
Graduate Theses and Dissertations Graduate College

2014

Evaluation of a commodity VR interaction device
for gestural object manipulation in a three
dimensional work environment
Frederick Victor Thompson III
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons, Industrial Engineering Commons, and the Mechanical
Engineering Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Thompson, Frederick Victor III, "Evaluation of a commodity VR interaction device for gestural object manipulation in a three
dimensional work environment" (2014). Graduate Theses and Dissertations. 14287.
http://lib.dr.iastate.edu/etd/14287

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/14287?utm_source=lib.dr.iastate.edu%2Fetd%2F14287&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Evaluation of a commodity VR interaction device for gestural object

manipulation in a three dimensional work environment

by

Frederick Victor Thompson III

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Human-Computer Interaction; Mechanical Engineering

Program of Study Committee:

Eliot Winer, Major Professor

Stephen Gilbert

Jim Oliver

Iowa State University

Ames, Iowa

2014

Copyright © Frederick Victor Thompson III, 2014. All rights reserved.

 ii

TABLE OF CONTENTS

Page

LIST OF TABLES IV

LIST OF FIGURES V

ABSTRACT VI

CHAPTER 1. INTRODUCTION 1
Interaction with the Personal Computer 1
The Keyboard and Mouse 3
3D Work Environments 4
Commodity Virtual Reality 8

CHAPTER 2. REVIEW OF LITERATURE AND COMMODITY
INTERACTION DEVICES 13

Literature Review 13
Introduction 13
Justifying the need for 3+ DOF interaction 14
Summary of literature review 16

Commodity VR Interaction Device Review 16
Introduction 16
The Wii Remote 17
The Kinect 20
The LEAP Motion Controller 23

Summary and Conclusion of Literature and Device Review 24
Research Issues 25

CHAPTER 3. METHODS 27
Overview 27
Design Assumptions 28
Design Issues 28

Device use and orientation 28
Gestural controls and the associated ergonomics 29

Design Approach 34
Tools in ASDS 35
Shortcut gestures 36
Manipulation gestures 37
Design summary 40

CHAPTER 4. RESULTS 43
Interaction Evaluation 43

Evaluation methodology 43

 iii

Evaluation Results 46
Object translation execution time 46
Object rotation execution time 47
Object scaling execution time 48
Learning time 49

CHAPTER 5. DISCUSSION 53
Results and Research Issues 53

How can gestural interaction be evaluated without a user study? 53
What types of gestures should be used? 54

Ensuring Adoption of Commodity VR Interaction 54
Design Limitations 56
Future Work 57

REFERENCES 59

APPENDIX A. THE ASDS TOOLBAR 65

APPENDIX B. KLM NOTATION AND VALUES 66

APPENDIX C. FORMULAS 67

APPENDIX D. FULL NGOMSL ANALYSIS RESULTS 68

ACKNOWLEDGEMENTS 75

 iv

LIST OF TABLES

Page

Table 1. Gestural taxonomy 33	

Table 2. Gestural shortcuts and operations in ASDS 42	

Table 3. User goals included in NGOMSL analysis 44	

Table 4. Execution and learning times for move tool goals 47	

Table 5. Execution and learning times for rotate tool goals 48	

Table 6. Execution and learning times for scale tool goals 49	

Table 7. Example execution and learning time analysis 51

 v

LIST OF FIGURES

Page

Figure 1. Isometric view of two objects 4	

Figure 2. Orthographic view of two objects 5	

Figure 3. Virtual trackball manipulation in a 3D workspace 7	

Figure 4. Nintendo’s Virtual Boy HMD video game console 8	

Figure 5. Currently available commodity VR input devices 10	

Figure 6. Nintendo's Wii Remote 17	

Figure 7. Microsoft's Kinect Motion Controller 21	

Figure 8. The LEAP Motion Controller 23	

Figure 9. The ASDS Toolbar 35	

Figure 10. The shortcut gestures for the move tool 36	

Figure 11. The shortcut gestures for the rotate tool 37	

Figure 12. The shortcut gestures for the scale tool 37	

Figure 13. Manipulation gesture with clutch 39	

 vi

ABSTRACT

Designers and engineers working in the computer-aided drafting (CAD)

and computer-aided engineering (CAE) domains routinely interact with

specialized computer software featuring three dimensional (3D) work

environments. These professionals must manipulate virtual objects or

components within this 3D work environment, but typically use traditional

interaction devices with outdated technology that are more suitable for 2D work

tasks. Current CAD and CAE software is designed to accommodate outdated

interaction technology, but this functionality comes at the cost of efficiency in the

virtual workspace. A new class of affordable interaction devices with

characteristics and specifications of high-end virtual reality interaction devices is

now available to consumers. These commodity VR interaction devices monitor

the position and orientation of a user’s hands through space to control aspects of

desktop software in ways that are impossible with the traditional mouse and

keyboard pair. They can be integrated with CAD or CAE software to allow

gestural control of objects throughout a 3D work environment.

To evaluate the feasibility of gestural control for 3D work environments, a

commercially available commodity VR interaction device was selected and

integrated with specific 3D software. Gestures to control aspects of the software

are developed and organized into a taxonomy. Select gestures are integrated with

the software and evaluated against traditional interaction methods, using the

Natural Goals Operators Methods Selection Rules Language (NGOMSL) concept.

The evaluation results show that gestural interaction is efficient for object

manipulation tasks, but a traditional keyboard or mouse is more efficient for

 vii

basic tool selection tasks. Estimated learning times for each input method

indicate gestural control takes about 30 seconds longer to learn than traditional

interaction methods.

1

CHAPTER 1. INTRODUCTION

This thesis focuses on the development of 3D spatial gestures for user interaction

within select software 3D work environments through the use of a commodity VR

interaction device. An overview of the current state of personal computer (PC)

interaction, including the shortcomings of traditional interaction devices and an

argument for 3D gestural control is discussed below.

Interaction with the Personal Computer

“I can make just such ones if I had tools, and I could make tools if I had tools to

make them with.” - Eli Whitney, inventor

Humanity’s industrious accomplishments are due to our ability to develop new

tools to accomplish difficult tasks. An early scene change in Stanley Kubrick’s 2001: a

space odyssey serves as a succinct metaphor to describe this. An intelligent human

predecessor tosses the first primitive tool upward into the sky, transitioning to an image

of a manmade spacecraft. The message is clear - tool innovators, and those who adopt

new tools, outclass rivals through a competitive advantage.

Arguably, the paramount tool of human kind is the PC. It has simplified the way

we do many tasks while improving the quality of the resulting output. PCs have

empowered individuals to perform tasks that traditionally required a substantial

amount of training and specialized equipment, increasing the productivity of the

2

individual. Naturally, an inexpensive tool that facilitates the needs of so many should

expect to see widespread adoption.

Itself a collection of many individual innovations working together in harmony,

today’s PC is a ubiquitous workplace tool used in nearly every industry. Over the years,

numerous innovations have reduced the cost and improved the power of PCs, and

today’s PC user works more efficiently and solves problems of higher complexity than

the user of the 1970s. Despite these advances, the user’s primary method of PC

interaction – the mouse and keyboard – is relatively unchanged. These default

interaction devices embraced by users do perform well for certain tasks, but there is no

one-size-fits-all solution for computer interaction. Recent technology advances have

lead to a new interaction device class that brings the capabilities of expensive, cutting-

edge Virtual Reality (VR) interaction devices to a consumer price point. These

commodity VR interaction devices are significantly different the standard mouse and

keyboard, and even devices like joysticks, trackballs, or touchscreens, because they

monitor the motion of a user’s hands through space with six degrees of freedom (DOF).

These devices can facilitate natural gestural interaction with PC software, especially

software with a 3D work environment, at a price that allows widespread adoption.

There are known advantages to three or more DOF interaction within a 3D work

environment. Access to affordable devices that allow natural gestural interaction with

software may provide a benefit to engineers, designers, and even the general consumer.

This thesis explores how to successfully integrate a consumer VR input device with PC

engineering and design software, without the need for a full user study.

3

The Keyboard and Mouse

Designers and researchers have worked for years to refine the interaction

between a user and his or her personal computer. Despite their efforts, most PC users

interact with a traditional keyboard and mouse, an older pair of devices that were

designed before 3D software workspaces were a reality.

The typical PC keyboard is a manual input device with an external design that is

nearly identical to typewriters of the late 19th century. The same basic design was used

in teleprinter and keypunch devices before being integrated with electronic computers

in the mid 20th century [1]. The keyboard is well suited for text input, despite the fact

that the common QWERTY layout for keys was designed to slow down typists to keep

mechanical typewriters from binding, and it has many other special-use keys for

software-specific tasks, like the arrows and the escape keys. In different software

environments, the user can actuate one or more keys as a “shortcut” to quickly execute a

specific software operation. In the domain of a 3D modeling program used by engineers

or designers, proficient users often utilize keyboard shortcuts for operations such as tool

selection or to change the camera view in the scene. Current PC users interact with the

keyboard in ways that the original typewriter designer never intended.

The standard computer mouse has a much briefer history than the keyboard. The

first interaction device that resembles today’s mouse appeared in 1968, but it was not

until the release of Xerox’s Star personal computer in 1981 that consumers could

purchase a PC that included a mouse [2]. The device excels at pointing tasks within a

2D graphical user interface (GUI) because it directly maps the X-Y translation of the

user’s hand across a work surface to the location of an on-screen cursor. A typical

mouse is controlled with a single hand; it is translated across a work surface and has

4

three or more buttons and a scroll wheel that can be actuated by the user’s fingertips.

Actuation of one or more buttons triggers a context-specific software operation

dependent on where the mouse pointer is located.

PC users can simultaneously interact with both a mouse and keyboard to

efficiently control software. The user holds the mouse in the dominant hand for

pointing tasks and uses the other hand to execute keyboard shortcuts.

3D Work Environments

Many routine tasks performed with PC software (e.g. selecting items on the

computer’s desktop or interacting with a word processing application) can be thought of

as occurring within a two dimensional environment. The typical computer mouse is

well suited for pointing operations in these 2D environments because there is a direct

relationship between mouse translation across the physical work surface and cursor

Figure 1. Isometric view of two objects positioned on the XZ plane

5

translation across the computer screen. A translation operation within a 2D

environment, e.g. a “click and drag” action to move an icon across the desktop, is

unambiguous for the user. Researchers define the disconnect between a computer

user’s goal and the tools and methods available to achieve the goal as the gulf of

execution [3]. In the case of 2D mouse translation tasks, the gulf of execution is

minimal. To complicate things, professionals in industries like engineering and

computer graphics commonly use much more complex software with a 3D workspace.

Computer-aided drafting (CAD), computer-aided engineering (CAE), and 3D computer

graphics software tools all have to accommodate mouse and keyboard interaction within

a 3 dimensional work environment.

User interaction in 3D environments can be very complex unless the mouse-

controlled operations remain constrained to only one or two dimensions. Consider this

scenario shown in Figure 1 above: assuming objects can be translated through the scene

by clicking and dragging the mouse, if the user selects the yellow cylinder and translates

the mouse in a given direction, where will the cylinder ultimately reside? If the mouse is

pushed “up”, or away from the user, the cylinder may move in the positive Y direction,

the negative Z or X directions, or a combination of all three. In this case, the gulf of

execution limits the user’s interaction. The user’s expectation for the translation

direction and magnitude may not match how the software interprets the command.

6

Developers of 3D software use several solutions to address input ambiguity

during operations like translation, rotation, or scaling of a virtual object in 3D space [4].

