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ABSTRACT 

Designers and engineers working in the computer-aided drafting (CAD) 

and computer-aided engineering (CAE) domains routinely interact with 

specialized computer software featuring three dimensional (3D) work 

environments.  These professionals must manipulate virtual objects or 

components within this 3D work environment, but typically use traditional 

interaction devices with outdated technology that are more suitable for 2D work 

tasks.  Current CAD and CAE software is designed to accommodate outdated 

interaction technology, but this functionality comes at the cost of efficiency in the 

virtual workspace.  A new class of affordable interaction devices with 

characteristics and specifications of high-end virtual reality interaction devices is 

now available to consumers.  These commodity VR interaction devices monitor 

the position and orientation of a user’s hands through space to control aspects of 

desktop software in ways that are impossible with the traditional mouse and 

keyboard pair.  They can be integrated with CAD or CAE software to allow 

gestural control of objects throughout a 3D work environment. 

To evaluate the feasibility of gestural control for 3D work environments, a 

commercially available commodity VR interaction device was selected and 

integrated with specific 3D software.  Gestures to control aspects of the software 

are developed and organized into a taxonomy.  Select gestures are integrated with 

the software and evaluated against traditional interaction methods, using the 

Natural Goals Operators Methods Selection Rules Language (NGOMSL) concept.  

The evaluation results show that gestural interaction is efficient for object 

manipulation tasks, but a traditional keyboard or mouse is more efficient for 



 vii 

basic tool selection tasks.  Estimated learning times for each input method 

indicate gestural control takes about 30 seconds longer to learn than traditional 

interaction methods. 
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CHAPTER 1.  INTRODUCTION 

This thesis focuses on the development of 3D spatial gestures for user interaction 

within select software 3D work environments through the use of a commodity VR 

interaction device.  An overview of the current state of personal computer (PC) 

interaction, including the shortcomings of traditional interaction devices and an 

argument for 3D gestural control is discussed below. 

Interaction with the Personal Computer 

 

“I can make just such ones if I had tools, and I could make tools if I had tools to 

make them with.” - Eli Whitney, inventor 

 

Humanity’s industrious accomplishments are due to our ability to develop new 

tools to accomplish difficult tasks.  An early scene change in Stanley Kubrick’s 2001: a 

space odyssey serves as a succinct metaphor to describe this.  An intelligent human 

predecessor tosses the first primitive tool upward into the sky, transitioning to an image 

of a manmade spacecraft.  The message is clear - tool innovators, and those who adopt 

new tools, outclass rivals through a competitive advantage. 

Arguably, the paramount tool of human kind is the PC.  It has simplified the way 

we do many tasks while improving the quality of the resulting output.  PCs have 

empowered individuals to perform tasks that traditionally required a substantial 

amount of training and specialized equipment, increasing the productivity of the 
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individual.  Naturally, an inexpensive tool that facilitates the needs of so many should 

expect to see widespread adoption. 

Itself a collection of many individual innovations working together in harmony, 

today’s PC is a ubiquitous workplace tool used in nearly every industry.  Over the years, 

numerous innovations have reduced the cost and improved the power of PCs, and 

today’s PC user works more efficiently and solves problems of higher complexity than 

the user of the 1970s.  Despite these advances, the user’s primary method of PC 

interaction – the mouse and keyboard – is relatively unchanged.  These default 

interaction devices embraced by users do perform well for certain tasks, but there is no 

one-size-fits-all solution for computer interaction.  Recent technology advances have 

lead to a new interaction device class that brings the capabilities of expensive, cutting-

edge Virtual Reality (VR) interaction devices to a consumer price point.  These 

commodity VR interaction devices are significantly different the standard mouse and 

keyboard, and even devices like joysticks, trackballs, or touchscreens, because they 

monitor the motion of a user’s hands through space with six degrees of freedom (DOF).  

These devices can facilitate natural gestural interaction with PC software, especially 

software with a 3D work environment, at a price that allows widespread adoption.  

There are known advantages to three or more DOF interaction within a 3D work 

environment.  Access to affordable devices that allow natural gestural interaction with 

software may provide a benefit to engineers, designers, and even the general consumer.  

This thesis explores how to successfully integrate a consumer VR input device with PC 

engineering and design software, without the need for a full user study. 
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The Keyboard and Mouse 

Designers and researchers have worked for years to refine the interaction 

between a user and his or her personal computer.  Despite their efforts, most PC users 

interact with a traditional keyboard and mouse, an older pair of devices that were 

designed before 3D software workspaces were a reality. 

The typical PC keyboard is a manual input device with an external design that is 

nearly identical to typewriters of the late 19th century.  The same basic design was used 

in teleprinter and keypunch devices before being integrated with electronic computers 

in the mid 20th century [1].  The keyboard is well suited for text input, despite the fact 

that the common QWERTY layout for keys was designed to slow down typists to keep 

mechanical typewriters from binding, and it has many other special-use keys for 

software-specific tasks, like the arrows and the escape keys.  In different software 

environments, the user can actuate one or more keys as a “shortcut” to quickly execute a 

specific software operation.  In the domain of a 3D modeling program used by engineers 

or designers, proficient users often utilize keyboard shortcuts for operations such as tool 

selection or to change the camera view in the scene.  Current PC users interact with the 

keyboard in ways that the original typewriter designer never intended. 

The standard computer mouse has a much briefer history than the keyboard.  The 

first interaction device that resembles today’s mouse appeared in 1968, but it was not 

until the release of Xerox’s Star personal computer in 1981 that consumers could 

purchase a PC that included a mouse [2].  The device excels at pointing tasks within a 

2D graphical user interface (GUI) because it directly maps the X-Y translation of the 

user’s hand across a work surface to the location of an on-screen cursor.  A typical 

mouse is controlled with a single hand; it is translated across a work surface and has 
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three or more buttons and a scroll wheel that can be actuated by the user’s fingertips.  

Actuation of one or more buttons triggers a context-specific software operation 

dependent on where the mouse pointer is located. 

PC users can simultaneously interact with both a mouse and keyboard to 

efficiently control software.  The user holds the mouse in the dominant hand for 

pointing tasks and uses the other hand to execute keyboard shortcuts. 

3D Work Environments 

 

 

 

 

Many routine tasks performed with PC software (e.g. selecting items on the 

computer’s desktop or interacting with a word processing application) can be thought of 

as occurring within a two dimensional environment.  The typical computer mouse is 

well suited for pointing operations in these 2D environments because there is a direct 

relationship between mouse translation across the physical work surface and cursor 

 

Figure 1.  Isometric view of two objects positioned on the XZ plane 
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translation across the computer screen.  A translation operation within a 2D 

environment, e.g. a “click and drag” action to move an icon across the desktop, is 

unambiguous for the user.  Researchers define the disconnect between a computer 

user’s goal and the tools and methods available to achieve the goal as the gulf of 

execution [3].  In the case of 2D mouse translation tasks, the gulf of execution is 

minimal.  To complicate things, professionals in industries like engineering and 

computer graphics commonly use much more complex software with a 3D workspace.  

Computer-aided drafting (CAD), computer-aided engineering (CAE), and 3D computer 

graphics software tools all have to accommodate mouse and keyboard interaction within 

a 3 dimensional work environment. 

User interaction in 3D environments can be very complex unless the mouse-

controlled operations remain constrained to only one or two dimensions.  Consider this 

scenario shown in Figure 1 above: assuming objects can be translated through the scene 

by clicking and dragging the mouse, if the user selects the yellow cylinder and translates 

the mouse in a given direction, where will the cylinder ultimately reside?  If the mouse is 

pushed “up”, or away from the user, the cylinder may move in the positive Y direction, 

the negative Z or X directions, or a combination of all three.  In this case, the gulf of 

execution limits the user’s interaction.  The user’s expectation for the translation 

direction and magnitude may not match how the software interprets the command. 
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Developers of 3D software use several solutions to address input ambiguity 

during operations like translation, rotation, or scaling of a virtual object in 3D space [4].  

One common workaround is known as view-based techniques, where the user’s view is 

limited to one or more orthographic scene views normal to one of three Cartesian 

planes, constraining the on-screen cursor to two axes of the work environment instead 

of three.  An example of an orthographic view can be seen in Figure 2.  Often, users will 

find that an orthogonal camera view does not reveal enough visual information about 

the scene, or is difficult to comprehend, and instead opt for an offset view that reveals 

more information, like the isometric view seen in Figure 1.  In these cases, an alternate 

means of control is needed to accurately manipulate objects.  In one solution, 

controller-based techniques, object controls are located in GUI windows or mapped to 

keyboard keys.  Another solution, virtual trackball techniques, superimposes 

supplementary GUI elements in the scene, over the object, for the user to indicate the 

axis or axes on which they wish to operate.  Researchers refer to a translation 

 

Figure 2.  Orthographic view of two objects positioned on the XZ plane 
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manipulation element superimposed over an object in the scene as a skitter [5].  Figure 

3 shows a virtual trackball superimposed on an object.  Finally, multiple-degree-of-

freedom techniques can control the virtual object through user interaction with an input 

device that tracks a user’s hand in more than 2 axes. 

Ultimately, the first three solutions facilitate mouse interaction at the cost of 

efficiency.  Mouse users have no means to manipulate an object across 3 axes in a 3D 

environment with the simplicity of dragging a file from the desktop into a folder.  

Multiple-degree-of-freedom techniques address this shortcoming and simplify user 

interaction.  

  

 

Figure 3.  Virtual trackball manipulation in a 3D workspace 
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Commodity Virtual Reality 

Previous attempts to bring VR devices to the general consumer have been 

unsuccessful, largely due to hardware constraints and a poor understanding of user 

needs.  One such attempt, Nintendo’s 1990’s-era home video game console Virtual Boy 

(seen in Figure 4), promised consumers an immersive stereoscopic experience on a 

portable head mounted display (HMD).  Instead, it left users with symptoms of cyber 

sickness due to hardware and software shortcomings and was discontinued after less 

than a year on the market [6].  Similarly, the Power Glove interaction device developed 

by Mattel for Nintendo’s Nintendo Entertainment System in the 1980’s promised video 

gamers hand tracking and gestural control, but was quickly rejected by consumers for 

it’s imprecise control.  

