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ABSTRACT

Granular filters are traditionally used for water filtration and recently they are be-

ing extensively used in several chemical engineering applications. Computational fluid

dynamics (CFD) simulations are a cost-effective tool for the design and development of

granular filters in applications such as fast pyrolysis of biomass for bio-oil production.

The predictive capability of CFD simulations of granular filtration strongly depends on

the equations governing the concentration of particulates and the model for the filtration

rate. The primary objective of this work is to understand and investigate the filtration

of inertial particulates in a granular filter, and develop high fidelity models using di-

rect numerical simulations. Particle–resolved direct numerical simulation (PR-DNS) is

a first-principles approach to develop accurate models for interphase momentum, en-

ergy, heat transfer in gas-solid flow and can be developed to study granular filtration.

Another objective is to test these developed models in the CFD code ANSYS-FLUENT

to simulate a full-scale moving bed granular filter.

A direct numerical simulation–Lagrangian particle tracking (DNS–LPT) approach

has been developed to simulate moving-bed granular filtration. It is established that

DNS–LPT simulations give numerically converged results. The penetration and single–

collector efficiency obtained from DNS–LPT gives good match with published results.

The DNS–LPT results show that for inertial particles in a granular filter there is a

significant nonzero mean slip between particles and fluid. A modified effective Stokes

number that gives a good collapse of single-collector efficiency is obtained from DNS–

LPT data. Using DNS–LPT simulations we developed a model for filter coefficient in
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terms of the modified effective Stokes number that can be used in CFD simulations.

An analytical framework for calculating filter efficiency of polydisperse particles in a

granular bed is developed for cases where inertial impaction and interception are the

principal filtration mechanisms. The developed framework can be used for both the

Stokes flow and moderate Reynolds number. The results obtained from the analytical

framework give a good match with the DNS–LPT results.

The DNS–LPT approach has been used to study bouncing of particles from granule

surface by implementing hard-sphere collision between particles and granules. The DNS–

LPT results of filter efficiency is compared with the results obtained using laser-based

experiments performed by collaborators. The DNS–LPT simulations for bouncing parti-

cles are used to develop a model for adhesion probability of inertial particles in a granular

filter. In addition to the model development, the developed models are implemented and

tested in the CFD code ANSYS-FLUENT to simulate a full-scale moving-bed granular

filter.
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CHAPTER 1. Introduction

1.1 Background

The term ’filtration’ refers to the process of separating solid particles in suspension

from a carrier fluid by passing the fluid through a filtering medium which retains part

or all of the injected particles. One of the most popular filtration process is granu-

lar filtration, a separation process whereby micron and sub-micron sized particles are

removed from fluid streams by the presence of fixed (D’Ottavio and Goren, 1983) or

moving (El-Hedok et al., 2011) granular beds. In fixed beds, fine particles accumu-

late on the granules and this affects the filtration efficiency. Eventually the filtration

efficiency becomes so low that the process has to be shutdown and the granular bed

replenished in order to restore efficient filtration. The advantage of moving granular

beds is that the operation can be carried out continuously. Both liquid and gas streams

can be treated using granular filtration. Granular filtration finds applications in bio-oil

production, which requires filtration of fly ash from hot gases that are generated by fast

pyrolysis of biomass (El-Hedok et al., 2011; Ritzert et al., 2004). This is because the

stability of bio-oils is adversely affected by the presence of particulates that are formed

as a consequence of thermal pyrolysis, so removal of particulates is very important for

bio-oil production. It is also used in water and waste-water treatment (Davis, 2010;

O’Melia, 1985). It is especially useful in filtration of hot and corrosive exhaust gases in

thermal power plants, where other filters cannot be used.

The success of the above mentioned applications depend on the ability of the designer
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to choose from a wide range of design options and operating parameters such as, granule

size, flow rate of moving granules, and pressure drop across the bed. For this purpose

high fidelity computational fluid dynamics (CFD) simulations can be very useful. Im-

proving CFD simulations of fixed and moving bed granular filters (MBGF) is useful for

improving the design of MBGF for bio-oil production. However, these CFD calcula-

tions cannot resolve the flow past individual granules and they represent the filtration

rate of particles approximately using models. Existing models for particle filtration rate

are obtained from flow models that are formulated on the assumption that a simple

geometry (isolated sphere, sphere-in-cell, capillary) can be used to represent randomly

packed granular media. These simple geometric models at best only approximate actual

granular bed. The flow fields through these simple models are obtained by neglecting

the convective term in Navier-Stokes equations which are valid for Stokes flow.

The current work is focused on developing a direct numerical simulation–Lagrangian

particle tracking (DNS–LPT) approach that accurately represent, the flow field in a gran-

ular bed and tracks particles through the flow field. The DNS–LPT approach developed

here can be used for both low and moderate Reynolds number. We use DNS–LPT data

to develop improved models for granular filtration that can be used in CFD simulations

of MBGF.

1.2 Basics of granular filtration

The basic principle of granular filtration is to pass the fluid-particle suspension

through a medium composed of granular substances called a granular bed. As the

suspension flows through the granular bed, particles get deposited on the surface of the

granules. The deposition of suspended particles on the granule consists of two steps:

transport and attachment or bouncing. In the first step, particles present in the suspen-

sion move towards the vicinity of granules and the rate of particle transport is determined
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primarily by inertial impaction, interception, gravitation and Brownian diffusion (Tien

and Ramarao, 2007). In the attachment or bouncing step the particle can either stick

or bounce from the surface of the granules depending on the size, shape and material

properties of the particles and granules. Diffusional and gravitational effects in granular

beds are significant only for very small particles (dp <1.0 µm) at low velocities (Gutfin-

ger and Tardos, 1979). The particles found in applications considered in this study fall

in the category of inertial impaction and interception and the fluid streams are at low

and moderate Reynolds numbers (10 to 100).

Inertial impaction and interception are significant granular filtration mechanisms for

particles with diameters greater than 1 µm. Granular filtration in the inertial impaction

and interception regimes is a strong function of particle inertia that is characterized by

the Stokes number St = 〈W 〉 d2pρp/18Dgµ (D’Ottavio and Goren, 1983; Tien and Rama-

rao, 2007; Araújo et al., 2006). The Stokes number is the ratio of the particle momentum

response time to a characteristic fluid time scale. For filtration in a homogeneous gran-

ular bed with a constant slip velocity between fluid and granules 〈W 〉, the characteristic

fluid time scale is taken to be Dg/ 〈W 〉, where Dg is the granule diameter. Note that it

is the mean slip velocity between fluid and granules (not particles) that determines the

scale of fluid motions. The particle momentum response time is τp = d2pρp/18µ, where

dp is the diameter of the particle, ρp is the density of the particle, and µ is the dynamic

viscosity of the fluid. For the case of Stokes or low Reynolds number flow granular fil-

tration is a function of Stokes number St and granule volume fraction ǫs. For moderate

Reynolds number Rem = (1− ǫs) 〈W 〉Dgρf/µ, granular filtration is a function of Stokes

number, granule volume fraction and Reynolds number, where ρf is the fluid density.

This additional dependence on Reynolds number at moderate Reynolds number is be-

cause the fluid time scale in Stokes number is defined based on the mean slip velocity

between fluid and granules. The change in flow patterns with Reynolds number also

effects the filtration of particles in a granular bed.
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1.3 Modeling approaches

Filtration theories that describe the capture of particles in a granular bed can be clas-

sified into two types: macroscopic and microscopic. The macroscopic approach consists

of the relationship based on the conservation of the particles in a granular bed:

∂C

∂t
+ Us∂C

∂x
= S, (1.1)

with a model for the sink term S = −λUsC, where C is the concentration of particles,

λ is the filter coefficient, and Us is the superficial velocity of the fluid. Equation 1.1

assumes that the particles convect with Us and do not have any relative velocity (later

in Chapter 2 it will be shown that this relative velocity is not negligible for finite inertia

particles). The present study is focused on clean-bed removal, where it is assumed that

the effect of particle deposition on granules does not affect the fluid flow, or further de-

position of particles on granules. The clean-bed removal assumption will give a constant

filter coefficient λ in a granular bed. The macroscopic approach is a semi-empirical

approach, where the filter coefficient is obtained from experiments. The macroscopic

approach is mainly used to find the change in the concentration of particles flowing

through the granular bed and describe the overall behavior of the granular filter. The

macroscopic approach do not provide any information about, or understanding of, the

nature or mechanism of the filtration process.

The microscopic approach is a more fundamental approach to predict the granular

filtration performance. This approach rests on the understanding of the nature and

mechanisms of the transport and subsequent deposition of particles from the suspension

to the granules of which the media is comprised. In this approach, the filter is modeled

as an assemblage of single or unit collectors which have a certain known geometry. The

fluid flow field around or through this geometry has to be described analytically based on

the theories of low Reynolds number. Such model collectors include the isolated sphere

or cylinder (Tien and Ramarao, 2007), the sphere in-cell model (Happel, 1958) and the
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constricted tube model (Tien and Ramarao, 2007). In the microscopic approach, the

removal of particles is represented by a single-collector, or unit-collector, efficiency ηs.

The single-collector efficiency is defined as the ratio of the overall particle deposition

rate onto the collector to the convective transport of upstream particles towards the

projected area of the collector. The single-collector efficiency is :

ηs = − ln

(

Ce

C0

)

2Dg

3Lǫs
, (1.2)

where C0 and Ce are the inlet and outlet concentrations respectively, L is the length of

the granular bed, Dg is the granule diameter, and ǫs is the granule volume fraction. The

overall granular filter efficiency is :

η = 1− Ce

C0
. (1.3)

A primary reason for employing this single-collector efficiency is to obtain a basis for

interpreting and correlating experimental data. Correlations can be found for single-

collector efficiency by solving trajectory equations of particles in the porous media mod-

els (isolated sphere model, sphere in-cell model, and constricted tube model). These

single-collector correlations can also be used to find the overall performance of a granu-

lar filter using Eqns. 1.2-1.3.

The drawbacks in using these porous media models is that these simple geometry

models crudely approximate the chaotic and complex structure of a three dimensional

(3D) granular bed (Tien and Ramarao, 2007). The flow fields in these porous media

models are not representative of the flow field in a 3D granular bed (Gal et al., 1985;

Tien and Ramarao, 2007). The prediction of correct filtration rate in a granular bed

is highly dependent on the flow fields in a granular bed, since the particles convect in

these flow fields. In order to accurately predict trajectories of particles in packed beds,

flow models with random spheres in a packed bed are needed (Gal et al., 1985; Long and

Hilpert, 2009; Pendse and Tien, 1982). Experiments can be used to obtain correlations
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for single-collector efficiency or filter-coefficient, however the experimental data from

which these empirical correlations are deduced vary by an order of magnitude as can

be seen in Figs. 1.1(a) and 1.1(b). Furthermore, experimental measurement of particle

filtration rate along the granular bed is challenging because of limited optical access

inside a granular bed. This motivates the development of a DNS–LPT approach with

randomly distributed spheres that represent flow fields accurately and is valid in both

low and moderate Reynolds number.

η

10-1 100 10110-3

10-2

10-1

100

Jung et. al (1989)
D’Ottavio and Goren (1983)
Jung et. al Corr (1989)

(a)

ε

η

10-2 10-1 10010-3

10-2

10-1

Philips (1977)
Doganogulu (1975)
Yung et. al (1978)
Thambimuthu (1980)
Thambimuthu’s correl (1980)

(b)

Figure 1.1 (a) Comparison of Jung et al. (1989) data with his correlation
and with the data of D’Ottavio and Goren (1983). (b) Com-
parison of Thambimuthu (1980)’s data with his correlation and
other experimental data.

1.4 Challenges in developing models for granular filtration

The Stokes number of the particles considered in this study are typically in the range

of 0.05 to 1.5 and the Reynolds number of the fluid flow range (Rem) from 1 to 200. In

this wide range of Stokes number and Reynolds number particle inertia is considered one

of the most important and often the dominant factor for particle filtration in a granular

bed. It is therefore necessary to have a fundamental understanding of filtration due to
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inertial effects in order to develop models for the CFD simulations that are valid over

this wide range of particle Stokes number and fluid Reynolds number.

In the applications mentioned earlier in this chapter the particles treated are generally

polydisperse. Polydispersity implies a range of particle Stokes numbers because of the

d2p dependence of the particle response time τp. Particles with different Stokes number

filter at different rates through a granular bed. At finite mean slip Reynolds number

Rem = (1− ǫs) 〈W 〉Dgρf/µ, where ǫs is the granule volume fraction, and ρf is the fluid

density, the mean slip velocity affects the particle Stokes number because the fluid time

scale in Stokes number is defined based on the mean slip velocity between fluid and

granules.

Exhaust gases in thermal power plants and hot gases in bio-oil production flow at

high velocities that fall in moderate and high Reynolds number range. At these high

velocities usually particles bounce form the surface of the granules since the kinetic

energy of the particles are able to overcome the adhesion energy on the surface of the

granules. This bouncing phenomena reduces the granular filtration efficiency and this

effect needs to be considered in the models developed for CFD simulations.

DNS is a very promising first-principles approach for developing accurate models.

It has been extensively used for developing models for interphase momentum and heat

transfer in gas-solid flows (Tenneti et al., 2011, 2013b; Hill et al., 2001a,b; Van der

Hoef et al., 2005; Beetstra et al., 2007). We propose to use the DNS-LPT approach to

investigate and develop the following:

1. The effects of particle inertia on granular filtration at both low and moderate

Reynolds numbers.

2. Develop a model for filter coefficient λ as a function of Stokes number, granular

volume fraction and Reynolds number.

3. The effect of polydispersity on filtration or penetration of particles in a granular
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bed.

4. Develop a model for adhesion probability γ which can be used in CFD simulations

Finally, the models for the filtration of particles in a granular bed developed using

Direct Numerical Simulation–Lagrangian Particle Tracking (DNS–LPT) approach are

implemented and tested in CFD code ANSYS-FLUENT. The validation of CFD model

is done with the experimental data of El-Hedok et al. (2011).

1.5 Research objectives

Based on the background presented in the preceding development, it is clear that

a fundamental understanding of filtration of inertial particles, especially at moderate

Reynolds number, is still lacking. It is also clear that for practical applications the

extension of monodisperse filtration models to polydisperse models is essential. These

research needs motivate the following research objectives:

1. Develop a fundamental understanding of filtration connecting averaged macroscale

description to microscopic information from a single realization

2. Development of DNS–LPT approach to study particle filtration in a granular bed

and quantify filtration in a single realization

3. Develop a model for filtration of monodisperse particulates in a granular bed using

DNS–LPT simulations

4. Development of analytical models to predict the filtration of polydisperse particles

at low and moderate Reynolds numbers

5. Investigate the effect of bouncing on filtration of particles for moderate Reynolds

number
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6. Develop a model for adhesion probability γ for particles in a granular bed using

DNS–LPT simulations

7. Implement and test the developed model from DNS–LPT approach into a CFD

code ANSYS-FLUENT and simulate granular filtration

1.6 Accomplishments

• Developed a DNS–LPT approach to simulate granular filtration with sticking of

particles on granule surface and bouncing of particles from granule surface

• Developed a model for filter coefficient as a function of modified effective Stokes

number

• Developed an analytical framework to predict filtration of polydisperse particles

• Developed a model for adhesion probability as a function of modified effective

Stokes number and normalized adhesion energy

• Developed a CFD model to simulate full scale moving-bed granular filter

1.7 Outline

The development of a monodisperse model for the filter coefficient using the DNS–

LPT approach is described in chapter 2. Chapter 3 describes the filtration model for

polydisperse particulates in gas-solid flow using DNS–LPT. In chapter 4, we investigate

the bouncing of particles in a granular bed and develop a model for adhesion probability

γ. The implementation and testing of the developed in a CFD code is done in chapter 5.

Chapter. 6 is on modeling and simulation of sprays (which is a review paper the author

is co-authoring with Dr. Shankar Subramaniam). Some conclusions and possible future

works from this study are mentioned in chapter 7.
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CHAPTER 2. Improved modeling of granular filtration using

direct numerical simulation

This chapter is a manuscript in preparation for journal publication : Improved mod-

eling of granular filtration using direct numerical simulation authored by R. Kolakaluri,

and S. Subramaniam.

Abstract

The filtration of inertial particulates in steady flow through a granular bed is stud-

ied using a direct numerical simulation–Lagrangian particle tracking (DNS–LPT) ap-

proach (Kolakaluri et al., 2013). We use DNS–LPT results of penetration and single-

collector efficiency to quantify the performance of a granular filter. We show that the

penetration of inertial particulates in a granular filter is the outlet particle flux normal-

ized by its inlet value, which reduces to normalized concentration (or number density)

for inertialess particles. The dependence of single-collector efficiency on granule vol-

ume fraction, mean slip Reynolds number, and particle Stokes number is analyzed using

DNS–LPT data. The effective Stokes number proposed by D’Ottavio and Goren (1983)

is modified to reflect the dependence of single-collector efficiency on mean slip Reynolds

number for different granule volume fractions, and the modified effective Stokes number

gives a better collapse of single-collector efficiency over the range of granule volume frac-

tion and mean slip Reynolds number considered. A model for the filter coefficient λ is

proposed in terms of the modified effective Stokes number that can be used in two–fluid
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computational fluid dynamics (CFD) simulations of full-scale granular filter devices to

model the filtration rate of particles.

2.1 Introduction

Granular filtration is a separation process whereby micron and sub-micron sized par-

ticles are removed from fluid streams by the presence of fixed (D’Ottavio and Goren,

1983) or moving (El-Hedok et al., 2011) granular beds. Both liquid and gas streams

can be treated using granular filtration. Granular filtration finds applications in bio-oil

production for filtration of fly ash from hot gases that are generated by fast pyrolysis of

biomass (El-Hedok et al., 2011; Ritzert et al., 2004). It is also used in water and wastew-

ater treatment (Davis, 2010; O’Melia, 1985). The basic principle of granular filtration

is to pass the fluid-particle suspension through a granular bed. As the suspension flows

through the granular bed, some of the particles present in the suspension move towards

the granule and get deposited on their surface. The particles deposit on granule surfaces

because of different filtration mechanisms.

The principal mechanisms for particle filtration are inertial impaction, interception,

gravitation, and Brownian diffusion (Tien and Ramarao, 2007). Diffusional and gravi-

tational effects in granular beds are significant only for very small particles (dp <1.0µm)

at low velocities (Gutfinger and Tardos, 1979). This study is aimed towards applications

that fall in the inertial regime where the particle diameter is greater than 1.0µm and

fluid streams flow at higher velocity. A study of inertial effects in granular filtration is

one of the principal contributions of this work. In the inertial regime, granular filtra-

tion is a function of Stokes number St = 〈W 〉 d2pρp/9Dgµ (D’Ottavio and Goren, 1983;

Tien and Ramarao, 2007; Araújo et al., 2006), granule volume fraction ǫs and mean slip

Reynolds number Rem = (1− ǫs) 〈W 〉Dgρf/µ, where 〈W 〉 is the mean slip velocity be-

tween fluid and granules, dp is the particle diameter, ρp is the particle density, Dg is the
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granule diameter, ρf is the fluid density and µ is the dynamic viscosity. A fundamental

understanding of granular filtration for inertial particles (dp >1.0µm) over a wide range

of particle Stokes number and mean slip Reynolds number is essential for design and

development of granular filters.

Computational fluid dynamics (CFD) simulation of a granular filter is an efficient

approach for design optimization because experiments are costly and time-consuming.

In a two-fluid CFD simulation of a granular filter, the averaged equations governing

mass, momentum are solved for both gas and granular phase and usually an advective

scalar equation is solved for the particle phase (Bensaid et al., 2010; Wang et al., 2008):

∂φ

∂t
+∇ · (〈V〉φ) = Sφ, (2.1)

where φ is the concentration of particles, 〈V〉 is the mean particle velocity, and Sφ is the

unclosed sink term due to particle filtration. Equation 2.1 can be closed by modeling the

sink term as Sφ = −λ 〈V〉 φ, where λ is the filter coefficient, that for moderate Reynolds

number is given by a correlation that depends on the granule volume fraction ǫs, mean

slip Reynolds number Rem, and particle Stokes number St.

Correlations for filter coefficient are usually obtained frommacroscopic or microscopic

approaches. The macroscopic approach is an empirical approach based on conservation

of particles in a granular filter. The performance of a granular filter can be quantified

by using the penetration P = ṁout/ṁin, where ṁin is the mass of particles injected at

the inlet and ṁout is the mass of particles exited at the outlet of the granular bed. The

penetration P is related to the filter efficiency by η = 1 − P . If we assume that the

filtration rate is constant along the length of the granular bed, then the penetration can

be used to define a filter coefficient for granular bed

λ = − 1

L
ln(P ), (2.2)

where L is the length of the granular bed. However, the experimental data (D’Ottavio

and Goren, 1983; Jung et al., 1989; Thambimuthu, 1980) found in literature from which
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empirical correlations are deduced vary by an order of magnitude, and have validity only

under specific experimental conditions (Tien and Ramarao, 2007).

The microscopic approach is a more basic approach to describe the removal of parti-

cles in a granular bed based on fundamental understanding of the nature and mechanism

of the transport and deposition of particles on granules. In this approach, the granular

bed is modelled as an assembly of single or unit collectors of known geometry. The

flow in a granular filter is usually modelled as an internal flow through a pore, or as

an external flow around a granule. The flow field around this geometry (or through

the pore) has to be described based on theories of low Reynolds number hydrodynam-

ics. These geometries are used to mimic the flow inside a granular bed and are usually

classified as either internal or external flow models. In internal flow models, the pore is

usually taken as a cylindrical capillary or a constricted tube, and the walls of the pores

act as a collector for particles. Jackson and Calvert (1966) used the capillary model

for particle collection in a packed bed of spheres. Inertial particles deposit on the sur-

face due to inertial impaction and interception filtration mechanisms mentioned earlier.

Constricted-tube model, where the walls are not straight were developed by Petersen

(1958); Payatakes et al. (1973); Niera and Payatakes (1978) to study granular filtration.

The wall of a constricted-tube can be assumed to be parabolic (Payatakes et al., 1973),

sinusoidal (Fedkiew and Newman, 1977) or hyperbolic (Petersen, 1958).

In the external flow models the granular bed is assumed to be a combination of

homogeneously distributed spherical granules of uniform size. This model is based on

two concentric spheres with the inner sphere being the granule located at the centre of the

unit cell and the outer sphere consists of the fluid envelope with a free surface (Happel,

1958). The unit cells that represent the granular bed are identical and have the same

granule volume fraction ǫs as the granular bed. To obtain the velocity profiles in the unit

cell, sphere-in-cell models proposed by Lamb (1932); Happel (1958); Kuwabara (1959)

are used.
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The removal of particles by these internal or external flow models is represented by

single-collector efficiency ηs. The single-collector efficiency is defined as the ratio of the

overall particle deposition rate onto the collector to the transport of upstream particles

towards the projected area of the collector. In the case of sphere-in-cell or spherical

collector, the single collector efficiency is

ηs =
4N

UsC0πD2
g

, (2.3)

where N is the deposition rate on the collector, C0 is the inlet concentration of particles,

Us is the superficial velocity of the fluid and Dg is the collector diameter. The single-

collector efficiency can be related to the entire granular bed efficiency η through a mass

balance (see A) for a packed bed filter composed of spherical collectors, this relation is

ηs =
−2Dg ln(1− η)

3ǫsL
. (2.4)

The goal of the microscopic approach is to predict ηs using the flow models mentioned

above, and to then use Eq. 2.4 to find the overall filter efficiency of the granular bed.

Then the filter coefficient can be obtained from Eq. 2.2.

However, these flow models are far from representative of a practical granular bed (Tien

and Ramarao, 2007). The pressure drop predicted by these simple flow models agree

well with experimental data, but the velocity profiles differ significantly from the actual

profiles in a granular bed (Gal et al., 1985). In order to accurately predict trajecto-

ries of particles in packed beds, flow models with random spheres in a packed bed are

needed (Gal et al., 1985; Long and Hilpert, 2009). Hence, flow past a homogeneous

random assembly of granules is a better representation of the complex flow structure

in a granular bed. In Fig. 2.1(a), we show a simulation result obtained from particle–

resolved direct numerical simulation, which gives a qualitative picture of the complex

fluid streamlines inside a granular bed. Furthermore, in PR-DNS the instantaneous

three-dimensional velocity and pressure fields are available, which provides a complete
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quantitative description of the flow. Figure 2.1(b) shows the probability density function

(PDF) of tortuosity τ = c/L computed using PR-DNS for a simple cubic arrangement

of particles, and for a random assembly of granules. Here c is the path length of a fluid

streamline and L is the axial distance between the ends of the fluid streamline. It can be

clearly seen in Fig. 2.1(b) that flow past a SC arrangement underpredicts the tortuosity

compared to the random assembly of granules. Higher tortuosity of fluid streamlines

aids in the filtration of particles because it is easier for inertial particles to deviate

from fluid streamlines with increased tortuosity. This complicated flow structure of fluid

streamlines is missing in the simple internal and external flow models mentioned above.

The approximations made in simple flow models motivate us to develop a DNS–LPT

approach to study granular filtration.

(a)

τ

τ
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(b)

Figure 2.1 (a)Simulation result using particle–resolved DNS for a granule
volume fraction of 0.5, mean slip Reynolds number of 1.0. The
red lines are fluid streamlines and green lines are particle path-
lines for a Stokes number of 0.25.(b)PDF of tortuosity of fluid
streamlines obtained from DNS–LPT simulations for a granule
volume fraction of 0.5, mean slip Reynolds number of 1.0 (dashed
line is for a simple cubic arrangement and solid line is for a ran-
dom granule arrangement).

In this study, we use a DNS–LPT approach (Kolakaluri et al., 2013) developed for
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granular filtration to understand inertial effects on the filtration of particles in a granular

bed, and to develop a model for the filter coefficient λ that can be used in two-fluid

CFD simulations. The DNS–LPT approach used in this study was validated with the

experimental data of D’Ottavio and Goren (1983) in Kolakaluri et al. (2013). The

particle–resolved DNS used here to generate flow fields through a random assembly

of granules is a first-principles approach that solves the governing Navier–Stokes (NS)

equations with exact no-slip and no-penetration boundary conditions on granule surface

and has been extensively validated in a comprehensive suite of test cases (Tenneti et al.,

2011). It has been used to develop accurate models for interphase momentum and heat

transfer in gas-solids flows (Tenneti et al., 2011, 2013b).

