estimate for the ensemble-averaged drag:

{Fd}V,M =

M∑
µ=1

{Fd}µV

M
. (2.34)

which converges to the true expectation of the drag force in the limit NpM → ∞. The

ensemble-averaged drag force is later reported as a normalized average drag force given by

F =
{Fd}V,M
FStokes

, (2.35)

where FStokes = 3πµfD (1− ϕ) |⟨W⟩| is the Stokes drag acting on an isolated sphere moving

with a slip velocity of (1− ϕ) |⟨W⟩|. The number of multiple independent simulations M is
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Figure 2.3 Convergence characteristics of drag force due to fluctuating pressure gradient (open

symbols) and viscous stresses (filled symbols) for FCC arrays at Rem = 40 with

grid resolutionDm for two CFL values of 0.2 (squares) and 0.05 (triangles). Volume

fraction ϕ is equal to 0.2 in (a) and 0.4 in (b).

determined by the requirement that the total number of samples MNp in the estimate for the

average force given by (2.34) be sufficiently large to ensure low statistical variability.

2.5 Numerical Convergence

In this section we investigate the influence of the numerical parameters discussed in the

previous section on PUReIBM simulations. We first examine the influence of the grid resolution

parameter Dm and the time step ∆t. We study steady flow past an ordered array of particles

in a FCC lattice arrangement, because for this case the only numerical parameter is the grid

resolution Dm. Although we consider steady flows, we also verify that the steady value of

the drag does not change with the time step chosen to evolve the flow in pseudo time from a

uniform flow initial condition.

For a face centered cubic (FCC) arrangement of particles (ϕ = 0.2 , Rem = 40), figure 2.3(a)

shows the convergence characteristics of drag forces due to fluctuating pressure gradient (open

symbols) and viscous stresses (filled symbols) as a function of grid resolution Dm for two

different values of CFL equal to 0.2 (squares) and 0.05 (triangles). Figure 2.3(b) shows the
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Figure 2.4 Convergence characteristics of drag force due to fluctuating pressure (open sym-

bols) and viscous stresses (filled symbols) for FCC arrays at Rem = 300 with grid

resolution Dm. Volume fraction ϕ is equal to 0.2.

same convergence characteristics for a denser FCC arrangement with a solid volume fraction

of 0.4 and Rem = 40. In both figures it can be seen that the PUReIBM simulation result is

nearly independent of the time step (CFL). The figures show that the resolution requirements

increase with increasing volume fraction. We conclude that a minimum resolution ofDm = 40 is

needed for converged results at ϕ = 0.2, while a minimum resolution of Dm = 60 is required for

ϕ = 0.4. These values are based on relative error in the normalized force that can be calculated

based on the normalized force values obtained on the finest grid resolution. If the relative error

is less than 2%, the values are considered grid converged. Based on this criterion, Dm = 40

and Dm = 60 are considered grid converged resolutions for solid volume fractions 0.2 and 0.4,

respectively. It is noted that in the simulations for ordered arrays presented in section 2.6 we

used much higher resolutions (Dm = 60 for ϕ = 0.2 Dm = 80 for ϕ = 0.4). In addition to the

dependence of grid resolution on volume fraction, higher mean flow Reynolds numbers require

progressively higher grid resolution. Figure 2.4 shows the convergence characteristics for FCC

arrays at a volume fraction of 0.2 and Rem = 300. As expected the resolution required for a

numerically converged result is higher compared to that required for Rem = 40 at the same

volume fraction of 0.2.
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For random arrays, in addition to errors arising from finite grid resolution, there is statis-

tical variability between different realizations and the box length is an independent numerical

parameter. The choice of L/D is determined by two requirements: (i) spatial autocorrelation

of velocity should decay within the box length and (ii) there should be sufficient number of

particles in the box for a statistically reliable estimate of the average normalized force.

An initial estimate for the minimum box length required can be found from the Brinkman

screening length. Brinkman screening is the phenomenon whereby the fluid velocity disturbance

produced by each particle is decreased due to the force exerted by the fluid on the neighboring

particles. It plays a crucial role in limiting the range of fluid velocity correlations. The length

scale lb over which the fluid correlations decay is termed the Brinkman screening length (Hinch,

1977; Hill et al., 2001a) and it decreases with increasing volume fraction (lb ∼ O
(
D/
(
2
√
ϕ
))
).

Decay of the fluid velocity autocorrelation ρu (r) which is defined as

ρu (r) =

⟨
If (x)u

′′(f) (x) · If (x+ r)u′′(f) (x+ r)
⟩⟨

Ifu′′(f) · u′′(f)
⟩ , (2.36)

for steady flow past a random configuration of spheres (ϕ = 0.2), is shown in figure 3.7(b) for

two values of mean flow Reynolds numbers (Rem = 20, 300). For both Reynolds numbers,

the fluid velocity autocorrelation function decays to zero around x = 0.2L, while the estimate

for Brinkman screening length is 0.15L. Thus the Brinkman screening length can be used as a

good estimate to determine the required box length. However, if we choose a box length that is

comparable to or slightly greater than the Brinkman screening length, we get very few spheres

in the box and this leads to high statistical variability in the drag force. The box lengths that

we choose to perform the PUReIBM simulations are much larger than the Brinkman screening

lengths and we have used values from past LBM simulations as a guideline.

In summary, these numerical convergence test results show that the PUReIBM simulations

yield grid-independent values for the mean drag. These results are also independent of the

choice of time step used to advance the solution in pseudo time, provided the stability criterion

is met. A satisfactory number of MIS should ideally be determined by determining the min-

imum number of samples for a given level of statistical error in the force estimate. However,

this quantity is a strong function of Rem and solid volume fraction. To report estimates for
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Figure 2.5 Decay of the fluid velocity autocorrelation function (cf. Eq. 3.17) obtained from

PUReIBM simulation of steady flow past a random configuration of spheres at a

solid volume fraction of 0.2 and mean flow Reynolds numbers 20 (squares) and 300

(triangles). In these simulations L/D ratios of 6 and 4.5 are used for Reynolds

numbers 20 and 300 respectively.

the average normalized force for random arrays, we used 5 MIS at all volume fractions and

Reynolds numbers. Clearly, the requirements of minimum L/D, minimum Dm, and minimum

M, together dictate a trade-off for a fixed level of computational work. Of these parameters,

our tests reveal that the numerical error in PUReIBM exhibits the highest sensitivity to grid

resolution Dm.

2.6 Numerical Tests

PUReIBM has been validated by comparing the drag force obtained from simulations of

flow past an isolated sphere with the single sphere drag correlation given by Schiller and Nau-

mann (1935) (see Garg et al. (2011)). Since it is difficult to find an experimental data set to

validate simulations of dense suspensions that use periodic boundary conditions, we compare

our results with previous numerical or analytical works. We compare the drag force obtained

from PUReIBM simulations for the following test cases:
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1. Stokes flow past simple cubic (SC) and face centered cubic (FCC) arrangements (ranging

from dilute to close–packed limit) with the boundary–integral method of Zick and Homsy

(1982)

2. Stokes flow past random arrays of monodisperse spheres with LBM simulations of van der

Hoef et al. (2005)

3. moderate to high Reynolds (Rem ≤ 300) in SC and FCC arrangements with LBM simu-

lations of Hill et al. (2001b)

4. flow past random arrays of monodisperse spheres at Rem = 100 with ANSYS–FLUENT

CFD package (see section 2.8.1)

2.6.1 Stokes flow

We first consider Stokes flow past ordered and random arrays of equisized spheres. Different

analytical and numerical techniques, such as analytical solution to the Stokes equations (Hasi-

moto, 1959), Galerkin methods (Snyder and Stewart, 1966; Sorensen and Stewart, 1974a), and

the boundary-integral method (Zick and Homsy, 1982) have been used to determine the drag

force in Stokes flow past ordered arrays as a function of solid volume fraction. Since Zick and

Homsy’s results are within 6% of all the other studies, and include all three ordered configu-

rations for the entire range of solid volume fraction, their results are used as a benchmark

to compare with PUReIBM simulations. Figure 2.6(a) shows that the PUReIBM simulations

are in excellent agreement with reported values from dilute to close–packed limits. Moreover,

PUReIBM is able to capture slightly different dependence of F (ϕ) for SC (as compared to

FCC) for ϕ > 0.3. The grid resolution in the PUReIBM simulations for the FCC cases is 25.24

and 104 grid points per particle diameter, for the minimum and maximum volume fractions of

0.01 and 0.698 considered, respectively. In the simple cubic cases, Dm is equal to 40.08 and

149, for the minimum and maximum volume fractions of 0.01 and 0.514, respectively.

Stokes flow past random arrays of spheres has been studied extensively by several re-

searchers(Hill et al., 2001a; van der Hoef et al., 2005). In figure 2.6(b) we compare the Stokes

drag obtained from PUReIBM simulations of flow past random arrays of monodisperse spheres
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Figure 2.6 Variation of the normalized drag force as a function of the solid volume fraction ϕ

in Stokes flow past SC, FCC and random arrangements of spheres. In figure 2.6(a)

drag values obtained from PUReIBM simulations (open symbols) of Stokes flow in

SC and FCC arrangements are compared with the results Zick and Homsy (1982)

(filled symbols). In figure 2.6(b) drag values from PUReIBM simulations of Stokes

flow in random arrays of spheres are compared with the Stokes drag correlation

proposed by van der Hoef et al. (2005). For each volume fraction the normalized

force from PUReIBM simulations is reported by averaging over 5 MIS and the

error bars on the symbols in this figure represent 95% confidence intervals in the

estimation of the normalized force.
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Figure 2.7 Variation of the normalized drag force as a function of both the solid volume

fraction and mean flow Reynolds number for flow past SC and FCC arrays. In all

these cases, the mean flow is directed along the positive x–axis. In figure 2.7(a)

drag obtained from PUReIBM simulations (open symbols) for SC arrangements is

shown while in figure 2.7(b) drag obtained for FCC arrangement is shown. In both

figures, PUReIBM drag values (open symbols) are compared with those reported

by Hill et al. (2001b) (closed symbols).

with the drag correlation of van der Hoef et al. (2005). From this figure we can see that the

results from PUReIBM simulations are in excellent agreement with the LBM–based correlation

for Stokes drag in random arrays.

2.6.2 Moderate Reynolds numbers

Hill et al. (2001b) performed an extensive study of flow past ordered SC and FCC arrange-

ments at moderate Reynolds numbers using LBM simulations. We compare the drag values

for moderate Reynolds number flow in SC and FCC arrangements obtained from PUReIBM

simulations with those reported by Hill et al. (2001b) in figures 2.7(a) and 2.7(b) respectively.

HKL note that the normalized drag force in ordered arrays is a strong function of the flow angle.

To avoid additional parameterization of the problem by flow angle, the validation tests shown

in this section are performed for the case where the mean flow is directed along the positive

x–axis. These figures show that drag values for ordered arrays are in excellent agreement with

those reported by Hill et al. (2001b).
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The validation tests described in this section show that the PUReIBM simulations faithfully

reproduce many standard results published in literature. Before we present the results for flow

past random arrays of spheres at moderate Reynolds numbers, it is important to understand the

rationale behind choosing the simulation setup that we used. It is also important to compare

the simulation setup used in this work with those used by HKL, BVK (and several other) for

similar studies.

2.7 Comparison of simulation setups to extract computational drag laws

To specify a closure for the interphase momentum transfer term, it is natural to simulate

a statistically homogeneous suspension flow with freely moving particles and to then compute

volume–averaged estimates of the average fluid–particle force from the particle acceleration

data. Due to the large number of parameters encountered in gas–solid flow, it is advantageous

to use a fixed bed setup so that the parameter space can be explored relatively easily. Another

advantage of using fixed bed setups is that it is easy to design an experimental setup that mim-

ics the simulation setup. Use of fixed bed simulation methodology to extract computational

drag laws for gas–solid flows is justified if the configuration of the particles changes very slowly

compared to the time it takes to attain mean momentum balance. The time scale over which

the particle configuration changes depends on ReT = DT 1/2/νf , which is the Reynolds number

based on the particle fluctuating velocity that is characterized by the particle granular temper-

ature T . The particle granular temperature T is is a measure of the variance in the particle

velocities and is defined as T = 1/3 ⟨v′′ · v′′⟩ where, v′′ is the fluctuation in the particle veloc-

ity defined with respect to the mean particle velocity. Particle–resolved simulations of freely

evolving suspensions (Tenneti et al., 2010b) and recent high–speed imaging of particles (Cocco

et al., 2010) show that this value of ReT is low for high Stokes number suspensions.

Although fixed bed simulations can be used to infer drag laws for gas–solids flow, care must

be taken when extending this setup to simulate problems with non–zero ReT and bi–disperse

suspensions with relative velocity between both size classes. If all particles move with the same

velocity (i.e., ReT = 0), a change of frame renders the fixed bed setup a Galilean–Invariant (GI)

transformation of the physical problem. This is not the case for non–zero ReT . Similarly for
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bi–disperse suspensions with non–zero relative velocity between size classes, a Galilean change

of frame can bring only particles of one size class to rest, unless particles belonging to both size

classes move with the same mean velocity.

The simulation setup used in this work is flow past infinitely massive particles initially at

rest in a fluid (ReT = 0). Particle velocities do not change in time due to the infinite inertia

of the particles and hence they remain at rest throughout the simulation. The desired mean

flow Reynolds number (or flow rate) is specified and the mean pressure gradient required to

produce the desired flow rate evolves in time to balance the force acting on the particles. We

denote this setup A as described in table 2.1.

The next simulation setup we consider is a GI equivalent of setup A, where the problem is

solved in a frame moving with velocity equal to
⟨
u(f)

⟩
with respect to the laboratory frame.

In this frame, the mean fluid velocity is zero and all the particles move with the same constant

velocity of −
⟨
u(f)

⟩
. In setup A′, if the equations of motion are written for a fixed, non–

deforming control volume (CV), the positions of the particles must evolve in time due to the

non–zero velocities of the particles. This setup A′ (cf. Table 2.1) is used by van der Hoef et al.

(2005) and BVK to propose their respective drag laws.

Setup A′ can also be solved by considering a moving, non–deforming control volume that

moves with the particle velocity V(p) such that particle positions do not change with respect

to the control volume (note that all the particles move with the same velocity, i.e., ReT = 0).

We denote this approach as setup B (cf. figure 2.8). Although the control volume is moving in

this setup, we must remember that the solution fields and particle velocities are with respect to

the frame of setup A′. For a moving control volume the convective flux is written with respect

to the control volume and hence the nonlinear term in setup B is different from that in setup

A or A′.

All the setups A, A′ (fixed CV) and B (moving CV) are GI transformations of the same

physical problem and thus any computational method should yield the same solution when

viewed in the appropriate reference frame. In particular, quantities such as the steady mean

drag that are GI should be identically reproduced by any numerical method, irrespective of the

chosen setup.
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Setup Average fluid

velocity

Particle velocity Particle posi-

tion

Control volume

A
⟨
u(f)

⟩
0 Fixed Fixed

A′ 0 −
⟨
u(f)

⟩
Moving Fixed

B 0 −
⟨
u(f)

⟩
Fixed Moving

C(non GI) 0 −
⟨
u(f)

⟩
Fixed Fixed

Table 2.1 Summary of various simulation setups.

Figure 2.8 Schematic comparing various simulation setups.
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Figure 2.9 Plot comparing the velocity contours obtained from the different simulation set

ups. The contours shown in this figure are for a simple cubic arrangement at a

volume fraction of 0.4 and mean flow Reynolds number of 150.

Besides the setups discussed above, a non–Galilean–invariant setup is sometimes used to

solve the physical problem. In this setup denoted C (cf. Table 2.1), the particles are all assigned

the same velocity, but their positions are fixed to their initial locations and the equations of

motion are written for a fixed, non–deformable control volume. Since setup C is not a GI

transformation of the physical problem it is an incorrect setup, although the error incurred in

the limit of Stokes flow the error incurred in the solution is negligible. In this section we show

that we obtain GI solutions from PUReIBM simulations of setups A, A′ and B. We also show

how the incorrect non–GI setup C leads to erroneous results at Rem = 150.

We consider a simple cubic arrangement of spheres at a volume fraction of 0.4 and mean slip

Reynolds number of 150. In figure 2.9, the steady state velocity field obtained from PUReIBM

simulations for the different setups (A, A′, B and C) are compared. All these velocity fields

are viewed in the reference frame of setup A (laboratory frame). From these figures we can see
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Figure 2.10 Plot comparing the evolution of normalized pressure and viscous forces obtained

from the different simulation setups shown in figure 2.8. The volume fraction

is 0.4 and the mean flow Reynolds number is 150. Pressure force is plotted in

Figure 2.10(a) while the viscous force is plotted in Figure 2.10(b). Since the

results obtained from setups A, A′ and B are identical, only two (A and A′) are

shown in these plots for clarity.

that while setups A, A′ and B give the same solution fields, the solution obtained from setup

C is significantly different. So we expect that the drag force, which is obtained by integrating

the pressure and viscous stress over the particle surface, will also be significantly different.

Figure 2.10 compares the evolution of the normalized pressure and viscous forces for all the

setups. As expected, the evolution of both pressure and viscous contributions to the drag force

in the incorrect non–GI setup C is significantly different from those obtained from other GI

setups.

In particular, setups A and B are very useful to extract computational drag laws for fixed

beds because the motion of the particles need not be considered. But this simplification is

possible as long as all the particles are initialized with the same velocity. When the particles

have different velocities there exists no Galilean–invariant transformation such that all the

particles appear fixed to their initial locations. Such problems can only be solved using setup

A′. Recently Yin and Sundaresan (2009a,b) and Holloway et al. (2010) used setup C to propose

LBM based drag correlations to account for the relative slip velocity between particles. The
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work of Yin and Sundaresan (2009a,b) is limited to the Stokes flow regime and hence the use

of setup C is a valid approximation because the particles might not even move one grid cell

during the simulation. However, the applicability of setup C to the higher Reynolds number

simulations of Holloway et al. (2010) needs to be examined more closely. PUReIBM simulations

of SC arrays using the non–GI setup C revealed that the the drag obtained from setup C is in

reasonable agreement with the drag obtained from the other GI setups only up to a Reynolds

number of 50, and differs substantially beyond that. This clearly shows that simulations of high

Reynolds number flow past particles using a non–GI setup will lead to wrong results. Holloway

et al. (2010) did not perform any simulations beyond Reynolds number of 50 and so their results

are probably within 10% of the results obtained from other GI setups. We now present the

results obtained from PUReIBM simulations of flow past random arrays of spheres at moderate

Reynolds numbers using setup A.

2.8 Results

We performed PUReIBM simulations of flow past fixed random configurations of particles

at Reynolds numbers up to 300 and for solid volume fractions in the range of 0.1–0.5. The

numerical resolutions used in PUReIBM simulations are either comparable or higher than

those used by HKL and BVK (cf. Table 3.1). Values of the normalized force obtained from

PUReIBM simulations are compared with those reported by HKL and BVK in figure 2.11.

Normalized force values for volume fractions 0.1, 0.2 and 0.3 are shown in figure 2.11(a) while

force values for volume fractions 0.4 and 0.5 are shown in figure 2.11(b). It can be seen that

PUReIBM simulations are in good agreement with the data reported by HKL. The average

percentage difference between PUReIBM and HKL drag values is about 8% while a maximum

difference of 20% is observed at a volume fraction of 0.4 and a mean flow Reynolds number of

120. One reason for this discrepancy at ϕ = 0.4 is that although HKL reported their results for

a nominal volume fraction of 0.4, the actual volume fraction that they simulated was 0.410 (Hill

et al., 2001b). At higher Reynolds numbers the change in the force due to change in volume

fraction can be quite significant. For instance, at Rem = 100, the normalized force obtained at

a ϕ = 0.4 is almost twice the normalized force obtained at ϕ = 0.3.



55

ϕ Np M Dm L/D

0.1 16

54

80/ 41

5

20

5

9.6

17.5

20/30

4.38

6.6

7.5/ 6

0.2 16

54

161/ 34

5

20

5

17.6

17.5

20/40

3.47

5.2

7.5/ 4.5

0.3 16

54

71/ 26

5

20

5

17.6

21.5

30/50

3.06

3.07

5/ 3.6

0.4 16

54

95/ 20

5

20

5

33.6

21.5

30/60

2.73

4.13

5/ 3

0.5 16

54

61/–

5

20

5

33.6

21.5

40/–

2.56

3.84

4/–

Table 2.2 Comparison of the numerical parameters (number of particles Np, number of MIS

M, particle diameter in grid units Dm and the ratio of the length of the box

to the particle diameter L/D) used for random arrays in PUReIBM simulations

with the past LBM simulations of HKL and BVK. For each entry, first and second

rows correspond, respectively, to the LBM simulations of HKL and BVK, and the

third row corresponds to the current PUReIBM simulations. For the PUReIBM

simulations, different numerical parameters are used for Rem ≤ 100 and Rem > 100.

These are separated by “/”. Numbers before the “/” correspond to Rem≤ 100 while

numbers after the “/” correspond to Rem> 100. At volume fraction 0.5 PUReIBM

simulations are performed only up to a Reynolds number of 100.
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Figure 2.11 Variation of normalized force with Reynolds number for random assembly of fixed

particles. Drag values obtained from PUReIBM simulations (open symbols) are

compared with those reported by HKL (filled symbols) and BVK. In left panel (a)

ϕ = 0.1, 0.2, 0.3 and in the right panel (b) ϕ = 0.4, 0.5. The error bars on the

symbols in this figure represent 95% confidence intervals in the estimation of the

normalized force.
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We can see from table 3.1 that the numerical resolution used by HKL and in PUReIBM

simulations are comparable up to Rem = 100. The grid resolutions reported for HKL in ta-

ble 3.1 are those used for the highest Reynolds numbers that they simulated. HKL used much

coarser meshes to simulate lower Reynolds numbers. For Rem > 100 the PUReIBM simula-

tions are performed with much higher resolutions and HKL did not perform any simulations for

Rem > 100 for most volume fractions. A comparison of the simulation data with the drag cor-

relation proposed by HKL showed that beyond Rem = 100, differences between the PUReIBM

simulation data and the HKL drag correlation increased with increasing Rem. Since HKL did

not explore a wider range of Reynolds numbers, this work provides a more accurate variation

of the normalized force with Reynolds number.

From figure 2.11 we see that PUReIBM drag values differ substantially from those reported

by BVK. A difference of about 30% is consistently observed at a Reynolds number of 200 for

all volume fractions while a difference of 20% is observed at a Reynolds number of 100. BVK

used a constant resolution of 17.5 lattice units across a particle diameter was for ϕ ≤ 0.2 ,

and for higher volume fractions, their results were obtained by averaging the drag obtained

using two different resolutions of 17.5 and 25.5 lattice units. Therefore, in table 3.1, we have

used the average value of 21.5 lattice units to report their resolutions for ϕ ≥ 0.3 . At a given

volume fraction, they used a constant grid resolution to simulate Reynolds numbers ranging

from 21 to 1000. As the volume fraction increases, the number of grid/lattice nodes in the

gaps between the spheres decrease and a progressively higher grid resolution is required. In the

HKL study the particle resolution was increased from 9.6 lattice units per particle diameter for

the lowest volume fraction of 0.1 to 41.6 lattice units for the highest volume fraction of 0.641,

which is a four–fold increase. However, in the BVK study the particle resolution increased by

only a fraction for a wide volume fraction range of 0.1-0.6. Table 3.1 shows that the PUReIBM

simulations are consistently better resolved in terms of the number of particles, grid resolution,

and the box-size. BVK performed greater number of MIS but the scatter in PUReIBM data

does not point to a need for such high number of MIS. In addition to the numerical parameters,

PUReIBM and BVK simulations differ in the simulation setup. While PUReIBM simulations

are performed using setup A, the simulations of BVK are performed using setup A′.
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Figure 2.12 Plot showing the variation of normalized fluid–particle force with mean slip

Reynolds number for a random array at two different volume fractions

(ϕ = 0.2, 0.3). Results obtained from both setups A and C are shown. The

BVK drag correlation (lines) is also shown for comparison.

We also studied the effect of using a non–GI setup to simulate flow past random arrays at

higher Reynolds numbers. We performed PUReIBM simulations of flow past random arrays

using the setup C for two different volume fractions (0.2 and 0.3). Figure 2.12 shows the

variation of the normalized fluid–particle force with Reynolds number obtained from setups

A and C. It is interesting to note from this figure that the force obtained from setup C is in

excellent agreement with the BVK drag correlation.

To summarize, PUReIBM simulations show an excellent match with the drag correlations

proposed by HKL and BVK for low Reynolds number for both dilute and moderately dense

random arrays. However, PUReIBM simulations show a significant departure from these cor-

relations at higher Rem. The drag law proposed by HKL is stated to be more reliable for all

Reynolds numbers only at higher volume fraction. The BVK drag correlation is proposed based

on a fit to the drag values obtained from simulating only 5 different Reynolds numbers between

20 and 1000, and their simulations are not as highly resolved as PUReIBM simulations and

they might not be grid independent. Owing to the differences in the solution approach and

numerical resolutions between PUReIBM and LBM based studies, an independent verification
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with a body–fitted solver is required to assess the accuracy of PUReIBM and LBM simulations

of flow past fixed assemblies of randomly distributed particles with finite fluid inertia. In the

following subsection we compare results from PUReIBM simulations with those obtained from

a body–fitted grid.

2.8.1 Comparison of PUReIBM with body–fitted grid simulations

We assess the accuracy of PUReIBM simulations by comparing the results obtained from

PUReIBM with those obtained by solving the same problem using ANSYS–FLUENT, which

uses a body–fitted solver. We simulated flow past the same random configuration using

PUReIBM and ANSYS–FLUENT to directly compare pressure and velocity fields. This ran-

dom configuration was taken from one of the 5 independent configurations that we simulated

using PUReIBM at a volume fraction of 0.4 and mean flow Reynolds number of 100.

We performed a grid refinement study of the ANSYS–FLUENT solver by simulating flow

past the chosen random configuration using four different resolutions. The coarsest mesh

we used has 60,000 tetrahedral cells while the finest mesh has 3.25 million tetrahedral cells.

We used a second–order upwind method for the discretization the convective terms and the

simulation was stopped after the scaled residuals dropped by six orders of magnitude and

the drag acting on the suspension reached a steady state. In figure 2.13, we show the

grid–convergence characteristics of the normalized force obtained from both ANSYS–FLUENT

and PUReIBM simulations. Grid resolution of ANSYS–FLUENT is shown on the bottom

x–axis while that of PUReIBM simulations (open triangles) is shown on the top. From the

figure we conclude that the results obtained from PUReIBM and ANSYS–FLUENT simulations

are numerically converged. Moreover, the grid–independent drag value obtained from the

PUReIBM simulation on the finest mesh (Dm = 40) is within 1% of the grid independent drag

value that is obtained from the ANSYS–FLUENT simulation. We also show the drag predicted

by the LBM simulations of BVK (open circle) on this plot. Their simulations correspond to

Dm = 21.5 and it is clear that the value predicted by the BVK drag law does not agree well with

that predicted by PUReIBM or ANSYS–FLUENT. Since the drag law of BVK is obtained by

averaging over 20 different particle configurations, this difference in drag cannot be attributed
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Figure 2.13 Plots showing the grid convergence of ANSYS–FLUENT software and PUReIBM.

Grid resolution of ANSYS–FLUENT (squares) corresponds to the bottom x–axis

while the grid resolution of PUReIBM simulations (triangles) is shown in the

top x–axis. The drag value reported by BVK at this volume fraction (0.4) and

Reynolds number (100) is also shown for reference.

to the dependence on particle configurations.

We also compared the velocity and pressure fields obtained from PUReIBM and ANSYS–

FLUENT simulations. Figure 2.14 shows contours of the streamwise component of fluid

velocity while figure 2.15 shows the contours of pressure on a cut–plane in the middle of the

box. In this figure the flow is fom left to right. It is important to remember that PUReIBM

uses a pseudo–spectral method on Cartesian grids while ANSYS–FLUENT uses a finite volume

method on a body–fitted mesh. Given the differences between the differencing operators and

the nature of interpolation errors in the two codes, the agreement obtained in figures 2.14

and 2.15 is excellent. Thus we conclude that PUReIBM computes solutions to the governing

equations for gas–solids flow with an accuracy comparable to that of a body–fitted solver.

Since the drag in PUReIBM is computed from this flow solution by calculating stress at the

particle surface, this gives confidence that the surface force density that is used to calculate

the total drag is indeed accurately computed. Using PUReIBM we can look at the relative

contribution of pressure and viscous terms to the total drag and also the local profiles of
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(a) (b)

Figure 2.14 Plots comparing the contours of the Reynolds number based on the streamwise

component of the instantaneous fluid velocity obtained from PUReIBM (2.14(a))

with those obtained from ANSYS–FLUENT software (2.14(b)).

(a) (b)

Figure 2.15 Plots comparing the contours of instantaneous dimensionless pressure

(p∗ = p/(12ρf |⟨W⟩|2) obtained from PUReIBM (2.15(a)) with those obtained

from ANSYS–FLUENT software (2.15(b)).



62

pressure and viscous drag forces.

2.8.2 Relative contributions of pressure and viscous drag

At steady state, the mean pressure gradient is balanced by the pressure and viscous forces

acting on all the particles such that

−(1− ϕ)V ⟨gIBM⟩V = −
∮
∂Vs

ψn(s)dA+ µf

∮
∂Vs

(
∇u′) · n(s)dA, (2.37)

where the total force acting on the suspension is −⟨gIBM⟩V V . The average force acting per

particle, ⟨f⟩, is obtained by dividing the total force by the total number of particles:

⟨f⟩ = − 1

Np
⟨gIBM⟩V.

Dividing equation (2.37) by Np, the average force per particle is the sum of average pressure

force per particle ⟨fp⟩ and average viscous force per particle ⟨fv⟩, i.e.,

(1− ϕ) ⟨f⟩ = ⟨fp⟩+ ⟨fv⟩ . (2.38)

While the vector equation 2.38 is always true, the following scalar equation for the normalized

force F (F = |⟨f⟩|/FStokes)

(1− ϕ)F (ϕ,Rem) = Fp (ϕ,Rem) + Fv (ϕ,Rem) (2.39)

holds only when the vectors ⟨fp⟩ and ⟨fv⟩ are collinear. Here Fp and Fv are the magnitudes

of the average pressure and viscous forces per particle normalized by FStokes. We verified

that the pressure and viscous forces are collinear over a wide range of volume fraction and

Reynolds numbers and hence the sum of the normalized pressure and viscous forces give the

total normalized force.

The scaling of normalized pressure and viscous forces with mean flow Reynolds number

gives insight into the powers of Rem that should be used in the drag law for the total force.

Simple scaling arguments dictate that the pressure force |⟨fp⟩| ∼ ρfU
2
slipD

2 and the viscous

force |⟨fv⟩| ∼ µfUslipD. Normalizing the magnitudes of pressure and viscous forces by FStokes,

it is easy to see that the normalized pressure force varies linearly with Reynolds number and
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Figure 2.16 Plots showing the pressure and viscous drag force in a random configuration.

the normalized viscous force is independent of the Reynolds number. So taking Fp ∼ Rem and

Fv independent of Rem led HKL to propose the following form of the drag law at moderate

Reynolds numbers:

F (ϕ,Rem) = F2 (ϕ) + F3 (ϕ)Rem (2.40)

where, F2 (ϕ) represents Fv and F3 (ϕ) represents the volume fraction dependence of Fp. HKL

assumed that the viscous contribution to the drag force remains constant for all Reynolds

numbers, but this was not verified from simulations. However, as figure 2.16. shows, the

viscous drag is not independent of the Reynolds number but it is a sublinear power of the mean

flow Reynolds number. Figure 2.16 confirms the assumption of HKL that the pressure drag is

approximately linear for larger Reynolds numbers (Rem > 40).

From PUReIBM simulations we observe that at any given Reynolds number, the ratio Fp/Fv

increases with increasing volume fraction. At a given volume fraction, Fp/Fv increases with

Reynolds number as expected. However, the viscous contribution does not become negligible

compared to pressure drag. In fact, for volume fractions 0.1 and 0.2 the ratio Fp/Fv exceeds

1 only when Rem > 100. We also observed that the Reynolds number at which the pressure

drag exceeds the viscous drag decreases with increasing volume fraction.
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Figure 2.17 Schematic of the spherical coordinate system used to define the local pressure

and viscous drags. The polar angle in our convention is θ (0 ≤ θ ≤ π) and the

azimuthal angle is α (0 ≤ α ≤ 2π).

2.8.3 Local profiles of pressure and viscous contributions to the fluid–particle

drag force

Profiles of the local pressure and viscous drag can provide insight into the behavior of the

pressure and viscous drag with varying mean flow Reynolds numbers and volume fractions. We

examine the local profiles of pressure and viscous forces to facilitate the development of a drag

law and to see if any self–similar scaling would emerge.

We define the local pressure and viscous drags with respect to the spherical coordinate

system shown in figure 2.17. It is useful to define a unit vector e∥ = ⟨W⟩ / |⟨W⟩| along the

mean slip direction. In this work since the mean slip is along the direction of the flow, we refer

to the direction of the mean slip as the streamwise direction. We examine the profiles of the

streamwise components of the average pressure and viscous forces per particle along the polar

angle. For every particle in the µth realization the variation of the streamwise component of

pressure and viscous forces along the polar angle is computed by averaging out the dependence

on the azimuthal angle. The variations of average pressure and viscous forces per particle

along the polar angle are then computed by averaging the local profiles over all the particles.
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The streamwise components of the average pressure and viscous forces per particle in the µth

realization can be expressed as:

F loc
p,µ (θ) =

1

Np

Np∑
n=1

 2π∫
0

−ψ (θ, α)n(n) · e∥ dα

 4πR2,

F loc
v,µ (θ) =

µf
Np

Np∑
n=1

 2π∫
0

(
∇u′ (θ, α) · n(n)

)
· e∥ dα

 4πR2. (2.41)

In the above equations, n(n) is the unit normal vector pointing outward from the surface of

the nth particle and R = D/2 is the radius of the particle. An ensemble–averaged estimate for

the local pressure (F loc
p ) and viscous (F loc

v ) forces is then defined similar to equation (2.34). In

figure 2.18 we plot the local coefficient of pressure C loc
p (θ) and the local skin friction coefficient

C loc
f (θ) along the polar angle for different volume fractions and mean flow Reynolds numbers.

The definitions of local coefficient of pressure and the local skin friction coefficient are similar

to those used for a single sphere in an unbounded medium:

C loc
p (θ) =

F loc
p (θ)

1
2ρfπR

2 ((1− ϕ) |⟨W⟩|)2
,

C loc
f (θ) =

F loc
v (θ)

3πµfD (1− ϕ) |⟨W⟩|
. (2.42)

The local profiles of pressure drag for different volume fractions at a mean flow Reynolds

number of 100 are shown in figure 2.18(a). Although there appears to be a local minimum

at θ = 75◦ for all the volume fractions we can see that there is no evident self–similarity in

these profiles. The behavior of the local pressure profiles at the “trailing edge” is different

for different volume fractions. In figure 2.18(c) we plot the local skin friction coefficient for

different volume fractions at a Reynolds number of 100. As expected, maxima of the viscous

drag are found at locations where the pressure drag has a minima.

In figure 2.18(b) we show the local pressure profiles for different mean flow Reynolds num-

bers at a volume fraction of 0.2 while the skin friction coefficients are plotted in figure 2.18(d).

We can see that at Rem = 20 the pressure drag nearly follows a sinusoidal profile up to an

angle of 110◦ and remains approximately constant beyond this angle. This behavior is similar

to that observed for a single sphere in an unbounded fluid, where the pressure nearly obeys the
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Figure 2.18 Profiles of local coefficient of pressure and coefficient of friction along the polar an-

gle. Figure 2.18(a) shows the local pressure profiles for different volume fractions

at a Reynolds number of 100 while figure 2.18(b) shows the local pressure profiles

for various mean flow Reynolds numbers at a volume fraction of 0.2. Similarly

figure 2.18(c) shows the local viscous drag profiles for different volume fractions

at a Reynolds number of 100 while figure 2.18(d) shows the local viscous drag

profiles for various mean flow Reynolds numbers at a volume fraction of 0.2.



67

potential flow solution up to the point of separation and remains constant beyond this point.

Also, at this volume fraction, for Rem > 100 the profiles of C loc
p nearly collapse onto a single

curve again verifying the assumption that the pressure drag is quadratic in mean slip velocity.

The local profiles of pressure and viscous forces in random assemblies can be viewed as

departures from those observed for an isolated sphere in an unbounded medium. These ob-

servations point to the fact that the drag law for random assemblies should be in the form

of corrections to the single sphere drag law that reflect the dependence on ϕ and Rem. It is

clear that there is no obvious self–similarity that collapses the local pressure and viscous drag

profiles as simple functions of volume fraction and Reynolds number.

2.9 A new correlation for the average fluid–particle drag

Based on the normalized force values obtained from PUReIBM simulations, the following

function fits the data well with an average deviation of 2.5%:

F (ϕ,Rem) =
Fisol (Rem)

(1− ϕ)3
+ Fϕ (ϕ) + Fϕ,Rem (ϕ,Rem) . (2.43)

Here, Fisol is the drag force acting on an isolated sphere moving in an unbounded medium. We

used the single sphere drag correlation proposed by Schiller and Naumann (1935) to get the

drag on an isolated sphere. The remaining two terms in (3.24) are given by

Fϕ (ϕ) =
5.81ϕ

(1− ϕ)3
+ 0.48

ϕ1/3

(1− ϕ)4
,

Fϕ,Rem (ϕ,Rem) = ϕ3Rem

(
0.95 +

0.61ϕ3

(1− ϕ)2

)
.

Figure 2.19 compares the PUReIBM drag law given by (3.24) with the existing drag correla-

tions. We used the drag correlations of HKL, BVK, Gidaspow (1986) and Syamlal and O’Brien

(1987) (referred to as S&B in figure 2.19) for comparison. The drag values computed from

PUReIBM and HKL drag laws agree well upto Rem = 100. By extending the HKL drag cor-

relation beyond Rem = 100, we noticed that the differences between PUReIBM and HKL drag

law increase with Reynolds number. However, since HKL drag correlation is valid only upto

Rem = 100, comparison is not made beyond this Reynolds number. Differences between the

BVK and PUReIBM drag law are more pronounced and increase significantly with increasing
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Figure 2.19 DingDong Plot comparing the normalized force values obtained from the

PUReIBM drag law (cf. 3.24) with those obtained from the drag laws of HKL,

BVK, Gidaspow (1986) and Syamlal and O’Brien (1987) for four different solid

volume fractions. The volume fraction at which the drag values are computed is

shown at the top of each panel. For every volume fraction, the HKL drag law

terminates at Rem = 100 since it is not valid beyond that Reynolds number.
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Reynolds number. At the largest Reynolds number that we simulated (Rem = 300) PUReIBM

and BVK drag laws differ by about 38%. This difference is observed consistently at all volume

fractions. The power law dependence of drag on Reynolds number predicted by each of these

drag laws is also different.