Commodity VR devices have simply provided an inadequate experience for 

everyday tasks such as interfacing with productivity software on a desktop computer, 

and instead are relegated to niche uses at best.  At worst, the device is an entertainment 

 

Figure 4.  Nintendo’s Virtual Boy HMD video game console 
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novelty that is incompatible with any other hardware or software without extensive 

modification and technical expertise.  Presently, the availability, cost, and functionality 

of hardware is no longer a limitation and a new generation of commodity VR devices has 

emerged on the consumer market.  For the purpose of this research, a commodity VR 

interaction device is defined as: 

 

1. A device that allows natural user interaction through gestures and movements in 

3D-space. 

2. A device that is marketed to and priced for consumers, instead of researchers or 

industrial clients. 

3. A device that is no more complicated to connect to a PC than a typical keyboard, 

mouse, or computer display. 

 

Modern commodity VR interaction devices like the Nintendo Wii Remote [7], 

LEAP Motion Controller [8], Microsoft Kinect [9], and Sixense Razer Hydra [10], seen 

in Figure 5, are capable devices with an enthusiastic group of researchers and VR 

hobbyists researching the devices and developing new uses.  Unlike previous commodity 

VR devices, these new ones are designed to easily connect to PCs and have support from 

the manufacturer to integrate the devices with other software.  The commercial success 

of these devices and their use in academic research proves that commodity VR hardware 

is mature, however little development has been done to integrate these devices with the 

software commonly used by industry professionals. 
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Industry professionals and general consumers may not presently use low cost VR 

devices, but users are aware of VR and are capable of adapting to new computer 

interaction methods [11].  Public exposure to gestural and other non-traditional 

interaction at an affordable price has steadily increased in recent years.  The first 

generation iPhone and second generation MacBook Pro, released by Apple Computers 

in 2007 and 2008 respectively, brought multi-touch gestural interaction into the homes 

and pockets of millions of users for the first time [12].  Sales of smartphones, many of 

which have a touchscreen interface, has increased to the point that over half of all 

American adults owned one in 2013 [13].  The strong smartphone market in the late 

2000’s eventually led the way to an emerging market of touchscreen tablet computers 

with operating systems designed for touch interaction.  These tablets have an interface 

and workflow that is separate from the mouse and keyboard interaction of traditional 

PCs.  Users adapted to new touchscreen-only interfaces specifically designed to 

accomplish goals in a computer environment lacking a keyboard and mouse [14].  In the 

entertainment domain, each of the three major video game console manufacturers, 

 

Figure 5. Currently available commodity VR input devices: (Top left) Nintendo Wii Remote, (Top right) 

Microsoft Kinect, (Bottom left) LEAP Motion Controller, and (Bottom right) Razer Hydra. 
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Nintendo, Microsoft, and Sony, have brought novel VR interaction devices to the living 

room for use with their respective home video game consoles: the Wii [7], Xbox 360 

[15], and PlayStation 3 [16].   

Exposure outside of consumer devices is also increasing VR device awareness.  

Elon Musk, the founder and CEO of Space X, released a highly publicized promotional 

video titled “The Future of Design” in the fall of 2013, demonstrating engineering design 

with commodity VR devices [17].  Many online commenters compared Musk’s 

demonstration to the futuristic technology seen in the movies Iron Man (2008) and 

Minority Report (2002), both of which prominently featured natural gestural computer 

interaction.  In short, the general consumer is aware of new interaction methods and is 

comfortable interacting with devices without tactile button presses and pointing 

methods traditionally used with PCs.   

	
  
The	
  remainder	
  of	
  this	
  thesis	
  is	
  structured	
  as	
  follows:	
  
	
  

• Chapter 2 provides a review of research on 3D interaction from literature and 

highlights three current commodity virtual reality devices, how they have been 

used for research and hobbyists, and justifies the selection of a commodity VR 

device as a platform for testing of gestural interaction. 

• Chapter 3 discusses the process of integrating the selected commodity VR device 

with software, the development of a gestural taxonomy, and the operations 

within software that receive gestural control. 

• Chapter 4 provides an evaluation of the implemented gestural interaction 

compared to traditional mouse and keyboard interaction in a 3D work 
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environment through the Natural Goals, Operators, Methods, and Selection 

Rules Language (NGOMSL) concept. 

• Chapter 5 is a discussion of the results, conclusions, and future work. 
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CHAPTER 2.  REVIEW OF LITERATURE AND COMMODITY INTERACTION 

DEVICES 

Literature Review 

INTRODUCTION 

As mentioned before, the disconnect between a computer user’s goal and the 

tools and methods available to achieve the goal is known as the gulf of execution.  In an 

attempt to minimize the gulf and ease user interaction, imaginative designers have 

developed a wide variety of manual pointing and locating devices of differing modality.  

Despite their outward differences, all input devices are naturally constrained to a set of 

common movements and actions defined by human physiology.  A typical PC mouse and 

a high-tech VR wand rely on similar physiological abilities, but the user manipulates a 

mouse across a desktop surface and a wand through space.  Jacob asserts that VR 

interaction devices have an advantage over the traditional mouse and keyboard because 

they utilize a user’s “pre-existing abilities and expectations” of the real world rather than 

relying on “trained behaviors” for software interaction [18]. 

Why do we interact with the outdated mouse and keyboard when advantageous 

interaction devices are available?  Bill Buxton succinctly explained the divide between 

our own physiology and our chosen devices for PC interaction with an imaginative 

description of the misconceptions future anthropologists would hold after discovering a 

hidden cache of functional computer hardware and software from the 1980s [19].  In 

Buxton’s words: 
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“My best guess is that we would be pictured as having a well-developed 

eye, a long right arm, uniform-length fingers and a ‘low-fi’ ear.  But the 

dominating characteristic would be the prevalence of our visual system over our 

poorly developed manual dexterity.  Obviously, such conclusions do not 

accurately describe humans of the twentieth century.” 

 

His main argument is that existing computer interface devices do not fully utilize 

our inherent dexterous and sensory abilities and may actually hinder our ability to 

interact with PCs.  A 2D pointing device like a mouse is adequate or even superior for 

certain tasks, like interacting with the user interface (UI) in a word processing program 

or other general desktop productivity software, but it lacks a degree of freedom when 

interacting with a 3D interface. 

JUSTIFYING THE NEED FOR 3+ DOF INTERACTION 

Many research groups have worked to identify the best uses for PC interaction 

devices other than the mouse and keyboard, ranging in complexity from a trackball to 

custom-built VR controllers.  Beaton et al. compared a 3D trackball, a traditional 2D 

mouse, and a special 3D thumbwheel controller11 with a 3D pointing task, and found 

that mouse users had a higher positioning error and took longer to complete the task 

[20]. 

A number of researchers built their own devices to prove the merits of three or 

more DOF interaction.  Djaajadiningrat et al. performed a comparison of varying user 

DOF during a physical sphere rotation task representative of an action typically found in 

                                                   
1 The thumbwheel device used linear rotary knobs, similar in functionality to the scroll wheel on 

a modern mouse, but with three separate scroll wheels aligned to the 3 Cartesian axes. 
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3D modeling software, concluding that desktop interaction devices which offer fewer 

than three degrees of simultaneous control are less efficient than three DOF alternatives 

[21].  A user restricted to rotational input along a single orthogonal axis while 

attempting to rotate an object to a given orientation took longer, required more rotation 

actions, and was less comfortable than a user who was able to freely rotate in multiple 

axes without restriction. 

Jones designed and fabricated a low-cost gimbal-mount six DOF desktop 

interaction device intended for rotation and translation in 3D objects with the non-

dominant hand, leaving the dominant hand free to control a traditional mouse for object 

selection [22].  The device was designed for use in a fixed location on the desktop 

surface, so the user may rest an elbow during interaction.  It was compared against a 

traditional 2D mouse for 3D object manipulation tasks.  The researchers found that the 

device worked well for object translation, however users were reported to have 

encountered problems during rotation, either from interaction issues or mechanical 

problems of the device.  An important takeaway of the study is that users typically find 

rotation tasks with parametric control (where displacement from the origin controls the 

rate of rotation) to be more difficult than incremental control (where the displacement 

from the origin controls the absolute rotation value), while either parametric or 

incremental control are equally suited for translation tasks.   

Fröloch and Plate built their own three DOF controller to prove the benefit of 

maintaining a common coordinate system between input device and a 3D environment 

[23].  It was a cube with an embedded six DOF tracker that is intersected by three 

orthogonal rods, which are pushed and pulled to control motion along the three axes.  

Users found the device to be easy to learn because of the inherent proprioceptive cues. 
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Despite the technical shortcomings and low commercial success of previous 

commodity VR hardware described in the first chapter, researchers have found ways to 

bring the virtual reality experience to an affordable point through modification of 

existing commodity hardware [24], [25].  Some researchers have worked to integrate VR 

functionality with the workflow of engineers and designers without regard to cost or 

feasibility [26]. 

SUMMARY OF LITERATURE REVIEW 

Professionals who work within 3D work environments may benefit from gestural 

interaction.  The current body of research indicates that a traditional mouse and 

keyboard pair cannot perform specific tasks in a virtual 3D space with the accuracy, 

precision, and speed of devices that register input in three dimensions.  Professionals 

need a device that allows gestural control of object manipulation operations like 

translation and rotation to execute designs quickly and accurately. 

Commodity VR Interaction Device Review 

INTRODUCTION 

There are many commodity VR interaction devices available to consumers today, 

with more devices currently in development.  VR interaction devices accomplish their 

novel interaction method by tracking the movement of the user through space through a 

camera system or handheld sensor.  Despite the similar capabilities of devices in this 

domain, the devices often use dissimilar technologies with intrinsic advantages and 

disadvantages.  Different use-cases necessitate different input methods. While one 

situation may benefit from a handheld controller tracked through 3D-space, another 
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may benefit from a camera system that can simultaneously track whole body 

movements of several users.   

Many commodity VR input devices are available today, but three devices were 

explored for the purpose of this discussion: the Nintendo Wii Remote, the Microsoft 

Kinect, and the LEAP Motion Controller.  These devices were selected because of their 

superior capabilities, their flexibility within a research environment, and because they 

are representative of the spectrum of devices available to consumers.  The surveyed 

devices are similar in that they can track a user’s hand movement with six DOF and they 

are suitable for use in an office environment. 

THE WII REMOTE 

 The Wii Remote, introduced in 2006, is a wireless handheld motion controller 

designed for interaction with Nintendo’s home video game console, the Wii.  Users 

operate the device (shown in Figure 6) in a single hand, and it has a roughly rectangular 

in shape that is similar to a typical television remote control.  It has a number of buttons 

for user interaction, an audio speaker, a vibratory motor, four LED lights for user 

 

Figure 6.  Nintendo's Wii Remote 
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feedback, and can communicate with a PC over a standard Bluetooth wireless protocol. 