The chapter is organized as follows. In Section 2.2 we derive an expression for pene-

tration from the evolution equation of number density of particles in a granular bed and

using DNS–LPT results study the importance of mean slip flux for inertial particles.

The DNS–LPT simulation methodology and the effect of numerical and physical param-

eters on DNS–LPT are discussed in Section 2.3. Finally, in Section 2.4 we discuss the

dependence of single-collector efficiency on granule volume fraction, mean slip Reynolds

number and particle Stokes number, and propose a model for the filter coefficient using

DNS–LPT data.

2.2 Governing equations

2.2.1 Averaged equation for particles in a granular bed

The performance of a granular filter is usually quantified by granular filter efficiency

or penetration. An expression for penetration of a granular filter can be derived from the

evolution equation of the number density of particles. The evolution of number density
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n(x, t) of particles in a granular bed is governed by

∂n(x, t)

∂t
+

∂〈Vk〉n(x, t)
∂xk

= S, (2.5)

where 〈Vk〉 is the mean particle velocity, and S is the sink term due to the filtration of

the particles. The number density and the mean particle velocity are obtained as

n(x, t) =

∫

[v]

f(x,v, t)dv, (2.6)

〈Vk〉 =
∫

[v]
vkf(x,v, t)dv

∫

[v]
f(x,v, t)dv

, (2.7)

where f(x,v, t) is the one particle distribution function (Kolakaluri et al., 2013) (or

droplet distribution function in the case of sprays (Subramaniam, 2001a, 2000a)).

Since the granular filtration problem is statistically homogeneous in y and z direc-

tions, the number density equation simplifies to

∂n(x, t)

∂t
+

∂〈Vx〉n(x, t)
∂x

= S, (2.8)

where 〈Vx〉 is the mean particle velocity and S is the sink term. In order to compare

this number density equation to the scalar advection equation for the concentration of

inertialess particles, we add a fluid flux term 〈uf
x〉n(x, t) to rearrange Eq. 2.8 as

∂n(x, t)

∂t
+

∂〈uf
x〉n(x, t)
∂x

=
∂(〈uf

x〉 − 〈Vx〉)n(x, t)
∂x

+ S, (2.9)

where 〈uf
x〉 (Tenneti et al., 2011) is the averaged fluid velocity defined as

〈uf
x〉 =

〈Ifuf
x〉

〈If〉
, (2.10)

and If is the indicator function which is unity if the point lies in the fluid phase and zero

in the granular phase. The mean slip flux term which is the first term on the right-hand

side of Eq. 2.9 is non-zero for finite inertia particles and varies along the length of the

granular bed and is negligible for particles with very low Stokes number, since the slip

velocity between the particles and fluid is very small for low Stokes number. Low Stokes
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number (St < 0.05) particles usually follow the fluid stream lines very closely, which is

not the case for finite inertia particles as they tend to deviate from fluid streamlines due

to their inertia.

〈
〉

〈
〉

〈
〉

0.5 1 1.5 2 2.5 3 3.5
-0.2

0
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Figure 2.2 Steady state normalized mean slip flux
(〈uf〉Ac

− 〈V 〉Ac
)n/ 〈uf〉Ac

n0 along the flow domain for
two particle Stokes number for a volume fraction 0.5 and mean
slip Reynolds number 10.

Figure 2.2 generated from DNS–LPT data show that the mean slip flux is not zero

and varies along the granular bed, and hence should not be neglected for finite inertia

particles (The DNS–LPT simulation methodology is discussed in Section 2.3 and details

about the calculation of number density from DNS–LPT simulations can be found in B).

The velocities reported in Fig 2.2 are cross-sectional averaged velocities over the y−z

plane. The non zero mean slip flux shows that for finite inertia particles it is appropriate
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to use the number density equation (cf. Eq. 5.14) instead of the concentration equation:

∂C

∂t
+ Us∂C

∂x
= Sc, (2.11)

where C is the concentration of the particles in the fluid stream, Us is the superficial

velocity of the fluid stream through the granular bed, and Sc is the concentration sink

term corresponding to particle filtration. The assumption made in Eq. 2.11 is that

particles are flowing with superficial velocity Us and there is zero slip velocity between

particles and fluid. This assumption is not applicable for finite inertia particles where

there is a slip velocity between particles and fluid, as can also be seen in Fig. 2.4. The

velocities reported in Fig. 2.4 are for a mean slip Reynolds number Rem = 10, with fluid

density and viscosity being ρf = 1.0 and µ = 0.012, respectively. An important point

worth noting is that the DNS equations are for a single realization, but the DNS–LPT

results reported in this study are averaged over different granule configurations with the

same granule volume fraction ǫs and radial distribution function g(r). Since in this study

we are focused on particles with finite inertia, we will be using Eq. 2.9 as the governing

equation for particles flowing in the granular bed. An expression for penetration from

the number density equation is presented in next section.

2.2.2 Expression for penetration

The granular filter considered in this study is a clean-bed filter, where the filtration

rate reaches steady state due to fresh granules continuously being fed into the bed. At

steady state, Eq. 2.8 can be written as

∂〈Vx〉n(x)
∂x

= Sx. (2.12)

If we define the particle flux Jx = 〈Vx〉n(x) and model the sink term as Sx = −λJx, the

number density equation in terms of particle flux can be written as

∂Jx

∂x
= −λJx, (2.13)
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where λ is the filter coefficient. Integrating Eq. 2.13 along the granular bed from x = 0

to x = L, we obtain

Jx(x = L)

Jx(x = 0)
= exp (−λL) , (2.14)

where L is the length of the granular bed. The expression for penetration P is defined

as

P =
Jx(x = L)

Jx(x = 0)
. (2.15)

In the case of inertialess particles 〈Vx〉(x = 0) = 〈Vx〉(x = L) (since the particles will be

advecting with the fluid velocity), and the penetration equation simplifies

P =
n(x = L)

n(x = 0)
. (2.16)

Equation 2.16 is similar to P = C(x = L)/C(x = 0) that is obtained from Eq. 2.11.

In Fig. 5.5(a) the symbols show the decay of particle flux along the x direction due

to filtration (details regarding the calculations of particle flux and mass flow rate from

DNS–LPT simulations can be found in B). The lines in Fig. 5.5(a) are the steady state

mass flow rate of particles along the granular bed. The particle flux profiles predict the

decay of particles due to filtration accurately, but this is not the case for the number

density profiles shown in Fig. 5.5(b).

For particles with finite inertia, the penetration P must be calculated from the

particle flux J , because using the number density n or concentration c (Eq. 2.16) results

in errors (cf. results in Fig. 5.5(b)). In the next section we will also show that Eq. 2.15

can also be derived from a simple mass balance.

2.2.3 Penetration calculation from mass balance

In the case of granular filtration experiments a simple mass balance of particles

flowing through a granular bed (Ritzert et al., 2004) can be used to find the granular



21

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2.3 (a)Steady state normalized particle flux J(x)/J(0) along the flow
domain for three particle Stokes number for a volume fraction
0.5 and Reynolds number 10 and lines are mass flow rate of par-
ticles along the granular bed.(b)Steady state normalized number
density n(x)/n(0) along the flow domain for three particle Stokes
number for a volume fraction 0.5 and mean slip Reynolds num-
ber 10 and lines are mass flow rate of particles along the granular
bed.
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filter efficiency η:

η =
min −mout

min
= 1− P, (2.17)

where min(T ) and mout(T ) are the mass of dust particles entering and exiting the gran-

ular filter over some time interval T = tstop − tss after reaching steady state. The mass

of particles entering the granular filter min(T ) and mass of dust particles exiting the

granular filter mout(T ) can be written as

min =

∫ tstop

tss

∫

Ain

JindAdt =

∫ tstop

tss

∫

Ain

nin〈V 〉indAdt, (2.18)

mout =

∫ tstop

tss

∫

Aout

JoutdAdt =

∫ tstop

tss

∫

Aout

nout 〈V 〉out dAdt, (2.19)

where tss is the time required for the granular bed to reach steady state, tstop is the time

the granular bed is allowed to run, Ain is the inlet area of the granular bed and Aout

is the outlet area of the granular bed. Assuming uniform inflow and outflow particle

fluxes, Eqs. 2.18 and 2.19 can be simplified to

min = Jin

∫ tstop

tss

∫

Ain

dAdt = Jin(tstop − tss)Ain, (2.20)

mout = Jout

∫ tstop

tss

∫

Aout

dAdt = Jout(tstop − tss)Aout. (2.21)

Since Ain and Aout are equal, from Eq. 2.17 the penetration is simply

P =
Jout

Jin
. (2.22)

The penetration equation obtained from mass balance is consistent with Eq. 2.15. In the

next section, we briefly describe the simulation methodology and establish the numerical

convergence and accuracy present parametric study of the DNS–LPT approach (Ko-

lakaluri et al., 2013).
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2.3 DNS-LPT : Simulation approach

2.3.1 Governing equations in DNS–LPT

In the DNS–LPT approach, we use a particle-resolved DNS methodology called

Particle–resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method (PUReIBM)

approach to obtain three-dimensional fluid phase flow fields around the granules. PUReIBM

solves the governing Navier–Stokes(NS) equations with exact boundary conditions on

granule surface. The governing equations solved in PUReIBM are

∂ui

∂xi
= 0, (2.23)

and

ρf
∂ui

∂t
+ ρfSi = −gIBM,i + µ

∂2ui

∂xj∂xj
+ fu,i, (2.24)

where gIBM,i is the pressure gradient, Si is the convective term, fu,i is the additional im-

mersed boundary force term that accounts for the presence of solid particles in the fluid-

phase by ensuring zero slip and zero penetration boundary conditions at the granule-

fluid surface. The complete details of the PUReIBM solver are discussed in Tenneti

et al. (2011); Garg et al. (2010b).

The other solid phase consists of fine particles that are suspended in the fluid phase

and these are tracked as point particles in a Lagrangian frame as they are carried through

the granular bed. In the LPT approach the dispersed phase consisting of Np particles

is represented in a Lagrangian frame at time t by {X(i)(t),V(i)(t), i = 1, ......, Np(t)},

where V(i)(t) denotes the ith particle’s velocity and X(i)(t) represents its position. Note

that in this LPT implementation each particle represents a physical particle, and this is

not a parcel method (Subramaniam, 2013). The position and velocity of the particles

evolve by

dX(i)(t)

dt
= V(i), (2.25)
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and

dV(i)(t)

dt
=

f (i)

m
(i)
p

= A(i), (2.26)

where m
(i)
p is the mass and f (i) and A(i) are the instantaneous force and acceleration

experienced by the ith particle respectively. Only the quasi-steady drag contribution

to the instantaneous force is considered and it is modeled using the drag correlation by

Schiller and Naumann (1933) as

f (i)(t) = 3πµ
∣

∣

∣
uf (X

(i)
p )−V(i)

p

∣

∣

∣
dp(1 + 0.15Re0.687p ), (2.27)

where Rep is the particle Reynolds number based on slip velocity between the particle

and fluid (not granule) and
∣

∣

∣
uf (X

(i)
p )−V(i)

p

∣

∣

∣
is the magnitude of the instantaneous slip

velocity between particle and fluid at the particle location. In the present study, the mass

loading [ρpNpπd3p/6ǫfρf ≈ 1× 10−5] of the dispersed phase is assumed to be negligible, and

so the fluid momentum balance is assumed to be unaffected by particle-fluid momentum

transfer. (The total particle drag is around ≈ 2×10−4 that of the total granules drag for

mean slip Reynolds number Rem = 10 and granule volume fraction ǫs = 0.5.) Therefore,

only one-way coupling is considered in the DNS–LPT simulations.

2.3.2 Simulation methodology

The DNS-LPT simulation of granular filtration is performed for steady fluid flow

that is established by maintaining a constant mean pressure gradient through a homo-

geneous fixed assembly of granules. Granules are initialized in a lattice arrangement

corresponding to a specified granule volume fraction ǫs. The granules are initialized

with a Maxwellian velocity distribution and allowed to collide elastically to obtain an

equilibrium configuration that is taken as a fixed particle assembly for the flow calcu-

lation. The mean pressure gradient that corresponds to a specified mean slip Reynolds

number is imposed and the flow is allowed to evolve in pseudo-time until it attains the

desired flow rate.
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Since particles are being filtered, the particle number density and flux vary along

the streamwise direction, but they are homogeneous in the cross-stream direction. La-

grangian tracking of particles is done in steady flow fields past fixed granule assembly

obtained from PUReIBM. The particles are continuously injected at a specified injection

rate ṁin into the computational domain. The boundary conditions for both the cases

are inflow at x = 0 and outflow at x = L, where L is the length of the computational

domain. In the y and z directions periodic boundary conditions are imposed on the par-

ticles. A particle is assumed to be trapped by the granular assembly when the distance

between the centers of the granule and the particle is less than (rp +Dg/2) , where rp is

the radius of the particle and Dg is the diameter of the granule. This trapping criterion

accounts for both inertial impaction and interception. The particles are removed from

the simulation at the outlet plane x = L.

2.3.3 Effect of particle initial conditions

When particle at the inlet plane are initialized with the fluid velocity at the parti-

cle location we find that the mean velocity of the particles is less that the mean fluid

velocity in the intial part of the bed (see Fig. 2.4).(The velocities reported in Fig 2.4

and later in this study are cross-sectional averaged velocities along x direction. The

procedure to calculate these averaged velocities is given in B.) This is because particles

being initialized at a constant rate at the inlet plane in a inhomogeneous velocity field.

The errors bars shown in all the DNS-LPT simulations reported in this study represent

95% confidence intervals obtained from averaging over 5 independent simulations corre-

sponding to different granule configurations with the same volume fraction ǫs and g(r)

(radial distribution function).

When particles are initialized with zero particle velocity (see Fig. 2.5), the same

trend of the mean velocity of the particles was observed as seen when particles are

initialized with fluid velocity (see Fig. 2.4). The velocities reported in Figs 2.4 - 2.5 are
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Figure 2.4 Variation of mean particle velocity 〈V 〉Ac
for two particle Stokes

number along the granular bed for a volume fraction 0.5 and
mean slip Reynolds number 10 with particles initialized with
fluid velocity and the mean fluid velocity 〈uf〉Ac

is shown for
reference.

for a mean slip Reynolds number Rem = 10, with fluid density and dynamic viscosity

being ρf = 1.0 and µ = 0.012, respectively. An important conclusion from both the

initial conditions is that the effect of initial conditions on mean particle velocity 〈V 〉

is not seen beyond x/Dg > 0.5Dg. Figure 2.6 shows that the effect of particle initial

conditions is not seen in the particle flux plots, which further motivates us to use particle

flux for calculating penetration. The numerical and physical parameters used in the

DNS–LPT simulations are discussed in the next section.

2.3.4 Numerical and physical parameters

The computational domain is a cube with sides of length L. Each side is discretized

usingM grid cells. The spatial resolution is represented by the number of grid cells across

the diameter of a granule, which isDm = Dg/∆x, where the grid spacing ∆x = L/M . All

length scales are normalized by the granule diameter Dg and for a given granule volume
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Figure 2.5 Variation of mean particle velocity 〈V 〉Ac
for two particle Stokes

number along the granular bed for a volume fraction 0.5 and
mean slip Reynolds number 10 with zero initial particle velocity
and the mean fluid velocity 〈uf〉Ac

is shown for reference.

fraction ǫs the number of granules Ng in the computational domain is determined based

on L/Dg by

Ng =
6ǫs
π

(

L

Dg

)3

. (2.28)

The physical parameters that define the granular filter are granule volume fraction

ǫs, mean slip Reynolds number Rem. The particle Stokes number St conjunction with

these parameters determines the filtration efficiency and the length of the bed L/Dg.

For a fixed length of bed L/Dg, Dm is the only numerical parameter. The calculation

of steady state penetration from DNS–LPT simulations and the effect of numerical and

physical parameters on DNS–LPT results are discussed in next section.

2.3.4.1 Calculation of penetration from DNS–LPT simulations

The DNS–LPT simulations are considered to reach steady state once ṁout reaches a

steady value in time. An important point to be noted that the particle mass flux ṁin or
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Figure 2.6 Steady state normalized particle flux J(x)/J0 along the flow do-
main for particle Stokes number 0.10 and 0.25 for a volume frac-
tion 0.5 and mean slip Reynolds number 10 with zero initial
particle velocity and particles initialized with fluid velocity.

ṁout is the particle mass flux through the crossectional area of the fluid along the flow

direction. It can be seen in Fig. 2.9 that the penetration reaches steady state after time

Tss, when Tss is a function of particle Stokes number. The penetration is calculated as

P =

∫ Tstop

Tss
ṁoutdt

∫ Tstop

Tss
ṁindt

=
mout

min
=

Jout

Jin
. (2.29)

2.3.4.2 Numerical convergence study

The convergence of DNS–LPT simulations is established by studying the influence

of grid resolution Dm on penetration mout/min. Figure 2.7 shows that the penetration

is converged for Dm ≥ 30. The DNS–LPT simulation results reported in this study are

all performed with Dm = 40.

2.3.4.3 Effect of physical parameters on penetration

The physical problem changes with change in the length L of the granular bed. The

variation of penetration with the length of the bed is shown in Fig. 2.8. Increase in
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Figure 2.7 Variation of penetration for a particle Stokes number of
St = 0.25, granule volume fraction ǫs = 0.4, and mean slip
Reynolds number Rem = 20 with grid resolution Dm.

length of the bed reduces the penetration of particles due to increased probability of

particle filtration in longer beds.

As Fig. 2.9 shows, the particle flux reaches a steady value after time Tss. Figure 2.9

shows an increase in the penetration with Stokes number and it also shows that time Tss

increases with decrease in Stokes number as high Stokes number particles reach steady

state early because of increase in slip velocity between fluid and particle with Stokes

number. For St = 0.10 the particle mass flux reaches a steady value for Tss > 2000/τf(or

500 flow through times). Therefore, if Tss > 2000/τf in Eq.23, the penetration P (which

is the ratio of the total outlet particulate mass to that at the inlet) can also be expressed

as the ratio of steady outlet mass flux to its inlet value.

The number of particles Np injected at the inlet is a physical parameter. The choice

of the optimal value represents a trade off between minimizing statistical error (that

decreases with increasing Np) and keeping the volume fraction and mass loading low

enough that, interparticle interaction and particle-fluid interaction can be neglected.
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Figure 2.8 Variation of penetration for a particle Stokes number of
St = 0.25, granule volume fraction ǫs = 0.4, mean slip Reynolds
number Rem = 20 with the length of bed L/Dg.

The effect of the number of particles injected at the inlet of computational domain on

penetration is reported in Figure 2.10. The mass flow rate of particles ṁin at the inlet is

calculated from the number of real particles NP injected at the inlet. The error bars in

Fig. 2.10 are the standard deviation obtained from averaging the penetration over time.

A value of Np = 500 is chosen such that particle–fluid interaction can be neglected and

good statistics are obtained. All the simulations reported in this study are performed

with Np = 500. In the next section we study the effect of particle Stokes number, granule

volume fraction and mean slip Reynolds number on the single-collector efficiency and

propose a model for filter coefficient using DNS–LPT data.
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Figure 2.9 Variation of particle mass flux for a particle Stokes number of
St = 0.05 and St = 0.10 for a granule volume fraction ǫs = 0.5,
mean slip Reynolds number Rem = 10 with time t normalized
by the fluid time scale τf .

2.4 Results

2.4.1 Single–collector efficiency of a granular filter

The single-collector efficiency defines the rate of particle collection as the fraction of

particles flowing through an area equal to the projected area of the collector in a plane

normal to the direction of the flow. The single-collector efficiency of a granular filter is

a function of granule volume fraction, mean slip Reynolds number and particle Stokes

number. The single-collector efficiency is mainly used to compare the performance of

granular filters with different granule volume fraction and bed length. In DNS–LPT the

granular filter efficiency is calculated using Eq. 2.17 and then Eq. 2.4 is used to find the

single-collector efficiency.
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Figure 2.10 Variation of penetration for a particle Stokes number of
St = 0.10, granule volume fraction ǫs = 0.5, mean slip Reynolds
number Rem = 10 with the Np (particles initialized at the in-
let).

2.4.1.1 Dependence on granule volume fraction

We found from DNS–LPT data that the single-collector efficiency has a strong depen-

dence on granule volume fraction as shown in Fig. 2.11. The increase in single-collector

efficiency with granule volume fraction is due to a combination of two factors: (i) in-

crease in projected area of granules, and (ii) increase in the tortuosity of fluid streamlines

that makes it difficult for inertial particles to follow fluid streamlines, thereby resulting

in their filtration by granules. It can be seen in Figs. 2.11(a)-2.11(d) that for medium

Stokes number(0.05 < St ≤ 0.10) the increase in single-collector with granule volume

fraction is quadratic, and for high Stokes number (St > 0.10) the increase in single-

collector efficiency with granule volume fraction is linear for all Rem. The change in

trend with granule volume fraction for medium and high Stokes number is due to the
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increase in tortuosity with volume fraction. Tortuosity makes medium Stokes number

particles deviate from fluid streamlines, but this effect in not significant for high Stokes

number particles because they deviate from fluid streamlines even at small tortuosity due

to their higher inertia. A point worth noting is that in Figs. 2.11(b)-2.11(d) the single-

collector efficiency at high particles Stokes number is greater than 1. The unphysical

value of single-collector efficiency is due to Eq. 2.4, where the calculated single-collector

efficiency exceeds unity for penetration close to zero. This is one of the reasons for

developing a model for the filter coefficient λ instead of ηs, as described in Sec. 2.5.
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Figure 2.11 Variation of single-collector efficiency with granule volume
fraction for different particle Stokes number: (a)Rem = 1.
(b)Rem = 10. (c)Rem = 50. (d)Rem = 100.
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2.4.1.2 Dependence on mean slip Reynolds number

The single-collector efficiency increases with mean slip Reynolds number for Rem ≤

10 (see Fig. 2.12). For Rem > 10, the single-collector efficiency tends to asymptote to

a limiting high Rem value. This asymptotic high Rem limit of the single-collector effi-

ciency with mean slip Reynolds number is predominant at high granule volume fractions

(Figs. 2.12(b)-2.12(c)).

The reason for this asymptotic dependence of single-collector efficiency on mean flow

Reynolds number for Rem > 10 can be better understood by looking at the tortuosity

of fluid streamlines. The tortuosity τ = c/L gives us an idea of the departure of fluid

streamlines from straight line trajectories in a porous media, where c is the length of a

fluid streamline and L is the linear distance between the ends of that fluid streamline.

The tortuosity of fluid streamlines is an important factor that aids in the filtration of

the particles because the more tortuous a fluid streamline the easier it is for finite inertia

particles to deviate from the streamline and get filtered by the granules. It can be seen

in Figs. 2.13(a)-2.13(b) that with increase in mean slip Reynolds number the tortuosity

of fluid streamlines increases. The probability of finding highly tortuous fluid stream-

lines increases with Rem(see Fig. 2.13(a)). The presence of highly tortuous streamlines

increases the single-collector efficiency for Rem ≤ 10. For Rem > 10, the presence of

high tortuous fluid streamlines is less effective in increasing the single-collector efficiency

because with increase in mean slip Reynolds number the residence time of particles in

the granular bed decreases. Therefore, the particles have less time to deviate from

tortuous streamlines and get deposited on the granules. This asymptotic behavior of

single-collector efficiency is found at all particle Stokes number.
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Figure 2.12 (a)Variation of single-collector efficiency with mean slip
Reynolds number at a granule volume fraction of 0.3 for dif-
ferent particle Stokes number (b)Variation of single-collector
efficiency with mean slip Reynolds number at a granule volume
fraction of 0.4 for different particle Stokes number. (c)Variation
of single-collector efficiency with mean slip Reynolds number
at a granule volume fraction of 0.5 for different particle Stokes
number.
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Figure 2.13 (a)The probability density function of tortuosity τ = c/L of
the fluid streamlines in a granular bed for different mean flow
Reynolds number at a volume fraction of 0.5. (b)The cumula-
tive density function of tortuosity τ = c/L of the fluid stream-
lines in a granular bed for different mean flow Reynolds number
at a volume fraction of 0.5.

2.4.1.3 Dependence on particle Stokes number

In the case of inertial particles, filtration is a strong function of the particle Stokes

number. Particles with higher Stokes number deviate more from fluid streamlines and

this increases the deposition of particles on granules. Figs. 2.12(a)-2.12(c) show that the

single-collector efficiency increases with particle Stokes number for mean slip Reynolds

number in the range Rem : 1−100. We investigate the effect of particle Stokes number on

granule surface coverage due to particle deposition as shown in Fig 2.14. This simulation

result gives a qualitative picture of particle deposition on granule surfaces for a particle

Stokes number of St = 0.25. Particle deposition is observed mainly on the portion of

the granule surface facing the flow, and leading particles shield those behind them from

particle deposition.

The PDF of particle deposition on granules gives a quantitative picture of the same

phenomenon. Figure 2.15(a) indicates that most of low Stokes number particles (St =
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Figure 2.14 Deposition of particles in a random assembly of granules us-
ing DNS–LPT for a granule volume fraction of 0.5, mean slip
Reynolds number of 1.0 and particle Stokes number 0.25. The
red spheres are the particles and blue spheres are granules.

0.05) deposit within polar angle θ ≤ 50 degrees and the probability of particles depositing

for θ > 50 degrees increases with increase in particle Stokes number. As mentioned

before, inertial particles tend to deviate from fluid streamlines and get deposited on the

granule surface, and their deviation from the fluid streamlines increases with increase in

particle Stokes number. The particle deviate from fluid streamline due to two reasons:

one is due to high fluid velocity gradients close to the granule surface, and the other is due

to high curvature of streamlines. The region close to the granule surface has high velocity

gradients and the streamlines are highly curved, and hence it is easier for the particles

to deviate from the fluid streamline. The deviation from fluid streamline increases with

particle Stokes number for a specified velocity gradient and curvature of the streamlines.

For particles slightly away from the granule surface the particle deviation from fluid

streamline is mainly due to the curvature of the fluid streamlines, where the particles

with high Stokes number are able to deviate from the fluid streamlines.



38

Figure 2.15(b) shows that for small particle Stokes number (St = 0.05), 95% of

particles deposit within θ ≤ 50 degrees and only 5% of particles deposit over θ > 50

degrees, but with increase in particle Stokes number more particles deposit at polar

angle θ > 50 degrees and also some of high Stokes number particles (St = 0.10 & 0.25)

on granule surface at polar angles θ > 50 degrees is attributed to the high curvature of

the streamlines as the velocity gradients are very small away from the granule surface.