Also shown in figure 2.19 is the comparison between PUReIBM and the drag correlations

of Gidaspow (1986) and Syamlal and O’Brien (1987), which are widely used in CFD simulations

of gas–solid flow. Gidaspow’s drag law reduces to the Wen–Yu drag law (Wen and Yu, 1966)

when the solid volume fraction is less than 0.2 and for volume fractions greater than 0.2

it reduces to the Ergun equation (Ergun, 1952). Syamlal and O’Brien (1987) derived their

drag law by converting terminal velocity correlations (Richardson and Zaki, 1954) to drag

correlations. The behavior of these two drag laws with volume fraction and Reynolds number

is very different from that of the PUReIBM drag law. We estimate that numerical error and

statistical variability due to finite number of configurations contribute to an uncertainty of

about 5% in the estimate of mean drag from PUReIBM simulations. So we conclude that

differences of more than 30% observed in the values of drag obtained from PUReIBM and the

BVK drag law are significant and can play an important role in the predictive capability of

two–fluid model.

2.10 Summary

In this work we studied the steady drag in gas–solids flow with finite fluid inertia us-

ing particle–resolved DNS of flow past fixed monodisperse particle assemblies. We employ the

Particle–resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method (PUReIBM)

to perform particle–resolved DNS of flow past fixed particle assemblies. In PUReIBM, the con-

tinuum Navier-Stokes equations with no-slip and no-penetration boundary conditions on each

particle’s surface are solved using an immersed boundary (IB) forcing term that is added to the

momentum equation. The IB forcing in PUReIBM is solely restricted to those grid points that

lie in the solid phase, and therefore the flow solution in the fluid phase is uncontaminated i.e.,

the unmodified Navier–Stokes equations are solved in the fluid phase. Through a comprehen-

sive suite of tests it is demonstrated that PUReIBM is an accurate and numerically convergent
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particle–resolved DNS approach. We compared PUReIBM for flow past fixed particles at solid

volume fraction of 0.4 and mean flow Reynolds number of 100 with ANSYS–FLUENT, which

uses a body–fitted solver. We observed that the difference in the value of drag obtained from

both methods is about 1%, and we obtained an excellent match of the velocity and pressure

fields. Thus we conclude that PUReIBM computes solutions to the governing equations for

gas–solids flow with an accuracy comparable to that of a body–fitted solver.

The normalized force values obtained from PUReIBM agree reasonably well with HKL drag

law over a fairly wide range of volume fractions and mean flow Reynolds numbers. PUReIBM

drag values differ by about 25% from the HKL drag law and by 38% from the BVK drag law

at the largest Reynolds number that we simulated (Rem = 300), and this difference is observed

consistently at all volume fractions. Our simulations reveal a weak power–law dependence of

the viscous drag on Rem, reaching an asymptote at Rem > 200 for all volume fractions. This

replaces the prevailing notion that the viscous drag is independent of Rem (Hill et al., 2001b).

For pressure drag, we concur with HKL that at moderate Reynolds numbers the pressure drag

can be approximated by a linear function in Rem.

A new drag law for monodisperse suspensions is proposed using PUReIBM simulations of

flow past fixed particle assemblies. Since this drag law is inferred from fixed particle assemblies,

the effect of the mobility of particles is not captured in the drag correlation. However, the fixed

bed approximation is valid for high Stokes number particles that are characteristic of gas–

solid flows. The differences between the PUReIBM drag law and BVK drag law are more

than 30% for Rem > 200. The drag law is used to model the unclosed average interphase

momentum transfer term in the mean momentum conservation equation of the two–fluid theory

and determines the overall mean gas–solids flow structure. This improved PUReIBM drag law

can enhance the predictive capability of CFD simulations of gas-solids flow that are based on

the two–fluid theory. The improved drag law can also be used to refine the stability limits for

gas–solid suspensions since these limits are determined by the functional dependence of drag

on volume fraction.
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CHAPTER 3. Quantification of gas–phase velocity fluctuations in

statistically homogeneous gas–solid flow using particle–resolved direct

numerical simulation

This chapter is a manuscript titled “Quantification of gas–phase velocity fluctuations in

statistically homogeneous gas–solid flow using particle–resolved direct numerical simulation”

that is currently in preparation. This manuscript is authored by S. Tenneti, R. Garg and S.

Subramaniam.

Abstract

Gas–phase velocity fluctuations are quantified using particle–resolved direct numerical sim-

ulation (PR–DNS). The kinetic energy associated with the gas–phase velocity fluctuations kf

in steady flow past fixed random assemblies of monodisperse spheres is characterized as a

function of solid volume fraction ϕ and the Reynolds number based on the mean slip velocity

Rem. The PR–DNS approach is based on a formulation we refer to as the Particle–resolved

Uncontaminated–fluid Reconcilable Immersed Boundary Method (PUReIBM). A simple scal-

ing analysis is used to explain the dependence of kf on ϕ and Rem. The steady value of kf

results from the balance between the source of kf due to interphase transfer of kinetic energy,

and the dissipation (εf ) of kf in the gas–phase. It is found that it is appropriate to model

the dissipation of kf in gas–solid flows using a length scale that is analogous to the Taylor

microscale used in single–phase turbulence. Using the PUReIBM PR–DNS data for kf and εf

we also infer an eddy viscosity for gas–solid flow.
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3.1 Introduction

Gas-solid flows are encountered in industrial devices such as fluidized beds and in pneumatic

conveying. It is generally agreed that gas–phase velocity fluctuations and particle–particle

interactions play an important role in such gas–solid flows. For instance, the gas–solid flow in

circulating fluidized bed risers is characterized by the tendency of the particles to segregate

towards the pipe wall (Miller and Gidaspow, 1992). This can in turn affect the particle–

wall heat transfer. Gas–phase velocity fluctuations also affect the heat transfer and mixing of

chemical species inside the fluidized bed.

Device–scale calculations using computational fluid dynamics (CFD) simulations of mul-

tiphase flow are a promising route to inexpensive design and scale–up of industrial process

equipment (Halvorsen et al., 2003; Kashiwa and Gaffney, 2003; Sun et al., 2007). CFD of mul-

tiphase flow involves solving the averaged equations for mass, momentum and energy in both

the solid and fluid phases. Figure 4.1 shows a schematic of the computational domain in a typ-

ical CFD simulation of gas–solid flow. In every grid cell, conservations equations for averaged

quantities such as volume fraction, and velocity are solved for both phases. These conservation

equations are obtained using a statistical averaging procedure (Anderson and Jackson, 1967;

Drew and Passman, 1998), and hence the solution to these average equations involves modeling

the unclosed terms that represent interphase interactions. The conservation equation for mean

momentum in the gas phase requires models for the average interphase momentum transfer and

the transport of the second moments of the fluctuating velocity (Reynolds stress) in the gas

phase. The average interphase momentum transfer has been extensively studied and there is a

general consensus on drag models (Ergun, 1952; Wen and Yu, 1966; Syamlal and O’Brien, 1987;

Gidaspow, 1994; Hill et al., 2001a,b; van der Hoef et al., 2005; Beetstra et al., 2007; Tenneti

et al., 2011). However, the gas–phase Reynolds stress has not been comprehensively quantified

in the parameter range corresponding to fluidized beds.

Nevertheless there is some evidence to indicate that gas–phase velocity fluctuations can be

significant. Intrusive hot wire measurements by Moran and Glicksman (2003) indicate that

the level of gas–phase velocity fluctuations can be significant in a circulating fluidized bed
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Figure 3.1 Schematic of a CFD simulation of gas–solid flow. In every computational grid

cell, governing equations for the averaged quantities in both phases are solved.

Here
⟨
u(f)

⟩
is the average gas–phase velocity and

⟨
u(s)

⟩
is the average solid–phase

velocity. The average interphase momentum transfer
⟨
S
(f)
M

⟩
= −

⟨
S
(s)
M

⟩
that

represents the coupling between the solid and the gas–phase appears as an unclosed

term in both equations. Also, the transport of Reynolds stress in each phase is

an unclosed term in the average momentum equation of that phase. Here u′′(f)

denotes the fluctuating velocity in the gas–phase.

riser at dilute solid volume fraction. In dense gas–solid flows non–intrusive measurements are

difficult because of limited optical access, and the effect of intrusive instrumentation could alter

the flow considerably. Although various numerical studies have been performed to understand

the effect of particles on the flow turbulence, the vast majority of existing work (Squires and

Eaton, 1991; Elghobashi and Truesdell, 1993; Boivin et al., 1998; Sundaram and Collins, 1999;

Mashayek and Taulbee, 2002) addresses particle–turbulence interactions with particle diameter

D smaller than the Kolmogorov scale of turbulence η. In industrial applications of gas–solids

flow such as fluidized beds (Moran and Glicksman, 2003), the particle diameter D is usually

larger than the Kolmogorov length scale η. There are relatively few studies (Uhlmann, 2008;

Xu and Subramaniam, 2010; Lucci et al., 2011) for particles with D > η, and but for one

study (Xu and Subramaniam, 2010) these focus on flows with nonzero mean slip velocity.

Unlike in single–phase turbulence, the mean slip velocity is an important parameter in gas–

solid flows with D > η. Therefore, there is a need to quantify the gas–phase Reynolds stress

over a range of solids volume fraction and Reynolds number based on the mean slip velocity

between the solid and gas–phase.
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In the absence of such comprehensive quantification, the gas–phase Reynolds stress term is

sometimes neglected in CFD simulations of dense gas–solid flow on the grounds that the domi-

nant forces in the gas–phase momentum balance are the pressure drop and drag force (Hrenya

and Sinclair, 1997). When models (Benyahia et al., 2005) for the transport of gas–phase

Reynolds stress are used, such as in the widely used gas–solid flow CFD code MFIX (Syamlal

et al., 1993), these models are simple extensions of single–phase turbulence models that have not

been validated in canonical flows. Similarly, due to the lack of data for the gas–phase Reynolds

stress at low volume fractions, this term is also neglected in some CFD simulations of dilute

gas–solid flow (Agrawal et al., 2001). However, CFD simulations of gas–solid flow in circulating

fluidized beds that incorporated a model for the transport of the gas–phase Reynolds stress

generally showed good agreement for mean flow velocity profiles with experiments (Bolio et al.,

1995; Bolio and Sinclair, 1995; Crowe, 2000; Zhang and Reese, 2003; Benyahia et al., 2005).

These observations along with the measurements of Moran and Glicksman (2003) indicate that

quantification and modeling of the gas–phase Reynolds stress is necessary.

In some studies (Ahmadi and Ma, 1990b; Bolio and Sinclair, 1995; Balzer et al., 1998;

Benyahia et al., 2005) the gas–phase Reynolds stress term is modeled using an eddy viscosity

in a fashion similar to single–phase turbulence. However, if the turbulent kinetic energy kf and

the dissipation rate εf were quantified in gas–solid flow, one could develop a validated eddy

viscosity model. In other works (Ahmadi and Ma, 1990b,a; Bolio and Sinclair, 1995; Balzer

et al., 1998; Benyahia et al., 2005) a two–equation approach with transport equations for kf

and εf that are modified to account for the presence of solid particles is used. There are also a

few studies in which only a transport equation for kf is solved (one–equation approach) and εf

is modeled using a Kolmogorov scaling for dissipation (Ahmadi and Ma, 1990b,a; Kenning and

Crowe, 1997; Crowe, 2000). A review of existing multiphase turbulence models can be found

in Crowe et al. (1996).

Both the one–equation and two–equation approaches need accurate models for the gener-

ation and dissipation rate of kf . The presence of particles and their changing configuration

produces high levels of gas–phase velocity fluctuations, in addition to the turbulent motions

already present in the gas phase. In order to account for the generation of gas–phase velocity
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fluctuations by finite sized particles, Yuan and Michaelides (1992) proposed a model in which

the velocity deficit in the wake of the particle is the source and the work done by the drag force

is the dissipation of gas velocity fluctuations. Yarin and Hetsroni (1994) employed a similar

idea but used a more detailed description of the wake. Although both models showed good

agreement with experiments (Tsuji et al., 1984; Modarress et al., 1984), they are not derived by

the application of detailed balance laws. Kenning and Crowe (1997) proposed a new turbulence

model starting from the conservation equation of mechanical energy in gas–solid flow. In this

model, work done by the particle drag force acts as a source for gas–phase velocity fluctua-

tions. Dissipation of gas–phase velocity fluctuations is modeled along the lines of single–phase

turbulence(εf ∼ k
3/2
f /ldiss). The length scale ldiss considered in their work corresponds to a hy-

brid length scale of inter–particle spacing and the dissipation length scale used in single–phase

turbulence. This model was further improved and showed good agreement with experimental

data obtained from particle–laden turbulent flow in pipes (Crowe, 2000).

Existing models for the gas–phase Reynolds stress in gas–solid flow that are widely used

in CFD calculations are simple extensions of single–phase turbulence models. Most closure

models do not distinguish between the velocity fluctuations generated by the presence of par-

ticles and inherent turbulence in the flow. This is because both these mechanisms essentially

manifest themselves as a non–zero Reynolds stress in the gas–phase. However, because the

physical mechanisms resulting in the generation and dissipation of these velocity fluctuations

are different, one would expect that their scaling with nondimensional parameters could also be

different. This would then imply that models for single–phase turbulence may not be adequate

for modeling the pseudo–turbulent velocity fluctuations arising from the presence of particles.

For instance, models used for the dissipation of turbulent kinetic energy are based on the Kol-

mogorov scaling (k
3/2
f /ldiss) used in single–phase turbulence, but their validity in particle–laden

flows is not verified. Furthermore, although two–equation k–ε models are very widely used in

CFD of gas–solid flows, the disadvantage of such models is that they cannot account for the

anisotropy of the gas–phase Reynolds stress. Recent particle–resolved direct numerical sim-

ulation of flow past finite sized particles revealed that the Reynolds stress in the gas–phase

is indeed highly anisotropic (Xu and Subramaniam, 2010). This anisotropic Reynolds stress
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poses additional challenges in modeling gas–solid flows. Anisotropy in the Reynolds stress for

the case of inherent turbulence in gas–solid flow with D < η has been accounted for in some

recent models (Wang et al., 1998).

In this study we use direct numerical simulation to address these outstanding questions

related to gas–phase velocity fluctuations in gas–solid flow. A popular numerical approach is the

point particle direct numerical simulation methodology (Squires and Eaton, 1991; Elghobashi

and Truesdell, 1993; Boivin et al., 1998; Sundaram and Collins, 1999; Mashayek and Taulbee,

2002) (DNS) in which the particles are treated as points and the effect of the particles on

the gas–phase is represented by a force applied at the particle center. This approach is valid

only when the particle size is much smaller compared to the Kolmogorov length scale. When

the particle size is larger or comparable to the Kolmogorov length scale, the effects of the

wake generated by the particles become important and hence it is important to resolve the

boundary layers around the particle. For particles of size comparable to or larger than the

Kolmogorov length scale, the appropriate numerical approach is the particle–resolved direct

numerical simulation (PR–DNS) methodology in which all the scales of the inherent turbulence

and the flow scales introduced by the presence of large particles are resolved. PR–DNS has

been used to study the interaction of a single particle with decaying homogeneous isotropic

turbulence (Bagchi and Balachandar, 2003; Burton and Eaton, 2005). PR–DNS has also been

employed to study the effect of a collection of particles on decaying homogeneous isotropic

turbulence (Lucci et al., 2011), particle–laden turbulent channel flow(Uhlmann, 2008) as well as

gas–solid flow with upstream turbulence (Xu and Subramaniam, 2010). In fact, understanding

the generation of gas–phase velocity fluctuations using PR–DNS has been identified as one

of the future directions in the review article by Balachandar and Eaton (2010). Therefore,

PR–DNS is appropriate to characterize the level of gas–phase velocity fluctuations in gas–solid

suspensions of large, high Stokes number particles over a wide range of solid volume fraction

and Reynolds number based on the mean gas–solid slip velocity.

We use PR–DNS to quantify the strength of gas–phase velocity fluctuations and the state

of anisotropy of the gas–phase Reynolds stress tensor in steady flow through a statistically

homogeneous fixed assembly of monodisperse spheres. To differentiate between the gas–phase
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velocity fluctuations generated by the presence of particles and the inherent turbulence present

in the flow field, we consider “laminar” gas–solids flow in this work. In the context of this

work, “laminar” flow implies that there is no inherent turbulence in the flow field i.e. in the

absence of particles, the flow field is not turbulent. In fixed–bed simulations the particles

are held stationary and a steady flow is established by imposing a pressure gradient that

corresponds to the desired flow rate. Use of the fixed–bed simulation methodology for gas–

solid flows is justified if the configuration of the particles changes very slowly compared to

the time it takes to attain mean momentum balance. The time scale over which the particle

configuration changes depends on ReT = DT 1/2/νf , which is the Reynolds number based on

the particle fluctuating velocity that is characterized by the particle granular temperature T .

Particle–resolved simulations of freely evolving suspensions (Tenneti et al., 2010b) and recent

high–speed imaging of particles (Cocco et al., 2010) show that this value of ReT is low for

high Stokes number suspensions. Moreover, using PR–DNS, Mehrabadi et al. (2012) observed

that the level of gas–phase velocity fluctuations observed in freely evolving suspensions is close

to that observed in fixed particle assemblies. The fixed–bed simulation setup has been used

successfully to extract computational drag laws (Hill et al., 2001a,b; van der Hoef et al., 2005;

Beetstra et al., 2007; Tenneti et al., 2011) as well as to understand the effect of particle clusters

on gas–phase turbulence (Xu and Subramaniam, 2010). Using the data obtained from PR–

DNS, we analyze the implications for modeling the dissipation rate of kinetic energy in the

gas–phase by considering the energy balance equation similar to the work of Kenning and

Crowe (1997). We also use the particle–resolved DNS data to propose an eddy viscosity for

gas–solid flow in terms of solid volume fraction and mean flow Reynolds number.

The rest of the paper is organized as follows. In section 3.2 we define the ensemble–averaged

quantities that are computed from PR–DNS. We briefly describe our PR–DNS approach and

its validation in sections 3.3 and 3.4, respectively. The results quantifying the strength of

gas–phase velocity fluctuations and anisotropy of gas–phase Reynolds stress in terms of solid

volume fraction and mean flow Reynolds number are presented in section 3.6. The multiphase

turbulence model derived using a simple scaling analysis is described in section 3.7. An eddy

viscosity model for gas–solid flow is proposed in section 3.8, followed by the conclusions in
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section 3.9.

3.2 Ensemble–averaged quantities

In the Eulerian two-fluid theory, the fluid–phase Reynolds stress is defined as a phasic

average, which is an average conditional on the presence of the fluid phase Drew (1983); Drew

and Passman (1998); Pai and Subramaniam (2009). If Q (x, t) is any field, then its phasic

average
⟨
Q(f)

⟩
(x, t) referred to as its fluid–phase mean, is defined as:

⟨
Q(f)

⟩
(x, t) =

⟨If (x, t)Q (x, t)⟩
⟨If (x, t)⟩

. (3.1)

Here the fluid–phase indicator function If is unity if the point x lies in the fluid–phase and

zero otherwise.

Using this definition, the ensemble–averaged kinetic energy in the fluid phase
⟨
E(f)

⟩
is

defined as ⟨
E(f)

⟩
=

1

2

⟨Ifuiui⟩
⟨If ⟩

, (3.2)

where u is the fluid velocity. It is easy to see that the average kinetic energy in the fluid phase

is the sum of the kinetic energy in the mean fluid motion Ef and the average kinetic energy

in the fluctuating motions kf . The average kinetic energy in the mean fluid motion is given

by Ef =
1

2

⟨
u
(f)
i

⟩⟨
u
(f)
i

⟩
, where the quantity

⟨
ui

(f)
⟩
is the phase–averaged fluid velocity. The

average kinetic energy in the fluctuating motion of the fluid is given by

kf =
1

2

⟨
Ifu

′′(f)
i u

′′(f)
i

⟩
⟨If ⟩

, (3.3)

where fluctuations in the fluid velocity field are defined with respect to the phase–averaged

fluid velocity i.e., u
′′(f)
i = ui −

⟨
ui

(f)
⟩
. We now describe how kf is computed from solution of

flow past statistically homogeneous suspensions using particle–resolved DNS.

3.2.1 Quantifying gas–phase velocity variance from particle–resolved DNS

In PR–DNS a single realization from the ensemble of events that contribute to the phasic

average in Eq. 3.3 is simulated (cf. Fig. 3.2). Here we describe how PR–DNS data from multiple
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Figure 3.2 Schematic showing the concept of the average fluid–phase velocity. The average

fluid–phase velocity that is solved in gas–solid CFD simulations is obtained by

averaging over all possible realizations.

realizations is used to compute kf . Let u (x, t;ω) be the velocity field obtained from particle–

resolved DNS of flow past a random configuration of particles represented by the positions and

velocities
{
X(i),V(i), i = 1, . . . , Np

}
of Np particles. This configuration represents a realization

ω in the event space Ω. The ensemble–averaged velocity field or the mathematical expectation

is defined as (Subramaniam, 2000):

⟨u⟩ (x, t) =
∫
Ω

u (x, t;ω) dPω, (3.4)

where Pω is the probability measure that is defined on Ω. This concept is explained schemat-

ically in Fig. 3.2. The average gas–phase velocity and volume fraction that are solved in

the CFD calculations are obtained by averaging over all possible realizations. Fluctuations in

the gas–phase velocity are defined as departures of the instantaneous velocity field from the

average gas–phase velocity.

If the flow is statistically homogeneous, ensemble–averaged quantities can be approximated

by taking the volumetric mean of the solution fields, e.g. the volumetric mean of the velocity

field over the fluid region is defined as:⟨
u(f)

⟩
V
(t;ω) =

1

Vf

∫
V

If (x, t;ω)u (x, t;ω)dV, (3.5)
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where Vf is the volume of the region occupied by the fluid–phase. It has been shown else-

where (Tenneti et al., 2011) that a statistically homogeneous gas–solid flow is well approximated

by flow past a random configuration of particles in a periodically repeating unit cell. Therefore,

volume averages can be used to estimate the true mathematical expectation. The volumetric

mean approaches the ensemble average in the limit of infinite box size (i.e., V → ∞). Peri-

odic bounday conditions can be used in a computational domain with finite box size provided

the two–point correlations in the particle and the fluid phases decay to zero within the box

length1. In Section 3.5 we show that the Eulerian two–point correlation of fluid velocity does

indeed decay to zero within 3 to 4 particle diameters for different grid resolutions, box sizes

and Reynolds numbers. However, a finite box may not account for the statistical variability

arising from different particle configurations, we require very large box sizes. In order to accu-

rately estimate the ensemble–averaged quantities from finite box sizes, we can simulate fixed

particle assemblies and average over different configurations. For fixed particle assemblies, the

ensemble–average can be estimated by averaging over different configurations or realizations

i.e., {
u(f)

}
V,M

(t) =
1

M

M∑
µ=1

⟨
u(f)

⟩
V
(t;ωµ). (3.6)

In the above equation
{
u(f)

}
V,M denotes an estimate to the true expectation

⟨
u(f)

⟩
and M

denotes the number of independent realizations. Similarly, for each realization of the gas–solid

flow we compute the kinetic energy in the fluctuating motions using volume averaging:

k
(µ)
f =

1

Vf

∫
V(µ)
f

1

2

(
u (x, t, ωµ)−

{
u(f)

}
V,M

)
·
(
u (x, t, ωµ)−

{
u(f)

}
V,M

)
dV. (3.7)

The kf obtained from a single realization (cf. 3.7) is averaged over multiple independent real-

izations (MIS) to obtain an estimate for the ensemble-averaged kinetic energy:

kf =
1

M

M∑
µ=1

k
(µ)
f . (3.8)

In the next section we describe the particle–resolved DNS approach that is used in this work

to quantify kf in steady flow past fixed assemblies of spheres.

1This is simply the two–phase extension of the criterion given by Pope (2000) for single–phase turbulent
flows.
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3.3 Numerical Method

The particle–resolved DNS methodology employed in this work is called Particle–resolved

Uncontaminated–fluid Reconcilable Immersed Boundary Method (PUReIBM). In PUReIBM,

we employ Cartesian grids and solve the mass and momentum conservation equations on all the

grid points (including those lying inside the particles). A fictitious flow is generated inside the

particles that does not affect the exterior flow solution. The mass and momentum conservation

equations that are solved in PUReIBM are

∂ui
∂xi

= 0 , (3.9)

and

ρf
∂ui
∂t

+ ρfSi = −gIBM,i + µf
∂2ui
∂xj∂xj

+ fu,i, (3.10)

respectively, where gIBM is the pressure gradient, S = ∇ · (uu) is the convective term in

conservative form, and u is the instantaneous velocity field. In Eq. (3.10), fu is the additional

immersed boundary (IB) force term that accounts for the presence of solid particles by ensuring

the no–slip and no–penetration boundary conditions at the particle–fluid interface.

The surface of the solid particle is represented by a discrete number of points called bound-

ary points. For spherical particles, the boundary points are specified by discretizing the sphere

in spherical coordinates. In Fig. 3.3, a schematic describing the computation of the IB forcing

is shown for the equatorial plane passing through the spherical particle. Another set of points

called exterior points are generated by projecting these boundary points onto a sphere of radius

r+∆r, where r is the radius of the particle (see exterior point represented by an open circle on

the dashed line in Fig. 3.3). Similarly, the boundary points are projected onto a smaller sphere

of radius r −∆r and these points are called interior points. In our simulations ∆r is taken to

be same as the grid spacing. The IB force is computed at the interior points. At these points

the fluid velocity is forced in a manner similar to the ghost cell approach used in standard

finite-difference/finite-volume based methods (Patankar, 1980). Specifically for the case of zero

solid particle velocity, the velocity at the interior points is forced to be equal in magnitude but

opposite in direction of the fluid velocity at the corresponding exterior points. Velocities at the



82

Interior Point

en

Exterior Point

-un

-utet etut
∆r
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r

Figure 3.3 A schematic showing the computation of the immersed boundary forcing for a

stationary particle. The solid circle represents the surface of the particle at r.

Open dot shows the location of one exterior point at r + ∆r (only one exterior

point is shown for clarity, although there is one exterior point for each interior

point) and filled dots show the location of interior points at r − ∆r where the

immersed boundary forcing is computed. For the special case of a stationary

particle, the velocity at the interior points is forced to be the opposite of the

velocity at the corresponding exterior points. In the schematic, unen represents

the normal velocity and utet represents the tangential velocity at the exterior point.
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exterior and interior points are obtained by interpolating the velocities from the neighboring

grid nodes. The computation of IB forcing is similar to the direct forcing method proposed

by Yusof (1996). The IB forcing at the (n+ 1)th time-step is specified to cancel the remaining

terms in the momentum conservation, and to force the velocity to its desired value ud at the

interior points:

fn+1
u,i = ρf

udi − uni
∆t

+ ρfS
n
i + gnIBM,i − µf

∂2

∂xj∂xj
uni . (3.11)

The IB forcing at the interior points is then interpolated to the neighboring grid nodes that

do not include grid nodes in the fluid phase. It is noteworthy that the discretization of the

sphere in spherical coordinates is independent of the grid resolution and hence to some extent,

decouples the grid resolution from the accuracy with which the boundary condition is imposed.

The governing equations in PUReIBM are solved by imposing periodic boundary conditions

on fluctuating variables that are now defined. The velocity field is decomposed into a spatially

uniform mean flow that is purely time–dependent and a fluctuating velocity field u′ that is

periodic, i.e.,

u (x, t) = ⟨u⟩V (t) + u′ (x, t) , (3.12)

where the volumetric mean velocity

⟨u⟩V (t) =
1

V

∫
V

u (x, t) dV, (3.13)

is obtained by averaging the velocity field over the entire computational domain. Similar

decompositions can be written for the non-linear term S, pressure gradient g, and immersed

boundary forcing fu terms. Substituting the above decompositions in Eqs. (3.9) and (3.10),

followed by averaging over the entire computational domain yields the volume averaged mass

and momentum conservation equations. Since the volumetric means are independent of spatial

location, mean mass conservation is trivially satisfied. The mean momentum balance in the

whole domain is

ρf
d ⟨ui⟩V
dt

= −⟨gIBM,i⟩V + ⟨fu,i⟩V , (3.14)

where the volume integrals of convective and diffusive terms are zero because of periodic bound-

ary conditions. The mean IB forcing term ⟨fu⟩V is computed by volume–averaging the IB force
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specified by Eq. 3.11 over the region V. The mean pressure gradient ⟨gIBM⟩V is computed such

that we obtain the desired flow rate.

Evolution equations for the fluctuating variables are derived by subtracting Eq. (3.14) from

Eq. (3.10). The resulting equations are solved using a pseudo-spectral method, with Crank-

Nicolson scheme for the viscous terms, and an Adams-Bashforth scheme for the convective

terms. A fractional time-stepping method that is based on Kim and Moin’s approach (Kim

and Moin, 1985) is used to advance the fluctuating velocity fields in time. The principal

advantage of the PUReIBM approach is that it enables the use of regular Cartesian grids to

solve for flow past arbitrarily shaped moving bodies without the need for costly remeshing.

The salient features that distinguish PUReIBM from other immersed boundary method

approaches (including the original implementation of Yusof (1996)) are as follows:

1. Uncontaminated fluid: In PUReIBM the immersed boundary (IB) forcing is solely re-

stricted to those grid points that lie in the solid phase, and therefore the flow solution

in the fluid phase is uncontaminated by the IB forcing. Consequently the velocity and

pressure in the fluid phase is a solution to the unmodified Navier-Stokes equations (in

contrast to IB implementations that smear the IB forcing on to grid points in the fluid

phase adjoining solid boundaries, resulting in solution fields that do not correspond to

unmodified Navier–Stokes equations).

2. Reconcilable: In PUReIBM the hydrodynamic force experienced by a particle is com-

puted directly from the stress tensor at the particle surface that is obtained from this

uncontaminated fluid flow solution (in contrast to IB implementations that calculate the

hydrodynamic force from the IB forcing field). This feature of PUReIBM enables us to

directly compare the DNS solution with any random-field theory of multiphase flow.

3.4 Validation

The PUReIBM PR–DNS methodology has been extensively validated (Garg et al., 2011;

Tenneti et al., 2011) by comparing the drag force obtained from PUReIBM with available

experimental and simulation data in the literature in a comprehensive suite of test cases:
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1. Drag acting on a single sphere (Garg et al., 2011; Garg, 2009) with experimental corre-

lation of Schiller and Naumann (1935)

2. Drag acting on simple cubic and face centered cubic arrangements (Tenneti et al., 2011)

of particles in Stokes flow regime with those reported by Zick and Homsy (1982) using

the Boundary Integral method (semi–analytic solution)

3. Drag acting on simple cubic (SC) and face centered cubic (FCC) arrangements (Tenneti

et al., 2011) of particles at moderate Reynolds numbers with the results published by Hill

et al. (2001b) using lattice Boltzmann method (LBM)

4. Mean drag acting on a random arrangement Tenneti et al. (2011) of particles in the Stokes

flow regime with the results published by Hill et al. (2001a) and van der Hoef et al. (2005)

using LBM

5. High Reynolds number flow past random arrays of monodisperse spheres with ANSYS–

FLUENT CFD package

In addition to the comprehensive validation of the PUReIBM method (Tenneti et al., 2011;

Garg et al., 2011) , we present selected additional validation tests to establish the numerical

convergence and accuracy of PUReIBM near solid boundaries in Fig. 3.4. The first plot (see

Fig. 3.4(a)) shows a comparison of the pressure coefficient along the surface of a sphere

obtained from our PR–DNS with that reported in the book of Clift et al. (1978) (CGW) for

an isolated sphere at a Reynolds number of 10. Figure 3.4(a) shows an excellent agreement of

the pressure profile on the surface of the sphere with the data reported in CGW. The second

plot (see Fig. 3.4(b)) shows a comparison of the velocity field in a square duct at a Reynolds

number of 20 with the analytical solution given by Cornish (1928). We can see that the velocity

profile obtained from PUReIBM is numerically converged and accurate. These plots show that

in addition to getting the total drag correct, our method computes the correct contributions

of pressure and viscous drag forces. In the following section we describe the simulation setup

used to compute the level of gas–phase velocity fluctuations and also discuss the choice of the

numerical parameters needed to ensure numerically converged results.
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(a) (b)

Figure 3.4 (a) Variation of the coefficient of pressure Cp along the surface of the sphere.

Symbols are the data obtained from PUReIBM simulations for a Reynolds number

of 10, while the solid line is that reported in the book authored by Clift, Grace

and Weber (CGW) Clift et al. (1978). (b) Comparison of the velocity profile in

a square duct obtained from PUReIBM simulations at a Reynolds number of 20

with analytical solution Cornish (1928). It is worthwhile to note that the walls are

generated using the immersed boundary method.

3.5 Simulation Setup

In our simulation setup the particles are held stationary and a steady flow is established by

imposing a pressure gradient that corresponds to the desired mean flow Reynolds number. A

typical simulation of flow past random arrangement of particles with contours of local kinetic

energy (k(f) =
1

2
u′′i

(f)
u′′i

(f)
) normalized by the mean energy are shown in Fig. 3.5. In all the

simulations, mean flow is directed along the positive x–axis.

For flow past homogeneous particle assemblies, a Reynolds number based on the magnitude

of mean slip velocity between the two phases is defined as

Rem =
|⟨W⟩| (1− ϕ)D

νf
, (3.15)

where |⟨W⟩| is the magnitude of the mean slip velocity, D is the particle diameter and ϕ is

the solid volume fraction. The mean slip velocity ⟨W⟩ =
⟨
u(s)

⟩
−
⟨
u(f)

⟩
is defined as the

difference between the average solid and gas–phase velocities. In the simulations, the mean

flow Reynolds number (or the desired flow rate) is specified as an input and since for fixed
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Figure 3.5 Contours of local kinetic energy (k(f) =
1

2
u′′i

(f)
u′′i

(f)
) in the gas–phase normalized

by the mean energy for steady flow past random assembly of spheres at a solid

volume fraction of 0.05 and mean flow Reynolds number of 50.

assemblies
⟨
u(s)

⟩
= 0, the desired fluid-phase mean velocity

⟨
u(f)

⟩
is known in terms of the

input Reynolds number and other physical properties. The mean pressure gradient evolves in

time until it attains the value required to drive the fluid at the desired flow rate.

Particles are initialized corresponding to a specified mean solid volume fraction ϕ. The

particles are fixed in a random equilibrium configuration they attain following elastic collisions

(in the absence of ambient fluid) starting from a lattice arrangement with a Maxwellian ve-

locity distribution. The elastic collisions are simulated using a soft–sphere discrete element

model (Cundall and Strack, 1979; Garg et al., 2010a). The pair correlation function at equilib-

rium specifies the particle configuration for random assemblies.

The computational domain used is a cube with sides of length L which is discretized using a

regular Cartesian grid with M grid cells in each direction so that ∆x = L/M is the size of each

grid cell. The spatial resolution is represented by the number of grid cells across the diameter

of a particle, which is denoted Dm = D/∆x. For random arrangements of particles, the ratio

L/D is an independent parameter. The minimum box length is determined by the criterion

that the spatial autocorrelation of flow statistics must decay to zero within the box. This is to
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ϕ Np M Dm L/D

0.1 80/ 41 5 20/30 7.5/ 6

0.2 161/ 34 5 20/40 7.5/ 4.5

0.3 71/ 26 5 30/50 5/ 3.6

0.4 95/ 20 5 30/60 5/ 3

0.5 61/– 5 40/– 4/–

Table 3.1 Numerical parameters (number of particles Np, number of MIS M, particle diame-

ter in grid units Dm and the ratio of the length of the box to the particle diameter

L/D) used for random arrays in PUReIBM simulations. Different numerical pa-

rameters are used for Rem ≤ 100 and Rem > 100. These are separated by “/”.

Numbers before the “/” correspond to Rem≤ 100 while numbers after the “/” cor-

respond to Rem> 100. At volume fraction 0.5 PUReIBM simulations are performed

only up to a Reynolds number of 100.

prevent the periodicity of the numerical solution from leading to unphysical flow fields. The

numerical parameter L/D also determines the number of particles Np in the box such that for

a given volume fraction ϕ it is given by

Np =
6ϕ

π

(
L

D

)3

. (3.16)

The various numerical parameters used in the simulations are reported in Table 3.1.

All simulations start with the initial condition of uniform fluid velocity. We have verified

that starting the simulations with a homogeneous isotropic turbulent velocity field does not

affect the steady value of kf attained by the system (Mehrabadi et al., 2012). Therefore the

steady state value of kf obtained in a fixed particle assembly depends only on the solids volume

fraction and the mean flow Reynolds number. The grid resolutions used in the PUReIBM sim-

ulations have been chosen such that they yield numerically converged solutions. For instance,

the convergence characteristics of kf/Ef with respect to the grid resolution Dm for a solid

volume fraction of 0.3 and mean flow Reynolds number of 20 is shown in Fig. 3.6. The value

of kf/Ef averaged over 5 independent realizations clearly shows numerical convergence as the

grid resolution is increased.

Besides convergence with grid resolution, it is also important to check whether the box size
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Figure 3.6 Convergence characteristics of kf/Ef with grid resolution D/∆x for flow past

random arrays of spheres at ϕ = 0.3 and Rem = 20. The error bars denote

95% confidence intervals in the estimation of the average kf from 5 independent

realizations.

is adequate or not. The box size is deemed adequate if the two–point correlation functions

in the fluid–phase decay to zero within the box length. To check this, the two–point velocity

correlation function has been computed for the highest Reynolds number simulated. The fluid–

phase velocity autocorrelation ρu (r) is defined as

ρu (r) =

⟨
If (x)u

′′(f) (x) · If (x+ r)u′′(f) (x+ r)
⟩⟨

Ifu′′(f) · u′′(f)
⟩ . (3.17)

Figure 3.7(a) shows convergence of the fluid–phase velocity autocorrelation function with grid

resolution as well as box size for a random configuration of particles at a solid volume fraction

of 0.2 and Reynolds number of 20. The autocorrelation function has also been computed

for the highest Reynolds number that we simulated and is shown in Fig. 3.7(b). These

results clearly indicate that the numerical parameters used in our simulation are adequate

to perform numerically converged simulations. We now present the results obtained from

PUReIBM simulations of flow past monodisperse fixed particle assemblies.
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Figure 3.7 (a) Convergence of the fluid–phase velocity autocorrelation function with grid res-

olution as well as box size for a random configuration of particles at a solid volume

fraction of 0.2 and Reynolds number of 20. (b) Decay of the fluid velocity autocor-

relation function obtained from PUReIBM simulation of steady flow past a random

configuration of spheres at a solid volume fraction of 0.2 and mean flow Reynolds

numbers 20 (squares) and 300 (triangles). In these simulations L/D ratios of 6

and 4.5 are used for Reynolds numbers 20 and 300 respectively.
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Figure 3.8 Variation of the turbulent kinetic energy normalized by Ef = 1
2

⟨
u(f)

⟩
·
⟨
u(f)

⟩
with

Rem and ϕ.Figure 3.8(a) shows the behavior of kf/Ef with ϕ for different mean

flow Reynolds numbers while Fig. 3.8(b) shows the behavior of kf/Ef with Rem
for different solid volume fractions. For each volume fraction kf obtained from

PUReIBM simulations is reported by averaging over 5 MIS and the error bars on

the symbols in this figure represent 95% confidence intervals in the estimation of

kf .