However, the most novel feature is the controller’s motion tracking capability.  To detect 

the motion of the user’s hand, the controller has an onboard three DOF accelerometer 

unit and an optical IR sensor, which tracks the motion of the controller relative to a 

static IR LED light bar.  The accelerometer and camera systems work together; the 

accelerometers measure general motion but are susceptible to measurement error and 

drift, while the IR sensor augments the detection of more precise tasks.  In a standard 

use, where users manipulate the device like a VR wand, the IR light bar is located above 

or below the display.  The IR sensor detects it’s own position relative to the static IR 

light bar to accurately detect the translation and rotation of the controller.  Researchers 

have developed novel uses for the controller in this traditional configuration, as well as a 

reversed configuration where the controller acts as a stationary IR camera to detect the 

dynamic movement of the IR light bar. 

Johnny Lee is the pioneer of Wii Remote integration with the PC.  He brought 

attention to the use of use of this device for serious human-computer interaction (HCI) 

applications with a demonstration of how to use the device as a basis for a low cost 

digital whiteboard, a head tracker for fish tank VR visualization, and a natural gesture 

PC interaction device that recognizes the user’s fingertips [27].  Others built on Lee’s 

work to find new uses for the Wii Remote.  Lin et al. used the Wii Remote as a camera to 

track infrared markers affixed to the user’s hands for gestural input [28].  Interaction 

was limited to basic 2D productivity tasks such as progressing through a slideshow or 

resizing an image, but users generally considered gestural input to be valuable once they 

learned how to perform the interactions.   
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Others have successfully replaced expensive VR hardware with a Wii Remote.  

Pavlik and Vance used the Wii Remote to track the head position of a user equipped 

with a head-worn IR emitter in an immersive stereoscopic 3D environment [29].  Their 

work built on Lee’s original “head tracker” demonstration from 2008, but is compatible 

with immersive CAVE implementations in addition to desktop PCs.  Zhu et al. used the 

Wii Remote as an IR tracker camera to record motion capture data for authoring 3D 

model animations [30].  Such systems normally cost thousands of dollars, but Zhu’s Wii 

Remote camera system was able to accurately track IR markers and for a fraction of the 

price. 

In addition to developing new uses for the device, researchers have compared the 

performance of the Wii Remote to other pointing devices.  Ardito et al. compared the 

performance of a Wii Remote used as a wand against both a standard PC mouse and 

keyboard pair and a typical two-joystick game pad for translation and rotation tasks in a 

3D environment [31].  The team found that users of the Wii Remote completed tasks 

slower and with more errors than users of the two other devices.  Additionally, users 

rated their experience with the Wii Remote as dissatisfactory and considered the device 

difficult to use.  Gallo et al. compared the performance of a Wii Remote used as a wand 

and a typical mouse and keyboard for two-axis and three-axis rotation tasks with 3D 

medical data [32].  Wii Remote users could simultaneously control object rotation along 

one or two axes, depending on condition.  The team found that a mouse and keyboard 

outperformed the Wii Remote in both task completion time and accuracy, and the time 

difference between two-axis and three-axis rotation tasks indicates that two-axis tasks 

are easier to control regardless of input method.   
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The evaluations mentioned above used the Wii Remote as a 2D pointer for 

selection with roll/pitch/yaw control for 3D rotation tasks.  The device was operated like 

a wand, but in practice behaved like a standard mouse with an additional degree of 

freedom (roll).  Overall, the findings indicate that wand-style input devices are not 

appropriate for 3D manipulation tasks in physical environments that are able to 

accommodate a keyboard and mouse. 

THE KINECT 

Microsoft’s Kinect is a depth-sensing camera system used for gestural interaction 

with video games on Microsoft’s Xbox line of home video game consoles and Windows 

PCs.  In practice, the device can detect spatial gestures performed with the user’s hands, 

track the movement of people and objects through a room-sized volume, and detect 

voice commands.  Although it first premiered in 2010 as an interaction device for the 

Xbox 360, Microsoft released a developer-friendly version with an updated SDK for PC 

developers in 2012.  An advanced version of the device was released for the newer Xbox 

One home video game console in 2013, and Microsoft went on to release a developer-

friendly version of this updated Kinect in 2014.  Both the 2012 and 2014 developer 

versions of the Kinect have an IR depth sensor as well as a standard RGB camera, a 3 

DOF inertial measurement unit (IMU) to detect device movement, a microphone array 

for audial input, and use a wired USB connection to communicate with software on a 

PC.  The Kinect excels at skeletal modeling in a room-sized volume, but has a shallow 

minimum viewing distance that makes it unreliable at desktop workstations. A Kinect 

can be seen in Figure 7. 
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Figure 7.  Microsoft's Kinect Motion Controller (2012 version) 

Microsoft supports research and development for the Kinect through official 

software libraries.  In contrast to the Wii Remote, which was used as both a handheld 

wand and as a stationary IR tracking camera, the Kinect is most frequently used in the 

intended hardware configuration; fixed to a stationary position where it detects spatial 

gestures of one or more users.  

Researchers have developed novel uses for the spatial tracking and gestural 

interaction afforded by the Kinect.  Dave et al. used a Kinect to control a voxel-based 

virtual clay modeling system at a desktop environment [33].  The system played to the 

strengths of the Kinect and used whole-body gestural recognition to control operations 

like object selection and manipulation.  Gallo et al. successfully used gestural commands 

with the Kinect to control the viewpoint of 3D medical images [34].  Santos et al. 

successfully used the device to control objects in an augmented reality scene without 

having to calibrate for skin color, a shortcoming of traditional 2D computer-vision based 

interaction techniques [35].  

In addition to developing new uses for the device, researchers have compared the 

effectiveness of the Kinect against other input devices.  Tilak Dutta compared the Kinect 

to an expensive motion capture IR camera system manufactured by Vicon, and found 
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that the Kinect can perform adequately as an IR marker tracker at 1 to 3 meter distances 

[36].  Francese et al. compared gestural control on the Kinect and Wii Remote for 

navigation within a 3D navigable environment viewed on a projector screen [37].  Users 

preferred the natural gestures afforded by the Kinect and felt they were more 

transparent and less intrusive than the wand-style control of the Wii Remote.  Juhnke 

evaluated the Kinect against a typical mouse and keyboard for windowing tasks with 

medical imaging data [38].  The task required medical students to manipulate a two-

handled 1D slider bar to reveal a specific feature of the medical image.  In the Kinect 

condition, the user must translate his or her hands across a 1D axis in front of the 

Kinect, with each hand directly mapped to the position of a single slider bar handle.  

Mouse users could only control one handle at a time, due to the nature of mouse 

interaction, while Kinect users could manipulate both handles simultaneously.  

Participants were able to accurately reveal the correct density more slowly with the 

Kinect than with the mouse, and favored the mouse for small and precise adjustments.  

The author speculates the Kinect’s performance is due to its inability to accurately 

distinguish user hands at a close viewpoint. 

The Kinect appears to be a capable device that affords a gestural interaction 

experience superior to the Wii Remote.  It has successfully sold to consumers and 

researchers, and has become a fundamental classroom tool to give students experience 

with gestural interaction technology [39].  Despite it’s success, it performs inadequately 

at desktop workstations because it is designed for use at ranges of 20 inches to 13 feet.  

It is also known to unreliably detect users when multiple users are within the view 

volume.  The Kinect is an undesirable input device for professionals seated at a work 



23 

computer, but is a capable interaction device for a single individual if used from a 

distance and paired with a large display or a projector screen.  

THE LEAP MOTION CONTROLLER 

The LEAP Motion Controller is an optical (shown in Figure 8) six DOF tracker 

that specializes in tracking a user’s hands, fingers, or tools within a relatively small 

volume.  The device is relatively new, as public sales only started in 2013, but developers 

have already shared home made software and video demonstrations of its capability.  Its 

functionality is similar to the Kinect’s, but it is not used for whole-body gestural 

interaction because of its small view volume.  Instead, it is designed for use at desktop 

workstations and has an operational range of 1 inch up to 2 feet.  The manufacturer 

supports researchers and developers with official libraries to integrate LEAP control 

with existing software. 

 

Figure 8.  The LEAP Motion Controller 

Research with the LEAP is less plentiful than the previous two devices because of 

its relative new arrival on the consumer market.  Developers have not “hacked” the 

device to improve its capability because the manufacturer frequently updates the 

software libraries with performance improvements.  The majority of published research 
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has assessed the LEAP’s capabilities and performance for gestural control in specific 

use-cases. 

Weichert et al. evaluated the accuracy of the LEAP and found that it can reliably 

and accurately track a human hand or tool in a static posture or through a 3D trajectory 

in space.  It can be adapted to control a variety of operations and is more accurate and 

precise than competing products of a similar cost [40]. 

Mauser and Burgert used the LEAP to advance through medical imaging data 

slides and control medical instruments, which necessitated both 2D and 3D gestural 

input [41].  Users were able to successfully control the systems with the LEAP, however 

the team learned that the device readily detects unintended gestures within the view 

volume, causing unintentional execution of software operations.  The team implemented 

“lock” and “unlock” gestures to allow or disallow recognition to solve this problem. 

The LEAP Motion Controller and the Kinect share several common benefits: both 

can track the movement of hands and tools through space to allow gestural control of PC 

software, and both have official software libraries from the manufacturer.  The LEAP 

has the potential to excel at desktop interaction because it is more reliable than other 

commodity VR devices and can operate within the physical space of a desktop 

workstation. 

Summary and Conclusion of Literature and Device Review 

There are many additional commodity VR devices available today that 

accommodate gestural interaction.  Despite the common availability and advantages of 

these devices, most desktop workers still perform software interaction with a keyboard 

and mouse.  Skilled workers who regularly interact with 3D software, like designers and 



25 

engineers, use interaction technology dating back to the 1960s.  They are not equipped 

with modern commodity VR interaction devices, despite the potential advantages in 

time and accuracy for routine tasks 3D work environments. 

The LEAP Motion 3D controller is a promising platform to test VR interaction 

with PC software because it does not have the shortcomings of the other surveyed 

commodity VR devices.  It has a focused view volume and has a shallow minimum 

depth, making it appropriate for interaction at a desk in an office environment.  The 

manufacturer supports the device through software libraries that allow integration of 

the device with commercial software.  These libraries have a robust skeletal model to 

track human fingers and hands, allowing precise gesture detection.  Finally, a LEAP user 

does not need to grip a controller or use exaggerated whole-body gestures, minimizing 

user fatigue.  For these reasons, the LEAP Motion Controller was selected as a platform 

to explore gestural interaction in 3D a work environment.  