As expected there is no deposition of particles for θ > 95 degrees because once the

particles pass the front portion of the granule then the probability of deposition of

particles on the aft portion of the granule is very less. This analysis of particle deposition

on granule surface give us information on the area coverage of granule surface due to

particle deposition for different particle Stokes number.
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Figure 2.15 (a)Probability density function of particle deposition with polar
angle in a random assembly of granules for a granule volume
fraction of 0.5, mean slip Reynolds number of 1.0 and particle
Stokes numbers 0.05, 0.10 and 0.25, and (b)the corresponding
cumulative distribution function.

2.5 Model for the filter coefficient

For moderate Reynolds numbers the filter coefficient λ or single-collector efficiency

ηs is a function of Stokes number, granule volume fraction and mean slip Reynolds num-
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ber. D’Ottavio and Goren (1983) proposed a correlation for single-collector efficiency in

terms of effective Stokes number Steff , where the effective Stokes number was proposed

by D’Ottavio and Goren (1983) to collapse single-collector efficiency data for moderate

Reynolds number by combining the three independent dimensionless groups Rem, St

and ǫs as given by Eqs. 4.12 and 4.13.

The expression for effective Stokes number was obtained from two different theories:

low Reynolds number hydrodynamics and boundary layer theory. The fluid velocity field

for low Reynolds number flow through a granular bed is a strong function of granule

volume fraction ǫs. For moderate and high Reynolds number it is a function of both

granule volume fraction and Reynolds number. For low Reynolds number the Happel

(1958) model results in an expression (Eq. 4.13) where velocity field is a function of

granule volume fraction ǫs. Since there is no available theory for velocity fields at

high Reynolds number flow through packed beds, D’Ottavio and Goren (1983) used

the result of boundary layer theory (Schlichting, 1968) for flow past an isolated sphere

with a modification to include the effect of granule volume fraction and proposed an

expression (1.14Re
1/2
m (1− ǫs)

−3/2) to represent the change in velocity field in a granular

bed with granule volume fraction and mean slip Reynolds number. D’Ottavio and

Goren (1983) pointed that the boundary layer theory based expression is mostly valid

at high mean flow Reynolds number. Based on these two theories D’Ottavio and Goren

(1983) proposed an approximate expression (Eq. 4.12) for the effective Stokes number

by combining both Eq. 4.13 and 1.14Re
1/2
m (1 − ǫs)

−3/2 to obtain an expression that is

assumed to be valid over the entire Reynolds number range.

Steff =
[

A(ǫs) + 1.14Re1/2m (1− ǫs)
−3/2

] St

2
, (2.30)

A(ǫs) =
(6− 6ǫs

5/3 )

(6− 9ǫs1/3 + 9ǫs5/3 − 6ǫs2)
. (2.31)

We used Eq. 4.12 to plot the single-collector efficiency at different mean flow Reynolds

number and granule volume fraction. It can be seen in Fig. 2.16 that the single-collector
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Figure 2.16 Single-collector efficiency as a function of effective Stokes num-
ber obtained from DNS-LPT simulations for a range of mean
slip Reynolds number and volume fractions.

efficiency data does not collapse well with the effective Stokes number. This is because

the effective Stokes number does not capture the dependence of single-collector efficiency

on mean flow Reynolds for different granule volume fraction. By modifying the power of

the Rem in effective Stokes number from 1/2 to 1/5, the modified effective Stokes number

gave a good collapse of DNS-LPT data as can be seen in Fig. 2.17. We reduced the

power of Rem in effective Stokes number because in Section 2.4.1 we have seen that

for Rem > 10 the single-collector efficiency tends to asymptote to a limiting high Rem

value. The reduced power of Rem in effective Stokes number capture this single-collector

dependence on Rem.

St∗eff =
[

A(ǫs) + 1.14Re1/5m (1− ǫs)
−3/2

] St

2
, (2.32)

The particles that do not get filtered by the granules penetrate through the bed and
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Figure 2.17 Single-collector efficiency as a function of modified effective
Stokes number obtained from DNS–LPT simulations for a
range of mean slip Reynolds number and volume fractions with
modified effective Stokes number.

the penetration of a granular bed is defined as

P = 1− η, (2.33)

where η is the filtration efficiency of a granular bed. In a granular bed, the filtration

of a particles is a strong function of Stokes number St, and for a particular granule

volume fraction ǫs and mean slip Reynolds number Rem. Fig. 2.18 shows that for a

given particle Stokes number, the penetration decreases with increase in the length of

granular bed (P = f(L;St = St∗)). This is due to the increase in probability of particles

being filtered by the granules with increase in the length of the granular bed. The data

in Fig. 2.18 suggests an exponential dependence for the penetration of the particles in a

bed with bed length :

λ = − 1

L
lnP. (2.34)

Hence a new correlation model can be proposed for the filter coefficient λ using DNS–
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LPT data, where λ = f(Rem, St, ǫs) = f(St∗eff). The new correlation for filter
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Figure 2.18 Penetration obtained from DNS-LPT simulations with the
length of granular bed, at different particle Stokes number for
a granule volume fraction ǫs = 0.4 and a mean slip Reynolds
number Rem = 20.

coefficient is proposed from DNS–LPT data reads as

λ =
St∗eff

3.2

4.3 + St∗eff
3.2 . (2.35)

Figure 2.19 shows the new correlation for filter coefficient that is a best fit to the

DNS–LPT data which can be used in CFD simulations and a summary of the simulation

conditions used to obtain the DNS–LPT data points in Fig. 2.19 are shown in Table 5.1.

2.6 Conclusions

We use DNS–LPT to quantify the performance of a granular filter and to investigate

the dependence of global filtration quantities such as penetration and single-collector

efficiency on granule volume fraction ǫs, mean slip Reynolds number Rem, and particle
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Figure 2.19 The DNS-LPT data for filter coefficient λ for different bed
lengths and the solid line is the best fit correlation to DNS-LPT
data.

Stokes number St for filtration of inertial particles. The penetration of fine particles

in a granular filter is usually defined as the outlet particle concentration (or number

density) normalized by its inlet value on the basis of the concentration equation for

particles with negligible inertia. For inertial particles we show that the penetration in a

granular filter is the outlet particle flux normalized by its inlet value, which reduces to

the normalized concentration (or number density) for particles of negligible inertia. This

definition of penetration is consistent with the mass balance of particles in a granular

filter at steady state. For particles with finite inertia, the DNS–LPT results show that

there is significant nonzero mean slip between particles and fluid, which explains the

difference between particle flux and concentration profiles.

The DNS–LPT results show that the single-collector efficiency depends on ǫs, St,

and mean slip Reynolds number for Rem ≤ 10, but, for Rem > 10 the single–collector
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Table 2.1 Granular filtration parameters for DNS-LPT filter coefficient.

Parameters Values simulated
ǫs 0.3, 0.4, 0.5

Rem 1, 10, 20, 30, 50, 100
St 0.05, 0.10, 0.15, 0.25

L/Dg 4, 5, 6, 8, 10

efficiency is practically independent of mean slip Reynolds number. This dependence

of single-collector efficiency on mean slip Reynolds number is explained on the basis of

tortuosity of fluid streamlines and the residence time of particles in the granular bed.

Although tortuosity of fluid streamlines increases with Rem which aids in filtration of

particles, the decrease in residence time of particles in granular filter with Rem offsets

the effect of tortuosity for Rem > 10.

The effective Stokes number proposed by D’Ottavio and Goren (1983) to collapse

single-collector efficiency data for moderate mean slip Reynolds number is modified to

reflect the weak dependence of single-collector efficiency on mean flow Reynolds number

for Rem > 10 by changing the Re
1/2
m dependence to Re

1/5
m . The single-collector efficiency

obtained from DNS–LPT when plotted against the modified effective Stokes number

gives a very good collapse over the range of granule volume fraction, mean slip Reynolds

number and particle Stokes number simulated.

We also found from DNS–LPT data that the penetration decays exponentially with

the length of the granular bed. Based on this observation a model is proposed for the

filter coefficient λ in terms of the modified effective Stokes number. The model for filter

coefficient proposed in this study can be used in two–fluid CFD simulations of a full-scale

granular bed to model the filtration of particle by the granular bed.
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CHAPTER 3. Filtration model for polydisperse particulates

in gas-solid flow using particle-resolved direct numerical

simulation

This chapter is a manuscript in preparation for Aerosol science and technology titled

: Filtration model for polydisperse particulates in gas-solid flow using particle-resolved

direct numerical simulation authored by R. Kolakaluri,E. Murphy, R. C. Brown, R. O.

Fox and S. Subramaniam.

Abstract

An analytical framework for calculating the filtration efficiency of polydisperse par-

ticles in a granular bed is developed for cases where inertial impaction and interception

are the principal filtration mechanisms. This framework is used to develop a model for

the polydisperse single-collector efficiency from monodisperse single-collector efficiency

correlations. Conceptually, the polydisperse model is developed by transforming the

probability density of particle radius into a probability density of particle Stokes num-

ber that is then used to weight the monodisperse single-collector efficiency at a given

Stokes number. In Stokes flow, the polydisperse model uses a monodisperse (single-

collector efficiency) correlation (Araújo et al., 2006) obtained from unit cell numerical

simulations. For moderate Reynolds number, the polydisperse model uses an empiri-

cal monodisperse correlation obtained from experimental data of D’Ottavio and Goren

(1983). An extension of this polydisperse filtration concept results in an analytical so-
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lution for the axial variation of polydisperse particle flux in a random three-dimensional

(3D) granule configuration. In order to verify the analytical results for polydisperse

particle filtration over a range of mean slip Reynolds number, a particle–resolved Direct

Numerical Simulation (DNS) approach is coupled with Lagrangian Particle Tracking

(LPT) to simulate filtration of polydisperse particles in a granular bed. The DNS–LPT

approach is validated with results for penetration and single-collector efficiency in the

literature (D’Ottavio and Goren, 1983). The DNS–LPT results are then used to verify

analytical predictions of the cumulative distribution function (CDF) of particle radius

and the polydisperse particle flux. The particle size distributions used in this study are

similar to those typically encountered in granular filtration applications. Therefore, the

analytical models for polydisperse filtration that are developed in this study can directly

be applied to practical granular filtration applications in chemical looping combustion,

thermal power plants and water filtration.

3.1 Introduction

Granular filtration is a process commonly used to remove particles from fluid streams.

It finds applications in filtration of fly ash from hot gases produced during fast pyrolysis

of biomass for bio-oil production (El-Hedok et al., 2011; Ritzert et al., 2004), water and

wastewater treatment (Davis, 2010), and exhaust gas treatment in thermal power plants.

Filtration of particles in these applications is receiving increased attention that is driven

by various factors, such as the need for clean coal combustion, treating water pollution,

and efforts to reduce risks to human health from exposure to aerosols.

The principal mechanisms for particle filtration from fluid streams flowing through

a granular bed are inertial impaction, interception, gravitation, and Brownian diffu-

sion (Tien and Ramarao, 2007). Inertial impaction and interception are significant mech-

anisms for particle collection in granular filtration for particles with diameters greater
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than 1µm and the particles considered in this study fall in this category. Granular fil-

tration in the inertial impaction and interception regimes is a strong function of particle

inertia that is characterized by the Stokes number St = 〈W 〉 d2pρp/9Dgµ (D’Ottavio and

Goren, 1983; Tien and Ramarao, 2007; Araújo et al., 2006). The Stokes number is the

ratio of the particle momentum response time to a characteristic fluid time scale. The

characteristic fluid time scale is taken to be Dg/2 〈W 〉, where 〈W 〉 is the mean slip ve-

locity between fluid and granules, and Dg is the granule diameter. Note that it is the

mean slip velocity between fluid and granules (not particles) that determines the scale of

fluid motions. The particle momentum response time is τp = d2pρp/18µ, where dp is the

diameter of the particle, ρp is the density of the particle, and µ is the dynamic viscosity

of the fluid.

The particles or aerosols found in the applications mentioned above are generally

polydisperse. Furthermore, the process of filtration changes the local size distribution of

particles at different spatial locations within the granular bed. Polydispersity implies a

range of particle Stokes numbers because of the d2p dependence of the particle response

time τp on diameter. Particles with different Stokes number filter at different rates

through a granular bed. In this study, we develop analytical models for polydisperse

particle filtration that are valid in both Stokes flow and at moderate mean slip Reynolds

number. The mean slip Reynolds number is defined as Rem = (1 − ǫs) 〈W 〉Dgρf/µ,

where ǫs is the granule volume fraction, and ρf is the fluid density. Note that the mean

slip Reynolds number affects the particle Stokes number, which can be written as

St =
Rem

(1− ǫs)

(

dp
Dg

)2
1

9

ρp
ρf

. (3.1)

The development of analytical polydisperse filtration models for moderate mean slip

Reynolds number is one of the principal contributions of this work.

Due to the complex geometry of a granular bed, simple models have been developed

to explain filtration. The assumption made in these models is that a granular bed
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can be represented as a sequence of single collectors, and the filter efficiency of each

single collector is called the single-collector efficiency ηs. In this approach (Tien and

Ramarao, 2007), the single-collector efficiency describes the rate of particle collection

as the fraction of particles flowing through an area equal to the projected area of the

collector in a plane normal to the direction of the flow. The single-collector efficiency ηs

for a granular bed is related to the penetration P = ṁout/ṁin by the relation:

ηs =
−2DG lnP

3ǫsL
, (3.2)

where ṁin is the mass of particles injected at the inlet and ṁout is mass of particles

exited from the outlet of the granular bed, Dg is the granule diameter, and L denotes the

length of the granular bed. Over the past few decades many researchers have proposed

empirical correlations (Thambimuthu, 1980; D’Ottavio and Goren, 1983; Gal et al.,

1985; Jung et al., 1989) for single-collector efficiency of monodisperse particles based

on experimental data. Yoshida and Tien (1985); Pendse and Tien (1982) also developed

correlations for the single-collector efficiency, but unlike others, their correlations are

obtained using both numerical and experimental results.

For filtration of monodisperse particles in Stokes flow (Rem = 0) through a monodis-

perse granular bed, the single-collector efficiency ηs depends only on granule volume

fraction ǫs and particle Stokes number St (Araújo et al., 2006). For finite mean-slip

Reynolds number, the filtration of particles ηs is a function of Stokes number St, gran-

ule volume fraction ǫs, and the mean slip Reynolds number Rem. In an attempt to

collapse single-collector efficiency data for moderate Reynolds number, D’Ottavio and

Goren (1983) combined the three independent dimensionless groups Rem, St and ǫs

into a single effective Stokes number Steff as given in Eqs. 4.12 and 4.13. Most of the

correlations for single-collector efficiency found in the granular filtration literature are

given as a function of Stokes number St, or a combination of both Stokes number St

and mean slip Reynolds number Rem, or as a function of effective Stokes number Steff .
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These correlations are for monodisperse particles.

There are few experimental studies on granular filtration of polydisperse particles

due to difficulties in tracking the filtration rate of each particle size class through the

granular bed, and also due to the lack of optical access inside the granular bed. Jung

and Tien (1992); Wu and Tien (1995) were able to experimentally study the granular

filtration of polydispersed particles. However, they did not look at different size distri-

butions of particles. Kim et al. (2000) and Kwon et al. (2002) analytically calculated

the filtration efficiency of a log-normal size distribution of particles where Brownian dif-

fusion was considered as the deposition mechanism. Their study does not discuss other

size distributions and also the model is limited to Stokes flow. An analytical solution

was derived by Song and Park (2006) for filtration efficiency of polydisperse aerosols,

where both diffusional and inertial impaction are considered as deposition mechanisms

for a log-normal size distribution. Their study is also limited to Stokes flow. All the

analytical studies mentioned above are restricted to a log-normal distribution of particle

diameter. Hence, there is a need for an analytical framework in the inertial impaction

regime that is not restricted to a particular size distribution of particles, and which is

valid in both Stokes flow and at moderate Reynolds number.

The objectives of this work are to develop an analytical framework for polydisperse

particle filtration due to inertial impaction and interception that is valid for any size

distribution of particles. Another objective is to develop models that are valid in both

Stokes flow as well as in moderate Reynolds number flows. In order to verify the ana-

lytical model’s predictions of polydisperse filtration, a DNS–LPT approach is developed

to study the filtration of polydisperse particles in a granular bed.

The chapter is organized as follows. The analytical model development for Stokes

flow and moderate Reynolds number flow and the closure models are discussed in Sec-

tion 3.2. In Section 3.3 the DNS–LPT computational approach that is used to simulate

the filtration of particles in a granular bed is described. In Section 3.4 we demonstrate
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convergence of the DNS–LPT approach and validate the simulation results by comparing

with experimental data. Finally, in Section 3.5 the analytical predictions for Stokes flow

and moderate Reynolds number flow are compared with the DNS–LPT results.

3.2 Analytical model development

We have seen from various experimental (D’Ottavio and Goren, 1983; Gal et al.,

1985; Tien and Ramarao, 2007) and numerical studies (Araújo et al., 2006) that the

single-collector efficiency for monodisperse particles ηs,mono is a function of ǫs, Rem and

St, such that ηs,mono(ǫs, Rem, St). Therefore, the challenge in developing a model for

polydisperse particle filtration is to come up with an expression for ηs,poly(ǫs, Rem, f(rp)).

The analytical model is first developed for Stokes flow and then extended to moderate

Reynolds number flows. It is applied to Stokes flow in a 2D ordered array and then to

flows at finite Reynolds number in a 3D assembly of randomly distributed granules that

represents a granular bed.

3.2.1 Polydisperse single-collector efficiency in Stokes flow

The principal effect of polydispersity on granular filtration is that the polydisperse

single-collector efficiency ηs,poly(ǫs, Rem, f(rp)) must account for a range of Stokes num-

ber, because the particle size distribution implies a distribution of Stokes number. For

the case of Stokes flow (Rem ≈ 0), this dependence can be accounted for by transforming

the probability distribution function (PDF) for the particle radius f (rp) into a PDF for

the particle Stokes number f (St) by a simple change of variable:

f (St) = f (rp)
drp
dSt

. (3.3)

The PDF of particle Stokes number is used to find the polydisperse single-collector

efficiency ηs,poly, which is now expressed as ηs,poly(ǫs, f(St)), where the dependence on
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Rem can be omitted for Stokes flow. The functional dependence of the monodisperse

single-collector efficiency ηs,mono on Stokes number can be interpreted as the expected

polydisperse single-collector efficiency conditional on a particular Stokes number :

ηs,mono(ǫs, St) = 〈ηs,poly|ǫs, St〉 . (3.4)

Therefore, the cumulative polydisperse single-collector efficiency is simply

ηcums,poly(ǫs, St) =

∫ St

Stc(ǫs)

〈

ηs,poly | ǫs, St
′

〉

f(St
′

)dSt
′

, (3.5)

where Stc is the critical Stokes number above which the filtration of particles starts

to take place in the absence of gravity (Araújo et al., 2006). The effect of intercep-

tion parameter is not considered in the Araújo et al. (2006) study, hence the critical

Stokes number Stc is only a function of granule volume fraction ǫs. The cumulative

polydisperse single-collector efficiency ηcums,poly(ǫs, St) represents the filtration efficiency

of all particles with St
′

< St. The expected polydisperse single-collector efficiency is

〈ηs,poly〉 = ηcums,poly(∞), and is referred to as the total polydisperse efficiency for simplicity.

The integral in Eq. 3.5 is evaluated using fourth-order Runge-Kutta integration.

3.2.2 Results for Stokes flow

Particle filtration in an infinite ordered filter composed of a periodic arrangement

of circular obstacles is a classical problem. This approach has been used to describe

the porous geometry of fibrous filters (Marshall et al., 1994) and also a homogeneous

randomly packed medium (Tien and Ramarao, 2007). Araújo et al. (2006) used Marshall

et al. (1994) solution of flow past a circular obstacle in a square unit cell for periodic

boundary conditions imposed on the fluid in both x and y direction to simulate filtration

of monodisperse particles. Araújo et al. (2006) expressed the single-collector efficiency

as a function of particle Stokes number St by

ηs,mono ∝ (St− Stc)
0.5. (3.6)
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The critical Stokes number Stc is shown to vary with granule volume fraction ǫs, where

1 − ǫs is the unit cell porosity. The correlation given by Araújo et al. (2006) exceeds

unity for Stokes number greater than 1.2, which is unphysical. In order to remedy this

behavior we propose a modified correlation to Araujo’s data for ηs,mono for a granule

volume fraction ǫs of 0.1:

ηs,mono =
(St− Stc)

(St− Stc) + a
, (3.7)

where a = 0.31 and Stc = 0.21(ǫs = 0.1). Figure 3.1 shows both the modified correlation

and original correlation along with the numerical data from Araújo et al. (2006). It is

observed that the modified correlation fits the data more closely and obeys the correct

limiting behavior(ηs → 1).
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Figure 3.1 The Araújo et al. (2006) correlation and the modified correla-
tion compared with simulation data from Araújo et al. (2006)
(ǫs = 0.1).

The analytical model prediction (Eqs. 3.5 and 3.7) are tested for different size distri-

butions, and compared with Lagrangian particle tracking (LPT) results in Section 3.5.1.
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The mean particle radius in this test case is chosen in such a way as to maintain the

mean Stokes number (St(〈rp〉) = 0.5) and particle density (ρp = 1000) close to values

found in experiments (El-Hedok et al., 2011). The parameters that define the test case

are given in Tables 3.1(a) and 3.1(b).

Table 3.1 Parameters corresponding to the test case for polydisperse filtra-
tion in Stokes flow.

(a) Physical

Parameter Value
〈rp〉 7.6× 10−2m

Dg(ǫs = 0.1) 0.357m
stdev(rp)/0.5Dg 1.52× 10−2m

(b) Nondimensional

Parameter Value
Rem 0.1
ǫs 0.1

St(〈rp〉) 0.5

The PDFs of particle radius rp for three size distributions — normal, log-normal, and

gamma — that are used to test the cumulative polydisperse single-collector efficiency are

shown in Fig. 3.2(a). The corresponding PDF of particle Stokes number obtained using

Eq. 3.3 is shown in Fig. 3.2(b). The shape of these distributions affect the cumulative

polydispere single-collector efficiency computed using Eq. 3.5. Note that the particles in

these distributions with St < Stc do not filter and the critical Stokes number is marked

in Fig. 3.2(b).

The cumulative polydisperse single-collector efficiency is computed using Eqs. 3.4–

3.5 and the expression for ηs,mono (Eq. 3.7). The cumulative polydisperse single-

collector efficiency for the three size distributions is shown in Fig. 3.3. For comparison

the monodisperse single-collector efficiency at the mean particle radius is also shown.

The monodisperse single-collector efficiency at the mean particle size is higher than the

polydisperse single-collector efficiencies because particles with St < Stc do not filter out

(cf. Eqs. 3.6 - 3.7) in all three distributions. The polydisperse single-collector efficiency

for the normal distribution is slightly less than the single-collector efficiency of the other

two distributions because the peak of the normal distribution is less than that of the
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Figure 3.2 (a) PDF of particle radius for three different distributions with a
normalized mean particle radius of 0.22 and normalized standard
deviation of 1.52× 10−2, both lengths are normalized by Dg/2.
(b) Corresponding PDF’s of particle Stokes number for the same
distributions with a mean Stokes number of 0.50 based on mean
particle radius.(normal — ; log-normal - - - ; gamma — ·· — ··).

log-normal and gamma distributions, whereas the standard deviation is the same for all

three distributions (see Fig. 3.2(a)). In Section 3.5.1, the results from this analytical

model are compared with 2D LPT results.

3.2.3 Polydisperse single-collector efficiency in moderate Reynolds number

flow

We now extend the analytical model for polydisperse single-collector efficiency to

moderate mean slip Reynolds number. Recall that the experimental data (D’Ottavio and

Goren, 1983) on single-collector efficiency in moderate Reynolds number flow collapses

when plotted as a function of the effective Stokes number. The empirical correlation for

single-collector efficiency from the experimental data of D’Ottavio and Goren (1983) is

ηs,mono(ǫs, Rem) =

(

St3.55eff

St3.55eff + 1.67

)

. (3.8)
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Figure 3.3 The single-collector efficiency obtained from three different dis-
tributions for a normalized standard deviation of 1.52 × 10−2

and a normalized mean particle radius of 0.22 compared with
monodisperse single-collector efficiency for the same mean (mean
Stokes number = 0.50), both lengths are normalized by Dg/2

This motivates the development of a polydisperse single-collector efficiency of the form

ηs,poly(ǫs, Rem, f(Steff)). Therefore, the PDF of particle radius is transformed into the

PDF of effective Stokes number as

f (Steff) = f (rp)
drp

dSteff
. (3.9)

The expression for monodisperse single-collector efficiency in moderate Reynolds number

flow (given by Eq. 3.8) is used to obtain the polydisperse filtration efficiency. The

cumulative polydisperse single-collector efficiency is

ηcums,poly(ǫs, Rem, Steff) =

∫ Steff

0

〈

ηs,poly|St
′

eff

〉

f(St
′

eff)dSt
′

eff . (3.10)
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3.2.4 Results for moderate Reynolds number flow

The PDFs of particle radius rp and particle effective Stokes number Steff for three size

distributions — normal, log-normal, and gamma — that are used to test the cumulative

polydisperse single-collector efficiency are shown in Figs. 3.4(a) and 3.4(b). The trends

are similar to that observed in the Stokes flow case. The shape of the distributions affect

the polydisperse single-collector efficiency. The parameters of the size distributions for

the moderate Reynolds number test case are given in Table 3.2(a). The two test cases

chosen are based on the experimental data of D’Ottavio and Goren (1983). Test case A

with an effective Stokes number Steff = 0.72 falls in the lower efficiency region (Fig. 3.9)

and test case B with an effective Stokes number Steff = 1.12 falls in the high efficiency

region (Fig. 3.9). We also maintained the other parameters like particle density, mean

Reynolds number, and granule volume fraction close to experiments (D’Ottavio and

Goren, 1983). The cumulative polydisperse single-collector efficiency obtained

Table 3.2 Parameters corresponding to the experiments and the test cases
for polydisperse filtration in moderate Reynolds number.

(a) Experiments

Parameter Value
Dg 2× 10−3m; 4× 10−3m
〈rp〉 3.0× 10−7m to 2.25× 10−6m

NR = 2rp/Dg 1.5× 10−4 to 2.3× 10−3

(b) Test cases

Parameter Test case A Test case B
〈rp〉/Dg 3.0× 10−3 3.75× 10−3

NR = 2rp/Dg 6.0× 10−3 7.5× 10−3

stdev(rp)/Dg 6.0× 10−4 7.5× 10−4

from all the three distributions are shown in Fig. 3.5. For comparison the monodisperse

single-collector efficiency at the mean particle radius is also plotted in Fig. 3.5. In this

moderate Reynolds number case with Rem = 10, the total polydisperse single-collector

efficiency is higher than the monodisperse value at the mean particle radius because the
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Table 3.3 Nondimensional parameters corresponding to experiments and
the test cases for polydisperse filtration in moderate Reynolds
number flow.

