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ABSTRACT 

 

The rolling process is an excellent method for processing new high performance 

polymers. Skew rolling, as a highly accurate and highly efficient rolling technology, has been 

commonly used to enhance mechanical properties and productivity. However, the complexity 

of the mechanics in the skew rolling process of polymers is a significant challenge for 

manufacturers and researchers. In this work, models for calculating the deformed area under 

parallel rolling and skew rolling have been developed. Based on the models, interactive force 

models in the rolling process have also been developed. Finite element analysis was used to 

simulate the rolling process. Experimental results were compared with the force model and 

simulation results. A study on angle compensation based on the influences of angle and 

friction conditions on force ratio Fxd/Fzd in the skew rolling process was carried out. The 

results showed the accuracy of models and equations, and the work offered the possibility of 

angle compensation for the two polymers employed in this study. 
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CHAPTER 1.   INTRODUCTION 

 

1.1.   Motivation 

 

New rolling mills, such as the continuous variable crown (CVC) and pair cross (PC) 

[1-3], as well as work rolls crossing and shifting (RCS) [4] mills have been introduced and 

developed to improve the strip shape and profile.  The PC mill was first used commercially at 

Nippon Steel’s Kimitsu Works in 1991 [1], and it has been commonly used in hot rolling 

mills for plating and stripping as a finishing mill. In the development of highly accurate and 

highly efficient rolling technology, the PC mill significantly improved the capability of the 

shape and crowns control, reduced the edge drop, and also enhanced mechanical properties 

and productivity [1]. This system has been applied not only to hot strip mills [5, 6] but also to 

plate mills and cold strip mills and the areas of application are still increasing. Research has 

focused on analyzing the rolling load or rolling torque generated by pair cross mills [7, 8], 

and on the strip profile control capability of the roll crossing mill[9], and so forth. 

Polymers have increasingly been used to replace metallic parts in a wide range of 

applications over the past few decades. The rolling process is one of the best methods for 

processing new high performance polymers. The process allows for fabrication of more 

highly valued products than products produced by simple injection [10] and it can produce 

components more accurately and effectively [11]. The rolling process has been used for 

many other materials such as polypropylene (PP), polyethylene and polyoxymethylene due to 

the possibility of achieving high molecular orientation [12].  

However, only a small amount of research literature was found on the skew rolling 

process of polymers. The complexity of the mechanics of deformation is a significant 
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challenge to the skew rolling process of polymers. The motivation of this research is to study 

the influence of crossed angle and friction conditions on the mechanics of polymers in the 

skew rolling process.  In this work, a geometric model of deformed specimens will be built 

and forces will be analyzed.  Methods to control the forces in the skew rolling process will be 

proposed based on the investigation of forces.  

 

1.2.   Research framework and objectives 

 

The objective of this research is to study the influence of crossed angle and friction 

conditions on the force ratio Fxd/Fzd in order to offer methods to control axial force. A 

simplified force model in parallel rolling was applied in order to compare the measured 

forces via dynamometer in order to determine the friction conditions for the two different 

materials.  A force model in skew rolling was developed based on the friction conditions in 

the parallel rolling. Meanwhile, measured data were utilized to validate the models in skew 

rolling. With validated models, the influence of crossed angles and friction conditions on the 

force ratio Fxd/Fzd was analyzed.  

 

1.2.1.   General design of a skew rolling mill 

 

This section focuses on the design and construction of the skew rolling mill to 

produce a skew rolling system and to measure forces in three axes via a dynamometer, as 

well as to include the basic functions of traditional rolling mills. This section also describes 

the calibration process for the dynamometer in detail.  
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1.2.2.   Experimental validation of force analysis 

 

Forces in parallel rolling and skew rolling are fundamental characteristics in the 

rolling process. Forces characteristics in the rolling process affect the rolling stability, 

potentially causing concern for practical applications. This section simplifies and analyzes 

force models of parallel rolling and skew rolling. Forces were measured and experimental 

outcomes were compared to those models to provide validation.  

 

1.2.3.   Study of the angle compensation 

 

Based on the validated models in skew rolling, the influence of a) rolling process 

parameters, b) the crossed angle, and c) friction conditions, on the force ratio Fxd/ Fzd were 

analyzed.  This section captured the angles and friction conditions on the force ratio in order 

to demonstrate the feasibility of compensating angles in order to minimize the axial forces on 

bearings. 

 

1.3.   Dissertation organization 

 

The remainder of this dissertation is divided into five chapters. In Chapter 2, a 

literature survey with regard to rolls, skew rolling, and friction in the rolling process is 

conducted. In Chapter 3, details of the skew rolling mill are illustrated. Design concepts to 

realize required functions are described in detail. In Chapter 4, force models of parallel 

rolling and skew rolling were built and compared with experimental behaviors. In Chapter 5, 

the influence of angles and friction conditions on the force ratio is studied and the angle 
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compensation is analyzed based on the results. A summary and conclusion are presented in 

Chapter 6.  
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CHAPTER 2.   LITERATURE SURVEY 

 

2.1.   Rolling  

 

Rolling is a process of reducing the thickness or changing the cross section of long 

workpieces through compressive forces applied by a set of rolls; thus the process is similar to 

rolling dough with a rolling pin to reduce the dough’s thickness.  Rolling is widely used due 

to its high rate of production and the accurate control of final product [13]. Rolling is used to 

produce slabs, sheets, strips, and foils with a dense attractive surface finish and strengthened 

mechanical properties. Rolling processes can be divided into hot rolling process and cold 

rolling process, based on the rolling temperature.  