Research Issues 

Two research issues have been identified, based on the current state of research 

in desktop VR interaction:  

 

1. How can gestural interaction be evaluated without conducting a full 

user study? 

User studies require time and resources that may not be available to software 

developers looking to integrate commodity VR interaction with their software in 

an expedited time frame.  Interaction evaluation without a user study allows 

rapid development and deployment in a market with continuously improving 
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interaction devices. 

 

2. What type of gestures should be used for object manipulation in 3D 

work environments? 

Unlike the interaction modality afforded by the keyboard and mouse, spatial 

gestures are open-ended and constrained only by hardware, software, and user 

limitations.  Existing research indicates three or more DOF interaction is beneficial for 

3D object manipulation.  Stakeholders looking to implement gestural interaction in 

software with commodity VR devices must select appropriate gestures for the task.  
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CHAPTER 3.  METHODS 

Overview 

A software platform to evaluate gestural interaction in 3D work environments 

with a LEAP Motion Controller is needed.  The selected platform is a CAD-like 

conceptual design software developed by researchers at Iowa State University, called the 

Advanced Systems Design Suite (ASDS) [42].  Engineers and designers use ASDS to 

quickly visualize and assess design concepts with imported CAD geometry and a library 

of primitive shapes early in the design process, when exact dimensions and materials 

are undecided or unknown.  It was selected because it has a concise set of design 

manipulation and assessment tools to simplify user interaction within the 3D work 

environment, and because the source code is readily accessible to researchers at Iowa 

State University’s Virtual Reality Applications Center, which eases the creation and 

evaluation of gestural control with the LEAP Motion Controller. 

Official C++ libraries supplied by LEAP Motion were integrated with the ASDS 

source code [43].  The gesture recognition and skeleton modeling capabilities of this 

library were utilized to simplify the integration of gestural interaction with ASDS.  The 

final gestural interaction developed for ASDS utilized a subset of a gestural taxonomy 

specifically developed for desktop interaction in 3D work environments.  This taxonomy 

is based on the findings of other researchers, human physiology, and the limitations of 

an optical hand tracker.  Select gestures from this taxonomy were integrated with ASDS. 
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Design Assumptions 

Several assumptions of the LEAP Motion Controller and the ASDS were made 

during planning and development. 

1. The 3D work environment in the ASDS is assumed to represent a typical 3D work 

environment encountered in other engineering software tools like Dassault 

Systèmes’ SolidWorks, as well as non-engineering 3D graphics software like 

AutoDesk’s Maya. 

2. The LEAP Motion Controller’s tracking accuracy and method is representative of 

other commodity interaction devices. 

3. Gestures developed for use with the LEAP Motion Controller could also be 

designed for other devices. 

Design Issues 

Research on gestural interaction with comparable devices guided the 

development of the gestural taxonomy, as well as the selection process to decide the  

gesture and associated software capability it would control.  An understanding of the 

best way to orient and position the LEAP Motion Controller is needed prior to gesture 

development.   

DEVICE USE AND ORIENTATION 

LEAP Motion intends their device to rest flat on a stationary desktop surface, 

with an approximately semi-spherical view volume centered above the device.  Despite 

the manufacturer’s intent, the device can be oriented in any position to suit a user’s 

needs.  Researchers Han and Gold explored different orientations of the LEAP Motion 
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Controller for 3D “tapping” tasks and found that angled and inverted orientations did 

not detect fingers as accurately as the intended upright orientation [44].  The conclusion 

is that developed gestures must be salient when observed from below. 

GESTURAL CONTROLS AND THE ASSOCIATED ERGONOMICS 

Many people regularly interact with touchscreen interfaces on smartphones and 

tablets that necessitate novel touch gestures.  Gestural interaction with touch screen 

devices has been successfully used for object control in 3D work environments [45], but 

the necessary considerations differ from spatial gestures: touch gestures are constrained 

to a relatively small 2D space and provide tactile feedback, while spatial gestures are 

through a larger 3D space without tactile feedback. 

Nielsen et al. argue for a human-centric approach when designing gestures [46].  

Gestures should be designed to the physiological and cognitive limitations of the user 

rather than the technical limitations of the interaction device.  Existing implementations 

that have not addressed human concerns leave users fatigued with an effect known as 

“gorilla arm syndrome” [47].  With this in mind, ensuring the gestures are intuitive, easy 

to use, and not harmful to the user was of primary importance during taxonomy 

development.  Hinckley et al. were early explorers of free-space gestural input and 

developed a framework to understand these concerns [48].  Several of their suggestions 

guided the development of the gesture taxonomy: 

 

1. Arbitrary gestures for operations like translation, rotation, and scale can be 

difficult to use, so the manipulation of virtual objects should directly map to a 

user’s manipulation of a tangible object. 
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2. Object manipulation should occur in a spatially relative position, instead of 

absolute position. 

3. The user should be able to interact with two hands to improve task efficiency.  

The second hand can perform spatial gestures or interact with a different device, 

like a mouse. 

4. Gestural controls should operate on similar attributes of virtual objects (e.g. 

translation, rotation, and scale instead of translation, rotation, and color). 

5. Interaction should consider ergonomics to avoid injury and fatigue.  

 

Other research guided how to register the user’s end effector.  Zhai et al. 

performed a comparison of six DOF input devices with and without finger manipulation, 

and found that input devices controlled by the small muscle groups in the fingers 

perform better than devices that use larger muscle groups in the arm [49].  Additionally, 

an experiment performed by Djaajadiningrat et al. revealed that user comfort varied 

depending on the number of fingers allowed during three DOF sphere rotation, 

concluding that desktop VR input devices should register three fingertips to maximize 

user comfort [50]. 

The gestures must be easy for users to learn and execute.  While interacting with 

3D work environments, traditional mouse and keyboard users experience the benefit of 

direct input mapping and tactile feedback.  The operation of a mouse and keyboard with 

typical desktop software is intuitive, as physically moving the mouse in a direction will 

translate the on-screen cursor an amount in the same direction through a position-to-

position mapping.  Additionally, a key press on the mouse or keyboard results in audial 

and tactile user feedback.  Each possible method of input afforded by a keyboard or 
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mouse is visible to the user, with the exception of multi-key shortcuts on the keyboard 

or non-traditional mice with a touch-sensitive surface.   

In contrast, spatial gestures are actions that a user must memorize and recall.  

Novice users cannot rely on visual cues to recall gestures the way that novice keyboard 

users can “hunt and peck” for the correct key.  The common use of keyboard shortcuts 

indicates that users are capable of recalling ambiguous commands to execute actions 

within a “windows, icons, menus, pointer” (WIMP) GUI, but spatial gestures do not 

provide the user with the tactile feedback provided by interaction with physical 

hardware.  Unreliable gestural interaction may leave the user unsure of the software’s 

status when a command is attempted but no result occurs, although this can be 

mitigated with audial or visual feedback cues.  If the software is unreliable and does not 

provide feedback, a user may wonder: “Did I execute the command correctly?  Is there 

something wrong with my device?  Is my computer just slow?”.  In short, the gestures 

must be memorable and provide visual, audial, or tactile feedback to the user upon 

successful execution.  Research [51] suggests that care must be given to ensure a user 

understands the semiotics of spatial gestures and how individual gestures relate to one 

another. 

The findings from the design issues outlined in the previous section guided the 

development of the gesture taxonomy shown in Table 1 below.  This taxonomy outlines 

every feasible motion that can be utilized as a gesture for desktop interaction with a 

commodity VR device similar to the LEAP Motion Controller.  Care was taken to select 

gestures and actions that are unlikely to cause injury through repetition while being 

salient to optical trackers.  Current tracking software for commodity optical tracking 

devices cannot reliably interpret gestures that contort the user’s hands into complex 
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configurations or occlude multiple digits, so a preference is given to gestures that use 

the extension or flexion of one or more fingers.  This minimizes self-occlusion and 

ambiguity to ensure reliable recognition by the tracking software.   

Gestures from the taxonomy can be implemented to control a variety of software 

functions with an optical tracking input device.  The specific taxonomy actions and 

postures were developed with consideration for user ergonomics, but were not validated 

through a user study.  Designers can create novel gestures by combining the listed 

actions together, resulting in a unique gesture vocabulary that is suitable for a given 

application.  However, individual actions should be selected from different segments to 

avoid complex or awkward gestures.  For example, an action that uses two fingers 

extended and swept horizontally with the wrist, elbow, and shoulder is simpler than a 

gesture that extends one finger, then two other fingers, while swept horizontally in the 

same way. 

Not every action in the taxonomy was included in the designed implementation.  

Instead, specific motions and postures from the taxonomy were combined and 

implemented to execute specific software operations that may benefit from spatial 

gestures and six-DOF interaction.  Actions included in the designed implementation are 

designated with bold text. 
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Table 1. Gestural taxonomy 

Segment Sub-Segment Action Note 

Fingers 

1 Finger point 
(index) 

Extension  
Flexion to Extension Close to open 
Extension to Flexion Open to close 
Modulate extension to 
slight flexion 

Vertical wag (similar to the action 
needed to click a mouse) 

Horizontal 
adduction/abduction Horizontal "wag" 

Clockwise circumduction Move around in circle 
Counterclockwise 
circumduction Move around in circle 

1 Finger point 
(thumb) 

Extension  
Flexion to Extension Close to open 
Extension to Flexion Open to close 
Clockwise circumduction Move around in circle 
Counterclockwise 
circumduction Move around in circle 

Horizontal 
adduction/abduction Horizontal "wag" 

2 Finger point 
(index and 
middle) 

Extension  
Flexion to Extension Close to open 
Extension to Flexion Open to close 
Modulate extension to 
slight flexion 

Vertical wag (similar to the action 
needed to click a mouse) 

3 Finger point 
(index, middle, 
and ring) 

Extension  
Flexion to Extension Close to open 
Extension to Flexion Open to close 
Modulate extension to 
slight flexion 

Vertical wag (similar to the action 
needed to click a mouse) 

3 Finger point 
(index, middle, 
and thumb) 

Extension  
Flexion to Extension Close to open 
Extension to Flexion Open to close 
Modulate extension to 
slight flexion 

Vertical wag (similar to the action 
needed to click a mouse) 

4 Finger point 
(all fingers 
except thumb) 

Extension  
Flexion to Extension Close to open 
Extension to Flexion Open to close 

Modulate extension to 
slight flexion 

Vertical wag (similar to the action 
needed to click a mouse) 

5 Finger point 
(all fingers and 
thumb) 

Extension  

Flexion to Extension Close to open 
Extension to Flexion Open to close 
Bring together  
Fan apart  

Thumb + 1 
additional digit Tip pinch Pinch thumb tip to the tip of any 

finger 
Thumb + 2 
additional digits Tip pinch Pinch thumb tip to the tips of any 

two adjacent fingers 
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Table 1 continued.  Gestural taxonomy 

Segment Action Note 

Wrist 

Flexion Bend forwards 
Extension Bend backwards 
Ulnar deviation Bend towards little finger 
Radial deviation Bend towards thumb 
Flexion to extension  

Extension to flexion  
Ulnar to radial deviation  
Radial to ulnar deviation  

Forearm 

Pronation Palm facing down over desk 
Supination Palm facing upwards 
Pronation to supination  
Supination to pronation  

Elbow Flexion to extension Open arm 
Extension to flexion Close arm 

Shoulder 

Extension Lower arm down 
Flexion Lift arm up 
Abduction Move arm out of plane 
Adduction Move arm into plane 
Lateral rotation Cyclist "stop" signal 
Medial rotation Cyclist "right turn" signal 

 

Design Approach 

Integrating the LEAP Motion Controller with ASDS was possible with LEAP 

Motion’s official software development kit and access to the ASDS source code.  

