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ABSTRACT 

 

 The demand for sustainable alternative fuels is ever-increasing in the power generation, 

transportation, and energy sectors due to the inherent non-sustainable characteristics and 

political constraints of current energy resources. A number of alternative fuels derived from 

cellulosic biomass, algae, or waste are being considered, along with the conversion of 

electricity to non-carbon fuels such as hydrogen or ammonia (NH3). The latter is receiving 

attention recently because it is a non-carbon fuel that is readily produced in large quantities, 

stored and transported with current infrastructure, and is often a byproduct of biomass or waste 

conversion processes. However, pure or anhydrous ammonia combustion is severely 

challenging due to its high auto-ignition temperature (650 ºC), low reactivity, and tendency to 

promote NOx formation.  

 As such, the present study focuses on two major aspects of the ammonia combustion.  The 

first is an applied investigation of the potential to achieve pure NH3 combustion with low levels 

of emissions in flames of practical interest. In this study, a swirl-stabilized flame typically used 

in fuel-oil home-heating systems is optimized for NH3 combustion, and measurements of NO 

and NH3 are collected for a wide range of operating conditions. The second major focus of this 

work is on fundamental investigation of NOx formation mechanisms in flames with high levels 

of NH3 in H2. For laminar premixed and diffusion jet flames, experimental measurements of 

flame speeds, exhaust-gas sampling, and in-situ NO measurements (NO PLIF) are compared 

with numerically predicted flames using complex chemical kinetics within CHEMKIN and 

reacting CFD codes i.e., UNICORN.   
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 From the preliminary testing of the NOx formation mechanisms, (1) Tian (2) Konnov and 

(3) GRI-Mech3.0 in laminar premixed H2/NH3 flames, the Tian and Konnov mechanisms are 

found to capture the reduction in measured flame speeds with increasing NH3 in the fuel 

mixture, both qualitatively and quantitatively. The NOx predictions by all the three chemical 

mechanisms are observed to be in fairly good agreement with the measured NOx, qualitatively, 

however predictions are found to be 3 to 4 times higher than the measurements for both lean 

and rich H2/NH3 premixed flames. 

 For laminar H2/NH3 diffusion flames, detailed 2-D comparisons of in-situ NO 

measurements with the 2-D simulated NO using the Tian, GRI-Mech3.0 and modified GRI-

Mech chemical mechanisms are performed and found to differ from the measured NO by 

approximately an order of magnitude. For NH3 seeded H2/air diffusion flames, GRI-Mech3.0 

seemed to overpredict NO by more than an order of magnitude and failed to capture the 

fundamental flame characteristics, such asthe flame length variation with increasing NH3 in the 

fuel mixture. On the other hand, the predicted NO profiles by the Tian mechanism were not 

only found to be in better agreement with the measured NO, but they also captured the in-flame 

NO distribution as well, both qualitatively and quantitatively. 

 Overall, the Tian mechanism is found to be the superior chemical mechanism to capture 

the NOx formation chemistry in NH3 seeded flames.       
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CHAPTER 1. BACKGROUND 

  

1.1   General discussions 

 

 In general, the primary focus of the present research work encompassed the detailed 

combustion characterization of NH3 enriched H2/air fuel mixtures and effects of NH3 on NOx 

chemistry for both premixed and diffusion flames. This chapter provides a brief background on 

the types of flames studied in this work and associated emissions; such as CO, CO2, soot, NOx 

etc. Subsequently, details regarding important NOx formation pathway are provided along with 

a fair background on parameters and flame conditions that affect NOx generation and 

associated reaction pathways. Due to its importance in achieve quantitative flame diagnostics, a 

detailed theoretical background for planar laser induced fluorescence (PLIF) technique for NO 

species imaging in flames is provided. This chapter ends with a detailed literature review 

supporting the motivation of the current research work along with the layout of thesis 

organization.  

  

1.1.1 Types of flames 

 

 In general, the 85% of the energy required to meet the world’s energy demand comes from 

the combustion of fossil fuels like gasoline, diesel etc. Concerning the negative impact of 

combustion processes, major pollutants such as NO, NO2, CO, CO2, unburnt hydrocarbons, 

soot etc. are produced and cause detrimental effects on the environment. This necessitates the 

development of sustainable energy resources, advanced pollutants abatement techniques, and 

improved understanding of the combustion of alternative fuels. 
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 The combustion characterization of a fuel and its detailed chemistry is often performed 

under two possible extremes, which are present to some degree in most practical combustion 

systems: 1) premixed flames and 2) non-premixed (diffusion) flames. Under the premixed 

flame mode, the reactants (typically fuel and air) are mixed at molecular level prior to 

combustion, whereas in a non-premixed flame, the reactants are separated initially and 

combustion occurs at the interface of the fuel and air where equivalence ratio ( ) is 1. Due to 

differences in mixing state of the reactants among the two modes; premixed flames are 

interpreted as kinetically controlled due to dependence of the flame reactions on the reaction 

kinetics. Whereas, for diffusion flame, the flame reactions are dependent on both the mixing 

state of the reactants as well as the reaction kinetics. Common examples for premixed and non-

premixed flames are gasoline combustion in spark-ignited engines and candle flames, 

respectively. 

 

Fig. 1.1. Schematic of (a) premixed and (b) non-premixed flames, courtesy of Turns [Introduction to 

Combustion, Ed 2, 1996]. 
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 Fundamental study of laminar premixed flames allows probing the underlying chemical 

kinetics of the flame as well as the examination of the factors influencing the laminar flame 

speed and flame thickness, which are considered critical in comprehensive combustion 

characterization of premixed flames. The experimentally determined structure, burning speed 

and thickness of the laminar premixed flames are used to help validate the chemical 

mechanisms for the combustion reactions. Non-premixed flames, on the other hand, are 

considered more critical in understanding of the underlying mechanisms of pollutant formation 

in flames where fuel-air mixing is taking place during the reaction [1–3]. 

  

1.1.2 NO formation mechanisms 

 Nitrogen oxides are a major concern to the environment and are generated by chemical 

reactions occurring in both premixed and non-premixed flames. Hence, understanding of the 

underlying kinetics of NO formation and decomposition in flames is imperative for improved 

NOx abatement technologies. NOx chemistry is usually a strong function of the flame 

temperature as well as the availability of radical concentrations and are exhibited in the 

following mechanisms [4]. 

 

1.1.1.1 Thermal NO  

 The thermal (Zeldovich) NO mechanism includes the oxidation of N2 by O and OH 

radicals at temperatures greater than 1800 K via the following reactions; 

            (Rxn # 1.1) 

            (Rxn # 1.2) 
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            (Rxn # 1.3) 

  Rxn 1.1 is rate limiting among the three pathways, and due to a slower reaction rate 

compared to fuel oxidation, the radical concentrations of O and OH species are assumed to be 

at equilibrium yielding NO formation rate as: 

 [  ]

  
      [  ]  [  ]           (1.1) 

 Where     is the forward rate coefficient for Rxn 1.1. Due to very high activation energy 

(319 kJ/mol), the contribution in NO formation via the thermal route is insignificant below 

1500 K, and accurate predictions of temperature and O2 concentrations are important. 

 

1.1.1.2 Prompt NO  

 The prompt NO mechanism, also known as the Fennimore mechanism, is related to 

combustion chemistry of hydrocarbons where  the NO production rate is faster even in the low 

temperature regions, unlike the thermal NO mechanism. In this mechanism, the hydrocarbon 

radicals react with N2 to form amines and cyano species, which are then further converted to 

NO via the following pathways: 

              (Rxn # 1.4) 

              (Rxn # 1.5) 

            (Rxn # 1.6) 

            (Rxn # 1.7) 

 For the prompt NO mechanism, the rate limiting path is the initiation of the N radical from 

reaction of hydrocarbon radicals with molecular N2 via:  

              (Rxn # 1.8) 
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 Major differences are reported between the prompt and thermal NO formation pathways, 

such as temperature range, time scale and chemical kinetics [5,6] . Prompt NO pathways are 

found to be dominant in premixed flames within an equivalence ratio range from 0.8 to 1.2 just 

upstream of the flame front. The thermal NO mechanism is most dominant in the post flame 

regime and has a slower formation rate.  

1.1.1.3 Fuel NO  

 This NO formation route is important for nitrogenous fuel compounds, such as pulverized 

coal, anhydrous ammonia (NH3) and heavy distillate fuels, and is generally not important for 

premixed combustion of natural gas and gasoline. The conversion of fuel-N to NO depends on 

the local flame temperature, stoichiometry and N-content in the fuel compound. 

Experimentally, for coal combustion [7], it is shown that fuel-N is converted to the 

intermediate species HCN and NH3, which leads to further NO or N2 formation by branching 

reactions using free radicals, depending on the local combustion conditions. 

 

1.1.1.4 N2O pathway  

 The N2O pathway, proposed by Pratt and Malte [8], is considered important in lean flames 

and low temperature conditions. Major steps of the pathway are: 

                      (Rxn # 1.9) 

                    (Rxn # 1.10) 

                    (Rxn # 1.11) 
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1.1.1.5 NO2 pathway  

 The NO2 formation pathway occurs by the following step: 

                     (Rxn # 1.12) 

 This subsequently leads to NO formation using highly active radicals like CN, OH, H and 

O via the following reactions: 

                      (Rxn # 1.13) 

                      (Rxn # 1.14) 

                    (Rxn # 1.15) 

                    (Rxn # 1.16) 

                       (Rxn # 1.17) 

 NO2 pathways contributions towards NO formation are primarily dependent on the local 

flame temperature and availability of radicals concentrations, mostly in lean fuel-air zones.  

 

1.1.1.6 NNH pathway  

 In recent studies [9], the contribution of the NNH mechanism towards NO formation, 

proposed by Bozelli and Dean[10], has been confirmed via the following pathway: 

                    (Rxn # 1.18) 

where NNH formation occurs via: 

              (Rxn # 1.19) 

 The NNH pathway would be significant in the presence of abundant O radicals, which are 

mostly encountered in lean-premixed flames like gas-turbine engines. 
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1.1.2 Planar laser induced fluorescence 

 The laser induced fluorescence technique has been widely used in fundamental studies of 

molecular structure, energy transfer, etc., and has been applied in combustion diagnostics 

widely in recent years. A general background and theoretical overview of the process are 

discussed briefly in the present section, whereas detailed explanations can be found in 

references [11,12]. The process of laser induced fluorescence occurs in two stages as illustrated 

in Fig. 1.2a. In stage 1, the targeted molecule is excited from ground state (X) to an excited 

state with the absorption of laser energy. The next step consists of spontaneous emission of 

photons caused due to relaxation of molecules from the excited state back to the ground state. 

Due to associated energy losses in the process, emission occurs at longer wavelengths than 

excitation, thus avoiding interference from spurious fluorescence signal caused by laser 

scattering or Mie scattering.    

 

 

Fig. 1.2. Laser induced fluorescence. 
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 A simple two energy level model of laser induced fluorescence for a molecule is shown in 

Fig. 1.2b. As can be seen, the excited state losses (from state 2) are caused due to (1) pre-

dissociation (P), (2) photo-ionization (   ) and (3) collisional quenching (   ) and thus result 

in weaker fluorescence signal strength. Collisional quenching occurs due to interactions with 

other molecules, during which the excited state molecules can relax down to the ground state 

without photon emission. The pre-dissociation and photo-ionization of a molecule are 

dependent upon specific energy states and thus can be fully eliminated by selecting an 

appropriate excitation scheme. However, in a combustion environment, the collisional 

quenching due to the presence of other species is inevitable when using nanosecond (and 

longer) laser pulses and needs to be accounted for to obtain quantitative measurements of the 

molecule’s concentration. 

 Typically, in a linear regime, where, fluorescence signal intensity is directly proportional 

to laser energy, the fluorescence signal intensity can be expressed by eq. 1.2. 