One common workaround is known as view-based techniques, where the user’s view is

limited to one or more orthographic scene views normal to one of three Cartesian

planes, constraining the on-screen cursor to two axes of the work environment instead

of three. An example of an orthographic view can be seen in Figure 2. Often, users will

find that an orthogonal camera view does not reveal enough visual information about

the scene, or is difficult to comprehend, and instead opt for an offset view that reveals

more information, like the isometric view seen in Figure 1. In these cases, an alternate

means of control is needed to accurately manipulate objects. In one solution,

controller-based techniques, object controls are located in GUI windows or mapped to

keyboard keys. Another solution, virtual trackball techniques, superimposes

supplementary GUI elements in the scene, over the object, for the user to indicate the

axis or axes on which they wish to operate. Researchers refer to a translation

Figure 2. Orthographic view of two objects positioned on the XZ plane

7

manipulation element superimposed over an object in the scene as a skitter [5]. Figure

3 shows a virtual trackball superimposed on an object. Finally, multiple-degree-of-

freedom techniques can control the virtual object through user interaction with an input

device that tracks a user’s hand in more than 2 axes.

Ultimately, the first three solutions facilitate mouse interaction at the cost of

efficiency. Mouse users have no means to manipulate an object across 3 axes in a 3D

environment with the simplicity of dragging a file from the desktop into a folder.

Multiple-degree-of-freedom techniques address this shortcoming and simplify user

interaction.

Figure 3. Virtual trackball manipulation in a 3D workspace

8

Commodity Virtual Reality

Previous attempts to bring VR devices to the general consumer have been

unsuccessful, largely due to hardware constraints and a poor understanding of user

needs. One such attempt, Nintendo’s 1990’s-era home video game console Virtual Boy

(seen in Figure 4), promised consumers an immersive stereoscopic experience on a

portable head mounted display (HMD). Instead, it left users with symptoms of cyber

sickness due to hardware and software shortcomings and was discontinued after less

than a year on the market [6]. Similarly, the Power Glove interaction device developed

by Mattel for Nintendo’s Nintendo Entertainment System in the 1980’s promised video

gamers hand tracking and gestural control, but was quickly rejected by consumers for

it’s imprecise control.

Commodity VR devices have simply provided an inadequate experience for

everyday tasks such as interfacing with productivity software on a desktop computer,

and instead are relegated to niche uses at best. At worst, the device is an entertainment

Figure 4. Nintendo’s Virtual Boy HMD video game console

9

novelty that is incompatible with any other hardware or software without extensive

modification and technical expertise. Presently, the availability, cost, and functionality

of hardware is no longer a limitation and a new generation of commodity VR devices has

emerged on the consumer market. For the purpose of this research, a commodity VR

interaction device is defined as:

1. A device that allows natural user interaction through gestures and movements in

3D-space.

2. A device that is marketed to and priced for consumers, instead of researchers or

industrial clients.

3. A device that is no more complicated to connect to a PC than a typical keyboard,

mouse, or computer display.

Modern commodity VR interaction devices like the Nintendo Wii Remote [7],

LEAP Motion Controller [8], Microsoft Kinect [9], and Sixense Razer Hydra [10], seen

in Figure 5, are capable devices with an enthusiastic group of researchers and VR

hobbyists researching the devices and developing new uses. Unlike previous commodity

VR devices, these new ones are designed to easily connect to PCs and have support from

the manufacturer to integrate the devices with other software. The commercial success

of these devices and their use in academic research proves that commodity VR hardware

is mature, however little development has been done to integrate these devices with the

software commonly used by industry professionals.

10

Industry professionals and general consumers may not presently use low cost VR

devices, but users are aware of VR and are capable of adapting to new computer

interaction methods [11]. Public exposure to gestural and other non-traditional

interaction at an affordable price has steadily increased in recent years. The first

generation iPhone and second generation MacBook Pro, released by Apple Computers

in 2007 and 2008 respectively, brought multi-touch gestural interaction into the homes

and pockets of millions of users for the first time [12]. Sales of smartphones, many of

which have a touchscreen interface, has increased to the point that over half of all

American adults owned one in 2013 [13]. The strong smartphone market in the late

2000’s eventually led the way to an emerging market of touchscreen tablet computers

with operating systems designed for touch interaction. These tablets have an interface

and workflow that is separate from the mouse and keyboard interaction of traditional

PCs. Users adapted to new touchscreen-only interfaces specifically designed to

accomplish goals in a computer environment lacking a keyboard and mouse [14]. In the

entertainment domain, each of the three major video game console manufacturers,

Figure 5. Currently available commodity VR input devices: (Top left) Nintendo Wii Remote, (Top right)

Microsoft Kinect, (Bottom left) LEAP Motion Controller, and (Bottom right) Razer Hydra.

11

Nintendo, Microsoft, and Sony, have brought novel VR interaction devices to the living

room for use with their respective home video game consoles: the Wii [7], Xbox 360

[15], and PlayStation 3 [16].

Exposure outside of consumer devices is also increasing VR device awareness.

Elon Musk, the founder and CEO of Space X, released a highly publicized promotional

video titled “The Future of Design” in the fall of 2013, demonstrating engineering design

with commodity VR devices [17]. Many online commenters compared Musk’s

demonstration to the futuristic technology seen in the movies Iron Man (2008) and

Minority Report (2002), both of which prominently featured natural gestural computer

interaction. In short, the general consumer is aware of new interaction methods and is

comfortable interacting with devices without tactile button presses and pointing

methods traditionally used with PCs.

	

The	
 remainder	
 of	
 this	
 thesis	
 is	
 structured	
 as	
 follows:	

	

• Chapter 2 provides a review of research on 3D interaction from literature and

highlights three current commodity virtual reality devices, how they have been

used for research and hobbyists, and justifies the selection of a commodity VR

device as a platform for testing of gestural interaction.

• Chapter 3 discusses the process of integrating the selected commodity VR device

with software, the development of a gestural taxonomy, and the operations

within software that receive gestural control.

• Chapter 4 provides an evaluation of the implemented gestural interaction

compared to traditional mouse and keyboard interaction in a 3D work

12

environment through the Natural Goals, Operators, Methods, and Selection

Rules Language (NGOMSL) concept.

• Chapter 5 is a discussion of the results, conclusions, and future work.

13

CHAPTER 2. REVIEW OF LITERATURE AND COMMODITY INTERACTION

DEVICES

Literature Review

INTRODUCTION

As mentioned before, the disconnect between a computer user’s goal and the

tools and methods available to achieve the goal is known as the gulf of execution. In an

attempt to minimize the gulf and ease user interaction, imaginative designers have

developed a wide variety of manual pointing and locating devices of differing modality.

Despite their outward differences, all input devices are naturally constrained to a set of

common movements and actions defined by human physiology. A typical PC mouse and

a high-tech VR wand rely on similar physiological abilities, but the user manipulates a

mouse across a desktop surface and a wand through space. Jacob asserts that VR

interaction devices have an advantage over the traditional mouse and keyboard because

they utilize a user’s “pre-existing abilities and expectations” of the real world rather than

relying on “trained behaviors” for software interaction [18].

Why do we interact with the outdated mouse and keyboard when advantageous

interaction devices are available? Bill Buxton succinctly explained the divide between

our own physiology and our chosen devices for PC interaction with an imaginative

description of the misconceptions future anthropologists would hold after discovering a

hidden cache of functional computer hardware and software from the 1980s [19]. In

Buxton’s words:

14

“My best guess is that we would be pictured as having a well-developed

eye, a long right arm, uniform-length fingers and a ‘low-fi’ ear. But the

dominating characteristic would be the prevalence of our visual system over our

poorly developed manual dexterity. Obviously, such conclusions do not

accurately describe humans of the twentieth century.”

His main argument is that existing computer interface devices do not fully utilize

our inherent dexterous and sensory abilities and may actually hinder our ability to

interact with PCs. A 2D pointing device like a mouse is adequate or even superior for

certain tasks, like interacting with the user interface (UI) in a word processing program

or other general desktop productivity software, but it lacks a degree of freedom when

interacting with a 3D interface.

JUSTIFYING THE NEED FOR 3+ DOF INTERACTION

Many research groups have worked to identify the best uses for PC interaction

devices other than the mouse and keyboard, ranging in complexity from a trackball to

custom-built VR controllers. Beaton et al. compared a 3D trackball, a traditional 2D

mouse, and a special 3D thumbwheel controller11 with a 3D pointing task, and found

that mouse users had a higher positioning error and took longer to complete the task

[20].

A number of researchers built their own devices to prove the merits of three or

more DOF interaction. Djaajadiningrat et al. performed a comparison of varying user

DOF during a physical sphere rotation task representative of an action typically found in

1 The thumbwheel device used linear rotary knobs, similar in functionality to the scroll wheel on

a modern mouse, but with three separate scroll wheels aligned to the 3 Cartesian axes.

15

3D modeling software, concluding that desktop interaction devices which offer fewer

than three degrees of simultaneous control are less efficient than three DOF alternatives

[21]. A user restricted to rotational input along a single orthogonal axis while

attempting to rotate an object to a given orientation took longer, required more rotation

actions, and was less comfortable than a user who was able to freely rotate in multiple

axes without restriction.

Jones designed and fabricated a low-cost gimbal-mount six DOF desktop

interaction device intended for rotation and translation in 3D objects with the non-

dominant hand, leaving the dominant hand free to control a traditional mouse for object

selection [22]. The device was designed for use in a fixed location on the desktop

surface, so the user may rest an elbow during interaction. It was compared against a

traditional 2D mouse for 3D object manipulation tasks. The researchers found that the

device worked well for object translation, however users were reported to have

encountered problems during rotation, either from interaction issues or mechanical

problems of the device. An important takeaway of the study is that users typically find

rotation tasks with parametric control (where displacement from the origin controls the

rate of rotation) to be more difficult than incremental control (where the displacement

from the origin controls the absolute rotation value), while either parametric or

incremental control are equally suited for translation tasks.

Fröloch and Plate built their own three DOF controller to prove the benefit of

maintaining a common coordinate system between input device and a 3D environment

[23]. It was a cube with an embedded six DOF tracker that is intersected by three

orthogonal rods, which are pushed and pulled to control motion along the three axes.

Users found the device to be easy to learn because of the inherent proprioceptive cues.

16

Despite the technical shortcomings and low commercial success of previous

commodity VR hardware described in the first chapter, researchers have found ways to

bring the virtual reality experience to an affordable point through modification of

existing commodity hardware [24], [25]. Some researchers have worked to integrate VR

functionality with the workflow of engineers and designers without regard to cost or

feasibility [26].

SUMMARY OF LITERATURE REVIEW

Professionals who work within 3D work environments may benefit from gestural

interaction. The current body of research indicates that a traditional mouse and

keyboard pair cannot perform specific tasks in a virtual 3D space with the accuracy,

precision, and speed of devices that register input in three dimensions. Professionals

need a device that allows gestural control of object manipulation operations like

translation and rotation to execute designs quickly and accurately.

Commodity VR Interaction Device Review

INTRODUCTION

There are many commodity VR interaction devices available to consumers today,

with more devices currently in development. VR interaction devices accomplish their

novel interaction method by tracking the movement of the user through space through a

camera system or handheld sensor. Despite the similar capabilities of devices in this

domain, the devices often use dissimilar technologies with intrinsic advantages and

disadvantages. Different use-cases necessitate different input methods. While one

situation may benefit from a handheld controller tracked through 3D-space, another

17

may benefit from a camera system that can simultaneously track whole body

movements of several users.

Many commodity VR input devices are available today, but three devices were

explored for the purpose of this discussion: the Nintendo Wii Remote, the Microsoft

Kinect, and the LEAP Motion Controller. These devices were selected because of their

superior capabilities, their flexibility within a research environment, and because they

are representative of the spectrum of devices available to consumers. The surveyed

devices are similar in that they can track a user’s hand movement with six DOF and they

are suitable for use in an office environment.