Consideration of which software operation should receive gestural control, as well as 

which gestures to use, was of critical importance.  The design implements the LEAP 

Motion Controller in a standard configuration, meaning the device rests on a stationary 

desk surface and detects spatial gestures that occur above it.  The developed gestures 

use movements from the user’s elbow, wrist, and fingers to reduce user fatigue and 

utilize inherent fine motor control. 
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TOOLS IN ASDS 

A toolbar at the top of the main ASDS window contains 13 icons that serve as 

shortcuts to commonly used commands found within several pull-down menus as 

shown in Figure 9.  The toolbar separates the icons of similar tools by proximity into 

three major icon families: file management, design component management, and 

concept manipulation and assessment. 

 

Figure 9.  The ASDS Toolbar 

File management tools allow the user to perform actions like opening, closing, 

and saving designs.  The design component management tools allow a user to create 

groups of components for hierarchical categorization, or delete components.  The third 

shortcut family, concept manipulation and assessment, is used to move, scale, and 

measure design components or an entire design.  Of the three separate groups of 

shortcut icons, ASDS users most frequently interact with the concept manipulation and 

assessment family, so it was the focus for gestural interaction.  Details of the concept 

manipulation and assessment tools appear in Appendix A. 

From the concept manipulation and assessment family, the move, rotate, and 

scale tools are used frequently during design creation and modification, while the 

measure and assess tools are used to verify whether a design fits within given 

constraints.  The select tool is used to indicate which component or components are to 

be affected by the other tools, as suggested by its name.  Ultimately, the move, rotate, 

and scale tools received gestural interaction because of their frequent use, precise 
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capability, and their control of similar object attributes.  The background research 

suggests that users will benefit the most from gestural interaction for these three tools. 

SHORTCUT GESTURES 

This implementation aims to streamline the workflow by enabling a unique 

“shortcut gesture” for each tool.  With traditional mouse and keyboard interaction, a 

user can select a tool to use in two ways: by moving the mouse pointer to a tool’s icon 

and clicking the mouse button, or by executing a keyboard shortcut.  Through the 

developed gestural interaction, the user can select one of these three tools by expressing 

the associated shortcut gesture within the view volume of a LEAP Motion Controller.  

The shortcut gesture accomplishes the same result as traditional tool selection methods. 

The tool becomes active and the user can now perform the operation associated with the 

tool on the object.  The shortcut gestures behave as follows: 

 

 

 

 

 

Select the move tool – User 

extends two fingers and swiftly moves the 

extended fingers horizontally from right to 

left across the view volume, shown to the 

right in Figure 10. 

  

Figure 10.  The shortcut gestures for the move tool 
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Select the rotate tool – User 

extends three fingers and swiftly moves the 

extended fingers horizontally from right to 

left across the view volume, shown to the 

right in Figure 11. 

  

Figure 11.  The shortcut gestures for the rotate tool 

  

Select the scale tool – User 

extends four fingers and swiftly moves the 

extended fingers horizontally from right to 

left across the view volume, shown to the 

right in Figure 12. 

 

Figure 12.  The shortcut gestures for the scale tool 

 

MANIPULATION GESTURES 

The gesture integration goes beyond simple tool selection.  After a user selects a 

tool, he or she can execute a separate manipulation gesture to perform the tool’s 

operation.  With traditional mouse and keyboard interaction, a user interacts with a 

skitter to accomplish the following: translate in one or two dimensions, rotate in one 

dimension, or scale in one, two, or three dimensions.   

In this implementation, the LEAP Motion Controller measures the translation 

and rotation of a user’s palm throughout the view volume and maps the position and 
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orientation of the hand to the position, rotation, and scale of the object, depending on 

which tool is active.  The relations between hand position and orientation and the object 

position, orientation, and scale have a relative mapping, rather than an absolute 

mapping.  In practice, this means that the difference between the start and end 

conditions of the user’s hand dictates the magnitude and direction of translation, 

rotation, or scale operations that occurs on the virtual object.  

 

The object manipulation gestures behave as follows: 

Translation – When the move tool is active, object translation in three axes is 

relatively mapped to the position of the user’s hand with three or more extended fingers 

in view volume. 

Rotation – When the rotate tool is active, object rotation in three axes is 

relatively mapped to the orientation of the user’s hand with three extended fingers in 

view volume. 

Scale – When the scale tool is active, object scale is relatively mapped to the 

position of the user’s hand with variable axes of control.  Three extended fingers 

translated in any direction indicates a scale in three dimensions.  A single extended 

finger translated in any direction indicates a scale in the single gestured direction. 

 

An issue with gestural interaction [48] is that spatial manipulation requires a 

means of “clutching”, or turning on and off, the relation between hand position and 

object manipulation.  Clutching allows the user to specify when the software must track 

their hand, and when they are simply repositioning it or removing it from the view 

volume. 
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Without clutching, a user who intends to move his or her hand out of the view 

volume after completing an operation will continue to manipulate the object until the 

hand is no longer seen by the input device.  This will surely frustrate a user attempting 

to accurately control objects.  Clutching also accommodates relative mapping between 

hand position and object position in cases where the view volume cannot accommodate  

 

 

 

 

 

 

 

 

 

 

the size of the 3D work environment.  The user can move his or her hand to the edge of 

the view volume, engage the clutch to disable the link between hand and object, move 

his or her hand back into the view volume, disengage the clutch, and continue 

translation.  Clutching and manipulation gestures appear above in Figure 13. 

In this implementation, users engage or disengage the clutch by opening or 

closing their fingers, affecting the amount of “grip” they express.  Grip is readily 

detectible by the LEAP Motion Controller and can modulate without affecting in situ 

gesture recognition. The clutch engages (gestures do not operate on objects) by opening 

the palm completely flat, and disengages (gestures operate on objects) by slightly closing 

the hand to a resting position.  In this way, a user can use a single hand to perform 

manipulation operations and control the clutch. 

 

Figure 13.  Manipulation gesture with clutch engaged (left) and disengaged (right) 
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DESIGN SUMMARY 

The development of gestures and integration with the ASDS aimed to address the 

findings of previous researchers within the constraints of the LEAP Motion Controller.  

As an example scenario, a user attempting to move and rotate an object on an existing 

model could do the following:  

 

1. Use traditional mouse and keyboard methods to import existing geometry and 

select which component to adjust. 

2. Execute the shortcut gesture for the move tool.  Engage clutch. 

3. Disengage clutch.  Translate his or her hand through the view volume to translate 

the selected object in one axis, utilizing the clutch to reposition their hand, if 

needed. 

4. Engage clutch.  Execute the shortcut gesture for the rotate tool. 

5. Disengage clutch.  Rotate his or her hand through the view volume to rotate the 

selected object three axes simultaneously, utilizing the clutch to reposition their 

hand, if needed. 

6. Execute the shortcut gesture for the move tool.  Engage clutch. 

7. Disengage clutch.  Translate his or her hand through the view volume to translate 

the selected object in two axes, utilizing the clutch to reposition their hand, if 

needed. 

8. Execute the shortcut gesture for the scale tool.  Engage clutch. 

9. Disengage clutch.  Translate his or her hand through the view volume to scale the 

selected object in three axes, utilizing the clutch to reposition their hand, if 

needed. 
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10. Engage the clutch and remove hand from view volume. 

11. Save file and exit program. 

In this manner, a user can quickly alternate between selecting tools and 

performing operations necessary to accomplish a design, with one hand.  

 

Table 2 outlines the selected software tools, move, rotate, and scale, and their 

corresponding shortcut and manipulation gestures.  The listed shortcut gesture is a 

gestural analog to the keyboard shortcut used to select the tool, while the manipulation 

gesture is the behavior the user must express to achieve the desired operation with the 

chosen tool.  Manipulation action is a listing of which kinematic functions of the human 

body are required to execute the manipulation gesture and is selected from actions in 

the gesture taxonomy shown in Table 1.  Each tool utilizes the clutch operation to enable 

or disable the relationship between gestures and object manipulation.  
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Table 2.  Gestural shortcuts and operations in ASDS 

Tool Shortcut 
Gesture Manipulation Gesture Manipulation Actions 

M
ov

e Translate 
two fingers 
right-to-left 

Three finger point (index, 
middle, and thumb), 
translated within view volume.  
Relative mapping between 
user’s end effector and 
selected object. 

Three finger point (index, middle, and 
thumb) extension. Wrist flexion/extension 
and ulnar/radial deviation.  Forearm 
pronation.  Elbow flexion/extension.  
Shoulder flexion/extension, 
adduction/abduction, and lateral/medial 
rotation. 

Ro
ta

te
 

Translate 
three fingers 
right-to-left 

Three finger point (index, 
middle, and thumb), rotated 
within view volume.  Relative 
mapping between user’s end 
effector and selected object. 

Three finger point (index, middle, and 
thumb) extension. Wrist flexion/extension 
and ulnar/radial deviation.  Forearm 
pronation.  Elbow flexion/extension.  
Shoulder flexion/extension, 
adduction/abduction, and lateral/medial 
rotation. 