3.6 Results

We performed PUReIBM DNS of flow past fixed assemblies of monodisperse spheres over

a wide range of solids volume fraction (0.1 ≤ ϕ ≤ 0.5) and mean flow Reynolds numbers

(0.01 ≤ Rem ≤ 300). Using this data a new correlation for the average fluid–particle force

in fixed beds has been proposed by Tenneti et al. (2011). Here we quantify the strength of

gas–phase velocity fluctuations in terms of ϕ and Rem.

Figure 3.8(a) shows the variation of kf/Ef with solids volume fraction for different mean

flow Reynolds numbers while Fig. 3.8(b) shows the variation of kf/Ef with mean flow Reynolds

number for different solid volume fractions. As evident from Fig. 3.8(a), the kinetic energy in

fluctuating motions normalized by the mean energy in the gas–phase increases dramatically

with volume fraction. This behavior is expected because, as the volume fraction increases, the

space available to the gas decreases. Owing to conservation of mass, the velocity of the gas

increases thus causing kf/Ef to increase with volume fraction. As shown in Fig. 3.8(b), at a

given volume fraction kf/Ef decreases rapidly with increasing mean flow Reynolds number up
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to Rem = 50 and beyond Rem = 50 it has a weak power law dependence on Rem. This behavior

is a result of the normalization of kf by Ef . It implies that the variance of gas velocity increases

approximately as the square of the mean flow Reynolds number. Since the total kinetic energy

of the gas increases with increasing mean flow Reynolds number, we expect the strength of

gas–phase velocity fluctuations also to increase. Using the data obtained from PUReIBM DNS

we found that the following function fits the data with an average deviation of 5%:

kf
Ef

(ϕ,Rem) = 2ϕ + 2.5ϕ(1− ϕ)3 exp
(
−ϕRe1/2m

)
, 0.1 ≤ ϕ ≤ 0.5,

0.01 ≤ Rem ≤ 300. (3.18)

As shown in Eq. 3.18, the correlation is proposed from simulations in the range 0.1 ≤ ϕ ≤ 0.5

and 0.01 ≤ Rem ≤ 300. The value of kf/Ef from Eq. (3.18) tends to appropriate values in

the limit of infinite dilution and creeping flow. In the limiting case of infinite dilution i.e.

ϕ → 0 the value of kf/Ef is zero. This limiting value is consistent with the fact that in the

absence of particles the flow field is uniform. In the Stokes flow regime (Rem → 0) the value

of kf/Ef reaches an asymptote and depends only on the solid volume fraction. This behavior

is consistent with the fact that the mean drag (which is shown to be the source of kf in the

next section) acting on the particles is linear in the Stokes flow regime and thus the normalized

quantity kf/Ef is independent of Reynolds number.

In addition to kf we also quantified the state of anisotropy of the fluid phase Reynolds stress

tensor. To quantify the state of anisotropy of the fluid phase Reynolds stress, the invariants ξ

and η of the normalized Reynolds stress anisotropy tensor, which is defined as

bij =
1

2kf

⟨
Ifui

′′(f)uj
′′(f)
⟩
− 1

3
δij ,

are computed. The invariants are defined as 6ξ2 = bijbij and 6η3 = bijbjkbki (Pope, 2000). The

state of the anisotropy of the Reynolds stress tensor for various volume fractions and mean flow

Reynolds number is plotted on the ξ–η plane in Fig. 3.9. The key finding here is that at every

Reynolds number the level of anisotropy decreases with increasing volume fraction. In other
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Figure 3.9 State of anisotropy of the gas–phase Reynolds stress tensor in the Lumley plane.

Color of the symbol indicates the volume fraction going from ϕ = 0.1 (blue) to

ϕ = 0.5 (red). For each volume fraction the invariants of the gas–phase Reynolds

stress tensor are shown: Rem = 0.01 (squares), Rem = 20 (circles), Rem = 100

(diamonds) and Rem = 200 (triangles) are shown.

words, the gas–phase Reynolds stress tensor is more anisotropic at dilute volume fractions than

at denser volume fractions.

Although our study is for homogeneous gas–solid suspensions, the dependence of kf on the

solid volume fraction and mean flow Reynolds number has implications for transport of the

gas–phase Reynolds stress in inhomogeneous flows also. The strong dependence of kf on ϕ

suggests that the transport of kf could be significant in statistically inhomogeneous flows with

spatial variation of ϕ. Moreover, the dependence of kf on ϕ and Rem (cf. Eq. (3.18)) obtained

in this section has certain implications for modeling the dissipation of kinetic energy in the

gas–phase, which are discussed in the following section by employing a scaling analysis.

3.7 Implications for modeling the dissipation of kinetic energy

In this simple flow the steady kf results from a balance of interphase transfer of kinetic

energy and dissipation of kinetic energy in the gas–phase. If we are able to obtain the correct

scaling of each of these terms with ϕ and Rem then we can explain the dependence of kf on

ϕ and Rem. For statistically homogeneous flows the conservation law (Pai and Subramaniam,
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2009; Ying and Subramaniam, 2007) for kf is:

∂

∂t
{(1− ϕ) ρfkf} = −

⟨
ui

′′(f)τjin
(s)
j δ

(
x− x(I)

)⟩
+

⟨
ui

′′(f)∂ (Ifτji)

∂xj

⟩
. (3.19)

In this equation τji is the fluid phase stress tensor (cf. A), δ
(
x− x(I)

)
is a generalized

delta function at the fluid–particle interface x(I), and n(s) is the unit normal vector pointing

outward from the solid phase into the fluid phase. The second term on the right hand side

is the covariance of the fluctuating fluid velocity field and the gradient of the stress tensor in

the fluid phase. For statistically homogeneous flows this term simplifies (cf. Appendix A) to

−2µf ⟨Ifsijsij⟩, where 2µf ⟨Ifsijsij⟩ can be identified as the dissipation that is strictly non

negative. Thus the conservation equation for kf simplifies to

∂

∂t
{(1− ϕ) ρfkf} = −

⟨
ui

′′(f)τjin
(s)
j δ

(
x− x(I)

)⟩
− 2µf ⟨Ifsijsij⟩ . (3.20)

Here sij =
1

2

(
∂ui

′′(f)

∂xj
+
∂uj

′′(f)

∂xi

)
is the strain rate of the fluctuating fluid velocity field and

µf is the dynamic viscosity of the fluid–phase.

The first term on the right hand side of Eq. (3.20) represents the interphase transfer of

kinetic energy denoted Πkf so that

Πkf = −
⟨
ui

′′(f)τjin
(s)
j δ

(
x− x(I)

)⟩
, (3.21)

which is non–zero at the fluid–solid interface owing to the Dirac delta function at x(I). Ying

and Subramaniam (2007) showed that for fixed particle assemblies the interphase kinetic energy

transfer term simplifies to ⟨W⟩ ·
⟨
S
(f)
M

⟩
, where ⟨W⟩ =

⟨
u(f)

⟩
−
⟨
u(s)

⟩
is the mean slip velocity

between the solid and the fluid phases, and
⟨
S
(f)
Mi

⟩
= −

⟨
τjin

(s)
j δ

(
x− x(I)

)⟩
is the average

momentum transfer between the fluid and the solid phase. This simplification is possible

because particles in a fixed bed are stationary and the fluid velocity field satisfies the no–slip

condition at the particle surfaces, as a consequence of which u′′(f) = −
⟨
u(f)

⟩
at every point on

the fluid–particle interface in Eq. 3.21. For random assemblies, since the mean slip velocity is

aligned with the mean interphase momentum transfer (Hill et al., 2001b; Tenneti et al., 2011),

Πkf is positive and represents a source of gas–phase velocity fluctuations. The second term

(2µf ⟨Ifsijsij⟩) on the right hand side of Eq. (3.20) is usually expressed as ρf (1− ϕ) εf where

εf is the dissipation of kf . Since sijsij is always positive, εf represents a sink of kf .
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An expression for the interphase transfer of kinetic energy Πkf can be derived by expressing

the interphase momentum transfer in terms of the average drag force acting per particle:

Πkf = ⟨W⟩ ·
⟨
S
(f)
M

⟩
=

18ϕ (1− ϕ)2 µf
D2

F (ϕ,Rem) |⟨W⟩|2 . (3.22)

In the above expression, F (ϕ,Rem) is the normalized average drag force per particle given by

F =
|⟨F⟩|
FStokes

, (3.23)

where ⟨F⟩ is the average hydrodynamic force per particle and FStokes = 3πµfD (1− ϕ) |⟨W⟩| is

the Stokes drag acting on an isolated sphere moving with a slip velocity of (1− ϕ) |⟨W⟩|. The

expression for the source of kf due to interface transfer of kinetic energy, derived in Eq. (3.22)

is similar to the one derived by Crowe (2000). While Crowe (2000) used the single sphere

drag correlation for F (ϕ,Rem), here we obtain this value directly from the particle–resolved

DNS. An accurate correlation for F (ϕ,Rem) has been developed using the data obtained from

PUReIBM simulations (Tenneti et al., 2011). The drag correlation is summarized below for

the sake of completeness. The average normalized drag force acting per particle in flow past a

random assembly of monodisperse spheres is given by

F (ϕ,Rem) =
Fisol (Rem)

(1− ϕ)3
+ Fϕ (ϕ) + Fϕ,Rem (ϕ,Rem) (3.24)

where, Fisol is the drag force acting on an isolated sphere moving in an unbounded medium.

We used the drag correlation proposed by Schiller and Naumann (1935) to get the drag on an

isolated sphere. The remaining two terms in Eq. 3.24 are given by

Fϕ (ϕ) =
5.81ϕ

(1− ϕ)3
+ 0.48

ϕ1/3

(1− ϕ)4
,

Fϕ,Rem (ϕ,Rem) = ϕ3Rem

(
0.95 +

0.61ϕ3

(1− ϕ)2

)
.

At steady state the source and sink of kinetic energy must balance each other i.e.,

Πkf = ρf (1− ϕ) εf . (3.25)

To our knowledge, all the turbulence models for multiphase flows use a Kolmogorov scaling for

the dissipation term in a manner similar to single phase turbulence models i.e., εf ∼ k
3/2
f /lK .
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An alternative expression for the dissipation rate in single–phase turbulence is εf ∼ 2νfkf/l
2
T ,

where lT is the Taylor microscale and νf is the kinematic viscosity of the fluid–phase. This

expression can be generalized to any random velocity field with a finite spatial autocorrelation

length. In the following we show that the Kolmogorov scaling does not yield a plausible behavior

for lK with Rem for gas–solid flows with finite sized particles, whereas the behavior of lT is

reasonable.

Using the Kolmogorov scaling for the dissipation term and substituting εf = k
3/2
f /lK in

Eqs. (3.25) and (3.22) implies the following expression for lK/D:

lK
D

=

(
kf
Ef

)3/2(
36

√
2ϕ (1− ϕ)2

F (ϕ,Rem)

Rem

)−1

. (3.26)

Similarly, using the Taylor microscale scaling for the dissipation term and substituting εf =

2νfkf/l
2
T in Eqs. (3.25) and (3.22) results in the following expression for lT /D:

lT
D

=

(
kf
Ef

)1/2

(18ϕ (1− ϕ)F (ϕ,Rem))−1/2 . (3.27)

The behavior of the length scales lK and lT with solids volume fraction and mean flow

Reynolds number can be inferred by substituting Eqs. (3.18) and (3.23) in Eqs. (3.26) and (3.27)

respectively. The variation of lK and lT with solid volume fraction and Reynolds number are

compared in Fig. 3.10. The behavior of length scale lK obtained by modeling the dissipation

term by Kolmogorov scaling (εf ∼ k
3/2
f /lK) is shown by dashed lines. This length scale

increases with mean flow Reynolds number and decreases with volume fraction. The behavior

of the length scale lT obtained using a Taylor microscale scaling (εf ∼ 2νfkf/l
2
T ) is shown in

Fig. 3.10 using solid lines. This length scale decreases with both mean flow Reynolds number

and solids volume fraction.

For laminar flow past a single sphere, the length scale on which the velocity gradients vary is

of the order of the boundary layer thickness δ/D which varies inversely with
√
Rem. We expect

this length scale to decrease with increasing solids volume fraction. Since the hypothesis of

energy cascade may not hold in gas–solid flow with finite–sized particles, the applicability of

the Kolmogorov scaling is questionable, as also evidenced by the behavior of lK with Rem.

On the other hand, the scaling of lT indicates that the Taylor microscale is a better choice to
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Figure 3.10 Variation of dissipation length scales with Reynolds number for solid volume

fractions 0.1 and 0.2. Dashed lines are obtained by modeling the dissipation

term as k
3/2
f /lK while the solid lines are obtained by modeling the dissipation as

2νfkf/l
2
T .

model the dissipation term in gas–solid flows with finite sized particles. However, it must be

noted that neither lK nor lT may correspond to the exact length scales of dissipative motions

in gas–solids flow.

3.8 Eddy viscosity for gas–solid flow

In several studies the gas–phase Reynolds stress term is modeled in a fashion similar to

single–phase turbulence i.e.,

⟨
u′′i

(f)
u′′j

(f)
⟩
=

2

3
δij

kf + νt
∂
⟨
u
(f)
k

⟩
∂xk

− νt

∂
⟨
u
(f)
i

⟩
∂xj

+
∂
⟨
u
(f)
j

⟩
∂xi

 .

In this model νt is the eddy viscosity for gas–solid flow and it depends on the turbulent kinetic

energy (kf ) and dissipation rate (εf ) through the relation νt = Cµk
2
f/εf . In this relation Cµ

is a model constant and usually the value for the constant associated with the k − ε models of

single–phase turbulence are used in gas–solid flows as well. Since we have quantified both kf (cf.

Eq. (3.18)) and εf (cf. Eq. (3.25)) using particle–resolved DNS, we can infer an eddy viscosity
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Figure 3.11 Behavior of the ratio k2f/ (εfνf ) with mean flow Reynolds number for different

solid volume fractions.

for gas–solid flow as a function of solid volume fraction and mean flow Reynolds number. From

Eqs. (3.18) and (3.25), it is clear that the ratio k2f/ (εfνf ) can be expressed as

k2f
εfνf

=
1

18ϕ (1− ϕ)3

(
kf
Ef

)2 Re2m
F (ϕ,Rem)

. (3.28)

This ratio is shown as a function of Rem for different ϕ in Fig. 3.11. We see that the ratio

k2f/ (εfνf ) increases with both solid volume fraction and mean flow Reynolds number. This de-

pendence on the mean flow Reynolds number indicates that the transport of gas–phase Reynolds

stress can become important if there are large gradients in the mean flow and solid volume frac-

tion, as found in many multiphase flow applications. Further, the PR–DNS of Mehrabadi et al.

(2012) shows that the value of kf in freely evolving gas–solid suspensions is very close to

that observed in fixed–beds. This observation confirms the applicability of the proposed eddy

viscosity model in device–scale CFD simulations of gas–solid flow applications.

3.9 Conclusions

In this work we quantified the strength of gas–phase velocity fluctuations in gas–solid flows

as a function of solids volume fraction and Reynolds number based on mean slip velocity using

particle–resolved DNS of steady flow past fixed particle assemblies. We employ the Particle–
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resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method (PUReIBM) to per-

form particle–resolved DNS of flow past fixed particle assemblies. We observe that the presence

of particles generates high level of fluctuations in the gas velocity. The kinetic energy in the

fluctuating motions (kf ) can be as high as the kinetic energy in the mean motion (Ef ), espe-

cially for systems with higher solid volume fraction greater than 0.4. The ratio kf/Ef increases

with the solids volume fraction and decreases with mean flow Reynolds number. We observe

that the gas–phase Reynolds stress in the bed is anisotropic at all Reynolds numbers and vol-

ume fractions. Based on the PUReIBM DNS data, we propose a correlation for kf/Ef in terms

of solid volume fraction and mean flow Reynolds number. Our results indicate that the use of

a length scale analogous to Taylor microscale is appropriate to model the dissipation term in

gas–solid flows.
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CHAPTER 4. Heat transfer in dense gas–solid flow as revealed by

particle–resolved direct numerical simulation

This chapter is a manuscript titled “Role of fluid heating in dense gas–solid flow as revealed

by particle–resolved direct numerical simulation” that has been accepted for publication in the

International Journal of Heat and Mass Transfer. This paper is authored by S. Tenneti, B.

Sun, R. Garg and S. Subramaniam.

Abstract

Heat transfer is important in gas–solid flows that are encountered in many industrial appli-

cations such as energy generation. Computational fluid dynamics (CFD) simulations of heat

transfer in gas–solid flow are based on statistical theories that result in averaged equations

(eg., Eulerian–Eulerain two–fluid model). These averaged equations require accurate models

for unclosed terms such as the average gas–solid heat flux. The average gas–solid or interphase

heat flux is closed in terms of the Nusselt number Nu, which is specified as a function of the

solid volume fraction ϕ, mean flow Reynolds number Rem and Prandtl number Pr. In develop-

ing closure models for the average interphase heat flux it is assumed that the gas–solid flow is

locally homogeneous i.e., the effect of fluid heating (or cooling) on the average fluid tempera-

ture is neglected. However, continuous heating (or cooling) of the fluid along the flow direction

causes the average fluid temperature to become inhomogeneous. In this work we develop a

particle–resolved direct numerical simulation (PR–DNS) methodology to study heat transfer

in steady flow past statistically homogeneous random assemblies of stationary particles. By

using an analogy with thermally fully developed flow in pipes, we develop a thermal similarity

condition that ensures a statistically homogeneous Nusselt number, even though the average
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fluid temperature field is inhomogeneous. From PR–DNS results we find that the effect of fluid

heating cannot be neglected for gas–solid systems with high solid volume fractions and low

mean flow Reynolds numbers. These results indicate that the assumption of scale separation

implicit in two–fluid models is not always valid.

4.1 Introduction

Gas-solid flows occur in many industrial applications such as energy generation, food, chem-

ical, and pharmaceutical processing. Carbon-neutral energy generation using biomass (Azar

et al., 2006) or chemical looping combustion (Shen et al., 2008) (CLC), and CO2 capture from

flue gases using dry sorbents (Yi et al., 2007; Abanades et al., 2004) are examples of emerging

technologies (Wall, 2007) where an improved understanding of gas-solid heat transfer is crucial

for process and component design. For instance, accurate prediction of the fluid–phase temper-

ature field is very important for the CLC application because the reaction rates in combustion

chemistry are highly temperature dependent. Similarly, the CO2 capture process using dry

sorbents involves both exothermic and endothermic reactions and hence gas–solid heat transfer

is crucial for the efficient performance of the process. Both CLC and CO2 capture technologies

can be implemented using fluidized beds, where the particle diameter D can vary from 50–150

µm. The particles are typically larger than the Kolmogorov length scale of turbulent dissipa-

tion η. Moreover, gas–solid flow in fluidized beds can have a solid volume fraction ranging from

near close packed (64% for random configurations of monodisperse spheres) to as low as 5% in

the riser region. A fundamental understanding of heat transfer in fluid flow past finite sized

particles (D > η) over a wide range of physical parameters like solid volume fraction and flow

Reynolds number is therefore important for process design.

Computational fluid dynamics (CFD) simulations (Syamlal et al., 1993; Kashiwa and Gaffney,

2003; Sun et al., 2007) of gas–solid flow are increasingly being used as an efficient approach for

design optimization because experiments are often costly and time-consuming. In CFD simula-

tions of gas–solid flow, averaged equations governing mass, momentum, and energy are solved.

Figure 4.1 shows a schematic of the computational domain in a CFD simulation of gas–solid

flow. In every grid cell, governing equations for averaged quantities such as volume fraction,
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Figure 4.1 Schematic of a CFD simulation of gas–solid flow. In every computational grid

cell, governing equations for the averaged quantities in both phases are solved.

Here,
⟨
u(f)

⟩
is the average fluid–phase velocity,

⟨
T (f)

⟩
is the average fluid–phase

temperature,
⟨
u(s)

⟩
is the average solid–phase velocity and

⟨
T (s)

⟩
is the average

solid–phase temperature. In this schematic, ⟨Qg−s⟩ denotes the average gas–solid

interphase heat transfer.

velocity and temperature are solved for both phases. Since these equations are obtained using

a statistical averaging procedure (Anderson and Jackson, 1967; Drew and Passman, 1998), the

average interaction terms corresponding to mass, momentum, and energy exchange between

different phases need to be modeled. For example, two–fluid CFD formulations for heat trans-

fer in gas–solid flow require closure of the average gas–solid heat transfer rate per unit volume

⟨Qg−s⟩. The average interphase heat transfer rate ⟨Qg−s⟩ is modeled in terms of an aver-

age Nusselt number and the difference between the average fluid and solid–phase temperature(⟨
T (f)

⟩
−
⟨
T (s)

⟩)
. This Nusselt number is usually given by a correlation that depends on solid

volume fraction ϕ, mean slip Reynolds number Rem and the Prandtl number Pr.

Correlations for the Nusselt number corresponding to gas–solid heat transfer are typically

obtained from a combination of experimental and theoretical studies. However, the exper-

imental data from which these empirical correlations are deduced vary by orders of magni-

tude (Wakao and Kaguei, 1982; Breault and Guenther, 2009). Most experimental measure-

ments of heat transfer in gas–solid flow are intrusive. Theoretical studies of heat transfer in

gas–solid systems are limited to creeping flow past ordered (Pfeffer and Happel, 1964; Sorensen

and Stewart, 1974b) and random assemblies of spheres (Gunn, 1978; Acrivos et al., 1980). The
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randomness in particle positions and velocities together with the nonlinearity of the governing

equations make the analytical treatment intractable at finite Reynolds numbers. Particle-

resolved direct numerical simulation (PR–DNS) of heat transfer in gas-solid flow is a first-

principles, model-free simulation method that can used to gain better understanding of heat

transfer in gas-solid flow. Furthermore, PR–DNS can be used to specify closure models for the

unclosed average interphase interaction terms that arise in CFD simulations of gas–solid flow.

In applying closure models for the average interphase interaction terms such as the aver-

age interphase momentum transfer and interphase heat flux, it is assumed that the gas–solid

flow is locally homogeneous. In other words, the average fluid and solid–phase velocities and

temperatures are assumed to be uniform in the grid cell. Therefore, in order to specify closure

models for the unclosed terms it is natural to simulate a statistically homogeneous gas–solid

suspension using PR–DNS. Indeed, PR–DNS has been used successfully to solve the hydrody-

namic problem and to provide a closure model for the average gas–solid momentum transfer.

The closure for the average interphase momentum transfer is popularly known as a “drag law”

and several researchers have extracted computational drag correlations for gas–solid flow by

simulating steady flow past statistically homogeneous random assemblies of stationary spher-

ical particles (Hill et al., 2001a,b; van der Hoef et al., 2005; Beetstra et al., 2007; Yin and

Sundaresan, 2009a,b; Holloway et al., 2010; Tenneti et al., 2011) in periodic domains. Ten-

neti et al. (2011) have rigorously shown that the evolution equation for the volume averaged

fluid–phase momentum obtained from this setup is consistent with statistically homogeneous

ensemble–averaged equations. This problem setup ensures that the flow field is statistically

homogeneous and statistics such as the average interphase momentum transfer can be easily

obtained by volume averaging.

In the heat transfer problem, the assumption of a statistically homogeneous average fluid

temperature implies that the effect of heating (or cooling) by the particles does not change the

average fluid temperature significantly. However, continuous heating (or cooling) of the fluid

by the particles along the flow direction can cause the average fluid temperature to vary in

that direction. The extent of this variation of the average fluid temperature depends on the

solid volume fraction and mean flow Reynolds number. Although the hydrodynamic problem
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is statistically homogeneous, for some regimes of gas–solid flow it is conceivable that anisotropy

in the fluid velocity results in a statistically inhomogeneous fluid temperature field. Therefore,

PR–DNS methodologies that are used to specify a closure model for the average Nusselt number

in terms of the average solid volume fraction and mean flow Reynolds number must account

for this inhomogeneity in the fluid temperature field. In this work we present a PR–DNS

methodology to study heat transfer in statistically homogeneous gas–solid flow in periodic

domains that accounts for the inhomogeneity in the temperature field. We use the analogy of

flow in a fixed bed of particles with thermally fully developed flow in internal pipes to develop

a thermal similarity condition that guarantees a statistically homogeneous Nusselt number.

Using this new formulation we examine the regime of validity of the assumption of statistical

homogeneity in the average fluid temperature field that is implicit in two–fluid CFD models.

We use the Particle–resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method

(PUReIBM) (Garg et al., 2011; Tenneti et al., 2010b, 2011) to solve for heat transfer in gas–

solid flow. We employ three–dimensional Cartesian grids to solve for the velocity, pressure, as

well as the temperature fields. Dirichlet boundary conditions for both velocity and temperature

at the surface of the particle are imposed via an immersed boundary (IB) forcing that is added

to the momentum and temperature equations, respectively. The idea behind the extension of

the IB method to the temperature equation is similar to the one used by Feng and Michaelides

(2008) to study heat transfer in particle–laden flow with solid to fluid density ratio in the range

1.001–1.1.

The rest of the paper is organized as follows. The problem description and the assumptions

made to simplify the problem are described in section 4.2. The formulation of the heat transfer

problem that is simulated in the particle–resolved DNS methodology is discussed in section 4.3.

The governing equations are developed in section 4.4 and the numerical method used in our

PR–DNS approach is described in section 4.5. The results obtained from PR–DNS of heat

transfer in gas–solid flow are discussed in section 4.6 and finally the principal conclusions of

this work are summarized in section 4.7.
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Figure 4.2 Schematic showing contours of steady temperature field in a flow through fixed bed

of particles (solid volume fraction 0.1 and Reynolds number 20). In this schematic,

⟨W⟩ is the mean slip velocity between the solid and the fluid–phase. The fluid

enters the domain at a bulk temperature of Tm,in and all the particles are held at

a uniform constant temperature Ts.

4.2 Problem description

A schematic of the problem setup that is used in this work to study gas–solid heat transfer

in a homogeneous suspension of randomly distributed spherical particles is shown in Fig. 4.2

The figure shows a random assembly of spherical particles in a unit cell, which repeats infinitely

in all three directions. A steady flow is established by imposing a mean pressure gradient that

corresponds to a mean flow Reynolds number that is defined based on the magnitude of mean

slip velocity between the two phases as follows:

Rem =
|⟨W⟩| (1− ϕ)D

νf
. (4.1)

Here |⟨W⟩| is the magnitude of the mean slip velocity between the solid and fluid phases, which

is in the direction shown in Fig. 4.2, D is the particle diameter and νf is the kinematic viscosity

of the fluid. The bulk temperature of the fluid at the “inlet” of this unit cell is Tm,in and all

the particles are held at a uniform constant temperature of Ts. The bulk temperature of the

fluid is the flux–weighted average temperature in a plane perpendicular to the direction of the

mean slip velocity (see section 4.3 for a detailed definition). The difference in the bulk fluid

temperature and the surface temperature of the particle drives gas–solid heat transfer. Here



106

we consider only gas–solid flow so the Prandtl number is chosen to be 0.72. We neglect viscous

heating, radiation and the effect of temperature change on the momentum equation due to

density variation (free convection effects). The simplifying assumptions used in our problem

setup are justified in B. We now develop a formulation that can be used to study the gas–solid

flow heat transfer problem described in this section.

4.3 Formulation of the heat transfer problem

In order to use the problem setup shown in Fig. 4.2 to quantify the average Nusselt number,

we must ensure that the heat transfer problem admits a statistically homogeneous Nusselt

number. In other words, a thermally fully developed flow must be established in the fixed bed.

Flow through a fixed bed of spheres is anisotropic due to finite mean slip velocity ⟨W⟩ between

the solid and fluid phases. This directionality in the flow implies that fluid downstream of a

particle is heated up (or cooled down) by interphase heat transfer. This continuous heating of

the fluid by the particles results in a mean fluid temperature that is inhomogeneous (Acrivos

et al., 1980) in the coordinate directed along the mean flow. However, since Nusselt number

is a nondimensional interphase heat flux, if the driving force (temperature difference between

bulk fluid and particles) has the same variation as that of the interphase heat flux along the

flow coordinate, it is possible to obtain a statistically homogeneous Nusselt number. In this

section we develop a formulation that renders the Nusselt number statistically homogeneous,

although the interphase heat flux and the mean fluid temperature are inhomogeneous.

In order to understand the heat transfer problem in statistically homogeneous suspensions

we draw analogy from forced convection heat transfer in internal pipe flow. Statistically ho-

mogeneous gas–solid flow is analogous to fully developed pipe flow in two respects. Firstly, the

flow field is statistically axisymmetric (Tenneti et al., 2012), similar to the fully developed flow

field in a pipe. Secondly, the average area occupied by the fluid (or the area fraction) in any

plane perpendicular to the streamwise direction is constant in a statistically homogeneous sus-

pension, and hence can be compared to a pipe with a constant area of cross section. Therefore,

in an average sense we expect the heat transfer problem in statistically homogeneous gas–solid

suspensions with isothermal particles to be similar to thermally fully developed flow in pipes
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with isothermal walls. For internal pipe flow, the flow is said to be thermally fully developed

when the scaled temperature is not varying in the streamwise direction (Incropera et al., 2006),

i.e.,

∂

∂x

(
T (x, t)− Tw
Tm(x, t)− Tw

)
= 0. (4.2)

Without loss of generality we will assume that the flow direction is along the x–axis. In the

definition of the scaled temperature given above, Tw is the temperature of the isothermal pipe

wall and Tm is called the “mixing–cup” or “bulk” temperature, which is defined as follows:

Tm (x) =

∫
Af

(uT ) · e∥ dAf∫
Af

u · e∥ dAf
(4.3)

where e∥ is the unit vector along the streamwise direction and Af is the area occupied by the

fluid in a plane perpendicular to the streamwise direction. The thermally fully developed con-

dition implies that for a pipe with constant cross–sectional area and isothermal walls, the local

heat transfer coefficient at the wall (or Nusselt number) is independent of axial location (Incr-

opera et al., 2006). In other words, the local wall heat flux scaled by the temperature difference

(Tm (x)− Tw) is a constant. By using an analogy with pipe flow, the average Nusselt number

in gas–solid flow will be statistically homogeneous if we ensure that the scaled temperature

field θ, which is defined below is statistically homogeneous:

θ (x, t) =
T (x, t)− Ts

⟨Tm⟩ (x, t)− Ts
. (4.4)

In this definition, ⟨Tm⟩ (x, t) is the ensemble–averaged bulk temperature and Ts is the uniform

temperature at which all the particles are maintained. In the next section we discuss the

governing equations and boundary conditions for the problem of heat transfer past stationary

isothermal particles in periodic domains that ensure that the normalized interphase heat flux

is statistically homogeneous.

4.4 Governing Equations

The fluid temperature field T (x, t), in the absence of viscous heating, radiation and free

convection effects, obeys the following convection–diffusion equation:

∂T

∂t
+
∂ (ujT )

∂xj
= αf

∂2T

∂xj∂xj
, (4.5)
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where αf = kf/ (ρfCpf ). Here kf is the thermal conductivity, ρf is the thermodynamic density,

and Cpf is the heat capacity of the fluid respectively. Equation (4.5) needs to be solved in the

fluid together with the Dirichlet boundary condition of T = Ts at the surface of the particles.

At the boundaries of the computational domain, periodic boundary conditions are applied on

the scaled temperature θ (cf. Eq. 4.4). In the definition of θ for a random particle assembly,

Eq. (4.3) gives an area–averaged estimate for the bulk temperature ⟨Tm⟩.

Since the boundary conditions at the domain boundaries are in terms of θ, it would appear

to be easier to rewrite Eq. 4.5 in terms of θ and solve directly for θ. However, the evolution

equation for θ contains additional terms that represent the evolution of the bulk temperature

Tm. Therefore, in order to solve for θ we need to solve an additional equation for Tm. Moreover,

solving for the evolution equation for Tm requires the computation of heat flux from every

particle that intersects the plane perpendicular to the mean flow at each x location in the

direction of the mean flow. Since there is a finite number of particles in the computational

domain, the solution may suffer from statistical error. Therefore, it turns out to be easier

to transform the periodic boundary conditions on θ to obtain similarity conditions on the

temperature field T (x, t) and solve Eq. (4.5) for T (x, t).

In order to simplify the thermal similarity conditions and also to homogenize the boundary

conditions on the particle surfaces we define a non dimensional temperature field ϕ (x, t) as

follows:

ϕ (x, t) =
T (x, t)− Ts
Tm,in − Ts

(4.6)

where, Tm,in is the bulk temperature at x = 0. Using this definition of the non dimensional

temperature, it is easy to see that the non dimensional bulk temperature ϕm(x) has a similar

definition:

ϕm (x, t) =
Tm(x, t)− Ts
Tm,in − Ts

. (4.7)

Substituting Eq. (4.6) in Eq. (4.5) gives the governing equation for the non dimensional tem-

perature:

∂ϕ

∂t
+
∂ (ujϕ)

∂xj
= αf

∂2ϕ

∂xj∂xj
. (4.8)

The isothermal boundary conditions on the particle surface reduce to ϕ = 0.
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In order to understand the periodicity conditions and also for ease of implementation we

introduce a quantity called the heat ratio rh which is defined as:

rh =
Tm,in − Ts
Tm,out − Ts

, (4.9)

where Tm,out is the bulk temperature at x = L and L is the length of the box. The heat

ratio is the ratio of the bulk temperature at the inlet (x = 0) to the bulk temperature at the

outlet (x = L). In other words the heat ratio is simply the inverse of the non dimensional bulk

temperature at x = L i.e.,

rh =
1

ϕm,out
. (4.10)

The heat ratio quantifies by how much a fluid particle heats up when it leaves the box and

so this quantity depends solely on the flow structure and the interphase heat transfer in the

domain. A control volume analysis of the governing equation for ϕ reveals the following relation

for the heat ratio:

rh =
Tm (x)− Ts

Tm (x+ L)− Ts
=

Tm (x± a)− Ts
Tm (x+ L± a)− Ts

, (4.11)

where a is any displacement in the streamwise direction. The periodic boundary conditions on

ϕ now appear in a very simple form:

ϕ (0, y, z) = rhϕ (L, y, z) ,

ϕ (x, 0, z) = ϕ (x, L, z) ,

ϕ (x, y, 0) = ϕ (x, y, L) . (4.12)

An important point to be noted is that the heat ratio, or the amount by which the fluid gets

heated up (or cooled down) when it reaches the end of the box, is an unknown quantity and it

is part of the solution. In this formulation the thermal similarity conditions (cf. Eq. (4.12)) are

defined in terms of the heat ratio. So the heat transfer problem has to be solved iteratively until

the heat ratio converges. In the next section we describe the immersed boundary methodology

that is used to solve the heat transfer problem in statistically homogeneous suspensions.
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4.5 Solution Approach

The complete details of the hydrodynamic PUReIBM solver are discussed elsewhere (Garg

et al., 2011; Tenneti et al., 2011). Here the discussion is limited to the solution of the heat

transfer problem in statistically homogeneous suspensions using PUReIBM. In PUReIBM, we

employ Cartesian grids and solve the mass and momentum conservation equations at all the grid

points (including those lying inside the particles). Similarly the nondimensional temperature

field is also solved at all grid points. The governing equation for ϕ that is solved in PUReIBM

is

∂ϕ

∂t
+
∂ (ujϕ)

∂xj
=
∂qϕj
∂xj

+ Isfϕ, (4.13)

where qϕ = αf∇ϕ is the heat flux, and fϕ is the additional immersed boundary (IB) forcing

term that is nonzero only in the solid phase. The immersed boundary forcing fϕ accounts for

the presence of the solid particles in the domain by ensuring that the isothermal boundary

condition ϕ = 0 is satisfied on the surface of the solid particles.

The surface of the solid particle is represented by a discrete number of points called bound-

ary points. For spherical particles, the boundary points are specified by discretizing the sphere

in spherical coordinates. In figure 4.3, a schematic describing the computation of the IB

forcing is shown for the equatorial plane passing through the spherical particle. Another set of

points called exterior points are generated by projecting these boundary points onto a sphere

of radius r + ∆r, where r is the radius of the particle (see exterior point represented by an

open circle on the dashed line in figure 4.3). Similarly, the boundary points are projected onto

a smaller sphere of radius r−∆r and these points are called interior points. In our simulations

∆r is taken to be same as the grid spacing. The IB forcing is computed only at the interior

points. At these points the fluid temperature is forced in a manner similar to the ghost cell

approach used in standard finite-difference/finite-volume based methods (Patankar, 1980). For

the boundary condition ϕ = 0 used in this work, the value of ϕ at the interior points is forced

to be opposite in magnitude to the value of ϕ at the corresponding exterior points.

The distinctive feature of PUReIBM is that the forcing fϕ is computed only at points lying

inside the solid particles. This ensures that the fluid–phase temperature field is not contami-
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r

φe

Figure 4.3 A schematic showing the computation of the immersed boundary forcing fϕ for

an isothermal particle. The solid circle represents the surface of the particle at r.

Open dot shows the location of one exterior point at r+∆r (only one exterior point

is shown for clarity, although there is one exterior point for each interior point)

and filled dots show the location of interior points at r −∆r where the immersed

boundary forcing is computed. In the schematic, ϕe represents the temperature

at the exterior point, ϕs is the surface temperature while ϕi is the temperature at

the interior point.
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nated by the scalar IB forcing term fϕ, just as the fluid–phase velocity field is not contaminated

by the hydrodynamic IB forcing. The consequences of fluid velocity contamination by IB forc-

ing are discussed in detail by Tenneti et al. (2011). The computation of fϕ is similar to the

computation of the IB forcing for the velocity field. The IB forcing term fn+1
ϕ at the (n+ 1)th

time–step is specified to cancel the remaining terms in the governing equation for ϕ and force

the nondimensional temperature to its desired value ϕd at the interior points:

fn+1
ϕ =

ϕd − ϕn

∆t
+ Cn

ϕ −

(
∂qϕj
∂xj

)n

(4.14)

where Cn
ϕ is the convective term at the nth time step.

The heat transfer equation (cf. Eq. 4.13) in PUReIBM is solved using a pseudo-spectral

method, with a Crank–Nicolson scheme for the viscous terms, and an Adams-Bashforth scheme

for the convective terms. The use of Fourier transforms in the cross stream directions and the

Crank–Nicolson scheme in the streamwise direction results in an independent set of cyclic tridi-

agonal systems that are solved using the Sherman–Morrison formula (Sherman and Morrison,

1950). The coefficient matrices in the tridiagonal systems depend on the heat ratio rh which

is not known a priori. The temperature field is initialized with rh = 1 and the simulation is

performed iteratively till the value of the heat ratio converges. It must be noted that in this

work we use the steady velocity field that is obtained from the hydrodynamic solver and the

velocity field is not advanced during the solution of the heat transfer problem.

4.6 Results and Discussion

The hydrodynamic solver in the PUReIBM methodology has been extensively validated

using a comprehensive suite of test cases (Tenneti et al., 2011). In order to check the accuracy

of the IB methodology for temperature and also to verify the thermal similarity boundary

condition, we simulate convective heat transfer in a square duct. The no slip walls of the duct

for the velocity field as well as the isothermal condition at the walls for the temperature field

are generated using the IB methodology described in the previous section.