Hot rolling is a metalworking process that occurs above the recrystallization 

temperature of the material. After the grains deform during the rolling process, they 

recrystallize and prevent the metal from hardening while being worked. Hot rolled metals 

have little directionality in general in terms of their mechanical properties; their residual 

stresses are induced by deformation. But in certain instances non-metallic inclusions would 

impart a certain amount of directionality, and workpieces less than 20 mm thick often have 

some directional properties. Also, a lot of residual stresses to those shapes that have a non-

uniform cross-section are induced by non-uniform cooling. While the finished product is of 

good quality, the surface is covered in mill scale, which is the anoxide that forms at high 

temperatures. It is usually removed through pickling or by a smooth clean surface process, 

which reveals a smooth surface [14]. Dimensional tolerances are usually two to five percent 

of the overall dimension [14]. 
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Cold rolling is a metalworking process that occurs when the metal’s temperature is 

below its recrystallization temperature (usually at room temperature); this process increases 

the strength by strain hardening. This process also improves the surface’s finish. Products 

commonly produced by cold rolling include sheets, bars, strips, and rods; these products are 

usually smaller than products that are produced by hot rolling. Due to the smaller size of the 

workpieces and their greater strength compared to hot rolled stock, four-high or cluster mills 

are used [14]. It is worth noting that in a single pass, cold rolling cannot reduce the thickness 

of a workpiece as much as hot rolling can. 

Other shapes can be cold-rolled if the cross-section is relatively uniform and the 

transverse dimension is relatively small. Cold rolling shapes requires a series of shaping 

operations, usually along the lines of sizing, breakdown, roughing, semi-roughing, semi-

finishing, and finishing. 

Although about 90% of all metals produced by the metalworking processes are 

produced through a rolling process [15], the rolling process has also been used for many 

other materials including polypropylene (PP), polyethylene and polyoxymethylene due to the 

possibility of achieving a high level of molecular orientation [12]. Rolling is an excellent 

method for processing new high performance polymers. It can be used to manufacture 

products that are more highly valued than products produced by simple injection [10]. The 

rotary forming process has attracted significant interest in recent years because this process 

can produce components more accurately and effectively [11]. Polymers have increasingly 

been used to replace metallic parts in a wide range of applications over the past few decades. 

Polymers have been used in rolling processes to produce materials with various performances 

characteristics [16].  
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Ring rolling is a special forging process that has demonstrated the feasibility of cold 

processing of certain polymers [11]. Research on polymers subjected to cold rolling has been 

done extensively: plastic deformation and morphology change of crystalline polymer 

materials by rolling processes were investigated by J. Qiu et al. [10, 12]. Amorphous 

transitions in glassy polymers subjected to cold rolling was studied by D. Cangialosi et al. 

[17]. Elastic-recovery properties and dimensional changes followed by the cold rolling of 

rods of thermoplastics of various kinds were studied [18]. Fatigue crack growth in 

polycarbonate (PC) and polyvinylchloride (PVC) have been studied using anisotropic sheets 

oriented by cold rolling [19]. Deformation of semicrystalline polymerics subjected to cold 

rolling were studied by T. Asano and Y. Fujiwara [20]. The tensile behavior of high density 

polyethylene subjected to cold rolling was studied by R. M. Caddell et al. [21]. The effects of 

cold rolling on crazing of polycarbonate was studied by G. O. Shonaike and P. E. Reed [22].  

 

2.2.   Friction in rolling  

 

Friction is due to the interactions between the opposite asperities of the two sliding 

surfaces. From the interactions, friction is divided into two categories: adhesion and 

deformation [23]. Adhesion is the characteristic that some asperities of the contact surfaces 

will adhere when there is load in the two objects. There would be a junction between the two 

objects that will impede the motion of the two objects. Friction is generated as a result of the 

relative motion of one object over another object.  The second kind is deformation in the 

macroscopic interaction. The deformation will cause the harder surface to plough grooves in 

the softer surface. 
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K. L. Johnson studied the friction in rolling contact in detail [24]. In Johnson’s 

opinion, all the motions between two contact bodies can be divided into sliding, rolling, and 

spinning. The resultant forces can always be resolved into a normal force, which acts in the 

direction of the normal on the initial contact point of the two contact bodies, and a tangential 

force, which acts on the tangential plane. If the normal force is zero, the motion is known as 

free rolling, while the other is called tractive rolling. In free rolling, the contact stress and 

deformation can be calculated using Hertz theory [25].  

F. W. Carter [26], H. Poritsky [27], K. L. Johnson [24] and R. D. Arnell [28] have 

studied the tractive rolling of elastic cylinders in detail. In the contact zone of tractive rolling, 

there is a central “stick” area and two outer “slip” areas.  This is possible because of the 

deformable nature of materials. Thus, if the normal force is constant while the tangential 

force is increased from zero, microslip occurs at the edges of the contact zone and spreads 

inward as the tangential force increases; when the tangential force reaches the limit value, the 

two zones of slip meet in the center and gross sliding begins. 

Rolling resistance also comes from the adhesive and deformation losses even though 

the magnitude is smaller comparatively. Deformation loss (as opposed to adhesive loss) is the 

major loss in the resistance of free rolling. In tractive rolling, deformation loss is also the 

dominant factor of resistance.  