Experiments Test case A Test case B
Rem 10 to 1000 10 10
ǫs 0.63 0.5 0.5
St 8.6× 10−4 to 0.18 0.05 0.078
Steff 0.15 to 2.0 0.72 1.12

particles with Steff > 〈Steff〉 contribute to this increase. Since the shapes of f(Steff) for

Steff > 〈Steff〉 are very similar for all three distributions (see Fig. 3.4(b)), this increase

is very similar for all the three distributions considered.

In this section, we have developed an analytical model for calculating the polydis-

perse single-collector efficiency for different size distributions of particles in both Stokes

and moderate Reynolds number flow. We find that the monodisperse single-collector

efficiency at the mean particle radius is not a good estimate of total filtration efficiency

since it can over or underpredict the total polydisperse single-collector efficiency depend-

ing on the flow conditions. However, the analytical models developed in this section do

not provide information regarding the axial variation of particle flux along the granular

bed. To find the axial variation of polydisperse particles along the granular bed, we

derive an analytical expression for the axial variation of particle flux.

3.2.5 Transport equation for the particle flux

The evolution of number density n(x, r, t) of particles through the granular bed is

governed by

∂n(x, r, t)

∂t
+

∂

∂xk
(〈Vk|r〉n(x, r, t)) = S(x, r, t). (3.11)

Details of the derivation of the evolution of number density of particles can be found in C.

If the sink term due to granular filtration is proportional to the local particle flux at that
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Figure 3.4 (a) PDF of particle radius for three different distributions with
a normalized mean particle radius of 3× 10−3 and a normalized
standard deviation of 6 × 10−4, both lengths are normalized by
Dg. (b)Corresponding PDF’s of particle effective Stokes number
for the same distributions with a mean effective Stokes number
of Steff = 0.72 based on normalized mean particle radius, gran-
ule volume fraction ǫs = 0.5 and mean slip Reynolds number
Rem = 10 (normal — ; log-normal - - - ; gamma — ·· — ··).

location, then the axial variation of particle flux in a granular bed can be analytically

obtained by solving Eq. 3.12 with a model for the sink term S = −λ(Steff)〈Vk|r〉n(x, r, t).

The resulting number density equation is

∂n(x, r, t)

∂t
+

∂

∂xk
(〈Vk|r〉n(x, r, t)) = −λ(Steff) 〈Vk|r〉n(x, r, t), (3.12)

where λ is the filter coefficient. D’Ottavio and Goren (1983) proposed the following

correlation for the filter coefficient:

λ(Steff) = 3ηs,mono(Steff) (1− εs) /2Dg, (3.13)

where ηs,mono is the monodisperse single-collector efficiency, whose dependence on Steff

is given by Eq. 3.8 that correlates a wide range of experimental data. At steady state,
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Figure 3.5 The single-collector efficiency obtained from three different dis-
tributions for a normalized standard deviation of 6.0×10−4 and
a normalized mean particle radius of 3.0× 10−3 compared with
monodisperse single-collector efficiency for the same mean par-
ticle radius (mean effective Stokes number Steff = 0.72 based on
mean particle radius, granule volume fraction ǫs = 0.5 and mean
slip Reynolds number Rem = 10), both lengths are normalized
by Dg.

Eq. 3.12 simplifies to read

∂

∂xk
(〈Vk|r〉n(x, r)) = −λ (Steff) 〈Vk|r〉n(x, r). (3.14)

Rewriting Eq. 3.14 in terms of the particle flux in the granular bed Jk(x, r) = 〈Vk|r〉n(x, r),

results in

∂

∂xk

(Jk(x, r)) = −λ (Steff) Jk(x, r). (3.15)

Noting that in granular filtration the particle flux varies only in the axial coordinate

(J(x, r) = J(x, r)) because the problem is statistically homogeneous in y and z direc-
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tions, and integrating Eq. 3.15 along the length of the granular bed result in:

J(x, r)

J(0, r)
= exp [−λ (Steff)x] (3.16)

The axial variation of particle flux J(x, r) can be written in terms of the particle size

distribution conditional on axial location x, as J(x, r) = J(x)f(r|x), where J(x) is the

total particle flux and f(r|x) is the PDF of particle radius conditional on axial location.

The total particle flux J(x) at a given axial location x is obtained by integrating over

all particle size values

J(x) =

∫ ∞

0

J(x, r)dr =

∫ ∞

0

J(x)f(r|x)dr. (3.17)

The PDF of particle radius is not assumed to be the same at all axial locations, but it

changes with x as particles filter through the bed. The particle flux equation (Eq. 3.16)

can be deduced using Eq. 3.17:

J(x) =

∫ ∞

0

J(0, r) exp [−λ (Steff)x] dr (3.18)

Equation 3.18 can be further simplified, additionally, a change of variables is made from

r to Steff to obtain the normalized particle flux :

J(x)

J(0)
=

∫ ∞

0

f(Steff |x = 0) exp [−λ (Steff)x] dSteff (3.19)

The results of the normalized particle flux obtained from Eq 3.19 are compared with

DNS-LPT results in Sec. 3.5. We now briefly describe the DNS-LPT simulations.

3.3 Direct numerical simulation of granular filtration

In granular filtration there are two solid phases: one comprises the granules through

which the fluid flows, and the other solid phase consists of particles that are suspended

in the fluid phase. The three-dimensional fluid phase flow fields around the gran-

ules are obtained using a particle-resolved DNS methodology called Particle-resolved

Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM)(see Fig. 3.6).
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In PUReIBM, exact no-slip and no-penetration boundary conditions are imposed at

the granule-fluid interface. The governing equations solved in PUReIBM are

∂ui

∂xi
= 0, (3.20)

and

ρf
∂ui

∂t
+ ρfSi = −gIBM,i + µ

∂2ui

∂xj∂xj
+ fu,i, (3.21)

where gIBM,i is the pressure gradient, Si is the convective term, fu,i is the immersed

boundary force term that accounts for the granules in the fluid phase. Further details

on the PUReIBM solution approach are given in D. PUReIBM is a numerically con-

vergent and accurate particle-resolved DNS method for fluid-solid flows, and it has been

extensively validated in a comprehensive suite of test cases (Tenneti et al., 2011). In the

DNS-LPT approach developed here, the particles to be filtered are tracked as point par-

ticles in a Lagrangian frame as they are carried by the fluid phase through the granular

bed.

The dispersed phase consisting of particles is represented in a Lagrangian frame

at time t by {X(i)(t),V(i)(t), i = 1, ......, Np(t)}, where V(i)(t) denotes the ith particle

velocity and X(i)(t) represents its position. The position and velocity of the particles

evolve by

dX(i)(t)

dt
= V(i), (3.22)

and

dV(i)(t)

dt
=

f (i)

m
(i)
p

= A(i), (3.23)

where m
(i)
p is the mass and f (i), and A(i) are the instantaneous force and acceleration

experienced by the ith particle. The instantaneous force is modeled using the drag

correlation by Schiller and Naumann (1933) :

f (i)(t) = 3πµ
∣

∣u(X(i)(t), t)−V(i)
∣

∣ dp(1 + 0.15Re0.687p ), (3.24)
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where Rep is the particle Reynolds number based on slip velocity between the fluid and

particle (not granule), ρf , µf and u(X(i)(t), t) are the fluid phase density, kinematic

viscosity and the velocity of the fluid at the particle location, respectively. Inter-particle

interactions are neglected consistent with our assumption in the analytical model for

particle flux evolution. In the present study, the mass loading (≈ 3 × 10−2) of the

dispersed phase is assumed to be negligible, and so momentum exchange between the

particles and fluid is neglected (The total particle drag is around ≈ 5 × 10−2 that of

the total granule drag for mean slip Reynolds number Rem = 10 and granule volume

fraction ǫs = 0.5).

The fluid velocity at the particle location u(X(i)(t), t) is obtained from the fluid ve-

locity at grid nodes. The numerical value of the fluid velocity field u(x, t) at the particle

location X(i)(t) is denoted (u(X(i)(t), t))M , and is obtained from the representation of u

at M grid nodes through interpolation (Garg et al., 2009)

(u(X(i)(t), t))M = ℑ(um, m = 1, ...,M ;X(i)(t)), (3.25)

where um is the fluid velocity at the mth fluid grid node and ℑ is a generic interpolation

operation. In this study we use second order Lagrange polynomial interpolation.

3.3.1 Simulation approach

Here we describe how the steady flow field past granules is obtained using the

PUReIBM approach. Then the Lagrangian tracking of particles is described. In PUReIBM,

the granules are first initialized in a lattice arrangement with a Maxwellian velocity dis-

tribution corresponding to a volume fraction of the granules ǫs. The granules are then

allowed to collide elastically to obtain an equilibrium configuration without the presence

of the ambient fluid. A steady flow is established past the equilibrium particle configura-

tion by imposing a pressure gradient that corresponds to a specified mean slip Reynolds

number Rem. The mean pressure gradient evolves in time until it attains a steady value
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required to drive the desired flow rate. The steady flow fields obtained from PUReIBM

are used for Lagrangian tracking of particles. In this work, we simulate steady filtration

in flow past fixed granule assemblies, but PUReIBM has been used to simulate moving

granules also (Tenneti et al., 2010).

The particles are continuously injected into the computational domain at a specified

mass injection rate ṁin. The particles are assigned the fluid velocity at the initial

particle location. The boundary conditions for particles are inflow at x = 0, outflow

at x = L, and periodic in the y and z directions. A particle is assumed to be trapped

by the granular assembly when the distance between the centres of the granule and the

particle is less than (rp + Dg/2) , where rp is the radius of the particle and Dg is the

diameter of the granule. This trapping criterion accounts for both inertial impaction

and interception. The particles are removed from the simulation at the outlet plane

x = L, where L is the length of the computational domain. Figure 3.6 shows the result

of a DNS-LPT simulation. The red spheres are the particles being filtered and the blue

spheres are the granules.

3.4 DNS-LPT: Numerical convergence and validation

3.4.1 Numerical convergence study

Here we establish that the DNS-LPT simulations give numerically converged solu-

tions. We examine the influence of grid resolution Dm = Dg/∆x on penetration P ,

where Dg is the granule diameter, and ∆x is the size of each grid cell. The penetration

is calculated after the DNS-LPT simulations reach steady state. Figure 3.7 shows the

variation of penetration P = ṁout/ṁin with time, where ṁin is the mass of the particles

injected at the inlet and ṁout is the mass of the particles exited from the outlet. The
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Figure 3.6 Trapping of particles in a random assembly of granules using
DNS-LPT. Contours of the streamwise component of velocity
are shown for a granule volume fraction of 0.1 and mean slip
Reynolds number of 0.01. The Stokes number of the particles in
this simulation is 4× 10−3.

penetration reported in this study is calculated from simulations as

P =

∫ tstop
tsteady

ṁoutdt
∫ tstop
tsteady

ṁindt
=

mout

min
, (3.26)

where tsteady is the time when the simulation reaches steady state and tstop is the total

simulation time. Numerical convergence is shown for a test case with particle Stokes

number of 0.25, granule volume fraction 0.4, and a mean slip Reynolds number of 20.

Note that L/Dg is a physical parameter in these inflow/outflow simulations, and P

decreases with increasing L/Dg. In the test case shown L/Dg = 4, but the same con-

vergence hold for L/Dg = 6, 8, 10 (results not shown here). Fig. 3.8 shows that the

penetration P converges with Dm for Dm > 30.
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Figure 3.7 Variation of penetration for a particle Stokes number of
St = 0.10, granule volume fraction ǫs = 0.5, mean-slip Reynolds
number Rem = 10 with time t normalized by fluid time scale τf .

3.4.2 Validation

The DNS-LPT computational approach developed to model granular filtration is

validated by comparing the penetration P and single-collector efficiency ηs obtained from

DNS-LPT with the experimental data of D’Ottavio and Goren (1983). A summary of

the simulation conditions used to obtain the DNS-LPT data points in Fig. 3.9 are shown

in Table 5.1.

In order to meaningfully compare data from filtration experiments performed with

different bed lengths L, it is common practice to compare the single-collector efficiency

(ηs = −2Dg lnP/3ǫsL). In Fig 3.9, we show the variation of single-collector efficiency

with effective Stokes number Steff , obtained from both the DNS-LPT and experimental
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Figure 3.8 Convergence characteristics of penetration for a particle Stokes
number of St = 0.25, granule volume fraction ǫs = 0.4, mean-s-
lip Reynolds number Rem = 20 with grid resolution Dm for
L/Dg = 4.

data. The effective Stokes number Steff is defined as

Steff =
[

A(ǫs) + 1.14Re1/2m (1− ǫs)
−3/2

] St

2
, (3.27)

A(ǫs) =
(6− 6ǫs

5/3 )

(6− 9ǫs1/3 + 9ǫs5/3 − 6ǫs2)
. (3.28)

Figure 3.9 shows a good match of single-collector efficiency obtained from DNS-LPT

simulations with experimental data. The scatter in the DNS-LPT data is probably

indication of the inadequacy of Steff to collapse ηs data from different (Rem, ǫs) combi-

nations. The solid line in Fig. 3.9 is the correlation (Eq. 3.8) suggested by D’Ottavio and

Goren (1983) and the dashed line in Fig. 3.9 is the new correlation fitted to DNS-LPT

data, which reads as

ηs =
St2.55eff

3.07 + St2.55eff

. (3.29)
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Equation 3.29 will be used for comparison of analytical particle expression with the

DNS-LPT date in Sec. 3.5.2.2.

η

0 1 2
10-2

10-1

100

DNS-LPT
D’Ottavio data
D’Ottavio correlation
DNS-LPT correlation

Figure 3.9 Comparison of single-collector efficiency as a function of effec-
tive Stokes number obtained from DNS-LPT simulations with
the experimental data and correlation of D’Ottavio and Goren
(1983) along with a correlation fitted to DNS-LPT date. Solid
squares are simulation results, open gradients are experimen-
tal data, solid line is D’Ottavio correlation and dashed line is
correlation fitted to DNS-LPT data.

The validation of single-collector efficiency with experimental data shows that the

DNS-LPT approach developed in the present study gives accurate predictions of granular

filtration.

3.5 Comparison of analytical model predictions with the

DNS-LPT results

Polydisperse single-collector efficiency for different particle size distributions, and

axial profiles of the particle flux predicted by the polydisperse filtration model are com-
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Table 3.4 Granular filtration parameters for DNS-LPT validation

Parameters Values simulated Experiments
ǫs 0.4, 0.5 0.63

Rem 10, 20, 30, 50 10 - 1000
St 0.05, 0.07, 0.1, 0.25 8.6× 10−4 - 0.18

L/Dg 10 8 - 50

pared with results from the DNS-LPT code developed in Sec. 3.3 for both Stokes flow

and at moderate Reynolds number.

3.5.1 Stokes flow

We consider particle filtration in a 2D unit cell for which Araújo et al. (2006) gave a

correlation for monodisperse single-collector efficiency (Eq. 3.6), which is modified for the

current study (see Eq. 3.7). We consider a polydisperse distribution of particles injected

upstream, and the polydisperse filtration model predicts: (a) the cumulative polydisperse

single-collector efficiency as a function of Stokes number, and (b) the total polydisperse

single-collector efficiency. These are compared with Lagrangian particle tracking (LPT)

simulation in flow fields obtained from the improved Kuwabara solution (Marshall et al.,

1994) for Stokes flow in a 2D unit cell. Log-normal and gamma particle size distributions

are considered as test cases. The CDFs of the log-normal and gamma particle size

distributions at the inlet are shown in Figs. 3.10(a) and 3.10(b).

The cumulative polydisperse single-collector efficiency ηcums,poly calculated analytically

using Eq. 3.5 gives a very good match with ηcums,poly obtained from LPT results for both

log-normal and gamma distributions, as shown in Figs. 3.11(a) and 3.11(b). In the

LPT simulations the size distribution is discrete and ηs,mono is obtained for each discrete

particle size, and then ηcums,poly is obtained by adding the discrete PDF (of the particle

size distribution) ηs,mono. A snapshot of the LPT simulation is shown in Fig. 3.12,
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Figure 3.10 CDF’s of particle radius used in the analytical model and LPT
simulations: (a) log-normal distribution of normalized particle
radius with a mean 0.22 and a normalized standard deviation
of 1.52× 10−2 (mean Stokes number St = 0.50 based on mean
particle radius), both lengths are normalized by Dg/2. (b)
gamma distribution of normalized particle radius with a mean
0.22 and a normalized standard deviation of 1.52×10−2 (mean
Stokes number St = 0.50 based on mean particle radius), both
lengths are normalized by Dg/2.

where δ/2 is the release position at the inlet of the computational cell above which the

particle will always escape and δ/2 increases with increase in particle size or Stokes

number. The monodisperse single-collector efficiency is ηs,mono = δ/D, where D is the

diameter of the collector. This simulation approach is similar to that used by Araújo

et al. (2006) to calculate the single-collector efficiency. These results demonstrate the

predictive capability of the simple analytical model developed in Sec. 3.2.1.

3.5.2 Moderate Reynolds number flow

3.5.2.1 Particle size distribution along the granular bed

We now consider the analytical model’s prediction of particle filtration in a three-

dimensional granular bed. In this case we use the empirical correlation (Eq. 3.8)



70

η

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

Analytical
LPT

(a)

η

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

Analytical
LPT

(b)

Figure 3.11 Comparison of cumulative polydisperse single-collector effi-
ciency ηcums,poly with Stokes number between the analytical model
and LPT simulations: (a) log-normal distribution of normal-
ized particle radius with a mean of 0.22 and a normalized stan-
dard deviation of 1.52× 10−2 (mean Stokes number St = 0.50
based on mean particle radius), both lengths are normalized
by Dg/2. (b) gamma distribution of normalized particle radius
with a mean of 0.22 and a normalized standard deviation of
1.52 × 10−2 (mean Stokes number St = 0.50 based on mean
particle radius), both lengths are normalized by Dg/2.

of D’Ottavio and Goren (1983) for the single-collector efficiency of monodisperse parti-

cles. Results obtained from the 3D analytical model are compared with the DNS-LPT

results obtained from the 3D granular bed for moderate Reynolds number. In the mod-

erate Reynolds number case the DNS–LPT simulations use flow field PUReIBM.

Recall that our analysis (cf. Sec. 3.2.5) does not assume that the particle size dis-

tribution is constant along the length of granular bed, which is an assumption in most

of the analytical models developed in the literature. The expression developed in Sec-

tion 3.2.5 (Eq. 3.19) allows the particle size distribution to evolve along the length of bed

due to variation in the filtration rate of particles of different sizes (Stokes number). In

Fig. 3.13 we see how the particle size distribution varies along the length of the domain.
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Figure 3.12 Particle trajectories when released from different positions at
the inlet of a periodic unit cell

To understand this analysis further, we modify Eq. 3.15 as follows to obtain an

expression for the evolution of the particle size distribution:

J(x)
df(r|x)
dx

+ f(r|x)dJ(x)
dx

= −λ (Steff)J(x)f(r|x). (3.30)

Rearranging terms in Eq. 3.30 leads to:

df(r|x)
dx

= − 1

J(x)

dJ(x)

dx
f(r|x)− λ (Steff) f(r|x). (3.31)

The first term on the right-hand side of Eq. 3.31 simply rescales the particle size dis-

tribution and the second term changes the shape of the particle size distribution along

the length of the bed. Figure 3.14(a) shows the analytical prediction of particle size

distribution at three axial locations in a granular bed, and the comparison of these an-

alytical predictions with the DNS-LPT simulations are shown in Figs. 3.14(b), 3.14(c)

and 3.14(d), respectively. It can be seen in Fig. 3.14 that the particle size distribu-

tion changes along the length of the bed and the analytical model predicts particle size

distributions similar to the DNS-LPT results.
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Figure 3.13 Analytical prediction of particle radius PDF along the granular
bed of length L at lengths x = 0, x = L/4, x = L/2, x = 3L/4
and x = L for a log-normal distribution of normalized mean
particle radius of 3.75×10−3 and a normalized standard devia-
tion of 7.5×10−4 at the inlet plane (mean effective Stokes num-
ber Steff = 1.12 based on mean particle radius, granule volume
fraction ǫs = 0.5 and mean slip Reynolds number Rem = 10),
both lengths are normalized by Dg.

3.5.2.2 Axial variation of particle flux

Two test cases (test cases A and B in Table 3.2(a)) are chosen for comparison of the

results obtained from the particle flux expression (Eq. 3.19) with the DNS-LPT results.

The CDF of the particle radius for both the test cases are given in Figs. 3.15(a)-3.15(b).

The analytical prediction (see Eq. 3.19) of steady state normalized particle flux

J(x)/J(0) as a function of axial location x is compared with DNS-LPT results in

Figs. 3.16(a) and 3.16(b) for log-normal particle size distributions (test cases A and

B). The granule solid volume fraction is 0.5 and the mean slip Reynolds number is 10

for these test cases. It should be noted that the error bars in the DNS-LPT simulations

are 95% confidence intervals obtained from averaging over 5 independent simulations
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corresponding to different granule configurations with the same volume fraction ǫs and

g(r) (radial distribution function). Figures. 3.16(a) and 3.16(b) show that the particle

flux decays along the axial coordinate due to filtration, and the trend of steady state

normalized particle flux profile predicted by the analytical model is similar to the flux

profile of DNS-LPT. It can also be seen in Figs. 3.16(a) and 3.16(b) that the analytical

solution (solid line) overpredicts the decay of particle flux compared to the DNS-LPT

results. This overprediction of particle flux decay in both test cases when compared

with DNS-LPT data is due to the correlation (Eq. 3.8) used in the analytical particle flux

expression (Eq. 3.19), which overpredicts the single-collector efficiency when compared

with the DNS-LPT (see Fig. 3.9). To confirm this hypothesis we use the new corre-

lation (Eq. 3.29) for single-collector efficiency fitted to DNS-LPT. The new correlation

(Eq. 3.29) gives a better fit to DNS-LPT data, as seen in Fig. 3.9. The analytical particle

flux expression with Eq. 3.29 instead of Eq. 3.8 predicts particle flux profiles (dashed

lines in Figs. 3.16(a) - 3.16(b)) that match the DNS-LPT data. This good agreement

between DNS-LPT and the model for axial variation of particle flux lends support to the

theoretical formulation in Sec. 3.2.5, allowing prediction of axial flux profiles in granular

filtration problems.

3.6 Conclusions

We have derived expressions for the cumulative polydisperse single-collector efficiency

ηcums,poly(St) and total polydisperse single-collector efficiency 〈ηs,poly〉 for granular filtra-

tion of particles with arbitrary size distributions in Stokes flow and moderate Reynolds

number flows. Recognizing the Stokes number as the principal parameter determining

filtration due to inertial impaction and interception, we transform the size distribution

of particles to a distribution of Stokes number for the Stokes flow case. The expressions

are also extended to moderate Reynolds number by converting the size distribution of
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particles to a distribution of effective Stokes number.

We also derived a transport equation for axial variation of the particle flux for poly-

disperse particles, which leads to an analytical solution for the size-dependent particle

flux as a function of axial location. We developed a DNS-LPT approach for granular

filtration of polydisperse particles that is valid for low and moderate Reynolds numbers.

The penetration and single-collector efficiency obtained from DNS-LPT results give a

good match with existing experimental data of D’Ottavio and Goren (1983). The results

obtained from polydisperse analytical model give a very good match with 2D-LPT and

DNS-LPT simulations. The analytical solution for the axial variation of particle flux

predicts profiles similar to DNS-LPT results.
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Figure 3.14 CDF of particle radius along the granular bed of length L,
initialized with a log-normal distribution of normalized mean
particle radius (by the radius of the granule) of 3.75×10−3 and
a normalized standard deviation of 7.5×10−4 at the inlet plane
(mean effective Stokes number Steff = 1.12 based on mean par-
ticle radius, granule volume fraction ǫs = 0.5 and mean slip
Reynolds number Rem = 10), both lengths are normalized by
Dg: (a) analytical prediction of particle size distribution at
lengths L/2, 3L/4 and L (b), (c) and (d) comparison of ana-
lytical prediction with DNS-LPT simulations at lengths L/2,
3L/4 and L, respectively.

.
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Figure 3.15 CDF of normalized particle radius at the inlet plane for a
log-normal distribution of particles with : (a) normalized mean
particle radius of 3.0× 10−3 and a normalized standard devia-
tion of 6.0 × 10−4 (mean effective Stokes number Steff = 0.72
based on mean particle radius, granule volume fraction ǫs = 0.5
and mean slip Reynolds number Rem = 10), both lengths
are normalized by Dg.(b) normalized mean particle radius of
3.75× 10−3 and a normalized standard deviation of 7.5× 10−4

(mean effective Stokes number Steff = 1.12 based on mean par-
ticle radius, granule volume fraction ǫs = 0.5 and mean slip
Reynolds number Rem = 10), both lengths are normalized by
Dg.
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Figure 3.16 Steady state normalized particle flux J(x)/J(0) along the flow
domain for a log-normal distribution of particles: (a) Normal-
ized mean particle radius of 3.0× 10−3 and a normalized stan-
dard deviation of 6.0 × 10−4 (mean effective Stokes number
Steff = 0.72 based on mean particle radius, granule volume
fraction ǫs = 0.5 and mean slip Reynolds number Rem = 10),
both lengths are normalized by Dg.(b) Normalized mean par-
ticle radius 3.75× 10−3 and a nomrmalized standard deviation
of 7.5× 10−4 (mean effective Stokes number Steff = 1.12 based
on mean particle radius, granule volume fraction ǫs = 0.5 and
mean slip Reynolds number Rem = 10), both lengths are nor-
malized by Dg.
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CHAPTER 4. Effect of particle bouncing on filtration

efficiency in granular beds: direct numerical simulation and

laser-based measurements

This chapter is a manuscript in preparation for Aerosol science and technology titled

:Effect of particle bouncing on filtration efficiency in granular beds: direct numerical

simulation and laser-based measurements authored by R. Kolakaluri,M. Cecconi, T. R.

Meyer, and S. Subramaniam.