THE WII REMOTE

 The Wii Remote, introduced in 2006, is a wireless handheld motion controller

designed for interaction with Nintendo’s home video game console, the Wii. Users

operate the device (shown in Figure 6) in a single hand, and it has a roughly rectangular

in shape that is similar to a typical television remote control. It has a number of buttons

for user interaction, an audio speaker, a vibratory motor, four LED lights for user

Figure 6. Nintendo's Wii Remote

18

feedback, and can communicate with a PC over a standard Bluetooth wireless protocol.

However, the most novel feature is the controller’s motion tracking capability. To detect

the motion of the user’s hand, the controller has an onboard three DOF accelerometer

unit and an optical IR sensor, which tracks the motion of the controller relative to a

static IR LED light bar. The accelerometer and camera systems work together; the

accelerometers measure general motion but are susceptible to measurement error and

drift, while the IR sensor augments the detection of more precise tasks. In a standard

use, where users manipulate the device like a VR wand, the IR light bar is located above

or below the display. The IR sensor detects it’s own position relative to the static IR

light bar to accurately detect the translation and rotation of the controller. Researchers

have developed novel uses for the controller in this traditional configuration, as well as a

reversed configuration where the controller acts as a stationary IR camera to detect the

dynamic movement of the IR light bar.

Johnny Lee is the pioneer of Wii Remote integration with the PC. He brought

attention to the use of use of this device for serious human-computer interaction (HCI)

applications with a demonstration of how to use the device as a basis for a low cost

digital whiteboard, a head tracker for fish tank VR visualization, and a natural gesture

PC interaction device that recognizes the user’s fingertips [27]. Others built on Lee’s

work to find new uses for the Wii Remote. Lin et al. used the Wii Remote as a camera to

track infrared markers affixed to the user’s hands for gestural input [28]. Interaction

was limited to basic 2D productivity tasks such as progressing through a slideshow or

resizing an image, but users generally considered gestural input to be valuable once they

learned how to perform the interactions.

19

Others have successfully replaced expensive VR hardware with a Wii Remote.

Pavlik and Vance used the Wii Remote to track the head position of a user equipped

with a head-worn IR emitter in an immersive stereoscopic 3D environment [29]. Their

work built on Lee’s original “head tracker” demonstration from 2008, but is compatible

with immersive CAVE implementations in addition to desktop PCs. Zhu et al. used the

Wii Remote as an IR tracker camera to record motion capture data for authoring 3D

model animations [30]. Such systems normally cost thousands of dollars, but Zhu’s Wii

Remote camera system was able to accurately track IR markers and for a fraction of the

price.

In addition to developing new uses for the device, researchers have compared the

performance of the Wii Remote to other pointing devices. Ardito et al. compared the

performance of a Wii Remote used as a wand against both a standard PC mouse and

keyboard pair and a typical two-joystick game pad for translation and rotation tasks in a

3D environment [31]. The team found that users of the Wii Remote completed tasks

slower and with more errors than users of the two other devices. Additionally, users

rated their experience with the Wii Remote as dissatisfactory and considered the device

difficult to use. Gallo et al. compared the performance of a Wii Remote used as a wand

and a typical mouse and keyboard for two-axis and three-axis rotation tasks with 3D

medical data [32]. Wii Remote users could simultaneously control object rotation along

one or two axes, depending on condition. The team found that a mouse and keyboard

outperformed the Wii Remote in both task completion time and accuracy, and the time

difference between two-axis and three-axis rotation tasks indicates that two-axis tasks

are easier to control regardless of input method.

20

The evaluations mentioned above used the Wii Remote as a 2D pointer for

selection with roll/pitch/yaw control for 3D rotation tasks. The device was operated like

a wand, but in practice behaved like a standard mouse with an additional degree of

freedom (roll). Overall, the findings indicate that wand-style input devices are not

appropriate for 3D manipulation tasks in physical environments that are able to

accommodate a keyboard and mouse.

THE KINECT

Microsoft’s Kinect is a depth-sensing camera system used for gestural interaction

with video games on Microsoft’s Xbox line of home video game consoles and Windows

PCs. In practice, the device can detect spatial gestures performed with the user’s hands,

track the movement of people and objects through a room-sized volume, and detect

voice commands. Although it first premiered in 2010 as an interaction device for the

Xbox 360, Microsoft released a developer-friendly version with an updated SDK for PC

developers in 2012. An advanced version of the device was released for the newer Xbox

One home video game console in 2013, and Microsoft went on to release a developer-

friendly version of this updated Kinect in 2014. Both the 2012 and 2014 developer

versions of the Kinect have an IR depth sensor as well as a standard RGB camera, a 3

DOF inertial measurement unit (IMU) to detect device movement, a microphone array

for audial input, and use a wired USB connection to communicate with software on a

PC. The Kinect excels at skeletal modeling in a room-sized volume, but has a shallow

minimum viewing distance that makes it unreliable at desktop workstations. A Kinect

can be seen in Figure 7.

21

Figure 7. Microsoft's Kinect Motion Controller (2012 version)

Microsoft supports research and development for the Kinect through official

software libraries. In contrast to the Wii Remote, which was used as both a handheld

wand and as a stationary IR tracking camera, the Kinect is most frequently used in the

intended hardware configuration; fixed to a stationary position where it detects spatial

gestures of one or more users.

Researchers have developed novel uses for the spatial tracking and gestural

interaction afforded by the Kinect. Dave et al. used a Kinect to control a voxel-based

virtual clay modeling system at a desktop environment [33]. The system played to the

strengths of the Kinect and used whole-body gestural recognition to control operations

like object selection and manipulation. Gallo et al. successfully used gestural commands

with the Kinect to control the viewpoint of 3D medical images [34]. Santos et al.

successfully used the device to control objects in an augmented reality scene without

having to calibrate for skin color, a shortcoming of traditional 2D computer-vision based

interaction techniques [35].

In addition to developing new uses for the device, researchers have compared the

effectiveness of the Kinect against other input devices. Tilak Dutta compared the Kinect

to an expensive motion capture IR camera system manufactured by Vicon, and found

22

that the Kinect can perform adequately as an IR marker tracker at 1 to 3 meter distances

[36]. Francese et al. compared gestural control on the Kinect and Wii Remote for

navigation within a 3D navigable environment viewed on a projector screen [37]. Users

preferred the natural gestures afforded by the Kinect and felt they were more

transparent and less intrusive than the wand-style control of the Wii Remote. Juhnke

evaluated the Kinect against a typical mouse and keyboard for windowing tasks with

medical imaging data [38]. The task required medical students to manipulate a two-

handled 1D slider bar to reveal a specific feature of the medical image. In the Kinect

condition, the user must translate his or her hands across a 1D axis in front of the

Kinect, with each hand directly mapped to the position of a single slider bar handle.

Mouse users could only control one handle at a time, due to the nature of mouse

interaction, while Kinect users could manipulate both handles simultaneously.

Participants were able to accurately reveal the correct density more slowly with the

Kinect than with the mouse, and favored the mouse for small and precise adjustments.

The author speculates the Kinect’s performance is due to its inability to accurately

distinguish user hands at a close viewpoint.

The Kinect appears to be a capable device that affords a gestural interaction

experience superior to the Wii Remote. It has successfully sold to consumers and

researchers, and has become a fundamental classroom tool to give students experience

with gestural interaction technology [39]. Despite it’s success, it performs inadequately

at desktop workstations because it is designed for use at ranges of 20 inches to 13 feet.

It is also known to unreliably detect users when multiple users are within the view

volume. The Kinect is an undesirable input device for professionals seated at a work

23

computer, but is a capable interaction device for a single individual if used from a

distance and paired with a large display or a projector screen.

THE LEAP MOTION CONTROLLER

The LEAP Motion Controller is an optical (shown in Figure 8) six DOF tracker

that specializes in tracking a user’s hands, fingers, or tools within a relatively small

volume. The device is relatively new, as public sales only started in 2013, but developers

have already shared home made software and video demonstrations of its capability. Its

functionality is similar to the Kinect’s, but it is not used for whole-body gestural

interaction because of its small view volume. Instead, it is designed for use at desktop

workstations and has an operational range of 1 inch up to 2 feet. The manufacturer

supports researchers and developers with official libraries to integrate LEAP control

with existing software.

Figure 8. The LEAP Motion Controller

Research with the LEAP is less plentiful than the previous two devices because of

its relative new arrival on the consumer market. Developers have not “hacked” the

device to improve its capability because the manufacturer frequently updates the

software libraries with performance improvements. The majority of published research

24

has assessed the LEAP’s capabilities and performance for gestural control in specific

use-cases.

Weichert et al. evaluated the accuracy of the LEAP and found that it can reliably

and accurately track a human hand or tool in a static posture or through a 3D trajectory

in space. It can be adapted to control a variety of operations and is more accurate and

precise than competing products of a similar cost [40].

Mauser and Burgert used the LEAP to advance through medical imaging data

slides and control medical instruments, which necessitated both 2D and 3D gestural

input [41]. Users were able to successfully control the systems with the LEAP, however

the team learned that the device readily detects unintended gestures within the view

volume, causing unintentional execution of software operations. The team implemented

“lock” and “unlock” gestures to allow or disallow recognition to solve this problem.

The LEAP Motion Controller and the Kinect share several common benefits: both

can track the movement of hands and tools through space to allow gestural control of PC

software, and both have official software libraries from the manufacturer. The LEAP

has the potential to excel at desktop interaction because it is more reliable than other

commodity VR devices and can operate within the physical space of a desktop

workstation.

Summary and Conclusion of Literature and Device Review

There are many additional commodity VR devices available today that

accommodate gestural interaction. Despite the common availability and advantages of

these devices, most desktop workers still perform software interaction with a keyboard

and mouse. Skilled workers who regularly interact with 3D software, like designers and

25

engineers, use interaction technology dating back to the 1960s. They are not equipped

with modern commodity VR interaction devices, despite the potential advantages in

time and accuracy for routine tasks 3D work environments.

The LEAP Motion 3D controller is a promising platform to test VR interaction

with PC software because it does not have the shortcomings of the other surveyed

commodity VR devices. It has a focused view volume and has a shallow minimum

depth, making it appropriate for interaction at a desk in an office environment. The

manufacturer supports the device through software libraries that allow integration of

the device with commercial software. These libraries have a robust skeletal model to

track human fingers and hands, allowing precise gesture detection. Finally, a LEAP user

does not need to grip a controller or use exaggerated whole-body gestures, minimizing

user fatigue. For these reasons, the LEAP Motion Controller was selected as a platform

to explore gestural interaction in 3D a work environment.

Research Issues

Two research issues have been identified, based on the current state of research

in desktop VR interaction:

1. How can gestural interaction be evaluated without conducting a full

user study?

User studies require time and resources that may not be available to software

developers looking to integrate commodity VR interaction with their software in

an expedited time frame. Interaction evaluation without a user study allows

rapid development and deployment in a market with continuously improving

26

interaction devices.

2. What type of gestures should be used for object manipulation in 3D

work environments?

Unlike the interaction modality afforded by the keyboard and mouse, spatial

gestures are open-ended and constrained only by hardware, software, and user

limitations. Existing research indicates three or more DOF interaction is beneficial for

3D object manipulation. Stakeholders looking to implement gestural interaction in

software with commodity VR devices must select appropriate gestures for the task.

27

CHAPTER 3. METHODS

Overview

A software platform to evaluate gestural interaction in 3D work environments

with a LEAP Motion Controller is needed. The selected platform is a CAD-like

conceptual design software developed by researchers at Iowa State University, called the

Advanced Systems Design Suite (ASDS) [42]. Engineers and designers use ASDS to

quickly visualize and assess design concepts with imported CAD geometry and a library

of primitive shapes early in the design process, when exact dimensions and materials

are undecided or unknown. It was selected because it has a concise set of design

manipulation and assessment tools to simplify user interaction within the 3D work

environment, and because the source code is readily accessible to researchers at Iowa

State University’s Virtual Reality Applications Center, which eases the creation and

evaluation of gestural control with the LEAP Motion Controller.