 

2.3.   Skew rolling 

 

The skew rolling process, evolved from the transverse rolling process, is a unique 

rolling process that produces near-net-shape cylindrical or annular metal components and the 
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process has the ability to contour the outside diameter. The name “skew rolling” reveals one 

of the main characteristics of this process: that the axes of the rolls are arranged obliquely to 

each other with a small angle [29]. Fig. 2.1 shows an image of the skew rolling with grooved 

rollers. Worth mentioning here is that in our setup, the cylindrical rollers are plain surfaces 

without grooves.  

 

 

Fig. 2.1 Skew rolling mill with groves 

 

Skew rolling is a new technology for producing various shafts. Compared to 

traditional casting, forging, and machining, this process has many remarkable advantages in 

productivity, material consumption, overall mechanical properties and service life [30]. 

Various kinds of products ranging from balls, rollers, stepped shafts, to anchor rods with 

threads are being manufactured by skew rolling [30]. 

However, the complexity of the forming process is a notable challenge for all 

manufacturers when developing skew rolling processes. Theories that explaining the 

mechanics and tool workpiece interactions are mainly based on simplified assumptions and 

empirical results. Numerous variables in the process are another challenge the manufacturers 

face.  
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To tackle those challenges, the most powerful and most widely employed tool is the 

finite element method. The finite element method is widely used to characterize the 

workpiece material stress, strain, and deformation behavior [31]. Another method is to 

analyze the skew rolling method through mathematical models derived and simulated based 

on envelope theories and assumptions [32]. To design the parameters in the skew rolling 

process, mathematical algorithms are also widely employed to optimize the design process 

[33].  
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CHAPTER 3.   GENERAL DESIGN OF A SKEW ROLLING MILL 

 

3.1.   General design 

 

According to the aim of the experiments for cold skew rolling, the rolling mill should 

have the following abilities: 

1. The ability to roll the specimens at an adjustable speed; 

2. The ability to change the gap between two rollers in the range of 1mm-5mm; 

3. The ability to skew the rollers along a range of angles from -15-15; 

4. The ability to measure the forces along three axes 

. 

3.2.   Design of the power source with speed adjustment 

 

To provide power for the rolling mill, a motor (Marathon electric) and gearbox 

(Baldor Electric Co.) are applied and connected by a coupler (Lovejoy) to the roller shaft as 

seen in Fig. 3.1. Power is transmitted through the coupler to the bottom roller which makes 

the bottom roller the drive roller. When specimens are inserted between the two rollers, the 

top roller turns due to the friction between the specimens and the top roller; this makes the 

top roller the driven roller.  
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Fig. 3.1 Scheme for the motor and the bottom roller of the skew rolling setup  

 

To adjust the rotation speed, a variable frequency drive (VFD) (Toshiba, VF-S15) is 

employed. By connecting this VFD to the motor, the rotation speed of the rollers can be 

controlled. Rotational speed adjustment is the only function that is required for the current 

research, although this VFD offers a variety of functions which can be explored. Details of 

the VFD can be seen in Fig. 3.2.  

 

Bottom roller 

Dynamometer 

Coupler 

Motor 
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Fig. 3.2 Detailed view of the Toshiba VFD used to adjust the RPM 

 

3.3.   Design to change reduction ratios  

 

The gap between the two rollers can be adjusted by various methods. Since skewness 

is one of the main functions of this setup, common designs to adjust the gap cannot be 

applied here. In our setup, slotted shims with various thicknesses were inserted underneath 

the screws of the top roller. Various gaps of the two rollers can be achieved by alternating the 

number of shims along with various thicknesses of shims, thus raising the height of top roller. 
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By changing the gap, the reduction ratios can be while the specimens’ thicknesses are held 

constant. Fig. 3.3 shows the shape of shims used in the setup. 

 

 

Fig. 3.3 Shims used in the setup to adjust gap between two rollers 

 

3.4.   Design to realize the skewness function of the setup  

 

The most common rolling mills are parallel rolling mills, but in this study the top 

roller can have an angle positioned up to ±15° oblique to the bottom roller. The power supply 

for the top roller could be difficult given this fact. To achieve the goal of the skew roller, the 

upper plates that support the top rollers at both ends are made with arc slots that create the 

angles that can be seen in Fig. 3.4. The angle is adjusted by loosening the screw; moving the 

pillow blocks along the arc slots to a desired angle; and retightening the screw.  
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Fig. 3.4 Solidworks drawing for the upper plate to achieve required angle 

 

3.5.   Design to acquire forces  

 

3.5.1.   Dynamometer 

 

To acquire forces in the rolling process, a piezo-dynamometer (Kistler 9257B) has 

been installed underneath the pillow block at one end, close to the motor of the bottom roller, 

as can be seen from Fig. 3.1. The dynamometer is designed to have compactness, great 

rigidity, and high natural frequency. The dynamometer setup is corrosion-resistant and is 

protected against of spray water and cutting fluids. Forces of three axes can be measured by 

this dynamometer with the specifications in Table 3.1.  
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Table 3.1 Specifications of the dynamometer employed in the setup 

 X axis Y axis Z axis 

Measurement 

Range (kN) 

-5-5 -5-5 -5-10 

Sensitivity (pC/N) 7.94 7.93 3.71 

 

Sensitivities of the three axes are listed, and these will be applied to calibrate the 

dynamometer. Ranges of the three axes were seen to be wide in the later experiments.   

 

3.5.2.   Data acquisition interface 

 

An amplifier was employed to amplify the dynamometer’s signal. Physical data were 

collected through the data acquisition card inserted in the computer. A LabVIEW program 

was created to record data and for the researchers to operate. Fig. 3.5 shows the force 

measurement system in this setup. 