4.1 Introduction

Filtration of particulates from high speed gas flows using granular filters has widespread

applications (El-Hedok et al., 2011; Meyer and Edwards, 1978; Ward, 1981; Goren, 1982;

Ritzert et al., 2004). The versatility of granular filtration is evident form its scope of

applications and ease of usage. Granular filters also perform better in high-temperature

and high-pressure gas cleaning applications than fibrous filters which fail in these ex-

treme conditions. The deposition of particles upon impact on a granule surface is an

important step in granular filters as the particles are known to either deposit or rebound

from granule surfaces. Particles are known to rebound from the granule surface when the

impact velocity exceeds a characteristic critical velocity, which depends on the particle

and granule size, shape and their material properties. The simple assumption of par-

ticle deposition on the surface of the granule upon impact is a good approximation for

particles impacting on granules at low velocities. In some applications the bouncing or
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rebound of particles is desirable and in other cases it is not. Hence it is necessary to have

a fundamental understanding of adhesion process occurring during particle impaction

on the granule surface.

A particle bounces from a granule surface if the kinetic energy of the particle is

able to overcome the adhesion energy at the surface. Researchers (Dahneke, 1971; Wall

et al., 1990) has derived energy balance equations for the interaction of a particle with

a surface, and have developed theoretical models for the critical velocity above which

the particle will bounce from the surface. Experimental measurements of adhesion for

particles impacting surfaces were conducted using two different approaches. One is the

direct approach where measurements are made of the incoming and rebounding particle

velocities (Dahneke, 1973; Wall et al., 1990) and in the second experimental approach,

the onset of particle bounce from the surface is detected as a decrease in collection which

occurs when the impact velocity of the particles is greater than the critical velocity. The

latter approach was used by D’Ottavio and Goren (1983); Jung et al. (1989); Aylor and

Ferrandino (1985); Wang and John (1988).

Due to the difficulties in measuring the incoming and rebounding velocities of particle

from a granule surface in a granular bed, the second experimental approach is mostly

used. D’Ottavio and Goren (1983); Jung et al. (1989) proposed correlations based on

the second experimental approach for the probability of sticking or adhesion probability

γ as

γ =
ηs,bounce

ηs
(4.1)

where ηs is the single-collector efficiency considering particles stick to granules upon

collision to granules and ηs,bounce is the single-collector efficiency when the particles

are allowed to rebound from the surface of the granules. The correlation for proba-

bility of sticking is given in terms of the effective Stokes number Steff , which com-

bines three independent dimensionless groups mean slip Reynolds number Rem = (1 −
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ǫs) 〈W 〉Dgρf/µ, particle Stokes number St = 〈W 〉 d2pρp/9Dgµ and granule volume frac-

tion ǫs into one D’Ottavio and Goren (1983). In the above expressions, 〈W 〉 is the mean

slip velocity between fluid and granules, Dg is the granule diameter, ρp is the particle

density, dp is the particle diameter, ρf is the fluid density and µ is the fluid dynamic

viscosity.

The bouncing studies done by Dahneke (1973, 1995); Wall et al. (1990) are for simple

rebounding of particles from a flat surface. These are done in vacuum where the effect

of the viscous drag forces and the effect of neighbouring granules are missing, and hence

they cannot be directly applied to granular filtration problems. In both studies of the

probability of sticking (D’Ottavio and Goren, 1983; Jung et al., 1989) computed by

Eq. 4.1 for different conditions when plotted with effective Stokes number have order of

magnitude scatter, which can be attributed to particles having different adhesion energy

and kinetic energy. It is important to suggest a correlation for the probability of sticking

γ as a function of both the effective Stokes number and the adhesion energy so that the

correlation be used in CFD simulations of granular filter for different kinds of particles.

In this study we use a DNS-LPT approach (Kolakaluri et al., 2013; Kolakaluri and

Subramaniam, 2013) to simulate granular filtration and allow the particles to bounce

from the surface of the granule if the incoming velocity of the particles is greater that

the critical velocity (Dahneke, 1995). In the DNS-LPT approach we use flow past a ho-

mogeneous random assembly of granules which is a better representation of the complex

flow structure in a granular bed. By using the DNS-LPT approach for simulating the

granular filtration, we are able to include the effect of viscous drag forces and the effect

of neighbouring granules on the bouncing of particles in a granular bed and also account

for the incoming kinetic energy of the particles.

The paper is organized as follows. In Section 4.2 we describe the experimental setup

of the granular filter and the critical velocity calculation for experiments are described in

Section 4.3. The DNS–LPT simulation methodology and the bouncing implementation
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are described in Section 4.4. Finally, in Section 4.5 we compare the DNS–LPT results

with the experiments and published results, and also suggest a correlation for probability

of sticking γ as a function of the adhesion energy and effective Stokes number.

4.2 Experimental setup

A schematic of the experimental setup is shown in Fig.5.4.3, where it can be seen

that the particles are released into the duct and allowed to flow into the granular bed

through the annular pipe. The measurements of the particles at the inlet and outlet

of the granular bed is done using laser sheets. Laser sheets are passed horizontally

through the test section before and after the filter, and signal from both regions is

collected on a common camera. This ensures proper normalization between the two

regions due to the matched sensitivity and uniformity of the detector. The current

tests with monodisperse particles allow extraction of filtration efficiency, defined as the

average difference in particles before and after the filter divided by the average incoming

particles. Data were collected for over 200 scattering images for varying bed length using

an Nd:YAG 5 nano second pulsed laser.

Table 4.1 Experimental conditions

Variables Values
ǫs 0.5

Rem 61
Dg 2× 10−3m
dp 2× 10−5m
ρp 1200 kg/m3

L/Dg 5.6 , 10
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Figure 4.1 Schematic drawing of experimental apparatus

4.3 Theory behind critical velocity calculation

At low impact velocities, particles colliding with the granules adhere to the surface

due to insufficient kinetic energy to escape the adhesion potential well. If the velocity

of the particle approaching towards the granule is greater than a critical value, then the

particle will have enough kinetic energy to escape the adhesion potential well, resulting

in particle bouncing from the granule surface. The expression for critical velocity of a

particle colliding on a surface is given by Dahneke (1995) as:

Vcrit =

[

2E

m

(1− e2)

e2

]1/2

, (4.2)

where E is the adhesion energy, e is the coefficient of restitution, and m is the mass

of the particle. In the absence of electrostatic forces, the adhesion energy E between

the particle and the granule can be estimated by the Bradley-Hamaker theory. For a

particle of diameter dp and a spherical granule of diameter Dg, E is given as

E =
Adp

12δ0(1 +NR)
, (4.3)
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where A is the Hamaker constant and δ0 is the average center to center distance between

the atoms composing the particle and granule, NR is the ratio of particle diameter to

the granule diameter. If we know the adhesion energy E, coefficient restitution e at

the contact of particle and surface, and the diameter of the particle and granule. The

critical velocity at which the particle bounce from the granule surface can be found using

Eq. 4.2-4.3.

If the coefficient of restitution e is not known prior it can also be obtained by (Dah-

neke, 1995)

e =
[

e20 + exp (−3.4Λ)− 1
]1/2

, (4.4)

where e0 is the value of e corresponding to the case of no flexural work, and Λ is the

inelasticity parameter. Dahneke (1971) gave an expression for sphere-cylinder interac-

tion, which can also be used for sphere-sphere interaction because of the granule being

much bigger than the particles. The inelasticity parameter is given as

Λ =
2

3π2/5

[

d2p
D2

g

]









1

1 +
dp
Dg









1/10

[

Vn

Vs

]1/5 [
ρp
ρg

]3/5 [
κg

κg + κp

]2/5

, (4.5)

where Vn is the incident normal velocity of the particle and Vs is defined as 1/(κgρg)
1/2, dp

and Dg are the particle and granule diameters, respectively and κp and κg are defined by

κi = (1− ν2
i )/Yi, where νi and Yi are the Poisson ratio and Young modulus for material

i. In the next section we discuss the critical velocity calculations for experiments

4.3.1 Critical velocity calculation for experiments

The experimental setup is shown in Fig. 5.4.3. The experiments are done with fly

ash of 20× 10−6 diameter and silica granules of 2× 10−3 diameter for a mean Reynolds

number of 61 and a solid volume fraction of ǫs = 0.5. The Hamaker constant for the

flyash and silica interaction can be obtained from the expression given by Israelachvili
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(2010):

Asilica−ash = (Asilica × Aflyash)
1/2 , (4.6)

The critical velocity obtained from Eq. 4.2 is normalized with a reference velocity to be

Table 4.2 Numerical values

Variables Values Units
Asilica−ash 1.626× 10−20 Joule
Esilica−ash 1.609× 10−16 Joule Eq. 4.3
Vcritical 1.723× 10−3 m/s Eq. 4.2
V ∗
critical 2.69× 10−3 m/s

used in the DNS-LPT simulations and the normalized critical velocity V ∗
critical is shown

in Table. 4.2. In the next section we describe the DNS-LPT simulation methodology

and the bouncing implementation in the DNS-LPT simulations.

4.4 DNS-LPT simulation methodology

Here we describe how the mean flow Reynolds number and granule volume fraction

are specified in the DNS. Granules are initialized in a lattice arrangement corresponding

to a specified granule volume fraction ǫs, corresponding to the granule volume fraction

the granules are initialized in a lattice arrangement with a Maxwellian velocity distri-

bution and the granules are then allowed to collide elastically to obtain a equilibrium

configuration. The mean pressure gradient that corresponds to a specified mean slip

Reynolds number is imposed and allowed to evolve in time until it attains a steady

value required to drive a desired flow rate.

Lagrangian tracking of particles is done in steady flow fields obtained from PUReIBM.

The particles are injected at a specified injection rate ṁin continuously into the compu-

tational domain. The particles injected at the inlet are initialized with the fluid velocity
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at the particle positions. The boundary conditions for both the cases is inflow at x = 0

and outflow at x = L where L is the length of the computational domain. In the y and

z direction the particles are given periodic boundary condition. A particle is considered

to be trapped by the granular assembly when the distance between the centres of the

granule and the particle is less than (rp +Dg/2) , where rp is the radius of the particle

and Dg is the diameter of the granule and the normal particle velocity is less than the

characteristic critical velocity. At the same distance from the granule surface the particle

is allowed to bounce if the normal particle velocity is greater than the characteristic crit-

ical velocity. The particles are removed from the simulation at the outlet plane x = L.

The bouncing of particles implementation into DNS–LPT is described in next section.

4.4.1 Bouncing implementation: Hard-sphere collision model

The particle bounces from the surface of the granule if the normal pre-collisional

particle velocity is greater than the critical velocity. The post-collisional velocity of the

particle depends on the coefficient of restitution e, which is defined as

e =
v

′

2 − v
′

1

v1 − v2

. (4.7)

Where v1 and v2 are the pre-collisional velocities of the particle and granule, and v
′

1 and

v
′

2 are the post-collisional velocities of the particles and granule. Solving the momentum

conservation equation and Eqn. 4.7 can be written as

v
′

1 = v1 +
m2(v2 − v1)(1 + e)

m1 +m2
. (4.8)

The post-collisional velocities of the particle and granule can be further written as

v
′

1 = v1 −
m2(1 + e)

m1 +m2

(k · v12)k, (4.9)

and

v
′

2 = v2 +
m1(1 + e)

m1 +m2
(k · v12)k. (4.10)
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Where k is the unit vector along the line joining the centers of both the particle and the

granule and v12 is the relative velocity between particles.

4.5 Results and Discussions

4.5.1 Comparison of DNS–LPT with laser-based experiments

The laser experiments are done for two different granular beds, the length of the first

granular bed is 0.44′′ and the other granular bed is 0.79′′. In experiments the granular

filter efficiency η is obtained by measuring the mass of particles at the inlet and outlet:

η =
ṁin − ṁout

ṁin

, (4.11)

where ṁin is the mass of the particles at the inlet and ṁout is the mass of particles at

the outlet of the granular bed. The filter efficiency η obtained from DNS-LPT results

are compared with two experimental cases (0.44′′ filter and 0.79′′ filter).

It can be seen in Fig. 4.2 that with the implementation of bouncing mechanism,

the DNS simulation gave a better match with the experimental results compared to the

DNS-LPT results with Pstick = 1, where Pstick is the probability of sticking of particles

on granule surface. Two bounds on the coefficient of restitution e can be observed from

Fig. 4.2, one is as e → 0 that is inelastic limit, all particles regardless of their initial

velocity lose all their energy and stick to the granules and this is more like going to the

no-bounce limit. The other bound is as e → 1, Vcritical tends to go to a very small value

(Eq. 4.2 and Fig. 4.4) and very few particles will stick as the probablity of V > Vcritical

is small. Hence η tends to a very small value as e → 1. The error bar on the DNS-LPT

are the standard deviation obtained from averaging the penetration over time after the

steady state is reached.

In Fig. 4.3, we can see a very good comparison of the DNS results with experimental

results for 0.79′′ filter. The same kind of bound on e can be observed for 0.79′′ filter as
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Figure 4.2 The comparison of filter efficiency obtained from DNS with ex-
perimental results. DNS is for different coefficient of restitution
for a filter of length 0.44′′ at mean Reynolds number 61 and solid
volume fraction 0.5.

observed for 0.44′′ filter, except the effect of e on the filter efficiency is less in the case

of 0.79′′ filter compared to small filter, this is due to increase in probability of particles

to collide on granule surface due to the increase in the length of granular filter.
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Figure 4.3 The comparison of filter efficiency obtained from DNS with ex-
perimental results. DNS is for different coefficient of restitution
for a filter of length 0.79′′ at mean Reynolds number 61 and solid
volume fraction 0.5.
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Figure 4.4 The variation of Vcritical for fixed adhesion energy E and mass
of the particle mp.
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4.5.2 Comparison of DNS–LPT with published results

The DNS-LPT results of the adhesion probability γ when compared with the results

of D’Ottavio and Goren (1983) gives a reasonable match as seen in Fig. 4.5. Where the

effective Stokes number in Fig. 4.5 is defined as

Steff =
[

A(ǫs) + 1.14Re1/2m (1− ǫs)
−3/2

] St

2
, (4.12)

A(ǫs) =
(6− 6ǫs

5/3 )

(6− 9ǫs1/3 + 9ǫs5/3 − 6ǫs2)
. (4.13)

The effective Stokes number suggested by D’Ottavio and Goren (1983) to collapse

γ=
η

,
η

1 2 3
10-2

10-1

100 DNS-LPT data
D’Ottavio data

Figure 4.5 Comparison of adhesion probability γ obtained from DNS–LPT
results withD’Ottavio and Goren (1983).

single-collector efficiency data for moderate mean slip Reynolds number was modified to

reflect the weak dependence of single-collector efficiency on mean flow Reynolds number

for Rem > 10 by changing the Re
1/2
m dependence to Re

1/5
m (Kolakaluri and Subramaniam,

2013). In the remaining part of this study we will be using the modified effective Stokes

number St∗eff , which gives a better collapse than the effective Stokes number. The
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modified effective Stokes number is defined as

St∗eff =
[

A(ǫs) + 1.14Re1/5m (1− ǫs)
−3/2

] St

2
. (4.14)

However there is lot of scatter in both the experimental and DNS-LPT data, which

is mainly due to the particles having different adhesion energy E that binds to the

granules and the differences in the the granular temperature T of the particles in the

granular bed. The granular temperature T is a measure of the variance in the particle

velocities and is defined as T = 1
3
〈v′′i v′′i 〉, where v′′i is the fluctuation in the particle

velocity defined with respect to the mean particle velocity. In order to introduce the

effect of adhesion energy and particle granular temperature in the adhesion probability,

we use a normalized adhesion energy HT = E/0.5mpT , where mp is the mass of each

particle.

γ
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Figure 4.6 (a)Adhesion probability γ with effective Stokes number Steff
from DNS-LPT data.(b)Adhesion probability γ with modified
effective Stokes number St∗eff from DNS-LPT data.

In Fig. 4.6(a)-4.6(b) we can see the variation of adhesion probability with the effective

Stokes number and modified effective Stokes number, and the modified effective Stokes

number was not able to reduce the scatter in the adhesion probability data, which further
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points to the scatter in the data is due to different adhesion energy between particles

and granules and the granular temperature of the particles in the granular bed.

4.5.3 Particle velocity variance in a granular bed

The granular temperature T (x) is obtained from the particle velocity variance which

depends on the particle inertia or Stokes number. In a granular bed the granular temper-

ature reaches steady state after the filtration rate reaches a steady value. The variation

of granular temperature in a granular bed along the mean flow direction is shown in

Fig. 4.7. It can also also be seen in Fig. 4.7 that granular temperature decrease with

particles Stokes number. For particles with St ≈ 0 the particle granular tempera-

〈
〉

0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

St-0.10
St-0.25

Figure 4.7 Variation of adhesion probability with the modified effective
Stokes number and adhesion energy normalized by the granu-
lar temperature.

ture depends only on the turbulent kinetic energy of the fluid. Tenneti et al. (2013a)

reported that the turbulent kinetic energy normalized by the mean energy of the fluid

increase with volume fraction and decrease with increase in mean flow Reynolds up to

Rem = 50 and beyond Rem = 50 it has a weak power law dependence on Rem. It can
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be seen in Fig. 4.8 that the granular temperature normalized by the turbulent kinetic

energy decreases with a power law dependence with increase in particle Stokes number.

This decrease is due to less influence of the fluid turbulent kinetic energy on the particle

fluctuating energy with increase in particle inertia.

Tenneti (2013) suggested a correlation for steady state granular temperature in terms

of mean slip Reynolds number, granule volume fraction and density ratio of particle and

fluid:

TSS

|W|2
= 2(1− ǫs)

3 exp−0.02(1− ǫs)Rem

(

ρp
ρf

)−1

. (4.15)

For the St = 0.10 cases shown in Fig. 4.7 the TSS obtained from DNS–LPT simulations

is 0.26, while the TSS obtained from Eq. 4.15 is 0.014137, which indicates that Eq. 4.15

underpredicts the particle granular temperature. Eq. 4.15 is underpredicting granular

temperature compared to DNS–LPT because it has been developed from PR-DNS of

particles with St ≈ 100. Hence, a correlation is suggested for particle granular tem-

perature from DNS–LPT in terms of the turbulent kinetic energy with a power law

dependence on Stokes number as

T = kf(1− 0.6St0.7). (4.16)

The adhesion energy is a function of the properties of the particles and the granules,

which has a positive effect towards particle sticking on the granule surface and on the

other hand granular temperature is a measure of the fluctuating energy of the particles

which helps to overcome the adhesion energy near granule surface and help the particles

to bounce from the granule surface. Hence, the ratio of the adhesion energy to the gran-

ular temperature will be an appropriate parameter to quantify the adhesion probability

of the particles. In Fig. 4.9(a) we can see the variation of the adhesion probability with

the adhesion energy normalized by the granular temperature (HT ) and the modified ef-

fective Stokes number. We can see in Fig. 4.9(a) that with decrease in HT the adhesion
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Figure 4.8 Variation of granular temperature normalized by the turbulent
kinetic energy with particle Stokes number.

probability decrease and also the adhesion probability decrease with increase in effective

Stokes number. Hence we can have a better understanding of the adhesion probability

with the information of both HT and modified effective Stokes number. It can be seen

in fig. 4.9(b) that the normalized adhesion energy raised to a negative power increases

with Reynolds number and we also know that the γ decrease with Reynolds number

due to increase in bouncing, hence we can use normalized adhesion energy HT raised

to a negative power to reduce the scatter in γ. HT is used to provide a correlation for

adhesion probability in next section.

4.5.4 Model for adhesion probability

In the previous subsection we have seen that the adhesion probability is a strong

function of the adhesion energy normalized by the granular temperature. In fig. 4.5 we

have seen that the modified effective Stokes number was not sufficient to collapse the

adhesion probability data, but by including the effect of the adhesion energy normalized
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Figure 4.9 (a)Variation of adhesion probability with the modified effective
Stokes number and adhesion energy normalized by the granular
temperature.(b)Variation of HT with modified effective Stokes
number St∗eff .

by the granular temperature HT raised to a negative power we are able to collapse

the adhesion probability data with modified effective Stokes number as can be seen in

Fig. 4.10. Hence a correlation is proposed for the adhesion probability as a function of

HT and the modified effective Stokes :

γ = 0.05St∗eff
−3/2H

−1/5
T . (4.17)

4.6 Conclusions

The filter efficiency used to quantify the performance of a granular filter was de-

termined experimentally using laser based experiments and a DNS–LPT approach was

developed for granular filtration with bouncing of particles implemented using hard-

sphere collision between particles and granules. The DNS–LPT results gave a decent

match with the experiments with bouncing of particles implemented in the DNS ap-

proach. The adhesion probability obtained from DNS–LPT results gave a good match
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Figure 4.10 Adhesion probability γ with the modified effective Stokes num-
ber.

with existing experimental data of D’Ottavio and Goren (1983) and the scatter in both

the published results and the DNS-LPT results are due to different adhesion energy and

granular temperature of the particles. A correlation for adhesion probability was also

proposed from DNS–LPT data, which gave a good collapse of data with the inclusion

of adhesion energy and granular temperature. The suggested correlation is valid for a

wide range of particle Stokes number, granule volume fraction and mean slip Reynolds

number and adhesion energy.
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CHAPTER 5. CFD modeling of granular filtration

5.1 Introduction

Granular filtration was traditionally used for water treatment, but due to the ease

of its usage it is also widely used in chemical industries. Granular filtration is mostly

used to treat flue gas, combustion products, polymers, and petrochemical products. The

common process of conducting granular filtration is in the fixed-bed mode (D’Ottavio

and Goren, 1983; Gal et al., 1985; Jung et al., 1989), but it can also conducted in a

moving-bed (Ritzert et al., 2004; El-Hedok et al., 2011) or fluidized-bed mode so that

the operation can be carried out continuously.

Granular filtration consists of two solid phases and one fluid phase : One of the

solid phases comprises the granules through which the fluid flows, and the other solid

phase consists of fin e particles that are suspended in the fluid phase. Direct numerical

simulation of a full-scale granular bed is prohibitively expensive in terms of the required

computational resources. This is due to the range of length and time scales that need

to be simulated. The other alternative approaches possible to simulate a full-scale gran-

ular bed would be to either use a Lagrangian-Eulerian (LE) or Eulerian-Eulerian (EE)

approach. Current implementations of the LE approach in commercial software (that

is needed to represent the complex geometry of a realistic moving bed granular filter)

are computationally expensive, and hence the Eulerian-Eulerian two-fluid approach is

chosen to model a full-scale granular bed.

In this study we develop a CFD model, where the granules and fluid phases are
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modeled using an Euler-Euler two-fluid model and the fine particles that are suspended

in the fluid phase are simulated using two User-Defined-Scalars (UDS). One of the UDS

represents the number density of particles suspended in the fluid phase and the other

UDS is for number density of particles deposited on the granules, which are moving with

the granules. The sink term in the UDS due to the deposition of particle on the granule

surface is introduced in the UDS using User-Defined-Functions (UDF).

The chapter is organized as follows. In section 5.2 we describe the CFD model

and the implementation procedure is discussed in section 5.3. The verification of the

CFD model and comparison of CFD results with experiments are done in section 5.4.

Section 5.5 reports the conclusions of this work.

5.2 Model description

5.2.1 Eulerian-Eulerian model

In the Euler-Euler model, the phases are treated as interpenetrating continua. The

phases are described by means of continuity and momentum equation that are derived

by ensemble averaging the local instantaneous balance equations (Enwald et al., 1996;

Drew, 1971). The continuity equation for each phase is given as

∂

∂t
(ǫφρφ) +∇ · (ǫφρφUφ) = 0, (5.1)

where ǫφ is the phase fraction, ρφ is the phase density and Uφ is the phase velocity. The

fluid phase momentum equation is given as

∂

∂t
(ǫfρfUf) +∇ · (ǫfρfUfUf ) = ∇ · τf − ǫf∇p+ ǫfρfg−Kdrag(Uf −Us), (5.2)

where the fluid phase stress tensor is given as:

τf = µf

[

∇Uf +∇TUf

]

− 2

3
µf(∇ ·Uf )I. (5.3)
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The granule phase momentum equation is written as

∂

∂t
(ǫsρsUs) +∇ · (ǫsρsUsUs) = ∇ · τs − ǫs∇p−∇Ps + ǫsρsg+Kdrag(Uf −Us), (5.4)

and the granule phase stress tensor is given as

τs = µs

[

∇Us +∇TUs

]

− (λs −
2

3
µs)(∇ ·Us)I. (5.5)

The interphase momentum transfer between the granular and fluid phase is modeled

using an interphase drag term, which is a function of drag coefficient Kdrag and this coef-

ficient is calculated according to Gidaspow (1994) and Modified Ergun’s equation (Mac-

donald et al., 1979):

Kdrag =
3

4

Cdǫf ǫgρf |Uf −Us|
Dg

if ǫs < 0.2 (5.6)

Kdrag = 180
µfǫ

2
s

ǫ2fD
2
g

+ 1.8
ρfǫs|Uf −Us|

ǫfDg
if ǫs > 0.2. (5.7)

Kinetic theory of the granular flow (Gidaspow, 1994) is used to calculate the dynamical

properties of the granule phase, where the particle pressure and the particle shear and

bulk velocities are calculated as a function of granular temperature T . The transport

equation for the granular temperature T is given as

∂

∂t
(ǫsρsT ) +∇ · (ǫsρsUsT ) =

2

3
[(−PsI+ τs) : ∇Us +∇ · (κs∇T )− γs + Jvis + Jslip](5.8)

The particle phase bulk viscosity is given as (Gidaspow, 1994):

λs =
4

3
ǫ2sρsDgg0(1 + es)

(

T

π

)0.5

, (5.9)

where g0 is the radial distribution function at contact and the particle pressure is calcu-

lated according to

Ps = ρsǫsT + 2ρsǫ
2
sg0T (1 + es). (5.10)
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The particle shear viscosity is given as a sum of collisional and kinetic contribution (Gi-

daspow, 1994) as shown below:

µs =
4

5
ǫ2sρsDgg0(1 + es)

(

T

π

)0.5

+
10ρsDg

√
Tπ

96g0(1 + es)

[

1 +
4

5
(1 + es)ǫsg0

]2

. (5.11)

The dissipation of granular energy due to viscous dissipation Jvis and the production of

granular temperature Jslipis modelled as (Gidaspow, 1994):

Jvis = −3KdragT (5.12)

Jslip =
81ǫsµ

2
g

g0d3pρs
√
πT

|Uf −Us|2. (5.13)

5.2.2 Particle velocity model

The second particle phase in the granular bed is solved using as an advective scalar

equation, which reads as

∂φ

∂t
+∇ · (uφ) = Sφ, (5.14)

where φ is the concentration of particles, u is the fluid velocity, and Sφ is the sink term

due to particle filtration. Kolakaluri and Subramaniam (2013) found from DNS-LPT

simulations that there is non-zero mean slip velocity for finite inertia particles in fluid

flow. Hence the advective scalar equation is modified to include the particle velocity as

∂φ

∂t
+∇ · (〈V〉φ) = Sφ, (5.15)

where 〈V〉 is the mean particle velocity, and further the sink term can be modeled as

S = λ| 〈Wpg〉 |φ, where λ is the filter coefficient and 〈Wpg〉 = 〈V〉 − 〈Vg〉 is the relative

velocity between the particles and the granules (not the slip between fluid and granule).