Sc
al

e Translate 
four fingers 
right-to-left 

Three finger point (index, 
middle, and thumb), 
translated within work area 
controls 3-axis scale.  Single 
finger point (index), translated 
along an axis within the view 
scales object along hand 
translation axis.  Relative 
mapping between user’s end 
effector and selected object. 

One (index) or three finger point (index, 
middle, and thumb) extension. Wrist 
flexion/extension and ulnar/radial deviation.  
Forearm pronation.  Elbow 
flexion/extension.  Shoulder 
flexion/extension, adduction/abduction, and 
lateral/medial rotation. 

Clutch 

Decrease grip (open the hand to a flat posture) to engage clutch and enable manipulation. 
Increase grip (close hand to a natural rest) to disengage clutch and disable manipulation. 

 

  



43 

CHAPTER 4.  RESULTS 

After gestural interaction was integrated with the ASDS using the LEAP Motion 

Controller, a means of evaluation was needed to determine the efficiency and feasibility 

of the design.  User study evaluation is a valuable tool, but a study requires significant 

resources and time to execute.  Stakeholders looking to quickly understand the 

performance of a new design cannot afford the time and resources to conduct a full 

study at each design iteration.  An alternate means to evaluate the performance of 

gestural interaction is needed.   

Interaction Evaluation 

EVALUATION METHODOLOGY 

The Goals, Operators, Methods, and Selections (GOMS) concept is a method of 

interface evaluation developed by Card et al. [51] and is based on the human processor 

model, a method to calculate completion time for a given task. The GOMS concept 

separates user interaction into discrete operations for evaluation: goals (what the user 

wishes to accomplish), operators (actions that must occur to reach the goal), methods 

(sequences of operators that must occur to reach the goal), and selection rules (the 

process of choosing the optimal method).  GOMS is a relatively accurate predictor of 

task completion time, and can estimate interaction efficiency and identify problematic 

areas of software interaction and workflow, or determine which of two or more different 

designs is the most effective.  It is a simple way to evaluate an in-progress design and 

highlight areas that need additional consideration.  The nature of GOMS evaluation – 

subdividing user goals into a set of serially executed subtasks – makes it a suitable 
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method to estimate a CAD user’s workflow.  A variant of GOMS, called Natural GOMS 

Language (NGOMSL), is a suitable method to evaluate the implemented gestural 

interaction in comparison to traditional interaction methods [52].  It differs from the 

traditional GOMS concept in that it predicts both execution time and learning time.  

Research has shown that NGOMSL requires less time than user study evaluation while 

providing valuable insight to highlight shortcomings and guide development effort [53].  

A process for the evaluation of traditional interaction and gestural interaction in the 

ASDS with the NGOMSL concept was clarified by Kieras [54] and the Handbook of 

Human-Computer Interaction [55]. 

As mentioned, two separate interaction modes are analyzed – interaction with a 

traditional keyboard and mouse, and the developed gestural interaction with commodity 

VR hardware.  The task analysis evaluates the user goals identified below in Table 3.  

The possible operations afforded by the implemented gestures found in Table 1 in 

Chapter 3 determined the user goals included in the analysis. 

User goals are decomposed into a series of operators that must occur to 

accomplish the goal (e.g., identify the icon, move the mouse over the icon, and click the 

icon).  Sets of operators comprise a method, or a group of actions a user must perform 

to achieve a goal.  Each operator in a method is assigned a primitive operator from the 

Keystroke-Level Model, a GOMS variant that is utilized within NGOMSL analysis, to 

Table 3.  User goals included in NGOMSL analysis 

User Goals 

Select the move tool Translate an object 

Select the rotate tool Rotate an object 

Select the scale tool Scale an object 
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classify the type of action.  These primitive operators allow an estimate of the 

corresponding completion time for each operator, and thus estimate the overall 

completion time for a method.  Kieras et al. provided time values for many common 

user operators, such as clicking a mouse, and moving a pointer across a screen [56].   

Despite the availability of KLM values for traditional operators, no published 

values exist for gestural interaction.  Each undocumented operator corresponding to a 

gesture received an estimated time value that is based on known execution times for 

comparable operators.  Appendix B shows the KLM values used in the analysis, as well 

as the source of estimated values for undocumented operators.  

In addition to considering execution time, the analysis attempts to estimate the 

time required of a novice user to learn how to perform the operators within a method.  

These learning times are estimated with the Pure Method Learning Time (PLMT) 

technique outlined by [51].  PLMT considers each operator within a method and assigns 

an estimated Learning Time Parameter, a time value that is expected for a first-time 

user to comprehend verbal instructions of how to perform the operator.  These Learning 

Time Parameters are assigned based on the complexity of the operator, so routine 

actions that the user understands from previous experience receive a Learning Time 

Parameter of 0 seconds, general learning situations receive a Learning Time Parameter 

of 17 seconds, and rigorous procedure training receives a Learning Time Parameter of 

30 seconds.  One of these three values are assigned to each operator within a method, 

and when summed provide insight on the complexity of a method.  The resulting PLMT 

value for a method is considered an “up front” cost for the user.  Once they have spent 

the required time to learn the method, the learning time value is not factored into the 

time needed to accomplish a goal.  
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 Evaluation Results 

Tables 4, 5, and 6 respectively outline the execution and learning times for goals 

performed with the move, rotate, and scale tools.  Users have the option to select a tool 

with the mouse, keyboard shortcuts, or a spatial gesture.  However, users cannot 

manipulate objects through keyboard interaction, so only mouse and gestural input 

methods appear for object translation, rotation, and scale goals.  

The execution and learning time performance of each tool selection method is 

identical across the three tool selection goals, because the tool selection operators are 

identical for each tool.  A user selecting the rotate tool and a user selecting the scale tool 

through the same method (keyboard, mouse, or gesture) will execute the same general 

operators.  A comparison of the execution and learning times for tool selection between 

selection methods indicates that the keyboard is the most efficient method to select a 

tool, at an estimated execution time of 1.68 seconds.  Tool selection through mouse 

interaction is estimated at 2.8 seconds and tool selection through gestural interaction is 

estimated at 2.98 seconds.  Further discussion of manipulation execution times appear 

below, followed by discussion of learning times. 

OBJECT TRANSLATION EXECUTION TIME 

The translation goals in Table 4 consider object translation in one, two, and three 

simultaneous axes.  Mouse translation in one or two dimensions is estimated to take 5.5 

seconds to execute and 34 seconds to learn.  For 3D translation, mouse interaction is 

estimated at 11.2 seconds and 68 seconds to learn.  In contrast, translation in one, two, 

and three axes with the LEAP Motion Controller takes 2.1 seconds to execute and 68 

seconds to learn.  In short, the LEAP Motion controller is more efficient for translation 
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goals, especially in three dimensions, through the position-to-position mapping between 

the user’s hand and the virtual object. 

The ASDS interface allows mouse users to translate an object along a 1D axis or a 

2D plane with equal simplicity, but the most efficient 3D translation method is a 1D 

translation and a 2D translation executed in succession.  In contrast, object translation 

with the LEAP Motion Controller can occur in all three axes simultaneously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBJECT ROTATION EXECUTION TIME 

The rotation goals in Table 5 consider object rotation in one, two, and three 

simultaneous axes.  Mouse rotation in one axis is estimated to take 5.5 seconds to 

execute and 34 seconds to learn.  Unlike mouse translation, mouse rotation in two axes 

is higher than one axis at 11.2 seconds and 34 seconds.  Mouse-controlled three-axis 

rotation is estimated at 16.9 seconds to execute and 34 seconds to learn, while rotation 

with the LEAP Motion Controller is estimated at 2.1 seconds to execute and 68 seconds 

to learn for 1, 2, or 3-axis rotation.  Overall, the advantages of the LEAP Motion 

Controller are again apparent for rotation goals.   

Table 4.  Execution and learning times for move tool goals 

Goal Method Execution Time (s) Learning Time (s) 
 Mouse and Keyboard 2.8 0 

Select the move tool Keybord shortcut 1.68 17 
 LEAP Motion Controller 2.98 34 

Translate an object in 1 
axis 

Mouse and Keyboard 5.5 34 
LEAP Motion Controller 2.1 68 

Translate an object in 2 
axes 

Mouse and Keyboard 5.5 34 
LEAP Motion Controller 2.1 68 

Translate an object in 3 
axes 

Mouse and Keyboard 11.2 68 
LEAP Motion Controller 2.1 68 
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The ASDS does not allow simultaneous 2D rotation tasks with the mouse, which 

hinders user interaction.  This limitation is common among many CAD and CAE  

software packages.  A mouse user must execute three successive single-axis rotations to 

rotate an object in all three axes.  As seen before in the results of the translation tasks, 

the LEAP Motion Controller excels because it enables simultaneous object rotation 

along any combination of axes. 

OBJECT SCALING EXECUTION TIME 

The scale goals in Table 6 consider object scaling operations in one, two, and 

three axes.  Mouse interaction allows scaling in one, two, or three simultaneous axes and 

is estimated at 5.5 seconds to execute and 34 seconds to learn.  Gestural scaling with the 

LEAP Motion Controller varies between DOF, with one and three-axis operations 

equally efficient at 2.1 seconds to execute and 68 seconds to learn, and two-axis scaling 

at 4.4 seconds to execute and 68 seconds to learn.  Once again, LEAP Motion Controller 

users experience an advantage over mouse users for execution time.   

Unlike translation and rotation operations, the ASDS allows mouse users to scale 

objects in one, two, or three axes.  The implemented LEAP Motion Controller gestures 

Table 5.  Execution and learning times for rotate tool goals 

Goal Method Execution Time (s) Learning Time (s) 

Select the rotate tool 
Mouse and Keyboard 2.8 0 

Keybord shortcut 1.68 17 
LEAP Motion Controller 2.98 34 

Rotate an object in 1 axis Mouse and Keyboard 5.5 34 
LEAP Motion Controller 2.1 68 

Rotate an object in 2 
axes 

Mouse and Keyboard 11.2 34 
LEAP Motion Controller 2.1 68 

Rotate an object in 3 
axes 

Mouse and Keyboard 16.9 34 
LEAP Motion Controller 2.1 68 
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do not allow this degree of control, so 2D scale tasks necessitate two separate 1D scaling 

operations.  Despite this shortcoming, the relatively inefficient 2D LEAP Motion 

Controller scaling method is still quicker to execute than the same mouse scaling 

method. 