Using an analytical calculation, Shah and London (1978) found that the Nusselt number

for a thermally fully developed laminar flow in a square duct is 2.976. We compare the Nusselt
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Reynolds number PUReIBM Analytical

20 3.013 2.976

50 3.029 2.976

100 3.033 2.976

Table 4.1 Comparison of Nusselt number obtained from PUReIBM simulation of duct flow

for three different Reynolds numbers with the Nusselt number derived from an

analytical calculation.

number obtained from PUReIBM simulations for three different Reynolds numbers with the

analytical solution in table 4.1. We see that the results obtained from PUReIBM simulations

agree very well with the analytical solution. The numerical convergence of Nusselt number

with grid resolution for a Reynolds number of 100 is shown in Fig. 4.4(a). In this figure

we plot the relative error between the analytical and numerical solution. We see that the

Nusselt number obtained from PUReIBM simulations converge to the analytical value given

by Shah and London (1978). In figure 4.4(b) we plot the contours of the scaled temperature θ

(cf. Eq. 4.4) along the flow direction. This plot verifies that the thermal similarity condition

applied at the ends of the domain generates a thermally fully developed flow. These tests

confirm the accuracy and numerical convergence of the PUReIBM temperature solver and also

the correctness of the application of the thermal similarity condition.

We now study heat transfer in statistically homogeneous gas–solid flow using PUReIBM

DNS of steady flow and heat transfer past stationary, isothermal particles in periodic domains.

Particle centers are initialized corresponding to a specified mean solid volume fraction ϕ. The

particles are fixed in a random equilibrium configuration they attain following elastic collisions

(in the absence of ambient fluid) starting from a lattice arrangement with a Maxwellian ve-

locity distribution. The elastic collisions are simulated using a soft–sphere discrete element

model (Cundall and Strack, 1979; Garg et al., 2010a). The pair correlation function at equilib-

rium specifies the particle configuration for random assemblies. Steady flow is established in

the fixed bed by imposing a mean pressure gradient that corresponds to a mean flow Reynolds

number. The hydrodynamic solver has been extensively validated in a comprehensive suite of
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Figure 4.4 (a) Convergence characteristics of Nusselt number with grid resolution for internal

duct flow at a Reynolds number of 100 are shown in. In this plot Nua referes to the

analytical value of the Nusselt number obtained by Shah and London (1978), ∆x

is the size of the grid cell and H is the channel height. (b) Contours of the scaled

temperature θ are shown in three planes along the direction of the flow shown by

the arrow.

tests (Tenneti et al., 2011). The steady velocity field that is established in the fixed bed is used

to evolve the temperature in pseudo–time until the heat ratio reaches a steady state.

The heat transfer problem is statistically inhomogeneous only in the direction of the mean

flow and hence all statistics are estimated using area averages in planes perpendicular to the

mean flow. Each random particle configuration is termed a realization of the gas–solid flow

corresponding to a specified volume fraction and pair correlation function. The streamwise

variation of Nusselt number for the ωth realization is defined as

Nu (x;ω) =
q′′ (x;ω)D

kfP (ϕm(x)− ϕs)
. (4.15)

In this definition, q
′′
(x;ω) is the interphase heat flux from the particles to the fluid that is

averaged in the cross plane at the location x, and P is the perimeter formed by cutting the

particles with the plane. The streamwise variation of Nusselt number obtained from a single

realization is prone to statistical uncertainty due to finite number of particles in the computa-

tional domain. Therefore, the streamwise variation of Nusselt number from a single realization
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(a) (b)

Figure 4.5 Variation of Nusselt number and the area occupied by the fluid–phase along the

direction of the mean flow, obtained from PUReIBM simulations of heat transfer

in a fixed bed at a volume fraction of 0.4 and mean flow Reynolds number of 100.

The local Nusselt number is reported by averaging over (a) 50 and (b) 5 MIS.

must be averaged over multiple independent simulations (MIS), each corresponding to a differ-

ent realization of the particle configuration, to get a better estimate for the ensemble–averaged

streamwise Nusselt number. If the streamwise Nusselt number obtained from averaging over

several realizations is independent of the spatial location, we can say that the Nusselt number

is statistically homogeneous. In that case volume averaging can also be used to improve this

estimate.

From the PUReIBM heat transfer simulations we verify that the thermal similarity bound-

ary condition produces a statistically homogeneous streamwise Nusselt number. Figure 4.5

shows the streamwise variation of Nusselt number (top panels) for a fixed bed with a solid vol-

ume fraction of 0.4 and mean flow Reynolds number of 100. In Fig. 4.5 we compare the local

Nusselt number obtained from averaging over 50 MIS (figure 4.5(a)) with that obtained from

averaging over 5 independent realizations (figure 4.5(b)). We see that the Nusselt number ob-
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tained from 50 MIS is constant along the flow direction. The Nusselt number from 5 MIS shows

some variation along the axial direction. The finite size of the computational domain in the

cross stream direction and also the small number of independent realizations are responsible for

this streamwise variation in the Nusselt number. To see this more clearly, the variation of the

area occupied by the fluid Af along the flow direction is also shown in Fig. 4.5 (bottom panels).

Recall that one of the conditions for statistical homogeneity of Nusselt number is that the area

occupied by the fluid should be constant along the flow direction. The figures indicate that the

estimate for the average area occupied by the fluid can vary along the flow direction and also

at any given axial location there are fluctuations in the area across realizations (indicated by

error bars). The amplitude of the fluctuation in the area is found to be about 7% when the

averaging is performed over 5 MIS. From convergence studies, we found that 50 realizations

are required to reduce the amplitude in the fluctuation of the area to 2%. Similar requirements

on the number of independent realizations were reported by Xu and Subramaniam (2010) in

their study of particles in upstream turbulence. Figure 4.5(a) shows that the variation as well

as the level of fluctuations in the Nusselt number and the area fraction are reduced when the

averaging is performed over 50 MIS. We conclude that for statistically homogeneous assemblies,

the formulation developed for the heat transfer problem ensures that the local Nusselt number

is statistically homogeneous.

Due to the statistical homogeneity of the Nusselt number in the streamwise direction, we

can compute the average Nusselt number ⟨Nu⟩ by averaging Nu(x) along the axial direction.

Figure 4.6 compares the average Nusselt number obtained from PUReIBM simulations with

the Nusselt number predicted by Gunn’s correlation (Gunn, 1978). From the figure we see that

the average Nusselt number increases with both solid volume fraction and mean flow Reynolds

number and this behavior is consistent with the trend predicted by the correlation. It must be

noted that the Nusselt number correlation given by Gunn (1978) is a fit to experimental data

obtained by several researchers for packed beds (ϕ = 0.6). Given that the experimental data

itself has a wide variation, the agreement between the PUReIBM DNS and the correlation is

excellent.

In addition to the average Nusselt number, the nature of inhomogeneity of the fluid tem-
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Figure 4.6 Behavior of the average Nusselt number ⟨Nu⟩ with mean flow Reynolds number for

two solid volume fractions. Symbols indicate data obtained from PUReIBM sim-

ulations while the solid lines are obtained from Gunn’s correlation (Gunn, 1978).

The average Nusselt number from PUReIBM simulations is reported by averag-

ing over 5 MIS and the error bars on the symbols in this figure represent 95%

confidence intervals in the estimation of Nusselt number.

perature field or fluid heating is important in modeling the average interphase heat transfer

⟨Qg−s⟩. We plot the non-dimensional bulk temperature ϕm along the flow direction for two

mean flow Reynolds numbers (1 and 100) and two solid volume fractions (0.2 and 0.4) in fig-

ure 4.7(a). In this setup the particles are cooler than the incoming fluid and so the effect of

the particles is to reduce the bulk fluid temperature. The results confirm the fact that the tem-

perature field is not homogeneous in the flow direction. We see that the inhomogeneity in the

nondimensional bulk temperature is especially apparent at high solid volume fraction and low

Reynolds number. This spatial inhomogeneity is found to arise from the effect of fluid cooling,

which is more pronounced at high solid volume fraction and low Reynolds number. This result

is more easily evident when we consider the behavior of heat ratio rh. Recall that the heat

ratio gives a measure of the fluid cooling because (1− rh) /rh = (Tm,out − Tm,in) / (Tm,in − Ts).

Two limiting cases are of interest. If there is negligible fluid cooling, then Tm,out ≈ Tm,in, and

rh ≈ 1, in which case (1− rh) /rh ≈ 0. The other limiting case is of extreme cooling such that

Tm,out ≈ Ts, in which case (1− rh) /rh ≈ −1. Figure 4.7(b) shows a plot of this measure of
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(a) (b)

Figure 4.7 (a) Variation of the nondimensional bulk fluid temperature along the axial di-

rection for two mean flow Reynolds numbers (1 and 100) and two solid volume

fractions (0.2 and 0.4). (b) Behavior of heat ratio with Reynolds number for two

solid volume fractions (0.2 and 0.4).

fluid cooling, and we see that (1− rh) /rh is close to -1 at low mean slip Reynolds numbers and

this corresponds to near maximal cooling. As the Reynolds number increases the amount of

cooling reduces and (1− rh) /rh departs from -1 towards zero.

The inhomogeneity in the mean fluid temperature has certain implications on modeling the

average gas–solid heat transfer in two–fluid models. In treating the solid phase as a continuum

in the two–fluid models there is an implicit assumption of separation of scales. It is assumed

that the mean solid phase velocity and temperature vary on length scales that are much larger

than the length scales over which the microstructure varies. And in turn, it requires the mean

fluid temperature also to vary on similar length scales. However, the scale of variation of ϕm

in Fig. 4.7(a) indicates that the mean fluid temperature can be inhomogeneous on the scale

of the particle diameter. Therefore, the inhomogeneity of the average fluid–phase temperature

cannot be neglected for all values of the solid volume fraction and mean slip Reynolds number

in the CFD implementations of models for average gas–solid heat transfer. Consequently, these

results indicate that in general a more sophisticated multiphase large-eddy simulation (LES)

approach is necessary to properly account for the effects of fluid cooling (or heating) over all

values of the solid volume fraction and mean slip Reynolds number.
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4.7 Conclusions

In this work we present a particle–resolved direct numerical simulation methodology to

study heat transfer in statistically homogeneous gas–solid flow. The Particle–resolved Uncontaminated–

fluid Reconcilable Immersed Boundary Method (Tenneti et al., 2011) (PUReIBM) has been

extended to investigate heat transfer in fixed periodic assemblies of monodisperse spherical

particles held at a constant uniform temperature. Periodic arrangement of particles induces

a velocity field that is periodic in all three directions. Since the mean fluid velocity has a

direction and all the particles are held at the same temperature, the resulting temperature field

will not be periodic. In order to be consistent with the periodic arrangement of the particles, a

thermal similarity boundary condition is applied on the temperature field by drawing analogy

from thermally fully developed flow in pipes. The extension of PUReIBM to solve for the

temperature field is validated by solving the heat transfer problem in a square duct. Numerical

convergence and the validity of the thermal similarity condition in flow past random assemblies

of spheres is verified. From PUReIBM PR–DNS of heat transfer in fixed particle assemblies, we

establish that the formulation developed for heat transfer results in a statistically homogeneous

average Nusselt number. We conclude that fluid heating (cooling) in gas–solid systems results

in an inhomogeneous bulk fluid temperature. However, two–fluid CFD models that are used to

solve for heat transfer in gas–solid systems employ the assumption of local homogneity of the

bulk fluid temperature. Based on the PR–DNS results presented here, we conclude that for

ϕ < 0.4 and Rem > 10, the bulk fluid temperature decays over a few particle diameters. The

inhomogeneity of the bulk fluid temperature in these gas–solid flow systems can be accounted

for in two–fluid CFD models by an appropriate choice of the grid size. However, for gas–solid

flow systems with ϕ > 0.4 and Rem < 10 the bulk fluid temperature decays over a length

scale that is on the order of a particle diameter. In such regimes, the assumption of separation

of scales that is implicit in the underlying continuum formulation itself breaks down. Hence,

more sophisticated subgrid models for the bulk fluid temperature are required for CFD of heat

transfer in gas–solid systems of high solid volume fraction and low mean flow Reynolds number.
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CHAPTER 5. Particle–resolved direct numerical simulation of freely

evolving gas-solid suspensions at moderate Reynolds number

This chapter is an article (Tenneti et al., 2010b) titled “Direct numerical simulation of

gas-solid suspensions at moderate Reynolds number: quantifying the coupling between hydro-

dynamic forces and particle velocity fluctuations” published in Powder Technology journal.

This is authored by S. Tenneti, R. Garg, C. M. Hrenya, R. O. Fox and S. Subramaniam.

Abstract

Predictive device-level computation fluid dynamics (CFD) simulation of gas-solid flow is

dependent on accurate models for unclosed terms that appear in the averaged equations for

mass, momentum and energy conservation. In the multifluid theory, the second moment of

particle velocity represents the strength of particle velocity fluctuations and is known to play

an important role in the prediction of core-annular flow structure in risers (Hrenya and Sinclair,

1997). In homogeneous suspensions the evolution of the second velocity moment is governed by

the particle acceleration-velocity covariance. Therefore, fluctuations in the hydrodynamic force

experienced by particles in a gas-solid flow affect the evolution of particle velocity fluctuations,

which in turn can affect the mean and variance of the hydrodynamic force. This coupling has

been studied in the limit of Stokes flow by Koch and co-workers using a combination of kinetic

theory and multipole expansion simulations. For Reynolds numbers beyond the Stokes limit,

direct numerical simulation is a promising approach to quantify this coupling. Here we present

direct numerical simulation (DNS) results for the evolution of particle granular temperature and

particle acceleration variance in freely evolving homogeneous gas-solid suspensions. It is found

that simple extension of a class of mean particle acceleration models to their corresponding
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instantaneous versions does not recover the correlation of particle acceleration with particle

velocity. This study motivates the development of better instantaneous particle acceleration

models that are able to accurately capture the coupling between particle acceleration and

velocity.

5.1 Introduction

Gas–solid flows are commonly encountered in energy generation and chemical processing.

The design and scale-up of industrial devices motivates a better understanding of gas-solid flow

characteristics and transport phenomena. A fundamental understanding of gas-solid flow is in-

creasingly relevant with renewed interest in zero-carbon and carbon-negative energy generation

technology such as chemical looping combustion.

Computational fluid dynamics (CFD) simulations that solve for averaged equations of

multiphase flow are being increasingly used in the design process because they provide de-

tailed information about the solid volume fraction and phasic mean velocity fields in gas-solid

flow (Halvorsen et al., 2003). Most CFD codes for device-level simulations of gas-solid flow

are based on the Eulerian-Eulerian (EE) multifluid approach because these are computation-

ally less expensive than Lagrangian-Eulerian (LE) simulations. In the EE multifluid approach

both the solid and fluid phases are treated as interpenetrating continua, and averaging tech-

niques (Anderson and Jackson, 1967; Drew, 1983; Drew and Passman, 1998) are used to derive

the equations governing the conservation of average mass and momentum in the fluid and par-

ticle phases. This results in a closure problem similar to that encountered in the statistical

theory of single-phase turbulence because the averaging procedure results in unclosed terms

that need to be modeled. For instance, the mean momentum conservation equation in the

particle phase requires closure of the average fluid–particle interaction force (mean drag force)

and the average stress in the solid particle phase. Accurate models for these unclosed terms

are needed for predictive CFD simulation of gas-solid flow.

As with all statistical closures, an important modeling question is the adequacy of the

mathematical representation to capture physical phenomena of engineering relevance. For in-

stance, it is now established that the prediction of core-annular structure in riser flows requires
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solving the transport equation for the particle granular temperature or pseudo-thermal en-

ergy (Hrenya and Sinclair, 1997). This informs us that a closure at the level of mean quantities

is not adequate to predict important flow characteristics such as core-annular structure, but

a closure at the level of second moments is necessary. However, it is not clear that closure at

the level of the second moments is sufficient for predictive CFD simulation that will facilitate

design and scale-up. Closure at the level of third-order moments has been attempted by some

researchers (Simonin, 1995; Peirano and Leckner, 1998).

An alternative approach to the closure of moment transport equations is to consider the

evolution of the one-particle distribution function. Just as closure at the level of the transport

equation for the probability density function (PDF) in single–phase turbulent reactive flow

implies a closure for all moment equations, similarly a kinetic equation that achieves a closure

for the one-particle distribution function in kinetic theory implies a closure for all moment

equations. In particular, a closure at the one-particle distribution level automatically implies

closure of the mean momentum and particle velocity second moment equations. Furthermore,

closures at the one-particle distribution level are guaranteed to satisfy realizability criteria,

whereas special care is needed to ensure the same in the case of moment closures. These

considerations motivate the development of models for the unclosed terms in the transport

equation for the one-particle distribution function corresponding to gas-solid flow.

While there is considerable work on kinetic theory of granular flows where the interaction

with ambient fluid is neglected, the kinetic theory of gas-solid flow is still being developed.

For low Reynolds number flow in the Stokes regime, Koch and co-workers (Koch, 1990; Koch

and Sangani, 1999) developed a kinetic theory closure with a model for the conditional parti-

cle acceleration that accounts for the presence of ambient fluid in the term transporting the

distribution function in velocity space. This theoretical framework allows us to consider two

coupled effects: (i) the effect of particle velocity fluctuations on the mean drag, and (ii) the

effect of fluctuating particle acceleration on particle velocity fluctuations or granular temper-

ature. Wylie et al. (2003) studied the effect of particle velocity variance on the mean drag for

the limiting case of high Stokes number where the particles move under elastic collisions but

are unaffected by the hydrodynamic forces. They showed that particle velocity fluctuations
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do not affect the mean drag in Stokes flow. This result is not surprising because in Stokes

flow the particle acceleration is a linear function of instantaneous particle velocity. However, at

moderate mean slip Reynolds numbers the drag law is nonlinear and Wylie et al. (2003) showed

that particle velocity fluctuations do affect the mean particle acceleration. They proposed a

modified drag law in terms of volume fraction, Rem and ReT . The focus of this paper is on the

second effect: the effect of fluctuating hydrodynamic forces on granular temperature.

For statistically homogeneous gas-solid flows, the correlation between the particle fluctu-

ating velocity and its acceleration fluctuation determines the evolution of the particle velocity

second moment. In the limiting case of Stokes flow, Koch (Koch, 1990; Koch and Sangani,

1999) analyzed the granular temperature, which is the trace of the particle velocity second

moment, and decomposed the particle acceleration–velocity covariance as the sum of source

and sink contributions. Particle granular temperature decreases due to inelastic collisions and

viscous interactions with the ambient fluid, and these effects are represented by the sink term.

If particle collisions are elastic or flow past fixed particle assemblies is considered, then the

granular temperature decreases only due to viscous interactions with the ambient fluid. In

the Stokes flow regime the sink term simply relaxes the granular temperature to zero on the

viscous relaxation time scale. In Koch’s decomposition of the acceleration-velocity covariance

into source and sink terms (Koch and Sangani, 1999), the source term due to hydrodynamic

interactions with neighboring particles can balance the sink term leading to a steady state gran-

ular temperature in stable homogeneous suspensions. For moderate Reynolds number, there is

no unique decomposition of the particle acceleration–velocity covariance as the sum of source

and sink contributions.

The source term in the granular temperature equation plays an important role in sustaining

a nonzero value of the granular temperature. In its absence the granular temperature in a

homogeneous suspensions would simply decay to zero, leading to an infinite Mach number

in the particle phase. Not only is this problematic from a numerical standpoint for CFD

simulations, but it is also unphysical over a wide range of mean flow Reynolds number and

volume fraction. The origin of the source term lies in the hydrodynamic interactions that each

particle experiences with its neighbors, and the range of this interaction depends on the mean
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flow Reynolds number and the solid volume fraction. It is well known that a sphere sedimenting

in a fluid can have a “drafting” effect on its neighbors and draw them into its wake. The draft,

kiss and tumble phenomena are well documented in Glowinski et al. (2001). These physical

mechanisms can manifest as a source in particle velocity fluctuations by changing each particle’s

velocity. This effect is quantified through DNS of freely evolving suspensions in this work.

Although Koch’s analysis is useful in the Stokes flow regime, it is difficult to extend the

analysis to moderate Reynolds number cases. At moderate Reynolds number, DNS offers a

promising approach to quantify unclosed terms in the transport equations for particle velocity

moments, or the transport equation for the one-particle distribution function. This naturally

leads to an evaluation of existing models. We use DNS of gas-solid flow at moderate Reynolds

number to evaluate a class of acceleration models. The results indicate the need for improved

instantaneous particle acceleration models that are capable of capturing the coupling between

particle velocity fluctuations and hydrodynamic forces in gas-solid flow.

The next section describes pertinent details of the statistical modeling approach that moti-

vate this study. This is followed by a description of the Particle–resolved Uncontaminated–fluid

Reconsilable Immersed Boundary Method (PUReIBM) that is used to perform DNS of gas-solid

flow. Then the simulation details for fixed particle assemblies and freely moving suspensions are

presented. Results that quantify the coupling are reported, and a class of particle acceleration

models is evaluated. Finally, the conclusions of this study are summarized.

5.2 Statistical models

The averaged equations for mean momentum conservation and transport of the second

moment of particle velocity in the multifluid theory can be derived using an Eulerian-Eulerian or

Lagrangian-Eulerian approach. A comprehensive summary of the relations between the moment

equations obtained from these statistical approaches can be found in Pai and Subramaniam

(2009). Here we choose the Lagrangian-Eulerian approach with the one-particle distribution

function as our starting point because it naturally leads to an explicit connection with the

moment equations.
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5.2.1 One-particle distribution function

The one-particle distribution function, which is the number density of particles in an ap-

propriately defined phase space, is the fundamental quantity of interest in the kinetic theory of

granular and multiphase flow (Liboff, 2003; Koch, 1990; Subramaniam, 2000, 2001; Garzo et al.,

2007a). It is also referred to as the droplet distribution function in spray theory (Williams,

1958). For monodisperse particles the distribution function f(x,v, t) is defined in a position-

velocity space, and evolves by the following transport equation:

∂f

∂t
+∇x · (vf) +∇v · (⟨A |x,v; t⟩ f) = ḟcoll, (5.1)

where ∇x and ∇v denote the gradient operators in the position and velocity space, respec-

tively, and ḟcoll is the collisional term that can depend on higher order statistics. A closure

model for the collisional term results in a kinetic equation. This well-known equation has been

extensively studied in the context of granular flows where collisions are inelastic. Extensions to

non-dilute cases that follow the Enskog approach have also been pursued. The focus in the ki-

netic theory of granular flow is on obtaining closed-form solutions (Ernst, 1981), or constitutive

relations (Jenkins and Savage, 1983; Lun et al., 1984; Sela and Goldhirsch, 1998; Garzo et al.,

2007a,b), starting from a kinetic equation. Most of these studies rely on the Chapman-Enskog

expansion about a normal solution in terms of a nonuniformity parameter that is essentially

the Knudsen number.

The principal difference between the kinetic theory of gases and the kinetic theory of gas-

solid flow is that in the latter, the conditional particle acceleration term ⟨A |x,v; t⟩ appears

inside the velocity derivative in the velocity transport term because particle drag depends on

particle velocity through slip with respect to the fluid. This dependence of particle acceler-

ation on particle velocity in Eq. 6.1 results in the correlation of A and v that determines

the evolution of the second moment of particle velocity, and its trace, the particle granular

temperature. In the transport equation for the distribution function (cf. Eq. 6.1), ⟨A|x,v; t⟩

represents the average particle acceleration conditional on position x and velocity v. For the

spatially homogeneous case with monodisperse particles it can be interpreted as the average

acceleration experienced by a particle with velocity v. The averaging operator ⟨·⟩ represents



126

integration over all higher-order multiparticle distribution functions (Koch, 1990; Subrama-

niam, 2000) that can be defined on the basis of the ensemble of particles with position and

velocity {X(n)(t),V(n)(t), n = 1, . . . , N}. In particular, the conditional acceleration ⟨A|x,v; t⟩

is obtained by integrating out its dependence on the two-particle density (pair correlation func-

tion). In other words, the conditional acceleration ⟨A|x,v; t⟩ is not completely determined by

the particle velocity, but may be affected by the presence of neighbor particles. The statis-

tical description of multiparticle interactions is not contained in the one–particle distribution

function.

Subramaniam (2001) notes that when the gas phase is represented by Reynolds-averaged

fields, a class of models for the unclosed conditional acceleration term A∗ can be written as:

⟨A |x,v; t⟩ = A∗({⟨Qg(x, t)⟩} , q(f(x,v, t)),x,v, . . . ; t), (5.2)

where {⟨Qg(x, t)⟩} represents a set of averaged fields from the gas-phase solution (such as the

mean gas velocity and turbulent kinetic energy), and q(f) is any simply computed function

of the distribution function. The ellipsis denotes the dependence on statistical quantities that

are not represented in the distribution function, e.g., dependence on higher order multiparticle

statistics, or fluid phase statistics not represented in {⟨Qg(x, t)⟩}. Recall that the physical

origins of the source term in the granular temperature equation lie in the hydrodynamic inter-

actions with neighbor particles and fluid–phase velocity fluctuations. The statistics of neighbor

particles are not contained in f(x,v, t). If the implementation of the multifluid theory accounts

for fluid–phase velocity fluctuations, then this dependence can be incorporated in the accelera-

tion model of Eq. 5.2. However, many implementations of the multifluid theory do not account

for fluid–phase velocity fluctuations.

As noted earlier, closure of the transport equation for the distribution function (cf. Eq. 6.1)

implies closure for all moment equations. In the following, the implied closure for the mean

and second moment of particle velocity is examined.
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5.2.2 Moment equations

The averaged equations for mean momentum conservation and transport of the second mo-

ment of particle velocity implied by Eq. 6.1 are derived using the usual procedure to derive

hydrodynamic equations in kinetic theory, except for the fact that the velocity dependence in

the conditional acceleration results in an additional term in the second moment equation (Koch,

1990; Pai and Subramaniam, 2009). Here these equations are discussed in the context of mod-

eling the conditional acceleration ⟨A|x,v; t⟩ to capture the coupling between particle velocity

fluctuations and hydrodynamic force. Since the DNS results we present in this study are for

fixed particles or for those undergoing elastic collisions, the moment equations are presented

for the case of elastic collisions only.

Mean particle velocity The mean momentum conservation equation written in index no-

tation is

∂

∂t
(ρpϕ ⟨vj⟩) +

∂

∂xk
(ρpϕ ⟨vj⟩ ⟨vk⟩) = ρpϕ ⟨Aj⟩ −

∂

∂xk

(
ρpϕ

⟨
v′′j v

′′
k

⟩)
, (5.3)

where ρp is the particle density, ϕ is the solid volume fraction given by ϕ = nπd3p/6, where n is

the number density of the particles and dp is the particle diameter. For gas-solid flow, the mean

particle acceleration ⟨A⟩ due to the fluid-particle drag force is an unclosed term in Eq. 5.3. In

EE multifluid theory, the mean particle acceleration ⟨A⟩ is modeled using a drag law as

⟨A⟩ = −β ⟨W⟩ , (5.4)

where ⟨W⟩ = ⟨v⟩ −
⟨
u(f)

⟩
is the mean slip velocity between the solid and fluid phases. In this

definition,
⟨
u(f)

⟩
and ⟨v⟩ are the fluid and solid phase–averaged velocities, respectively. For

an isolated particle in Stokes flow, β is a constant equal to 3πµfdp, where µf is the dynamic

viscosity of the fluid. The Reynolds number based on the mean slip velocity between the fluid

and particulate phase quantifies the relative importance of fluid inertia, and is defined as

Rem = (1− ϕ)
ρf
∣∣⟨v⟩ − ⟨u(f)

⟩∣∣ dp
µf

, (5.5)

where ρf is the density of the fluid. When the Reynolds number based on the mean slip Rem

is moderate (Rem > 1), β is a function of the mean slip velocity between the particle and the
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fluid phase, i.e. β = β(| ⟨W⟩ |), and the drag is no longer linearly dependent on the mean slip

velocity.

Typical drag laws for gas-solid flow (Wen and Yu, 1966; Syamlal and O’Brien, 1987; Gi-

daspow, 1994) characterize the dependence of fluid-particle drag force on the mean slip Reynolds

number and solid volume fraction ϕ. These are obtained by a combination of fitting experimen-

tal data and using semi-analytical approaches in limiting cases. More recently, direct numerical

simulation of flow past homogeneous fixed particle assemblies have been used to deduce drag

laws (Hill et al., 2001a; Beetstra et al., 2007; Garg et al., 2009) describing the dependence on

mean slip Reynolds number and solid volume fraction.

In the mean particle velocity evolution equation, the last term on the right hand side of

Eq. 5.3 is the transport of particle Reynolds stress arising from correlation of particle velocity

fluctuations. Particle velocity fluctuations are defined about the mean velocity as

v′′ = v − ⟨v⟩ , (5.6)

and the particle granular temperature 1 that characterizes the strength of these fluctuations is

T =
1

3

⟨
v′′ · v′′⟩ . (5.7)

This term is calculated by solving a transport equation for the particle velocity covariance.

Transport of particle velocity covariance The evolution equation for the second moment

of velocity written in index notation is (Koch, 1990; Koch and Sangani, 1999; Pai and Subra-

maniam, 2009)

∂

∂t

(
ρpϕ

⟨
v′′i v

′′
j

⟩)
+

∂

∂xk

(
ρpϕ

⟨
v′′i v

′′
j

⟩
⟨vk⟩

)
=

− ∂

∂xk

(
ρpϕ

⟨
v′′i v

′′
j v

′′
k

⟩)
− ρpϕ

(⟨
v′′i v

′′
k

⟩ ∂ ⟨vj⟩
∂xk

+
⟨
v′′j v

′′
k

⟩ ∂ ⟨vi⟩
∂xk

)
+ ρpϕ

(⟨
A′′

i v
′′
j

⟩
+
⟨
A′′

j v
′′
i

⟩)
. (5.8)

1Note that we do not distinguish between particle velocity fluctuations arising from collisions and other
sources, as suggested by Breault et al. (2008). Our definition is consistent with the standard definition in kinetic
theory of granular and gas–solid flow, and it is also the definition adopted in the two–fluid theory.
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For statistically homogeneous gas-solid flow with no mean velocity gradients the transport,

production, and triple-velocity correlation terms drop out and Eq. 5.8 reduces to

∂

∂t

(
ρpϕ

⟨
v′′i v

′′
j

⟩)
= ρpϕ

(⟨
A′′

i v
′′
j

⟩
+
⟨
A′′

j v
′′
i

⟩)
, (5.9)

showing that the particle velocity covariance evolves according to the particle acceleration–

velocity covariance (fluctuations in the acceleration are defined about the mean acceleration,

i.e.A′′
j = Aj − ⟨Aj⟩.) This equation shows how fluctuations in the hydrodynamic forces affect

the particle velocity covariance. Contracting the indices in Eq. 5.9 results in the evolution of

particle granular temperature for a statistically homogeneous gas–solid flow:

dT

dt
=

2

3

⟨
A′′

i v
′′
i

⟩
. (5.10)

In the above equation, the trace of the particle acceleration-velocity covariance ⟨A′′
i v

′′
i ⟩ can be

either a positive or negative quantity, and hence it can act as a source or a sink of granular

temperature.

5.2.2.1 Mean and fluctuating particle acceleration

From this discussion of moment equations we see that the mean acceleration affects mean

momentum, and fluctuations in acceleration correlate with fluctuating velocity to act as a

source or sink term in the granular temperature equation. In the following, we relate the mean

acceleration and acceleration fluctuations to the one–particle distribution function.

The mean acceleration ⟨A⟩ is obtained as the integral of the conditional expectation of

particle acceleration over velocity space:

⟨A⟩(x, t) = 1

n(x, t)

∫
[v]
⟨A|x,v; t⟩f(x,v, t) dv, (5.11)

and this leads to the expression
⟨
Ffp

⟩
= ρpϕ⟨A⟩ for the fluid–particle drag (per unit volume)

in the mean particle momentum equation. The expression for the mean acceleration is useful

because it tells us how the velocity dependence in the conditional acceleration can affect the

mean drag through the distribution function. The one-particle distribution function can be

decomposed (Subramaniam, 2001) into the product of a number density n(x, t) and a velocity
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probability density function f cV(v;x, t):

f(x,v, t) = n(x, t)f cV(v;x, t). (5.12)

Therefore, changes in the distribution and level of particle velocity fluctuations are characterized

by the particle velocity probability density function f cV(v;x, t), and these affect the mean drag

through Eq. 5.11.

In the kinetic theory description of gas–solid flow using the one–particle distribution func-

tion, the fluctuating acceleration is simply the difference between the conditional and uncon-

ditional mean: A′′
j = ⟨Ai|v⟩ − ⟨Ai⟩. Using this definition, the particle acceleration–velocity

covariance can be written in terms of the one-particle distribution function as

⟨A′′
i v

′′
j ⟩ =

1

n

∫
[v]

{⟨Ai|v⟩ − ⟨Ai⟩} v′′j f(v, t) dv. (5.13)

As noted earlier, fluctuations in particle acceleration can arise from particle velocity fluctua-

tions, hydrodynamic interactions with neighbor particles, and fluid–phase velocity fluctuations.

While Eq. 5.13 explicitly accounts for the effect of particle velocity fluctuations, the other effects

must be incorporated in the model for the conditional particle acceleration.

5.2.2.2 Modeling the conditional particle acceleration

A straightforward extension of the mean particle acceleration model given by Eq. 5.4 to its

conditional counterpart is

A∗ = −βW = −β
(
v −

⟨
u(f)

⟩)
, (5.14)

where A∗ represents a model (cf. Eq. 5.2) for the conditional particle acceleration ⟨A |v⟩, and

W is the instantaneous slip velocity . Here we have written the instantaneous slip velocity as

the difference between the instantaneous particle velocity and the mean fluid velocity, rather

than as the difference between the instantaneous velocities in each phase, i.e. W = v − u.

This is because in CFD models based on the multifluid theory there is no representation of the

instantaneous gas phase velocity and the gas–phase motions are represented only by the mean

gas velocity. Although this simple model results in the same mean drag as in Eq. 5.4, its implied

closure for the acceleration-velocity covariance in the granular temperature equation results in



131

only a sink of granular temperature. This is because the simple extension in Eq. 5.14 does not

represent the effects of neighboring particles or fluctuations in the fluid velocity relative to its

mean.

For Stokes flow, Koch (1990) derived an analytical closure for the source term in the granular

temperature equation (cf. Eq. 5.10) using a kinetic equation applicable to a dilute monodisperse

gas–solid suspension with high particle inertia. He defined the instantaneous slip velocity as

W = v − u(i), where u(i) is the fluid velocity excluding the direct effect of the ith particle

(but including the disturbance effects of all the other particles). This definition of the slip

velocity gives rise to a source term in the granular temperature equation. Linearity of the

governing equations in the Stokes flow limit and the assumption of a dilute suspension allowed

the derivation of an explicit expression for u(i) and the source term. For moderately dense

suspensions, the assumptions made by Koch (1990) in the kinetic theory approach are not

valid and hence Koch and Sangani (1999) used a semi–analytical approach that used multipole

expansion simulations to derive an expression for the source of granular temperature in the

Stokes flow limit.

In section 5.2.3, we review the closures for the source term given by Koch (1990) and Koch

and Sangani (1999) in the Stokes flow limit. Developing similar closures for ⟨A|x,v; t⟩ and the

source term at moderate Reynolds numbers is difficult because the governing Navier–Stokes

equations are nonlinear. In section 5.3, we present a direct numerical simulation methodology

based on PUReIBM as a promising approach to develop closures for the source and sink terms

in the granular temperature equation at moderate Reynolds numbers.

5.2.3 Closure for high Stokes number particles undergoing elastic collisions in

Stokes flow

In a high Stokes number suspension the particle velocities are not significantly affected by

hydrodynamic forces. For a dilute suspension of very massive particles (high Stokes number)

undergoing perfectly elastic collisions in Stokes flow, Koch (1990) showed that the steady state
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particle velocity distribution in the kinetic theory description is Maxwellian2. Therefore, in

this limit the particle velocity covariance tensor is isotropic and its evolution can be simply

described by the granular temperature evolution equation.

5.2.3.1 Dilute suspensions of perfectly elastic particles

For a dilute homogeneous suspension of highly massive and perfectly elastic monodisperse

particles in Stokes flow, the evolution equation of the granular temperature derived by Koch

(1990) is

dT

dt
= −2R

τ
T +

2SI
3
. (5.15)

The first term on the right hand side of Eq. 5.15 is the sink of particle granular temperature due

to viscous dissipation. In this term, R = 1+3ϕ1/2/
√
2 is the dimensionless particle momentum

relaxation rate and τ = m/ (6πµfa) is the characteristic time scale over which the velocity of

a particle of mass m and radius a relaxes due to viscous forces. The second term on the right

hand side of Eq. 5.15 is the source due to hydrodynamic interactions. In the dilute limit, the

expression for this source term is

SI =
(
a |⟨W⟩|2

)
/
(
2π1/2τ2T 1/2

)
. (5.16)

The source term in the dilute limit is denoted SI to distinguish it from the source term SII at

higher volume fractions that is discussed in the following subsection.

5.2.3.2 Moderately dense to dense suspensions of perfectly elastic particles

Koch and Sangani (1999) used the multipole expansion method to evaluate the source term

due to hydrodynamic forces for dense homogeneous suspensions of massive elastic particles in

Stokes flow. In their simulation the particles move as a granular gas and their motion is not

affected by the interstitial fluid. The evolution equation for the granular temperature is written

as

dT

dt
= −2Rdiss(ϕ)

τ
T +

2SII
3

. (5.17)

2Later Koch and Sangani (1999) used an approximate multipole method to show that even for dense suspen-
sions of elastic particles in Stokes flow, the velocity distribution is Maxwellian.
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For the sink term due to viscous dissipation (first term on the right hand side of Eq. 5.17), the

expression for the dimensionless dissipation rate Rdiss(ϕ) as a function of volume fraction given

by Sangani et al. (1996) is used. The source term in granular temperature (second term on the

right hand side of Eq. 5.17) is expressed as an integral of the temporal autocorrelation of the

force experienced by the particles. The final expression for the source term given by Koch and

Sangani (1999) is

SII =
a

τ2
|⟨W⟩|2

T 1/2
S∗(ϕ) (5.18)

where S∗(ϕ) is the dimensionless source term. Expressions for the dimensionless dissipation

rate and the dimensionless source as a function of the volume fraction can be found in Koch

and Sangani (1999).

5.3 Direct numerical simulation approach

Here we describe a DNS approach based on the Particle–resolved Uncontaminated–fluid

Reconcilable Immersed Boundary Method (PUReIBM) that is used to solve for flow past arbi-

trary arrangements of solid spherical particles. Two types of simulation results are presented:

(i) for fixed particle assemblies, and (ii) for freely moving suspensions. The hydrodynamic solver

that is common to both types of simulations is first described. Then the solution approach for

fixed particle assemblies is outlined. This is followed by a description of the simulations of

freely evolving suspensions where the positions and velocities of the particles evolve under the

action of hydrodynamic and collisional forces.