In this CFD study we use the filter coefficient suggested by Kolakaluri and Subramaniam

(2013):

λ =
St∗eff

3.2

4.3 + St∗eff
3.2 . (5.16)
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Eq. 5.15 can be discretized and can be written in modified form as

φn+1 − φn

∆t
+

∫

S

ρφn 〈V〉 dS = −
∫

V

ρφnλ| 〈Wpg〉 |dV, (5.17)

where n is the current time step, S and V are the surface area and volume of the

computational cell, respectively. UDF’s are used for both RHS and LHS of Eq. 5.17

for implementation in ANSYS-FLUENT. In the EE CFD model, the particle velocity

is obtained from the fluid velocity using the equilibrium Eulerian model suggested by

Ferry and Balachandar (2001):

V = u+ (1− β)

(

−aτ +

(

Da

Dt
+ a.∇u

)

τ 2 +O(τ 3)

)

, (5.18)

where β is the density parameter, a is the modified acceleration, V is the particle velocity,

u is the fluid velocity and τ is the particle response time. If we neglect the second order

terms, Eq. 5.18 can be reduced to

V = u− (1− β)aτ, (5.19)

where the fluid acceleration term a is written as

a =
Du

Dt
=

du

dt
+ u · ∇u (5.20)

The particle flux equation (Eq. 5.17) needs to be coupled with the EE CFD model. Since

the mass loading of the particle phase is assumed to be negligible, fluid and granular

momentum balance is assumed to be unaffected by particle fluid momentum transfer.

Hence, one-way coupling between the particles and fluid phase is considered in this

model. The numerical implementation of the particle model is discussed in the next

section.

5.3 Numerical implementation of the scalar equations

In ANSYS-FLUENT, we solve two UDS equations. One UDS equation is used to

solve the number density of particles suspended in the fluid phase with the particles
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depositing on the granule surface as sink term in the UDS equation. The other UDS

equation is solved for the number density of particles deposited on the granule surface

removed form the granular bed with granule velocity. The UDS equations are coupled

with the multi-fluid CFD model. The algorithm for the coupling is as follows.

1. Solve the EE equations in each cell and obtain the velocities and volume fractions

of the fluid and granule phases.

2. Solve both the UDS equations for the concentration of particles in the fluid and

the particles deposited on the granule surface with UDFs for the sink terms.

3. As particles deposit on the granule surface, there is change in porosity of the

granular bed which is implemented using a UDF.

4. Repeat Step 2 with the modified porosity of the granular bed.

5.4 Results and discussion

5.4.1 Validation of CFD model

The geometry used is of MBGF and the model is shown in Fig. 5.4(b). The fluid

phase is given a constant velocity with a uniform profile at the inlet, and the pressure

boundary condition is atmospheric pressure at the outlet. The initial velocity of the fluid

phase at the inlet was set based on the flow rate and the granular phase is patched with

zero velocity and a granular temperature equal to 1.0× 10−4m2s−2. The granular phase

is allowed to freely fall due to the gravity with a pressure outlet boundary condition at

the outlet. The fluid phase is given a no-slip boundary condition at the walls and the

granular phase is given a partial-slip boundary condition (Johnson and Jackson, 1987)

at the walls. The initial condition for the granule phase fraction is close packed for the

regions occupied by the granules and zero where there is fluid.
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The validation of the EE CFD model is done by comparing static bed results with

Ergun’s (Macdonald et al., 1979) correlation for pressure drop in packed beds. The

pressure gradient obtained from the modified Ergun’s equation (Macdonald et al., 1979)

for the experimental conditions is 8500N/m2 and the values obtained for a particular

section (Fig. 5.1(a)) in the granular bed for three different meshes are given in Tab. 5.1.

It can seen in Fig. 5.1(b) that with increase in the level of refinement in the mesh size the

pressure gradient converges to a pressure gradient value close to the modified Ergun’s

equation. In this study the remaining results generated are obtained using the coarse

grid with 1 level grid refinement. In the next section, we verify the CFD model for

different computational meshes.
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Figure 5.1 (a)Static Pressure contour for a static granular bed (b)Pressure
drop along a section of granular bed.

5.4.2 Verification of UDFs and particle velocity model

The flow conditions for the test case chosen for verification of the particle velocity

model implementation in ANSYS-FLUENT are mean slip Reynolds number Rem = 10,

granule volume fraction ǫs = 0.5 and a particle Stokes number St = 0.25. Here the
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Table 5.1 Pressure gradient along the bed

Condition Values(N/m3) No. of cells
Modified Ergun’s Eqn. 8500

Coarse grid 8447.7 24420
Medium grid 8468.6 79545
Fine grid 8468.6 195458

results obtained from the ANSYS-FLUENT simulations are compared with the DNS-

LPT results. In the case of ANSYS-FLUENT the simulation setup is inflow at the inlet

and pressure outlet, with periodic boundary condition on y and z direction. In the case

of DNS-LPT simulations the fluid flow has periodic boundary conditions imposed in

all three directions, and inflow and outflow boundary conditions on the particles (with

periodic boundary conditions in y and z directions).

Table 5.2 Simulation conditions

Variables DNS-LPT FLUENT
ǫs 0.50 0.50

Rem 10 10
L/Dg 4 8
St 0.25 0.25

In Fig. 5.2(a) we can see that the difference between the particle velocity predicted by

the fast Eulerian model and the fluid velocity implemented in ANSYS-FLUENT is very

small, which indicates that the fast Eulerian model is not able to predict the slip velocity

between the particle and fluid observed in DNS-LPT simulations(see Fig. 5.2(b)). This

is one probable reason for the underprediction of the particle flux by ANSYS-FLUENT

as seen in Fig. 5.3.
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Figure 5.2 (a)Variation of fluid and particle velocity along the granular bed
from ANSYS-FLUENT (b)Variation of mean particle velocity
〈V 〉Ac

from DNS-LPT for particle Stokes number 0.25 along the
granular bed for a volume fraction 0.5 and Reynolds number 10
with particles initialized with fluid velocity and the mean fluid
velocity 〈uf〉Ac

is shown for reference.
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Figure 5.3 Steady state normalized particle flux J(x)/J(0) along the flow
domain for particle Stokes number 0.25 for a volume fraction
0.5 and Reynolds number 10 obtained from DNS-LPT and AN-
SYS-FLUENT.

5.4.3 Experimental setup

The dimensions of the moving bed granular filter experimental setup are given in

Fig. 5.4(a). The flow conditions and the properties of the particles and granules are

given in Tab. 5.3

More details on the experimental setup and the running conditions can be found in El-

Hedok et al. (2011). The computational domain generated to represent the granular bed

in shown in Fig. 5.4(b) and the computational domain was generated in ICEM-CFD.

5.4.4 Comparison with experiments

We simulated a case which is same as the experimental setup of El-Hedok et al.

(2011). By using the filter dimensions and properties of char and granular material
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Figure 5.4 (a) Experimental setup of moving-bed granular filter
(b)Three-dimensional model of moving-bed granular filter.
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Table 5.3 Experimental conditions

Variables Values
ǫs 0.63

Rem 70
Dg 2× 10−3m
dp 2× 10−5m
ρp 1200 kg/m3

Q 650 lpm

given in Tab. 5.3, we estimate the gas inflow speed, char concentration at the inlet,

and granule discharge speed. The inflow boundary conditions are given in Tab. 5.4.

The accumulated char concentration on a slice along the axis of the granular bed is

Table 5.4 Inflow boundary conditions

Variables Values
Fluid inlet 30 m/s

Char concentration 1.72× 10−6kg/m3

Granule discharge speed 5.42× 10−3m/s
ǫs 0.63

shown in Figs. 5.4.4. The char concentration contours shown in Figs. 5.4.4 are after

operating the MBGF for 1 and 10 minutes. As one can observe in these Figures that

with time the char accumulation is transported by the granular flow toward the granular

outlet and eventually the granular bed starts to clog. The char contours in Figs. 5.4.4

gives us a qualitative comparison of the char concentration in the granular bed and also

shows that the maximum concentration of char is observed in the interfacial region. The

char accumulation with time obtained from the CFD simulation is compared with the

experiments in Fig. 5.6. Overall the trends are consistent with the experiment, although

the CFD predicts a higher char accumulation.
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Figure 5.6 Char accumulation with time

5.5 Conclusions

A 3D CFD model is developed to simulate the full-scale MBGF. The model for filter

coefficient obtained from the DNS-LPT is implemented in the CFD model along with

the fast Eulerian model to calculate the particle velocity from fluid velocity. The CFD

model give a good comparison of pressure gradient when compared with the modified

Ergun’s Equation for fixed bed. The char accumulation obtained from the CFD model

gave a reasonable match with the experiments.
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CHAPTER 6. Modeling and Simulation of Sprays as

Multiphase Flows

This chapter is a manuscript in review for International Journal of Spray and Com-

bustion Dynamics :Modeling and Simulation of Sprays as Multiphase Flows authored

by R. Kolakaluri,S. Subramaniam and Panchagnula, M. V..

Abstract

The characteristic features of sprays pose unique challenges to multiphase flow meth-

ods that are used to model and simulate their behavior. This article reviews the principal

modeling challenges posed by sprays, and discusses the capabilities of different modeling

approaches by classifying them according to the basis of their statistical representation

and the level of closure. This provides guidelines for their comparative assessment and

also a perspective on the outlook for spray modeling. Multiphase flow simulation ap-

proaches that are used for spray computations are classified according to scale, accuracy,

computational cost and problem complexity. The requirements of a simulation method

to be successfully used for spray computation are then discussed. The review concludes

with a perspective on the outlook for spray simulation methods.
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6.1 Introduction

The purpose of this article is to review the principal challenges in modeling and

simulation of sprays, and to summarize the progress made in addressing these challenges

using current multiphase flow modeling approaches. Implications for the outlook of spray

modeling and simulation methods are also outlined.

Sprays have found widespread application in many engineered systems owing to the

simple, inexpensive and efficient manner in which interfacial area can be increased by

several orders of magnitude. In these applications, the spray process is essential to

enhancing transport of mass, momentum or energy. As simple a device as a spray

nozzle is, the physics governing the breakup of the bulk liquid and subsequent trans-

port is extremely complex. The primary breakup of the liquid into dispersed droplets

and ligaments is a complicated phenomenon, and has been the topic of a recent re-

view Gorokhovski and Herrmann (2008). The focus of this review is on modeling and

simulation of the dispersed spray, and not on primary atomization. Some of the com-

plexities encountered in the dispersed part of the spray are outlined hereunder in the

context of spray combustion.

At the outset, the spray is a classical two-phase flow problem, which could also

involve mass transfer from the drop phase to the continuous phase due to vaporization.

In the case of reacting flows, there is also energy release and transport, which further

enhances vaporization. This coupled nature of the transport phenomena makes spray

combustion a problem that is both interesting and challenging.

Sprays are characterized by a wide range of droplet sizes and velocities. To illustrate

this point, we consider data obtained from a typical Phase Doppler Particle Analyzer

(PDPA) measurement in a hollow cone spray. Figures 6.1(a) and 6.1(b) show scatter

plots of droplet size versus droplet velocity at two different locations in the spray. This

dataset shows that the drop speeds and drop diameters at a given spatial location may
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vary over two orders of magnitude. This distribution of velocity and radius makes spray

modeling a challenging problem because the mean velocity and radius are not adequate

to characterize the complex spray-gas interaction. Later we will see that any statistical

description of sprays must take this feature into account if it is to reproduce spray

phenomena accurately. Figures 6.1(a) and 6.1(b) also reveal that the small drops have a

wider range of velocity values as compared to the large drops. The correlation coefficient

between size and velocity for the data shown in Fig. 6.1(a) is 0.326, and it is 0.473 for

the data shown in Fig. 6.1(b). The scatter plots also indicate that the joint probability

density function (pdf) of velocity and diameter is strongly dependent on spatial location

within the spray.
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Figure 6.1 Scatter plot of drop diameter and drop velocity magnitude for a
sample of 10000 drops in a hollow cone spray :(a) 12.5 mm down-
stream of the nozzle at the centerline (b) 25 mm downstream of
the nozzle at the centerline.

Although statistical descriptions of velocity distributions using pdf’s or moments are

widely used in single–phase turbulent flows, there are some additional features that are

peculiar to sprays which merit special attention. Figure 6.2 is a plot of droplet veloc-

ity vectors at two nearby spatial locations in the spray that are separated by 2 mm.
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Each vector is colored based on the diameter of the drop (green and cyan indicates large

drops and blue and red indicates small drops). Although the data at each location is not

recorded simultaneously, the results indicate that the distribution of velocity and radius

at a given spatial location (indicated by the black square box in Fig. 6.2) arises from

the flux of droplets originating at different neighboring locations (in this example, from

the two locations where the velocity vectors originate). This observation has two im-

portant consequences. The first is that, unlike the case of single-phase turbulence where

momentum transfer at the level of a fluid particle at a given spatial location is diffusive

(due to viscosity) at the small scales, the transfer of momentum in the dispersed phase

in sprays can be kinetic (streaming) and collisional. Secondly, the presence of a distribu-

tion of droplet velocities in an arbitrarily small spatial neighborhood of a single spatial

location arising from a kinetic transport mechanism results in a phenomenon termed

polykineticity. In its simplest setting, one can imagine the possibility of the droplet

velocity having arbitrarily large changes in magnitude (and sign) in an infinitesimal spa-

tial neighborhood because of two dilute droplet streams crossing each other Desjardins

et al. (2008). As seen in Fig. 6.2, there is a high degree of polykineticity in this spray,

both in magnitude and direction. These aspects distinguish spray modeling from

standard single-phase turbulence modeling. Although there is a similar distribution of

fluid particle velocity in single–phase turbulence, in that case the random velocity field

is continuous and differentiable because the fluid particle is a continuum concept that is

affected by viscous diffusion at the small scales. The Reynolds–averaged equations for

mean and higher moments in single-phase turbulence retain the diffusive nature of the

Navier–Stokes (NS) equations that govern a realization of the fluid velocity field. On the

other hand, in the case of sprays the transport equation for the velocity distribution (see

Sec. 6.3.2) is governed by kinetic and collisional terms. The averaged moment equations

derived from this transport equation will have a viscous diffusive term only if there is

separation of scales and the collisional term dominates.
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Figure 6.2 Plot indicating velocity vectors at a point in the spray for a
sample of 10000 drops. The velocity vectors are colored green
and cyan for large drops and blue and red for small drops.

Figure 6.2 also shows that the larger drops have a preferential direction of move-

ment that is different from the smaller drops. Capturing this size-dependent velocity

is important for accurate prediction of drop dispersion. With these observations as

the background, we would like to emphasize that any spray model should be able to

handle polydispersity, size–velocity correlation, and polykineticity. In addition, spray

velocity distributions are not equilibrium (Maxwellian) distributions. The nonlinear,

non-equilibrium, polydisperse and polykinetic characteristics of sprays pose modeling

challenges that are elaborated in further detail in Section 6.2.

Fully–resolved direct numerical simulation (DNS) Helenbrook and Edwards (2002);

Quan et al. (2009); Dwyer et al. (1994) of liquid droplets in an ambient gas, wherein

boundary conditions are imposed on each droplet’s surface and all flow features around

each droplet are fully resolved, offer a high–fidelity representation of droplet-gas inter-
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action that requires no models at the continuum level (the final stage of droplet breakup

still has to be modeled). However, such computations are very demanding and not prac-

tical for spray applications. Nevertheless, such DNS studies are very useful for model

development, as seen in gas-solid flows Tenneti and Subramaniam (2013); Tenneti et al.

(2011, 2013b). In order to estimate the complexity of solving a realistic spray problem

using DNS, let us consider the spray from a typical airblast atomizer that flows about

10 kg/hr of Jet-A while producing drops with a mean diameter on the order of 50µm.

This corresponds to a drop number flux of ≈ 107 drops per second. For realistic domain

sizes and simulation time intervals, the number of drops that need to be accounted for

could easily be O(109). Clearly droplet-resolved simulations of such a large problem is

not only computationally challenging, but also unnecessary for device–scale simulations.

Statistical descriptions of multiphase flow are useful to engineers because of the

need to reduce the amount of information obtained from a single realization of a spray,

to the essential quantities that are relevant for engineering design. Multiphase flow

modeling approaches are usually classified as Lagrangian-Eulerian (LE) or Eulerian-

Eulerian (EE), but this terminology is misleading because the same statistical modeling

approach can lead to equations that are solved in either the Lagrangian or Eulerian frame

of reference Pai and Subramaniam (2009). A more useful classification is based on the

statistical representation of multiphase flow that is used to develop the model, rather

than the frame of reference employed to solve the resulting model equations. This leads

to a classification based on the random–field and stochastic point process approaches

that are described in Section 6.3. These and other spray modeling approaches described

in Sec. 6.3 have varying levels of capability in addressing the modeling challenges posed

by sprays. These are compared in Sec. 6.3.3.

The spray modeling approaches described in Sec. 6.3 lead to model equations that

are simulated using a wide range of methods, and these are discussed in Sec. 6.4. The

principal requirements of spray simulations are then outlined in Sec. 6.4.2. The utility of
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various simulation approaches is reviewed from the standpoint of a tradeoff of accuracy

and computational cost. Finally, the principal findings of this review are summarized in

Sec. 6.5.

6.2 Challenges in modeling sprays

As mentioned before, modeling sprays is challenging because they are characterized

by:

1. Wide range of volume fraction and droplet Knudsen number.

2. Randomness in the configuration of the dispersed phase.

3. Nonlinearities such as drag dependence on the droplet velocity.

4. Polydispersity and size–velocity correlation.

5. Multiscale interactions.

6. Polykineticity.

7. Nonequilibrium effects that lead to phenomena such as preferential concentration

and clustering.

All these can have a significant impact on the design and performance of spray devices

in various applications. These challenges and the associated physics will be discussed

next.

6.2.1 Wide range of volume fraction and droplet Knudsen number

Sprays are characterized by volume flux variations of more than one order of mag-

nitude over the visible part of a spray. For the case where the drops of all sizes are
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moving with nearly the same mean velocity, the variations of volume flux and volume

fraction would be the same. In general, where this may not be true, normalized volume

flux and volume fractions are independent measurements. Figure 6.3 is a plot of nor-

malized volume flux in a hollow cone spray versus radial dimension. The plot indicates

the variation at two axial locations of 12.5mm and 25mm. Firstly, it can be seen from

fig 3 that the normalized volume flux varies over an order of magnitude in the spray. As

can be seen in Fig. 6.3, the volume flux (and other macroscopic spray parameters) vary

on a length scale ≈ 1mm. This has direct implications to the calculation of mean free

path, which is discussed below.
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Figure 6.3 Liquid volume flux at 12.5 and 25 mm downstream of the nozzle
exit at the centerline.
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Figure 6.4 is a plot of the pdf of a non-dimensional free path estimator. The free path

estimator is defined as the pair-wise spacing between drops and is an indicator of the

conventionally defined free path. This free path estimator was calculated from the pair-

wise time spacing and the relative velocity between a pair of drops arriving successively

in a PDPA measurement volume. The symbols in Fig. 6.4 are from the experimental

PDPA data while the solid line is a best fit lognormal distribution. It is interesting

to note that the drop spacing exhibits the characteristic long-tailed distribution similar

to drop size. Also, the mean of the distribution is skewed by the large values owing

to the long tail. This may have interesting implications in the definition of a mean

free path. The Knudsen number (defined as the ratio of the mean free path λ to

λ
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Figure 6.4 Probability density function of droplet free path estimator at 25
mm downstream of the nozzle exit at the centerline: data from
PDPA measurement and line is the best fit lognormal distribu-
tion.

a length scale L that is characteristic of the variation of mean quantities) is used to
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quantify the separation of macro from microscales. The length scale L associated with

the gradient of the volume flux along the radial position (Fig. 6.3) is used to calculate the

Knudsen number in Fig. 6.5. Although continuum fields may be meaningfully defined in

terms of ensemble averages for any liquid volume fraction Drew and Passman (1998), the

separation of scales λ ≪ L is crucial for the development of continuum balance equations.

If in addition, the flow is collision dominated, then standard kinetic theory treatments

apply and the Chapman-Enskog (CE) closure approximations can be employed for low

Knudsen number (Kn < 0.1 is usually taken as the limit for NS equations to apply

in a continuum description of the liquid phase Oran et al. (1998)). Higher Knudsen

numbers (0.1 < Kn < 1.0) are classified as the ’slip regime’ (NS equations may be

applied with partial-slip boundary condition at walls Beskok and Karniadakis (1996)),

while Kn > 1.0 is usually considered as dominated by free–molecule transport.
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Figure 6.5 Variation of droplet Knudsen number with radial location in the
hollow cone spray.

The Knudsen number based on the non-dimensional mean free path estimator is
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calculated from point-wise data and plotted in Fig. 6.5 as a function of radial position.

As can be seen, this quantity varies over two orders of magnitude. This brings into

glaring view one of the central complexities in spray modeling, that the droplets can be

represented as a continuum at the spray core while at the edges they must be treated

as a rarefied gas. Similar observations have been reported from simulation of dilute

gas-solid flows in risers Passalacqua et al. (2010). Any model invoked to model spray

distribution must asymptote to these limits in the appropriate physical regions.

We also estimated the mean free path using two standard kinetic theory formulae

(λ = 1/
√
2nd2π Liboff (2003) and ν = GT

1/2
tr Luding et al. (1998)) where n is the droplet

number density, d is the droplet diameter, ν is the Enskog collision frequency, Ttr is the

granular temperature, G = 8d2ng(d)
√

π/m, m is the mass of the droplet, and g(d) is

the radial distribution function at contact. The mean free path obtained from these

estimates are approximately 0.19m for our estimates of the droplet number density and

granular temperature from droplet velocity variance. This estimate is almost 170 times

greater than the average of the free path estimator plotted in Fig. 6.4. Although it is

difficult to arrive at a definitive conclusion concerning the magnitude of the mean free

path because of the assumption involved in both calculations, our free path estimator

is conservative in terms of delineating the range of validity of the continuum model of

sprays.

In regions of high volume fraction the local Knudsen number may be less than 0.1,

but the Knudsen number can be large if either the flow is dilute, or the (droplet) Mach

number is large Passalacqua et al. (2010). The latter consideration follows from the usual

practice of estimating the magnitude of the pair relative velocity using the granular

temperature in homogeneous granular flows, but the droplet velocity covariance may

be a poor estimate of the pair relative velocity magnitude in sprays. An additional

consideration is that for high volume fraction, which for sprays corresponds to high

mass loading, two-way momentum coupling of the carrier and dispersed phases needs to
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be taken into account.

6.2.2 Randomness in configuration of the dispersed phase

The statistical variability inherent in sprays that was noted earlier necessitates sta-

tistical models. The positions and velocities of the spray droplets can be modeled as

random vectors. An important characteristic of sprays is the correlation of droplet

velocity with spatial location, and representing this joint dependence is important for

accurate calculation of spray and gas dynamics. Fluctuations in droplet velocity arise

from momentum exchange with the carrier gas and from collisions with neighboring

droplets. The nonlinear dependence of droplet acceleration on droplet velocity outside

the Stokes flow regime (based on droplet Reynolds number) implies that for accurate

representation of interphase momentum transfer it is not sufficient to merely represent

the spray by the average drop diameter.

6.2.3 Nonlinearities such as drag dependence on velocity distribution

In addition to the nonlinearity of the NS equations governing the gas phase dynamics,

the inertia of spray droplets results in a nonlinear dependence on droplet velocity, when

the droplet Reynolds number Red > 1. The droplet Reynolds number is defined as Red =

|〈W 〉|d/ν, where |〈W 〉| is the slip velocity between the droplet and gas, d is the droplet

diameter, and ν is the kinematic viscocity. The momentum transfer due to drag between

gas and droplets is characterized by a drag law Schiller and Naumann (1933); A. A.

Amsden, and P. J. O’Rourke, and T. D. Butler (1989). Even for monodisperse droplets,

the distribution of droplet velocities implies that the mean momentum exchanged by

the droplets with the gas is not the momentum exchange evaluated at the mean droplet

velocity. As droplets evaporate, their size and inertia decrease, and this couples energy

balance to mass and momentum balance equation Dwyer and Dandy (1990); Dwyer

(1989). To illustrate this point, Fig. 6.6 shows a scatter plot of fully–resolved direct
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numerical simulation (FR-DNS) data of the acceleration of monodisperse solid particles

plotted versus their velocity. This nonlinear dependence of acceleration or drag on

velocity can be seen in Fig 6.6 for both the data obtained from FR-DNS and also

the instantaneous drag law. However the FR-DNS data also shows the origins of the

randomness in the dispersed phase configuration, which is not captured by the simple

extension of a mean drag law Tenneti et al. (2010); Garzò et al. (2012).
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Figure 6.6 Scatter plot of streamwise component of acceleration versus the
streamwise component of velocity. Square symbols (�) show ac-
celeration obtained from FR-DNS Tenneti et al. (2010) of steady
flow past a homogeneous fixed assembly of particles for mean
flow Reynolds number 20 and a solid volume fraction of 0.2,
while the upper triangles(△) show the acceleration predicted by
simple extension of a mean drag law Hill et al. (2001b).

6.2.4 Polydispersity and size-velocity correlation

Droplet size influences heat, mass and momentum exchange with the carrier gas. In

order to accurately capture the mean interphase momentum, mass and heat transfer

terms, spray models must incorporate the size distribution of droplets. As noted ear-

lier, the size-velocity correlation is significant in sprays (cf. Fig. 6.1) and since these
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interphase exchange terms also depend strongly on the droplet size and velocity, it is

necessary that models capture this joint size-velocity dependence accurately. The

Figure 6.7 Contours of fluid and particle velocity in a freely evolving bidis-
perse gas-solid flow for a mean particle Reynolds number of 50
and a particle volume fraction of 0.3.

other aspect of polydispersity is that it introduces an additional range of length and

time scales into the spray problem. Figure 6.7 shows fluid velocity contours and particle

velocity in a freely evolving bidisperse gas-solid flow to illustrate this point.