                             (
   

       
)          (1.2) 

 Planar laser induced fluorescence (PLIF) can be utilized easily for the qualitative 

measurements of species such as OH, HCHO, NO etc.; however, extracting quantitative 

information from PLIF measurements can be more challenging. For quantitative 

measurements, the PLIF data need to be corrected for the Boltzmann fraction (  ) and 

collisional quenching rate (
   

       
).. The Boltzmann fraction (    represents the population 

density distribution in the energy states of the target molecule, which has a strong dependence 

on temperature. On the other hand, the collisional quenching rate represents the quenching of 

fluorescence signal due to the presence of other species in a combustion environment, which is 
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dependent on the local temperature and the local species concentrations and their collisional 

cross sections. Indeed, the quenching of fluorescence signal of species like OH, NO, HCHO 

etc., by CO, CO2, CH4, H2O, O2, N2, OH, H, O species has been studied extensively [13,14] 

and corresponding quenching correlations have been formulated. This mandates the knowledge 

of temperature and species concentration distribution in the combustion environment as a pre-

requisite. In this challenging situation, often times CFD simulations of flames are used as a 

complementary tool to obtain the temperature and species concentration mapping.  

 In addition to Boltzmann fraction and collisional quenching, other corrections related to 

laser energy, laser beam profile, signal absorption and spectral efficiency of the signal 

detection system are also needed for accurate quantification of the PLIF signal [15]. 

 

1.2   Motivation 

  

 In recent years, sustainable energy resources have been developed like H2, bio-diesel, soy-

diesel, pyrolysis oil, bio-fuel. H2 gained significant attention due to its high energy content, low 

ignition temperature and practically zero pollutant emissions [16–19]. However due to the lack 

of H2 distribution infrastructure, very low volumetric energy density, safety issues and other 

associated risks due to its low flash point, higher flammability limits, invisible flame, and 

storage difficulties, implementing a global hydrogen-based economy is a severe challenge, 

particularly in the transportation sector [20]. 

 Due to the above mentioned challenges with a hydrogen-based economy, anhydrous 

ammonia (NH3) is recognized as a potential H2-carrier and is, therefore, a candidate for being a 

carbon-free alternative fuel. The recognition of ammonia as a fuel has not only been developed 



10 

 

  

because of the contemporary research but also from its use during 20
th

 century. The use of 

ammonia as an alternative combustion fuel dates back well before World War II, when in 

1930, an Italy based company obtained a patent for using ammonia as fuel. In Europe, 

occasionally ammonia was used as a public transportation fuel during WW II. In 1960, the US 

army tested ammonia extensively and demonstrated successful use of ammonia as fuel in SI 

engines, slightly modified diesel engines, and gas turbines [21]. Several other recent studies 

[22–24] analyzed the potential of NH3 as fuel and concluded that, despite its toxicity, NH3 is 

still one of the most attractive carbon-free fuels because it is the second most prevalent 

chemical in the world and can be synthesized from renewable energy, fossil fuels (via 

gasification), and from waste heat from nuclear reactors.  

 There are several advantages to using ammonia as an alternative fuel over hydrogen, 

which are briefly listed in Table 1.1. 

Table 1.1. Anhydrous ammonia (NH3) fuel advantages over Hydrogen (H2). 

Serial # H2 NH3 

1 
16 times less volumetric energy 
density than gasoline at 25 0C/200 
bar pressure. 

At 25 0C /8 bar pressure, 
volumetric energy density 
comparable to gasoline [22]. 

2 Lack in distribution infrastructure. 
Already established distribution 
infrastructure, including pipelines, 
to deliver in large amounts [23]. 

3 
High flammability limits, low flash 
points, and invisible flame pose 
threat of explosions. 

Considered non-flammable due to 
narrow flammability limits. Easily 
transportable. 

4 
No characteristic smell. Difficult to 
detect. 

Leaks can be detected easily as 
low as 5 ppm due to its 
characteristic odor. 

5 
Research is onging for IC Engine 
applications. 

High Octane Rating, suitable for IC 
Engines [25]. 

6 
Not useful as a cooling fluid in 
vehicles. 

Can be used as a refrigerant 
simultaneously in vehicles, if 
implemented [22]. 
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 Comparison of methanol and liquid hydrogen to anhydrous ammonia was studied by 

Strickland [24], who showed some remarkable advantages for NH3 as a transportation fuel in 

comparison to gasoline. Table 1.2 below shows some characteristics of ammonia fuel 

compared to other conventional fuels [26–29]. 

 

Table 1.2. Properties of NH3 and other conventional fuels. 

Property Gasoline Diesel 
Natural 

Gas 
H2 NH3 

Flammability limit, volume % in air 1.4–7.6 0.6–5.5 5–15 4–75 16–25 

Auto-ignition temperature, °C 300 230 450 571 651 

Peak flame temperature, °C 1977 2053 1884 2000 1850 

 Anhydrous ammonia (NH3) has been demonstrated for use in vehicular applications, 

turbines, engines etc.; however, issues with regard to the lack of understanding of the 

combustion characteristics, optimized strategies for NOx abatement in turbulent flames, and 

inadequate knowledge of NOx chemistry for NH3 or NH3 seeded fuel mixtures, have limited its 

implementation.  

 

1.3   Objectives 

 The present research work has the following key objectives: 

1) To develop a better understanding of NH3 through combustion characterization of 

H2/NH3 and CH4/NH3 fuel mixtures. In this study, fuel mixtures are characterized in a 

swirl-stabilized turbulent combustion rig with an approximately 40 kW capacity, and the 

effects of several parameters like (a) preheated air temperature, (b) equivalence ratio, (c) 

heat-rate, (d) swirl-plate geometry, (e) nozzle position and geometry and (f) burner 



12 

 

  

configuration on the flame characteristics like emissions (NO, NO2, CO, CO2, UHC, O2, 

etc.) and flame temperature are investigated.   

2) To develop a detailed chemical mechanism for NH3-seeded fuel combustion that can 

predict accurate species concentrations, especially NO. In this study, three contemporary 

detailed chemical mechanisms are tested by comparing the fundamental flame 

characteristics, such as flame speed, with the experimental data for laminar H2 premixed 

flames with different NH3 seeding levels.  

3) To investigate the performance of the proposed modified GRI-Mech chemical 

mechanism along with detailed chemical mechanisms (GRI-Mech3.0 and Tian) in 

predicting the flame structure and species profiles, especially NO formation, in a 2-D 

laminar diffusion flame by quantitative comparison with the in-situ NO concentration 

measured by NO-PLIF, for H2/NH3 fuel mixtures with varying NH3 seeding level. 

 

1.4   Literature review 

 

 The literature review is divided into three sections. The first section starts with discussions 

of the development of anhydrous ammonia as an alternative fuel for transportation and power 

generation purposes and elaborates on the challenges associated to bring forth the NH3 as a 

fuel. 

 The second section of the literature review delves into the fundamental studies of the NH3 

seeded flames under both premixed and non-premixed modes. Investigations of NOx 

formations chemistry in ammonia seeded flames via flame characterization methods, i.e., flame 

speed, emissions measurements, reactions kinetics via species measurements, utilizing laser 
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based diagnostics tools and numerical simulations have been reviewed and discussed. 

Subsequently, the third section briefly provides an overview of the application of the planar 

laser induced fluorescence (PLIF) technique for reacting flows.  

  

 

1.4.1 Anhydrous ammonia (NH3) combustion 

 

 Despite its proven advantages over H2, anhydrous ammonia (NH3) has severe challenges 

associated with achieving clean and stable combustion; it is technically considered non-

flammable, has high auto-ignition temperature, low reactivity, toxicity and most important, it is 

a significant source of NOx formation if present in the fuel mixture. Use of ammonia as an 

alternative fuel for vehicular applications has been reported before the WW II era [30]. Later in 

the mid-60’s, the U.S Army probed ammonia characteristics and feasibility for diesel and SI 

engines with an extensive series of experiments [31–33]. Subsequently, experimental studies 

were conducted to determine the minimum ignition energy, quenching distance, flame-stability 

limits, and gas-turbine-burner performance of ammonia-air mixtures [34].  It was concluded 

that neat ammonia cannot be used as a substitute fuel for hydrocarbons in conventional gas-

turbine burners unless the ignition-system energy is increased. The early studies showed that 

ammonia could provide sustainable combustion when used as a primary fuel or in conjunction 

with a pilot fuel or spark source in either spark-ignition (SI) or compression-ignition (CI) 

combustion schemes. In a separate study, Bro & Pederson [35] described the results in terms of 

engine power output, efficiency, smoke and gaseous emissions of an experimental 

investigation of methanol, ethanol, methane, and ammonia as primary fuels for a high speed 
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direct injection diesel engine and noted that although ammonia was  applicable, it was least 

suitable among the four fuels. The idea of using ammonia as a fuel on a global scale couldn’t 

draw much attention due to the then low cost of petroleum based fuels [36]. However, in the 

last couple decades, the demands of environmentally benign and renewable resources for fuel 

have increased, and there is an ever increasing interest in ammonia as a fuel for engines, gas 

turbine combustors and other power generation devices. From the last decades, the research on 

using NH3 in engines is increasing; however, limited studies are reported on using ammonia for 

compression-ignition (CI) and spark-ignition (SI) engines. Saika [37] proposed a clean energy 

engine-system by using the hydrogen from dissociated ammonia under a catalyst and carried 

out a fundamental study of the combustion properties of ammonia and dissociated ammonia 

with air by using a slot burner and a spherical combustion bomb. It was demonstrated that the 

issues of slow burning speed and the high ignition energy can be solved by adding hydrogen 

from dissociated ammonia and clearly showed the potential of a partially dissociated ammonia 

engine system as a promising ammonia fueled system. Later, Mulligan [38] filed a patent for a 

technology for reducing NOx in an IC engine fueled by a gaseous hydrocarbon fuel by 

catalytically producing hydrogen and carbon monoxide fuel gas stream from the gaseous 

hydrocarbon fuel and a portion of the hot exhaust gas from the internal combustion engine by 

reacting a portion of the hydrogen produced with ambient nitrogen present in the exhaust gas.  

 The ammonia produced is used in connection with a selective catalytic reduction reactor to 

treat the remaining hot exhaust gas produced from the internal combustion engine, resulting in 

a treated exhaust gas stream having near-zero NOx emissions. In a separate study, Shawn et al. 

[39] showed that, with the help of employing an emissions clean up catalyst, engine out 
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emissions were reasonable at stable combustion conditions for ammonia. However, the authors 

also pointed out that, lean operation must be absolutely avoided with ammonia for catalytic 

action with significant quantities of nitrous oxide formed on the catalyst.  Later in the same 

year, a prototype fuel system for producing an emulsion of diesel oil and ammonia was 

designed and constructed [40] and demonstrated feasibility of combustion of diesel 

oil/ammonia emulsions in an existing unmodified diesel engine. It also showed that the engine 

operated successfully on emulsions of fuel oil and ammonia.  

 In the same time frame, Aaron and Kong [41] tested the feasibility of ammonia 

combustion by using ammonia seeded diesel as a fuel due to high auto-ignition temperature of 

ammonia in compression-ignition diesel engines. The results showed that the peak engine 

torque could be achieved by using different combinations of diesel fuel and ammonia with 

lower levels of NOx emissions up to an energy substitution by ammonia under 60%. 

Subsequently, investigation of the combustion and emissions characteristics of a compression-

ignition engine using a dual-fuel approach with ammonia and diesel fuel was performed under 

the constant engine power operation [42]. Results indicated that in order to achieve favorable 

fuel efficiency, the preferred operation range was to use 60–40% energy supplied by ammonia. 