 

 

Fig. 3.5  Force measurement setup flowchart in the rolling mill 

 

Fig. 3.6 and Fig. 3.7 present the LabVIEW interfaces that are designed to record 

forces. 

 

Dynamomet
er 

Amplifier Data acquisition card 
LabVIEW 
interface 
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Fig. 3.6  LabVIEW interface front panel. The white, red, greed curves stand for X, Y, and Z 

forces  

 

 

Fig. 3.7 Block diagram behind front panel of the LabVIEW program 
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The white, red, and green curves in the three windows from top to bottom in Fig. 3.6 

are the real-time forces of the X, Y, and Z axes. The curves can be exported to other files for 

further investigation. Fig. 3.7 shows the block diagram behind the front panel to portray how 

the physical signals are converted to forces. Signals from the data acquisition card are read 

by this program and are converted to forces based on the settings of the amplifier. Three 

channels of force data are illustrated by waveform charts.  

 

3.5.3.   Dynamometer calibration  

 

To obtain accurate force data, the dynamometer needs to be calibrated. The common 

method for calibration is to use standard weights in three axes. The standard weights are 

compared with the readings from the dynamometer to find the adjustment factor. Due to 

space limitation, two axes in this rolling setup could not be accomplished. The amplifier in 

this system, however, offers a second way to calibrate.  

 

 

Fig. 3.8 Dynamometer shows the sensitivities and amplification factors of three axes 
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As shown in Fig. 3.5, the dynamometer is connected to an amplifier that is employed 

to enhance the ability to acquire data. To calibrate the dynamometer, the sensitivities of three 

axes from Table 3.1 are applied in the first row of amplifier. To meet various ranges of the 

three axes, amplification factors in three axes are adjusted both in the amplifier and in the 

block diagram. Values of amplification factors in the amplifier should remain consistent with 

values in the equations in order to calculate forces in three axes in the block diagram. Details 

can be seen in Fig. 3.8. As the figure shows, the three values of the first row are the 

sensitivities of the X, Y, and Z axes. The second row of the amplifier is the amplification 

factors of three axes. Values are consistent from Table 3.1, Fig. 3.7, and Fig. 3.8. After the 

calibration, standard weights were placed on the dynamometer to validate the whole 

procedure and the results showed that the calibration was effective and successful. 

 

CHAPTER 4.   FORCE ANALYSIS AND GEOMETRY MODELS IN THE ROLLING 

PROCESS 

 

4.1.   Force analysis and geometry model of parallel rolling 

 

Rolling is the process of reducing the initial thickness by compressive forces that are 

applied by rolls. Parallel rolling is a process in which the axes of two rollers are parallel to 

each other. Fig. 4.1 shows the schematic deformation of the specimens in between the two 

rollers. h0 is the thickness of the specimen. hf stands for the final thickness, which is equal to 

the gap between two rollers. w is the width of the specimen. R is the radius of rollers. The 

two rollers in our setup have the same radius. 
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Fig. 4.1 Deformation scheme in parallel rolling process  

 

 

Fig. 4.2 Schematic drawing of Sp 

 

The reduction is relatively small compared to the radius of the roller; the deformed 

area Sp in XY plane seen in Fig. 4.2 can be calculated as: 

 

 fp hhRwS  0  ( 1 ) 
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The force in Z axis Fzp that is due to the reduction can be easily calculated as the 

product of the pressure P in the Z axis and the deformed area in the XY plane.  

 

zp pF P S   ( 2 ) 

  

The force in the Y axis Fyp can be represented as the product of the coefficient of 

friction μ and the force in the Z axis.  

 

yp zpF F    ( 3 ) 

 

In the parallel rolling process, there is no component force in the X axis.  

Fig. 4.3 shows the force analysis for the bottom roller. For simplicity, the pressure 

distribution is assumed to be uniform along the width of the roller.  The dynamometer is 

placed underneath one of the two ends of the bottom roller as seen from Fig. 3.1. 

 

 

Fig. 4.3 Forces analysis on bottom roller in parallel rolling process 
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Fzd and Fyd are the forces measured by the dynamometer, and they are shown in the 

LabVIEW program. From the forces scheme on the bottom roller shown in Fig. 4.3, it would 

be straightforward to find the equation ( 4 ) ( 5 ) ( 6 ) ( 7 ) due to the symmetry: 

 

zpzd FF
2

1
  ( 4 ) 

 
fzd hhRPwF  0

2

1
 ( 5 ) 

ypyd FF
2

1
  ( 6 ) 

 fyd hhRPwF  0
2

1
  ( 7 ) 

 

In a later study, the forces shown on the LabVIEW program are compared with the 

forces calculated following these relations above.  

 

4.2.   Force analysis and geometry model of skew rolling 

 

The top roller can be rotated to have an angle  ranging from -15° to 15° obliquely to 

the bottom roller through the angle guidance. A specimen is positioned and rolled as shown 

in Fig. 4.4. x is the contact width of which the value should be no greater than the specimen 

width w.  
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Fig. 4.4 Specimen in between the two rollers, the red rectangle is the maximum area it can 

deform, the arc shaped area is an approximate area assumed 

 

From the Fig. 4.4, it is simple to determine the maximum deformed area, which is 

shown as a rectangle Ss: 

 

2

2
tan xSs 











 ( 8 ) 

 

The edges of the red rectangles would not be in contact with either roller in the actual 

experiments. The actual contact area would be more accurately represented as an arc shaped 

area. Assume the curves are parts of circles; and then the arc shaped area would be: 

 

2

2
tan

2
cos4

)(
2

tan

2
tan2

2
sin4

2
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
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
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








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







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







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




xx

xx
xSa  ( 9 ) 

 

The area ratio Ra is defined as:  

 

a

s
a

S

S
R   (10 ) 
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Due to various materials properties, deformation would be different when different 

materials were used. Consequently, deformed areas would be different even with the same 

reduction ratio. An area factor would have to be introduced to calculate the real deformation 

area.  