Official C++ libraries supplied by LEAP Motion were integrated with the ASDS

source code [43]. The gesture recognition and skeleton modeling capabilities of this

library were utilized to simplify the integration of gestural interaction with ASDS. The

final gestural interaction developed for ASDS utilized a subset of a gestural taxonomy

specifically developed for desktop interaction in 3D work environments. This taxonomy

is based on the findings of other researchers, human physiology, and the limitations of

an optical hand tracker. Select gestures from this taxonomy were integrated with ASDS.

28

Design Assumptions

Several assumptions of the LEAP Motion Controller and the ASDS were made

during planning and development.

1. The 3D work environment in the ASDS is assumed to represent a typical 3D work

environment encountered in other engineering software tools like Dassault

Systèmes’ SolidWorks, as well as non-engineering 3D graphics software like

AutoDesk’s Maya.

2. The LEAP Motion Controller’s tracking accuracy and method is representative of

other commodity interaction devices.

3. Gestures developed for use with the LEAP Motion Controller could also be

designed for other devices.

Design Issues

Research on gestural interaction with comparable devices guided the

development of the gestural taxonomy, as well as the selection process to decide the

gesture and associated software capability it would control. An understanding of the

best way to orient and position the LEAP Motion Controller is needed prior to gesture

development.

DEVICE USE AND ORIENTATION

LEAP Motion intends their device to rest flat on a stationary desktop surface,

with an approximately semi-spherical view volume centered above the device. Despite

the manufacturer’s intent, the device can be oriented in any position to suit a user’s

needs. Researchers Han and Gold explored different orientations of the LEAP Motion

29

Controller for 3D “tapping” tasks and found that angled and inverted orientations did

not detect fingers as accurately as the intended upright orientation [44]. The conclusion

is that developed gestures must be salient when observed from below.

GESTURAL CONTROLS AND THE ASSOCIATED ERGONOMICS

Many people regularly interact with touchscreen interfaces on smartphones and

tablets that necessitate novel touch gestures. Gestural interaction with touch screen

devices has been successfully used for object control in 3D work environments [45], but

the necessary considerations differ from spatial gestures: touch gestures are constrained

to a relatively small 2D space and provide tactile feedback, while spatial gestures are

through a larger 3D space without tactile feedback.

Nielsen et al. argue for a human-centric approach when designing gestures [46].

Gestures should be designed to the physiological and cognitive limitations of the user

rather than the technical limitations of the interaction device. Existing implementations

that have not addressed human concerns leave users fatigued with an effect known as

“gorilla arm syndrome” [47]. With this in mind, ensuring the gestures are intuitive, easy

to use, and not harmful to the user was of primary importance during taxonomy

development. Hinckley et al. were early explorers of free-space gestural input and

developed a framework to understand these concerns [48]. Several of their suggestions

guided the development of the gesture taxonomy:

1. Arbitrary gestures for operations like translation, rotation, and scale can be

difficult to use, so the manipulation of virtual objects should directly map to a

user’s manipulation of a tangible object.

30

2. Object manipulation should occur in a spatially relative position, instead of

absolute position.

3. The user should be able to interact with two hands to improve task efficiency.

The second hand can perform spatial gestures or interact with a different device,

like a mouse.

4. Gestural controls should operate on similar attributes of virtual objects (e.g.

translation, rotation, and scale instead of translation, rotation, and color).

5. Interaction should consider ergonomics to avoid injury and fatigue.

Other research guided how to register the user’s end effector. Zhai et al.

performed a comparison of six DOF input devices with and without finger manipulation,

and found that input devices controlled by the small muscle groups in the fingers

perform better than devices that use larger muscle groups in the arm [49]. Additionally,

an experiment performed by Djaajadiningrat et al. revealed that user comfort varied

depending on the number of fingers allowed during three DOF sphere rotation,

concluding that desktop VR input devices should register three fingertips to maximize

user comfort [50].

The gestures must be easy for users to learn and execute. While interacting with

3D work environments, traditional mouse and keyboard users experience the benefit of

direct input mapping and tactile feedback. The operation of a mouse and keyboard with

typical desktop software is intuitive, as physically moving the mouse in a direction will

translate the on-screen cursor an amount in the same direction through a position-to-

position mapping. Additionally, a key press on the mouse or keyboard results in audial

and tactile user feedback. Each possible method of input afforded by a keyboard or

31

mouse is visible to the user, with the exception of multi-key shortcuts on the keyboard

or non-traditional mice with a touch-sensitive surface.

In contrast, spatial gestures are actions that a user must memorize and recall.

Novice users cannot rely on visual cues to recall gestures the way that novice keyboard

users can “hunt and peck” for the correct key. The common use of keyboard shortcuts

indicates that users are capable of recalling ambiguous commands to execute actions

within a “windows, icons, menus, pointer” (WIMP) GUI, but spatial gestures do not

provide the user with the tactile feedback provided by interaction with physical

hardware. Unreliable gestural interaction may leave the user unsure of the software’s

status when a command is attempted but no result occurs, although this can be

mitigated with audial or visual feedback cues. If the software is unreliable and does not

provide feedback, a user may wonder: “Did I execute the command correctly? Is there

something wrong with my device? Is my computer just slow?”. In short, the gestures

must be memorable and provide visual, audial, or tactile feedback to the user upon

successful execution. Research [51] suggests that care must be given to ensure a user

understands the semiotics of spatial gestures and how individual gestures relate to one

another.

The findings from the design issues outlined in the previous section guided the

development of the gesture taxonomy shown in Table 1 below. This taxonomy outlines

every feasible motion that can be utilized as a gesture for desktop interaction with a

commodity VR device similar to the LEAP Motion Controller. Care was taken to select

gestures and actions that are unlikely to cause injury through repetition while being

salient to optical trackers. Current tracking software for commodity optical tracking

devices cannot reliably interpret gestures that contort the user’s hands into complex

32

configurations or occlude multiple digits, so a preference is given to gestures that use

the extension or flexion of one or more fingers. This minimizes self-occlusion and

ambiguity to ensure reliable recognition by the tracking software.

Gestures from the taxonomy can be implemented to control a variety of software

functions with an optical tracking input device. The specific taxonomy actions and

postures were developed with consideration for user ergonomics, but were not validated

through a user study. Designers can create novel gestures by combining the listed

actions together, resulting in a unique gesture vocabulary that is suitable for a given

application. However, individual actions should be selected from different segments to

avoid complex or awkward gestures. For example, an action that uses two fingers

extended and swept horizontally with the wrist, elbow, and shoulder is simpler than a

gesture that extends one finger, then two other fingers, while swept horizontally in the

same way.

Not every action in the taxonomy was included in the designed implementation.

Instead, specific motions and postures from the taxonomy were combined and

implemented to execute specific software operations that may benefit from spatial

gestures and six-DOF interaction. Actions included in the designed implementation are

designated with bold text.

33

Table 1. Gestural taxonomy

Segment Sub-Segment Action Note

Fingers

1 Finger point
(index)

Extension
Flexion to Extension Close to open
Extension to Flexion Open to close
Modulate extension to
slight flexion

Vertical wag (similar to the action
needed to click a mouse)

Horizontal
adduction/abduction Horizontal "wag"

Clockwise circumduction Move around in circle
Counterclockwise
circumduction Move around in circle

1 Finger point
(thumb)

Extension
Flexion to Extension Close to open
Extension to Flexion Open to close
Clockwise circumduction Move around in circle
Counterclockwise
circumduction Move around in circle

Horizontal
adduction/abduction Horizontal "wag"

2 Finger point
(index and
middle)

Extension
Flexion to Extension Close to open
Extension to Flexion Open to close
Modulate extension to
slight flexion

Vertical wag (similar to the action
needed to click a mouse)

3 Finger point
(index, middle,
and ring)

Extension
Flexion to Extension Close to open
Extension to Flexion Open to close
Modulate extension to
slight flexion

Vertical wag (similar to the action
needed to click a mouse)

3 Finger point
(index, middle,
and thumb)

Extension
Flexion to Extension Close to open
Extension to Flexion Open to close
Modulate extension to
slight flexion

Vertical wag (similar to the action
needed to click a mouse)

4 Finger point
(all fingers
except thumb)

Extension
Flexion to Extension Close to open
Extension to Flexion Open to close

Modulate extension to
slight flexion

Vertical wag (similar to the action
needed to click a mouse)

5 Finger point
(all fingers and
thumb)

Extension

Flexion to Extension Close to open
Extension to Flexion Open to close
Bring together
Fan apart

Thumb + 1
additional digit Tip pinch Pinch thumb tip to the tip of any

finger
Thumb + 2
additional digits Tip pinch Pinch thumb tip to the tips of any

two adjacent fingers

34

Table 1 continued. Gestural taxonomy

Segment Action Note

Wrist

Flexion Bend forwards
Extension Bend backwards
Ulnar deviation Bend towards little finger
Radial deviation Bend towards thumb
Flexion to extension

Extension to flexion
Ulnar to radial deviation
Radial to ulnar deviation

Forearm

Pronation Palm facing down over desk
Supination Palm facing upwards
Pronation to supination
Supination to pronation

Elbow Flexion to extension Open arm
Extension to flexion Close arm

Shoulder

Extension Lower arm down
Flexion Lift arm up
Abduction Move arm out of plane
Adduction Move arm into plane
Lateral rotation Cyclist "stop" signal
Medial rotation Cyclist "right turn" signal

Design Approach

Integrating the LEAP Motion Controller with ASDS was possible with LEAP

Motion’s official software development kit and access to the ASDS source code.

Consideration of which software operation should receive gestural control, as well as

which gestures to use, was of critical importance. The design implements the LEAP

Motion Controller in a standard configuration, meaning the device rests on a stationary

desk surface and detects spatial gestures that occur above it. The developed gestures

use movements from the user’s elbow, wrist, and fingers to reduce user fatigue and

utilize inherent fine motor control.

35

TOOLS IN ASDS

A toolbar at the top of the main ASDS window contains 13 icons that serve as

shortcuts to commonly used commands found within several pull-down menus as

shown in Figure 9. The toolbar separates the icons of similar tools by proximity into

three major icon families: file management, design component management, and

concept manipulation and assessment.

Figure 9. The ASDS Toolbar

File management tools allow the user to perform actions like opening, closing,

and saving designs. The design component management tools allow a user to create

groups of components for hierarchical categorization, or delete components. The third

shortcut family, concept manipulation and assessment, is used to move, scale, and

measure design components or an entire design. Of the three separate groups of

shortcut icons, ASDS users most frequently interact with the concept manipulation and

assessment family, so it was the focus for gestural interaction. Details of the concept

manipulation and assessment tools appear in Appendix A.

From the concept manipulation and assessment family, the move, rotate, and

scale tools are used frequently during design creation and modification, while the

measure and assess tools are used to verify whether a design fits within given

constraints. The select tool is used to indicate which component or components are to

be affected by the other tools, as suggested by its name. Ultimately, the move, rotate,

and scale tools received gestural interaction because of their frequent use, precise

36

capability, and their control of similar object attributes. The background research

suggests that users will benefit the most from gestural interaction for these three tools.

SHORTCUT GESTURES

This implementation aims to streamline the workflow by enabling a unique

“shortcut gesture” for each tool. With traditional mouse and keyboard interaction, a

user can select a tool to use in two ways: by moving the mouse pointer to a tool’s icon

and clicking the mouse button, or by executing a keyboard shortcut. Through the

developed gestural interaction, the user can select one of these three tools by expressing

the associated shortcut gesture within the view volume of a LEAP Motion Controller.

The shortcut gesture accomplishes the same result as traditional tool selection methods.

The tool becomes active and the user can now perform the operation associated with the

tool on the object. The shortcut gestures behave as follows:

Select the move tool – User

extends two fingers and swiftly moves the

extended fingers horizontally from right to

left across the view volume, shown to the

right in Figure 10.