If ammonia accounted for the majority of the fuel energy, NOx emissions increased 

significantly due to the fuel-bound nitrogen and pointed to the requirement for the after-

treatment of the exhaust. It is recommended that further combustion optimization using direct 

ammonia/diesel injection strategies be performed to increase the combustion efficiency and 

reduce exhaust ammonia emissions.  



16 

 

  

 Recently, due to the focus on using metal ammine complexes for ammonia storage, a fuel 

system for ammonia fuelled internal combustion engines was studied [43]. A series of 

experiments with varying excess air ratio and different ammonia to hydrogen ratios were 

conducted in a CFR engine. It was noticed that a fuel mixture with 10 volume% hydrogen 

outperformed the gasoline counterpart with respect to efficiency and power. It is proposed to 

reduce the high NOx emissions using SCR as exhaust after treatment. Based on the current 

literature review section, the following challenges with NH3 combustion applications are 

identified; 

1) Ammonia is non-flammable due to its high ignition energy and lower flammability limits. 

2) Due to low power output, efficiency, and emissions, NH3 is a challenging fuel.  

3) Lack of conditions and strategies to achieve stable and efficient NH3 combustion. 

4) Since it is established that potential of partially dissociated ammonia engine systems are 

as promising as conventional fuel engines, the combustion of ammonia and NH3-H2 fuel 

mixtures needs to be well understood. 

5) Due to fuel-bound nitrogen, ammonia combustion can lead to high NOx emissions if not 

combusted in a controlled environment. However, there is still a need to understand the 

parameters governing the combustion environment, the NOx triggering factors, NOx 

formation pathways via NH3, and strategies for ammonia combustion. 

 

1.4.2 Effects of fuel-bound nitrogen on NOx chemistry 

 

 Many conventional fuel options like coal and alternative energy sources like biomass, 

syngas, etc. have either fuel bound nitrogen or the presence of nitrogenous compounds like 
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NH3 and HCN. Both fuel bound nitrogen and nitrogenous compounds may lead to tremendous 

NOx formation upon the onset of fuel pyrolysis process in the combustion zone. Thus an 

improved fundamental understanding of NOx chemistry in combustion of nitrogenous fuels is 

imperative for the development of effective NOx abatement methods and technologies. In this 

regard, fundamental flame studies of fuel mixture and effects of NH3, HCN, NO doping on the 

flame structure as well the NOx formations has been studied extensively on both premixed and 

diffusion flames. Lyon [44] and Lyon and Hardy [45] laid the foundation of the thermal De-

NOx process in combustion exhaust gas by investigating high temperature gas-phase NH3 

reactions. Successful numerical simulation of a 2-D axisymmetric, laminar methane-air 

diffusion flame was demonstrated  by Smooke et al. [46], however, investigations related to 

fuel-N chemistry were not evaluated in this work. In the same year, Sausa et al. [47] performed 

an experimental and chemical kinetics study of \NH3 seeded H2/N2O/Ar flames at equivalence 

ratio of 1.1 to understand the fundamental mechanisms for NO formation and destruction, as 

well to validate the efficacy of NH3 on the rate of conversion of NO to N2. Authors utilized the 

rate and sensitivity analyses to probe the key reaction mechanisms responsible for NO 

formation and destructions, in a chemical mechanism consisting 20 species and 87 reactions. It 

was pointed out that adding NH3 makes chemical rates slow, thus resulting in shifting of the 

flame away from the fuel nozzle. The numerical model successfully captured the trend of 45% 

reduction in NO with 4% NH3 addition.  

 To understand the kinetics of NO in  hydrocarbon fuel mixtures, Rota et al. [48], 

investigated NO with methane and ethane in an isothermal perfectly stirred reactor within  the 

temperature range 1050 – 1250 K for rich flame conditions with equivalence ratios from 1 to 
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1.2. The authors used a kinetic model developed by Miller and Bowman [49] for comparison 

with the experimental data. It was found that at low temperature, effective NO abatement 

increases with increasing ethane in the fuel mixture; however for higher temperature range the 

CH4/C2H6 mixture showed larger NO conversion than pure methane. In a similar work, 

Hasegawa and Sato [50], examined the effects of added NO and O2 concentration and of CO, 

H2 and CH4 in coal-gasified fuel on NH3 decomposition characteristics by experiments in a 

tubular flow reactor and comparison with numerical analysis based on kinetics. Authors 

concluded that due to the presence of H2, the reduction of NO to N2 by ammonia was 

dominated by the H2 concentration without any effects from the co-existence of CO.  

 Later, Zabetta et al. [51], studied the reduction of nitrogen oxides in gas turbine 

combustors by a detailed chemical kinetics model utilizing a kinetic scheme from Kilpinen et 

al. [52]  and discussed the potential of the chemical kinetics model. They showed that for lower 

temperatures in the range of 900 -1000 ºC and higher pressure range from 10-20 bar favored 

fuel-N conversion to N2. The model also revealed that the conversion efficiency of NH3 to N2 

enhanced with increasing inlet NH3, with an important conversion pathway to N2 via 

intermediate species, i.e., H2NO. In a subsequent work, Zabetta and Kilpinen [53] investigated 

the mechanisms leading to in-cylinder NOx in compressed ignition engines and developed an 

improved kinetic model for NOx prediction using CFD based engine simulations. The 

developed submodel appeared to be more accurate in predicting NOx. With an intention to 

understanding the pathways of fuel-N conversion to NO with and without ammonia seeded 

CH4 flames, Sullivan et al. [54]  performed a combined experimental and numerical study of 

NOx formation in laminar NH3-seeded, N2-diluted, methane (surrogate for biomass fuel) 
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diffusions flames. The GRI-Mech3.0 mechanism and a chemical mechanism developed by 

Glarborg et al. [55] were used for the numerical modeling. The authors focused on the 

understanding of the pathways of fuel-N conversion to NO with and without ammonia seeded 

flames. The model utilizing Glarborg mechanism reported to be in agreement with the 

measurements over the full range of NH3 doping, and NO concentration seemed to be reduced 

with increasing NH3 due to enhanced conversion rate of NO to N2. Later, Laurie [56] tested 

several reduced chemical kinetics schemes, i.e. extended Zeldovich and five schemes involving 

N2O pathways and compared NOx predictions for a slow-speed marine diesel engine utilizing a 

0-D model. The model predicted 15% additional NOx with the addition of nitrous oxide 

reactions and the N2O pathways were identified as the most significant contribution to NOx. 

Zabetta et al. [57], in a separate study of comparing NOx abatement methods, i.e. fuel staging 

(FS), air staging (AS), and selective non-catalytic reduction (SNCR) with a newly developed 

strategy named, combined staging (CS) by combining FS, AS and SNCR in synergy. It was 

found that CS is effective in cutting up to 40% NOx at lower temperatures and within shorter 

residence time, with limitations in absence of burnout air staging. For diesel NOx emissions 

kinetics modeling, Hernandez et al. [58] investigated the role of the kinetics on the local NO 

formation/destruction paths under diesel engine conditions by utilizing a kinetic scheme with 

83 reactions and 38 species. Both NO production and decomposition pathways were identified 

through a sensitivity analysis on CHEMKIN 4.0. Authors also revealed a coupling between 

fuel oxidation and the thermal NO mechanism, typically ignored for diesel engine modeling. 

 Zieba et al. [59], investigated the nitrogen chemistry in an ammonia (NH3) seeded 

flameless jet by utilizing a kinetic reactor network model to discuss the primary causes of 
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differences in ammonia chemistry for methane-free and methane-laden fuel mixtures. They 

observed that for methane flames, NH3 reacted relatively late at fuel lean conditions leading to 

high NOx formation, and ammonia chemistry was found to be blocked due to consumption of 

free radicals for the conversion of methane to the methyl radical. For methane-free 

composition, the reaction rate of NH3 was reported to be rapid and radicals were generated 

from H2 oxidation. Due to important of pathways between NH2 and OH in the combustion 

chemistry of nitrogenous fuel mixtures, Mousavipour et al. [60] numerically investigated the 

fundamental mechanism of the reaction of amidogen with OH radicals. Later, Duynslaegher et 

al. [61] investigated the effects of initial H2 content on the structures of diluted NH3-H2-O2-Ar 

flames at low pressure in near stoichiometric conditions and compared the experimental data 

with predictions using the Konnov mechanism. The work was focused on the nitric oxide 

formation pathways at several conditions of ammonia combustion. It was found that a decrease 

in equivalence ratio strongly increased NO formation, and the Konnov mechanism’s 

predictions showed agreement with experimental data except NH2 and N2O species. 

Subsequently, Shmakov et al. [62], investigated the formation and generation of nitric oxide 

(NO) in flat premixed burner-stabilized H2/O2/N2 flames doped with 300 – 1000 ppm of NO or 

NH3 by incorporating numerical modeling. Although, the measured spatial profiles of 

temperature and major species like H2, O2, H2O, NO, NH3 were found to be in fairly good 

agreement with the modeling results for lean and near stoichiometric flames, the model failed 

to predict the NO concentration for fuel rich conditions. Overall, recommendations for 

modifications of the model were proposed. 
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 This literature survey reveals that numerous attempts have been made to understand the 

NO formation pathways in NH3 seeded flames in both premixed and non-premixed flames. 

Several detailed chemical mechanisms for NH3 seeded flames have been developed and 

validated with partial success, meaning they performed fairly well for some flame conditions 

but failed to capture the flame chemistry under other flame conditions. Reasonable success has 

been gained to identify the key NO formation pathways which has contributed towards the 

development of the reduced chemical mechanisms concepts. Reduced chemical mechanisms 

for NH3 flames have also been demonstrated with limited success for some cases but still 

require more work to be able to capture the key flame chemistry for NH3 seeded flames.    

 Despite a number of studies of NO formation pathways in NH3 seeded flames; 

understanding of NO chemistry in NH3 seeded flames requires further improvement, 

particularly NH3/H2/air flames. Several contemporary chemical mechanisms, especially the 

Tian, Konnov and GRI-Mech3.0 chemical mechanisms have been tested and validated by 

variety of test conditions and tools. However, the three chemical mechanisms have not yet been 

compared under identical flame conditions to study the relative performance of the chemical 

mechanisms as well as to understand the cause of disagreements among them.  

 Hence, the present work includes a detailed investigation of the chemical pathways of NO 

formation and detailed comparisons of contemporary chemical mechanisms, i.e., Tian, Konnov 

and GRI-Mech3.0, for the first time, to gauge not only their individual robustness but also 

reveal the cause of disagreements among the chemical mechanisms. These mechanisms are 

employed along with numerical simulations based on computational fluid dynamics with 

chemistry (CFDC) to study in situ NO concentrations. Predictions of flame structure are 
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compared with flame-speed measurements, and concentrations are compared with laser-based 

measurements, as described below, as well as exhaust-gas probe sampling methods. This 

detailed comparison of three key mechanisms, more extensive experimental validation, and 

analysis of individual reaction steps within the chemical mechanisms all constitute unique 

contributions of this work. 

 

1.4.3 PLIF diagnostics of reacting systems 

 A number of imaging diagnostics are utilized for reactive flows, including Mie scattering 

[63], Rayleigh scattering [64], chemiluminescence or natural light emissions from radicals 

[65,66], and laser induced fluorescence [67,68], among others.  

 In early studies [69,70], for a non-direct local heat release measurement in the flame zone, 

radiations from the free radicals like CH, C2 are shown to be directly related to the reaction 

intensity and thus to the heat-release process. Later, it is realized that the identification of the 

species in the combustion environment can serve as a marker of the flame front and high 

temperature zone, like OH in H2 flames and C2 and CH in hydrocarbon flames. In addition to 

that, the direct imaging of NO species in flames can be utilized to deduce the dependence of 

NOx chemistry on local temperature and surrounding species concentrations, which accelerated 

the investigations of NO by PLIF in flames. As an application to visualize a hypersonic flow 

field over a wedge and a hemisphere, planar laser induced fluorescence (PLIF) of NO is 

employed by Danehy et al. [71] and results were compared with the theoretical PLIF model 

based on computational fluid dynamics models including ideal-gas and non-equilibrium 
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chemistry. The technique was reported to be in successful agreement between modeling and 

experimental results.  