5.3.1 Hydrodynamic solver

PUReIBM is a particle-resolved direct numerical simulation approach for gas-solid flow

where the continuum Navier-Stokes equations with no-slip and no-penetration boundary con-

ditions on each particle’s surface are solved using a forcing term that is added to the momen-

tum equation. The salient features that distinguish PUReIBM from other immersed boundary

method approaches are as follows:
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1. Uncontaminated fluid: In PUReIBM the immersed boundary (IB) forcing is solely re-

stricted to those grid points that lie in the solid phase, and therefore the flow solution

in the fluid phase is uncontaminated by the IB forcing. Consequently the velocity and

pressure in the fluid phase is a solution to the unmodified Navier-Stokes equations (in

contrast to IB implementations that smear the IB forcing on to grid points in the fluid

phase adjoining solid boundaries, resulting in solution fields that do not correspond to

unmodified Navier–Stokes equations).

2. Reconcilable: In PUReIBM the hydrodynamic force experienced by a particle is com-

puted directly from the stress tensor at the particle surface that is obtained from this

uncontaminated fluid flow solution (in contrast to IB implementations that calculate the

hydrodynamic force from the IB forcing field). This feature of PUReIBM enables us to

directly compare the DNS solution with any random-field theory of multiphase flow. In

particular, for statistically homogeneous suspensions it is shown in Garg et al. (2009) that

if the volume-averaged hydrodynamic force exerted on the particles by the fluid is com-

puted from a PUReIBM simulation, it is a consistent numerical calculation of the average

interphase momentum transfer term
⟨
τ ′jin

(s)
j δ

(
x− x(I)

)⟩
in the two-fluid theory (Drew,

1983). This reconciles DNS results with multiphase flow theory.

Owing to these specific advantages, it is shown elsewhere (Garg et al., 2009; Garg, 2009) that

PUReIBM is a numerically convergent and accurate particle-resolved DNS method for gas-solids

flow. Its performance has been validated in a comprehensive suite of tests: (i) Stokes flow past

simple cubic (SC) and face centered cubic (FCC) arrangements (ranging from dilute to close–

packed limit) with the boundary–integral method of Zick and Homsy (1982), (ii) Stokes flow

past random arrays of monodisperse spheres with LBM simulations of van der Hoef et al. (2005)

(iii) moderate to high Reynolds numbers (Rem ≤ 300) in SC and FCC arrangements with LBM

simulations of Hill et al. (2001b) and (iv) high Reynolds number flow past random arrays of

monodisperse spheres with ANSYS–FLUENT CFD package. It has also been extended to study

passive scalar transport, and validated for heat transfer from a single isolated sphere (Garg,

2009; Garg et al., 2010b).
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The numerical scheme used in PUReIBM is a primitive-variable, pseudo-spectral method,

using a Crank-Nicolson scheme for the viscous terms, and an Adams-Bashforth scheme for

the convective terms. A fractional time-stepping method that is based on Kim and Moin’s

approach (Kim and Moin, 1985) is used to advance the velocity fields in time. The principal

advantage of the PUReIBM approach is that it enables the use of regular Cartesian grids to

solve for flow past arbitrarily shaped moving bodies without the need for costly remeshing.

It also considerably simplifies parallelization of the flow solver as compared to unstructured

body-fitted grids.

5.3.2 Fixed particle assemblies

The particle configuration for DNS of flow past fixed assemblies is generated by first allow-

ing particles to attain a random spatial arrangement through elastic collisions. A homogeneous

configuration of non-overlapping spheres corresponding to the specified solid volume fraction

is generated with particle centers on a lattice, and particles are assigned a Maxwellian velocity

distribution. Particles are allowed to equilibrate under purely elastic collisions (in the absence

of any interstitial fluid) to generate a homogeneous particle configuration for the DNS flow

solver. Ensemble–averaged flow statistics are obtained by averaging over multiple indepen-

dent simulations (MIS) performed with several such configurations. Each statistically identi-

cal configuration corresponds to the same average solid volume fraction and pair-correlation

(macrostate), but differs in the specific arrangement of particles (microstates). The PUReIBM

simulation methodology and details of the computation of the mean acceleration (or mean

drag) for a fixed particle assembly are described in Garg et al. (2009).

5.3.3 Freely evolving suspensions

Numerical simulations (Yin and Koch, 2007) of freely evolving suspensions have been per-

formed to study the sedimentation of monodisperse particles under gravity in the presence

of a fluid. Simulations of freely sedimenting suspensions are carried out in periodic domains

such that the imposed pressure gradient in the fluid balances the weight of the particles. In

sedimentation calculations the steady mean flow Reynolds number attains a unique value that
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depends on the problem parameters (fluid and particle densities, solid volume fraction and the

value of acceleration due to gravity), and this value is not known a priori. In the present study

we seek to simulate freely evolving particle suspensions at arbitrary mean slip Reynolds num-

bers while maintaining the solid/fluid density ratio and solid volume fraction at fixed values.

We also want to specify the mean flow Reynolds number as input to the simulation. This

can be accomplished by specifying a mean pressure gradient that does not exactly balance the

weight of the particles, but exerts the requisite body force to maintain the desired slip velocity

between the particles and fluid. However, now both the mean particle velocity and the mean

fluid velocity change in time because there is no steady solution in the laboratory frame to the

mean momentum balance in each phase. Note that even though the mean phasic velocities are

evolving in time, their difference—the mean slip velocity—attains a steady value.

The difficulty in simulating this flow setup in the laboratory frame with periodic boundary

conditions is that the continuous increase in fluid and particle velocities places unnecessary

restrictions on the time step through the Courant condition. To circumvent this problem we

developed a different simulation setup that performs the DNS in an accelerating reference

frame such that the particles have a zero mean velocity with respect to the computational grid.

The equations of motion are solved in an accelerating frame of reference that moves with the

mean velocity of the particles. In this frame, the particles execute only fluctuating motion.

In our setup, particles on average do not flow in or out of the computational domain, thereby

maintaining a reasonable time step that is based on the mean slip velocity. Particles do flow in

and out of the domain because of their fluctuating velocity. The advantage of our setup is that

the desired mean flow Reynolds number is specified as an input parameter, and we are able to

solve the problem with reasonable time steps that resolve the flow. Details of the equations

solved in the accelerating reference frame are given in Appendix C.

In the freely evolving DNS, each particle moves with an acceleration that arises from hydro-

dynamic and collisional forces. The particles are represented in a Lagrangian frame of reference

at time t by {X(i) (t) ,V(i) (t) i = 1, . . . , Np}, where X(i) (t) denotes the ith particle’s position

and V(i)(t) denotes its translational velocity. The position and translational velocity of the ith
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particle evolve according to Newton’s laws as:

dX(i) (t)

dt
= V(i) (t) , (5.19)

m
dV(i) (t)

dt
= B+ F

(i)
d (t) +

Np∑
j=1
j ̸=i

Fc
ij (t) , (5.20)

where B is any external body force (zero in the simulations shown here), F
(i)
d is the hydrody-

namic force (from pressure and viscous stress that is calculated from the velocity and pressure

fields at the particle surface) and Fc
ij is the contact force on the ith particle as a result of

collision with jth particle. Particle–particle interactions are treated using soft–sphere collisions

based on a spring–dashpot contact mechanics model that was originally proposed by Cundall

and Strack (1979). The advantage of using soft–sphere collisions is that the simulations can be

extended to higher volume fractions because enduring multi–particle contacts are taken into

account. In the soft–sphere approach, the contact mechanics between two overlapping particles

is modeled by a system of springs and dashpots in both normal and tangential directions. The

spring causes colliding particles to rebound, and the dashpot mimics the dissipation of kinetic

energy due to inelastic collisions. The spring stiffness coefficients in the tangential and nor-

mal directions are kt and kn, respectively. Similarly, the dashpot damping coefficients in the

tangential and normal directions are ηt and ηn, respectively. The spring stiffness and dashpot

damping coefficients are related to the coefficient of restitution and the coefficient of friction

(see Garg et al. (2010a) for details of the implementation).

The particles considered in this study are assumed to be perfectly elastic and frictionless.

Since the particles are perfectly elastic, the damping force arising from the dashpot is zero.

The tangential component of the contact force is zero for frictionless particles. Therefore, only

the normal component of the spring force FS
nij contributes to the contact force Fc

ij at time t:

Fc
ij (t) = FS

nij (t) . (5.21)

At the initiation of contact, the normal spring force FS
nij is equal to −knδij , where δij is the

overlap between the particles computed using the relation

δij = dp −
∣∣∣X(i) −X(j)

∣∣∣ . (5.22)
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A time history of the spring forces is maintained once the contact initiates. At any time during

the contact, the normal spring force is given by

FS
nij(t+∆t) = FS

nij (t)− knVnij∆t, (5.23)

where Vnij is the relative velocity in the normal direction (defined below) that is computed

using

Vnij =
[(

V(i) −V(j)
)
· r̂ij

]
r̂ij . (5.24)

The normal vector r̂ij is the unit vector along the line of contact pointing from particle i to

particle j. The governing equations of motion that are solved in the fluid, and the details of the

computation of the hydrodynamic force acting on the particles are discussed in Appendix C.

A homogeneous particle configuration is generated in the same way as for the fixed particle

assemblies by equilibrating an ensemble of particles undergoing elastic collisions in the absence

of interstitial fluid. Following the simulation methodology of Garg et al. (2009), a steady flow

at the desired mean flow Reynolds number is first established for this fixed particle assembly.

Once the mean fluid–particle drag experienced by this fixed particle assembly reaches a steady

state, the particles are released at time t = 0 for the freely evolving DNS simulation.

The particles are advanced on a time step ∆tcoll that is determined by the spring stiffness

and the dashpot coefficients. The flow fields are updated on a time step ∆tfluid, which ensures

that both the convective and viscous time scales are well resolved. At the start of a flow time

step the forces acting on the particles are computed based on the flow fields obtained at the

end of the previous flow time step. If ∆tcoll is smaller than ∆tfluid the particles are stepped by

∆tcoll until the end of the flow time step, otherwise both the particles and the fluid are stepped

by ∆tcoll. The simulation is continued until the granular temperature reaches a steady state.

5.4 Results

We first present results from a validation test for fixed particle assemblies. We then quantify

particle acceleration and its coupling to fluctuations in the particle velocity in flow past fixed

particle assemblies as well as freely moving suspensions.
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5.4.1 Fixed particle assemblies

Simulations with fixed particle positions and velocities are representative of physical fluid-

particle systems in which the particle velocities do not change significantly over characteristic

fluid time scales (the relevant scale here being the time to transit a characteristic length scale

such as the particle diameter at the mean slip velocity). This is true for high Stokes number

(gas-solid) suspensions. Simulations of flow past fixed particle assemblies are less computa-

tionally demanding than freely evolving suspensions, and are useful for parametric studies

(variation of mean flow Reynolds number and mean solid volume fraction). This approach

has been extensively used to deduce computational drag laws for homogeneous gas-solid (high

Stokes number) suspensions by many researchers (Hill et al., 2001a,b; van der Hoef et al., 2005;

Beetstra et al., 2007; Yin and Sundaresan, 2009b). Here we use this test to compare PUReIBM

DNS results with existing LBM–based drag correlations.

The mean drag obtained from PUReIBM DNS is compared with the LBM–based drag

correlation of Hill et al. (2001b) in Figure 5.1. The normalized mean fluid–particle force F is

Rem

F

0 5 10 15 20 254

5

6

7

8

PUReIBM
Hill et al. (2001b)

Figure 5.1 Figure shows the comparison of the mean drag obtained from PUReIBM simula-

tions with the drag correlation reported by Hill et al. (2001b) at a solid volume

fraction of 0.2 for the baseline case of zero particle velocity fluctuations.

defined as

F =
|⟨f⟩|

3πµfdp |⟨W⟩|
(5.25)
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where ⟨f⟩ is the average fluid–particle force per particle. The PUReIBM DNS results show an

excellent match with the drag correlation of Hill et al. (2001b).

The validation test shown here is performed with all the particles at rest, so the fluctuations

in particle velocity are zero. If a random velocity is assigned to each particle in the fixed bed

according to a Maxwellian distribution corresponding to a specified value of the particle granular

temperature, then the fixed bed simulation can be considered an instantaneous snapshot of a

freely evolving suspension. Of course in a freely evolving suspension the dynamic response of

the particles to the hydrodynamic forces will affect the particle velocity fluctuations, and this

is not captured by the fixed bed simulation. Nevertheless, this still allows us to consider the

effect of particle velocity fluctuations on the hydrodynamic forces, albeit in a limited sense.

The magnitude of particle velocity fluctuations is characterized by defining a Reynolds

number based on the granular temperature ReT as:

ReT =
ρfdp T

1/2

µf
. (5.26)

In Fig. 5.2 we plot the streamwise component of fluctuating acceleration A′
x for each particle

versus its fluctuation in the streamwise velocity component v′x for Rem = 20 and ReT = 16 at a

solid volume fraction of 0.2. The first observation is that A′
x and v′x are negatively correlated.

This is to be expected because as seen from the schematic of the flow setup in Fig. 5.3, a

positive fluctuation in particle velocity results in a lower slip velocity that corresponds to a

lower drag value because of the relation A ∝ −W for isolated particles. This manifests as a

negative fluctuation in particle acceleration. However, the second interesting observation from

the scatter plot in Fig. 5.2 is that some positive fluctuations in velocity actually result in positive

fluctuations in the acceleration. In other words, the presence of neighbor particles and the

resulting hydrodynamic interactions can occasionally violate the A ∝ −W relation for isolated

particles. Also the fluid velocity in the proximity of the particle can be significantly different

from the mean fluid velocity, and the definition of the instantaneous slip as W = v − ⟨u(f)⟩

may not accurately represent the instantaneous slip velocity. The joint statistics of particle

acceleration and particle velocity represent the coupling between hydrodynamic forces and

particle velocity fluctuations. In particular, the acceleration-velocity covariance is important
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Figure 5.2 Scatter plot of streamwise component of fluctuating acceleration versus the stream-

wise component of fluctuating velocity. Square symbols (�) show fluctuations in

the particle acceleration obtained from DNS using PUReIBM simulations, while

upper triangles (△) show fluctuations in the particle acceleration predicted by

simple extension of a mean drag law to its instantaneous counterpart.

for accurate prediction of the particle granular temperature evolution.

We now investigate the predictions for joint particle acceleration-velocity statistics using

a simple model (this model is used in other works such as Wylie et al. (2003) to predict the

effect of particle velocity fluctuations on mean drag). The instantaneous counterpart of the

acceleration model described in Eq. 5.14,

A = −βW,

is used to compute the instantaneous particle acceleration for each particle velocity value in

the DNS. In this model β is taken from the drag correlation proposed by Hill et al. (2001b).

The acceleration-velocity scatter plot obtained from this model is also shown in Fig. 5.2 (upper

triangles). One can see that this simple extension of the mean acceleration model does not

recover the scatter obtained in the DNS, but instead it predicts a significantly different joint

statistical behavior. The data points in quadrants Q1 and Q3 that are found in the scatter plot

from DNS are totally absent in the model. Clearly this comparison points to the need for an
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y

x

〈u(f)〉

v’

Figure 5.3 Schematic of the flow setup. The mean velocity of the fluid phase
⟨
u(f)

⟩
is directed

along the positive x axis as shown. The mean velocity ⟨v⟩ of the particles is zero

and so the mean slip velocity ⟨W⟩ = ⟨v⟩ −
⟨
u(f)

⟩
is along the negative x axis.

The solid particle shown in this figure has a positive velocity fluctuation v′ along

the positive x axis. The schematic illustrates that a positive fluctuation about

the mean velocity of the particles implies a reduced instantaneous slip velocity,

v′ −
⟨
u(f)

⟩
between the particle and the fluid.

improved model for the conditional particle acceleration in the velocity transport term in the

evolution equation for the one-particle distribution function in the kinetic theory of multiphase

flow.

While useful information regarding instantaneous particle acceleration-velocity joint statis-

tics can be extracted from fixed particle simulations, they are inadequate to characterize the

temporal evolution of the particle granular temperature. For this purpose we perform DNS of

freely evolving suspensions.

5.4.2 Freely moving suspensions

DNS of a freely evolving suspension in periodic domain is performed for a volume fraction

of ϕ = 0.2. Unlike sedimentation studies where the mean slip velocity is limited by the settling

velocity of the particles in suspension, here we solve the equations of motion in an accelerating

frame of reference so that arbitrary mean flow Reynolds numbers Rem can be simulated. A

value of Rem = 20 is chosen for the simulations reported here, which is well outside the Stokes
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regime. Three different particle to fluid density ratios (ρp/ρf = 10, 100 and 1000) are used to

analyze the dynamics of the system.

First we examine the mean fluid–particle drag in the freely evolving suspension for different

values of the particle to fluid density ratio. The time evolution of the normalized drag F (cf.

Eq. 5.25) is shown in Fig. 5.4(a). Figure 5.4(a) shows that the mean drag in the suspension

t|〈W〉|/dp

F
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Figure 5.4 Figure 5.4(a) shows the evolution of the normalized mean drag at a volume fraction

of 0.2 and a mean flow Reynolds number of 20 for three different particle to fluid

density ratios: ρp/ρf= 10 (red), 100 (blue), and 1000 (purple). The black solid

line indicates the drag in a static bed at the same mean flow Reynolds number and

volume fraction. The dashed lines represent 95% confidence limits on the mean

drag for the static bed. Figure 5.4(b) shows the evolution of the standard deviation

of fluctuations in the particle acceleration relative to the mean drag at a volume

fraction of 0.2 and a mean flow Reynolds number of 20 for different density ratios.

In this plot, data for ρp/ρf= 10 are shown on the right hand side y−axis. The

standard deviation in the acceleration obtained for a fixed bed is 0.22

for a particle to fluid density ratio of 1000 varies slowly in time when compared to the other

two cases. This is because the particle configuration changes very slowly due to high inertia of

the particles. Thus, when compared to the other two density ratios, the behavior of this system

is expected to be much closer to that of a fixed bed. However, even the case with density ratio

of 1000 is not identical to a fixed bed with zero particle velocity fluctuations because of the

changing particle configuration, nonzero particle velocity fluctuations and the effect of added

mass in the hydrodynamic force. Nevertheless, it is clear that as the density ratio increases the
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mean drag experienced by the particles in a freely evolving suspension is better approximated

by the corresponding fixed bed simulation.

The fluctuations in the particle acceleration play a very important role in the dynamics of

the suspension as discussed earlier. In Figure 5.4(b), the level of acceleration fluctuations σA

relative to the mean acceleration is plotted with time for the three density ratios. It can be

seen that the particle acceleration fluctuations are almost constant for the suspension with the

highest density ratio of 1000. The steady value of σA/| ⟨A⟩ |for the case with highest density

ratio is very close to that obtained from a fixed assembly of particles at the same volume

fraction of 0.2 and mean flow Reynolds number of 20.

The plot of acceleration fluctuations in Fig. 5.4(b) has several significant implications.

First of all, it tells us that the steady state value of σA/| ⟨A⟩ | in freely evolving suspensions

is not negligible. Therefore, fluctuating hydrodynamic forces (relative to the mean drag) are

important not just in the Stokes regime, but at moderate Reynolds numbers also. Secondly,

it informs us that the level of acceleration fluctuations in freely evolving suspensions is not

very different from that in fixed particle assemblies. This partially justifies the calculation of

joint acceleration-velocity statistics from fixed particle assemblies and their comparison with a

simple model that was presented earlier. The third inference we draw from Fig. 5.4(b) is that

the instantaneous particle acceleration model must represent the increasing level of temporal

variations in fluctuating hydrodynamic force that accompany a decrease in particle to fluid

density ratio.

We now quantify the effect of the fluctuations in the hydrodynamic force on particle velocity

fluctuations in freely evolving suspensions. The evolution of granular temperature for the three

different particle to fluid density ratio values that are considered is shown in Figure 5.5. Details

of the estimation of granular temperature from DNS of freely evolving suspensions are given in

Appendix C.

As expected, the lower density ratio cases attain a higher steady granular temperature, and

the rate at which the steady value is reached is inversely proportional to the particle to fluid

density ratio. The value of the scaled granular temperature is relatively low when compared

with the turbulence intensity in single–phase turbulence. It indicates a high Mach number
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Figure 5.5 Evolution of the particle granular temperature at a volume fraction of 0.2 and a

mean flow Reynolds number of 20 for different density ratios.

in the particle phase (on the order of 100 for a scaled granular temperature of 10−4). This

indicates that the particles in the gas-solid suspension are not dominated by collisions like

molecular gases at STP, but rather they are closer to a super-cooled state. For comparison, the

values of granular temperature in Stokes flow as estimated by the theory of Koch and Sangani

(1999) are 2 to 3 orders of magnitude smaller than the DNS results shown here for a mean flow

Reynolds number of 20.

5.5 Conclusions

The coupling between hydrodynamic forces and particle velocity fluctuations in gas-solid

suspensions at moderate Reynolds number is studied using direct numerical simulation of freely

evolving suspensions that imposes no-slip and no-penetration boundary conditions on the sur-

face of each particle. The DNS results show that fluctuations in particle acceleration are

significant at moderate Reynolds numbers. The standard deviation in acceleration relative to

the mean acceleration ranges from 0.2 to 0.4 depending on the particle to fluid density ra-

tio. This extends current understanding of this coupling that has been extensively studied by
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Koch and co-workers in the limit of Stokes flow. Another key finding that emerges from this

work is that the steady state granular temperature from DNS of freely evolving suspensions

at Rem = 20 is two to three orders of magnitude larger than that predicted by the theory

of Koch and Sangani (1999) for Stokes flow. A simple extension of drag laws for mean particle

acceleration (based on the mean slip velocity) to model the instantaneous particle acceleration

does not recover the correct acceleration–velocity covariance that is obtained from DNS. This

work motivates the development of better models for instantaneous particle acceleration that

are capable of accurately representing the coupling between hydrodynamic forces and particle

velocity fluctuations.
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Nomenclature

f One–particle distribution function (s3/m6)

ḟcoll Source of the one–particle distribution function due to particle collisions (s2/m6)

v Sample space variable for velocity of the particle (m/s)

x Position vector (m)

x, y, z Components of the position vector x (m)

vx, vy, vz Components of the velocity vector v (m/s)

∇x Gradient operator in position space given by i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

∇v Gradient operator in velocity space given by i
∂

∂vx
+ j

∂

∂vy
+ k

∂

∂vz

t Time (s)

i, j,k Unit vectors in the x, y and z directions respectively

⟨A |x,v; t⟩ Conditional expectation of particle acceleration (m/s2)

p(x, t) Fluid pressure field (N/m2)

⟨A⟩ Unonditional expectation of particle acceleration (m/s2)

⟨f⟩ Average fluid–particle force per particle (N)

⟨v⟩ Average particle velocity (m/s)

⟨
Ffp

⟩
Mean fluid–particle drag (N)

⟨g⟩V Mean pressure gradient in the accelerating frame (N/m3)
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⟨
u(f)

⟩
Phasic averaged fluid velocity (m/s)

⟨
u(s)

⟩
Phasic averaged solid velocity (m/s)

⟨W⟩ Mean slip velocity between the solid and the fluid phases (m/s)

β Interphase momentum transfer coefficient (s−1)

x Position vector in the accelerating frame (m)

B External body force (N)

W Instantaneous particle slip velocity (m/s)

V(i) Velocity vector of the ith particle (m/s)

X(i) Position vector of the ith particle (m)

{T} Granular temperature estimated from DNS (m2/s2)

{
u(s)

}
Mean solids velocity estimated from DNS (m/s)

∆t Time step in the accelerating frame (s)

∆tcoll Time step used to resolve particle–particle collisions (s)

∆tfluid Time step used to resolve flow field (s)

δij Overlap between the particles i and j (m)

⟨g⟩n+1
V Mean pressure gradient at (n+ 1)th time step in the accelerating frame (N/m3)⟨

u(f)
⟩d

Desired mean fluid velocity in the accelerating frame (m/s)⟨
u(f)

⟩n+1
Mean fluid velocity at (n+ 1)th time step in the accelerating frame (m/s)⟨

u(s)
⟩n+1

Mean solid velocity at (n+ 1)th time step in the accelerating frame (m/s)⟨
u(f)

⟩n
Mean fluid velocity at nth time step in the accelerating frame (m/s)⟨

u(s)
⟩n

Mean solid velocity at nth time step in the accelerating frame (m/s)
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F
n
D Total drag force acting on the solid particles at nth time step in the accelerating

frame (N)

An+1
f Frame acceleration at (n+ 1)th time step (m/s2)

ηn Dashpot damping coefficient in the normal direction used in the soft–sphere

collision model (Ns/m)

ηt Dashpot damping coefficient in the tangential direction used in the soft–sphere

collision model (Ns/m)

FS
nij Normal component of the spring force between particles i and j that arises in

the soft–sphere collision model (N)

F
(i)
d Total drag force acting on the ith particle (N)

r̂ij Unit vector along the line of contact pointing from particle i to particle j

V(n)
s Region occupied by the nth particle

Fc
ij Contact force on the ith particle due to collision with jth particle (N)

V Region of the physical domain

Vf Region occupied by the fluid phase

Vs Region occupied by the solid phase

ReT Reynolds number based on the particle granular temperature

µf Dynamic viscosity of the fluid (Ns/m−2)

νf Kinematic viscosity of the fluid (m2/s)

FD Total drag force acting on the solid particles (N)

g Pressure gradient in the accelerating frame (N/m3)

g′ Fluctuating pressure gradient in the accelerating frame (N/m3)
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S Convective term of the Navier–Stokes equations in the accelerating frame

(m/s2)

t Time in the accelerating frame (s)

∂V Boundary of the periodic box

∂Vs Interface between the solid and the fluid phases

∂V(n)
s Surface of the nth particle

ϕ Solid volume fraction

Rem Reynolds number based on the mean slip velocity

ρf Thermodynamic density of the fluid (kg/m3)

ρp Thermodynamic density of the particles (kg/m3)

σA Standard deviation in the particle accelerations (m/s2)

τ Viscous relaxation time scale (s)

Vnij Relative velocity between the particles i and j in the normal direction (m/s)

dp Particle diameter (m)

dA Infinitesimal area element on the surface of the sphere (m2)

F Normalized mean fluid–particle force per particle

f cV Velocity probability density function (s3/m3)

kn Spring stiffness coefficient in the normal direction used in the soft–sphere col-

lision model (N/m)

kt Spring stiffness coefficient in the tangential direction used in the soft–sphere

collision model (N/m)

m Mass of the particle (kg)
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n Number density (1/m3)

Np Number of particles in the domain

R Dimensionless particle momentum relaxation rate used by Koch (1990)

Rdiss Dimensionless dissipation rate used by Sangani et al. (1996)

S∗ Dimensionless source of granular temperature used by Koch (1990) and Sangani

et al. (1996)

SI Source of granular energy in the dilute volume fraction limit derived by Koch

(1990) (m2/s3)

SII Source of granular temperature in the moderate volume fraction limit given

by Sangani et al. (1996) (m2/s3)

T Particle granular temperature (m2/s2)

V Volume of the physical domain (m3)

Vf Volume of the region occupied by fluid (m3)

Vs Volume of the region occupied by the solid phase (m3)

u(x, t) Fluid velocity field in the accelerating frame (m/s)

A′′ Particle acceleration fluctuations (m/s2)

A∗ Modeled instantaneous particle acceleration (m/s2)

Af Frame acceleration (m/s2)

n(n) Unit normal vector pointing outward from the surface of the nth particle

n(s) Unit normal vector pointing outward from the surface of the solid

u(x, t) Fluid velocity field in the laboratory frame (m/s)
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u(i) Fluid velocity excluding the direct effect of the ith particle used by Koch (1990)

(m/s)

v′′ Particle velocity fluctuations (m/s)

v′(n) Fluctuating velocity of the nth particle (m/s)

Vf Frame velocity (m/s)

ψ′ Fluctuating pressure (N/m2)

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

EE Eulerian–Eulerian

IB Immersed Boundary

IBM Immersed Boundary Method

LE Lagrangian–Eulerian

MIS Multiple Independent Simulations

PDF Probability Density Function

PUReIBM Particle–resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method
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CHAPTER 6. Stochastic acceleration model for inertial particles in

gas–solid suspensions

This chapter is a manuscript titled “Stochastic acceleration model for inertial particles in

gas–solid suspension” that is under preparation. A part of this chapter is also published as

an article (Tenneti et al., 2010a) in the conference proceedings of International Conference

of Multiphase Flow. The title of the conference paper is “Instantaneous particle acceleration

model for gas-solid suspensions at moderate Reynolds numbers Particle-Laden Flows” and is

authored by S. Tenneti, R. O. Fox and S. Subramaniam. Some of the results shown in this

chapter have been included a manuscript titled “Enskog kinetic theory for monodisperse gas–

solid suspensions” that is accepted for publication in the Journal of Fluid Mechanics.

Abstract

Device–scale computational fluid dynamics (CFD) simulations of gas–solid flow that solve

for average quantities such as solid volume fraction and phasic mean velocity fields are be-

ing extensively used in the industrial design process. The capability of these simulations

to accurately predict the characteristics of gas–solid flow depends upon the accuracy of the

models for unclosed terms that appear in the equations for mass, momentum and energy con-

servation. Hrenya and Sinclair (1997) show that the particle granular temperature (particle

velocity variance) plays an important role in the prediction of the core annular structure in

riser flows. In statistically homogeneous gas–solid suspensions undergoing elastic collisions,

the particle acceleration–velocity covariance alone governs the evolution of granular tempera-

ture. This acceleration–velocity covariance can be decomposed into a source and dissipation of

granular temperature due to hydrodynamic forces. Koch and co–workers (Koch, 1990; Koch
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and Sangani, 1999) quantified the hydrodynamic source and dissipation terms in the granular

temperature evolution using a combination of kinetic theory closure and multipole expansion

simulations at very low Reynolds numbers (Stokes flow regime). At moderate Reynolds num-

bers, particle– resolved direct numerical simulation (PR–DNS) is as a viable tool to quantify

the hydrodynamic source and dissipation. In this study, PR–DNS of freely evolving gas–solid

suspensions are performed using the Particle–resolved Uncontaminated–fluid Reconcilable Im-

mersed Boundary Method (PUReIBM) that has been developed. Analysis of PR–DNS results

shows that the fluctuations in the particle acceleration that are aligned with the fluctuations

in the particle velocity give rise to source in the granular temperature. It is found that simple

extension of a class of mean particle acceleration models to their corresponding instantaneous

versions does not predict the correct joint acceleration–velocity statistics that are obtained from

DNS. Also such models do not give rise to any source in the granular temperature due to hydro-

dynamic effects. This motivates the development of better instantaneous particle acceleration

models. It is found that a Langevin equation for the increment in the particle velocity repro-

duces the PR–DNS results for particle velocity autocorrelation in freely evolving suspensions.

Particle–resolved simulations of freely evolving gas–solid suspensions are performed over a wide

range of solid volume fraction (0.1 ≤ ϕ ≤ 0.4), Reynolds number based on the slip velocity

between the solid and the fluid–phase (10 ≤ Rem ≤ 100) and solid to fluid density ratio (100

≤ ρp
ρf

≤ 2000). Based on the data obtained from the simulations, functional dependence of the

model coefficients on solid volume fration, Reynolds number and solid to fluid density ratio is

obtained.

6.1 Introduction

Gas–solid flows are common in many industrial applications such as fluidized bed com-

bustors, coal gasification, and pneumatic transport lines. A fundamental understanding of

gas–solid flow is relevant due to increasing interest in carbon–neutral energy generation tech-

nologies such as chemical looping combustion.applications, gas–solid flows are also encountered

in many naturally occuring phenomena such as [dispersion of volcanic ash, pollen?]

Computational fluid dynamics (CFD) simulations that solve for the averaged equations
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of multiphase flow are a cost-effective solution for rapid evaluation of design and scale up of

industrial devices like fluidized beds. Device-scale CFD simulations are usually based on the

Eulerian-Eulerian two-fluid approach in which averaged equations for conservation of mass, mo-

mentum and energy are written for each phase, with coupling terms representing the interphase

interactions. These equations contain unclosed terms that need to be modeled. For example,

the mean momentum conservation equation in the particle phase requires closure of the average

fluid–particle interaction force (mean drag force) and the average stress in the solid particle

phase. Accurate models for the unlosed terms are therefore needed for predictive device–scale

CFD simulations of gas–solid flow.

In any statistical closure problem, an important modeling question is the adequacy of

the mathematical representation to capture physical phenomena. Hrenya and Sinclair (1997)

show that it is necessary to solve the transport equation for the particle granular temperature

(particle velocity variance) to predict the core–anular structure observed in riser flows. This

shows that closure only at the level of the mean momentum is not adequate, but a closure at

the level of second moment of particle velocities is necessary.

An alternative approach to the closure of moment transport equations is to consider the

evolution of the one-particle distribution function. Just as closure at the level of the transport

equation for the probability density function (PDF) in single–phase turbulent reactive flow

implies a closure for all moment equations, similarly a kinetic equation that achieves a closure

for the one-particle distribution function in kinetic theory implies a closure for all moment

equations. In particular, a closure at the one-particle distribution level automatically implies

closure of the mean momentum and particle velocity second moment equations. Furthermore,

closures at the one-particle distribution level are guaranteed to satisfy realizability criteria,

whereas special care is needed to ensure the same in the case of moment closures. These

considerations motivate the development of models for the unclosed terms in the transport

equation for the one-particle distribution function corresponding to gas-solid flow.

For monodisperse particles the one–particle distribution function f(x,v, t) is defined in a

position–velocity space (Williams, 1958; Koch, 1990; Subramaniam, 2000, 2001; Liboff, 2003;
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Garzo et al., 2007a), and evolves by the following transport equation:

∂f

∂t
+∇x · (vf) +∇v · (⟨A |x,v; t⟩ f) = ḟcoll, (6.1)

where∇x and∇v denote the gradient operators in the position and velocity space, respectively,

and ḟcoll is the collisional term that can depend on higher order statistics. A closure model for

the collisional term results in a kinetic equation. This well-known equation has been extensively

studied in the context of granular flows where collisions are inelastic. Extensions to non-dilute

cases that follow the Enskog approach have also been pursued. The averaged equations for

mean momentum conservation and transport of the second moment of particle velocity implied

by Eq. 6.1 are derived using the usual procedure to derive hydrodynamic equations in kinetic

theory (Koch, 1990; Pai and Subramaniam, 2009).

The principal difference between the kinetic theory of gases and the kinetic theory of gas-

solid flow is that in the latter, the conditional particle acceleration term ⟨A |x,v; t⟩ appears

inside the velocity derivative in the velocity transport term and it depends on particle velocity

through slip with respect to the fluid. This conditional particle acceleration is caused by the

hydrodynamic force Ffluid = m ⟨A |x,v; t⟩ experienced by the particle due to the pressure and

velocity gradient fields at the particle surface. As an illustration of the former, the pressure

field is given in figure 6.1(b), which shows a single motionless particle suspended in mean

fluid flow or, equivalently, a sphere moving in the same direction as that of the mean fluid flow.

For this simple case, the hydrodynamic force acting on the particle is typically expressed as

Ffluid = mβ(
⟨
u(f)

⟩
− ⟨v⟩), where m is the mass of a single particle and β is a drag coefficient

that depends on the particle Reynolds number,
⟨
u(f)

⟩
is the mean fluid velocity and ⟨v⟩ is

the (mean) particle velocity. A slightly more complex situation is depicted in figure 6.1(c),

where the particle is now moving in a different direction than the mean fluid flow, as indicated

by the arrow, but still unaffected by neighbor particle effects. The presence of such particle

motion leads to a change in the pressure field (and velocity-gradient field, not shown) at the

particle surface, thereby causing a change in Ffluid. An even more complex scenario is shown in

figure 6.1(d), where the presence of surrounding, moving particles causes a continual change in

the pressure (and velocity) field around the particle of interest, resulting in a dynamic gas-solid
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(a) (b)

(c) (d)

Figure 6.1 Illustration of different contributions to the instantaneous gas-solid force in a sus-

pension with a mean fluid velocity
⟨
u(f)

⟩
and a mean particle velocity ⟨v⟩ is shown

in top left panel (a). Pressure contours are shown for (b) a single particle far away

from its neighbors and moving with a velocity equal to the mean particle velocity

(top right panel), (c) a particle moving in a different direction than the mean fluid

flow and far from its neighbors (bottom left panel), and (d) a collection of par-

ticles moving in different directions (bottom right panel). The pressure contours

are obtained from particle–resolved direct numerical simulations (PR–DNS) for a

gas-solid suspension that corresponds to a solid volume fraction of 0.2 and mean

flow Reynolds number 0.01.
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interaction force. Accordingly, the hydrodynamic force experienced by a single particle can

be decomposed into the contributions arising from mean slip velocity between the solid and

the gas-phase (figure 6.1(b)), instantaneous particle velocity fluctuations with respect to mean

velocity of the particles (figure 6.1(c)) and the contribution due to neighbor particle effects

(figure 6.1(d)). It is worthwhile to note that this last system (figure 6.1(d)) best captures the

interactions occurring in practical gas-solid systems such as fluidized beds.

In the transport equation for the distribution function (cf. Eq. 6.1), ⟨A|x,v; t⟩ depends on

the instantaneous particle velocity v and can vary in both space and time. For the spatially

homogeneous case with monodisperse particles it can be interpreted as the average acceler-

ation experienced by a particle with velocity v. The averaging operator ⟨·⟩ represents inte-

gration over all higher-order multiparticle distribution functions (Koch, 1990; Subramaniam,

2000) that can be defined on the basis of the ensemble of particles with position and velocity

{X(n)(t),V(n)(t), n = 1, . . . , N}. In particular, the conditional acceleration ⟨A|x,v; t⟩ is ob-

tained by integrating out its dependence on the two-particle density (pair correlation function).

In other words, the conditional acceleration ⟨A|x,v; t⟩ is not completely determined by the par-

ticle velocity, but may be affected by the presence of neighbor particles. Following from the

earlier discussion surrounding figure 6.1, different approximations for the conditional particle

acceleration have been made, leading to differences in the moment equations appearing in the

literature.

Consider first the simplest case, where the instantaneous particle acceleration is modeled

as a mean acceleration , namely ⟨A|x,v; t⟩ = β(
⟨
u(f)

⟩
−⟨v⟩), where β is a function of the solid

volume fraction and Reynolds number based on the mean slip velocity (
⟨
u(f)

⟩
− ⟨v⟩) between

the gas and the solid–phase (cf. figure 6.1(b)). For this model, a mean particle acceleration term

appears in the mean momentum equation of the solid-phase, but no terms appear in the granular

temperature equation. Next, consider an approximation which accounts for the fluctuation in

the particle velocity (cf. figure 6.1(c)) in the following manner: ⟨A|x,v; t⟩ = β(
⟨
u(f)

⟩
−v) and

thus is a function of the instantaneous particle velocity v, though β still remains a function of

the solid volume fraction and slip Reynolds number. In this case, an additional sink term (which

is proportional to β) arises in the equation for the granular temperature due to viscous drag (for
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example, see Koch (1990)). In a third and improved approximation, fluctuations in both phases

are considered in the fluid-force relation (cf. figure 6.1(d)), namely ⟨A|x,v; t⟩ = β(u(f) − v),

where u(f) is the instantaneous gas velocity and with β again typically treated as a function

of the mean quantities. This treatment leads to an additional source term in the granular

energy balance arising from fluid-dynamic interactions (for example, see Gidaspow (1994)).