Figure 10. The shortcut gestures for the move tool

37

Select the rotate tool – User

extends three fingers and swiftly moves the

extended fingers horizontally from right to

left across the view volume, shown to the

right in Figure 11.

Figure 11. The shortcut gestures for the rotate tool

Select the scale tool – User

extends four fingers and swiftly moves the

extended fingers horizontally from right to

left across the view volume, shown to the

right in Figure 12.

Figure 12. The shortcut gestures for the scale tool

MANIPULATION GESTURES

The gesture integration goes beyond simple tool selection. After a user selects a

tool, he or she can execute a separate manipulation gesture to perform the tool’s

operation. With traditional mouse and keyboard interaction, a user interacts with a

skitter to accomplish the following: translate in one or two dimensions, rotate in one

dimension, or scale in one, two, or three dimensions.

In this implementation, the LEAP Motion Controller measures the translation

and rotation of a user’s palm throughout the view volume and maps the position and

38

orientation of the hand to the position, rotation, and scale of the object, depending on

which tool is active. The relations between hand position and orientation and the object

position, orientation, and scale have a relative mapping, rather than an absolute

mapping. In practice, this means that the difference between the start and end

conditions of the user’s hand dictates the magnitude and direction of translation,

rotation, or scale operations that occurs on the virtual object.

The object manipulation gestures behave as follows:

Translation – When the move tool is active, object translation in three axes is

relatively mapped to the position of the user’s hand with three or more extended fingers

in view volume.

Rotation – When the rotate tool is active, object rotation in three axes is

relatively mapped to the orientation of the user’s hand with three extended fingers in

view volume.

Scale – When the scale tool is active, object scale is relatively mapped to the

position of the user’s hand with variable axes of control. Three extended fingers

translated in any direction indicates a scale in three dimensions. A single extended

finger translated in any direction indicates a scale in the single gestured direction.

An issue with gestural interaction [48] is that spatial manipulation requires a

means of “clutching”, or turning on and off, the relation between hand position and

object manipulation. Clutching allows the user to specify when the software must track

their hand, and when they are simply repositioning it or removing it from the view

volume.

39

Without clutching, a user who intends to move his or her hand out of the view

volume after completing an operation will continue to manipulate the object until the

hand is no longer seen by the input device. This will surely frustrate a user attempting

to accurately control objects. Clutching also accommodates relative mapping between

hand position and object position in cases where the view volume cannot accommodate

the size of the 3D work environment. The user can move his or her hand to the edge of

the view volume, engage the clutch to disable the link between hand and object, move

his or her hand back into the view volume, disengage the clutch, and continue

translation. Clutching and manipulation gestures appear above in Figure 13.

In this implementation, users engage or disengage the clutch by opening or

closing their fingers, affecting the amount of “grip” they express. Grip is readily

detectible by the LEAP Motion Controller and can modulate without affecting in situ

gesture recognition. The clutch engages (gestures do not operate on objects) by opening

the palm completely flat, and disengages (gestures operate on objects) by slightly closing

the hand to a resting position. In this way, a user can use a single hand to perform

manipulation operations and control the clutch.

Figure 13. Manipulation gesture with clutch engaged (left) and disengaged (right)

40

DESIGN SUMMARY

The development of gestures and integration with the ASDS aimed to address the

findings of previous researchers within the constraints of the LEAP Motion Controller.

As an example scenario, a user attempting to move and rotate an object on an existing

model could do the following:

1. Use traditional mouse and keyboard methods to import existing geometry and

select which component to adjust.

2. Execute the shortcut gesture for the move tool. Engage clutch.

3. Disengage clutch. Translate his or her hand through the view volume to translate

the selected object in one axis, utilizing the clutch to reposition their hand, if

needed.

4. Engage clutch. Execute the shortcut gesture for the rotate tool.

5. Disengage clutch. Rotate his or her hand through the view volume to rotate the

selected object three axes simultaneously, utilizing the clutch to reposition their

hand, if needed.

6. Execute the shortcut gesture for the move tool. Engage clutch.

7. Disengage clutch. Translate his or her hand through the view volume to translate

the selected object in two axes, utilizing the clutch to reposition their hand, if

needed.

8. Execute the shortcut gesture for the scale tool. Engage clutch.

9. Disengage clutch. Translate his or her hand through the view volume to scale the

selected object in three axes, utilizing the clutch to reposition their hand, if

needed.

41

10. Engage the clutch and remove hand from view volume.

11. Save file and exit program.

In this manner, a user can quickly alternate between selecting tools and

performing operations necessary to accomplish a design, with one hand.

Table 2 outlines the selected software tools, move, rotate, and scale, and their

corresponding shortcut and manipulation gestures. The listed shortcut gesture is a

gestural analog to the keyboard shortcut used to select the tool, while the manipulation

gesture is the behavior the user must express to achieve the desired operation with the

chosen tool. Manipulation action is a listing of which kinematic functions of the human

body are required to execute the manipulation gesture and is selected from actions in

the gesture taxonomy shown in Table 1. Each tool utilizes the clutch operation to enable

or disable the relationship between gestures and object manipulation.

42

Table 2. Gestural shortcuts and operations in ASDS

Tool Shortcut
Gesture Manipulation Gesture Manipulation Actions

M
ov

e Translate
two fingers
right-to-left

Three finger point (index,
middle, and thumb),
translated within view volume.
Relative mapping between
user’s end effector and
selected object.

Three finger point (index, middle, and
thumb) extension. Wrist flexion/extension
and ulnar/radial deviation. Forearm
pronation. Elbow flexion/extension.
Shoulder flexion/extension,
adduction/abduction, and lateral/medial
rotation.

Ro
ta

te

Translate
three fingers
right-to-left

Three finger point (index,
middle, and thumb), rotated
within view volume. Relative
mapping between user’s end
effector and selected object.

Three finger point (index, middle, and
thumb) extension. Wrist flexion/extension
and ulnar/radial deviation. Forearm
pronation. Elbow flexion/extension.
Shoulder flexion/extension,
adduction/abduction, and lateral/medial
rotation.

Sc
al

e Translate
four fingers
right-to-left

Three finger point (index,
middle, and thumb),
translated within work area
controls 3-axis scale. Single
finger point (index), translated
along an axis within the view
scales object along hand
translation axis. Relative
mapping between user’s end
effector and selected object.

One (index) or three finger point (index,
middle, and thumb) extension. Wrist
flexion/extension and ulnar/radial deviation.
Forearm pronation. Elbow
flexion/extension. Shoulder
flexion/extension, adduction/abduction, and
lateral/medial rotation.

Clutch

Decrease grip (open the hand to a flat posture) to engage clutch and enable manipulation.
Increase grip (close hand to a natural rest) to disengage clutch and disable manipulation.

43

CHAPTER 4. RESULTS

After gestural interaction was integrated with the ASDS using the LEAP Motion

Controller, a means of evaluation was needed to determine the efficiency and feasibility

of the design. User study evaluation is a valuable tool, but a study requires significant

resources and time to execute. Stakeholders looking to quickly understand the

performance of a new design cannot afford the time and resources to conduct a full

study at each design iteration. An alternate means to evaluate the performance of

gestural interaction is needed.

Interaction Evaluation

EVALUATION METHODOLOGY

The Goals, Operators, Methods, and Selections (GOMS) concept is a method of

interface evaluation developed by Card et al. [51] and is based on the human processor

model, a method to calculate completion time for a given task. The GOMS concept

separates user interaction into discrete operations for evaluation: goals (what the user

wishes to accomplish), operators (actions that must occur to reach the goal), methods

(sequences of operators that must occur to reach the goal), and selection rules (the

process of choosing the optimal method). GOMS is a relatively accurate predictor of

task completion time, and can estimate interaction efficiency and identify problematic

areas of software interaction and workflow, or determine which of two or more different

designs is the most effective. It is a simple way to evaluate an in-progress design and

highlight areas that need additional consideration. The nature of GOMS evaluation –

subdividing user goals into a set of serially executed subtasks – makes it a suitable

44

method to estimate a CAD user’s workflow. A variant of GOMS, called Natural GOMS

Language (NGOMSL), is a suitable method to evaluate the implemented gestural

interaction in comparison to traditional interaction methods [52]. It differs from the

traditional GOMS concept in that it predicts both execution time and learning time.

Research has shown that NGOMSL requires less time than user study evaluation while

providing valuable insight to highlight shortcomings and guide development effort [53].

A process for the evaluation of traditional interaction and gestural interaction in the

ASDS with the NGOMSL concept was clarified by Kieras [54] and the Handbook of

Human-Computer Interaction [55].

As mentioned, two separate interaction modes are analyzed – interaction with a

traditional keyboard and mouse, and the developed gestural interaction with commodity

VR hardware. The task analysis evaluates the user goals identified below in Table 3.

The possible operations afforded by the implemented gestures found in Table 1 in

Chapter 3 determined the user goals included in the analysis.

User goals are decomposed into a series of operators that must occur to

accomplish the goal (e.g., identify the icon, move the mouse over the icon, and click the

icon). Sets of operators comprise a method, or a group of actions a user must perform

to achieve a goal. Each operator in a method is assigned a primitive operator from the

Keystroke-Level Model, a GOMS variant that is utilized within NGOMSL analysis, to

Table 3. User goals included in NGOMSL analysis

User Goals

Select the move tool Translate an object

Select the rotate tool Rotate an object

Select the scale tool Scale an object

45

classify the type of action. These primitive operators allow an estimate of the

corresponding completion time for each operator, and thus estimate the overall

completion time for a method. Kieras et al. provided time values for many common

user operators, such as clicking a mouse, and moving a pointer across a screen [56].

Despite the availability of KLM values for traditional operators, no published

values exist for gestural interaction. Each undocumented operator corresponding to a

gesture received an estimated time value that is based on known execution times for

comparable operators. Appendix B shows the KLM values used in the analysis, as well

as the source of estimated values for undocumented operators.

In addition to considering execution time, the analysis attempts to estimate the

time required of a novice user to learn how to perform the operators within a method.

These learning times are estimated with the Pure Method Learning Time (PLMT)

technique outlined by [51]. PLMT considers each operator within a method and assigns

an estimated Learning Time Parameter, a time value that is expected for a first-time

user to comprehend verbal instructions of how to perform the operator. These Learning

Time Parameters are assigned based on the complexity of the operator, so routine

actions that the user understands from previous experience receive a Learning Time

Parameter of 0 seconds, general learning situations receive a Learning Time Parameter

of 17 seconds, and rigorous procedure training receives a Learning Time Parameter of

30 seconds. One of these three values are assigned to each operator within a method,

and when summed provide insight on the complexity of a method. The resulting PLMT

value for a method is considered an “up front” cost for the user. Once they have spent

the required time to learn the method, the learning time value is not factored into the

time needed to accomplish a goal.

46

 Evaluation Results

Tables 4, 5, and 6 respectively outline the execution and learning times for goals

performed with the move, rotate, and scale tools. Users have the option to select a tool

with the mouse, keyboard shortcuts, or a spatial gesture. However, users cannot

manipulate objects through keyboard interaction, so only mouse and gestural input

methods appear for object translation, rotation, and scale goals.

The execution and learning time performance of each tool selection method is

identical across the three tool selection goals, because the tool selection operators are

identical for each tool. A user selecting the rotate tool and a user selecting the scale tool

through the same method (keyboard, mouse, or gesture) will execute the same general

operators. A comparison of the execution and learning times for tool selection between

selection methods indicates that the keyboard is the most efficient method to select a

tool, at an estimated execution time of 1.68 seconds. Tool selection through mouse

interaction is estimated at 2.8 seconds and tool selection through gestural interaction is

estimated at 2.98 seconds. Further discussion of manipulation execution times appear

below, followed by discussion of learning times.