6.2.5 Multiscale interactions

Monodisperse particles or droplets interacting with a turbulent carrier-phase that

is inherently multiscale in nature is itself a complex problem that poses formidable

modeling challenges Pai and Subramaniam (2006); Xu and Subramaniam (2006); Pai

and Subramaniam (2012). The presence of a wide range of length and time scales in
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both the carrier and dispersed phase poses a significant modeling challenge in multiphase

flows. The specific issues associated with this challenge will be discussed hereunder.

6.2.5.1 Dispersed phase interactions with turbulence

Turbulence in the carrier phase results in a range of length and time scales. In fact,

even laminar multiphase flows can exhibit significant levels of non–turbulent velocity

fluctuations with a range of length and time scales, as recently shown by FR–DNS of

Tenneti et al. Tenneti et al. (2013a). The density difference between the dispersed and

carrier phases results in droplets having higher inertia than fluid material volumes or

eddies of the same size. Therefore, dispersed phase droplets may interact dynamically

and exchange momentum with fluid eddies that are much larger in size Pai and Subra-

maniam (2007). The droplet momentum response time can be used to calculate the size

of a turbulent eddy in the inertial sub–range with the same eddy turnover time. This in

turn can be used to define a range of eddy length scales with which the dispersed phase

may interact dynamically Pai and Subramaniam (2006, 2007). It should also be noted

that the droplets may not exchange momentum over the same time scale with eddies

of all sizes in the carrier–fluid turbulent kinetic energy spectrum. These observations

motivate the development of multiscale interaction models for droplet acceleration.

6.2.5.2 Scales of structures in dispersed phase

It was already noted that the range of free path distribution in sprays can result in

a wide variation in the droplet Knudsen number, resulting in lack of separation between

micro and macroscales in regions of high Knudsen number. Further evidence of this lack

of scale separation in multiphase flows is obtained from FR–DNS of heat transfer in gas-

solid flows where it is found that fluid heating (or cooling) by particles can result in the

mean fluid temperature varying on scales comparable to the mesoscale spatial structure

of particles (see Fig. 6.8). This lack of scale separation has implications for modeling.
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Models that are local in physical space are strictly valid only if the characteristic length

scale of variation of mean quantities (macroscale denoted by ℓmacro) is always greater

than a characteristic length scale ℓmeso associated with the pair correlation of particles

or droplets. (Usually the characteristic length scale of the pair correlation function is on

the order of 1−10 droplet diameters, although in clustered or preferentially concentrated

flows it could be higher.) This is because if scale separation does not exist and ℓmeso ∼

ℓmacro, then surface phenomena such as heat transfer and vaporization occurring at a

distance ℓmeso from the physical location x would affect the evolution of mean fields at

x. In the current scenario, all multiphase models are of the local type.

Multiscale interactions are responsible for phenomena like preferential concentration

and clustering that affect interphase transfer processes of momentum, heat and mass be-

tween the carrier and dispersed phases Breault and Guenther (2009). At the microscale,

the acceleration, heat and mass transfer experienced by individual droplets can be af-

fected by their being deep inside a group or cluster of droplets, or in a relatively isolated

location. In fact, Chiu and coworkers delineated several modes of droplet combustion

based on their group behavior Chiu et al. (1982); Chiu and Su (1997); Chiu and Liu

(1977). Preferential concentration of O(1) Stokes number particles or droplets in low

vorticity regions of turbulent flow leads to the formation of mesoscale structures Eaton

and Fessler (1994); Squires and Eaton (1991c). In gas–solid flows it is also reported

that the average drag experienced by the solid particles can depend significantly on the

presence of clusters Mckeen and Pugsley (2003); Garg et al. (2010a). It follows that the

interphase source terms in the carrier phase that represent momentum coupling should

also account for this multiscale interaction.

6.2.6 Polykineticity

As mentioned earlier, sharp changes in the droplet phase velocity over very short

distances is a complicating feature of any spray. In order to understand the intricacies,
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Figure 6.8 Scale of structures in the dispersed and carrier phases.
Macroscale structures correspond to gradients of the number
density of the dispersed phase and scaled gas-phase mean tem-
perature shown here for a gas–solid flow in a central-jet fluidized
bed. FR-DNS reveals that the scale of variation of the scaled
gas-phase mean temperature is on the order of a few particle
diameters (top left panel), while the pair correlation of particles
(bottom left panel) reveals that the scale of mesoscale structures
in the solid phase is also on the same order (2−4 particle diam-
eters). The microscale corresponds to length scales on the order
of a particle diameter, as shown in the FR-DNS simulation with
contours of fluid velocity in the right panel.
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let us consider the limiting regions discussed in Fig. 6.5, where the Knudsen number

was shown to vary over two orders of magnitude. In the dense spray region, where

Kn is small, the high frequency of droplet collisions acts as a momentum diffusion

mechanism erasing sharp velocity gradients in the droplet phase. This is akin to the

kinetic theoretic origins of viscosity. However, as we transition to the rarefied gas regime,

the possibility of sharp gradients in the velocity field is increased. This is best explained

by the canonical problem of crossing jets where two dilute particle laden jets would cross

each other Desjardins et al. (2008), if the collision frequency is sufficiently small. As

the particle volume fraction is increased, the jets exhibit increased momentum diffusion

finally resulting in a coalesced jet for the case of a dense particulate jet. This transition

region is of interest to sprays as most of the volume flux in the spray would fall in this

region of Knudsen number.

This transition regime is characterized by the droplet phase velocity being non-

unique. Typically, this is handled by invoking a multivelocity model Williams (1958)

similar in principle to the Boltzmann equation. In this approach, the velocity of the

particulate phase is treated as an independent variable and locally allowing the droplets

to manifest a probability distribution in this variable. Typical NS (deterministic) mod-

eling approach would suggest that this distribution be a dirac-delta function. We will

revisit this proposition when we discuss the population balance method.

6.2.7 Nonequilibrium characteristics of the droplet velocity pdf

In sprays and gas-solid flow in risers, the particle Stokes 1 and Knudsen numbers 2

span a wide range resulting in velocity distributions that can be far from the equilibrium

Maxwellian distribution that arises from elastic collisions in the collision–dominated low

1The particle or droplet Stokes number is the ratio of the particle momentum response time to a
characteristic flow time scale.

2The particle or droplet Knudsen number is the ratio of the mean free path of a particle to a
characteristic length scale associated with the variation of the average number density field.
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Knudsen number regime. This is because these velocity distributions are not always

equilibrated by collisions but can be dominated by transport Fox (2012). In such cases,

accurate representation of the non-equilibrium velocity distribution can be important

for predictive spray modeling.

6.2.8 Requirements of multiphase models

Given the aforementioned complexities in modeling sprays, it is useful to first lay out

the primary requirements of a robust model.

1. Mathematical representation that is capable of representing the physical phenomena

of interest:

One of the key challenges in statistical models is knowledge of what constitutes an

adequate level of description to accurately describe physical phenomena of interest.

For instance, in the case of single–phase turbulent flows, a statistical closure at

the level of the mean velocities and Reynolds stresses (second moment closure)

is often adequate for nonreacting flows, but closure at the joint probability den-

sity of composition Pope (1985, 2000); Fox (2003); Libby and Williams (1993) is

required for reacting flows with temperature-dependent Arrhenius-type reactions.

Similarly, in the case of sprays the mathematical representation must be adequate

to represent the principal phenomena of interest, such as size-velocity correlation.

2. Accurate and consistent models for the unclosed terms that need to be modeled:

As described in Section 6.3, there are two principal spray modeling approaches,

commonly referred to as LE and EE in the literature Subramaniam (2013). There

are consistency conditions that arising from the equivalence between these two

descriptions, and therefore models developed in either approach should be consis-

tent with the implied moment closures in both approaches Pai and Subramaniam
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(2009). The models should also be Galilean–invariant Subramaniam (2013). Fi-

nally, all spray sub–models should be formulated such that they are independent

of numerical parameters, for only then can numerically convergent solutions be

expected.

3. Ability to represent complex geometry:

The wide variety of application areas in which sprays are encountered often em-

ploy devices with complex geometries. In order to understand and analyze spray

characteristics and optimize designs it is important to represent the complex geo-

metrical features of these applications. Therefore spray simulation codes need to

have the capability to represent complex geometry in order to be useful in design

optimization of spray devices.

6.3 Multiphase Flow Models

As shown in Fig. 6.9, the two principal approaches used to model multiphase flows

are: (i) the random field approach in which both dispersed and carrier phases are rep-

resented as random fields in the Eulerian frame, and (ii) the stochastic point process

approach in which the dispersed phase is represented as a stochastic point process in

the Lagrangian frame and the carrier phase is represented as a random field in the Eu-

lerian frame. The random field approach at the closure level of moments leads to the

EE two–fluid theory in its ensemble–averaged Drew (1983); Drew and Passman (1998)

and volume–averaged variants Ishii (1975). Polydispersity in such approaches can be

modeled using the sectional method in an Eulerian frame Greenberg et al. (1986, 1993),

where the continuous size distribution is approximated by a finite number of size classes

corresponding to the average diameter in an interval. The sectional approach Laurent

et al. (2004b); Laurent and Massot (2001) has been derived rigorously starting from
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a kinetic description based on Williams’ transport equation for the ddf Laurent et al.

(2004a) and is sometimes also referred to as the multi-fluid approach 3.

The LE or Euler–Lagrange approach corresponds to a closure of the stochastic point

process representation at the level of the droplet distribution function (ddf) or number

density function (NDF), with the carrier phase being represented in an Eulerian frame

through a Reynolds–averaged Navier–Stokes (RANS) closure, Large Eddy Simulation

(LES) or Direct Numerical Simulation (DNS) (see Fig. 6.9). Fox Fox (2012) notes that

a mesoscopic description of the dispersed phase in terms of the kinetic equation governing

the NDF evolution is the preferred approach for physics–based modeling of multiphase

flows.

6.3.1 Random–field description

In statistical theories of turbulent single-phase flow, the Eulerian velocity field is

represented as a random vector field Pope (2000). A similar approach can be adopted

for two–phase flows, but in addition to the velocity (and pressure) field it is also nec-

essary to specify the location and shape of the dispersed-phase elements. The velocity

field U(x, t;ω), which is defined in both thermodynamic phases, is a vector field that is

defined at each point x in the flow domain in physical space, on the ωth realization. The

dispersed–phase elements in that same realization are similarly described by a dispersed–

phase indicator field Id(x, t;ω), which is unity for all points inside the dispersed–phase

elements that are contained in the flow domain, and zero outside. Statistical theories

based on random–field representations can be formulated using multipoint joint proba-

bility density functions, but these have not resulted in tractable engineering models even

for single–phase turbulent flow Pope (2000); Monin and Yaglom (1975); Hopf (1952).

3However, the term multi–fluid is also used to describe a slightly different approach that extends the
two–fluid model to multiple size classes in gas–solid flow Syamlal et al. (1993)
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Figure 6.9 Representations of multiphase flow as random field or a stochas-
tic point process embedded in a random field, leading to the EE
and LE approaches, respectively. The equivalence between these
approaches is indicated.
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6.3.1.1 Two–fluid theory

If statistical information at only a single space–time location (x, t) of the random–

field representation is considered, this results in a single–point EE two–fluid theory. In

this case, the statistics of the velocity field U(x, t;ω), and the dispersed–phase indicator

field Id(x, t;ω), are considered at a single space–time location, i.e., the indicator field

reduces to an indicator function. The velocity and indicator function can be treated

as random variables (or random vector in the case of velocity) parametrized by space

and time variables. The averaged equations resulting from this approach are described

in Drew Drew (1983), and Drew and Passman Drew and Passman (1998). The single–

point EE theory can also be developed at the more fundamental level of probability

density functions also, and this theory is developed by Pai and Subramaniam Pai and

Subramaniam (2009).

6.3.2 Lagrangian representation of the dispersed phase

An alternative approach is to describe the dispersed–phase consisting of Ns solid

particles or spray droplets using Lagrangian coordinates {X(i)(t),V(i)(t), R(i)(t), i =

1, . . . , Ns(t)}, where X(i)(t) denotes the ith dispersed–phase element’s position at time

t, V(i)(t) represents its velocity, and R(i)(t) its radius. The rigorous development of a

statistical theory of multiphase flows Subramaniam (2000b) using the Lagrangian ap-

proach relies on the theory of stochastic point processes Daley and Vere-Jones (1988),

which is considerably different from the theory of random fields Pope (2000); Panchev

(1971); Adler (1981) that forms the basis for the EE approach. The representation of

sprays using a stochastic point process and the definition of the ddf have been discussed

in detail elsewhere Subramaniam (2000b, 2001b, 2013). Starting from the definition of

the ddf, one can derive William’s spray equation Subramaniam (2001b), which is the
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following collisional form of the ddf evolution equation:

∂f

∂t
+

∂

∂xk

[vkf ] +
∂

∂vk
[〈Ak|x,v, r; t〉f ]

+
∂

∂r
[〈Θ|x,v, r; t〉f ] = ḟcoll + ḟcoal + ḟbu. (6.1)

In the above equation 〈Ak|x,v, r; t〉 represents the expected acceleration conditional on

the location [x,v, r] in phase space. Similarly 〈Θ|x,v, r; t〉 represents the expected rate

of change of radius (hereafter referred to as the expected vaporization rate) conditional

on the location [x,v, r] in phase space.

6.3.2.1 LE approach

In typical implementations of the LE approach (e.g., the KIVA family of codes A.

A. Amsden, and P. J. O’Rourke, and T. D. Butler (1989); Amsden (1993)) a solution

method based on computational particles is used to indirectly solve for the ddf evolution,

while the gas–phase is represented using a RANS model Subramaniam (2013). Inter-

phase coupling is accounted for by source terms that appear in the Eulerian gas–phase

conservation equations for mass, momentum and energy. These source terms are com-

puted from computational particle properties using a statistical estimator Garg et al.

(2007, 2009); Subramaniam (2013).

6.3.2.2 Population balance modeling

The population balance concept was first presented by Hulburt and Katz Hulburt

and Katz (1964), and the model derivation was based on the Boltzmann-type equation

and the problems treated are particle nucleation, growth and agglomeration. We use

a similar approach, where the droplets are described using a one-particle distribution

function f(x,v, r, t), where the one-particle distribution function gives us the probability

of the number of droplets. The evolution of f(x,v, r, t) is influenced by (i) convective

transport, (ii) nucleation and organic growth, (iii) external force fields, (iv) collision and
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the resulting exchange of momentum, (v) breakup and (vi) coalescence. The associ-

ated physics of these phenomena is modeled in a population balance framework. In this

framework, microscopic droplet processes, for example, collision, breakup and agglom-

eration are introduced into a macroscale transport model through a set of constitutive

kernel functions. These kernel functions capture the microscopic physics in a statistical

sense and influence the macroscopic evolution of f(x,v, r, t).

In this context the evolution of the one-particle distribution function f(x,v, r, t) is

given by

∂f

∂t
+

∂

∂xk
[vkf ] +

∂

∂vk
[〈Ak|x,v, r; t〉f ] +

∂

∂r
[〈Θ|x,v, r; t〉f ]

= C+BB −DB +BC −DC , (6.2)

where the birth and death of droplet r due to breakup and coalescence respectively are

:

BB =

∫ ∞

r

β(r | rj)Γ(f,v, rj)f(x,v, rj, t) drj, (6.3)

DB = Γ(f,v, r)f(x,v, r, t), (6.4)

BC =
1

2

∫ r

0

a
[

(r3 − r3j )
1/3, rj

]

f(x,v, (r3 − r3j )
1/3, t)f(x,v, rj, t) drj, (6.5)

DC =

∫ ∞

0

a (r, rj) f(x,v, r, t)f(x,v, rj, t) drj. (6.6)

The issues involving the LHS of Eq. 6.2 have been discussed elsewhere Fox (2012).

The specific issue we will focus on in this section relates to handling the evolution of

polydispersity and polykineticity, which will be handled in a population balance frame-

work and are represented as the RHS of Eq. 6.2. The first term on the RHS, C is the

inelastic Boltzmann collision integral discussed in detail by Fox and Vedula Fox and

Vedula (2010). In the CE limit, to O(Kn) (Kn is the particle Knudsen number), this
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integral gives rise to a gradient diffusion of f in the velocity co-ordinate. The microscale

physics of drop breakage or drop-drop agglomeration is handled through a set of three

stochastic kernel functions. Firstly, Γ(f,v, r) indicates the breakup frequency of a drop

of radius r with a distribution function, f . The second function, β(r|rj) is the proba-

bility kernel of a drop of radius r forming from a breakup event of drop with radius rj .

This kernel is responsible for redistribution of mass from larger size classes to smaller

size classes. The third kernel function, a(r, rj) represents the coalescence probability of

two drops of sizes r and rj . These three functions can either be obtained experimentally

or from fully resolved simulations at the microscale. These functions now allow for the

modeling of the evolution of populations of drops following the microscale rules defined

in these kernel functions.

The primary difference between the LHS of Eq. 6.2 and standard Navier-Stokes

equations is the last term, ∇v.(〈A|x,v, r; t〉f). This term accounts for the advection

of the distribution function through the velocity co-ordinate, due to the action of an

external force. Integrating Eq. 6.2 in the velocity co-ordinate, one can show that this

term gives rise to n〈A|x,v, r; t〉 as a source term on the RHS in Eq. 6.12. This is

in accordance with conventional notion where (say) drag force is a source term in the

momentum equation for the dispersed phase.

Following the procedure in Fox Fox (2012), transport equations can be written for the

moments of f . These moment equations of f can also be written in terms of classical

Eulerian transport equations for mass and momentum. We will restrict our further

discussion to that form and we will simplify Eq. 6.2. The balance of number density can

be written as,

∂n

∂t
+

∂

∂xk
[〈Vk〉n] +

∂

∂r
[〈Θ|x, r; t〉n] = B

′

B −D
′

B +B
′

C −D
′

C , (6.7)

where the birth and death of droplet r due to breakup and coalescence respectively are



136

:

B
′

B =

∫ ∞

−∞

BBdv =

∫ ∞

−∞

∫ ∞

r

β(r | rj)Γ(f, rj)f(x, rj, t) drjdv, (6.8)

D
′

B =

∫ ∞

−∞

DBdv =

∫ ∞

−∞

Γ(f,v, r)f(x,v, r, t)dv, (6.9)

B
′

C =

∫ ∞

−∞

BCdv =
1

2

∫ ∞

−∞

∫ r

0

a
[

(r3 − r3j )
1/3, rj

]

f(x,v, (r3 − r3j )
1/3, t)f(x,v, rj, t) drjdv,(6.10)

D
′

C =

∫ ∞

−∞

DCdv =

∫ ∞

−∞

∫ ∞

0

a (r, rj) f(x,v, r, t)f(x,v, rj, t) drjdv. (6.11)

The mean velocity equation is obtained by multiplying Eq. 6.2 with particle velocity

and integrating over the velocity space reads as,

∂n〈Vk〉
∂t

+
∂

∂xk
[n〈Vk〉 ⊗ 〈Vk〉] +

∂

∂r
[n〈Vk〉〈Θ|x, r; t〉]

= n〈Ak|x, r, t〉+B
′′

B −D
′′

B +B
′′

C −D
′′

C +
∂

∂xk
(n¯̄τ) , (6.12)

where the birth and death of droplet r due to breakup and coalescence respectively are

:

B
′′

Bk
=

∫ ∞

−∞

vkBBdv =

∫ ∞

−∞

∫ ∞

r

vkβ(r | rj)Γ(f, rj)f(x, rj, t) drjdv, (6.13)

D
′′

Bk
=

∫ ∞

−∞

vkDBdv =

∫ ∞

−∞

vkΓ(f,v, r)f(x,v, r, t)dv, (6.14)

B
′′

Ck
=

∫ ∞

−∞

vkBCdv =
1

2

∫ ∞

−∞

∫ r

0

vka
[

(r3 − r3j )
1/3, rj

]

f(x,v, (r3 − r3j )
1/3, t)f(x,v, rj, t) drjdv,(6.15)

D
′′

Ck
=

∫ ∞

−∞

vkDCdv =

∫ ∞

−∞

∫ ∞

0

vka (r, rj) f(x,v, r, t)f(x,v, rj, t)v drjdv. (6.16)

The velocity of the center of mass vc of the two coalescing entities, usually calculated

assuming conservation of momentum during a coalescence event:

vc =
(r3 − r3j )v

(

(r3 − r3j )
1/3
)

+ (r3j )v(rj)

r3
. (6.17)



137

These equations are obtained by integrating Eq. 6.2 over the velocity space v. The

polykineticity aspect explicit in Eq. 6.2 is now retained as a gradient stress term, fol-

lowing the assumption that departures from local equilibrium are small. This is, in

principle, similar to modeling turbulence by separating the velocity into a mean velocity

field and a fluctuation field with the latter usually modeled as additional gradient stress.

These equations are closed in the variables (n, 〈V 〉) as long as τ can be related to the

other field variables. These equations are the classical (isothermal) Population Balance

Equations (PBE). As mentioned before, the PBE involve four microscopic constitutive

kernel functions to handle the breakage and coalescence processes: (i) Γ(f, |∇v|, r),(ii)

β(r|rj), (iii) 〈Θ|x,v, r; t〉 and (iv) a(r, rj). These functions model the (i) frequency of

breakage of a drop of size r, (ii) the probability density of a drop of size r forming from

the breakup of a parent drop of size rj, (iii) the growth rate of a drop of size r and (iv)

the agglomeration probability density of two drops of sizes r and rj.

A range of possible forms of these kernel functions have been proposed for bubble

breakup. The reader is referred to Jakobsen Jakobsen (2008) and Liao and Lucas Liao

and Lucas (2009, 2010) for the breakage and coalescence kernels widely used in the

bubble breakup literature. In fact, Krepper and co-workers Krepper et al. (2007) have

applied PBE to a wide range of bubbly flow problems and demonstrated good agreement

with experimental data.

Sprays are also two-phase in nature similar to bubbly flows, except for two physical

differences. Firstly, the inertia associated with the dispersed phase is higher, resulting

in velocity field differences. Secondly, the range of Weber numbers and other non-

dimensional parameters is quite different in the case of sprays. These two physical

differences do not allow the direct usage of the bubble breakup kernel models. Specialized

kernels are therefore required for spray PBE applications.
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6.3.3 Comparative assessment of different modeling approaches

Based on the modeling challenges posed by sprays in Sec. 6.2 and the principal

features of multiphase flow modeling approaches reviewed in Sec. 6.3, we provide a

comparative assessment of current spray modeling approaches.

6.3.3.1 Wide range of volume fraction and droplet Knudsen number

The LE approach with two-way coupling can be used for dispersed two–phase flows

from the dense to the dilute regime for the entire range of droplet Stokes and Knud-

sen numbers Subramaniam (2013). Both the two–fluid EE and PBE moment equation

approaches can be used in regions of the spray where Kn < 0.1, but their closure mod-

els based on the CE formalism are not applicable in other regions where this criterion

is violated (see Fig. 6.5 where the Knudsen number criterion is violated in the center

and edges of the hollow cone spray). However, the multi-fluid multi-velocity Eulerian

approach that is based on the kinetic description Laurent et al. (2004a) yields excellent

agreement for number density evolution when compared with LE simulations for dilute

polydisperse, evaporating sprays Kah et al. (2010). The extension of these methods to

dense sprays is ongoing and preliminary reports appear promising Doisneau et al. (2012).

6.3.3.2 Randomness in the configuration of dispersed phase

Since the LE approach represents the position pdf of the droplets it can reproduce

the transport of the number density accurately even in the dilute collisionless regime. It

can also capture droplet trajectory crossing accurately. Droplet velocity fluctuations also

arise naturally in the LE approach. Eulerian approaches based on CE type closures that

assume collision–dominated flow typically fare poorly in the dilute collisionless regime.

They are not capable of capturing droplet trajectory crossing. Eulerian approaches

based on quadrature–based moment methods (QBMM) can capture the transport of the
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number density accurately even in the dilute collisionless regime Desjardins et al. (2008),

and they are computationally inexpensive compared to LE methods.

6.3.3.3 Nonlinearities such as drag dependence on velocity distribution

Since the LE approach represents the distribution of droplet velocities it easily cap-

tures the nonlinear dependence of droplet acceleration on droplet velocity. Eulerian

approaches based on QBMM can also perform well in this regard provided the underly-

ing distribution is represented by sufficient nodes.

6.3.3.4 Polydispersity and size–velocity correlation

In the sectional multifluid EE approach, polydispersity is represented in terms of

size classes. A transport equation is associated with each of these size classes, and the

interaction of each size class with the gas phase, as well as the interaction between size

classes needs to be modeled Greenberg et al. (1986, 1993); Laurent et al. (2004b); Laurent

and Massot (2001). The Eulerian sectional approach can capture some aspects of the

size–velocity correlation Rayapati et al. (2011). Eulerian approaches based on QBMM

can capture size–velocity correlations well. When coupled with the sectional description

of droplet sizes Laurent et al. (2004a), the resulting Eulerian multi-fluid, multi-velocity

model Kah et al. (2010) is shown to accurately capture both particle trajectory crossings

and the size-dependent dynamics of evaporation and fluid drag. Since the LE approach

represents the joint size–velocity pdf of the droplets it can reproduce polydispersity,

trajectory crossing and size–velocity correlation effects faithfully, and is often used as a

benchmark for other simulation approaches.

6.3.3.5 Multiscale interactions

Treating the complex interaction between polydisperse spray droplets and turbulence

in the carrier gas is easier in the LE approach than in the multifluid context. However,
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it should be noted that some phenomena such as clustering or preferential concentration

of droplets actually require modeling the evolution of the two–particle or pair correlation

function, which is not represented in ddf–based LE models Subramaniam (2013). Also

it is possible to devise models of multiscale interactions even in the Eulerian two–fluid

approach Xu and Subramaniam (2006).

6.3.3.6 Polykineticity

The two–fluid (or sectional multifluid) EE and PBE moment equation approaches

cannot predict the polykineticity inherent in sprays, as illustrated in Fig. 6.2, whereas

LE methods can capture this phenomenon correctly. In this context, QBMM are a good

alternative to two–fluid EE and PBE moment equation approaches based on CE closures

because they capture polykineticity associated with crossing jets Desjardins et al. (2008)

by transporting the discretized ddf correctly.