The contact curve from the center point to the edge of the specimen between the 

bottom roller and the lower surface of the specimen can be simplified as seen in Fig. 4.5: 

 

 

Fig. 4.5  Specimen in contact with the bottom roller surface. Contact curve is represented as 

the ellipse dot line 
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Points on the ellipse curve should fall into the equation ( 11 ):  

 

 

1

sin

2
cos2 2

2








 



































R

hhR

R

x

f





 ( 11 ) 

 

h is the distance from any point on the curve to the bottom line of the top roller, as can be 

seen in Fig. 4.5.  

To calculate the area Ss, x needs to be determined. Firstly, let x equal w, the specimen 

width, to obtain the maximum height hmax. Compare the specimen thickness h0 with hmax. If 

h0 is smaller than hmax , it indicates that part of the specimen is not in contact with the bottom 

roller’s surface. The value x can be obtained by solving the equation ( 11 ), under h= h0.  If h0 

is larger than hmax, it indicates that even the edge of the specimen is deformed. The contact 

width is w while the thickness of the specimen at the edge is not h0, but hmax. 

Due to the skewness of the rollers, there exists a component force in the X axis in the 

bottom roller; and this is a distinct difference compared to parallel rolling.   
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Fig. 4.6  Force analysis on bottom roller under skew rolling process 

 

As shown in Fig. 4.6, Fzs is the pressure force on bottom roller that is due to the 

reduction. Fzs can be simply represented by the product of the pressure P in the Z axis and the 

deformed area in XY plane. 

 

azs SPF   ( 12 ) 

 

Fys is the component friction force caused by the pressure.  

 











2
cos


 zsys FF    ( 13 ) 

 

Fxs is also the component friction force caused by the pressure.  
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









2
sin


 zsxs FF        ( 14 ) 

 

Fzd and Fyd are the forces measured by the dynamometer which are shown in the 

LabVIEW program. From the forces scheme on the bottom roller shown in Fig. 4.3, it would 

be straightforward to find the equation ( 15 ) ( 17 ) due to the symmetry: 

 

zszd FF
2

1
        ( 15 ) 
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      ( 16 ) 

ysyd FF
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1
        ( 17 ) 
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      ( 18 ) 

 

However, due to the over constraint of bottom roller in the X axis direction, the 

relationship between Fxd  and Fxs is not determined.  
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4.3.   Experimental validation of force analysis 

 

4.3.1.   Experimental data, calculations and simulations of parallel rolling 

 

To validate the analyzed forces, some experiments were conducted. Two materials, 

PETG (polyethylene terephthalate-glycol) and HDPE (high-density polyethylene) were 

chosen to be rolled with different reductions. A finite element analysis (FEA) simulation was 

also performed to obtain the resultant forces. The drawing in Abaqus was based on the 

original Solidworks files for fabrication. The top roller and bottom roller were set as analytic 

rigid parts in order to save simulation time. For later experiments, only plastics were inserted 

in between the two rollers. Because of this, neglecting the deformation of the rollers would 

not introduce significant error.   

 

 

Fig. 4.7 Rolling model created in Abaqus 
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The position of rollers was locked. All displacements and rotations were set to zero 

except the rotation about the X axis in Fig. 4.7. The specimen was initially positioned in 

between the two rollers and an angular velocity of the bottom roller was introduced when the 

specimen started being rolled. Properties of the specimens followed the two curves in Fig. 

4.10 and Fig. 4.11. Resultant forces were obtained after the rolling.  

 

Table 4.1 Experimental settings of parallel rolling for HDPE and PETG  

 Final 

thickness, 

hf (mm) 

Thickness, 

h0 (mm) 

Reduction, 

h0-hf, 

(mm) 

Width, w 

(mm) 

Average 

pressure, 

P (MPa) 

Roller 

radius, R 

(mm) 

Coefficient 

of friction, µ 

HDPE-1 1.0922 1.5241 0.4319 50.8 23.4 69.85 0.1 

HDPE-2 2.286 3.048 0.762 50.8 23.4 69.85 0.1 

PETG-1 1.27 1.397 0.127 50.8 52 69.85 0.05 

PETG-2 2.54 2.794 0.254 50.8 52 69.85 0.05 

 

Fig. 4.8 and Fig. 4.9 show the forces measured by the dynamometer. Due to the 

unbalanced weight of the roller itself, there are some fluctuations when there were no 

specimens in between the rollers. Compared to the measured values, the error caused by the 

imbalance can either be deducted from the total values or it can be neglected due to its small 

magnitude.   

The curves in Fig. 4.8 and Fig. 4.9 are not flat when the specimen is being rolled and 

measured. One reason might be small vibrations since the rollers are not perfectly rigid; the 

second reason might be the specimens didn’t move straight which made the deformed area 
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varying in the rolling process. The average values of the curves when the specimens were 

being rolled were recorded on the table. 