 Reisel et al. [72] demonstrated the feasibility of quantitative LIF measurements of NO in 

high pressure ethane-air flames and showed the potential for NO measurements down to ~1 

ppm at pressures up to 9 atm. Later, Cooper and Laurendeau [73] reported the influence of air 

preheating temperature and equivalence ratio on NO concentration in high pressure, swirl-

stabilized heptane spray flames using quantitative laser induced fluorescence. It was observed 

that, for near stoichiometric regions in the flame zone, prompt NO formation and NO 

concentration  increased with increasing preheat temperature. The authors also developed a 

laser-saturated fluorescence (LSF) technique for quantitative measurements of NO 

concentration in spray flames [74] and subsequently implemented the LSF technique to study 

the effects of equivalence ratio on nitric oxide for unconfined liquid heptane flames in LDI 

burners [75]. It was demonstrated that the entrained excess air reduced NO concentrations at 

fuel lean flame conditions. 

 Subsequently, D. Charlston-Goch [76] performed the investigation of the NOx chemistry 

by comparing the laser induced fluorescence measurements of NO concentrations in flames of 

synthesized coal-gas for a pressure range from 1 to 11.9 atm, with the predictions utilizing 

GRI-Mech2.11 and Kilpinen’s chemical mechanisms. On comparison, GRI-Mech2.11 

mechanism over-predicted NO concentration, whereas Kilpinen’s mechanism captured the NO 

trend with under prediction in NO concentration. They proposed NNH pathway inclusion to 

Kilpinen’s mechanism improved agreement with the experimental data. Similarly, Thomsen 

and Laurendeau [77], measured the NO concentration with laser induced fluorescence (LIF) in 
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a flat, laminar premixed counterflow CH4/O2/N2 flame with equivalence ratios from 0.65 to 

1.5. This particular flame structure allowed the measurement of nitric oxide in preheat, flame-

front, and post-flame zones. The experimental data was compared to the NO predictions by the 

Sandia opposed diffusion flame code utilizing GRI mechanism 2.11. For lean conditions, 

agreement between experimental and modeling results was found to be remarkably close, but 

moderate agreement was found for rich flames with respect to NO concentration and the shape 

of the NO profiles.  

 Romain et al. [78] measured in-cylinder qualitative NO concentrations in a diesel 

compression machine using laser induced fluorescence and corrected it based on the 

measurements of heat-release rate and flame structure information utilizing OH LIF. It is 

reported that the NO formation started at the onset of the diffusion flame and fuel lean pockets 

in diffusion flames were more favorable for NOx formation. 

 A  literature review reveals that laser diagnostic tools have been applied in a large number 

of studies related to fundamental flame characteristics, i.e. particle image velocimetry (PIV) for 

flow field measurements and laser-induced fluorescence for local species concentrations. 

Planar laser-induced fluorescence has been extensively applied and has been successful in 

majority of the cases in studying spatial distributions of species concentration. This has helped 

with understanding the chemical pathways behind the species formation, especially when 

coupled with computational fluid dynamics (CFD) tools. The coupling of the PLIF technique 

and CFD has been demonstrated as a powerful tool to study the fundamental flame chemistry 

and has led to significant contributions toward successful development or improvements in 

chemical mechanisms for various fuels.  
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 In the present work, the PLIF technique for NO species has been applied for laminar 

diffusion NH3/H2/air flames for the validation of complex chemical mechanisms that are 

commonly utilized in a variety of current research efforts (i.e. Tian, GRI-Mech3.0, etc.) for 

NH3 seeded H2-air flames. To the best of our knowledge, the application of the PLIF technique 

for ammonia seeded H2-air flames has not been investigated yet.  

 For accurate NO PLIF measurements, the estimation of Boltzmann fraction correction and 

quenching corrections are critical, which are strongly correlated to the flame temperature and 

species concentrations. Hence, a state-of-the-art 2-D CFD numerical code i.e. Unsteady 

Ignition and COmbustion with ReactiOns (UNICORN) [79] is used to predict the flame 

temperature and species concentrations, which further is incorporated into both the Boltzmann 

fraction and quenching corrections. The predicted 2-D NO mole fractions profiles are then 

converted to simulated 2-D NO PLIF signals (arbitrary unit; counts) by incorporating 

Boltzmann fraction and quenching corrections from the predicted flame temperature and major 

species concentrations. A lean premixed CH4-air flame seeded with known NO concentration 

is used with the identical PLIF setup to estimate the conversion of NO mole fractions into 

arbitrary units (counts). This method of comparison avoids the discrepancy caused due to flame 

length adjustment and leads to a direct test of the chemical kinetics within the CFD code (see 

Chapter 5).  

   

1.5   Thesis organization 
 

 Chapter 2 presents the detailed combustion characterization of swirl-stabilized turbulent 

flames for H2-NH3 and CH4-NH3 fuel mixtures, in a custom-made 40 kW swirl-stabilized 



26 

 

  

turbulent combustor. Also, the strategies are presented to achieve 100% anhydrous ammonia 

(NH3) combustion with ultra-low NOx. Chapter 3 discusses the fundamental investigation of 

flame speeds and validation of chemical mechanisms, e.g. the Konnov, Tian and GRI-

Mech3.0 chemical mechanisms, for laminar freely propagating premixed H2-NH3 flames. 

 Subsequently, Chapter 4 summarizes the effects of NH3 doping on NOx formation 

chemistry in H2-NH3 laminar premixed flames and compares predictions using the Konnov, 

Tian and GRI-Mech3.0 chemical mechanisms. Chapter 5 presents detailed descriptions of the 

NO-PLIF setup and summarizes the results for 2-D quantitative comparison of NO 

concentration between CFD modeling and in-situ NO-PLIF for H2-NH3 laminar diffusion 

flames. Chapter 6 provides the conclusions and recommendations for future work. 
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CHAPTER 2. EXPERIMENTAL PARAMETRIC STUDIES OF THE 

EFFECTS OF NH3 IN LAMINAR AND TURBULENT DIFFUSION 

FLAMES 

 

A paper to be submitted to Fuel Journal 

 

Praveen Kumar and Terrence R. Meyer

 

 

Abstract 

 

 In this paper, an extensive combustion characterization of NH3 % by energy in H2 

(E%NH3) for H2/NH3 and CH4/NH3 fuel mixtures are studied for both laminar and turbulent 

flame regimes in a Hencken burner and a swirl-stabilized turbulent furnace, respectively. For 

swirl-stabilized turbulent flame, a detailed parametric study of several variables i.e., (1) 

preheated air temperature, (2) equivalence ratio, (3) heat-rate, (4) swirl geometries, (5) fuel 

nozzle type and positions and (6) burner configurations was performed at heat-rates from 8-35 

kW, typical for a house-hold heating unit. This study is important for practical applications of 

NH3-H2-CH4 fuel mixtures in both domestic and industrial sectors. At equivalence ratio ~1, the 

installation of a swirl stabilizer and preheating of co-flow air from 25 to 300 ºC resulted in the 

significant increase in NH3 replacement by 30% and 70% for methane-ammonia and hydrogen-

ammonia fuel mixtures respectively. However, it also confirmed increased NOx emissions with 

increasing preheated air temperature and E%NH3 for both the fuel mixtures. The nozzle 

configurations are found to have a significant effect in terms of achieving higher E%NH3 and 

the change in fuel nozzle position is shown to have a critical effect on the NOx emissions and 

E%NH3. The effect of the ratio of moles of NH3 to CH4 for the CH4/NH3/air mixture is also 
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recorded; the data is in reasonable agreement with previous works, and shows gradual 

reduction in NO concentration and E%NH3 with decreasing NH3 to CH4 mole ratio. 

 

2.1 Introduction 

 

 In today's world, the increasing use of fossil fuels has not only driven technological 

advancements but poses a threat to the environment by continuously generating pollutant 

emissions.  These emissions are also considered to be the major cause behind global warming. 

Two alternatives for fossil fuels that are attracting many researchers around the globe are H2 

and NH3. These surrogates, also known as the clean fuel [1], have no fuel bound carbon, and 

do not produce carbon compounds during combustion .  

 Initially hydrogen gained researcher's interest with the potential to produce only H2O as a 

product. However, due to severe challenges in hydrogen storage technologies, attention has 

also turned towards NH3 as hydrogen carrier [2].  Several studies [3,4] have investigated the 

potential of ammonia as a promising fuel and found that, despite its toxicity and high ignition 

temperature, there are many remarkable advantages  including (i) higher octane rating (ii) easy 

production and storage (iii) and recyclability, to name a few. Due to continued interest, 

ammonia combustion has been studied for applications in IC engines, turbine engines, fuel 

cells, etc. Both theoretical and experimental investigations of ammonia combustion have 

shown that it has a potential to be combusted in both spark-ignition (SI) and compression-

ignition (CI) engines by decomposing the NH3 into  H2 and N2 [5]. However, in the SI engine 

operation, higher NOx levels were measured with high concentrations of ammonia. Reiter and 

Kong [6] demonstrated the effect of mixing NH3 with diesel on greenhouse gas emissions in 
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compression-ignition (CI) engines. They successfully achieved 95% energy replacement by 

ammonia in a diesel-ammonia fuel mixture and confirmed attrition in CO2 emissions as 

ammonia in the fuel mixture increased. To ensure the safe operation of ammonia or ammonia-

blended alternative fuels, it is imperative to study the flammability limit of the fuel mixture. 

Ciccarelli et al. [7] studied the flammability of the hydrogen and ammonia in air and mixtures 

of H2-NH3-air at initial temperatures ranges from 25 ºC to 600 ºC. They showed widening of 

flammability limits with an increase in initial temperature for H2-air and NH3-air, confirming 

the Le-Chatelier principle.  

 Earlier work on flames, with or without ammonia seeding, have studied the NOx 

formation mechanisms extensively [8–10]. Several significant NO producing mechanisms are 

proposed. The nitrogen chemistry modeled by Miller and Bowman [11] predicted the main 

chemical formation routes of NOx. It has been established that this pollutant is generated in 

ammonia seeded flames in two ways: the Zeldovich mechanism and through fuel-bound 

nitrogen. Sarofim et al. [12] demonstrated experimentally that the conversion efficiency of NH3 

to NO declines with increasing NH3 seeding in non-premixed flames and validated the 

measured data by numerical simulations. Likewise, Sullivan et al. [13] reported the 

experimental and modeling investigation of  NH3 conversion and NOx formation in laminar 

methane-air diffusion flames. They found that at low NH3 concentrations in the fuel mixture, 

the conversion efficiency of ammonia to NO is 50% less likely to the high NH3 concentration, 

where the conversion efficiency is as low as 30%. Subsequently, Tian et al. [14] reported an 

experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames and proved that 
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increases in the ratio of moles of NH3 to the moles of CH4 in the fuel mixture (RNH3) results in 

higher NO formation. 

 NO measurements performed by Bell et al. [15] with varying NH3 seeding in methane-air 

laminar diffusion flames were found to be dominated by the fuel-NO formation mechanism, 

whereas the prompt NO pathway was dominant for NH3 absent fuel. Duynslaegher et al. [16] 

carried out numerical and experimental flame structure studies of premixed ammonia-

hydrogen-air flames and showed that in near stoichiometric conditions, a decrease in 

equivalence ratio strongly accelerates the NO production rate. Duynslaegher et al. also 

concluded that temperature and equivalence ratio must be well controlled in practical 

combustors. Later, the properties of laminar premixed H2 added ammonia-air flames were 

studied experimentally and computationally by Lee et al. [17] and it was concluded that H2 

substitution results in high burning velocities and NOx shows a substantial increase at fuel lean 

conditions. They established that in ammonia seeded flames, the primary mechanism for NO 

production is through fuel-bound atomic nitrogen. Later, to reduce the inevitable NO 

generation from the fuel-NO mechanism, Kang et al. [18] demonstrated that a two-step fuel-

rich/fuel-lean catalytic combustion is one of the most effective methods to control NO and 

achieved below 5% conversion efficiency of NH3 to NO.  