6.3.3.7 Nonequilibrium effects that lead to phenomena such as preferen-

tial concentration and clustering

Since nonequilibrium velocity distributions are admissible in the LE approach, it

has a significant advantage when it comes to simulation of sprays or riser flows all the

way from the dense to the dilute regime over a range of droplet or particle Stokes and

Knudsen numbers. The LE approach is capable of representing nonequilibrium velocity

distributions. The two–fluid (or sectional multifluid) EE and PBE moment equation

approaches that rely on CE closures are usually restricted to small departures from

the equilibrium velocity distribution, although more recent developments of the kinetic

theory for granular flow do not make this assumption Garzò et al. (2007). However,

QBMM that directly transport the discretized ddf can capture nonequilibrium velocity

distributions Passalacqua et al. (2011).
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6.3.3.8 Collision modeling

A stochastic collision model, such as the NTC model Schmidt and Rutland (2000),

is usually employed in the LE approach. Collision integrals are approximated in the

two–fluid (or sectional multifluid) EE and PBE moment equation approaches that use

CE closures. Collisions can be treated accurately using QBMM because they reduce the

collision integrals to quadrature of the discretized ddf Fox (2013).

This comparative assessment of models based on the two-fluid theory and the ddf–

based approach that are formulated at different levels of closure throws light on their

usage for different applications.

6.3.4 Outlook for models

The outlook for spray models based on the foregoing discussion may be summa-

rized as follows. Spray modeling is challenging because sprays possess several unique

characteristics that pose formidable modeling challenges. Of the various statistical rep-

resentations currently available for spray modeling, the kinetic equation (modeled ddf

equation) appears to be the most promising mesoscopic descriptor of the dispersed-

phase Fox (2012) even though it accounts for two–phase coupling in a sequential, as

opposed to simultaneous manner (see Ref. Tenneti and Subramaniam (2013) for details).

LE methods can be meaningfully interpreted as an indirect solution to the modeled ddf

equation using computational particles, and their ability to accurately model two–phase

flow problems with a wide range of Stokes and Knudsen numbers makes them suitable

for spray modeling Subramaniam (2013). Recent advancements show LE is numerically

convergent and accurate if appropriate algorithms (grid-free estimators and computa-

tional particle number density control) are employed Garg et al. (2007, 2009). Estimates

of the Knudsen number in sprays indicate that continuum models based on classical ki-

netic theory closures are valid over some portion of the spray. For hollow-cone sprays, the
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droplets in the annular fan region show Kn < 0.1 corresponding to continuum regime,

but both the spray center and spray edge correspond to much higher Kn where clas-

sical kinetic theory closures would be inapplicable. Therefore, PBE approaches based

on these kinetic theory models would be appropriate for modeling some portions of the

spray. However, they may exhibit limitations in capturing polykinetic effects, especially

at the spray center and edges. For capturing polykinetic effects, QBMM with accurate

numerical schemes for the transport terms would be preferable. Apart from LE, QBMM

that approximate the ddf by a few abscissas and weights are an attractive alternative in

the Eulerian framework especially since they incur lower computational cost.

6.4 Classification of multiphase flow simulations

Figure 6.10 Classification of multiphase flow simulation approaches by
scale, accuracy, computational cost, and problem complexity.
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6.4.1 Overview of multiphase flow simulations

Multiphase flow simulations can be classified by the length and time scales they

resolve, their accuracy, the computational cost they incur, and the level of complexity in

the problem they solve. Figure 6.10 shows simulation approaches ranging from FR–DNS

through point–particle DNS (PP–DNS), LES and RANS.

At the smallest scale, single droplet numerical studies with emphasis on droplet

vaporization and deformation has been reported by Helenbrook and Edwards (2002);

Schmidt et al. (2002); Dwyer and Dandy (1990); Dwyer (1989). Frequently LE meth-

ods couple Lagrangian tracking of computational particles to a carrier flow description

based on RANS equations. However, it is possible to use the LE approach to couple

a Lagrangian description of the dispersed phase with large eddy simulations (LES) or

direct numerical simulation (DNS) of the carrier gas phase, resulting in the following

principal categories of LE methods:

(1) FR-DNS of droplet-laden, particle-laden or bubbly flow flow where the exact

Navier-Stokes equations are solved by fully resolving the droplet, particle or bub-

ble by imposing boundary conditions at each particle or droplet’s surface Xu and

Subramaniam (2010); Bagchi and Balachandar (2003); Uhlmann (2005); Zhang

and Prosperetti (2005); Quan et al. (2009); Gorokhovski and Herrmann (2008);

Herrmann (2008); Esmaeeli and Tryggvason (1998); Tenneti et al. (2011).

(2) Point-particle DNS (PP-DNS) with physical droplets or particles Elghobashi and

Truesdell (1992); Squires and Eaton (1991b,a); Wang et al. (2009); Mashayek

(1998); Mashayek and Jaberi (1999); Sundaram and Collins (1997); Miller and

Bellan (1999); Reveillon and Vervisch (2005).

(3) PP-DNS with stochastic particles Boivin, M. and Simonin, O. and Squires, K.D.

(1998).

(4) Point particle LES with physical droplets Nora (2000); Apte et al. (2003).
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(5) Point particle LES with stochastic particles Almeida and Jaberi (2008); Okong’o

and Bellan (2004); Apte et al. (2009).

(6) Averaged equations: RANS CFD A. A. Amsden, and P. J. O’Rourke, and T. D.

Butler (1989).

The principal difference between the FR-DNS and PP-DNS is that while the former

can be used to quantify the interphase models, the PP-DNS assume models for inter-

phase transfer terms such as particle acceleration and droplet vaporization. However,

PP-DNS of sprays have been used very effectively to map out regimes of turbulent com-

bustion Reveillon and Vervisch (2005) and for development of LES sub-models Miller

and Bellan (1999). The treatment of collisions can also be used to categorize LE meth-

ods as those that employ a statistical treatment of collisions O’Rourke (1981); Schmidt

and Rutland (2000); O’Rourke et al. (2009) in contrast to direct calculation of collisions

between particles using either hard–sphere collisions Allen and Tildesley (1989) for low

volume fraction or soft–sphere discrete element method (DEM) collision models Matut-

tis et al. (2000); Alam and Luding (2003); Cundall and Strack (1979) for high volume

fraction Sun et al. (2007).

The classification shown in Fig. 6.10 allows a comparison of trade-offs between ac-

curacy, problem complexity and computational cost that each of these simulation ap-

proaches represents. Moving up the length and time scale axis we have simulations

ranging from single–droplet studies and FR–DNS to RANS that are able to access

progressively larger system sizes. However, this is at the cost of accuracy, with the

single–droplet and FR–DNS studies being most accurate, while the large device–scale

simulations necessarily involve modeling assumptions in order to solve more complex

problems. The comparison of the computational cost of different approaches (FR–DNS

to LES to RANS) is not usually meaningful because they offer different levels of accu-

racy. It is most meaningful to compare two simulation methods that provide the same
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level of flow information at the same level of accuracy. However, in general it is true

that if the same problem size were to be simulated, the computational cost increases as

one goes from RANS to LES to FR–DNS.

6.4.2 Requirements of simulations

The principal requirements of a spray simulation code are the following:

(1) Numerically stable and convergent implementation.

(2) Efficient solver.

(3) Ability to represent complex geometry.

(4) Reasonable requirement in terms of computational resources.

These requirements can be used in conjunction with the classification of multiphase flow

simulation methods to compare different spray simulation codes and thereby arrive at

the set of choices most suitable to the application.

6.4.3 Outlook for simulations

We conclude our survey of simulations with an outlook for simulation methods cur-

rently in use. FR–DNS is currently restricted to idealized problems such as homogeneous

particle or droplet suspensions because of its high computational cost, but if it is per-

formed with adequate resolution it is very useful for gaining insight into flow physics

and for model development Tenneti and Subramaniam (2013). Its principal utility is

in extracting information for models. It has also been used to reveal interesting flow

physics in primary atomization Gorokhovski and Herrmann (2008), although it is still

restricted to relatively low Reynolds numbers. Faster computer processors and improved

algorithms that can be parallelized efficiently are extending the range of accessible scales

and complexity of problems that can be solved using FR–DNS.
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For the next level of canonical problems such as channel flow or pipe flow, LES with

LE is rapidly becoming a powerful tool to reveal flow features and organization of dis-

persed phase into structures at length scales currently inaccessible to FR–DNS Okong’o

and Bellan (2004); Capecelatro and Desjardins (2012a,b). The challenges for LES of

multiphase flows are developing scalable sub-grid closures for both carrier and dispersed

phases and capturing instabilities that originate at the microscale.

At the device-scale, the Eulerian multifluid approach coupled with QBMM Kah et al.

(2010) to solve a discretized form of the kinetic equation (based on the ddf) is very

promising. The QBMM approach can also be coupled with LES (instead of Lagrangian

tracking of the dispersed phase elements) and this approach also has great potential to

transform spray computations.

6.5 Summary

Spray modeling and simulation is challenging because of its unique characteristics

as a multiphase flow with coupled nonlinear, multiscale interactions and nonequilibrium

effects. A modeling framework based on random field and stochastic point process

approaches enables classification of several models currently in use. Spray simulations

can be classified on the basis of scale of applicability, accuracy, and computational cost.

The choice of spray model and simulation method depends on the multiphase phenomena

that need to be captured. This choice ultimately represents a trade-off between accuracy

and computational cost.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

DNS-LPT simulations have been used to quantify the performance of a granular filter

and to investigate the dependence of global filtration quantities such as penetration and

single-collector efficiency on granule volume fraction ǫs, mean slip Reynolds number

Rem, and particle Stokes number St for filtration of inertial particles. For inertial

particles we show that the penetration in a granular filter is the outlet particle flux

normalized by its inlet value, which reduces to the normalized concentration (or number

density) for particles of negligible inertia. For finite mean slip Reynolds number single-

collector efficiency ηs is a function of granular volume fraction, Stokes number, and

mean slip Reynolds number. The effective Stokes number suggested by D’Ottavio and

Goren (1983) to collapse single-collector efficiency data for moderate mean slip Reynolds

number is modified to reflect the weak dependence of single-collector efficiency on mean

flow Reynolds number for Rem > 10 by changing the Re
1/2
m dependence to Re

1/5
m . The

single-collector efficiency data obtained from DNS–LPT over the range of granule volume

fraction, mean slip Reynolds number and particle Stokes number simulated collapses

nicely when plotted against the modified effective Stokes number. Based on the DNS–

LPT data we propose a model for the filter coefficient λ in terms of the modified effective

Stokes number.

In applications such as bio-oil production the particles are generally polydisperse. We

derive expressions for the cumulative polydisperse single-collector efficiency ηcums,poly(St)
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and total polydisperse single-collector efficiency 〈ηs,poly〉 for granular filtration of particles

with arbitrary size distributions in Stokes flow and moderate Reynolds number flows. We

also derive a transport equation for axial variation of the particle flux for polydisperse

particles, which leads to an analytical solution for the size-dependent particle flux as a

function of axial location. The results obtained from the polydisperse analytical model

give a very good match with 2D-LPT and DNS-LPT simulations. The analytical solution

for the axial variation of particle flux predicts profiles similar to DNS-LPT results.

Bouncing of particles from granule surface is common in granular filtration of high-

speed particulate flows. The DNS–LPT approach developed for simulating granular

filtration was extended to simulate bouncing of particles using hard-sphere collision

between particles and granules. The DNS–LPT results give a reasonable match with the

experiments (performed by collaborators) with bouncing of particles. A correlation for

adhesion probability is proposed from the DNS–LPT data in terms of modified effective

Stokes number and the normalized adhesion energy HT . Normalized adhesion energy is

adhesion energy normalized by granular temperature.

The model for filter coefficient suggested in this study using DNS-LPT is implemented

and tested in two–fluid CFD simulations using the fast Eulerian model for calculating

particle velocity. The results obtained from the CFD simulations of full-scale moving

granular bed give reasonable match with the experiments. These conclusions summarize

the original research contributions of this dissertation.

7.2 Future work

This section summarizes possible extensions of this research work.



149

7.2.1 CFD modeling

1. Test the homogeneous bed problem with the mean particle velocity obtained from

DNS instead of using particle velocity obtained from the fast Eulerian model and

compare the particle flux profiles obtained from CFD and DNS

2. Re-run the CFD model with the new 〈Vp〉 correlation and check the particle flux

profiles and char accumulation in granular bed

7.2.2 DNS-LPT approach

1. Build a correlation for 〈Vp〉 (Rem, φ, St) from DNS-LPT data

2. Extend the DNS-LPT approach to simulate sub-micron particles, where Brownian

diffusion is the most important mechanism for filtration of particles and extend

DNS-LPT approach to applications dealing with particles with diameter less the

1µm

3. Introduce the temperature effect on the filtration of particles in a granular bed by

modeling the thermophoretic force

4. Currently the DNS-LPT approach is used for particles with one-way coupling of

particles, but the DNS-LPT approach can be used to simulate two-way coupling

between particles and fluid and also allow the granules to grow with the deposition

of particles on granule surface

5. The DNS-LPT approach can be used for developing models to be used in CFD

code for water filtration. Water treatment of ground water using granular bed is

a cheap and efficient method. Ground water get polluted due to different kinds of

pollutants:
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(a) Inorganic Pollutants: Pb in gasoline, radionuclide, phosphorus and nitrogen,

other heavy metals

(b) Organic Pollutants : Pesticides and herbicides and materials in common

household and industrial use

(c) Biological Pollutants: Escherichia coli, Cryptosporidium, Giardia

(d) Suspended solids : Clay, silt

Radial collectors can be used to naturally treat and extract clean water. In the

design of radial collector wells CFD simulation can provide significant input, but

there is a need for development of high fidelity models to improve the CFD simula-

tions and we can use DNS-LPT simulations to develop these high fidelity models.

One of the modeling approach is a multiscale approach as shown in Fig. E.1, where

the DNS-LPT can be used to develop models for the hydraulic conductance K and

the dispersion coefficient D, which can be used in a code like MODFLOW (Cus-

tomized code for finding the head of water in ground). The MODFLOW can be

further be used in the development of radial collector wells in remote locations.

Another approach would be using commercial package like ANSYS-FLUENT to

simulate the full scale water plant using DNS-LPT and MODFLOW as shown

in Fig. E.2 In the second approach the developed models for the conductance

K and dispersion coefficient D can be used in commercial package like ANSYS-

FLUENT which can be used to simulate a full-scale water treatment plant, and the

MODFLOW can be used to setup the boundary conditions for ANSYS-FLUENT.

6. Another application of the DNS-LPT would be in chemical looping combustion.Chemical-

looping combustion (CLC) is an energy efficient technology for the combustion of

gas or solid fuel and provide a sequestration ready CO2 stream with no additional

energy required for separation. In CLC the traditional combustion process is sep-
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Figure 7.1 Multiscale approach for the development of models for practical
application.

arated into two parts, a fuel reactor and an air reactor and a metal oxide is used as

an oxygen carrier that circulates between these two reactors. The air reactor (AR)

is a high velocity riser and the fuel reactor (FR) is a low-velocity bubbling fluidized

bed. The high gas velocity in the AR provides the driving force for both the reac-

tors and the oxygen carriers are collected in a cyclone and then transported to the

FR. The reduced metal oxide particles are transported from FR to AR by gravity.

This oxygen carrier avoids the direct contact of the air from fuel. A detailed view

of the CLC is shown in Fig F.1. CLC is a very promising approach for having a

clean environment.
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Figure 7.2 Multiscale approach for the development of models for practical
application.

Detailed multiphase computational fluid dynamic (CFD) analysis of CLC would

allow and speed up the optimization and development of the process. Most of the

CFD simulations found in literature are restricted to fuel reactor. An intercon-

nected multi-phase CFD model is necessary to model both the FR and AR allowing

an exchange of solid flow between reactors in the form of sink and time-dependent

boundary conditions. DNS-LPT can be used to develop model for sink term on

both the FR and AR side.
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Figure 7.3 Chemical-looping combustion using CaSO4 as oxygen carrier
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APPENDIX A. Mass balance of particles in a granular bed

If we consider an differential volume in a granular with a length dx and a cross-section

area Ac, the number of spherical collectors in the differential volume, Ns, is given by:

Ns =
6ǫsAcdx

πD3
g

, (A.1)

where Dg is diameter of the spherical collector and ǫs is the granule volume fraction.

The accumulation of particles in the differential volume can be expressed as:

Nsηs
πD2

g

4
UsC = −Qdc, (A.2)

where Q = UsAc is the volumetric flow rate. Further modifying Eq. A.2 using Eq. A.1:

3ηsǫsCdx

2Dg

= −dc. (A.3)

Now considering the L being the granular bed height for which C = C0 at x = 0 and

C = Ce at x = L, we can write :

∫ Ce

C0

dC

C
= −3ηsǫs

2Dg

∫ L

0

dx, (A.4)

and can be further written as

ln
Ce

C0
= −3ηsǫsL

2Dg
. (A.5)
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APPENDIX B. Numerical calculation of particle number

density and flux

The particle number density n(x, t) is calculated at cell center in simulation, if the

length of the computational domain is discretized with M grid cells in each direction

then the size of each grid cell is ∆x = L/M . The number density is represented at cell

center and is calculated in each cell as

n(x, t) =
Ncell

(∆x)3
, (B.1)

where Ncell is the number of particles in each cell. The mean particle velocity 〈Vk〉 is

also represented at cell center and is calculated as

〈Vx〉 =

Ncell
∑

i=1

V i
x

Ncell

. (B.2)

The particle flux Jk = 〈Vk〉n at the cell center is calculated as

Jx =

Ncell
∑

i=1

V i
x

(∆x)3
. (B.3)

Since in the granular filtration problem the particles are homogeneous in yz direction

and varies along x direction. The number density, particle flux, mean particle velocity

and fluid velocity are reported as cross-sectional averages. They are calculated as

〈u(f)〉Ac
=

My
∑

j=1

Mz
∑

k=1

Ifu
f

My
∑

j=1

Mz
∑

k=1

If

, (B.4)
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where My is the number of cells in y direction, Mz is the number of cells in z direction

and If is the indicator function which is equal to one if the cell is in fluid otherwise it

is zero. The cross section average of the mean particle velocity and the particle flux is

also calculated in the same way.
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APPENDIX C. Derivation of the number density equation

The statistical description at the single particle level is given by the single-particle

distribution function f(x,v, r, t) also known as droplet distribution function in spray

literature (Williams, 1958). The f(x,v, r, t) is related to the position, velocity and

radius of the particles by

f(x,v, r, t) =
〈

f
′

(x,v, r, t)
〉

=

〈

Np(t)
∑

i=1

f
′

i (x,v, r, t)

〉

=

〈

Np(t)
∑

i=1

δX(i)δV(i)δR(i)

〉

, (C.1)

where δX(i) = δ(x−X(i)(t)), δV(i) = δ(v −V(i)(t)) ,δR(i) = δ(r − R(i)(t)), f
′

is the fine-

grained density function and f
′

i is the fine-grained density function for the ith particle

and the expectation in Eq. C.1 is over all possible particle configurations and velocities,

respectively (Subramaniam, 2000a). The single-particle distribution function f(x,v, r, t)

is an unnormalized density function and integrates to the expected total number of

particles 〈Np(t)〉, such that

〈Np(t)〉 =
∫

[x,v,r+]

f(x,v, r, t)dxdvdr. (C.2)

The evolution equation for f(x,v, r, t) (Subramaniam, 2001a, 2000a) is:

∂f

∂t
+

∂

∂xk
(vkf) +

∂

∂vk
(〈Ak|x,v, r; t〉f) = S(x,v, r, t), (C.3)

where, S(x,v, r, t) is the sink term that arises due to the filtration of particles by gran-

ules, and 〈Ak|x,v, r; t〉 is the expected acceleration (Subramaniam, 2001a) conditional

on the location [x,v, r] in phase space. Note that summation is implied over repeated

Roman indices. In this study, only the drag force is needed to model the conditional



158

acceleration term. The particle distribution function can be decomposed as the particle

number density n(x, t), and a joint probability density function fC
VR

(v, r|x; t) (Subra-

maniam, 2001a):

f(x,v, r, t) = n(x, t)fC
VR(v, r|x; t). (C.4)

For the polydisperse size distributions considered in this work, it is convenient to retain

size dependence in the number density, as follows

n(x, r, t) =

∫

[v]

f(x,v, r, t)dv. (C.5)

The decomposition of Eq. C.4 in terms of n(x, r, t) becomes

f(x,v, r, t) = n(x, r, t)fC
V|R(v, r|x; t), (C.6)

which follows from the following relation :

fC
VR

(v, r|x; t) = fC
V|R(v| r,x; t)fR(r|x; t), (C.7)

and

n(x, r, t) = n(x, t)fR(r|x; t), (C.8)

where fR(r|x; t) is the size distribution of particles. The particle position distribution

manifests in the particle number density n(x, r, t), which evolves by integrating Eq. C.3

over all the velocity space (Subramaniam, 2001a) as

∂n(x, r, t)

∂t
+

∂

∂xk
(〈Vk|r〉n(x, r, t)) = S(x, r, t). (C.9)

The evolution equation for number density of monodisperse particles is

∂n(x, t)

∂t
+

∂

∂xk
(〈Vk〉n(x, t)) = S(x, t). (C.10)
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APPENDIX D. Governing equation solved in PUReIBM

The mass and momentum equations that are solved at all grid points in PUReIBM

are

∂ui

∂xi
= 0, (D.1)

and

ρf
∂ui

∂t
+ ρfSi = −gIBM,i + µ

∂2ui

∂xj∂xj
+ fu,i, (D.2)

where gIBM,i is the pressure gradient, Si is the convective term, and Ru,iis the immersed

boundary force term that accounts for the solid particles in the fluid phase by ensuring

no-slip and no-penetration boundary condition at the particle-fluid interface. The ther-

modynamic density and dynamic viscosity of fluid-phase are ρf , and µ, respectively. For

details about the computation of immersed boundary source term the reader is referred

to Garg et al. (2010b); Tenneti et al. (2011).

In PUReIBM, the governing equations Eqs. D.1 and D.2 are solved by imposing a

periodic boundary condition on fluctuating variables. The velocity field is decomposed

into a spatially uniform mean flow and a fluctuating velocity field u′ that is periodic as

u(x, t) = 〈u〉V(t) + u′(x, t), (D.3)

where the volumetric mean velocity is defined as

〈u〉V(t) =
1

V

∫

V

u(x, t)dV. (D.4)

In the same way the non-linear term Si, pressure gradient gi and immersed boundary

forcing Ru,i terms can be decomposed and substituting the decomposed terms in Eqs. D.1
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and D.2 yields the mean momentum conservation equation:

ρf
∂〈ui〉V
∂t

= 〈gi〉V + 〈Ru,i〉V . (D.5)

The fluctuating velocity field needs to be divergence free, i.e.,

∂u′
i

∂xi

= 0. (D.6)

The conservation equation for the fluctuating momentum can be obtained by subtracting

Eq. D.5 from Eq. D.2, which is

ρf
∂u

′

i

∂t
+ ρfS

′

i = −g
′

i + µf
∂2u

′

i

∂xj∂xj

+R
′

u,i. (D.7)

Taking divergence of Eq. D.7 and using Eq. D.6,the modified pressure Poisson equation

for the fluctuating pressure gradient can be obtained:

∂g
′

IBM,i

∂xi

=
∂R

′

u,i

∂xi

− ρf
∂S

′

i

∂xi

. (D.8)

The equations from Eq. D.5 to Eq. D.8 are solved to yield the flow field around the

granules in PUReIBM.
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APPENDIX E. Water filtration using granular filter

Water treatment of ground water using granular bed is a cheap and efficient method.

Ground water get polluted due to different kinds of pollutants:

1. Inorganic Pollutants: Pb in gasoline, radionuclide, phosphorus and nitrogen, other

heavy metals

2. Organic Pollutants : Pesticides and herbicides and materials in common household

and industrial use

3. Biological Pollutants: Escherichia coli, Cryptosporidium, Giardia

4. Suspended solids : Clay, silt

Radial collectors can be used to naturally treat and extract clean water. In the design

of radial collector wells CFD simulation can provide significant input, but there is a need

for development of high fidelity models to improve the CFD simulations and we can use

DNS-LPT simulations to develop these high fidelity models. One of the modeling

approach is a multiscale approach as shown in Fig. E.1, where the DNS-LPT can be

used to develop models for the hydraulic conductance K and the dispersion coefficient

D, which can be used in a code like MODFLOW (Customized code for finding the head

of water in ground). The MODFLOW can be further be used in the development of

radial collector wells in remote locations.

Another approach would be using commercial package like ANSYS-FLUENT to sim-

ulate the full scale water plant using DNS-LPT and MODFLOW as shown in Fig. E.2
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Figure E.1 Multiscale approach for the development of models for practical
application.

In the second approach the developed models for the conductance K and dispersion

coefficient D can be used in commercial package like ANSYS-FLUENT which can be

used to simulate a full-scale water treatment plant, and the MODFLOW can be used to

setup the boundary conditions for ANSYS-FLUENT.
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Figure E.2 Multiscale approach for the development of models for practical
application.
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APPENDIX F. Chemical looping combustion

Chemical-looping combustion (CLC) is an energy efficient technology for the com-

bustion of gas or solid fuel and provide a sequestration ready CO2 stream with no

additional energy required for separation. In CLC the traditional combustion process is

separated into two parts, a fuel reactor and an air reactor and a metal oxide is used as

an oxygen carrier that circulates between these two reactors. The air reactor (AR) is

a high velocity riser and the fuel reactor (FR) is a low-velocity bubbling fluidized bed.

The high gas velocity in the AR provides the driving force for both the reactors and the

oxygen carriers are collected in a cyclone and then transported to the FR. The reduced

metal oxide particles are transported from FR to AR by gravity. This oxygen carrier

avoids the direct contact of the air from fuel. A detailed view of the CLC is shown in

Fig F.1. CLC is a very promising approach for having a clean environment.

Detailed multiphase computational fluid dynamic (CFD) analysis of CLC would allow

and speed up the optimization and development of the process. Most of the CFD

simulations found in literature are restricted to fuel reactor. An interconnected multi-

phase CFD model is necessary to model both the FR and AR allowing an exchange of

solid flow between reactors in the form of sink and time-dependent boundary conditions.

DNS-LPT can be used to develop model for sink term on both the FR and AR side
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Figure F.1 Chemical-looping combustion using CaSO4 as oxygen carrier
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