 

 

Fig. 4.8  Measured Y axis force under parallel rolling with different reductions 

 

 

Fig. 4.9 Measured Z axis force under parallel rolling with different reductions 
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Forces of HDPE-2 and PETG-2 were much larger than forces of HDPE-1 and PETG-

1 both in the Z axis and the Y axis directions. From equation  ( 3 ), it can be seen that the Y 

axis force is proportional to the Z axis forces. The thickness of HDPE-2 and PETG-2 was 

reduced more, leading to more deformation and more force. Fig. 4.8 and Fig. 4.9 show the 

forces in the Z axis have increased approximately by 2000 N for both materials. Due to 

different frictional conditions for two materials, the forces increase in the Y axis direction by 

different amounts.  

To calculate the force by applying equations ( 5 ) and ( 7 ), two more parameters need 

to be fully understood: The average pressure and the coefficient of friction. The coefficient of 

friction varies greatly with different conditions. It would not be accurate enough to find the 

values from literature since it would be difficult to find exactly the same conditions in other 

operations. Due to this limitation, it’s reasonable to assign values and validate the assigned 

values using other conditions. In our setup, the coefficients of friction for PETG and HDPE 

in contact with the low carbon steel roller are assumed to be 0.05 and 0.1 respectively.  

The rolling is a process under plane stress. Compressive stress strain curves were 

found in the literature to offer the deformation information for the current experiments. The 

following two figures Fig. 4.10 and Fig. 4.11 from Moura et al. [34], as well as Dupaix and 

Boyce [35] are applied to show the compressive stress strain relation of HDPE and PETG.   
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Fig. 4.10 Compressive stress strain curve for HDPE, green curve in the graph is applied 

 

 

Fig. 4.11 Compressive stress strain curve for PETG, 0.5/s plane in the graph is applied 

 

The average pressure is obtained by calculating the strains of the deformed specimen 

and the corresponding stress from those curves. The average pressure is the average Y axis 

value in Fig. 4.10 and Fig. 4.11. All of the pressures are listed on the table. After the forces 

equations in the parallel rolling are determined, Fyp and Fzp can be calculated.  
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Table 4.2 Comparison between the measured forces and the calculated forces in parallel 

rolling 

 Experiment data Calculation data Simulation data 

 Fyd (N) Error (N) Fzd (N) Error (N) Fyd (N) Fzd (N) Fyd (N) Fzd (N) 

HDPE-1 320 29.7 3815 330.2 326 3264 291 3778 

HDPE-2 500 71.2 5600 787.4 445 4450 356 5816 

PETG-1 175 29.2 3900 330.2 197 3934 222 3858 

PETG-2 281 42.5 6238 516.7 288 5563 356 6489 

 

The calculated values are plotted in Fig. 4.12 and Fig. 4.13. As can be seen, the 

calculated forces are close to the measured values either in the Y axis or the Z axis. 

Experimental and simulation data are close to each other in the Z axis forces in Fig. 4.13. 

However, calculation data are generally smaller. The calculation assumes the average 

pressure in the deformed area, which may result in smaller values. For the comparison in Fig. 

4.12, the simulation is smaller than that of the experiment data of HDPE-2 while the 

calculation falls into the range of the experimental data. The simulation of HDPE-2 is smaller 

than the experiment data and this can be explained by the fact that the theoretical friction 

condition in the simulation may not accurately represent the real experiment. The friction in 

actual situation for HDPE might be higher than an assumed single value in the simulation. 

For the PETG in Fig. 4.12, the experimental data and calculation data are close, while the 

simulation data is larger. Deflection is the main reason behind this phenomenon. Since the 

rollers are considered to be rigid in the simulation, simulation data are usually larger than 

experimental data. Since the PETG is harder than HDPE, the deflection would be more 

evident for PETG rather than for HDPE. As a result, the friction assumed in the simulation 
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factor dominated the difference rather than the rigidity of HDPE. Consequently, the 

difference between the simulation and experiment of PETG would be more distinct than the 

difference between the simulation and experiment for HDPE. In the figure, it can be seen the 

Z axis force of PETG-2 is higher than the experimental force, which leads to a higher force in 

the Y axis.  

Overall, the results shown in the figures can lead to the conclusion that the assumed 

coefficient of friction can correctly represent the actual friction conditions in the rolling setup, 

since different reductions were carried out for two materials in which experimental data, 

calculated data, and simulated data precisely met each other.  

The validation of the coefficients of friction for two different materials in turn proved 

the correctness of the equations and the assumptions behind those equations.  

 

 

Fig. 4.12 Comparison among the measured forces, the calculated forces and simulated forces 

in Y axis in parallel rolling 
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Fig. 4.13 Comparison among the measured forces, the calculated forces and simulated forces 

in Z axis in parallel rolling 
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After the validation of the parallel rolling, the coefficients of friction of both materials 

are demonstrated to be accurate. In the skew rolling, the coefficients of friction are assumed 
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In the skew rolling, experiments were conducted under three different angles between 

two rollers: 15°, 10°, and 6°. Other parameter settings can be seen from Table 4.3. 
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Table 4.3 Experiment setting of skew rolling process with PETG and HDPE 