 This literature review reveals that significant research has been carried out on the 

understanding of the flame structure and NOx formation mechanisms for ammonia doped 

flames. However, the study of energy replacement by ammonia and NOx formation with 

respect to several practical parameters such as fuel nozzle geometry, fuel nozzle position, 

preheated air temperature, and the ratio of ammonia to fuel (RNH3) for CH4/NH3 and H2/NH3 
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fuels mixtures at practical flow-rate and heat-rate settings, has not been yet addressed. The 

comparison of results with laminar flames shows significant differences in characteristics, 

which provides good insight into NH3 flame chemistry. Another motivation behind the work is 

to study combustion with heat rates in the range of 15-30 kW, in contrast to studies in IC 

engines, with typical heat rates of more than 60 kW. 

 

2.2 Experimental setup and methods 

 

 The experimental setup is divided into two sections, (1) Hencken burner setup and (2) 

Swirl-stabilized turbulent diffusion flame setup.  

 

2.2.1 Hencken burner setup 

 For laminar non-premixed flame investigations, a Hencken burner was employed. A 

good detailed elaboration of the Hencken burner is noted in the literature [19], and is briefly 

discussed here. The Hencken burner produces a flat diffusion flame, uniform, steady and 

approximately adiabatic. Schematics of the experimental setup and burner cross-section view 

are shown in Figs. 2.1a and 2.1b, respectively. The commercially available hydrogen and 

methane gases were employed as fuels for separate studies. The ammonia is mixed with the 

fuel in a tee-shaped manifold, far ahead of the burner to ensure the homogeneous mixing and 

fully developed flow at the burner exit. Metered quantities of H2 or CH4 and air in standard 

liter per minute (slpm) are supplied through respective gas cylinders using Alicat mass flow 

controllers having accuracy of ± (0.8% of reading + 0.2% of full range) operated through the 

LabView program. NH3 is metered using an Aalborg rotameter (± 1% full scale). The flames 

are visualized by using a high resolution charge-coupled device (CCD) camera. Table 2.1 
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below shows the test conditions in laminar non-premixed flames for both the fuel mixtures. 

There are a total 4 test conditions for the CH4/NH3 fuel mixture. The H2/NH3 mixture is 

tested at only 2 conditions.  

Table 2.1. Test runs for CH4/NH3 and H2/NH3 laminar non-premixed flames (Hencken burner). 

 
 

 ̇    ∅ 
Heat Rate        

(KW) 
E%NH3   
(Range) 

CH4/NH3 

5 0.95 0.275 0 – 47.3 
10 0.95 0.55 0 – 22.4 
16 0.95 0.87 0 – 22.1 
20 0.95 1.1 0 – 19.3 

H2/NH3 
25 0.95 1.18 0 – 74 
26 0.95 1.21 0 – 52.6 
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Fig. 2.1. (a)  Schematic of Hencken burner setup and (b) burner cross-section. 

 For each test run, ammonia is added to the CH4 or H2 fuel stepwise such that the total 

flowrate (QTotal = total sum of the flowrates of air and fuel mixture) and the equivalence ratio 

remain constant at each addition. The NH3 addition continues until the flame blows off and 

thus a maximum percent of NH3 by energy in the fuel mixture at each test run is measured. The 

percent of NH3 by energy is designated here as E%NH3 and is defined as: 
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(                       
]   (2) 

where,    and      are mole fraction and lower heating value for the i
th

 species. Because of the 

higher flame speed of the hydrogen, the total flowrates for H2/NH3 fuel mixtures are 

comparatively higher than the CH4/NH3, to establish the flames slightly lifted from the burner 

surface to achieve an adiabatic flame. The heat rate for both the fuel mixtures are kept nearly 

the same to make the data comparable. Some preliminary experiments showed a change in the 

flame structure and flow-field with ammonia added to the fuel. To minimize the effects of 

ammonia addition on flame structure and flow-field, the total flowrate and equivalence ratio 

are kept constant with each addition of ammonia.  

 

2.2.2 Swirl-stabilized turbulent flame setup 

 The swirl-stabilized turbulent non-premixed flame investigations were performed on a 

domestic oil heating furnace about 40 kW capacity. The furnace was equipped with the swirl-

stabilizer, air preheating system, furnace control system, and temperature and pressure 

monitoring devices. The fuel nozzle position is also vertically adjustable. The schematic of the 

(a) swirl-stabilized turbulent non-premixed flame setup and (b) front view of the combustor are 

shown in figures 2.2a and 2.2b, respectively. The fuel nozzle used in the current setup is a 

siphon type SNA air atomizing nozzle, which produces a solid cone spray pattern,(more 

details can be found on the manufacturer’s website [20]). 

 The flow of combustion air (coflow) to the outer annulus (73 mm) in the combustor is 

controlled with an Alicat mass flow controller with a range of 0-1500 slpm, and an accuracy 

of ± (0.8% of reading + 0.2% of full range). 
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Fig. 2.2. (a) Experimental set-up for the swirl-stabilized turbulent non-premixed flame and (b) front view of 

combustor. 

 The Reynolds number range for the fuel mixture is 7000-8000 and for air is 40000-

48000, which are well within the turbulent regime. The combustion air flowing to the 
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chamber is divided before reaching the chamber, with a portion of the flow traveling through 

the heat exchanger situated in the bottom of the combustion chamber and the remainder of 

the flow travelling directly to the burner housing. The hot air is introduced slightly 

downstream of the burner housing, directly into the burner tube as shown in Fig. 2.2a. In 

order to stabilize the turbulent flame, a swirl stabilizer is employed. The air preheating and 

swirl has a coupled effect on improving the flame stabilization. By preheating the air, the 

swirl is also increased because of the lower density of the hot air. A rotameter is installed to 

observe the flowrate of air through the heat exchanger. This adjustment allows for control 

over the final combustion air temperature which is measured at the exit of the burner tube 

directly before the swirl-stabilizer. For exhaust gas sampling, a chemiluminescence analyzer 

is employed to measure the concentration of NO, NO2, O2 and NH3 slip. All thermocouples 

and pressure transducers installed in the combustion apparatus are monitored by using a 

National Instruments DAQ-9172 data acquisition card and LabView software.  

Table 2.2. Experimental conditions for swirl-stabilized turbulent diffusion flames. 

Items        CH4/NH3          H2/NH3 
Pressure (atm) 1 1 
Ambient Temp (C) 25 25 
Fuel Temp (C) 25 25 
Air Temp (C) 25 – 300 25 – 300 
Fuel Flow rate (SLPM) 5 – 50 0 – 85 
Air Flow rate (SLPM) 250- 507 139 – 213.7 
NH3 Addition (SLPM) 0 – 57 0 – 57 
Heat Rate (KW) 5 – 33 5 – 20 
Equivalence Ratio Range 0.5 – 1.0 0.5 – 1.0 

 Table 2.2 shows the baseline operating conditions for the swirl-stabilized turbulent non-

premixed flames. For each fuel mixture, the flame is established at the corresponding starting 

test run (as shown in Table 2.3). The step-wise ammonia addition to the fuel mixture 
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continues such that the equivalence ratio and the total flowrate (Qmix) remain unchanged until 

the flame becomes fully unstable and blows off. The same steps are repeated after changing 

each parameter, such as nozzle type, nozzle position, preheated air temperature, burner 

geometry etc., one at a time. Simultaneously, E%NH3, emissions, and three instantaneous 

images are recorded at each step of ammonia replacement for each parameter. 

Table 2.3. Baseline test runs for swirl-stabilized turbulent non-premixed flames. 

CH4/NH3/Air 

QNH3 
(slpm) 

QCH4 
(slpm) 

QAir 
(slpm) 

QTotal 

(slpm) 
Phi 

Heat Rate 
(KW) 

3 49.52 507.5 560 0.95 ~31 

H2/NH3/Air 

QNH3 
(slpm) 

QCH4 
(slpm) 

QAir 
(slpm) 

QTotal 

(slpm) 
Phi 

Heat Rate 
(KW) 

1 84.23 214.8 300 0.95 ~15 

 The effects of different parameters on NH3 substitution in H2/NH3 and CH4/NH3 fuel 

mixtures and corresponding flame emissions were investigated. These parameters include (1) 

air preheated temperature, (2) equivalence ratio, (3) heat-rate, (4) fuel nozzle position, (5) 

swirl geometry and (6) burner configuration. The parametric test matrices for preheated air, 

equivalence ratio, and heat rate are presented in Tables 2.4, 2.5 and 2.6 respectively. Swirl 

geometries ranging from F0 to F22 are employed to identify the best swirl plate for flame 

stabilization. The F0 swirl refers to the case with zero tangential velocity, and the F# goes 

higher as the tangential velocity increases, thus providing higher residence time for the 

reactants in the flame zone.  

 

 



 

 

  

 
Table 2.4. Pre-heated air temperature test matrix.

1,4
                            Table 2.5. Equivalence ratio test matrix.

2,4
             Table 2.6. Heat-rate test matrix.

3,4
  

 

 

 

 

 

 

 

 

 

 

                                                 
1
 Qmix = 560 slpm, Equivalence Ratio = 0.95, Heat-Rate Range = 15 – 35 kW, Swirl F3, nozzle position C 

2
 Qmix = 560 slpm,  Heat-Rate =  15-19 KW, Swirl F3, nozzle position C 

3
 Equivalence Ratio = 0.95, Pre-heated Air temperature = 300 ºC, Swirl F3, nozzle position C 

4
 Y represents condition achieved 

 

E%NH3 25°C 50°C 100°C 200°C 300°C 

0 Y Y Y Y Y 

10 Y Y Y Y Y 

20 Y Y Y Y Y 

30 Y Y Y Y Y 

50 Y Y Y Y Y 

60 Y Y Y Y Y 

70 Y Y Y Y Y 

80 Y Y Y Y Y 

90 Y Y Y Y Y 

Max 
E%NH3 

70 70 75 83.16 90 

∅ 25°C 50°C 100°C 200°C 300°C 

0.5 Y Y Y Y Y 

0.6 Y Y Y Y Y 

0.7 Y Y Y Y Y 

0.8 Y Y Y Y Y 

0.9 Y Y Y Y Y 

0.95 Y Y Y Y Y 

1.0 Y Y Y Y Y 

Heat-Rate 300 °C 

5 Y 

8 Y 

10 Y 

12 Y 

15 Y 

16.5 Y 

20 Y 

4
4
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2.3 Results and discussion 

 This section is divided into two parts: (1) laminar diffusion flame and (2) swirl-stabilized 

turbulent diffusion flame. The results of the laminar diffusion flames are discussed first, 

followed by the swirl-stabilized turbulent non-premixed flame. 

 

2.3.1 Laminar diffusion flame (Hencken burner) 

 The instantaneous images of the flames at equivalence ratio = 0.95 for CH4/NH3/Air and 

H2/NH3/Air fuel mixtures with increasing energy replacement by ammonia (E%NH3) are 

shown in Fig. 2.3 and 2.4, respectively. The flame characteristics and flame luminosity both 

change for both the fuel mixtures with increasing ammonia in the fuel. For the methane-

ammonia fuel mixture, the maximum % NH3 by energy (E%NH3) achieved is 47% at a total 

flow rate (Qmix) ~5 slpm (Fig. 2.3), whereas, it is recorded as 74% at Qmix ~25 slpm for 

hydrogen-ammonia fuel mixtures (see Fig. 2.4). This E%NH3 reduces with increasing total 

flowrate for both the fuel mixtures. It is also observed that more E%NH3 is achievable for the 

fuel-lean condition compared to fuel-rich for both the fuel mixtures.  