OBJECT TRANSLATION EXECUTION TIME

The translation goals in Table 4 consider object translation in one, two, and three

simultaneous axes. Mouse translation in one or two dimensions is estimated to take 5.5

seconds to execute and 34 seconds to learn. For 3D translation, mouse interaction is

estimated at 11.2 seconds and 68 seconds to learn. In contrast, translation in one, two,

and three axes with the LEAP Motion Controller takes 2.1 seconds to execute and 68

seconds to learn. In short, the LEAP Motion controller is more efficient for translation

47

goals, especially in three dimensions, through the position-to-position mapping between

the user’s hand and the virtual object.

The ASDS interface allows mouse users to translate an object along a 1D axis or a

2D plane with equal simplicity, but the most efficient 3D translation method is a 1D

translation and a 2D translation executed in succession. In contrast, object translation

with the LEAP Motion Controller can occur in all three axes simultaneously.

OBJECT ROTATION EXECUTION TIME

The rotation goals in Table 5 consider object rotation in one, two, and three

simultaneous axes. Mouse rotation in one axis is estimated to take 5.5 seconds to

execute and 34 seconds to learn. Unlike mouse translation, mouse rotation in two axes

is higher than one axis at 11.2 seconds and 34 seconds. Mouse-controlled three-axis

rotation is estimated at 16.9 seconds to execute and 34 seconds to learn, while rotation

with the LEAP Motion Controller is estimated at 2.1 seconds to execute and 68 seconds

to learn for 1, 2, or 3-axis rotation. Overall, the advantages of the LEAP Motion

Controller are again apparent for rotation goals.

Table 4. Execution and learning times for move tool goals

Goal Method Execution Time (s) Learning Time (s)
 Mouse and Keyboard 2.8 0

Select the move tool Keybord shortcut 1.68 17
 LEAP Motion Controller 2.98 34

Translate an object in 1
axis

Mouse and Keyboard 5.5 34
LEAP Motion Controller 2.1 68

Translate an object in 2
axes

Mouse and Keyboard 5.5 34
LEAP Motion Controller 2.1 68

Translate an object in 3
axes

Mouse and Keyboard 11.2 68
LEAP Motion Controller 2.1 68

48

The ASDS does not allow simultaneous 2D rotation tasks with the mouse, which

hinders user interaction. This limitation is common among many CAD and CAE

software packages. A mouse user must execute three successive single-axis rotations to

rotate an object in all three axes. As seen before in the results of the translation tasks,

the LEAP Motion Controller excels because it enables simultaneous object rotation

along any combination of axes.

OBJECT SCALING EXECUTION TIME

The scale goals in Table 6 consider object scaling operations in one, two, and

three axes. Mouse interaction allows scaling in one, two, or three simultaneous axes and

is estimated at 5.5 seconds to execute and 34 seconds to learn. Gestural scaling with the

LEAP Motion Controller varies between DOF, with one and three-axis operations

equally efficient at 2.1 seconds to execute and 68 seconds to learn, and two-axis scaling

at 4.4 seconds to execute and 68 seconds to learn. Once again, LEAP Motion Controller

users experience an advantage over mouse users for execution time.

Unlike translation and rotation operations, the ASDS allows mouse users to scale

objects in one, two, or three axes. The implemented LEAP Motion Controller gestures

Table 5. Execution and learning times for rotate tool goals

Goal Method Execution Time (s) Learning Time (s)

Select the rotate tool
Mouse and Keyboard 2.8 0

Keybord shortcut 1.68 17
LEAP Motion Controller 2.98 34

Rotate an object in 1 axis Mouse and Keyboard 5.5 34
LEAP Motion Controller 2.1 68

Rotate an object in 2
axes

Mouse and Keyboard 11.2 34
LEAP Motion Controller 2.1 68

Rotate an object in 3
axes

Mouse and Keyboard 16.9 34
LEAP Motion Controller 2.1 68

49

do not allow this degree of control, so 2D scale tasks necessitate two separate 1D scaling

operations. Despite this shortcoming, the relatively inefficient 2D LEAP Motion

Controller scaling method is still quicker to execute than the same mouse scaling

method.

LEARNING TIME

In general, the learning time for each method tends to increase along with

execution time. Methods that utilize novel operators that the user has not encountered

before receive a higher value learning parameter than common operators, so methods

that include routine actions with the mouse2 are easier to learn than methods that use

spatial gestures.

The Pure Method Learning Time concept considers a method’s total learning

time to include the learning time of any included sub-method. This approach may

overstate the learning time in specific cases, since manipulations in two or three

dimensions sometimes require multiple 1D manipulations to achieve the goal. A user is

2 e.g. clicking and dragging feature across the screen.

Table 6. Execution and learning times for scale tool goals

Goal Method Execution Time (s) Learning Time (s)

Select the scale tool
Mouse and Keyboard 2.8 0

Keybord shortcut 1.68 17
LEAP Motion Controller 2.98 34

Scale an object in 1 axis Mouse and Keyboard 5.5 34
LEAP Motion Controller 2.1 68

Scale an object in 2 axes Mouse and Keyboard 5.5 34
LEAP Motion Controller 4.4 68

Scale an object in 3 axes Mouse and Keyboard 5.5 34
LEAP Motion Controller 2.1 68

50

repeating a learned action, and PLMT analysis assumes a user can implement it a

second or third time in a separate goal without needing the same learning time to

understand the sub-method. In scenarios like 1D and 2D object translation with a

mouse, the operators needed to achieve the goal are relatively similar, but not identical.

A user must identify a unique handle and understand how the mouse interacts in each

case. To achieve 3D object translation with a mouse, a user must accomplish a 1D and

2D translation goal. This analysis treats each goal as a separately learned task, so users

who want to accomplish 3D translation and have not yet learned 1D and 2D translation

are affected by the learning time, but users who have already learned 1D and 2D

translation can accomplish the corresponding 3D goal without any training. In short,

the learning times listed are for a novice user learning the specified goal for the first

time, regardless of whether the method utilizes sub-methods.

Overall, the difference in learning time between methods is not drastically

different – the highest learning time difference between is typically around a 34 second

advantage for the mouse. The LEAP Motion Controller is more difficult to learn in all

cases except 3D translation. Arguably, the initial time investment to learn the gestural

interaction methods is worth the saved execution time. Users executing many

operations over the course of a workday will save time with gestural interaction. An

analysis of the example scenario outlined in the Design Summary of Chapter 3 is shown

in Table 7 below.

51

Table 7. Example execution and learning time analysis

Goal
Mouse LEAP Motion Controller

Execution
Time (s)

Learning
Time (s)

Execution
Time (s)

Learning
Time (s)

Import geometry and
select component - - - -

Select move tool 2.8 0 2.98 34

Translate object in 1D 5.5 34 2.1 68

Select rotate tool 2.8 0 2.98 34

Rotate object in 3D 16.9 34 2.1 34*

Select move tool 2.8 0 2.98 0

Translate object in 2D 5.5 34 2.1 0

Select scale tool 2.8 0 2.98 34

Scale object in 3D 5.5 34 2.1 34*

Save file and exit
program - - - -

Totals 44.6 136 20.32 306
* Indicates a task that has a partial learning time reduction due to the previously

learned “clutching” gesture

This example highlights the saved learning time for tasks that utilize previously

learned methods. 3D mouse rotation necessitates three separate 1D rotations, so the

learning value for the goal is simply the time needed to learn a single 1D rotation.

Similarly, LEAP Motion Controller users already know the second move shortcut, so

they do not need to learn it again. 2D translation is a unique operation with a mouse,

but identical to the previous 1D translation for LEAP users, so mouse users must learn a

new task while LEAP users can move straight into execution. Most importantly, once

52

these gestures have been learned, LEAP Motion Controller users experience a significant

time savings to the mouse interaction.

The NGOMSL concept was used to evaluate the gestural interaction with the

LEAP Motion Controller in comparison to a typical mouse and keyboard for tool

selection and object manipulation goals in the ASDS.

Overall, the NGOMSL execution and learning time analysis indicates that

gestural interaction is quicker than the mouse for object manipulation in the 3D work

environment, but is slightly slower than the mouse and the keyboard shortcuts for tool

selection tasks. The LEAP Motion controller initially takes longer to learn than the

mouse or keyboard, but the shorter execution time for manipulation goals with gestural

interaction justifies its use.

Gestural interaction has the greatest advantage when implemented for rotation

tasks because it allows three-axis object rotation with a single action, while mouse users

must execute three separate one-axis rotation actions to achieve the same effect.

Gestural interaction is also beneficial for 3D translation tasks, again because

mouse users must execute multiple actions to accomplish 3D object translation,

however the advantage is less apparent for translation tasks than for rotation tasks

because ASDS allows two-axis translation in a single mouse operation.

Object scaling is quicker with gestural interaction than with mouse interaction,

but mouse is arguably more efficient for 2D manipulation. The ASDS interface allows

mouse users to execute 2D scale manipulations with a single method, but gesture-

controlled scale manipulations in two axes require two separate 1D manipulations.

Aside from this, 1D and 3D scale manipulations with a mouse or LEAP Motion

Controller are equally efficient, and only require a single method.

53

CHAPTER 5. DISCUSSION

The implemented gestures and selected development platforms are simply a

starting point to assess gestural control in 3D work environments through a fast and

effective evaluation method. Evaluation with the NGOMSL concept ultimately reveals

that the gestures can adequately manipulate objects within software like the ASDS.

A discussion of the stated research issues with respect to the final

implementation and results is outlined below, followed by a discussion of technology

adoption requirements, shortcomings of this implementation, and future work.

Results and Research Issues

After establishing the need for gestural interaction in 3D work environments

within PC software used by engineers and designers, two research issues were specified

in Chapter 2: 1) How can gestural interaction be evaluated without conducting a full

user study? 2) What types of gestures should be used for object manipulation in 3D

work environments? Discussion of the results in regard to the research issues, and the

case for gestural control in 3D work environments, appear below.

HOW CAN GESTURAL INTERACTION BE EVALUATED WITHOUT A USER STUDY?

The NGOMSL concept provides a clear approach to evaluate and compare

different interaction devices and information architectures. It allows system designers

to quickly identify inefficient operations and estimate execution and learning time for

new input modes. NGOMSL also allows comparison of two or more gesture sets,

allowing designers to quickly find the most efficient gestures for software operations.

The resources saved by using NGOMSL analysis instead of a traditional user study can

54

be reinvested into the interaction design, improving the final solution and expediting

the overall development process.

WHAT TYPES OF GESTURES SHOULD BE USED?

The specific gestures integrated with software in this implementation were

selected based on previous interaction research, the limitations of the LEAP Motion

Controller, and the specific needs of the ASDS software. Existing research shows that

gestural control should utilize small muscle movements of a user’s hand rather than

large arm motions. Implemented gestures focused on movements from the user’s

elbow, wrist, and fingers to reduce user fatigue and take advantage of a user’s fine motor

control. Informal testing found that these gesture types were readily detectable by the

LEAP Motion Controller, and the system rarely detected a gesture incorrectly. The

performance of implemented gestures suggests that developers can create a gesture set

suitable for their needs from individual members of the gesture taxonomy in Table 1.

The taxonomy supports many unique interaction gestures, so the number of gestures

available for a given application is limited only by the user’s memory.

Ensuring Adoption of Commodity VR Interaction

 Many novel interaction technologies have been developed and marketed to

industry professionals and consumers, but most computer interaction still occurs with a

mouse and keyboard. High quality and capable commodity VR interaction devices can

now be affordably manufactured, but device manufacturers must address users’ needs in

order to sell devices. To ensure the adoption of commodity VR devices by the engineers

55

and designers who will benefit from gestural interaction, several conditions must be met

[57]:

1. Commodity VR devices must provide some advantage to a user, possibly an

economic advantage due to efficient use of time or facilitation of the output of a

higher quality product than can be designed with traditional tools.