Trials PETG-15° PETG-10° PETG-6° HDPE-15° HDPE-10° HDPE-6° 

Final thickness, hf 

(mm) 
1.143 1.143 1.143 1.143 1.143 1.143 

Thickness at the 

edge, h (mm) 
1.397 1.2827 1.1938 1.4968 1.2827 1.1938 

Contact width, x 

(mm) 
42.672 50.8 50.8 50.8 50.8 50.8 

Average pressure, 

P (MPa) 
58 66 62 22 28 28 

Roller radius, R 

(mm) 
69.85 69.85 69.85 69.85 69.85 69.85 

Coefficient of 

friction, µ 
0.05 0.05 0.05 0.1 0.1 0.1 

Maximum 

deformed area, Ss  

(mm
2
) 

239.73 225.78 135.25 339.75 225.78 135.25 

Arc shaped area, 

Sa  (mm
2
) 

139.08 136.73 84.98 197.07 136.73 84.98 

Ratio, Ra 1.72 1.65 1.59 1.72 1.65 1.59 

Area factor 1.3 1.3 1.3 1.55 1.55 1.55 

 

Fig. 4.14, Fig. 4.15, Fig. 4.16 and Fig. 4.17 show the measured results of the 

dynamometer in the Y axis and the Z axis.  

 

Fig. 4.14  Measured force in Y axis of PETG under different angles 
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                      Fig. 4.15  Measured force in Y axis of HDPE under different angles 

 

 

Fig. 4.16  Measured force in Z axis of PETG under different angles 
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Fig. 4.17  Measured force in Z axis of HDPE under different angles 
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Table 4.4  Comparison between the measured forces and the calculated Y axis and Z axis 

forces for PETG and HDPE at three different angles 

 Experiment data Calculation data 

 Fyd (N) Error (N) Fzd (N) Error (N) Fyd (N) Fzd (N) 

PETG-15° 320 55.6 4600 351.1 260 5254 

PETG-10° 300 26.0 4500 497.2 292 5870 

PETG-6° 190 28.3 3500 243.4 172 3428 

HDPE-15° 380 64.4 3600 211.2 333 3368 

HDPE-10° 330 39.7 3500 278.6 296 2969 

HDPE-6° 270 38.9 2500 404.7 185 1846 

 

Table 4.4 is plotted based in Fig. 4.18 and Fig. 4.19.  

 

 

Fig. 4.18 Comparison between the measured forces and the calculated forces in Y axis in 

skew rolling for PETG and HDPE at three different angles 
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Fig. 4.19 Comparison between the measured forces and the calculated forces in Z axis in 

skew rolling for PETG and HDPE at three different angles 
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observations did not follow the trend. However, the experimental data under skew angles of 

10 and 15 are close. One explanation could be that the slip in the X axis caused a change in 

the contact area and this variance was not considered in the equations. The experimental Z 

axis forces are smaller than those calculated. This could be due to the fact that the PETG is 

harder than HDPE. With the same reduction, PETG would be harder to deform. The 

deformed area was smaller than expected. Also in the skew rolling process, the specimens 

were supposed to be fed through in the centerline between two rollers. As the specimen 

might not be fed in accurately along the centerline of two rollers, the specimen might have a 

greater component force in the Y axis than expected. That contributed to larger experimental 

data than calculations.  

Overall, Fig. 4.18 and Fig. 4.19 successfully demonstrate the force models under 

skew rolling. Due to the setup’s rigidity, there would be deflections in the rolling process that 

could contribute to the errors in the attempts to predict the exact values. The forces would 

drive the specimen away from the center, but the area calculation in the model is based on the 

contact center of the two rollers. This difference will also cause some errors compared to the 

actual data.  
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CHAPTER 5.   EXPERIMENTAL STUDY ON THE ANGLE COMPENSATION 

 

In the skew rolling process, the component force in the axial direction would be 

generated due to the crossed angle.  This component force is the force that pushes the 

bearings in the rolling setup. The influence of this force on the bearings needs to be 

understood. The influence of rolling process parameter, the crossed angle, and the friction 

conditions, on the force ratio Fxd/ Fzd was analyzed.  

 

5.1.   Experimental procedure and results 

 

Two specimens, PETG and HDPE, were rolled under eight different angles. Forces in 

the X axis Fxd and the Z axis Fzd, were measured.  Simulation has been performed under the 

same conditions. Measured data were compared to simulated data and discussed in the 

following context. 

Table 5.1 is the experimental setting for the two specimens.  

 

Table 5.1 Experiment setting of two specimens  

 Final 

thickness, 

hf (mm) 

Thickness, 

h0 (mm) 

Width, 

w (mm) 

Roller 

radius, 

R (mm) 

Coefficient 

of friction, 

µ 

HDPE 1.016 1.4732 50.8 69.85 0.1 

PETG 1.016 1.397 50.8 69.85 0.05 
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Fig. 5.1 to Fig. 5.4 are some examples of forces at various angles. Results of other 

angles are listed in the table.  

 

 

Fig. 5.1 X axis force of HDPE at an angle of 6  

 

 

Fig. 5.2 Z axis force of HDPE at an angle of 3  
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Fig. 5.3  X axis force of PETG at an angle of 3 

 

 

Fig. 5.4 Z axis force of PETG at an angle of 8  
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Forces in the Z axis were generally flatter at different angles. One reason was that the 

error of the unbalanced weight of the rollers was relatively small compared with the rolling 

forces. Another reason might be that forces in the XY plane could cause the vibration, with 

the vibration contributing to the difficulty of recording forces in the X or the Y axis. 