 
Fig. 2.3. Instantaneous flame images at ∅ = 0.95 with respect to % NH3 by energy (E%NH3) for CH4/NH3 fuel 

mixture at Qmix ~5 slpm.  

 

CH4/NH3   
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Fig. 2.4. Instantaneous flame images at ∅ = 0.95 with respect to % NH3 by energy (E%NH3) for H2/NH3 fuel 

mixture at Qmix ~ 25 slpm. 

 

 For example, the E%NH3 increased from 26% to 52% for the change in equivalence ratio 

from 0.71 to 0.367 for H2/NH3/Air at Qmix ~ 26 slpm.  Likewise, the E%NH3 is enhanced from 

2.6% to 22.3% when equivalence ratio reduced from 0.768 to 0.748 for CH4/NH3/Air at Qmix 

~20.  It is also noticed that the substitution of NH3 in the fuel mixture is reduced with 

increasing heat-rate of the mixture, which can be ascribed to the reduced reactivity of the fuel 

mixture due to ammonia addition. 

 

2.3.2 Swirl-stabilized turbulent diffusion flame 

 

 For the swirl-stabilized turbulent flame, three types of fuel nozzles were tested, including a 

(a) 4.36 mm (ID) tube, (b) siphon type air atomizing nozzles SNA ~ 0.85 (Delevan part no. 

30609-9), and (c) siphon type air atomizing nozzles SNA ~ 1.00 (Delevan part no. 30609-11) 

for CH4/NH3/air at equivalence ratio ~0.95, heat rate ~15 kW and preheated air at 300 °C. 

More detailed descriptions of the nozzles can be found from the manufacturer’s website [20]. 

For the tube configuration, the peak E%NH3 recorded is 12 approximately, however, for siphon 

type air atomizing fuel nozzles the maximum E%NH3 is considerably higher than the tube 

type. For example, the maximum NH3 noted for the SNA ~ 0.85 and 1.0 are E%NH3 of 13.9% 

H2/NH3 
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and 20.1%, respectively. The atomizing nozzles have the capability of producing a very fine 

spray of fuel mixtures. Higher SNA means finer atomization of the fuel mixture, which results 

in better mixing of fuel and air. Due to the pronounced atomizing capability of the fuel nozzle 

SNA ~1.0, the parametric studies for both H2/NH3 and CH4/NH3 fuel mixtures in the swirl-

stabilized turbulent non-premixed flame were conducted on this particular nozzle type. Two 

different burner configurations were tested, including cases (1) without a flame-holder and (2) 

with a flame-holder as shown in Figs. 2.5a and 2.5b. The flame holder not only provides higher 

residence time, it also facilitates better mixing which leads to better flame stability. For ease of 

discussion, the swirl-stabilized turbulent flame section is further divided into discussions of 

CH4/NH3 and H2/NH3, where the parametric studies for both the mixtures are discussed 

individually. 

 

Fig. 2.5. Flame image for (a) without flame-holder (FH) and (b) with flame-holder (FH) for CH4/NH3/Air, 300 

ºC, ∅ = 0.95, heat rate ~10 kW and E%NH3 = 15. 

2.3.2.1 CH4/NH3 

 

 Figures 2.6a and 2.6b present the effects of the preheated air temperature on the NOx 

emissions for cases without a flame-holder and with a flame-holder. For the case without a 

flame-holder, the NOx emissions for E%NH3 = 0 remains in the range of 25 - 40 ppm with 
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varying preheated air temperature from 25 °C – 300 °C. However for 5% NH3 by energy in H2 

(E%NH3 = 5), significant increases in NOx emissions were observed, which seems to be 

reducing with increasing air temperature (see Fig. 2.6a). The total attrition in NOx 

concentration was recorded as being almost 3 times with air temperature change from 25 °C to 

300 °C.  

 For the case with a flame-holder (Fig. 2.6b), the NOx emissions for the NH3-free CH4/air 

flame were even further reduced.  However, the effect of the flame-holder on NOx emissions is 

more pronounced for the case of E%NH3 = 5. For example, at 25 °C and 300 ºC preheated air 

temperatures, the NOx emissions were recorded at approximately 60% and 86%, respectively, 

lower for the case with a flame-holder compared to the case without a flame-holder. It can also 

be noted from Figs. 2.6a and 2.6b that increasing the preheated air temperature helps to 

improve NH3 energy replacement (E%NH3) in the fuel mixture for both burner configurations. 

For the case without a flame-holder , the maximum possible NH3 energy replacement 

(E%NH3) achieved is 20% at 300 °C air temperature (Fig. 2.6a), whereas it is recorded as 

approximately 70% for the case with a flame-holder (Fig. 2.6b), showing the favorable effects 

of a flame holder on achieving higher ammonia substitution in the fuel mixture. 

 
Fig. 2.6. Comparison of NOx variation with preheated air temperature for E%NH3 = 0 and 5 for (a) without 

flame-holder and (b) with flame-holder burner configurations for CH4/NH3/Air at Qmix = 560 slpm and ∅ = 0.95.  
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 The effects of increasing ammonia energy replacement in the CH4/NH3 fuel mixture 

(E%NH3) on the NOx emissions, NH3 slip, and mixing zone temperature are displayed in Fig. 

2.7a and 2.7b for cases without a flame-holder and with a flame-holder, respectively, at 300 °C 

air temperature. For the case without a flame-holder (Fig. 2.7a), the NOx is gradually 

increasing with increasing E%NH3, and reduction in NH3 slip indicates higher NH3 conversion 

to NO with increasing E%NH3. For the case with a flame-holder, the NOx emission profile is 

recorded as a bell shaped curve with increasing NH3 in the fuel mixture. NH3 slip remains 

fairly constant until E%NH3 reaches 60%, beyond which a steep increase in NH3 slip is 

observed.  

 It can be conjectured that the NH3 substitution in the fuel mixture is converted to NOx 

formation until E%NH3 = 40 due to higher mixing zone temperature of 1020 °C – 1105 °C 

(Fig. 2.7b). Later, further NH3 addition in the fuel mixture reacts with the NOx and reduces the 

NOx by non-catalytic reduction in the temperature range of 925 °C – 940 °C, as shown in Fig. 

2.7b. 

 
Fig. 2.7. Variation of NOx, NH3 slip and mixing zone temperature for (a) w/o Flame-Holder and (b) w/ Flame-

Holder burner configurations for CH4/NH3/Air at 300C, Qmix = 560 slpm, heat-rate 16 kW and equivalence 

ratio 0.95. 
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 The profiles of CO and CO2 emissions with varying E%NH3 for the case with a flame-

holder are also plotted in Fig. 2.8. It is noted that the CO2 concentration reduces with 

increasing E%NH3, corresponding with enhanced CO concentrations because of reduced 

reactivity leading to incomplete combustion.  

 

 
Fig. 2.8. Variation of CO and CO2 emissions with E%NH3 for with flame-holder burner configurations for 

CH4/NH3/Air at 300 ºC, Qmix = 560 slpm, heat-rate 16 kW and ∅ = 0.95. 

 

 The effects of increasing equivalence ratio from 0.5 to 1.0 on the E%NH3 that can be 

achieved, on NOx emissions, and on NH3 slip are plotted in Fig. 2.9a and 2.9b for cases without 

a flame-holder and with a flame holder, respectively. 

 
Fig. 2.9. Effects of ∅ on NOx, NH3 slip and Max. E%NH3 for (a) without flame-holder and (b) with flame-

holder burner configurations for CH4/NH3/Air at 300 ºC, Qmix = 560 slpm, heat-rate 16 kW. 
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 For the case without a flame holder, the fuel-rich mixture was much more favorable 

compared to fuel-lean mixtures not only in increasing the E%NH3 in the fuel mixture but also 

in diminishing NOx emissions. For example, the NOx emission at ∅ = 0.95 is observed to be 

1/9
th

 of the NOx at  ∅ = 0.5, whereas E%NH3 seemed almost unchanged with equivalence ratio. 

For the case without a flame-holder, near stoichiometric conditions results in significantly 

lower NOx and up to 70% NH3 energy replacement compared to ∅ = 0.5. Unfortunately, there 

is a correspondingly steep increase in NH3 slip with enhanced NH3 substitution (E%NH3). 

 In order to investigate the effect of the fuel nozzle positions, the NO variations with 

E%NH3 are plotted for three different nozzle positions (1) nozzle C (at the exit plane of the 

swirl plate, baseline) (2) nozzle B (0.25 inch above the baseline) and (3) nozzle A (0.5 inch 

above the baseline) in Figs. 2.10a and 2.10b for cases without a flame-holder and with a flame 

holder, respectively. 

 

Fig. 2.10. Effects of fuel nozzle positions on NOx emissions for (a) without flame-holder and (b) with flame-

holder burner configurations for CH4/NH3/Air at 300 ºC, Qmix = 560 slpm, heat-rate 19 kW. 

 

 For the case without a flame-holder, the maximum achieved E%NH3 is recorded to be 

same among the three nozzle positions; however, nozzle position C led to the lowest NOx 

emissions. The data suggests that the nozzle displacement from the base-line position enhances 
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the extent of fuel-air mixing by providing higher residence time and thus results in local premix 

zone in the reaction zone, resulting in higher NOx emissions. For the case with a flame-holder, 

again the nozzle C position is found to minimize NOx emissions, whereas nozzle A position is 

observed as unfit for efficient combustion; however, due to dominant effect of the flame-holder 

on mixing, the NOx emissions are minimized to near zero NOx emissions for all the three 

nozzle positions. 

 

2.3.2.2 H2/NH3 

 

 The effects of the preheated air temperature on NO emissions for cases E%NH3 = 0 and 

50 are plotted in Fig. 2.11a and 2.11b for cases without a flame-holder and with a flame-holder 

for H2/NH3/Air at Qmix = 300 slpm and equivalence ratio 0.95. For the case without a flame-

holder, the NOx emissions for E%NH3 = 0 increases noticeably from 40 ppm to 90 ppm with 

an increase in preheated air temperature from 25 °C to 300 °C. Whereas, for E%NH3 = 50, the 

NOx emissions recorded almost 28 times higher than E%NH3 = 0 at 25 °C room temperature 

and the NOx profile is seen to be reducing with enhanced preheated air temperature. For 

example, the NOx emissions for case E%NH3 is reduced by 3 times with the change in air 

temperature from 25 ºC to 300 °C (Fig. 2.11a). The maximum E%NH3 achieved for H2/NH3 

mixtures is almost 70% at 300 °C for the case without a flame-holder (Fig. 2.11a). 
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Fig. 2.11. Effects of preheated air temperature on NO emission for cases E%NH3 = 0 and 50 for (a) without 

flame-holder and (b) with flame-holder burner configurations for H2/NH3/Air at Qmix = 300 slpm and ∅ = 0.95. 

 

 For the case with a flame-holder (Fig. 2.11b), the NOx for cases E%NH3 = 0 and 50 are 

significantly subdued due to enhanced mixing effects caused by the flameholder compared to 

the case without a flameholder.  

 The peak E%NH3 achieved for the case without a flameholder is noted to be 

approximately 90% at 300 °C, indicating that the flameholder and preheated air temperature 

both help to stabilize the combustion and reduce NOx emissions. The effects of increasing 

ammonia energy replacement in the H2/NH3 fuel mixture (E%NH3) on the NOx emissions, NH3 

slip, and mixing zone temperature are plotted in Figs. 2.12a and 2.12b for the cases without a 

flame-holder and with a flame-holder, respectively, at 300 °C preheated air temperature. It is 

observed that for the case without a flame-holder (Fig. 2.12a), the NOx linearly increases with 

increasing E%NH3 and reduces in NH3 slip with increasing E%NH3, which indicates higher 

NH3 conversion. The mixing zone temperature is found to be near 1200 °C (radiation 

uncorrected) at which the NH3 can readily convert to NO. For the case with a flameholder (Fig. 