However, this approximation leads to a single point fluid-particle velocity covariance that Xu

and Subramaniam (2006) have shown to be inconsistent for finite particle size.

As discussed above, the closure model for the conditional particle acceleration affects both

the mean momentum and the particle granular temperature, as these are derived from the

kinetic equation 6.1. In a typical gas–solid flow system (cf. figure 6.1(d)), the presence

of numerous particles moving in different directions will lead to continually-changing hydro-

dynamic interactions between particles (i.e., fluctuations in the fluid velocity and pressure

fields). Finally, and perhaps more importantly, a common assumption in works that incorpo-

rate gas- and/or solid-phase fluctuations is that the basic form of the mean particle acceleration

⟨A|x,v; t⟩ = β(
⟨
u(f)

⟩
− ⟨v⟩) also holds for its instantaneous counterpart by simply replacing

the mean quantities with instantaneous ones i.e., ⟨A|x,v; t⟩ = β(u(f) − v). Recent findings by

Tenneti et al. (2010b), however, indicate that such treatments are not appropriate. Figure 6.2

shows a plot of the streamwise component of fluctuations in particle acceleration A′′ versus

the streamwise component of fluctuations in particle velocity v′′. The fluctuations in the par-

ticle acceleration and velocity are defined with respect to their corresponding mean values.

The particle acceleration fluctuations are normalized by the standard deviation in the parti-

cle acceleration distribution σA, while the fluctuations in the particle velocity are normalized

by the standard deviation in the particle velocity distribution σv. Square symbols are the

particle acceleration fluctuations obtained from particle–resolved direct numerical simulation

(PR–DNS) of a freely evolving gas–solid suspension. Triangles are the fluctuations in the par-

ticle acceleration predicted by using a model for the fluid–particle acceleration of the form

⟨A|x,v; t⟩ = β(u(f) − v). It is clear that the joint statistics of the particle acceleration and

particle velocity that are crucial for the accurate prediction of the evolution of granular tem-

perature are not well captured by this simplified class of instantaneous particle acceleration
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Figure 6.2 Scatter plot of streamwise component of particle acceleration fluctuations A′′ (nor-

malized by the standard deviation in the particle acceleration distribution σA) ver-

sus the streamwise component of particle velocity fluctuations v′′ (normalized by

the standard deviation in the particle acceleration distribution σv). Square symbols

(�) denote the fluctuations in the particle acceleration obtained from PR–DNS of a

freely evolving gas–solid suspension corresponding to a solid volume fraction of 0.2,

mean flow Reynolds number of 1.0 and solid to fluid density ratio of 1000. Upper

triangles (△) denote the fluctuations in the particle acceleration predicted by using

a model for the fluid–particle acceleration of the form ⟨A|x,v; t⟩ = β(u(f) − v).
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models. Although such models result in a sink of particle granular temperature, it does not

account for the source in granular temperature that is responsible for points in quadrants I and

III of the fluctuating particle acceleration–velocity scatter plot. Moreover, the scatter observed

in the particle acceleration fluctuations suggests a stochastic contribution to the fluid–particle

force that arises due to the effect of the neighbor particles.

For the limiting case of a statistically homogeneous gas–solid flow in the Stokes flow regime,

Koch and co–workers (Koch, 1990; Koch and Sangani, 1999) developed a kinetic theory clo-

sure with a model for the conditional particle acceleration that accounts for the presence of

ambient fluid in the term transporting the distribution function in velocity space via analytical

means (Koch, 1990) and through the use of multipole expansions (Koch and Sangani, 1999).

For statistically homogeneous gas-solid flows, the correlation between the particle fluctuating

velocity and its acceleration fluctuation determines the evolution of the particle velocity second

moment. In the limiting case of Stokes flow, Koch (Koch, 1990; Koch and Sangani, 1999)

decomposed the particle acceleration–velocity covariance as the sum of source and sink con-

tributions. If particle collisions are elastic then the granular temperature decreases only due

to viscous interactions with the ambient fluid. In the Stokes flow regime the sink term sim-

ply relaxes the granular temperature to zero on the viscous relaxation time scale. In Koch’s

decomposition of the acceleration-velocity covariance into source and sink terms (Koch and

Sangani, 1999), the source term due to hydrodynamic interactions with neighboring particles

can balance the sink term leading to a steady state granular temperature in stable homogeneous

suspensions.

The source term in the granular temperature equation plays an important role in sustaining

a nonzero value of the granular temperature. In its absence the granular temperature in a

homogeneous suspensions would simply decay to zero, leading to an infinite Mach number in the

particle phase. Not only is this problematic from a numerical standpoint for CFD simulations,

but it is also unphysical over a wide range of mean flow Reynolds number and volume fraction.

Although Koch’s analysis is useful in the Stokes flow regime, it is difficult to extend the analysis

to moderate Reynolds number cases. At moderate Reynolds number, particle–resolved direct

numerical simulation (PR–DNS) offers a promising approach to quantify unclosed terms in
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the transport equations for particle velocity moments, or the transport equation for the one-

particle distribution function. We use PR–DNS of gas-solid flow at moderate Reynolds number

to develop a class of particle acceleration models that are capable of capturing the coupling

between particle velocity fluctuations and hydrodynamic forces in gas-solid flow.

The rest of the paper is organized as follows. First the numerical method is briefly described

followed by the details of the instantaneous particle acceleration model. Results from PR–

DNS of freely evolving suspensions are discussed next. The procedure used for determining

the coefficients of the acceleration model is described followed by the specification of these

coefficients in terms of solid volume fraction, mean flow Reynolds number, solid to fluid density

ratio and particle granular temperature.

6.2 Numerical Method

In this study, PR–DNS of freely evolving gas–solid suspensions are performed using the

Particle–resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method (PUReIBM)

that has been developed at Iowa State University to simulate flow past fixed particle assem-

blies (Garg et al., 2011) and freely evolving suspensions (Tenneti et al., 2010b). PUReIBM is

a particle-resolved direct numerical simulation approach for gas-solid flow with the following

features that distinguish it from other immersed boundary method approaches:

1. Uncontaminated fluid: In PUReIBM the immersed boundary (IB) forcing is solely re-

stricted to those grid points that lie in the solid phase, and therefore the flow solution

in the fluid phase is uncontaminated by the IB forcing. Consequently the velocity and

pressure in the fluid phase is a solution to the unmodified Navier-Stokes equations (in

contrast to IB implementations that smear the IB forcing on to grid points in the fluid

phase adjoining solid boundaries, resulting in solution fields that do not correspond to

unmodified Navier–Stokes equations).

2. Reconcilable: In PUReIBM the hydrodynamic force experienced by a particle is com-

puted directly from the stress tensor at the particle surface that is obtained from this

uncontaminated fluid flow solution (in contrast to IB implementations that calculate the
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hydrodynamic force from the IB forcing field). This feature of PUReIBM enables us to

directly compare the DNS solution with any random-field theory of multiphase flow. In

particular, for statistically homogeneous suspensions it is shown that (Garg et al., 2011)

if the volume-averaged hydrodynamic force exerted on the particles by the fluid is com-

puted from a PUReIBM simulation, it is a consistent numerical calculation of the average

interphase momentum transfer term
⟨
τ ′jin

(β)
j δ

(
x− x(I)

)⟩
in the two-fluid theory (Drew,

1983). This reconciles DNS results with multiphase flow theory.

Owing to these specific advantages, it is shown elsewhere (Garg et al., 2011; Garg, 2009) that

PUReIBM is a numerically convergent and accurate particle-resolved DNS method for gas-

solids flow. Its performance has been validated in a comprehensive suite of tests:(i) Stokes

flow past simple cubic (SC) and face centered cubic (FCC) arrangements (ranging from dilute

to close–packed limit) with the boundary–integral method of Zick and Homsy (1982), (ii)

Stokes flow past random arrays of monodisperse spheres with LBM simulations of van der

Hoef et al. (2005) (iii) moderate to high Reynolds numbers (Rem ≤ 300) in SC and FCC

arrangements with LBM simulations of Hill et al. (2001b) and (iv) high Reynolds number flow

past random arrays of monodisperse spheres with ANSYS–FLUENT CFD package. It has also

been extended to study passive scalar transport, and validated for heat transfer from a single

isolated sphere (Garg, 2009; Garg et al., 2010b). In this work, the DNS methodology based on

PUReIBM developed by Tenneti et al. (2010b) to simulate freely evolving suspensions is used

to propose an instantaneous particle acceleration model that incorporates the effect of particle

velocity fluctuations and hydrodynamic effects of neighboring particles.

6.3 Instantaneous particle acceleration model

We propose the following stochastic model for the increment in the particle velocity:

dvi = −β ⟨Wi⟩ dt− γv′′i dt+BdWi. (6.2)

The above equation is an isotropic form of the general Langevin model. In the above equation

dvi is the increment in the particle velocity, v′′i is the fluctuation in the particle velocity and dWi

is a Wiener process increment. Fluctuations in the particle velocity are defined about the mean
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particle velocity, i.e. v
′′
j = vj −⟨vj⟩. The first term on the right hand side of Eq. 1 accounts for

the effect of the mean slip velocity. The mean slip velocity, defined as ⟨W⟩ = ⟨v⟩ −
⟨
u(f)

⟩
, is

the relative velocity between the solid phase mean velocity and the fluid phase mean velocity.

The second term accounts for the fluctuation in the particle velocity and the last term models

the effect of the hydrodynamic interaction of the neighboring particles. The coefficient γ is

the inverse of the Lagrangian particle velocity autocorrelation time. It quantifies how long a

particle retains memory of its initial velocity. These coefficients are functions of volume fraction

(ϕ), mean flow Reynolds number (Rem) and particle to fluid density ratio (ρp/ρf ). To extract a

functional form for the Langevin model coefficients, simulations of freely evolving suspensions

where, the motion of the particles is affected by the surrounding fluid, are performed using the

DNS methodology developed by Tenneti et al. (2010b). Results from the simulations freely

evolving suspensions are presented in the following section.

6.4 Results

PUReIBM simulations of freely evolving suspensions are performed for solid volume frac-

tions between 0.1 and 0.4 and for mean flow Reynolds numbers between 10 and 100. The

Reynolds number based on the mean slip velocity between the fluid and particulate phase is

defined as

Rem = (1− ϕ)
ρf
∣∣⟨v⟩ − ⟨u(f)

⟩∣∣ dp
µf

, (6.3)

where ϕ is the solid volume fraction, ρf and µf are the density and dynamic viscosity of the fluid

phase respectively, and d is the particle diameter. When characterizing the effect of particle

velocity fluctuations it is useful to define a Reynolds number based on the granular temperature

ReT as:

ReT =
ρfd T

1/2

µf
(6.4)

where T is the granular temperature which is given by T =
1

3

⟨
v′′i v

′′
i

⟩
. Estimation of granular

temperature from DNS of freely evolving suspensions is discussed in detail by Tenneti et al.

(2010b). The evolution of ReT for a freely evolving suspension at a volume fraction of 0.1

and solid to fluid density ratio of 100 is shown in Fig. 6.3. Firstly, we observe that for
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Figure 6.3 Plot showing the evolution of the Reynolds number based on granular temperature

(ReT ) for a freely evolving suspension of elastic particles at a volume fraction of

0.1 and solid to fluid density ratio of 100.

all mean flow Reynolds numbers, the granular temperature attains a statistical steady state.

From the figure we can also see that at a given solid to fluid density ratio, the steady state

granular temperature increases with increasing mean flow Reynolds number. This result can

be explained based on the fact that the particles pick up energy from the fluid and the energy

in the system increases with increasing Rem. To the authors’ knowledge, this is the first report

of the effect of mean flow Reynolds number on granular temperature. Similar behavior of the

steady granular temperature with Rem is observed for all the volume fractions studied (ϕ =

0.1, 0.2, 0.3 and 0.4). The Langevin model for the particle acceleration is verified by computing

the particle velocity autocorrelation function after the granular temperature reaches a steady

state.

6.5 Verification of Langevin model

In this section, verification of the Langevin model for the instantaneous particle acceleration

is presented. For this purpose we consider the increment in the particle velocity fluctuations:

dv′′i = −γv′′i dt+BdWi. (6.5)
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Figure 6.4 (a) Comparison of the particle velocity autocorrelation function extracted from

the DNS of freely evolving suspension (solid volume fraction of 0.2, mean slip

Reynolds number 20 and solid to fluid density ratio of 10) with the exponential

decay predicted by the Langevin model. (b) Same as Fig. 6.4(a) for a suspension

with solid to fluid density of 100.

As described earlier, in the above equation the model coefficient γ is the inverse of the integral

time scale of the particle velocity autocorrelation. The particle velocity autocorrelation function

ρ (s) is defined as follows:

ρ (s) =
⟨v′′i (t0) v′′i (t0 + s)⟩⟨
v′′k (t0) v

′′
k (t0)

⟩
where s is the separation in time. The integral time scale for the autocorrelation function is

defined as TL =
∫∞
0 ρ (s) ds. Using this definition, we computed the integral time scale from

DNS after the granular temperature reached a steady state. If a stochastic process obeys the

Langevin equation with an integral time scale of TL, then its autocorrelation function should

decay exponentially, i.e., ρ (s) = e−s/TL . We extracted the autocorrelation function from the

DNS and compared it with the exponential function predicted by the Langevin model. This

comparison is shown in Fig. 6.4. We can see that for both density ratios considered, the

evolution of the autocorrelation function obtained from DNS matches with the exponential

decay predicted by the Langevin model. We established that Langevin model predicts the

dynamics of a freely evolving suspension very well after the granular temperature reaches

steady state. However, at a given volume fraction, mean flow Reynolds number and solid to
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fluid density ratio, we need to specify the coefficients as a function of the granular temperature

so that we can predict the evolution of the suspension using the Langevin model. In order to do

this, we have to identify the source and dissipation of granular temperature from the PR–DNS

data. In the next section, the procedure to specify the model coefficients from PR–DNS is

presented.

6.6 Specification of the model coefficients

The objective of the particle acceleration model is to predict the evolution of the granular

temperature correctly. In order to achieve this we have to match the source S and dissipation Γ

obtained from PR–DNS. The procedure to uniquely identify source and dissipation of granular

temperature from PR–DNS is outlined in Appendix D. The model coefficients γ and B can be

written as follows:

γ =
Γ (ϕ,Rem, ρp/ρf )

2T

B2 =
S (ϕ,Rem, ρp/ρf )

2T
.

Clearly, source and dissipation and in turn the model coefficients are functions of a large number

of parameters. It is desirable to find a scaling for source (and dissipation) such that there is

a reduction in some of the parameters. From the phase space plots (cf. Fig. D.2) and the

evolution of the granular temperature (cf. Fig. 6.3), we see that the evolution of granular

temperature for different volume fractions and Reynolds numbers is self similar. Thus, it is

natural to analyze the dynamics of the suspension as departures from the steady state values.

We introduce the following scaling for temperature, source and dissipation respectively:

θ =
T − TSS
TSS

Ŝ =
S − SSS
SSS

Γ̂ =
Γ− ΓSS

ΓSS
.

In the above equation TSS , SSS and ΓSS are the temperature, source and dissipation at steady

state. At steady state, source and dissipation are equal and hence ΓSS = SSS . The model



168

θ

S
ou

rc
e,

D
is

si
pa

tio
n

-1 -0.8 -0.6 -0.4 -0.2 0-1

-0.5

0

0.5

Figure 6.5 Plot showing the scaling of source and dissipation with granular temperature in

nondimensional phase space. Red squares denote the source and blue triangles

denote dissipation. The solid lines are the curve fits for source and dissipation

given by Eqs. 6.6 and 6.7 respectively.

coefficients can now be cast in the following form:

γ =
1

2

Γ̂ (θ) + 1

θ + 1

SSS (ϕ,Rem, ρp/ρf )

TSS

B2 =
(
Ŝ (θ) + 1

)
SSS (ϕ,Rem, ρp/ρf ) .

Figure 6.5 shows the functional dependence of Ŝ and Γ̂ on the non dimensional temperature.

We propose the following functional forms to model the non dimensional source and dissipation:

Ŝ = −e
θ4 − θ4 − e

e− 2
, (6.6)

Γ̂ =
eθ+1 − θ − 2

e− 2
. (6.7)

In order to complete the specification of the model coefficients we need a functional form for

the dependence of steady granular temperature and source on the solid volume fraction, mean

flow Reynolds number and the solid to fluid density ratio. Figure 6.6(a) shows the variation

of TSS

|⟨W⟩|2 with solid volume fraction and mean flow Reynolds number for a solid to fluid density

ratio of 100. The steady granular temperature decreases with both volume fraction and mean

flow Reynolds number. Figure 6.6(b) shows the behavior of the steady granular temperature
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Figure 6.6 Plot in 6.6(a) shows the variation of steady granular temperature with volume

fraction and mean flow Reynolds number for a density ratio of 100. Symbols are

data obtained from PUReIBM DNS and the solid lines indicate the fit given by

Eq. 6.8. Plot in 6.6(b) shows the variation of steady granular temperature with

solid to fluid density ratio for a solid volume fraction of 0.1 and mean flow Reynolds

number 20. Symbols denote the data obtained from PUReIBM DNS and the solid

line indicates the function
(
ρp
ρf

)−1
.
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Figure 6.7 Plot showing the behavior of steady source with volume fraction and Reynolds

number for a solid to fluid density ratio of 100. Symbols indicate PUReIBM DNS

data and solid lines indicate the fit given by Eq. 6.11

with solid to fluid density ratio for a solid volume fraction of 0.2 and mean flow Reynolds

number of 20. As expected, the steady temperature decreases with increasing inertia of the

particles. Based on the data obtained from PUReIBM DNS, the following functional form is

proposed for the steady value of granular temperature:

TSS

|⟨W⟩|2

(
ϕ,Rem,

ρp
ρf

)
= 2 (1− ϕ)3 exp−0.02 (1− ϕ)Rem

(
ρp
ρf

)−1

. (6.8)

In order to specify the steady state source in terms of ϕ,Rem and
ρp
ρf
, we use the following

normalization:

S∗
SS =

SSSm

3πµfD (1− ϕ)2 |⟨W⟩|2
, (6.9)

where m is the mass of the particle and µf is the dynamic viscosity of the fluid. Figure 6.7

shows the behavior of the normalized steady source with volume fraction and mean flow

Reynolds number for a solid to fluid density ratio of 100. The normalized source increases

with both volume fraction and Reynolds number. This behavior can be explained by employ-

ing a simple scaling analysis. Since the source of granular temperature is caused due to the

correlation of particle acceleration fluctuations and particle velocity fluctuations, the source

scales as SSS ∼ σAT
1/2
SS , where σA is the standard deviation in the particle acceleration. This
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scaling implies that the normalized source scales as

S∗
SS =

SSSm

3πµfD (1− ϕ)2 |⟨W⟩|2
∼ σA

|⟨A⟩|
F (ϕ,Rem)

(1− ϕ)

TSS

|⟨W⟩|2
, (6.10)

where F (ϕ,Rem) is the normalized mean drag per particle which increases with both solid

volume fraction and mean flow Reynolds number. Although the steady granular temperature

decreases with both solid volume fraction and Reynolds number, the strong dependence of

the mean drag on determines the overall behavior of normalized source. The dependence of

the normalized source on the solid to fluid density ratio is determined by the dependence of

steady granular temperature on
ρp
ρf
. In fact, the PUReIBM DNS data indicates that S∗

SS varies

inversely with
(
ρp
ρf

)1/2
. Based on the DNS data the following functional form is proposed for

the normalized steady source:

S∗
SS

(
ϕ,Rem,

ρp
ρf

)
= (1 + 0.035Rem)

ϕ

(1− ϕ)3

(
ρp
ρf

)−1/2

. (6.11)

The functional forms for steady temperature and source given by Eqs. 6.8 and 6.11 respectively

complete the specification of the stochastic acceleration model for inertial particles in gas–solid

suspensions.

6.7 Conclusions

Evolution of the particle granular temperature in gas–solid suspensions at moderate Reynolds

numbers is studied by DNS of freely evolving suspensions using PUReIBM. DNS results show

that the steady granular temperature increases with the mean flow Reynolds number. This

steady granular temperature is independent of the initial granular temperature of the suspen-

sion. A key finding that emerges from this work is that at steady state the particle velocity

autocorrelation function decays exponentially thus motivating the use of a Langevin–like model

to describe the increment in particle velocity. A Langevin equation is proposed to model the

instantaneous particle acceleration in gas–solid suspensions at moderate Reynolds numbers.

Expressions to compute the source and sink of granular temperature from DNS are derived.

Previous work by Tenneti et al. (2010b) shows that simple extension of mean particle acceler-

ation models does not recover the joint acceleration–velocity statistics that are obtained from
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DNS. Using the expressions for source and dissipation derived in this work it is also shown that

such models do not produce any source for the particle granular temperature which justifies

the use of Langevin–like models to model the instantaneous particle acceleration. PUReIBM

simulations of freely evolving suspensions are performed over a wide range of relevant fluid and

particle properties. We considered four values of volume fraction (ϕ = 0.1, 0.2, 0.3 and 0.4),

five values of mean flow Reynolds number (Rem = 10, 20, 50, 75 and 100) and four values of

solid to fluid density ratio (
ρp
ρf

= 100, 800, 1000 and 2000). By defining similarity variables as

departures from the steady state values, we reduce the model specification to determining the

functional dependence of only three functions. We determined the functional dependence of

the non dimensional source and dissipation on the non dimensional granular temperature. We

developed the functional dependence of steady state source and granular temperature on solid

volume fraction, mean flow Reynolds number and solid to fluid density ratio. This stochastic

acceleration model can be used in discrete element simulations of gas–solid flow as well as in

direct quadrature method of moments. The expressions for source and dissipation of granular

temperature at moderate Reynolds numbers determined in this work can be applied in the

Eulerian two–fluid simulations and also in deriving kinetic theory closures for gas–solid flow.
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CHAPTER 7. Interphase momentum transfer and the level of gas–phase

velocity fluctuations in polydisperse gas–solid suspensions

This chapter describes the quantification of interphase momentum transfer and the level of

gas–phase velocity fluctuations (gas–phase TKE) in polydisperse gas–solid suspensions using

PR–DNS. The objective here is to formulate a general drag law for polydisperse suspensions

that can be implemented in moment closures that arise in EE continuum models. In order

to investigate the effect of particle size distribution, we start with a bidisperse suspension.

A statistical approach based on the one–particle distribution function is used to describe the

binary mixture.

PUReIBM simulations are performed for flow past bi–disperse suspensions with no relative

velocity between the size classes at moderate Reynolds numbers for various volume fractions,

volume fraction ratios and diameter ratios. In these simulations, the particles are held fixed

and equal velocities are assigned to the particles belonging to both size classes. Beetstra et al.

(2007) expressed the drag on each size class in the bidisperse suspension as the product of a

quadratic function in yα(the particle diameter of the size class α normalized by the Sauter mean

diameter of the bidisperse suspension) and the drag experienced by an equivalent monodisperse

suspension. Our drag results from IBM simulations of bi-disperse suspensions indicate that the

quadratic dependence on yα seems to hold. However, the actual values of the drag do not agree

well with the correlation of Beetstra et al. (2007). The reason is the difference between the

monodisperse drag correlation proposed using PUReIBM DNS (Tenneti et al., 2011) and that

of Beetstra et al. (2007). These bidisperse simulations are also used to quantify the level of

gas–phase velocity fluctuations and are compared with the level of gas–phase TKE observed in

equivalent monodisperse suspensions.

When we consider bi-disperse systems with a finite slip velocity between the size classes, the
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fixed bed simulation approach is no longer valid at moderate Reynolds numbers. So we have to

perform simulations of freely evolving suspensions. The PUReIBM PR–DNS methodology has

been successfully extended by Tenneti et al. (2010b) to simulate freely evolving suspensions

of monodisperse particles. This method is further extended to account for polydispersity.

For polydisperse suspensions, the equations of motion are solved in an accelerating frame of

reference that moves with the mixture mean solid velocity. Simulations of freely evolving bi-

disperse suspensions show that the slip velocity between the two size classes has a steady state

and this steady value depends on the physical parameters of the problem. This shows that

for a given mean volume fraction, Reynolds number, diameter ratio, volume fraction ratio and

solid to fluid density ratio, one cannot fix the slip velocity between the size classes arbitrarily.

7.1 Discrete representation of a polydisperse suspension

A Lagrangian-Eulerian (LE) description is employed to describe the multiphase flow. The

starting point for the LE description is the one–particle distribution function which evolves as:

∂f

∂t
+

∂

∂xi
(vif) +

∂

∂vi
(⟨A|xv, r; t⟩ f) = ḟcoll , (7.1)

where, ḟcoll is the collisional term that depends on higher order statistics. The one–particle

distribution function f(x,v, r, t) is a function of particle position, velocity and radius. It can be

expressed in terms of the number density n (x, t) and a joint probability distribution function

f cVR(v, r|x; t) as

f(x,v, r, t) = n (x, t) f cVR(v, r|x; t). (7.2)

This joint pdf can in turn be expressed in terms of a velocity distribution conditional on particle

size and a particle size distribution as follows:

f cVR(v, r|x; t) = f cV|R (v|r,x; t) f cR (r;x, t) . (7.3)

In a polydisperse suspension, f cR is specified and a size–class can be thought of as an integral of

f cR over the interval (r, r +∆r) size classes. Using the description in Eq. (7.3), we can express

f(x,v, r, t) as,

f(x,v, r, t) = n (x, r; t) f cV|R(v|r;x, t), (7.4)
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where n (x, r; t) = n (x, t) f cR(r|x; t) is the number density conditional on particle size. For a

bi–disperse suspension with radii R1 and R2, the distribution function f cR(r|x; t) can be written

as:

f cR(r|x; t) = p1δ (r −R1) + p2δ (r −R2) (7.5)

and hence

n = n1 + n2 (7.6)

where n1 = np1 and n2 = np2 are the number densities of the size classes 1 and 2 respectively.

Therefore any polydisperse suspension can be represented in terms of a discrete number of

size classes and conservation equations can be derived for each size class as shown in the next

section.

7.2 Interphase momentum transfer in a polydisperse suspension

Conservation equations for the mean mass and mean momentum of each size class can be

derived by taking the moments of Eq. (7.1). For a statistically homogeneous system, the mean

momentum conservation equation for the size class α with radius Rα is:

∂

∂t
(ραϕα ⟨vj |r = Rα; t⟩)+

∂

∂xk
(ραϕα ⟨vj |r = Rα; t⟩ ⟨vk|r = Rα; t⟩)

=− ∂

∂xk

(
ραϕα

⟨
v′′j v

′′
k |r = Rα; t

⟩)
+ Sj

+ ραϕα ⟨Aj |r = Rα; t⟩ , α = 1, 2. (7.7)

(7.8)

In the above equation ρα and ϕα are the density and volume fraction of the size class α

respectively. The first term on the right hand side of Eq. ( 7.8) is the Reynolds stress due

to fluctuations in the particle velocity and the second term is the momentum source/sink due

to collisions with particles belonging to other size classes. The particle velocity fluctuations

are defined about the mean velocity conditional on particle size, i.e., v′′j = vj − ⟨vj |r = Rα; t⟩.

The last term on the left hand side denoted by fg−α is the total force per unit volume of the

suspension acting on the size class α. It is related to the average force acting per particle

through the expression fg−α,j = nα ⟨Fj |r = Rα; t⟩. The total force fg−α,j expereinced by the
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particles belonging to a particular size class arises due to the mean pressure gradient acting on

the suspension, the viscous stresses and the fluctuating pressure acting on the particles:

fg−α,j = nα ⟨Fj |r = Rα; t⟩ = −ϕα
∂P

∂xj
+ nα ⟨FD,j |r = Rα; t⟩ (7.9)

Here the second term on the right hand side denotes the contributions of viscous stress and

fluctuating pressure to the total force. Drag laws for polydisperse suspensions in the Stokes

flow regime that are proposed by van der Hoef et al. (2005) and Yin and Sundaresan (2009b)

report ⟨FD,j |r = Rα; t⟩ as the drag force where as Hill et al. (2001b) and Tenneti et al. (2011)

reported ⟨Fj |r = Rα; t⟩ that includes the mean pressure gradient term.

In a polydisperse suspension, drag laws are written for each size class and the existing poly-

disperse drag laws are based on the drag correlations proposed for an equivalent monodisperse

suspension. The equivalent monodisperse suspension is defined as a suspension of equi–sized

particles at a volume fraction ϕ (equal to the total volume fraction of the polydisperse suspen-

sion) and diameter ⟨D⟩, where

⟨D⟩ =
∑2

α=1NαD
3
α∑2

α=1NαD2
α

(7.10)

is called the Sauter mean diameter. In general, the drag force is a function of the volume

fraction and the mixture mean Reynolds number, Rem =
∣∣∣⟨Ṽ⟩−

⟨
u(f)

⟩∣∣∣ ⟨D⟩ /νf , where
⟨
Ṽ
⟩

is the mixture mass–weighted mean velocity. In this work, we report the total fluid-particle

force acting on each size class. The normalized drag force per particle acting on the size class

α is defined as

Fα (ϕ,Rem) =
|⟨F|r = Rα; t⟩|

3πµDα(1− ϕ) |⟨W|r = Rα; t⟩|
. (7.11)

where ⟨W|r = Rα; t⟩ is the mean slip velocity experienced by that size class. It must be noted

that only fixed beds are used for the purpose of studying the drag force. Hence, the all size

classes have the same slip velocity with respect to the fluid. For suspensions with slip velocity

between size classes, Yin and Sundaresan (2009b) used a viscous scaling to normalize the drag

force in the Stokes flow regime. Although we performed Pr–DNS of freely evolving suspensions

in this study, we did not study the drag acting on the size classes in these simulations.

At moderate Reynolds numbers Beetstra et al. (2007) used LBM simulations to conclude
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that the drag force on a bi-disperse suspension can be written as:

Fα (ϕ,Rem) =
[
yα (1− ϕ) + ϕy2α

]
F (ϕ,Rem) (7.12)

where F (ϕ,Rem) is the average fluid-particle force per particle acting on an equivalent monodis-

perse suspension and yα = Dα/ ⟨D⟩ is a normalized particle diameter. Using PUReIBM simula-

tions we verify whether the dependence of the ratio Fα (ϕ,Rem) /F (ϕ,Rem) holds at moderate

Reynolds numbers.

7.3 Drag and gas–phase velocity fluctuations from PUReIBM simulations

PUReIBM simulations of flow past bi-disperse suspensions (with no relative velocity be-

tween the size classes) are performed for Rem values of 50, 65, 75, and 100 at total volume

fractions equal to 0.1, 0.2, 0.3 and 0.4. At each volume fraction, the volume fraction ratio

(ϕ2/ϕ1) is varied from 1 to 6 and the diameter ratio (D2/D1) from 1.5 to 4. The results of

PUReIBM simulations of flow past bi-disperse suspensions are shown in figure 7.1 for a total

volume fraction of 0.3 and 0.4 and two mean flow Reynolds numbers (50 and 75). The simula-

tion data is compared with the drag predicted by equation 7.12. The solid lines are obtained by

substituting the PUReIBM drag correlation (Tenneti et al., 2011) for F (ϕ,Rem) in Eq. (7.12).

The dashed lines are obtained by substituting the monodisperse drag correlation given by Beet-

stra et al. (2007) for F (ϕ,Rem) in Eq. (7.12). We can see clearly that the values of Fα (ϕ,Rem)

from the simulations do not agree with the values predicted by the drag correlation of Beetstra

et al (2007). The reason for this is the difference between the PUReIBM drag correlation and

the correlation of Beetstra et al. (2007) for monodisperse suspensions. However, it is interesting

to see that the functional form for Fα (ϕ,Rem) /F (ϕ,Rem) proposed by Beetstra et al. (2007)

seems to hold from PUReIBM simulations also.

The level of gas–phase velocity fluctuations have also been quantified from the PUReIBM

simulations of bidisperse suspensions. The behavior of the gas–phase TKE (normalized by the

kinetic energy in the mean motions) with diameter ratio is shown for two different total solid

volume fractions (0.3 and 0.4) at a mean flow Reynolds number of 50 in figure 7.2. The

level of gas–phase TKE in monodisperse suspensions that have been quantified in chapter 3
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Figure 7.1 Plot showing the normalized force obtained from PUReIBM simulations of flow

past bi-disperse particle assemblies at a total volume fraction of (a) 0.3 and (b) 0.4

for two mean flow Reynolds numbers (Rem = 50 and 75). Solid lines are obtained

by substituting the monodisperse drag correlation obtained from PUReIBM sim-

ulations performed by Tenneti et al. (2011) for F (ϕ,Rem) in Eq. (7.12). Dashed

lines are obtained by substituting the monodisperse drag correlation given by Beet-

stra et al. (2007) for F (ϕ,Rem) in Eq. (7.12). The normalized force is reported

by averaging over 5 MIS and the error bars show 95% confidence intervals in the

estimation of the normalized force.

Figure 7.2 Behavior of kf/Ef for bidisperse suspension with diameter ratio for two solid

volume fractions (0.3 and 0.4) at a mean flow Reynolds number of 50.
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is also shown for reference. It is clear that kf/Ef strongly depends on the total solid volume

fraction and it is not very sensitive to the diamter ratio. Therefore, we conclude that kf/Ef

in a polydisperse suspension is the same as the kf/Ef observed in an equivalent monodisperse

gas–solid suspension.

To summarize, interphase momentum transfer and gas–phase TKE have been quantified

from PUReIBM DNS of flow past fixed random assemblies of bidisperse particles. It is observed

that the correlations for drag and gas–phase TKE developed for monodisperse suspensions

(chapters 2 and 3) can be extended seamlessly to polydisperse suspensions also. We now

discuss the dynamics of bi–disperse suspensions with relative velocity between size classes.

7.4 Bi-disperse suspensions with relative velocity between size classes

When all the particles move with the same velocity (zero relative velocity between size

classes), we can make a Galiliean-invariant (GI) frame transformation such that the particles

are at rest in the new frame. Thus, performing fixed bed simulations is justified in the case of

zero relative velocity between the size classes. However, fixed bed simulations for finite relative

velocity between size classes are valid only in the limit of very low Reynolds number (Stokes

flow regime). At moderate Reynolds numbers, we need to perform simulations of freely evolving

suspensions to account for the finite slip between size classes. An important point to be noted

is that the slip velocity between size classes is not an independent parameter.

The PUReIBM PR–DNS methodology has been used to simulate freely evolving mono-

disperse suspensions by solving the governing equations of motion in an accelerating frame of

reference. This reference frame moves with the average velocity of the solid particles so that the

particles do not travel in and out of the computational on an average. The frame acceleration

appears as an additional force that sets the average velocity of the solids to be zero. Viewed

from the laboratory frame, the force due to the frame acceleration can be thought of as an

additional time dependent body force that acts on the system to keep the average solid velocity

to be zero. Tenneti et al. (2010b) successfully applied this simulation methodology to perform

simulations of freely evolving mono-disperse suspensions. This methodology has been extended

to simulate freely evolving bi-disperse suspensions with the assumption that the density of the
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size classes is the same.

The governing equations of motion solved in the freely evolving bi-disperse suspensions are

given in Appendix E. The average solid velocity for each size class evolves because of the

force exerted by the mean pressure gradient, the fluid-particle drag force, contact force due to

collisions with particles belonging to other size classes and the pseudo force due to the frame

acceleration. For a mono-disperse suspension, the mean solid velocity is not influenced by the

collisional forces because the total force due to collisions is zero (Newton’s third law). However,

for poly-disperse suspensions collisions with particles belonging to other size classes affect the

average velocity. In the simulations of poly-disperse suspensions, the accelerating frame of

reference moves with the mixture mean velocity such that the mean mixture momentum is

zero. The slip velocity between size classes 1 and 2 denoted
⟨
W(2,1)

⟩
evolves according to the

following equation:

d

dt

⟨
W(2,1)

⟩
=

1

ρpV

[
1

ϕ2
FD−2 −

1

ϕ1
FD−1

]
+

1

ρpV

[
1

ϕ1
+

1

ϕ2

]
FC
2−1. (7.13)

Here FD−1 is the sum of the pressure and viscous forces acting on all the particles belonging

to size class 1 and FC
2−1 is the total contact force between particles of size classes 1 and 2.

This equation says that the slip velocity between the two size classes will reach a steady state

because of the balance between the drag and contact forces due to collisions between the size

classes. It is not known a priori if such a balance exists or not. Besides the slip velocity another

important quantity to observe is the granular temperature for each size class.

To answer these questions we performed PUReIBM simulations of a bi-disperse suspension

at a nominal volume fraction of 0.2 and mean slip Reynolds number of 20. We considered equal

volume fractions and a diameter ratio of 2. Both size classes have the same density and the

solid to fluid density ratio is taken to be 100. Figure 7.3 shows the evolution of the slip velocity

between the size classes. The slip velocity between size classes is defined as
⟨
u(s,2)

⟩
−
⟨
u(s,1)

⟩
.

We can see that the magnitude of the slip velocity increases in time. During this time there

are no collisions between the particles because the particles slowly gain energy from the fluid.

When the collisions start the slip velocity appears to reach a dynamic steady state. We can

also see from the figure that the granular temperature in each size class reaches a steady state.
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Figure 7.3 Evolution of slip velocity between size classes and granular temperature of each size

class for a bi-disperse freely evolving suspension at a total solid volume fraction

of 0.2, mean flow Reynolds number 20 and solid to fluid density ratio 100. In

this simulation the volume fractions of the size classes are taken to be equal. Red

symbols denote the streamwise component of the slip velocity while purple and

black represent the cross-stream components of the slip velocity between the size

classes.

The granular temperature for each size class is defined as

Tα =
1

Nα

Nα∑
n=1

(
V(n,α) −

⟨
u(s,α)

⟩)
·
(
V(n,α) −

⟨
u(s,α)

⟩)
. (7.14)

Thus, for a bi-disperse suspension once we fix the physical parameters of the problem, the slip

velocity cannot be arbitrary and also one cannot provide a drag law by performing fixed bed

simulations. Understanding the implications of the steady slip velocity attained between the

size classes on modeling polydisperse gas–solid suspensions is a potential future work that has

come out of this study.
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CHAPTER 8. Parallelization and scale-up of PUReIBM (Particle-resolved

Uncontaminated–fluid Reconcilable Immersed Boundary Method) for direct

numerical simulation of gas-solid flows on petascale computers

This chapter describes the strategy used for the parallelization of the Particle–resolved

Uncontaminated–fluid Reconcilable Immersed Boundary Method (PUReIBM) approach for

performing DNS of gas–solid flows in periodic domains on peta–scale computers. For per-

forming particle–resolved simulations of gas–solid flow at high Reynolds numbers, the number

of grid points across the diameter of the sphere has to be large enough so as to accurately

resolve the thin boundary layers around the particles. Moreover large computational domain

sizes are needed to understand to study multi–scale phenomena such as particle clustering. The

amount of memory needed to perform such highly resolved simulations in large computational

domains dictates the use of parallel computers. Designing a good parallel algorithm is also

essential so as to obtain the solution in a reasonable amount of time.