LEARNING TIME 

In general, the learning time for each method tends to increase along with 

execution time.  Methods that utilize novel operators that the user has not encountered 

before receive a higher value learning parameter than common operators, so methods 

that include routine actions with the mouse2 are easier to learn than methods that use 

spatial gestures.   

The Pure Method Learning Time concept considers a method’s total learning 

time to include the learning time of any included sub-method.  This approach may 

overstate the learning time in specific cases, since manipulations in two or three 

dimensions sometimes require multiple 1D manipulations to achieve the goal.  A user is 

                                                   
2 e.g. clicking and dragging feature across the screen. 

Table 6.  Execution and learning times for scale tool goals 

Goal Method Execution Time (s) Learning Time (s) 

Select the scale tool 
Mouse and Keyboard 2.8 0 

Keybord shortcut 1.68 17 
LEAP Motion Controller 2.98 34 

Scale an object in 1 axis Mouse and Keyboard 5.5 34 
LEAP Motion Controller 2.1 68 

Scale an object in 2 axes Mouse and Keyboard 5.5 34 
LEAP Motion Controller 4.4 68 

Scale an object in 3 axes Mouse and Keyboard 5.5 34 
LEAP Motion Controller 2.1 68 
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repeating a learned action, and PLMT analysis assumes a user can implement it a 

second or third time in a separate goal without needing the same learning time to 

understand the sub-method.  In scenarios like 1D and 2D object translation with a 

mouse, the operators needed to achieve the goal are relatively similar, but not identical.  

A user must identify a unique handle and understand how the mouse interacts in each 

case.  To achieve 3D object translation with a mouse, a user must accomplish a 1D and 

2D translation goal.  This analysis treats each goal as a separately learned task, so users 

who want to accomplish 3D translation and have not yet learned 1D and 2D translation 

are affected by the learning time, but users who have already learned 1D and 2D 

translation can accomplish the corresponding 3D goal without any training.  In short, 

the learning times listed are for a novice user learning the specified goal for the first 

time, regardless of whether the method utilizes sub-methods. 

Overall, the difference in learning time between methods is not drastically 

different – the highest learning time difference between is typically around a 34 second 

advantage for the mouse.  The LEAP Motion Controller is more difficult to learn in all 

cases except 3D translation.  Arguably, the initial time investment to learn the gestural 

interaction methods is worth the saved execution time.  Users executing many 

operations over the course of a workday will save time with gestural interaction.  An 

analysis of the example scenario outlined in the Design Summary of Chapter 3 is shown 

in Table 7 below. 
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Table 7. Example execution and learning time analysis 

Goal 
Mouse LEAP Motion Controller 

Execution 
Time (s) 

Learning 
Time (s) 

Execution 
Time (s) 

Learning 
Time (s) 

Import geometry and 
select component - - - - 

Select move tool 2.8 0 2.98 34 

Translate object in 1D 5.5 34 2.1 68 

Select rotate tool 2.8 0 2.98 34 

Rotate object in 3D 16.9 34 2.1 34* 

Select move tool 2.8 0 2.98 0 

Translate object in 2D 5.5 34 2.1 0 

Select scale tool 2.8 0 2.98 34 

Scale object in 3D 5.5 34 2.1 34* 

Save file and exit 
program - - - - 

Totals 44.6 136 20.32 306 
* Indicates a task that has a partial learning time reduction due to the previously 

learned “clutching” gesture 
 

This example highlights the saved learning time for tasks that utilize previously 

learned methods.  3D mouse rotation necessitates three separate 1D rotations, so the 

learning value for the goal is simply the time needed to learn a single 1D rotation.  

Similarly, LEAP Motion Controller users already know the second move shortcut, so 

they do not need to learn it again.  2D translation is a unique operation with a mouse, 

but identical to the previous 1D translation for LEAP users, so mouse users must learn a 

new task while LEAP users can move straight into execution.  Most importantly, once 
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these gestures have been learned, LEAP Motion Controller users experience a significant 

time savings to the mouse interaction. 

The NGOMSL concept was used to evaluate the gestural interaction with the 

LEAP Motion Controller in comparison to a typical mouse and keyboard for tool 

selection and object manipulation goals in the ASDS.   

Overall, the NGOMSL execution and learning time analysis indicates that 

gestural interaction is quicker than the mouse for object manipulation in the 3D work 

environment, but is slightly slower than the mouse and the keyboard shortcuts for tool 

selection tasks.  The LEAP Motion controller initially takes longer to learn than the 

mouse or keyboard, but the shorter execution time for manipulation goals with gestural 

interaction justifies its use. 

Gestural interaction has the greatest advantage when implemented for rotation 

tasks because it allows three-axis object rotation with a single action, while mouse users 

must execute three separate one-axis rotation actions to achieve the same effect.   

Gestural interaction is also beneficial for 3D translation tasks, again because 

mouse users must execute multiple actions to accomplish 3D object translation, 

however the advantage is less apparent for translation tasks than for rotation tasks 

because ASDS allows two-axis translation in a single mouse operation.   

Object scaling is quicker with gestural interaction than with mouse interaction, 

but mouse is arguably more efficient for 2D manipulation.  The ASDS interface allows 

mouse users to execute 2D scale manipulations with a single method, but gesture-

controlled scale manipulations in two axes require two separate 1D manipulations.  

Aside from this, 1D and 3D scale manipulations with a mouse or LEAP Motion 

Controller are equally efficient, and only require a single method.   



53 

CHAPTER 5.  DISCUSSION  

The implemented gestures and selected development platforms are simply a 

starting point to assess gestural control in 3D work environments through a fast and 

effective evaluation method.  Evaluation with the NGOMSL concept ultimately reveals 

that the gestures can adequately manipulate objects within software like the ASDS.   

A discussion of the stated research issues with respect to the final 

implementation and results is outlined below, followed by a discussion of technology 

adoption requirements, shortcomings of this implementation, and future work.  

Results and Research Issues 

After establishing the need for gestural interaction in 3D work environments 

within PC software used by engineers and designers, two research issues were specified 

in Chapter 2: 1) How can gestural interaction be evaluated without conducting a full 

user study?  2) What types of gestures should be used for object manipulation in 3D 

work environments?  Discussion of the results in regard to the research issues, and the 

case for gestural control in 3D work environments, appear below. 

HOW CAN GESTURAL INTERACTION BE EVALUATED WITHOUT A USER STUDY? 

The NGOMSL concept provides a clear approach to evaluate and compare 

different interaction devices and information architectures.  It allows system designers 

to quickly identify inefficient operations and estimate execution and learning time for 

new input modes.  NGOMSL also allows comparison of two or more gesture sets, 

allowing designers to quickly find the most efficient gestures for software operations.  

The resources saved by using NGOMSL analysis instead of a traditional user study can 
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be reinvested into the interaction design, improving the final solution and expediting 

the overall development process. 

WHAT TYPES OF GESTURES SHOULD BE USED? 

The specific gestures integrated with software in this implementation were 

selected based on previous interaction research, the limitations of the LEAP Motion 

Controller, and the specific needs of the ASDS software.  Existing research shows that 

gestural control should utilize small muscle movements of a user’s hand rather than 

large arm motions.  Implemented gestures focused on movements from the user’s 

elbow, wrist, and fingers to reduce user fatigue and take advantage of a user’s fine motor 

control.  Informal testing found that these gesture types were readily detectable by the 

LEAP Motion Controller, and the system rarely detected a gesture incorrectly.  The 

performance of implemented gestures suggests that developers can create a gesture set 

suitable for their needs from individual members of the gesture taxonomy in Table 1.  

The taxonomy supports many unique interaction gestures, so the number of gestures 

available for a given application is limited only by the user’s memory. 

Ensuring Adoption of Commodity VR Interaction 

 Many novel interaction technologies have been developed and marketed to 

industry professionals and consumers, but most computer interaction still occurs with a 

mouse and keyboard.  High quality and capable commodity VR interaction devices can 

now be affordably manufactured, but device manufacturers must address users’ needs in 

order to sell devices.  To ensure the adoption of commodity VR devices by the engineers 
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and designers who will benefit from gestural interaction, several conditions must be met 

[57]: 

1. Commodity VR devices must provide some advantage to a user, possibly an 

economic advantage due to efficient use of time or facilitation of the output of a 

higher quality product than can be designed with traditional tools. 

2. These commodity VR devices must be compatible with existing software and the 

physical work area.   

3. User interaction with new commodity VR input devices must match the level of 

comfort and safety found with a traditional mouse and keyboard. 

4. The commodity VR devices cannot be difficult to operate. 

 

Satisfaction of these conditions ensures control and manipulation of 3D work 

environments has a high probability of adoption.   

The evaluation in Chapter 4 validates conditions one and three.  A commodity VR 

device and gestural control provides a benefit to users in the form of improved execution 

time over mouse interaction, and the gestural interaction is not significantly difficult to 

learn.  Additionally, the work outlined in Chapter 3 provides a strategy for rapid 

development and evaluation of gestural interaction.   

The responsibility for the second condition, compatibility with existing software, 

rests on the software manufacturers.  The businesses that use engineering design 

software cannot implement commodity VR device interaction in software without access 

to the software source code.  Software developers must partner with device 

manufacturers to integrate a commodity VR device and gestural control within an 

application.   
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The third condition, concerning ergonomics, was addressed in the development 

of the gestural taxonomy.  Developers must use gestures that do not fatigue or strain 

users, and the gestures in the taxonomy satisfy this requirement.  Additional research of 

gestural control ergonomics will benefit a future gestural taxonomy. 

The fourth condition is the responsibility of the device manufacturer and the 

software developer.  Most novice users would have little trouble connecting a new 

mouse or keyboard to a PC, and a new interaction device must match this level of 

accessibility.  Additionally, the interaction gestures must be designed with suggestions 

from Chapter 3.  Finally, since gestural interaction does not provide the tactile feedback 

provided by traditional input devices, the software interface should augment interaction 

with feedback in another sense, so the user understands the interaction status at all 

times.   

Design Limitations 

The work outlined in this thesis is not without several shortcomings and 

limitations: 

1. The NGOMSL analysis does not evaluate device ergonomics.  Although the 

gestures included in the gestural taxonomy were developed based on existing 

research with user ergonomics in mind, user testing is needed to fully understand 

the impact of gestural interaction on users. 

2. The implemented gestures were chosen with consideration for the LEAP Motion 

Controller’s limitations, the dimensions of a typical office work area, and the 

ergonomic and mental burden placed on the user.  Future commodity VR devices 

may track user’s hands differently or with more accuracy, facilitating gestural 
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interaction for goals in ways that are quicker or easier to learn.  NGOMSL 

analysis can be used to determine if a new interaction device is quicker and easier 

to learn than the LEAP Motion Controller. 