2.12b), the NOx emission profile increases gradually and the magnitudes are subdued to within 
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100 ppm for the entire range of E%NH3. The NH3 slip remains fairly constant in the range of 

200 ppm until E%NH3 = 85 and shoots up to 800 ppm at E%NH3 = 90. 

 
Fig. 2.12. Variation of NOx, NH3 slip and mixing zone temperature for (a) without flame-holder and (b) with 

flame-holder burner configurations for H2/NH3/Air at 300 ºC, Qmix = 300 slpm, heat-rate 15 kW and ∅ = 0.95. 

 

 Due to the presence of the flameholder, the mixing zone temperature is fairly uniform and 

in the range of 890 - 925 °C at the higher end of E%NH3 (Fig. 2.12b), which may help with 

reduction of NH3 by reaction with NOx, thus minimizing both species in the exhaust. However, 

at E%NH3 = 90, the NH3 slip gets higher which can be attributed to the lack of sufficient NOx 

species to react with.  

 The effects of increasing equivalence ratio from 0.5 to 1.0 on NOx emissions and NH3 slip 

for the case of E%NH3 = 50 for the H2/NH3 fuel mixture are plotted in Figs. 2.13a and 2.13b 

for cases without a flame-holder and with a flameholder , respectively. For the case without a 

flame-holder (Fig. 2.13a), the NOx linearly increases with equivalence ratio, meaning an 

adverse effect of near stoichiometric conditions on NOx emissions for the case of E%NH3 = 50. 

For example, the NOx recorded at ∅ = 0.95 is found to be 2 times higher than NOx at ∅ = 0.5. 

However, the NH3 slip is found to be approximately independent of equivalence ratio.  
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Fig. 2.13. Effects of ∅ on NOx, NH3 slip at E%NH3 = 50; for (a) without flame-holder and (b) with flame-holder 

burner configurations for H2/NH3/Air at 300 ºC, Qmix = 300 slpm, heat-rate 16 kW. 

 

 Interestingly, the NOx emissions and NH3 slip magnitudes are reduced significantly with 

changes in flame condition from fuel-lean to fuel-rich for the case with a flameholder (Fig. 

2.13b). The attrition in NOx and NH3 slip was observed to be more than 98% and 56% 

respectively, indicating that with a flameholder , near stoichiometric conditions are much more 

favorable for establishing a stable flame with lower emissions.  

 
Fig. 2.14. Effects of fuel nozzle positions on NOx emissions for (a) without flame-holder and (b) with flame-

holder burner configurations for H2/NH3/Air at 300 ºC, Qmix = 300 slpm, heat-rate 15 kW. 

 

 The effects of fuel nozzle position on NOx emissions for the H2/NH3 fuel mixtures are 

presented in Fig. 2.14. In Figs. 2.14a and 2.14b; the NO variations with E%NH3 are plotted for 

three different nozzle positions (1) nozzle C (at the exit plane of the swirl plate, baseline) (2) 

nozzle B (0.25 inch above the baseline) and (3) nozzle A (0.5 inch above the baseline) for the 
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cases without a flameholder and with a flameholder, respectively. The maximum achievable 

E%NH3 for the three nozzle positions was approximately 70% for the case without a 

flameholder (Fig. 2.14a) However, nozzle position C was found to be the best location for 

minimizing NOx emissions. Overall, nozzle position A results in significantly higher NOx 

emissions compared to the nozzle position C (baseline), indicating that enhanced upstream 

mixing of fuel and air has adverse effects on emissions.    

 Similarly, for the case without a flame-holder (Fig. 2.14b), the maximum E%NH3 was 

determined to be approximately 90, and the NOx emissions profiles are lowered significantly 

compared to the case without a flameholder. It can be seen that for the case with a flameholder, 

all fuel nozzle positions result in ultra-low NOx emissions at E%NH3 = 90, indicating the 

dominant effect of mixing caused by the presence of the flameholder.  

 In order to further increase the NH3 substitution levels and reduce emissions in the H2/NH3 

fuel mixture, a custom-designed fuel nozzle was tested in collaboration with Goodrich Inc. The 

custom-designed fuel nozzle was verified for an extensive parametric matrix including air 

temperature, equivalence ratio, burner geometry, flame-holder geometry, swirl geometry, heat-

rate etc. Key results from these tests are discussed here.  

 

2.3.2.3 Coaxial swirl Nozzle 

 

 A schematic of the custom-designed fuel nozzle is shown in Fig. 2.15. This particular 

nozzle has two inlet ports: an central inlet 1 and (b) outer inlet 2; the central inlet orifice 

diameter is 2 mm and inlet 2 is concentric to the center orifice. This specific design is used to 

enhance the extent of fuel-air mixing with the help of mass diffusion.  
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Fig. 2.15. Schematic of custom-designed (Goodrich Inc.) fuel nozzle. 

 For the case without a flame-holder, it is found that inlet 1 is not favorable for achieving 

flame stability at high NH3 substitution because high inlet velocity causes flame blow-off. It is 

observed that for the case of 30% swirl air passing through inlet 2, the NOx emissions increased 

approximately by 10 times compared to the case with no air flow through inlet 2. The use of 

inlet 2 for the flow of fuel mixture enhanced the NH3 energy replacement (E%NH3) in H2/NH3 

mixture up to 70% without air preheating, compared with 50% for the SNA air atomizing 

nozzle discussed earlier. The NOx emissions and NH3 slip are found to be significantly lower 

for the custom-designed nozzle compared to SNA air atomizing nozzle. 

 Figure 2.16 shows the NOx emissions and NH3 slip as functions of the percentage of total 

air flow passing through inlet 1, with the fuel mixture incoming from inlet 2, for H2/NH3/Air at 

300 °C, Qmix = 300 slpm, heat rate of 15 kW at E%NH3 = 80 for cases without a flameholder 

and with a flameholder. Increasing the percentage of total air flow rate through inlet 1 increases 

the NOx emissions and reduces the NH3 slip significantly. For the case without a flameholder, 

the NOx emissions are found to be 2 times higher, and NH3 slip is reduced by 3 times 

approximately, with a percentage air flow rate from 0% to 5%. This indicates that enhanced 

NOx induced by air flow through inlet1 may react with remaining NH3 in the flame zone and 
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result in lower NH3 slip. Similarly, for the case with a flameholder, the NOx emissions are 

close to zero. In addition, NH3 slip is reduced by approximately 1/14
th

 times while varying the 

percentage of total air flow from 0% to 15%. Overall, the use of inlet 2 for the fuel mixture and 

inlet 1 for passing a percentage of the total air flow rate helps to minimize NH3 slip by means 

of non-catalytic reduction in the flame zone.     

 
Fig. 2.16. NOx and NH3 slip with respect to % air through Inlet 1 at E%NH3 = 80; for without flame-holder and 

with flame-holder burner configurations for H2/NH3/Air at 300 ºC, Qmix = 300 slpm, heat-rate 15 kW. 

 

 An instantaneous flame image of 100% pure anhydrous ammonia (NH3) is shown in Fig. 

2.17 in a swirl-stabilized turbulent flame while using the custom-designed fuel nozzle with a 

flameholder. The NOx emissions and NH3 slip recorded for this flame are 3-5 ppm (ultra- low) 

and 800-1300 ppm, respectively. 
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Fig. 2.17. Instantaneous flame image of 100% NH3 swirl-stabilized turbulent flame.
4
  

 

2.4 Conclusions 

 

 An extensive combustion characterization of H2/NH3 and CH4/NH3 fuel mixtures were 

studied for both laminar flame (Hencken burner) and turbulent flame (swirl-stabilized 

turbulent) configurations. For the laminar diffusion flame, flame characteristics such as flame 

length, luminosity, color etc., changed significantly for both H2/NH3 and CH4/NH3 fuel 

mixtures, indicating changes in flame chemistry with increasing NH3 seeding. The maximum 

E%NH3 was recorded as 74% for H2/NH3 and 47% for CH4/NH3, which can be ascribed to the 

higher reactivity of H2 over CH4. 

 For swirl-stabilized turbulent flames, a detailed parametric study of NH3 as a percent of 

energy replacement (E%NH3) and corresponding emissions for H2/NH3 and CH4/NH3 fuel 

mixtures was conducted with respect to specific variables such as (1) preheated air 

temperature, (2) equivalence ratio, (3) heat rate, (4) swirl geometries, (5) fuel nozzle type and 

position, and (6) burner configuration. The effects of increasing air temperature were favorable 

for increasing NH3 substitution in both H2/NH3 and CH4/NH3 fuel mixtures, with significantly 

                                                 
4
 Air Temperature = 25C, F12 swirl, equivalence ratio 0.95, heat-rate 16.15 KW 

NOx ~ 3-5 ppm (ultra low) 

NH3 slip ~ 800 – 1300 ppm  
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higher NH3 replacement for H2 compared to CH4. The syphon type air-atomizing fuel nozzle 

was more effective compared to tube type nozzle. However, a custom-designed fuel nozzle 

exhibited the best performance in achieving higher E%NH3 as well as lower NOx emissions 

and NH3 slip. 

 By comparing two different burner configurations (1) without flameholder and (2) with 

flame-holder, it is observed that the case with a flameholder is far superior in achieving higher 

E%NH3, lower NOx emissions, and lower NH3 slip. The case with a flame-holder enhances the 

mixing between fuel and air as well as provides uniform temperature distribution in the mixing 

zone, thus facilitating non-catalytic reduction of NO by NH3 in the mixing zone, resulting in 

lower NOx and NH3 slip. Near stoichiometric conditions are found to be better compared to 

fuel-lean conditions for the case with a flameholder. Based on the analyses, NH3 replacement is 

more challenging in CH4/NH3 mixtures compared to H2/NH3 due to low reactivity of the 

mixture. For H2/NH3 mixtures, an optimized set of parameters were identified, including a 

custom-designed fuel nozzle, and pure NH3 flame (E%NH3 = 100) is achieved with ultra-low 

NOx (3-5 ppm) with non-negligible NH3 slip (800-1300 ppm).. In future work, the waste-

exhaust heat can be utilized for thermal NH3 decomposition to help reduce NH3 slip. 
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CHAPTER 3. EXPERIMENTAL AND MODELING STUDY OF 

CHEMICAL-KINETICS MECHANISMS FOR H2-NH3-AIR 

MIXTURES IN LAMIANR PREMIXED JET FLAMES 
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Praveen Kumar and Terrence R. Meyer
 

 

Abstract  

 A combined experimental and modeling study of laminar flame speeds for premixed H2-

NH3-air jet flames is performed for 0% to 80% NH3 in H2 by energy and for equivalence 

ratios from 0.5 (fuel lean) to 1.1 (fuel rich). Experimental flame speeds in the jet flame 

configuration compare well with previous data from freely propagating spherical flames after 

corrections for heat losses. These data are then used to validate flame-speed predictions using 

CHEMKIN PRO over a wide range of conditions and to evaluate the performance of three 

detailed chemical kinetic mechanisms. It is found that these mechanisms perform well for 

H2-air combustion but begin to deviate substantially (by ~2×) from each other with the 

addition of NH3. Differences in flame speeds and associated radical species concentrations 

(H, O, and OH) are found to be largest for higher levels of NH3 (50% by energy and greater) 

and with increasing equivalence ratio. A sensitivity analysis reveals that OH is the key 

radical leading to NH3 decomposition from low to high equivalence ratio, and is a likely 

source of deviation between model predictions. Comparisons with experimental data are used 
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to determine the range of conditions for which each mechanism is capable of providing 

accurate predictions for H2-NH3-air mixtures. 