2. These commodity VR devices must be compatible with existing software and the

physical work area.

3. User interaction with new commodity VR input devices must match the level of

comfort and safety found with a traditional mouse and keyboard.

4. The commodity VR devices cannot be difficult to operate.

Satisfaction of these conditions ensures control and manipulation of 3D work

environments has a high probability of adoption.

The evaluation in Chapter 4 validates conditions one and three. A commodity VR

device and gestural control provides a benefit to users in the form of improved execution

time over mouse interaction, and the gestural interaction is not significantly difficult to

learn. Additionally, the work outlined in Chapter 3 provides a strategy for rapid

development and evaluation of gestural interaction.

The responsibility for the second condition, compatibility with existing software,

rests on the software manufacturers. The businesses that use engineering design

software cannot implement commodity VR device interaction in software without access

to the software source code. Software developers must partner with device

manufacturers to integrate a commodity VR device and gestural control within an

application.

56

The third condition, concerning ergonomics, was addressed in the development

of the gestural taxonomy. Developers must use gestures that do not fatigue or strain

users, and the gestures in the taxonomy satisfy this requirement. Additional research of

gestural control ergonomics will benefit a future gestural taxonomy.

The fourth condition is the responsibility of the device manufacturer and the

software developer. Most novice users would have little trouble connecting a new

mouse or keyboard to a PC, and a new interaction device must match this level of

accessibility. Additionally, the interaction gestures must be designed with suggestions

from Chapter 3. Finally, since gestural interaction does not provide the tactile feedback

provided by traditional input devices, the software interface should augment interaction

with feedback in another sense, so the user understands the interaction status at all

times.

Design Limitations

The work outlined in this thesis is not without several shortcomings and

limitations:

1. The NGOMSL analysis does not evaluate device ergonomics. Although the

gestures included in the gestural taxonomy were developed based on existing

research with user ergonomics in mind, user testing is needed to fully understand

the impact of gestural interaction on users.

2. The implemented gestures were chosen with consideration for the LEAP Motion

Controller’s limitations, the dimensions of a typical office work area, and the

ergonomic and mental burden placed on the user. Future commodity VR devices

may track user’s hands differently or with more accuracy, facilitating gestural

57

interaction for goals in ways that are quicker or easier to learn. NGOMSL

analysis can be used to determine if a new interaction device is quicker and easier

to learn than the LEAP Motion Controller.

3. The NGOMSL analysis does not consider different decisions that a user could

make while working to achieve a goal, instead, it is assumed that users will

choose the most effective means to achieve a goal. Object manipulation goals in

two or three axes sometimes require several sub-methods, and in a typical use-

case a user can decide which combination of sub-methods to use (e.g. 3D

translation with a mouse can be accomplished with one 1D translation and one

2D translation, or three 1D translations). Ultimately, this assumption means that

the results only show the most efficient execution and learning time for each

input device.

Future Work

User testing should be conducted to assess the validity of the implemented

gestural interaction with 3D work environments through a commodity VR device. The

assessment outlined in Chapters 3 and 4 informs us that gestural control can perform

some tasks quicker than other input devices, but significant knowledge gaps remain.

Specifically, user testing to evaluate the ergonomics should be a primary focus. The

device usage and implemented gestures were chosen with ergonomics and comfort in

mind, but the NGOMSL analysis does not validate this. Additionally, future user studies

should consider a quantitative evaluation of the estimated execution and learning times

to confirm the NGOMSL analysis results.

58

Successful integration of commodity VR interaction devices for software control

can only occur with an understanding of best practices for gestural interaction and

support from the software owners. The NGOMSL evaluation determined that gestural

control performs well for general object manipulation tasks, but is not ideal for tool

selection tasks. The performance of tool selection gestures reveals that gestures are not

an ideal replacement for a simple button on a toolbar, suggesting that software

developers looking to implement gestural control with commodity VR devices should

focus on user tasks that necessitate interaction in three or more axes. Despite this

finding, the integration and evaluation process outlined in this work can also be applied

to software without 3D work environments. Designers should consider which software

operations may benefit from gestural control, and then validate the choices through

NGOMSL evaluation.

59

REFERENCES

[1] P. A. David, “Clio and the Economics of QWERTY,” The American economic
review, pp. 332–337, 1985.

[2] B. A. Myers, “A brief history of human-computer interaction technology,”
interactions, vol. 5, no. 2, pp. 44–54, 1998.

[3] D. A. Norman and S. W. Draper, User Centered System Design; New Perspectives
on Human-Computer Interaction. 1986, p. 544.

[4] K. Henriksen, J. Sporring, and K. Hornbæk, “Virtual Trackballs Revisited,” IEEE
Transactions on Visualization and Computer Graphics, vol. 10, pp. 206–216, 2004.

[5] C. Hand, “A Survey of 3D Interaction Techniques,” Computer Graphics Forum,
vol. 16, no. 5, pp. 269–281, 1997.

[6] S. Boyer, “A Virtual Failure: Evaluating the Success of Nintendo’s Virtual Boy,”
The Velvet Light Trap, vol. 64, pp. 23 – 33, 2009.

[7] Nintendo, “Nintendo.” [Online]. Available: http://www.nintendo.com. [Accessed:
10-Jun-2014].

[8] LEAP Motion, “LEAP Motion Controller.” [Online]. Available:
http://www.leapmotion.com. [Accessed: 10-Jun-2014].

[9] Microsoft, “Kinect for Windows.” [Online]. Available:
http://www.microsoft.com/en-us/kinectforwindows/. [Accessed: 10-Jun-2014].

[10] Sixense, “Razer Hydra.” [Online]. Available: http://sixense.com/razerhydra.
[Accessed: 10-Jun-2014].

[11] L. Garber, “Gestural Technology: Moving Interfaces in a New Direction
[Technology News],” Computer, vol. 46, no. 10, IEEE, pp. 22–25, 2013.

[12] B. Miller, “Touchscreen Technology: A Total Hit!,” 2012. [Online]. Available:
http://www.adtouch.com/touchscreen-technology/.

[13] A. Smith, “Smartphone ownership – 2013 update,” Pew Research Center’s Internet
& American Life Project, Washington, D.C., 2013.

60

[14] D. E. Kieras, D. Meyer, and J. Ballas, “Towards demystification of direct
manipulation: Cognitive modeling charts the gulf of execution,” in Proceedings of
the ACM Conference on Human Factors in Computing Systems, 2001, no. 3, pp.
128–135.

[15] Microsoft, “Xbox 360.” [Online]. Available: http://www.xbox.com/en-US/xbox-
360?xr=shellnav. [Accessed: 10-Jun-2014].

[16] Sony, “Playstation 3.” [Online]. Available: http://www.playstation.com/en-
us/explore/ps3/. [Accessed: 10-Jun-2014].

[17] SpaceX, “The Future of Design,” 2013. [Online]. Available:
https://www.youtube.com/watch?v=xNqs_S-zEBY. [Accessed: 11-Jun-2014].

[18] R. J. K. Jacob, “Human-computer interaction: input devices,” ACM Computing
Surveys (CSUR), vol. 28, no. 1, pp. 177–179, Mar. 1996.

[19] W. Buxton, “There’s more to interaction than meets the eye: Some issues in
manual input,” User centered system design: New perspectives on human-
computer interaction, vol. 319, p. 337, 1986.

[20] R. J. Beaton, R. J. Dehoff, N. Weiman, and P. W. Hildebrandt, “An Evaluation
of Input Devices for 3-D Computer Display Workstations,” SPIE, vol. 761, 1987.

[21] J. P. Djajadiningrat, C. J. Overbeeke, and G. J. F. Smets, “The importance of the
number of degrees of freedom for rotation of objects,” Behaviour & Information
Technology, vol. 16, no. 6, pp. 337–347, 1997.

[22] P. E. Jones, “Three-dimensional input device with six degrees of freedom,” vol. 9,
pp. 717–729, 1999.

[23] B. Frohlich and J. Plate, “The cubic mouse: a new device for three-dimensional
input,” Conference on Human Factors in Computing Systems: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, vol. 1, no. 06, pp.
526–531, 2000.

[24] R. Pausch, “Virtual reality on five dollars a day,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 1991, pp. 265–270.

61

[25] A. Basu, C. Saupe, E. Refour, A. Raij, and K. Johnsen, “Immersive 3DUI on one
dollar a day,” in 2012 IEEE Symposium on 3D User Interfaces (3DUI), 2012, pp.
97–100.

[26] T. A. Erlemeier, “The Development of a Virtual Reality Based CAD System For
Design Review,” Iowa State University, Ames, Iowa, 2006.

[27] J. C. Lee, “Johnny Chung Lee > Projects > Wii,” 2008. [Online]. Available:
johnnylee.net/projects/wii/.

[28] J. Lin, H. Nishino, T. Kagawa, and K. Utsumiya, “A method of two-handed
gesture interactions with applications based on commodity devices,” Computers
and Mathematics with Applications, vol. 63, no. 2, pp. 448–457, Jan. 2012.

[29] R. A. Pavlik and J. M. Vance, “A Modular Implementation of Wii Remote Head
Tracking for Virtual Reality,” in ASME 2010 World Conference on Innovative
Virtual Reality, 2010, pp. 351–359.

[30] W. Zhu, A. M. Vader, A. Chadda, M. C. Leu, X. F. Liu, and J. B. Vance, “Wii
remote–based low-cost motion capture for automated assembly simulation,”
Virtual Reality, vol. 17, no. 2, pp. 125–136, Dec. 2011.

[31] C. Ardito, P. Buono, M. F. Costabile, R. Lanzilotti, and a. L. Simeone,
“Comparing low cost input devices for interacting with 3D Virtual Environments,”
2009 2nd Conference on Human System Interactions, 2009.

[32] L. Gallo, a. Minutolo, and G. De Pietro, “A user interface for VR-ready 3D
medical imaging by off-the-shelf input devices,” Computers in Biology and
Medicine, vol. 40, no. 3, pp. 350–358, Mar. 2010.

[33] D. Dave, A. Chowriappa, and T. Kesavadas, “Gesture Interface for 3D CAD
Modeling using Kinect,” Computer-Aided Design & Applications, vol. 9, pp. 1–7,
2012.

[34] L. Gallo, A. P. Placitelli, and M. Ciampi, “Controller-free exploration of medical
image data: Experiencing the Kinect,” in Proceedings - IEEE Symposium on
Computer-Based Medical Systems, 2011.

62

[35] E. S. Santos, E. A. Lamounier, and A. Cardoso, “Interaction in Augmented
Reality Environments Using Kinect,” 2011 XIII Symposium on Virtual Reality,
pp. 112–121, 2011.

[36] T. Dutta, “Evaluation of the KinectTM sensor for 3-D kinematic measurement in
the workplace,” Applied ergonomics, vol. 43, no. 4, pp. 645–649, 2012.

[37] R. Francese, I. Passero, and G. Tortora, “Wiimote and Kinect: Gestural User
Interfaces add a Natural third dimension to HCI.,” Proceedings of the
International Working Conference on Advanced Visual Interfaces, pp. 116–123,
2012.

[38] B. J. Juhnke, “Evaluating the Microsoft Kinect compared to the mouse as an
effective interaction device for medical imaging manipulations,” Iowa State
University, Ames, Iowa, 2013.

[39] N. Villaroman, D. Rowe, and B. Swan, “Teaching natural user interaction using
OpenNI and the Microsoft Kinect sensor,” in Proceedings of the 2011 conference
on Information technology education, 2011, pp. 227–232.

[40] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, “Analysis of the accuracy
and robustness of the Leap Motion Controller,” Sensors (Switzerland), vol. 13, no.
5, pp. 6380–6393, 2013.

[41] S. Mauser and O. Burgert, “Touch-free, gesture-based control of medical devices
and software based on the leap motion controller.,” Studies in health technology
and informatics, vol. 196, pp. 265–70, 2014.