The parallel PUReIBM code has been successfully ported to the petascale computer Jaguarpf

at Oak Ridge Leadership Computing Facility (OLCF). Several test cases are presented that

confirm the accuracy of the parallel solver. An idealized riser with a solid volume fraction of 1%

has been chosen to assess the weak scaling behavior of the solver. The parallel PUReIBM solver

shows an excellent scaling with increasing number of processors. The time taken to complete

a time step increases only by 20% as the number of processors increases from 64 to 1024. We

are able to successfully scale the PUReIBM code to 12288 processors and it takes about 7.5

seconds to complete one time step. This performance implies that it takes only about 3 days to

simulate physical times that correspond to the time taken by the flow to pass the entire length

of the box (flow through time).
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Figure 8.1 Schematic showing the serial algorithm of the PUReIBM solver

8.1 Serial algorithm

The starting point of any parallelization effort is to understand the serial algorithm and

identify the steps that can be performed in parallel. The numerical scheme used in PUReIBM

is a primitive-variable pseudo-spectral method. For temporal discretization we use Crank-

Nicholson scheme for the viscous terms, and an Adams-Bashforth scheme for the convective

terms. A predictor-corrector algorithm is employed to advance the velocity and pressure fields

in time. Spatial discretization is performed using two dimensional Fourier transforms in the y

and z directions, while finite differencing is used in the x direction. The steps involved in the

serial algorithm are outlined in figure 8.1.

As shown in the figure, the velocity and pressure fields at a time level n are used to compute

the convective and the immersed boundary forcing term. These terms are then used to predict

the pressure and velocity. Since we are considering only incompressible flows, the condition for

a divergence free velocity field is imposed to obtain the solution at the time level n+1. The use

of Fast Fourier Transforms (FFT) in the y and z directions generates an independent system

of linear equations for every point in the yz plane. These linear equations form a tridiagonal
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Figure 8.2 Schematic showing the partition of the domain in the PUReIBM solver.

system that needs to be solved for every point in the yz plane.

Parallelization strategy

The first step in parallelization is domain decomposition. A major advantage of the

PUReIBM code is the ability to solve for flow over complex geometries on a uniform Cartesian

grid. The use of Cartesian meshes can be exploited to develop very efficient parallelization

strategies. Since Fourier transforms are used in two directions, the simplest parallelization

strategy is to decompose the domain in the direction in which finite differencing is used. Decom-

position of Cartesian topologies is very striaghtforward and efficient subroutines are provided

in any standard MPI implementation. A schematic describing the partition of the domain is

shown in figure 8.2. At every x location the points in the yz plane lie completely on a single

processor and so the steps involving FFTs behave exactly as the serial code. The two dimen-

sional FFTs in PUReIBM are performed using the FFTW package. The multi-core architecture

of peta scale machines can be exploited to achieve a better performance for the FFT step in

the parallel code over its serial version. The FFTW package provides an option to perform the

FFTs on more than one core in parallel. The strategy to perform the 2D FFTs using multiple

threads in parallel has been implemented and tested in the PUReIBM code.

The present parallel implementation of PUReIBM is limited to stationary particles unifor-

maly distributed in space. As a result load balancing of particles is not required and particles

are allocated to a processor if their centres belong to it. A particle that cuts across two or more
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P1

Mx1

P0

Figure 8.3 Figure shows the parallelization strategy for the immersed boundary method with
two processors. The domain is partitioned in the x– direction. The partition
boundary is shown by the green dashed line. A particle that cuts across two
processors is handled by the processors in parallel. In IBM, the particle surface is
represented by a finite number of points. These are shown by the crosses. The red
crosses are the points which are handled by the processor P0 and the blue crosses
are handled by the processor P1. The points which belong to the grid cell that
contains the partition boundary (shown by pink circles) are processed by both the
processors.

processors is partitioned as shown in figure 8.3. Velocity and pressure fields computed on the

grid nodes shown by dashed lines must be exchanged between the processors after every time

step. These are enough for the computation of the forcing term on the particle surface. The

immersed boundary forcing field is also exchanged in every time step.

The most important step in the parallelization that needs careful consideration is the parallel

solution of the tridiagonal system. For every grid point in the yz plane the tridiagonal matrix

that is generated is shown in figure 8.4. We also show how this matrix is distributed

over the processors. The idea behind the parallelization strategy is that once the solution for

the unknowns shown in the red boxes in figure 8.4 is known, the solution for the remaining

unknowns can be computed locally on each processor. It can be seen that the unknowns shown
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Figure 8.4 Form of the tridiagonal matrix that is inverted in the PUReIBM solver. The
horizontal blue lines show the partition boundaries.

in red boxes lie on the boundary or interface between the processors. In order to solve for the

unknowns that lie on the interface, we generate a system of equations that we refer to as the

interface system. This interface system is generated by performing row operations on the part

of the matrix that is available locally on a processor. It can be shown that this global interface

system also is tridiagonal and diagonally dominant. So this procedure is numerically stable.

The part of the interface system from each processor can be gathered on all processors and

the resulting system can solved sequentially on every processor. However, this process has to

be repeated for every grid point in the yz plane and so the number of communication calls

becomes very large and this might degrade the performance drastically. So we need to employ

a different strategy to obtain the solution of the interface system.

We show the strategy that is used to solve the interface system in figure 8.5. Note that

for every grid point in the yz plane, each processor generates two rows of the interface matrix.

There are a total of N2
y elements in the yz plane and these are arranged as rows in figure 8.5.

Each column in the matrix shown in this figure denotes a processor. On every processor the

elements in the yz plane are divided into a block of N2
y /N elements, where N is the total

number of processors. In order to solve the system for each of these elements in the block we

need information from all the other processors. In other words, if we perform a transpose of

the matrix shown in figure 8.5, we end up with a new matrix where the entire interface system
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Figure 8.5 Schematic showing the transpose strategy used to solve the interface system. In
this figure N2

y denotes the number of grid points in the yz plane and N denotes
the total number of processors.

for every element in the block is available completely on a single processor. For every element

or point in the block, the interface system can be solved sequentially on every processor. In

this way we achieve some parallelism even in the yz directions.

In the PUReIBM code, the transpose of the matrix is performed using the ALLTOALL op-

eration. Once the interface system is solved, the solution on each processor is arranged similarly

in a matrix and a transpose of this matrix sends the solution elements to the corresponding

processors. Once the solution to the interface elements is known, the remaining system of

equations can be solved locally. In addition to the global communication calls described above,

point-to-point communications are also needed between neighbor processors. Because of the

use of space centered finite differences, every processor requires the solution on the first layer of

grid nodes that lie adjacent to the partition boundaries on the neighboring processors and thus

the solution after every time step must be exchanged with the neighboring processors. This

point-to-point communication has been implemented using the asynchronous send/receive calls

thus allowing for overlap of communication and computation.
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Configuration D
∆x ϵ1 ϵ2 ϵ3 ϵ4

Simple 46.4 0.63271616E-14 0.86949156E-16 0.88190940E-16 0.41440159E-14

FCC 29.24 0.23248653E-14 0.62514764E-15 0.62624656E-15 0.13055491E-14

Random 15 0.30301074E-15 0.89068307E-16 0.11269121E-15 0.65079639E-16

Table 8.1 Error in the velocity and pressure fields between the serial and parallel versions of

the PUReIBM code for different configurations.

8.2 Validation

Validation of the parallel PUReIBM code is performed by comparing the velocity and

pressure fields with those obtained from the serial version for simple cubic (SC), face centered

cubic (FCC) and random configurations at a Reynolds number (based on the mean slip velocity)

of 20. In order to perform a quantitative comparison, L1 norm of the error between the

serial and parallel solutions is extracted. Let the solution vector at any grid point be denoted

Q = (u, v, w, p)T . If the solution from the serial version is denoted Q(s) and that from the

parallel version is denoted Q(p), then the error is defined as

ϵl =
1

MxN2
y

Mx∑
i=1

Ny∑
j=1

Ny∑
k=1

∣∣∣Q(p)
l (i, j, k)−Q

(s)
l (i, j, k)

∣∣∣ (8.1)

where Mx is the total number of grid points in the x direction. The values of the error are

given in table 8.1

8.3 Performamce

The test case that has been chosen to assess the performance of the PUReIBM code is

shown in figure 8.6. As shown in the figure, the test case used is an idealized riser with

periodic boundaries in all three directions. The width of the box in the cross stream direction

is denoted W and the length of the box in the stream wise direction is denoted L. The ratio

of the width of the box to the particle diameter D is chosen to be 20.5. The solid volume
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Figure 8.6 Schematic of the test case chosen to assess the performance of the parallel
PUReIBM code

fraction is 1% and the mean flow Reynolds number is 20. The number of grid points across

the diameter of the particle is 25 and this grid resolution corresponds to 512 grid points in the

cross stream direction. The challenge in particle-resolved DNS of gas-solid flow is to perform

a highly accurate simulation of the largest possible problem in the shortest possible time. In

this work we have chosen to report the weak scaling of the parallel PUReIBM code. This is

because in weak scaling, the problem size per processor is fixed and by increasing the number

of processors, the total problem size increases. So we will use the timing tests to determine the

time taken for the largest problem that can be solved using the PUReIBM code.

The number of grid points in the stream wise direction per processor Nx is a variable pa-

rameter that should be chosen depending on the amount of memory available on the processor.

For the problem chosen here, the maximum number of grid points that can used per a pro-

cessor of Jaguarpf is 8. This parameter determines the problem size that can be solved with

a given number of processors. For Nx = 8 the variation of the problem size and number of

particles with the number of processors is shown in table 8.2. The test cases shown in

table 8.2 are simulated with the PUReIBM code and the maximum time taken to complete a

time step among all the processors is averaged 10 time steps. This average value is reported

as the time taken for the parallel code to complete one flow time step. As we can see from

table 8.2, the minimum number of processors required to simulate a cubic box is 64. The time

taken to simulate a single time step on 64 processors denoted T64 is taken as the reference.

The performance of the parallel PUReIBM code is reported in terms of TN/T64, where TN is
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No. of processors L/W No. of particles Mx

64 1 164 512

128 2 328 1024

256 4 656 2048

512 8 1312 4096

1024 16 2624 8192

Table 8.2 Variation of the problem size and number of particles with increasing the number

of processors with Nx = 8.

L/W Nx = 8(N) Nx = 4(N)

1 22.22 (64) 11.87 (128)

2 22.49 (128) 12.26 (256)

4 23.03 (256) 12.85 (512)

8 24.18 (512) 14.86 (1024)

16 26.19 (1024) 16.95 (2048)

Table 8.3 Comparison of the performance of PUReIBM with Nx = 8 and Nx = 4. The

numbers in the paranthesis denote the number of processors.

the time taken to complete one time step using processors. The weak scaling performance of

the parallel PUReIBM code is shown in figure 8.7. It can be seen from the figure that the

performance of the PUReIBM solver is excellent with increasing number of processors. The

time taken per time step increases only by 20% as the number of processors increases from 64

to 1024. In order to obtain the strong scaling of PUReIBM, we also simulated the same test

cases using Nx = 4. Table 8.3 compares the performance of the PUReIBM code with Nx = 8

and Nx = 4. The performance of the code is excellent up to a problem size of L/W = 4 and

drops slightly for the largest problem size of L/W = 16.

The performance tests shown so far are simulated using only MPI processes. The multi–

core architecture of the petascale machines can be exploited to achieve a better performance

by performing the Fourier transform that is used in PUReIBM using multiple cores. The two

dimensional FFTs in PUReIBM are performed using the FFTW package. The FFTW package

provides an option to perform the FFTs on more than one core in parallel. The strategy to
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Figure 8.7 Weak scaling of the parallel PUReIBM code with number of processors for the case

of Nx = 8. Symbols show the time obtained from the PUReIBM code while the

dashed line shows the ideal behavior with no communication.

perform the 2D FFTs using multiple threads in parallel has been implemented in the PUReIBM

code. The largest problem with L/W = 16 has been simulated using a total of 12288 processors.

Out of the 12288 processors, 2048 are used (with Nx = 4) for MPI tasks and the remaining

processors are used for multi-threaded FFT. The time taken to complete one time step using

this processor configuration is 7.5 seconds, which is a 60% improvement of the same problem

solved using only MPI processes.

To summarize, the parallel PUReIBM code has been ported successfully to the petascale

computer Jaguarpf at Oak Ridge Leadership Computing Facility (OLCF). Several test cases

were simulated to assess the weak scaling behavior of the solver. The parallel PUReIBM solver

shows an excellent scaling with increasing number of processors. We are able to successfully

scale the PUReIBM code to 12288 processors and it takes about 7.5 seconds to complete one

time step. This performance implies that it takes only about 3 days to simulate physical times

that correspond to the time taken by the flow to pass the entire length of the box (flow through

time).
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CHAPTER 9. Future work

The long term objective of this work is to develop a fundamental understanding of the

wide variety of complex phenomena observed in gas–solid flows and subsequently improve the

theoretical description of gas–solid flows based on high fidelity numerical simulations. The

PR–DNS methodology developed in this work has far–reaching implications in terms of the

variety of problems that can be solved. In this thesis, the application of PR–DNS to study the

flow past fixed and freely evolving statistically homogeneous polydisperse gas–solid suspensions

is described. A more fundamental understanding of the properties of bi–disperse suspensions

and implications on modeling polydisperse gas–solid flows is currently being pursued in our

research group by Mohammad Mehrabadi. The framework developed to model interphase

momentum transfer in homogeneous gas–solid flows is being applied to model the interphase

momentum transfer in flows with particle clusters. Insights obtained from PR–DNS of heat

transfer in gas–solid flows show the lack of separation of length scales. This motivates the

development of more sophisticated large eddy simulation (LES) type approaches to simulate

gas–solid flows. The required sub–grid scale closures for LES type calculations can be obtained

from PR–DNS. Study of heat transfer in freely evolving and clustered gas–solid suspensions is

another important direction that can be pursued with the approaches developed in this work.

The heat transfer formulation described in this thesis is currently being extended by Bo Sun

to study reactions and chemistry–pseudo–turbulent interactions in the gas–phase. Granular

filtration of micron sized particles is being studied using the PR–DNS solution fields by Ravi

Kolakaluri. Another important problem that is currently being pursued is the understanding

of instabilities arising in gas–solid flows. The lack of separation of length scales that is inherent

in gas–solid flows needs to be examined carefully in the developement of a stability theory.

This chapter lays the foundation for the development of metrics that are useful in analyzing
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stability of systems that may not exhibit a separation of scales.

9.1 Stability of gas–solid suspensions with finite fluid inertia

It is well known that particles in gas-solid flow applications exhibit meso-scale structures

such as clusters, streamers etc. The formation of such structures affects the average gas-solid

drag, heat and mass transfer. For instance, particles that are in close proximity experience

lesser fluid drag and hence travel faster when compared to isolated particles. This in turn

affects the local fluid flow, and this coupling between the gas and the solid phase results in

multiscale phenomena such as particle clustering. The theoretical foundations to describe the

formation of meso-scale structures and accurate modeling of the effect of such structures on

interphase interactions are important for predictive device-scale computational fluid dynamics

(CFD) simulations.

The stability of the homogeneous base state of a fluidized bed has been studied by several

researchers using a linear stability analysis. In this approach, the governing equations of motion

that describe the gas and particulate phase are derived using either a volume–averaging (An-

derson and Jackson, 1967) or ensemble–averaging procedure (Drew, 1983). The averaging

procedure results in unclosed terms for interphase interactions such as average drag, particle

phase pressure, source and dissipation of particle phase granular temperature, which are mod-

eled. The models used for these unclosed terms determine a base state to which a sinusoidal

perturbation is introduced. The perturbed equations are linearized and the response of the

homogeneous base state to sinusoidal perturbations is studied.

Depending on the models used for the unclosed terms, different stability limits have been

obtained. For instance Jackson (1963) neglected the particle pressure and obtained the result

that a uniform fluidized bed is always unstable to particle concentration waves. Later, particle

pressure was introduced (Anderson and Jackson, 1967; Batchelor, 1988) into the momentum

equation of the particle phase and it was found to have a stabilizing effect.

Koch (1990) derived a kinetic theory for a dilute sedimenting monodisperse gas-solid sus-

pension with negligible fluid inertia. From his stability analysis he found that a gas-solid

suspension of highly inertial particles was unstable to all wavelengths of volume fraction per-
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Figure 9.1 Plot showing the various regions of validity of Koch’s analysis.

turbations. Stability limits have been derived for different regimes of Stokes numbers. These

regimes are distinguished based on the ratio of the time between collisions τcoll to the viscous

relaxation time τvis. Suspensions of high Stokes number particles are dominated by collisions

and the ratio m = τcoll/τvis is less than unity. Depending on the value of m one can obtain

different regimes where the theory for high Stokes number particles is valid. The regions of

validity of the theory for different values of m (1 and 0.1) and the stability criterion are plotted

together in figure 9.1. From the figure we can say that the highly massive suspension is always

unstable. However, at a given volume fraction the critical Stokes number predicted by the the-

ory (dashed line) is much less than the Stokes number above which the theory is valid. Koch

and Sangani (1999) provided marginal stability limits for dense gas-solid suspensions in the

Stokes flow regime. For particles with high inertia the uniform state is unstable to particle

volume fraction waves with wavenumbers ranging between 0 and a maximum value.

Gas-solid flows are characterized by an intrinsic statistical variability in quantities such as

the number of particles, or the volume occupied by the particles in any given region. Due to the

inherent statistical variability in gas–solid flows we do not expect that the boundary of stability

to be sharp as obtained from the linear stability analysis of averaged equations. Moreover, due

to the linear stability analysis, the amplitude of the volume fraction waves does not affect the
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stability limits. We now beriefly describe the governing equations that are used in the linear

stability analysis of gas–solid flows.

9.2 Instabilities in the averaged equations

As explained earlier, stability analysis is carried out on the averaged equations of motion.

The generation of instabilities in the averaged state can be understood by analyzing the gov-

erning equations. In the analysis of Koch (1990) the conservation equations of mean mass,

momentum and kinetic energy for the solid phase undergoing elastic collision in the Stokes flow

regime are written along the direction of gravity as follows:

∂ϕ

∂t
+

∂

∂z
(ϕU) = 0,

∂U

∂t
+ U

∂

∂z
(U) = −∂ps

∂z
− R(ϕ)U

τ
− g,

∂T

∂t
+ U

∂

∂z
(T ) = S(ϕ)− Γ(ϕ). (9.1)

In the above equations ϕ is the solid volume fraction, U is the component of velocity along the

direction of the acceleration due to gravity g and T is the granular temperature. The term

R(ϕ) appearing in the conservation of mean momentum is the drag coefficient that is only a

function of the solid volume fraction in the Stokes flow regime. the hydrodynamic source and

dissipation of granular temperature denoted by S and Γ also depend only on the solid volume

fraction.

Instabilities in the volume fraction field that obeys Eq. (9.1) arise from a variety of coupled

physical mechanisms, including: (a) the dependence of mean drag on volume fraction, (b) re-

duction of particle granular temperature due to viscous dissipation in the fluid, (c) reduction of

particle granular temperature due to particle-particle interactions, and (d) production of gran-

ular temperature due to particle-neighbor interactions, which might have a stabilizing effect.

The preceeding discussion gives rise to several open questions, some of which are discussed

here. Each question is followed by a discussion of the working hypothesis.

1. Q1. What are the stability limits for suspensions with finite fluid inertia from average

equations?
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Hypothesis: Stability limits for suspensions with finite fluid inertia can be inferred from

average equations along the lines of the theory by Koch (1990) for Stokes flow regime.

However, stability limits for suspensions at moderate Reynolds numbers depend on the

dependence of the mean drag on the solid volume fraction as well as mean flow Reynolds

number. The closure models for the interphase momentum transfer and the source and

dissipation of granular temperature obtained from PR–DNS of gas–solid suspensions at

moderate Reynolds numbers in this work can be used to infer stability limits in the regime

of finite fluid inertia. Although linear stability analysis can be applied in principle, one

has to verify the assumptions involved in applying the average equations and the stability

analysis.

2. Q2. What is the mechanism of generation of instabilities in initially homogeneous gas–

solid suspensions in periodic domains?

Hypothesis: It is important to see from PR–DNS if initially homogeneous gas–solid sus-

pensions demonstrate large scale inhomogeneity in the volume fraction field in sufficiently

large periodic domains. Firstly, periodic domains are useful since the natural inhomogene-

ity present in wall bounded flows is eliminated. In such situation the origin of instabilities

is purely from the miscroscale (see section 9.3 for an elaboration of this hypothesis). The

stabilization or destabilization of the suspension purely depends on the dependence of the

mean drag force on the local volume fraction fluctuations. The hypothesis is that local

rearrangements of the particles perturbs the pair correlation function and in turn changes

the level of volume fraction fluctuations (see section 9.4 for details). The dependence of

the mean drag on the intensity of local volume fraction fluctuations in a measurement

volume determines the stability properties of the gas–solid flow. This question then leads

to the following two questions that are discussed next.

3. Q3. What is the dependence of the mean drag force on the pair correlation function?

Hypothesis: From the preceeding discussion, we hypothesize that the mean drag force

depends on the local arrangements of the particles. The pair correlation function g(r)

is a measure of the local arrangement of the particles. It is important to determine the
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dependence of the mean gas–solid force on the pair correlation function. As a first step

to study this dependence, frozen particle configurations corresponding to different pair

correlation functions will be generated and the mean drag will be computed by simulating

flow past such fixed configurations using PR–DNS.

4. Q4. What is the role of amplitude of perturbations of the solid volume fraction?

Hypothesis: In linear stability analysis the amplitude of perturbation of the solid volume

fraction does not play any role in determining the stability properties of the flow. The

hypothesis is that if the amplitude of perturbations of the solid volume fraction is small

compared to the natural level of volume fraction fluctuations, such perturbations might

not lead to development of instabilities. This question can be answered by performing

carefully designed simulations in which the initial configurations are such that the local

volume fraction fluctuations exceed the base state. If such perturbations to the volume

fraction field generates instabilities then it warrants a nonlinear theory for stability. It is

clear that in order to answer these questions, we need a measure or a metric to quantify

the local volume fraction fluctuations. The origin of fluctuations in the volume fraction,

and a metric for these fluctuations that accounts for the multiscale nature of gas–solid

flow are discussed in detail in section 9.4.

5. Q5. What is the appropriate continuum formulation for non scale separated gas–solid

flow systems?

Hypothesis: The existing conitinuum theories for gas–solid flow employ a differential or

strong formulation that relies on the continuum hypothesis or the assumption of a sepa-

ration of length scales. Given that there is considerable evidence to indicate that there

is no separation of scales in clustering gas-solid suspensions, an alternative approach is

warranted. We hypothesize that an integral or weak formulation is the appropriate ap-

proach for non scale separated gas–solid systems. The integral formulation of balance

laws always holds, even if there is no separation of scales. The basis for the weak for-

mulation is the formulation of conservation laws of mass, momentum and energy in a

control volume (or a measurement volume). In such formulation the strength of volume
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fraction fluctuations in a measurement volume becomes important. The analysis on the

local volume fraction fluctuations lays the foundation for exploring the development of a

continuum theory for non scale separated gas–solid flows based on the weak formulation.

In the following sections we describe the progress made in answering the questions that are

formulated above. In particular we elaborate on hypothesis for the generation of instabilities,

the development of a multiscale metric to characterize the level of volume fraction fluctuations

and a discussion on the formulation of a continuum theory based on the weak formulation.

9.3 Mechanism of generation of instabilities

Instabilities in a gas–solid flow can be induced from the miscroscale or due to gradients

in the volume fraction at the macroscale. Instabilities at the microscale can arise from a

variety of mechanisms that induce particle clustering. These mechanisms include both particle-

particle interactions such as inelastic collisions, cohesive forces and electrostatic interactions,

and particle-fluid hydrodynamic interactions such as neighbor particle interactions including

particle shielding, and enhanced local energy dissipation in the fluid due to viscous effects.

Since many of these microscale interactions are averaged out in EE formulations, it is not clear

if a stability analysis of the averaged equations reflects the instabilities observed in individual

realizations of the flow through experiment, PR–DNS or an LE simulation with a model for

the particle drag and collisions. Large scale gradients in the volume fraction field such as

those found in wall bounded flows can also give rise to instabilities. The source of instability

in this case is from the macroscopic scales. It is therefore important to distinguish between

statistically homogeneous and inhomogeneous gas–solid flows.

Statistically homogeneous suspensions: As explained in the preceeding section, the basic

approach of a linear stability analysis of the averaged equations is to perturb the homogeneous

base state of the governing equations. There are a few subtle points here that need to be

examined carefully. Firstly, the set of equations on which the stability analysis is performed is

derived by averaging and implicitly assumes scale separation. It is assumed that the macro-

scopic quantities such as the solid volume fraction vary on length scales that are much larger
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than the length scales over which the underlying microstructure of the particles varies. There-

fore, when the system is perturbed the perturbations also should vary on macroscopic length

scales in order for the continuum description to be valid. A natural question that arises in this

context is regarding the origin of these large scale perturbations in a homogeneous suspension.

If no perturbations are imposed, a homogeneous suspension cannot exhibit volume fraction

instabilities. This has been confirmed in the recent device-scale simulations performed using

both the Quadrature Based Moment Methods (QBMM) and the Eulerian–Eulerian two-fluid

model by Passalacqua et al. (2010). A homogeneous gas-solid suspension with no imposed

perturbations can become unstable if the fluctuations in the number and volume occupied by

the particles at the microscale affect the meso and macroscale quantities. These fluctuations

would manifest in the pair–correlation or structure factor, but the average number density (or

volume fraction) of the suspension is spatially uniform.

Wall bounded flows: In a real experiment, the gas-solid flow is bounded by walls. When

particles undergo inelastic collisions with walls, they lose their energy and start to form aggre-

gates near the wall. The formation of large particle clusters near the walls has been observed

in recent high speed images of gas-solid flow in fluidized bed risers. For the purpose of sta-

bility analysis, wall bounded flows are in a naturally perturbed state. In this scenario, the

linear stability analysis needs to be performed by applying the right boundary conditions on

the perturbed variables and this might lead to different stability limits.

As a first step we restrict our focus to the stability of homogeneous gas–solid suspensions.

PR–DNS captures particle-fluid, particle-particle and neighbor interactions accurately and the

flow is completely characterized and hence the stability of gas–solid flows at the microscale

can be investigated rigorously. We first study the effect of the state of microstructure on the

stability of homogeneous gas-solid suspensions.

9.3.1 PR–DNS of freely evolving suspensions with finite fluid inertia

To investigate the evolution of the microstructure we performed PR–DNS of freely evolving

gas-solid suspensions with finite fluid inertia. We performed two types of simulations. In

simulations of the first type, particles are initialized according to an equilibrium hard-sphere
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microstructure. Initially the particles are fixed and a steady flow is established through the

fixed assembly by imposing a pressure gradient. After the flow reaches a steady state, the

particles were allowed to move according to the force acting on them due to the fluid. This

hydrodynamic force is computed by integrating the fluid stress tensor over the particle surface.

Inter-particle collisions are handled through a soft-sphere approach.

After the particle–phase granular temperature reaches a statistically stationary state, the

pair correlation function g(r) is computed by averaging over different snapshots of the simula-

tion. The g(r) for three different coefficients of restitution is shown in Fig. 9.2(a). There is no

significant change in the equilibrium microstructure. We have verified that this is very close to

the equilibrium pair correlation function of a hard sphere system. This result is consistent with

the observation of Koch and Sangani (1999) that at higher particle inertia, the effect of the

fluid on the particles is not very significant and hence the system behaves like a granular gas.

Moreover, in this situation there is a source of particle granular energy due to hydrodynamic

interactions. Therefore, this gas-solid system is less likely to exhibit clustering than an inelas-

tic granular gas, where the continuous dissipation of granular energy due to inelastic collisions

causes the particles to cluster in regions of low granular temperature. However, in the presence

of a fluid, the granular temperature reaches a statistically stationary state where the source

and dissipation of energy due to hydrodynamic effects nearly balance each other. We have

verified that the collisional dissipation is very small compared to the viscous dissipation, and

hence there is no significant change in the pair correlation function even for inelastic particles.

Hence, local particle clustering is not observed in these simulations.

Note that the simulation times for these cases are small compared to those of inelastic

granular gases in which significant clustering is observed. While it is easy to perform event-

driven simulations of inelastic granular gases for fairly long physical times (O(104) collision

times), it is computationally very expensive to perform PR–DNS of freely evolving suspensions

for similar lengths of time. This is because, in event driven simulations, only the collision events

are tracked and hence it is inexpensive to track about 104 collisions. However, in PR–DNS,

the time between the collisions is also resolved in order to resolve the fluid flow accurately and

therefore simulating such long physical times is computationally prohibitive.
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Figure 9.2 (a) Pair correlation function obtained from PR-DNS of freely evolving gas-solid

suspensions corresponding to a solid volume fraction of 0.2, mean flow Reynolds

number of 20 and solid to fluid density ratio of 100. These parameters correspond

to a Stokes number of 278. These simulations have been performed for three

different coefficients of restitution. ((b))Pair correlation function at three different

times obtained from PR-DNS of gas-solid suspension at a solid volume fraction

of 0.05, mean flow Reynolds number of 50 and solid to fluid density ratio of 100.

The Stokes number of the suspension is 694. Initial configuration is taken from an

inelastic granular gas simulation and the later times are one and two flow through

times of the periodic box respectively.



202

Since it is difficult to perform PR–DNS of freely evolving suspensions for physical times

comparable to the time required for the formation of clusters in an inelastic granular gas,

we designed the second type of simulations such that we could investigate the evolution from

an initially clustered microstructure. We used four different particle configurations from an

inelastic granular gas simulation that is deep in the clustering regime. The evolution of the

microstructure is tracked in time. Figure 9.2(b) shows the pair correlation function at three

different time snapshots. The value of the pair correlation function at contact for the initial

time is quite high indicating a clustered configuration. However, as the particles evolve, we see

that the microstructure evolves to a non-clustered configuration. Further investigation into the

generation of instabilities from the microscale is needed and this hypothesis is dented H2.

9.4 Multiscale metrics for characterizing statistically homogeneous

gas–solid flows

Gas-solid flows are characterized by an intrinsic statistical variability in quantities such as

the number of particles, or the volume occupied by the particles in any given region. Further-

more, phenomenon such as particle clustering lead the breakdown of the separation of length

scales. Therefore, there is a need to develop metrics that characterize the level of clustering

as well as the shape and size of clusters that are valid even in systems that do not exhibit

scale separation. Given the inherent statistical variability in gas–solid flows it is natural to use

statistical metrics to characterize particle clustering, and these can then be incorporated into

statistical theories. In order to connect the physical mechanisms to cluster metrics, there is

a need for a unifying framework in which any clustering mechanism and its outcome can be

described. In the following section we develop a multiscale statistical metric and connect it to

the two–particle distribution function.

9.4.1 Local volume fraction fluctuations in statistically homogeneous gas–solid

flows

Gas-solid flows are characterized by an intrinsic statistical variability in quantities such as

the number of particles, or the volume occupied by the particles in any given region. Moreover,
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Figure 9.3 Schematic showing the intersection of solid particles with the measurement region.
The region of space occupied by the solids is hatched with vertical lines. The
region of intersection of the solid particles with the measurement region is hatched
with horizontal lines.

formation of clusters leads to a lack of separation of length scales. Therefore, the inherent

statistical variability present in the volume occupied the particles in any region or “measurement

region” needs to be characterized in a statistically homogeneous suspension.

In this context we introduce the concept of ”measurement region”. A measurement region

is a region of arbitrary shape and fixed size in the gas-solid flow domain. It can be thought of

as an observation window or frame in an experiment. The size of the measurement region sets

the length scale of invstigation. Hence the length scale information is contained in the size of

the measurement region. We define statistical measures to characterize level of local volume

fraction fluctuations in a measurement region. A schematic with the measurement region in

the flow domain is shown in Fig. 9.3. The solid phase is represented by the indicator function

Is (x) which is unity if the point x lies in the solid phase and zero otherwise. The solid phase

volume fraction fluctuations in any measurement volume Vm depend on the microstructure

or the particle configuration. It is useful to define the one–point and two–point probability
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functions S1 (x1) and S2 (x1,x2) as follows:

S1 (x1) = ⟨Is (x1)⟩

S2 (x1,x2) = ⟨Is (x1) Is (x2)⟩ . (9.2)

Here S1 is the probability of finding a point in the solid phase. For statistically homogeneous

gas–solid suspnesions this quantity is equal to the volume fraction of the solid phase ϕ. The

quantity S2 (x1,x2) is the probability of finding two points x1 and x2 simultaneously in the solid

phase (Torquato and Stell, 1982; Sundaram and Collins, 1994). For statistically homogeneous

and isotropic gas–solid suspensions, S2 is only a function of the magnitude of the separation

between the points i.e., S2 (x1,x2) = S2 (|x1 − x2|). Two limits of this function are of interest.

When the separation between the points is very small, S2 → ϕ and when the separation becomes

very large S2 → ϕ2.

The inherent statistical variability in the volume fraction of the solid phase can be charac-

terized in terms of the variance of the local volume fraction in a given measurement volume. In

order to perform this calculation, the local volume fraction (Quintanilla and Torquato, 1997)

in a measurement volume centered at location x is defined as

ε (x) =
1

Vm

∫
Vx
m

Is (x) dx. (9.3)

When the measurement volume is large i.e., Vm → ∞ the local volume fraction tends to

the volume fraction of the solid phase. At the other extreme when the measurement volume

becomes very small, the local volume fraction becomes the indicator function of the solid phase

at the point x.

It is useful to express the local volume fraction in terms of volume integrals over the entire

domain. The physical domain is deterministic and so the expectation operator and the integral

operator commute. In order to define the local volume fraction as an integral over the whole

domain, we define an indicator function for the measurement region as follows:

IVx(y) =


1 if y ∈ Vx

m

0 otherwise.

(9.4)
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From the definition it is clear that IVx(y) = IV0(y − x). Therefore, the indicator function of

a measurement region centered at any point x is written in terms of the indicator function of

the measurement region centered at origin. With this definition, the local volume fraction in a

measurement region centered at a point x can be written as

ε (x) =
1

Vm

∫
V
Is (y) IV0(y − x) dy. (9.5)

It is clear that the expected value of the local volume fraction is nothing but the volume

fraction of the solid phase. A measure of the local volume fraction fluctuations can be obtained

by examining the ratio of the standard deviation of the local volume fraction and the solid phase

volume fraction. This ratio kϕ = σε/ϕ gives a measure of the nonuniformity of the local volume

fraction. Here, the standard deviation of the local volume fraction is defined as σ2ε =
⟨
ε2
⟩
−ϕ2.

It is instructive to examine the limits of the intensity of volume fraction fluctuations kϕ. For

large measurement volumes, kϕ → 0. For very small measurement volumes σ2ε → ϕ − ϕ2 and

hence kϕ →

√
1− ϕ

ϕ
.

We now derive the relationship between the standard deviation of the local volume fraction

and the two–point correlation function S2. The expected value of the square of the local volume

fraction fluctuations is given by:

⟨
ε2
⟩
=

1

V 2
m

⟨∫
V
Is (y) IV0 (y − x) dy

∫
V
Is (z) IV0 (z− x) dz

⟩
=

1

V 2
m

∫
V

∫
V
⟨Is (y) Is (z)⟩ IV0 (y − x) IV0 (z− x) dy dz

=
1

V 2
m

∫
V

∫
V
S2 (y, z) IV0 (y − x) IV0 (z− x) dy dz. (9.6)

Since the gas–solid flow is homogeneous, S2 (y, z) = S2 (y − z). Now invoking a transformation

r = y − z, we see that

⟨
ε2
⟩
=

1

V 2
m

∫
Vr

S2(r)

∫
V
IV0 (y − x) IV0 (y − (x+ r)) dy dr

=
1

V 2
m

∫
Vr

S2(r)V
int
2 (r) dr. (9.7)

In the above expression, V int
2 (r) is the volume of intersection of two measurement regions

separated by r. This is because, IV0 (y − x) is the indicator function of a measurement volume
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centered at x. Similarly, IV0 (y − (x+ r)) is the indicator function of a measurement region

centered at the point x+ r. Hence the volume integral

V int
2 (r) =

∫
V
IV0 (y − x) IV0 (y − (x+ r)) dy (9.8)

gives the volume of intersection of these two measurement regions. This volume of intersection

depends on the shape and size of the measurement regions. From the definition of the inter-

section volume, it is clear that

∫
Vr

V int
2 (r) dr = V 2

m. Therefore, the variance of volume fraction

fluctuations can now be written as

σ2ε =
1

V 2
m

∫
Vr

S2(r)V
int
2 (r) dr− ϕ2

=
1

V 2
m

∫
Vr

S2(r)V
int
2 (r) dr− ϕ2

1

V 2
m

∫
Vr

V int
2 (r) dr

=
1

V 2
m

∫
Vr

[
S2(r)− ϕ2

]
V int
2 (r) dr. (9.9)

Therefore, the final expression for the intensity of volume fraction fluctuations becomes

kϕ =
1

ϕVm

[∫
Vr

[
S2(r)− ϕ2

]
V int
2 (r) dr

]1/2
. (9.10)

We can connect the intensity of local volume fractions to the pair correlation function by relating

S2(r) to g(r). This relationship has been derived rigorously by several researchers (Torquato

and Stell, 1982; Sundaram and Collins, 1994). For a system of non overlapping spheres that are

distributed corresponding to a homogeneous number density n and a pair correlation function

g(r), the function it can be shown that

S2(r)− ϕ2 = nI(r) + n2
∫
h(z)I(r− z) dz. (9.11)

In this expression h(z) = g(z) − 1 is the total correlation function and I(r) is the volume of

intersection of two spheres whose centers are separated by a vector r.

From the results of PR–DNS it is found that the microstructure of a stable homogeneous

gas–solid suspensions corresponds to that of an equilibrium hard sphere configuration. By com-

puting the strength of volume fraction fluctuations for an equilibrium hard sphere configuration

we can determine the base value of the volume fraction fluctuations.
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9.5 Correct governing equations for stability analysis

When considering the stability of suspensions it is customary to analyze the stability of

the averaged equations that are written in a differential or strong form. This differential or

strong formulation relies on the continuum hypothesis, or in other words it assumes separation

of scales. Given that there is considerable evidence to indicate that there is no separation of

scales in clustering gas-solid suspensions, an alternative approach is warranted. Note that the

integral or weak formulation of balance laws always holds, even if there is no separation of

scales. For instance the conservation of mass can be written in weak form as:

∂

∂t

∫
Vm

⟨ϕ⟩ dV = −
∮
Am

⟨Jϕ⟩ · ndA (9.12)

where ⟨Jϕ⟩ = ⟨ϕv⟩. This average flux can be decomposed as ⟨Jϕ⟩ = ⟨v⟩ ⟨ϕ⟩ + ⟨v′ϕ′⟩. In

the absence of scale separation, the correlation between the velocity fluctuations and volume

fraction fluctuations is not statistical error in the estimation of the mean flux, but is a physically

meaningful quantity. However, it is neglected in existing stability theories. The instabilities in

the strong form of the mean mass conservation equation have their origin in the dependence

of the average drag on the average solid volume fraction. The importance of fluctuations in

volume fraction in clustering particle suspensions raises an important question regarding the

dependence of drag statistics on volume fraction fluctuations. The weak formulation poses new

challenges in modeling and PR–DNS can play a pivotal role in the development of models that

are relevant to this formulation.
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CHAPTER 10. Conclusions

Gas–solid flows are an important class of multiphase flows that are frequently encountered in

engineering applications. Understanding the physical mechanisms of momentum, kinetic energy

and heat transfer between the gas–phase and the solid particles is a crucial step in the design

process. Furthermore, since CFD simulations of gas–solid flow are increasingly being used in

the design process, development of accurate mathematical models for these interphase transfer

phenomena that can be used in gas–solid CFD simulations is very important. In this work we

studied the interphase momentum, kinetic energy and heat transfer by accounting for the key

characteristics of gas–solid flows such as polydispersity, gas–phase velocity fluctuations, and

particle velocity fluctuations, using particle–resolved direct numerical simulation (PR–DNS)

approach.