3. The NGOMSL analysis does not consider different decisions that a user could 

make while working to achieve a goal, instead, it is assumed that users will 

choose the most effective means to achieve a goal.  Object manipulation goals in 

two or three axes sometimes require several sub-methods, and in a typical use-

case a user can decide which combination of sub-methods to use (e.g. 3D 

translation with a mouse can be accomplished with one 1D translation and one 

2D translation, or three 1D translations).  Ultimately, this assumption means that 

the results only show the most efficient execution and learning time for each 

input device. 

Future Work 

User testing should be conducted to assess the validity of the implemented 

gestural interaction with 3D work environments through a commodity VR device.  The 

assessment outlined in Chapters 3 and 4 informs us that gestural control can perform 

some tasks quicker than other input devices, but significant knowledge gaps remain.  

Specifically, user testing to evaluate the ergonomics should be a primary focus.  The 

device usage and implemented gestures were chosen with ergonomics and comfort in 

mind, but the NGOMSL analysis does not validate this.  Additionally, future user studies 

should consider a quantitative evaluation of the estimated execution and learning times 

to confirm the NGOMSL analysis results. 
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Successful integration of commodity VR interaction devices for software control 

can only occur with an understanding of best practices for gestural interaction and 

support from the software owners.  The NGOMSL evaluation determined that gestural 

control performs well for general object manipulation tasks, but is not ideal for tool 

selection tasks.  The performance of tool selection gestures reveals that gestures are not 

an ideal replacement for a simple button on a toolbar, suggesting that software 

developers looking to implement gestural control with commodity VR devices should 

focus on user tasks that necessitate interaction in three or more axes.  Despite this 

finding, the integration and evaluation process outlined in this work can also be applied 

to software without 3D work environments.  Designers should consider which software 

operations may benefit from gestural control, and then validate the choices through 

NGOMSL evaluation. 
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APPENDIX A.  THE ASDS TOOLBAR 

Tool Name Use Category 

Select 
Select one or more components to 

manipulate or assess. 
Support for Concept Manipulation 

and Assessment 

Move 
Translate one or more selected 

components in 3D space. Concept Manipulation 

Rotate 
Rotate one or more selected 

components in 3D space. Concept Manipulation 

Scale 
Increase or reduce the size of one 
or more selected components in 1, 

2, or 3 dimensions of space. 
Concept Manipulation 

Measure 

Measure a bounding box around 
one or more selected components, 
or as a point-to-point virtual tape 

measure. 

Concept Assessment 

Assess 
Calculate the center of gravity, 

wheel loading, or tipping angle of a 
concept. 

Concept Assessment 
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APPENDIX B.  KLM NOTATION AND VALUES 

Operator Symbol Description Time Value 
(seconds) 

Keystroke K 
Pressing a key or button on the 

keyboard 0.28 

Point with mouse to 
target on display P 

The action of moving the mouse 
to point the cursor to a desired 

place on the screen 
1.1 

Press or release mouse 
button B 

A rapid click or release, used for 
click and drag 0.1 

Click mouse button BB 
A rapid click and release, used for 

clicking buttons or icons 0.2 

Mental act of routine 
thinking or perception M 

Routine tasks like finding 
something on screen or recalling 

a tool name 
1.2 

Manipulation gesture Gm 
Execute an object manipulation 

gesture.  Time value is analogous 
to operator P. 

1.1 

Engage or disengage 
clutch gesture Gc 

Execute the engage or disengage 
clutch gesture.  Time value is 

analogous to operator B. 
0.1 

Shortcut gesture Gs 
Execute a tool selection shortcut 

gesture.  Time value is analogous 
to operator K. 

0.28 
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 APPENDIX C.   FORMULAS 

The following formulas are used to calculate a method’s total learning and 

execution time. 

 

Pure Method Learning Time =  

 Learning Time Parameter * (No. of learned NGOMSL statements) 

 

Execution Time =  

 𝛴 (KLM Time Values for each operator in method) 

 + (No. of operators in method * 0.1) 
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APPENDIX D.  FULL NGOMSL ANALYSIS RESULTS 

 
GOAL: TOOL SELECTION 

 
Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Locate icon for tool on screen M 1.2 0 
Move cursor to tool icon location P 1.1 0 
Click mouse button and release BB 0.2 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 2.8 0 
Method: Keyboard Shortcut KLM Notation Operator Time (s) Learning Time (s) 
Recall keyboard shortcut M 1.2 17 
Execute keyboard shortcut K 0.28 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 1.68 17 
Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Recall shortcut gesture M 1.2 17 
Perform shortcut gesture Gs 0.28 17 
Visually confirm tool is selected M 1.2 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 2.98 34 

 
 

SUB-GOAL: IDENTIFY OBJECT MANIPULATOR 
MOVE: ARROW OR PLANE.  ROTATE: VIRTUAL TRACKBALL.  SCALE: MANIPULATOR HANDLE 

 
Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Locate manipulator on screen M 1.2 17 
Within manipulator: Identify feature 
corresponding to desired Goal (object 
translation, rotation, or scale in 1 or more 
axes). 

M 1.2 0 

Return with Goal accomplished - Total Execution 
Time (s) 

Total Learning 
Time (s) 

  2.6 17 
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GOAL: TRANSLATE OBJECT IN 1 AXIS 
 

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: Identify manipulator 
arrow M 2.6 17 
Point mouse to arrow on manipulator P 1.1 0 
Press and hold mouse button down B 0.1 0 
Drag object to new location P 1.1 17 
Release mouse button B 0.1 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 5.5 34 

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Move hand into device view volume H 0.4 17 
Disengage clutch Gc 0.1 17 
Perform spatial gesture Gm 1.1 17 
Engage clutch Gc 0.1 17 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 2.1 68 
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GOAL: TRANSLATE OBJECT IN 2 AXES 
 

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: Identify manipulator 
plane M 2.6 17 
Point mouse to plane on manipulator P 1.1 0 
Press and hold mouse button down B 0.1 0 
Drag object to new location P 1.1 17 
Release mouse button B 0.1 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 5.5 34 

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Move hand into device view volume H 0.4 17 
Disengage clutch Gc 0.1 17 
Perform spatial gesture Gm 1.1 17 
Engage clutch Gc 0.1 17 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 2.1 68 

 
 

GOAL: TRANSLATE OBJECT IN 3 AXES 
 

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: translate an object in 1 
axis - 5.5 34 
Accomplish Goal: translate an object in 2 
axes - 5.5 34 

Return with Goal accomplished - Total Execution 
Time (s) 

Total Learning 
Time (s) 

 11.2 68 
Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Move hand into device view volume H 0.4 17 
Disengage clutch Gc 0.1 17 
Perform spatial gesture Gm 1.1 17 
Engage clutch Gc 0.1 17 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 2.1 68 
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GOAL: ROTATE OBJECT IN 1 AXIS 
 

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: Identify virtual trackball M 2.6 17 
Point mouse to rotation axis on virtual 
trackball P 1.1 0 
Press and hold mouse button down B 0.1 0 
Drag mouse to rotate object P 1.1 17 
Release mouse button B 0.1 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 5.5 34 

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Move hand into device view volume H 0.4 17 
Disengage clutch Gc 0.1 17 
Perform spatial gesture Gm 1.1 17 
Engage clutch Gc 0.1 17 

Return with Goal accomplished - Total Execution 
Time (s) 

Total Learning 
Time (s) 

 2.1 68 
 
 

GOAL: ROTATE OBJECT IN 2 AXES 
 

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: Rotate object in 1 axis - 5.5 34 
Accomplish Goal: Rotate object in 1 axis - 5.5 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 11.2 34 

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Move hand into device view volume H 0.4 17 
Disengage clutch Gc 0.1 17 
Perform spatial gesture Gm 1.1 17 
Engage clutch Gc 0.1 17 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 2.1 68 
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GOAL: ROTATE OBJECT IN 3 AXES 
 

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: Rotate object in 1 axis - 5.5 34 
Accomplish Goal: Rotate object in 2 axes - 11.2 0* 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 16.9 34 

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Move hand into device view volume H 0.4 17 
Disengage clutch Gc 0.1 17 
Perform spatial gesture Gm 1.1 17 
Engage clutch Gc 0.1 17 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 2.1 68 

 
 
*	
  =	
  Learning	
  time	
  value	
  for	
  2D	
  rotation	
  is	
  0	
  because	
  3D	
  rotation	
  requires	
  three	
  separate	
  
1D	
  rotations.	
  	
  2D	
  rotation	
  is	
  two	
  separate	
  1D	
  rotations.	
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GOAL: SCALE OBJECT IN 1 AXIS 
 

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: Identify desired 
manipulator handle M 2.6 17 
Point mouse to manipulator handle 
corresponding to scale plane P 1.1 0 
Press and hold mouse button down B 0.1 0 
Drag mouse to scale object P 1.1 17 
Release mouse button B 0.1 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 5.5 34 

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Move hand into device view volume H 0.4 17 
Disengage clutch Gc 0.1 17 
Perform spatial gesture Gm 1.1 17 
Engage clutch Gc 0.1 17 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 2.1 68 

 
 

GOAL: SCALE OBJECT IN 2 AXES 
 

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: Identify desired 
manipulator handle M 2.6 17 
Point mouse to manipulator handle 
corresponding to scale planes P 1.1 0 
Press and hold mouse button down B 0.1 0 
Drag mouse to scale object P 1.1 17 
Release mouse button B 0.1 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 5.5 34 

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: Scale object in 1 axis - 2.1 68 
Accomplish Goal: Scale object in 1 axis - 2.1 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 4.4 68 
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GOAL: SCALE OBJECT IN 3 AXES 

 
Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s) 
Accomplish Goal: Identify desired 
manipulator handle M 2.6 17 
Point mouse to manipulator handle 
corresponding to 3D scale P 1.1 0 
Press and hold mouse button down B 0.1 0 
Drag mouse to scale object P 1.1 17 
Release mouse button B 0.1 0 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 5.5 34 

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s) 
Move hand into device view volume H 0.4 17 
Disengage clutch Gc 0.1 17 
Perform spatial gesture Gm 1.1 17 
Engage clutch Gc 0.1 17 
Return with Goal accomplished - Total Execution 

Time (s) 
Total Learning 

Time (s) 
 2.1 68 
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