[42] C. Noon, R. Zhang, E. Winer, J. Oliver, B. Gilmore, and J. Duncan, “A system
for rapid creation and assessment of conceptual large vehicle designs using
immersive virtual reality,” Computers in Industry, vol. 63, no. 5, pp. 500–512,
2012.

[43] LEAP Motion, “LEAP Motion Developer Portal,” 2014. [Online]. Available:
https://developer.leapmotion.com/. [Accessed: 10-Jun-2014].

[44] J. Han and N. Gold, “Lessons Learned in Exploring the Leap Motion(TM) Sensor
for Gesture-based Instrument Design,” in Proceedings of the International
Conference on New Interfaces for Musical Expression, 2014, pp. 371–374.

63

[45] K. Kin, T. Miller, B. Bollensdorff, T. DeRose, B. Hartmann, and M. Agrawala,
“Eden: a professional multitouch tool for constructing virtual organic
environments,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2011, pp. 1343–1352.

[46] M. Nielsen, M. Störring, T. B. Moeslund, and E. Granum, “A procedure for
developing intuitive and ergonomic gesture interfaces for HCI,” in Gesture-Based
Communication in Human-Computer Interaction, Springer, 2004, pp. 409–420.

[47] T. Carmody, “Why ‘Gorilla Arm Syndrome’Rules Out Multitouch Notebook
Displays,” Wired, Oct, vol. 10, 2010.

[48] K. Hinckley and R. Pausch, “A survey of design issues in spatial input,”
Proceedings of the 7th …, pp. 213–222, 1994.

[49] S. Zhai, P. Milgram, and W. Buxton, “The influence of muscle groups on
performance of multiple degree-of-freedom input,” Proceedings of the SIGCHI
conference on Human factors in computing systems common ground - CHI ’96,
pp. 308–315, 1996.

[50] J. Payne, P. Keir, J. Elgoyhen, M. McLundie, M. Naef, M. Horner, and P.
Anderson, “Gameplay issues in the design of spatial 3D gestures for video games.,”
in CHI’06 extended abstracts on Human factors in computing systems, 2006, pp.
1217–1222.

[51] S. K. Card, A. Newell, and T. P. Moran, The Psychology of Human-Computer
Interaction. Hillsdale, New Jersey, USA: L. Erlbaum Associates Inc, 1983.

[52] B. E. John and D. E. Kieras, “Using GOMS for user interface design and
evaluation: Which technique?,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 3, no. 4, pp. 287–319, 1996.

[53] R. J. Gong, “Validating and refining the GOMS model methodology for software
user interface design and evaluation,” University of Michigan, 1993.

[54] D. Kieras, “A guide to GOMS model usability evaluation using GOMSL and
GLEAN3,” University of Michigan, no. 313, 1999.

[55] M. G. Helander, T. K. Landauer, and P. V Prabhu, Handbook of human-computer
interaction. Elsevier, 1997.

64

[56] D. Kieras, “Using the keystroke-level model to estimate execution times,”
University of Michigan. Ann Arbor, Michigan, 2001.

[57] E. M. Rogers, Diffusion of Innovations, 5th ed., vol. 27. New York, New York,
USA: Free Press, 2003, p. 551.

65

APPENDIX A. THE ASDS TOOLBAR

Tool Name Use Category

Select
Select one or more components to

manipulate or assess.
Support for Concept Manipulation

and Assessment

Move
Translate one or more selected

components in 3D space. Concept Manipulation

Rotate
Rotate one or more selected

components in 3D space. Concept Manipulation

Scale
Increase or reduce the size of one
or more selected components in 1,

2, or 3 dimensions of space.
Concept Manipulation

Measure

Measure a bounding box around
one or more selected components,
or as a point-to-point virtual tape

measure.

Concept Assessment

Assess
Calculate the center of gravity,

wheel loading, or tipping angle of a
concept.

Concept Assessment

66

APPENDIX B. KLM NOTATION AND VALUES

Operator Symbol Description Time Value
(seconds)

Keystroke K
Pressing a key or button on the

keyboard 0.28

Point with mouse to
target on display P

The action of moving the mouse
to point the cursor to a desired

place on the screen
1.1

Press or release mouse
button B

A rapid click or release, used for
click and drag 0.1

Click mouse button BB
A rapid click and release, used for

clicking buttons or icons 0.2

Mental act of routine
thinking or perception M

Routine tasks like finding
something on screen or recalling

a tool name
1.2

Manipulation gesture Gm
Execute an object manipulation

gesture. Time value is analogous
to operator P.

1.1

Engage or disengage
clutch gesture Gc

Execute the engage or disengage
clutch gesture. Time value is

analogous to operator B.
0.1

Shortcut gesture Gs
Execute a tool selection shortcut

gesture. Time value is analogous
to operator K.

0.28

67

 APPENDIX C. FORMULAS

The following formulas are used to calculate a method’s total learning and

execution time.

Pure Method Learning Time =

 Learning Time Parameter * (No. of learned NGOMSL statements)

Execution Time =

 𝛴 (KLM Time Values for each operator in method)

 + (No. of operators in method * 0.1)

68

APPENDIX D. FULL NGOMSL ANALYSIS RESULTS

GOAL: TOOL SELECTION

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Locate icon for tool on screen M 1.2 0
Move cursor to tool icon location P 1.1 0
Click mouse button and release BB 0.2 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 2.8 0
Method: Keyboard Shortcut KLM Notation Operator Time (s) Learning Time (s)
Recall keyboard shortcut M 1.2 17
Execute keyboard shortcut K 0.28 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 1.68 17
Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Recall shortcut gesture M 1.2 17
Perform shortcut gesture Gs 0.28 17
Visually confirm tool is selected M 1.2 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 2.98 34

SUB-GOAL: IDENTIFY OBJECT MANIPULATOR
MOVE: ARROW OR PLANE. ROTATE: VIRTUAL TRACKBALL. SCALE: MANIPULATOR HANDLE

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Locate manipulator on screen M 1.2 17
Within manipulator: Identify feature
corresponding to desired Goal (object
translation, rotation, or scale in 1 or more
axes).

M 1.2 0

Return with Goal accomplished - Total Execution
Time (s)

Total Learning
Time (s)

 2.6 17

69

GOAL: TRANSLATE OBJECT IN 1 AXIS

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: Identify manipulator
arrow M 2.6 17
Point mouse to arrow on manipulator P 1.1 0
Press and hold mouse button down B 0.1 0
Drag object to new location P 1.1 17
Release mouse button B 0.1 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 5.5 34

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Move hand into device view volume H 0.4 17
Disengage clutch Gc 0.1 17
Perform spatial gesture Gm 1.1 17
Engage clutch Gc 0.1 17
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 2.1 68

70

GOAL: TRANSLATE OBJECT IN 2 AXES

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: Identify manipulator
plane M 2.6 17
Point mouse to plane on manipulator P 1.1 0
Press and hold mouse button down B 0.1 0
Drag object to new location P 1.1 17
Release mouse button B 0.1 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 5.5 34

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Move hand into device view volume H 0.4 17
Disengage clutch Gc 0.1 17
Perform spatial gesture Gm 1.1 17
Engage clutch Gc 0.1 17
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 2.1 68

GOAL: TRANSLATE OBJECT IN 3 AXES

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: translate an object in 1
axis - 5.5 34
Accomplish Goal: translate an object in 2
axes - 5.5 34

Return with Goal accomplished - Total Execution
Time (s)

Total Learning
Time (s)

 11.2 68
Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Move hand into device view volume H 0.4 17
Disengage clutch Gc 0.1 17
Perform spatial gesture Gm 1.1 17
Engage clutch Gc 0.1 17
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 2.1 68

71

GOAL: ROTATE OBJECT IN 1 AXIS

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: Identify virtual trackball M 2.6 17
Point mouse to rotation axis on virtual
trackball P 1.1 0
Press and hold mouse button down B 0.1 0
Drag mouse to rotate object P 1.1 17
Release mouse button B 0.1 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 5.5 34

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Move hand into device view volume H 0.4 17
Disengage clutch Gc 0.1 17
Perform spatial gesture Gm 1.1 17
Engage clutch Gc 0.1 17

Return with Goal accomplished - Total Execution
Time (s)

Total Learning
Time (s)

 2.1 68

GOAL: ROTATE OBJECT IN 2 AXES

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: Rotate object in 1 axis - 5.5 34
Accomplish Goal: Rotate object in 1 axis - 5.5 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 11.2 34

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Move hand into device view volume H 0.4 17
Disengage clutch Gc 0.1 17
Perform spatial gesture Gm 1.1 17
Engage clutch Gc 0.1 17
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 2.1 68

72

GOAL: ROTATE OBJECT IN 3 AXES

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: Rotate object in 1 axis - 5.5 34
Accomplish Goal: Rotate object in 2 axes - 11.2 0*
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 16.9 34

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Move hand into device view volume H 0.4 17
Disengage clutch Gc 0.1 17
Perform spatial gesture Gm 1.1 17
Engage clutch Gc 0.1 17
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 2.1 68

*	
 =	
 Learning	
 time	
 value	
 for	
 2D	
 rotation	
 is	
 0	
 because	
 3D	
 rotation	
 requires	
 three	
 separate	

1D	
 rotations.	
 	
 2D	
 rotation	
 is	
 two	
 separate	
 1D	
 rotations.	

73

GOAL: SCALE OBJECT IN 1 AXIS

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: Identify desired
manipulator handle M 2.6 17
Point mouse to manipulator handle
corresponding to scale plane P 1.1 0
Press and hold mouse button down B 0.1 0
Drag mouse to scale object P 1.1 17
Release mouse button B 0.1 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 5.5 34

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Move hand into device view volume H 0.4 17
Disengage clutch Gc 0.1 17
Perform spatial gesture Gm 1.1 17
Engage clutch Gc 0.1 17
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 2.1 68

GOAL: SCALE OBJECT IN 2 AXES

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: Identify desired
manipulator handle M 2.6 17
Point mouse to manipulator handle
corresponding to scale planes P 1.1 0
Press and hold mouse button down B 0.1 0
Drag mouse to scale object P 1.1 17
Release mouse button B 0.1 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 5.5 34

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: Scale object in 1 axis - 2.1 68
Accomplish Goal: Scale object in 1 axis - 2.1 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 4.4 68

74

GOAL: SCALE OBJECT IN 3 AXES

Method: Mouse and Keyboard KLM Notation Operator Time (s) Learning Time (s)
Accomplish Goal: Identify desired
manipulator handle M 2.6 17
Point mouse to manipulator handle
corresponding to 3D scale P 1.1 0
Press and hold mouse button down B 0.1 0
Drag mouse to scale object P 1.1 17
Release mouse button B 0.1 0
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 5.5 34

Method: LEAP Motion Controller KLM Notation Operator Time (s) Learning Time (s)
Move hand into device view volume H 0.4 17
Disengage clutch Gc 0.1 17
Perform spatial gesture Gm 1.1 17
Engage clutch Gc 0.1 17
Return with Goal accomplished - Total Execution

Time (s)
Total Learning

Time (s)
 2.1 68

75

ACKNOWLEDGEMENTS

This work would not have been possible without the support of my major

professor Eliot Winer as well as my committee, and also my colleagues, friends,

mentors, and everyone else at the Virtual Reality Applications Center. Thank you all for

the guidance, and for helping me find my vocation.

Special thanks to Trevor Richardson, for helping me dig through the ASDS source

code and successfully make the LEAP Motion Controller talk with Qt widgets.

	2014
	Evaluation of a commodity VR interaction device for gestural object manipulation in a three dimensional work environment
	Frederick Victor Thompson III
	Recommended Citation

	Microsoft Word - Evaluation of a commodity VR interaction device for gestural object manipulation in a three dimensional work environment v3.docx