  

Table 5.2 Experiment X and Z axes forces of HDPE and PETG at eight different angles 

 HDPE PETG 

 Fxd (N) Error (N) Fzd (N) Error (N) Fxd (N) Error (N) Fzd (N) Error (N) 

1 
139 24 3450 350 135 25 3479 431 

2 
210 38 3561 389 195 41 3970 580 

3 
202 26 3522 298 195 23 3800 370 

4 
234 16 3705 460 200 23 3822 343 

5 
241 19 3653 197 225 45 4033 367 

6 
220 25 3700 200 230 39 4200 370 

8 
229 33 3772 194 255 55 4460 340 

10 
197 22 3811 214 225 64 3884 816 

 

Fig. 5.5, Fig. 5.6, Fig. 5.7 and Fig. 5.8 are the plotted based on Table 5.2.  
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Fig. 5.5 X axis forces of HDPE at different angles 

 

 

Fig. 5.6 Z axis forces of HDPE at different angles 
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Fig. 5.7 X axis forces of PETG at different angles 

 

 

Fig. 5.8 Z axis forces of PETG at different angles 
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were expected to increase. Forces in the axial direction were not only affected by the rolling 

forces, but were also affected by the crossed angle. Component force Fxd in the axial 

direction would decrease with the increasing angle, but the increased angle would have a 

larger rolling force that would increase the component force. From Fig. 5.5 and Fig. 5.7, 

forces in the axial direction increased from the beginning but decreased at larger angles.  

 

 

Fig. 5.9 Comparison between simulation and experiment data of Fxd/ Fzd of HDPE 
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Fig. 5.10 Comparison between simulation and experiment data of Fxd/ Fzd of PETG 
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experimental curve was off by the simulation curve 0.02, they shared the same trend, and it 

could be seen from the curve that the ratio increased significantly from 0 to 2, and then 

slightly increased from 2 to 6. After 6, the curve became flat. The experimental curve was 

less sensitive as the angle changed from 2 to 6 compared to the simulation curve. The 

deflection of the rollers in experiment processing should be taken into consideration to 

explain the slight variations between the simulation and the experiments. Other factors 

include the position in which specimens were inserted, the variation of the thickness of 

specimens, the gap change due to deflection, and so forth.  

Simulation data with different frictional conditions were also plotted as the red curves 

in both specimens. As can be seen from the Fig. 5.9 and Fig. 5.10, if the coefficient of 

friction doubled, the force ratio would be 100% larger, which was expected since the axial 

force would increase due to the coefficient of friction. The red curves didn’t show the 

threshold angles, but did show a continuous increase.  

The axial force in the rolling system is the force used to push the bearings, it would 

be meaningful to understand and control the variations. The study carried out in this chapter 

showed that for a lower coefficient of friction, the force ratio varied little after 2 for HDPE 

and 8 for PETG. The force ratio can be minimized by compensating for this threshold angle 

instead of for a larger one because they have the same force ratio. As shown in Fig. 5.9, the 

force ratio under an angle of 2 had the same value as with an angle of 10. To minimize the 

axial force under 10, only the 2 needed to be compensated.  In Fig. 5.10, the threshold 

angle would be 6. This trend which could be used to the experimenter’s advantage 

disappeared when there were larger coefficients of friction. That means that the exact angle 

needs to be compensated for, in order to minimize the axial forces. Trend difference between 
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larger coefficients of friction and lower coefficients of friction indicated that lubricants 

would benefit the compensation process by minimizing the force ratios.  
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CHAPTER 6.   CONCLUSIONS 

 

1. Hardware design and fabrication of the rolling mill provided the functions needed 

to make the gap as small as 0.25 mm; the roller can be rotated at speeds ranging from 0 to 30 

RPM; a dynamometer was successfully calibrated and could accurately measure the forces in 

the ranges of three axes; angles could be adjusted as accurately as 1, and the range could be 

up to 15.   

2. Deformation area models for parallel rolling and skew rolling have been built. 

Experiment data were measured and compared to the calculated values. Coefficients of 

friction for PETG and HDPE materials in this rolling setup were determined to be 0.05 and 

0.1 respectively. Calculations and experimental data showed that the rolling force can be 

calculated as a product of stress and the deformed area. The thrust force can be calculated as 

a product of rolling force and the coefficient of friction. Based on the friction conditions 

determined in the former section, equations in skew rolling were shown to be validated. 

Calculations and experimental data showed that the rolling force can be calculated as a 

product of stress and the deformed area. The deformed area followed the geometry built in 

the former chapter. Forces in other two axes can be calculated as two component forces of a 

product of rolling force and coefficient of friction. 

3. Throughout this study, the influence of rolling process parameter, the crossed angle, 

and the friction conditions on the force ratio Fxd/ Fzd was analyzed. The study carried out 

showed that for a lower coefficient of friction, the force ratio varied little after 2 for high 

density polyethelene (HDPE) and 6 for polyethylene terephthalate glycol-modified (PETG). 

The force ratio can be minimized by compensating for these threshold angles instead of 
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actual larger angles because they have the same force ratio. Force ratios with larger 

coefficients of friction losing this similar trend suggest that attempts to lower the coefficient 

of friction were necessary. As the axial force is the force that pushes the bearings in the setup, 

minimizing this force is necessary. The trend in Fig. 5.9 and Fig. 5.10 can be obtained with a 

lower coefficient of friction, and angle compensation can be carried out based on this trend. 

Analysis of the force ratio provided methods to minimize the forces, which is through 

lubricants and angle compensation. This study can also be expanded to other materials under 

different friction conditions to obtain threshold angles for control purposes.  
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