We developed the Particle–resolved Uncontaminated–fluid Reconcilable Immersed Bound-

ary Method (PUReIBM) and demonstrated that it is a viable method for understanding gas–

solid flow physics as well as for model development. The salient features of this method that

make it appropriate for PR–DNS of gas–solid flow are: (i) the unmodified NSE are solved in

the fluid phase, (ii) it is reconcilable with statistical theories, (iii) numerically convergent and

(iv) gives Galilean–invariant numerical solutions to the underlying physical problem. We have

rigorously established the connection between the PUReIBM solution and the unclosed terms

that need to be modeled in the statistical approaches of gas–solid flows.

We studied interphase momentum transfer in both mono and bi–disperse gas–solid suspen-

sions using PUReIBM PR–DNS of flow past fixed particle assemblies. We developed a new

high resolution monodisperse drag correlation based on the insights into the scaling of pressure

and viscous contributions to drag from PR–DNS. In bi–disperse suspensions we found that the

polydispersity correction for the drag force proposed by Beetstra et al. (2007) is valid, but a
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high resolution monodisperse drag correlation such as the one developed in this work is needed

in order to obtain an accurate polydisperse drag law.

Gas–phase velocity fluctuations arising from the interaction between particles and mean

slip velocity in laminar gas–solid flows have been investigated using PR–DNS. We quantified

the kinetic energy associated with the fluctuating motions in the gas–phase and found that

it is a significant fraction of energy associated with the mean slip velocity. We developed an

eddy viscosity that can be used for modeling the gas–phase Reynolds stess in gas–solid CFD

calculations.

The effect of the fluid–dynamic forces on particle velocity fluctuations and vice versa has

been studied by performing PR–DNS of freely evolving gas–solid suspensions. PR–DNS data

indicate that a stochastic model is necessary for the particle acceleration in order to capture

the correct evolution of particle granular temperature. A Langevin model is proposed for the

increment in the particle velocity and the model parameters have been related to the source

and dissipation of particle granular temperature. We have developed a method to uniquely

identify the source and dissipation of granular temperature from PR–DNS, and specified the

model parameters as functions of solid volume fraction, mean slip Reynolds number and solid–

to–fluid–density ratio.

A novel PR–DNS methodology has been developed to study forced convective heat transfer

in fixed assemblies of isothermal particles in periodic domains. This formulation accounts for

the fluid heating (or cooling) by particles. It is found that fluid heating is important and can

occur on scales of a particle diameter in certain parameter ranges thereby precluding scale

separation necessary for averaged models.

A parallel implementation of PUReIBM has been designed and implemented as a part of

this work. This parallelization strategy allows PR–DNS of large problems on peta scale super-

computers. The PR–DNS methodology developed in this work has far–reaching implications

in terms of the variety of problems that can be solved and paves the way for the long term

objective of developing a fundamental understanding of the wide variety of complex phenomena

observed in gas–solid flows and subsequently improve the theoretical description of gas–solid

flows based on high fidelity numerical simulations.
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APPENDIX A. Simplification of the covariance of fluctuating velocity and

gradient of stress tensor to dissipation in statistically homogeneous

gas–solid flow

the conservation equation for kf in statistically homogeneous flows is written as

∂

∂t
{(1− ϕ) ρfkf} = −

⟨
ui

′′(f)τjin
(s)
j δ

(
x− x(I)

)⟩
+

⟨
ui

′′(f)∂ (Ifτji)

∂xj

⟩
. (A.1)

In this equation τji is the fluid phase stress tensor given by

τji = −pδji + µf

(
∂ui
∂xj

+
∂uj
∂xi

)
,

where p and u are the instantaneous pressure and velocity fields respectively. The second term

on the right hand side is the covariance of the fluctuating fluid velocity field and the gradient

of the stress tensor in the fluid phase. Using the product rule this term can be written as⟨
ui

′′(f)∂ (Ifτji)

∂xj

⟩
=

⟨
∂

∂xj

(
Ifui

′′(f)τji

)⟩
−

⟨
Ifτji

∂ui
′′(f)

∂xj

⟩
. (A.2)

Commuting the gradient and averaging operators and invoking the assumption of statistical

homogeneity, the first term on the right hand side of the above equation simplifies to zero. The

second term on the right hand side can be further simplified by considering the definition of

the stress tensor:

τji
∂ui

′′(f)

∂xj
=

(
−pδji + µf

(
∂ui

′′(f)

∂xj
+
∂ui

′′(f)

∂xj

))
∂uj

′′(f)

∂xi
(A.3)

Since the fluctuating velocity field is divergence free, the pressure term is zero. So the above

equation reduces to:

τji
∂ui

′′(f)

∂xj
= µf

[
∂ui

′′(f)

∂xj

∂ui
′′(f)

∂xj
+

∂2

∂xi∂xj

(
ui

′′(f)uj
′′(f)
)]

= 2µfsijsij , (A.4)
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where, sij =
1

2

(
∂ui

′′(f)

∂xj
+
∂uj

′′(f)

∂xi

)
. Therefore, the second term on the right hand side of

Eqs. (A.1) and (3.19) simplifies to⟨
ui

′′(f)∂ (Ifτji)

∂xj

⟩
= −2µf ⟨Ifsijsij⟩ , (A.5)

which is strictly negative and can be identified as the dissipation rate of kf in statistically

homogeneous gas–solid flow.
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APPENDIX B. Regime of applicability of the assumptions in PR–DNS of

gas–solid heat transfer

The assumptions employed in this work and their regime of validity are discussed in this

section. The use of a fixed bed setup for gas–solid flows is justified if the configuration of the

particles changes very slowly compared to the time it takes to attain mean momentum balance.

The time scale over which the particle configuration changes depends on ReT = DΘ1/2/νf ,

which is the Reynolds number based on the particle fluctuating velocity that is characterized

by the particle granular temperature Θ. The particle granular temperature Θ is a measure

of the variance in the particle velocities and is defined as Θ = 1/3 ⟨v′′ · v′′⟩, where v′′ is the

fluctuation in the particle velocity defined with respect to the mean particle velocity. Particle–

resolved simulations of freely evolving suspensions (Tenneti et al., 2010b) and recent high–speed

imaging of particles (Cocco et al., 2010) show that this value of ReT is O
(
1
)
for high Stokes

number particles that are characteristic of gas–solid flows (e.g., coal particles in air). This

indicates that the particle configuration changes slowly relative to fluid time scales.

An important simplification made in this work is the use of a uniform temperature for the

particles. The extent of variation of the temperature inside a particle is governed by the Biot

number (Bi), which is defined as Bi = hD/ks. In this definition h is the convection heat transfer

coefficient between the particle and the fluid, and ks is the thermal conductivity of the solid.

For many gas–solid systems the thermal conductivity of the solid is greater than that of the

gas by more than an order of magnitude (e.g. air–coal, air–Ferrous oxide, air–fused silica) and

results in a Biot number that is less than 0.1. The small Biot number encountered in many

practical gas–solid systems suggests a lumped capacitance model for the particle temperature,

where the spatial variation of temperature inside the particle can be neglected.

In addition to the assumption of uniform temperature of the particle, we also assume that
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this uniform temperature is constant in time i.e., we assume the particles are isothermal. This

simplification follows from the observation that the thermal response time of the particles

is large compared to the time it takes for the fluid to travel a distance equal to the particle

diameter. The thermal response time of the particle τtp ∼ hAs/ (mCps), where As is the surface

area, m is the mass and Cps is the specific heat of the particle, respectively. The time taken by

the fluid to travel over a particle τf ∼ D/ |⟨W⟩|, where ⟨W⟩ is the mean slip velocity between

the particle and the fluid. The ratio of these time scales

τtp
τf

∼
(
ρpCps

ρfCpf

)(
RemPr

Nu

)
,

where ρp is the density of the particle, ρf is the density of the fluid, Cpf is the specific heat of

the fluid and Nu is the Nusselt number. Experimental studies (Gunn, 1978) of heat transfer

in gas–solid systems reveal that the ratio
RemPr

Nu
∼ O

(
1
)
. For gas–solid flows the ratio of the

density of the particles to the density of the fluid density is very high (∼ O
(
103
)
). Due to

the high thermal inertia of the particles the thermal response time of the particles is about

three orders of magnitude larger than the convective time scale of the fluid. Hence, the uniform

temperature of a particle can be assumed to be constant in time. In addition to the assumption

of a uniform and constant particle temperature, we also assume that all particles in the bed

are maintained at the same temperature. The assumption that the particles equilibriate to the

same surface temperature is consistent with earlier works (Gunn, 1978; Acrivos et al., 1980).

Neglecting viscous dissipation, radiation and free convection effects limits the gas–solid

systems to which our simulation methodology applies. Viscous heating becomes important in

flows with Mach numbers comparable or greater than unity and since we are concerned with

subsonic flows, viscous dissipation is neglected in this work. Free convection is quantified by

the Grashof number, which is defined as

Gr =
gβ (Tf − Ts)D

3

ν2f
, (B.1)

where Tf is the free stream temperature, Ts is the temperature of the solid surface, and β is

the volumetric thermal expansion coefficient (β = 1/Tf for gases). Free convection effects can

be neglected if Gr/Re2m < 1. For each Reynolds number, this constraint imposes an upper
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limit on the particle diameter above which free convection effects cannot be neglected. For

a given value of Tf/Ts, the upper limit on the particle diameter D increases with increasing

Reynolds number. If a typical value of 100 is taken for the fluid to solid temperature ratio (i.e.

Tf/Ts = 100), and air is assumed to be the fluid under terrestrial conditions (g = 9.81m/s2),

then for a Reynolds number Rem = 1 the particle diameter has to be less than 350µm for

negligible free convection. This restriction on the particle diameter becomes less severe as the

Reynolds number increases.

For an isolated particle at Ts with emissivity equal to one, and surrounded by fluid at Tf ,

the ratio of radiation to forced convection heat transfer can be expressed as

q̂rc =
qrad
qconv

=
σ(Ts + Tf)(T

2
s + T 2

f )

hfs
=
σD(Ts + Tf)(T

2
s + T 2

f )

Nu kf
,

where σ = 5.67 × 10−8 W/m2·K4 is the Stefan–Boltzmann constant. Assuming air to be the

surrounding fluid at Tf = 1000K (kf = 0.060 W/m·K) and the particle temperature Ts =

300K, for Stokes flow (i.e. Nu ≈ 2) the ratio of radiation to forced convection heat transfer

increases linearly with particle diameter from 0.66× 10−4 to 0.66× 10−2, for particle diameter

in the range 1 to 100 microns. While this estimate is valid in the Stokes flow regime, with

increasing Reynolds number the higher value of average Nusselt number reduces the ratio of

radiation to forced convection heat transfer, thus relaxing the restriction on particle diameter.

These estimates of the relative importance of forced convection to free convection and radiation

heat transfer show that the restriction on particle diameter is most severe in the Stokes flow

regime, and is progressively less restrictive with increasing Reynolds number. Therefore, the

assumptions used in this work are indeed applicable and relevant to practical gas–solid systems.
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APPENDIX C. Equations of motion in an accelerating frame of reference

Consider a two–phase flow in a finite flow volume V in physical space as an ensemble of

spherical particles as shown in figure C.1. At time t, the nth particle is characterized by its

position vector X(n)(t) and its velocity vector V(n)(t). A Lagrangian description is used for

the particles and an Eulerian description is used for describing the motion of the fluid.

Figure C.1 Schematic of the physical domain. Hatched lines represent the volume Vf occupied
by the fluid phase, solid fill represents the volume Vs occupied by the solid particle,
and V = Vf +Vs is the total volume. ∂V and ∂Vs represent, respectively, the areas
of the computational box and the solid particle.

Denoting the velocity and pressure fields of the fluid by u(x, t), p(x, t) respectively, the

governing equations of motion for the fluid phase in a reference frame fixed in space (laboratory

frame) are:

∂ui
∂xi

= 0, (C.1)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρf

∂p

∂xi
+ νf

∂2ui
∂xj∂xj

. (C.2)

In the above equation, ρf , νf are the density and kinematic viscosity of the fluid respectively.

These equations are to be solved with the boundary conditions u = V(n)(t) on ∂V(n)
s (t). Here,
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∂V(n)
s (t) is the surface of the nth particle whose spatial location changes with time because of

the motion of the particle. The governing equations of motion for the particles in the laboratory

frame are:

m
dV

(n)
i

dt
= −

∫
∂V(n)

s (t)
pn

(n)
i dA+ µf

∫
∂V(n)

s (t)

∂ui
∂xj

n
(n)
j dA (C.3)

where µf = ρfνf is the dynamic viscosity of the fluid. In the above equation, n
(n)
j denotes the

component of the normal pointing outward from the surface of the nth particle.

The objective here is to solve the equations of motion of both the phases in a reference frame

that moves with the mean velocity of the particles. Since the particles will be accelerating in the

laboratory frame, the new reference frame denoted E will be a non–inertial frame of reference.

Let the velocity and acceleration of E with respect to the laboratory frame E be Vf (t) and

Af (t) respectively. The transformation rules between the two frames are :

u = u−Vf ,

x = x−
∫ t

0
Vf (t

′)dt′

t = t. (C.4)

Effecting the transformation rules defined above into Eq. E.2 the governing equations of motion

for the fluid phase in E are (see Pope (2000) for details of the derivation)

∂ui
∂xi

= 0, (C.5)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρf

∂p

∂xi
+ νf

∂2ui
∂xj∂xj

−Af,i. (C.6)

It should be noted that the pressure being a scalar remains the same in both the frames. Fol-

lowing the notation of Garg et al. (2009), the momentum equation in Eq. C.6 can be rewritten

as

∂ui
∂t

+ Si = − 1

ρf
gi + νf

∂2ui
∂xj∂xj

−Af,i (C.7)

where S and g respectively are the convective and pressure gradient terms in E. It is assumed

that the particle assemblies are homogeneous at all times. If the particle configuration is
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homogeneous then the ensemble averaged quantities can be estimated by volume averaging.

The flow quantities can be decomposed as a sum of the volumetric mean and a fluctuating

part. For instance, the pressure gradient can be decomposed as g = ⟨g⟩V + g′ where, the

volumetric mean pressure gradient ⟨g⟩V is defined as

⟨g⟩V =
1

V

∫
V
gdV. (C.8)

In the above equation, V is the volume of the physical domain. Thus, E.5 can be rewritten as:

∂ui
∂t

+ Si = − 1

ρf
⟨gi⟩V − 1

ρf

∂ψ′

∂xi
+ νf

∂2ui
∂xj∂xj

−Af,i. (C.9)

In the above equation, g′ is written as the gradient of a fluctuating pressure ψ′. In a similar

fashion averaged fluid velocity can be estimated by averaging the fluid velocity fields over the

fluid volume i.e, ⟨
u
(f)
i

⟩
=

1

Vf

∫
Vf

uidVf . (C.10)

where Vf is the volume of the region occupied by the fluid. The evolution equation for the

phasic averaged fluid velocity can be obtained by integrating Eq. E.7 over the fluid volume.

The resulting equation is:

Vf
d

dt

⟨
u
(f)
i

⟩
= − 1

ρf
⟨gi⟩V Vf +

1

ρf

∫
∂Vs

ψ′n
(s)
i dA− νf

∫
∂Vs

∂ui
∂xj

n
(s)
j dA−Af,iVf (C.11)

In the above equation ∂Vs denotes the solid surface bounding the fluid volume and n
(s)
j de-

notes the component of normal vector pointing outward from the surface of the solid particles.

Dividing the entire equation by the fluid volume Vf and rearranging the terms gives:

− 1

ρf
⟨gi⟩V =

d

dt

⟨
u
(f)
i

⟩
+

1

(1− ϕ)V

[
− 1

ρf

∫
∂Vs

ψ′n
(s)
i dA+ νf

∫
∂Vs

∂ui
∂xj

n
(s)
j dA

]
+Af,i (C.12)

Now, the equations of motion for the particles in the reference frame E will be derived.

The velocity of the nth particle transforms as V
(n)

(t) = V(n)(t) − Vf (t). Substituting the

transformation rules in Eq. C.3, the equation of motion for the nth particle is obtained as:

m
dV

(n)
i

dt
=− ⟨gi⟩V V

(n) + ρf

[
− 1

ρf

∫
∂V(n)

s (t)
ψ′n

(n)
i dA+ νf

∫
∂V(n)

s (t)

∂ui
∂xj

n
(n)
j dA

]

−mAf,i (C.13)
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The phasic mean solid velocity can be estimated as
⟨
u(s)

⟩
= (1/Np)

∑Np

n=1V
(n)

where Np is

the total number of particles in the domain.The evolution equation for the mean solid velocity

can be derived by summing Eq. E.11 over all the particles. The resulting equation is:

ρpVs
d

dt

⟨
u
(s)
i

⟩
=− ⟨gi⟩V Vs + ρf

[
− 1

ρf

∫
∂Vs

ψ′n
(s)
i dA+ νf

∫
∂Vs

∂ui
∂xj

n
(s)
j dA

]
− ρpVsAf,i (C.14)

where ρp is the density of the particles and Vs is the total volume occupied by the solid phase.

It should be noted that the surface integrals in Eq. E.11 are taken over the surface of the nth

particle and in Eq. C.14, the surface integration is over all the solid surfaces. This is because,

∫
∂Vs

=

Np∑
n=1

∫
∂V(n)

s

.

Eq. C.14 can be rewritten as

d

dt

⟨
u
(s)
i

⟩
=− 1

ρp
⟨gi⟩V +

1

ϕV

ρf
ρp

[
− 1

ρf

∫
∂Vs

ψ′n
(s)
i dA+ νf

∫
∂Vs

∂ui
∂xj

n
(s)
j dA

]
−Af,i (C.15)

Rearranging the above equation, an equation for the mean pressure gradient can be obtained

as

− 1

ρp
⟨gi⟩V =

d

dt

⟨
u
(s)
i

⟩
− 1

ϕV

ρf
ρp

[
− 1

ρf

∫
∂Vs

ψ′n
(s)
i dA+ νf

∫
∂Vs

∂ui
∂xj

n
(s)
j dA

]
+Af,i (C.16)

The total drag force on the particles denoted FD is given by

FD,i = ρf

[
− 1

ρf

∫
∂Vs

ψ′n
(s)
i dA+ νf

∫
∂Vs

∂ui
∂xj

n
(s)
j dA

]
.

Using the above notation, Eq. C.12 and C.16 can be simplified and summarized as follows:

− 1

ρf
⟨gi⟩V =

d

dt

⟨
u
(f)
i

⟩
+

1

(1− ϕ)V

FD,i

ρf
+Af,i (C.17)

− 1

ρp
⟨gi⟩V =

d

dt

⟨
u
(s)
i

⟩
− 1

ϕV

FD,i

ρp
+Af,i (C.18)
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The above two systems of equations contain two unknowns namely the mean pressure gradient

⟨gi⟩V and the frame acceleration Af,i. The frame acceleration can be eliminated from the above

equations to give a general expression for the mean pressure gradient:(
1

ρf
− 1

ρp

)
⟨gi⟩V =

d

dt

⟨
u
(s)
i

⟩
− d

dt

⟨
u
(f)
i

⟩
−
FD,i

V

[
1

ϕρp
+

1

(1− ϕ)ρf

]
(C.19)

The fixed particle simulations described in the paper are a special case where the particles are

so massive that they do not move i.e, ρp → ∞ and the rate of change of the mean solid velocity

is zero. So taking the limit ρp → ∞ in Eq. E.16, we get

1

ρf
⟨gi⟩V = − d

dt

⟨
u
(f)
i

⟩
−
FD,i

V

1

(1− ϕ)ρf
(C.20)

which is the same as the one derived by Garg et al. (2009).

The frame acceleration can be obtained from C.18 as:

Af,i = − 1

ρp
⟨gi⟩V − d

dt

⟨
u
(s)
i

⟩
+

1

ϕV

FD,i

ρp
(C.21)

It can be seen that the mean pressure gradient depends upon the rate of change of the fluid

and solids velocity. Equations E.16 and E.17 can be discretized in time as follows:

(
1

ρf
− 1

ρp

)
⟨gi⟩

n+1
V =−

⟨
u
(f)
i

⟩n+1
−
⟨
u
(f)
i

⟩n
∆t

−

⟨
u
(s)
i

⟩n+1
−
⟨
u
(s)
i

⟩n
∆t

(C.22)

−
F

n
D,i

V

[
1

ϕρp
+

1

(1− ϕ)ρf

]
(C.23)

An+1
f,i = − 1

ρp
⟨gi⟩

n+1
V −

⟨
u
(s)
i

⟩n+1
−
⟨
u
(s)
i

⟩n
∆t

+
1

ϕV

F
n
D,i

ρp
(C.24)

It is desired that the mean solids velocity be zero and that the mean fluid velocity be driven to

a desired value
⟨
u(f)

⟩d
which is set by the Reynolds number. Substituting

⟨
u(f)

⟩n+1
=
⟨
u(f)

⟩d
and

⟨
u(s)

⟩n+1
= 0 in the above two equations and noting that the initial mean solids velocity

is zero, the resulting numerical equations are:

(
1

ρf
− 1

ρp

)
⟨gi⟩

n+1
V = −

⟨
u
(f)
i

⟩d
−
⟨
u
(f)
i

⟩n
∆t

−
FD,i

n

V

[
1

ϕρp
+

1

(1− ϕ)ρf

]
(C.25)
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and

An+1
f,i = − 1

ρp
⟨gi⟩

n+1
V +

1

ϕV

F
n
D,i

ρp
. (C.26)

From the above analysis it can be seen that there are two free parameters in this problem

namely the mean pressure gradient and the frame acceleration. The mean pressure gradient

can be thought of as a means to set the desired average fluid velocity and the frame acceleration

can be seen as a time varying body force which will be tuned at every instant to give the desired

mean solids velocity.

Estimation of granular temperature from the DNS of freely evolving

suspensions

Solving the equations of motion in an accelerating frame of reference using equations C.25

and C.26 ensures that: (i) the mean solids velocity is zero and (ii) the mean fluid velocity

is such that the desired Reynolds number (based on slip velocity) is attained. At every time

instant, the mean solids velocity is estimated from the DNS as

{
u(s)

}
(t) =

1

Np

Np∑
n=1

V(n). (C.27)

The mean velocity of the solids is denoted
{
u(s)

}
to point out the fact that it is only an

estimate to the true mean which is denoted
⟨
u(s)

⟩
. The fluctuating velocity of the nth particle

v′(n) is computed from DNS as

v′(n) (t) = V(n) (t)−
{
u(s)

}
(t) . (C.28)

At every time instant, the granular temperature is estimated using the formula

{T} (t) = 1

3Np

Np∑
n=1

(
v′(n) (t) · v′(n) (t)

)
. (C.29)

It is important to note that in C.28 particle velocity fluctuations are defined about the

mean solids velocity which is estimated as a number average and not as a time average. Fig-

ures C.2(a)and C.2(b) show the evolution of mean solids velocity and mean fluid velocity in the
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Figure C.2 Evolution of the mean solids velocity and mean fluid velocity in the moving frame

and the frame velocity with respect to the laboratory frame obtained from the DNS

of a freely evolving suspension of volume fraction 0.2, Rem = 20. Figure C.2(a)

shows the results for a solid to fluid density ratio of 10 while Figure C.2(b) shows

the results for a solid to fluid density ratio of 1000. In both figures, the mean

solids velocity (open circes), the mean fluid velocity (�) and the frame velocity

(▽) are scaled by the desired mean slip velocity.

moving frame and the frame velocity with respect to the laboratory frame for solid to fluid den-

sity ratios of 10 and 1000 respectively. The volume fraction and the mean flow Reynolds number

for both suspensions are 0.2 and 20 respectively. From these figures we observe that the frame

velocity (shown by ▽) varies linearly with time. Imbalance between the mean pressure gradient

and the drag force acting on the particles causes the particles to accelerate in the laboratory

frame. Acceleration of the moving frame accounts for this imbalance and ensures that the mean

solids velocity is zero in the moving frame. We can clearly see from Figures C.2(a)and C.2(b)

that the mean solids velocity (shown by �) is indeed zero and that the mean fluid velocity

(shown by open circles) is such that the desired slip velocity is attained. Thus, we can conclude

that the granular temperature we estimate from DNS is indeed a measure of the strength of

the particle velocity fluctuations.
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APPENDIX D. Identification of source and dissipation of granular

temperature from PR–DNS

Using the Langevin model for the increment in the particle velocity fluctuations (cf. Eq. (6.2)),

we can derive the evolution equation for the modeled granular temperature T ∗ as:

dT ∗

dt
= −2γT ∗ +B2. (D.1)

In the above equation, we can clearly identify that the source for the granular temperature is

B2 and that the dissipation is 2γT ∗. For a statistically homogeneous suspension, the evolution

equation for the granular temperature can be written as:

dT

dt
=

2

3

⟨
A′′

iv
′′
i

⟩
.

In the above equation, the fluctuations in the acceleration are defined about the mean particle

acceleration, i.e. A′′
j = Aj − ⟨Aj⟩. The instantaneous particle acceleration model should model

evolution of the granular temperature correctly. In order to do this, we have to match the

source and dissipation implied by the Langevin model to the source and dissipation obtained

from DNS. However, given the correlation ⟨A′′
i v

′′
i ⟩, it is non-trivial to uniquely decompose it into

source and dissipation. Koch (1990) derived analytical expressions for the source and dissipation

in the limit of low volume fractions and low Reynolds numbers. Later Koch and Sangani (1999)

used approximate multipole expansions approach to determine the source and dissipation for

dense suspensions but limited to the Stokes flow regime. Here we present a method to extract

the same from the DNS at moderate Reynolds numbers.

The fluctuation in the acceleration experienced by the nth particle is denoted A′′(n) and

similarly, the fluctuation in the velocity is denoted v′′(n). The fluctuating acceleration can be

written as:
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A′′(n)
i = −ζ(n)v′′(n)i +A′′(n)

R,i (D.2)

In the above equation, we decomposed the fluctuating acceleration vector along a direction

parallel to the particle fluctuating velocity and along a direction perpendicular to it. The

component of the acceleration perpendicular to the fluctuating velocity is denoted A′′(n)
R,i to

represent the remainder term. It is important to note that this is not a model but an exact

expression for the fluctuating particle acceleration. We can now form the estimate for the

correlation ⟨A′′
i v

′′
i ⟩ as follows:

⟨
A′′

i v
′′
i

⟩
E
=

1

Np

Np∑
n=1

A′′(n)
i v′′

(n)
i .

After substituting Eq. (D.2) into the above equation and performing some algebraic manipu-

lations, we can write the evolution equation for the estimate of granular temperature as:

dTE
dt

= S − Γ (D.3)

where the source is,

S = −2

3

1

Np

Np∑
n=1

ζ
(n)
− v′′

(n)
i v′′

(n)
i (D.4)

and the dissipation is

Γ =
2

3

1

Np

Np∑
n=1

ζ
(n)
+ v′′

(n)
i v′′

(n)
i . (D.5)

In the above expressions for source and dissipation of particle granular temperature,

ζ
(n)
+ =

1

2

(
ζ(n) +

∣∣∣ζ(n)∣∣∣) ,
and,

ζ
(n)
− =

1

2

(
ζ(n) −

∣∣∣ζ(n)∣∣∣) .
From these equations, it is clear that the particles whose fluctuating acceleration is aligned

with the fluctuating velocity contribute to the source in granular temperature. Particles with

the fluctuating acceleration aligned in a direction opposite to that of the fluctuating velocity

contribute to the dissipation in granular temperature. This can be easily visualized from the

scatter plot shown in Fig. D.1. For illustration, in this figure we show the scatter plot of
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Figure D.1 Scatter plot showing the the fluctuating particle acceleration versus the fluctuating

particle velocity obtained from the DNS of flow past a fixed particle assembly at

a volume fraction of 0.2, mean flow Reynolds number of 20 and Reynolds number

based on granular temperature of 16. From the analysis on the extraction of source

and dissipation from the DNS, we can see that the symbols that lie in the first

and the third quarter contribute to source and the symbols that lie in the second

and the fourth quadrant contribute to the dissipation.

fluctuating particle acceleration and fluctuating particle velocity obtained from the DNS of flow

past a fixed particle assembly (ϕ = 0.2, Rem = 20 and ReT = 16). The symbols that lie in the

first and the third quadrants denote the particles whose fluctuating acceleration is aligned with

the fluctuating velocity. Hence, these particles contribute to the source in granular temperature.

Similarly, the symbols in the second and fourth quadrants contribute to the dissipation in

granular temperature. Tenneti et al. (2010b) show that a simple extension of mean particle

acceleration model applied to any particle velocity distribution does not produce any scatter in

the first and third quadrants. They demonstrate that such instantaneous acceleration models

do not produce any source in the granular temperature evolution equation. On the other hand,

a stochastic acceleration model (cf. Eq. (6.2)) always results in a finite source term for the

particle granular temperature for non–zero B.

We wish to know if the steady state attained by the suspension is a stable attractor. We

can verify this by studying suspensions with different initial conditions. Using the formulae

given by Eqs. (D.4) and (D.5), we extracted the source and dissipation from the DNS data and
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Figure D.2 Phase space plot showing the variation of source and dissipation with granular

temperature. DNS data for two different suspensions is shown here. The volume

fraction, mean flow Reynolds number and solid to fluid density ratio are 0.2, 20

and 100 respectively. Triangles denote the source (filled symbols) and dissipation

(hollow symbols) and dissipation for a suspension initialized with zero granular

temperature. Squares denote the data for a suspension initialized with a finite

granular temperature corresponding to ReT = 4.

plotted them versus the granular temperature in Fig. D.2 as a phase space plot. The state of

the system is characterized by the granular temperature T and in phase space plots, the rate of

change of the state variable
dT

dt
is plotted versus the state variable T . But the rate of change

of granular temperature is simply the difference between the source (S) and dissipation (Γ).

To understand the behavior of source and dissipation separately, we plot both S and Γ versus

T in the plots shown in Fig. D.2. Source and dissipation are plotted for two sets of simulations

differing only in their initial conditions. For both cases, the solid volume fraction is 0.2, mean

flow Reynolds number is 20 and solid to fluid density ratio is 100. Triangular symbols are the

data for a suspension where the particles initialized with zero granular temperature. In this

case, the particles pick up energy from the fluid and hence we note that the source term is

greater than dissipation at initial time. Square symbols show the source and dissipation data

for a suspension initialized with a granular temperature corresponding to ReT = 4. In this case,

the particles have higher energy and thus they lose their energy to fluid. So for this case the

dissipation is initially greater than the source term. A key observation from the figure is that
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both suspensions attain the same steady granular temperature. This shows that the steady

state behavior of a statistically homogeneous gas–solids suspension is independent of the initial

temperature. Finally we note that for both suspensions, the source and dissipation are equal at

steady state. These observations verify the expressions for the source and dissipation presented

earlier and show that this is a viable approach to propose the acceleration model.



227

APPENDIX E. Equations of motion for a polydisperse suspension in an

accelerating frame of reference

Consider a two–phase flow in a finite flow volume V in physical space as an ensemble of

spherical particles. Let us assume that the solid phase consists of M discrete size classes. Each

size class α is characterized by the diamter Dα and density ρα. At time t, the nth particle

belonging to the size class α is characterized by its position vector X(n,α)(t) and its velocity

vector V(n,α)(t). A Lagrangian description is used for the particles and an Eulerian description

is used for describing the motion of the fluid.

Denoting the velocity and pressure fields of the fluid by u(x, t), p(x, t) respectively, the gov-

erning equations of motion for the fluid phase in a reference frame E fixed in space (laboratory

frame) are:

∂ui
∂xi

= 0, (E.1)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρf

∂p

∂xi
+ νf

∂2ui
∂xj∂xj

. (E.2)

In the above equation, ρf , νf are the density and kinematic viscosity of the fluid respectively.

These equations are to be solved with the boundary conditions u = V(n,α)(t) on ∂V(n,α)
s (t).

Here, ∂V(n,α)
s (t) is the surface of the nth particle belonging to the size class α whose spatial

location changes with time because of the motion of the particle.

The objective here is to solve the equations of motion of both the phases in a reference frame

such that we attain the desired mean slip Reynolds number. We first derive the equations of

motion in an arbitrary accelerating frame of reference and then identify the frame acceleration

that maintains the desired mean slip velocity. Since the particles will be accelerating in the

laboratory frame, the new reference frame denoted E will be a non–inertial frame of reference.

Let the velocity and acceleration of E with respect to the laboratory frame E be Vf (t) and
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Af (t) respectively. The transformation rules between the two frames are :

u = u−Vf ,

x = x−
∫ t

0
Vf (t

′)dt′

t = t. (E.3)

Effecting the transformation rules defined above into Eq. E.2 the governing equations of motion

for the fluid phase in E are

∂ui
∂xi

= 0, (E.4)

∂ui
∂t

+ Si = − 1

ρf
gi + νf

∂2ui
∂xj∂xj

−Af,i (E.5)

where S and g respectively are the convective and pressure gradient terms in E. It is assumed

that the particle assemblies are homogeneous at all times. If the particle configuration is

homogeneous then the ensemble averaged quantities can be estimated by volume averaging.

The flow quantities can be decomposed as a sum of the volumetric mean and a fluctuating

part. For instance, the pressure gradient can be decomposed as g = ⟨g⟩V + g′ where, the

volumetric mean pressure gradient ⟨g⟩V is defined as

⟨g⟩V =
1

V

∫
V
gdV. (E.6)

In the above equation, V is the volume of the physical domain. Thus, E.5 can be rewritten as:

∂ui
∂t

+ Si = − 1

ρf
⟨gi⟩V − 1

ρf

∂ψ′

∂xi
+ νf

∂2ui
∂xj∂xj

−Af,i. (E.7)

In the above equation, g′ is written as the gradient of a fluctuating pressure ψ′. In a similar

fashion averaged fluid velocity can be estimated by averaging the fluid velocity fields over the

fluid volume i.e, ⟨
u
(f)
i

⟩
=

1

Vf

∫
Vf

uidVf . (E.8)

where Vf is the volume of the region occupied by the fluid. The evolution equation for the

phasic averaged fluid velocity can be obtained by integrating Eq. E.7 over the fluid volume.
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The resulting equation is:

d

dt

⟨
u
(f)
i

⟩
= − 1

ρf
⟨gi⟩V +

1

ρfVf

∫
∂Vs

ψ′n
(s)
i dA−

νf
Vf

∫
∂Vs

∂ui
∂xj

n
(s)
j dA−Af,i (E.9)

In the above equation ∂Vs denotes the solid surface bounding the fluid volume and n
(s)
j denotes

the component of normal vector pointing outward from the surface of the solid particles. This

equation can be written in a simple notation as:

d

dt

⟨
u
(f)
i

⟩
= − 1

ρf
⟨gi⟩V − 1

ρfVf

M∑
α=1

FD−α,i −Af,i. (E.10)

where, FD−α represents the sum of the surface forces acting on the particles belonging to the

size class α:

FD−α,i = ρf

Nα∑
n=1

[
− 1

ρf

∫
∂V(n,α)

s

ψ′n
(n,α)
i dA+ νf

∫
∂V(n,α)

s

∂ui
∂xj

n
(n,α)
j dA

]
.

The equations of motion for the particles in the reference frame E will be derived now. The

equation of motion for the nth particle belonging to size class α is obtained as:

mα
dV

(n,α)
i

dt
=− ⟨gi⟩V Vα + F

(n,α)
D,i −mαAf,i +

Nα∑
k=1
k ̸=n

F
C
nk,i +

M∑
β=1
β ̸=α

Nβ∑
k=1

F
C
nk,i. (E.11)

In the above equation, the third term on the right hand side represents the contact force acting

on the nth particle due to collisions with other particles belonging to the same size class α.

The last term is the contact force acting on the nth particle due to collisions with particles

belonging to all other size classes.

We can define a mean solid velocity for each size class as follows:⟨
u(s,α)

⟩
=

1

Nα

Nα∑
n=1

V
(n,α)

(E.12)

where Nα is the total number of particles in the size class α. The evolution equation for the

mean solid velocity in each size class can be derived by summing Eq. E.11 over all the particles

belonging to that size class. The resulting equation is:

d

dt

⟨
u
(s,α)
i

⟩
= − 1

ρα
⟨gi⟩V +

1

ραϕαV

FD−α,i +

M∑
β=1
β ̸=α

F
C
α−β,i

−Af,i (E.13)
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where F
C
α−β is the total contact force acting on the size class α due to collision with particles

belonging to the size class β. From the above equation it is clear that the mean solid velocity

whose evolution is not governed by the collisional forces is the mass weighted mixture mean

velocity which can be defined as:

⟨
u(s)

⟩
=

∑M
α=1 ραϕα

⟨
u(s,α)

⟩∑M
α=1 ραϕα

. (E.14)

Using the above definition, evolution equation for the mixture mean solids velocity is

d

dt

⟨
u
(s)
i

⟩
= − ϕ∑M

α=1 ραϕα
⟨gi⟩V +

1∑M
α=1 ραϕαV

M∑
α=1

FD−α,i −Af,i. (E.15)

Let us assume that all the size classes have the same density ρp. The equation for the mean

slip velocity can now be obtained by subtracting (E.9) from (E.15:

d

dt

⟨
W

(s)
i

⟩
=

(
1

ρf
− 1

ρp

)
⟨gi⟩V − 1

V

[
1

ϕρp
+

1

(1− ϕ)ρf

] M∑
α=1

FD−α,i. (E.16)

The mean pressure gradient sets the mean slip between the solid and the fluid phases. The

frame acceleration can be chosen to be equal to the rate if change of the mixture mean solid

velocity. This choice of the frame acceleration sets the level of both the solid and fluid velocity.

The frame acceleration can be obtained as:

Af,i = − 1

ρp
⟨gi⟩V − d

dt

⟨
u
(s)
i

⟩
+

1

ϕρpV

M∑
α=1

FD−α,i. (E.17)

From equation E.13 it is clear that the slip velocity between the size classes evolves because

of the imbalance between the fluid–particle force and the contact force due to collisions.
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