Keywords:  NH3; Ammonia; H2; Hydrogen; Premixed flames; Flame speed; Chemical 

kinetics 
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3.1 Introduction 

 The ever-increasing demand for alternative fuels with reduced pollutant and carbon 

emissions has drawn substantial attention towards hydrogen (H2) combustion for heating, 

power, and transportation. However, there are still technical challenges associated with 

hydrogen storage and distribution, leading to a wide range of research efforts that have 

suggested ammonia (NH3) as a potential alternative fuel or H2 carrier [1,2]. NH3 can be 

generated from renewable sources, such as wind or solar energy, during off-peak hours when 

these resources are underutilized, or from nuclear waste or bio-mass [3]. Once produced, 

NH3 is a carbon-free fuel. It has a higher energy density than liquid H2 and can easily be 

stored as a liquid at about 8× atmospheric pressure at 21 °C, making it an ideal H2 carrier [4]. 

In fact, NH3 has a well-established distribution infrastructure, with pipelines in the United 

States, for example, stretching from Louisiana to Minnesota and from Oklahoma to Ohio.  

  Considering the potential for NH3 to serve as an alternative fuel or as an H2 carrier, a 

number of studies have explored the flame stability and emissions characteristics of NH3 for 

combustors or engine applications. This includes the combustion of pure NH3 as well as NH3 

mixed with conventional fuels such as H2 and methane (CH4), among others [5-7]. Reiter & 

Kong [8], for example, found that NH3 could replace 95% of the diesel fuel in a conventional 
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diesel engine and reduce NOx emissions. Similarly, the effects of NH3 substitution to 

improve the safety and performance of H2 internal combustion engines were investigated and 

compared with results from computational modeling [9]. In this case, the authors showed that 

NH3 substitution increased NOx and N2O emissions significantly under lean conditions. 

While these studies show that NH3 can potentially act as an alternative fuel, minimizing NH3 

slip (unburned NH3 in the exhaust), carbon monoxide (in the case of CH4 and diesel 

substitution), and NOx simultaneously remains a difficult challenge. Moreover, achieving 

efficient operation over a wide range of conditions requires a thorough understanding of NH3 

combustion chemistry. 

 In an effort to advance this understanding, research work on NH3 combustion has 

established N2 and NO formation and decomposition pathways for NH3 seeded flames [10]. 

Detailed kinetic mechanisms describing NOx formation and re-burning in hydrocarbon/NH3 

and H2/NH3 mixtures have been developed by Miller and Bowman [7]. Recently, Mendiara 

and Glarborg [11] developed a chemical kinetics model involving 97 species and 779 

reactions for the oxidation of NH3 in oxy-fuel combustion of CH4/NH3 in a laminar flow 

reactor with a temperature range from 973 to 1773 K. The updated chemical mechanism 

captured experimental trends fairly well, focusing particularly on the effects of high CO2 

concentration. Detailed chemical mechanisms for hydrocarbon/NH3 and H2/NH3 reactions 

have also been developed by Konnov [12], as well as by Tian et al. [13] in a companion work 

with that of Mendiara and Glarborg [11]. Compared with the Miller and Bowman, these 

mechanisms have been updated with more extensive reactions for NH3 chemistry—the full 

versions containing four-fold the number of species and ten-fold the number of reactions. 
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The Konnov mechanism was found to be in agreement with the measured NO concentrations 

in lean CH4-NH3-air premixed flames, but NO lean re-burning was not well predicted [12]. 

Duynslaegher et al. [14] utilized the Konnov mechanism to investigate the effects of initial 

H2 content on NH3-H2-O2-Ar flames. They were able to predict the effects of equivalence 

ratio on NO formation but found disagreement for NH2 and N2O species concentrations. 

Later, Shmakov et al. [15] studied NO- and NH3-doped H2-O2-N2 flames experimentally and 

numerically using a derivative of the Konnov detailed reaction mechanism and provided 

modifications to the reaction chemistry based on the experimental data for better overall 

agreement. Tian et al. [13] proposed a comprehensive kinetics mechanism based on the 

experimental and modeling study of 11 premixed NH3/CH4/O2/Ar flames at low-pressure 

(4.0 kPa),  stoichiometric conditions. This mechanism has been employed for successfully 

predicting the structure of CH4-NH3 and nitro-methane flames [13]. Because of 

comprehensive validation with experimental data over a range of conditions, this model is 

seeing wide use in the recent literature [16] and is being substituted in some instances in 

place of the GRIMech3.0 mechanism [17].  

 While the formulations of Konnov and Tian have undergone significant recent 

development and are being utilized to an increasing extent in the current literature, little or no 

experimental validation has taken place with regard to laminar flame speeds. Of particular 

interest in the current work is the laminar flame speed for H2-NH3-air mixtures, which is 

critical for predicting combustor performance parameters, such as fuel consumption rates, 

wall quenching effects, and NH3 slip under carbon-free combustion conditions. The 

combustion characteristics of near-stoichiometric NH3-air mixtures have previously been 
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modeled at elevated pressure and temperature conditions using a derivative of the Konnov 

mechanism in a flat, freely propagating flame model [18]. Results indicate that both 

equivalence ratio and compression ratio have an important impact on the laminar burning 

velocity and the adiabatic flame temperature; however the modeling results from Ref. 18 

were not compared with experimental data. Hence, there is a gap in the literature regarding 

the experimental validation of laminar flame speed predictions for H2-NH3-air mixtures using 

the Konnov and Tian mechanisms. 

  Lee [9,19] evaluated the upstretched laminar burning velocities and stretch effects for 

laminar, premixed H2-NH3-air flames in a freely propagating spherical configuration and 

compared results with numerical predictions using the Miller and Bowman mechanism [7]. 

Lee’s measurements serve as a baseline for the current study and are used to ensure that the 

experimental approach described herein is consistent with flame-speed measurements from 

the published literature. However, for comparisons with the Konnov and Tian mechanisms, 

we select a different flame configuration (a laminar premixed jet flame) that will be more 

convenient for a range of subsequent studies. The tube-stabilized jet flame has been adopted 

as a standard tool for fundamental flame studies and has been used in several cases for 

characterizing laminar flame speed and flame structure [20,21]. The ability to compare 

experimental data from a steady laminar flame to results from spherical or planar freely 

propagating flames will allow rapid assessment of fuel mixtures over a wide range of 

conditions.  

 This paper focuses on three main objectives: (i) a more detailed analysis of the 

methodology for obtaining laminar flame speeds for laminar premixed jet flames, including 
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corrections for heat transfer effects, (ii) detailed comparisons between the experimental data 

and models using the Konnov and Tian mechanisms over a wide range of H2-NH3-air 

mixtures and equivalence ratios, and (iii) an analysis of NH3 decomposition and radical 

formation rates for the two mechanisms and how these affect model accuracy at the various 

conditions. Toward these objectives, Experimental laminar flame speeds for premixed H2-

NH3-air jet flames are compared with numerical predictions using the 1-D, laminar, freely 

propagating flame code in CHEMKIN Pro 4.0. The primary focus is on the Konnov [12] and 

Tian [13] mechanisms due to their more detailed treatment of NH3 chemistry, although 

limited comparisons are also made with the widely used GRI-Mech3.0 mechanism [22]. The 

accuracy of the experimental approach as well as each chemical mechanism is evaluated for 

various conditions, and various sources of disagreement are investigated using sensitivity 

analyses of species production and decomposition rates. 

 

3.2 Experimental and computational methods 

3.2.1 Apparatus and method of measuring flame speed 

The laminar jet flame is a well-established configuration that provides a 

multidimensional combustion zone and has been extensively used by the researchers for 

premixed flame studies [20,23]. The shape of the flame is a balance between the jet velocity 

and the laminar flame speed of the fuel-air mixture. It is presumed that the flame front 

stabilizes at a location for which the average velocity of the unburned fuel-air mixture normal 

to the conical flame front is equal to the laminar flame speed [24]. In practice, the average 

flame speed is calculated by dividing the volume flow rate of the mixture by the flame 
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surface area. This method of estimating the flame speed is very similar to the method adopted 

by Dong et al. [23]. 

 Figure 3.1a shows the jet-flame configuration on the tube burner setup, as used in the 

experiments. The reaction zone is the luminous conical edge and the flame surface is area is 

estimated as the surface area (      ) confined by the luminous edges.  Thus, the laminar 

flame speed    can be calculated from Eq. 3.1: 

     
 ̇   

      
  (3.1) 

where  ̇    is the total volumetric flow rate of the fuel-air mixture. 

 

Fig. 3.1. (a) Tube flame configuration and (b) schematic of experimental set-up. MFC – mass-flow controller, 

CCD – charge-coupled device camera, DAQ – data acquisition system. 

 

 A schematic of the experimental setup used for laminar flame speed measurements is 

shown in Fig. 3.1b. The experimental setup includes a stainless steel tube burner, gas supply 
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system, control valves, mass flow controllers, mixing manifolds, and a charge-coupled 

device (CCD) camera to record the flame images. Two K-type thermocouples are attached to 

the tube burner at different locations to perform heat transfer analysis. The volumetric flow 

rate of H2 and air are measured with mass flow controllers (Alicat, ±1.0% full scale), whereas 

the NH3 flow rate is controlled by a rotameter (Aalborg, ±5% full scale).  

 For the present set of experiments, premixed laminar flames are stabilized above two 

stainless steel tubes with 4.67-mm and 11.11-mm inner diameter (ID). The ID of 4.67 mm 

ensured a stable flame without flashback or blow-off for the entire range of equivalence 

ratios for cases of 0%, 20%, 50%, and 80% NH3 in H2 by energy. Conditions with E%NH3 = 

0, 20 and 50 used a 4.67-mm tube ID, whereas an 11.11-mm tube ID was used for the case of 

E%NH3 = 80. The long straight tubing ensured that the fuel-air mixture was uniformly mixed 

for each experiment.  

 

3.2.1.1 Method for estimating flame surface area 

 Flame images at each condition are captured using a 4272 × 2848 pixel CCD camera 

(Canon EOS DIGITAL REBEL XSi) and an 18–108 mm, f/5.6 camera lens. The CCD 

camera has high light sensitivity, high spatial resolution, and sufficiently large dynamic 

range. For each experimental condition, 25 flame images are captured and analyzed to 

capture the flame surface area. Based on the axisymmetric flame structure, each flame image 

is first split in half along the center axis. Then for one half of the flame image, a Matlab 

program is executed to identify the luminous conical edge of the flame defined by the local 

peak in the camera signal. Flame surface area can then be estimated by simple integration of 
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the area under the luminous conical edge and then multiplied by two for the other half 

portion of the flame as shown in Eq. 3.2.  

         ∫  (    
 

 
         (3.2) 

 For each experimental condition, the flame surface area        is determined by the 

average of 25 surface area measurements. The technique was verified using a premixed CH4-

air flame resulting in a flame speed of 32.9 cm/s at stoichiometric conditions, which is 10% 

lower than the measured adiabatic flame speed of methane-air flame [25]. For illustration, 

Fig. 3.2 shows a sample flame image and the corresponding identified luminous conical edge 

(reaction zone) for pure a CH4-Air premixed flame at an equivalence ratio ∅ = 1.0.  

 

Fig. 3.2. Instantaneous flame image and the identified luminous edge for CH4-Air at ∅ = 1.0. 

 

3.2.1.2 Experimental inlet conditions 

 The volumetric flow rates of  NH3, H2 and air are shown in Tables 3.1, 3.2, 3.3 and 3.4 

for cases E%NH3 = 0, 20, 50  and 80 respectively, for equivalence ratios (∅) ranging from 0.5 
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to 1.1.  All equivalence ratio conditions are calculated based on the following chemical 

reactions; 

               (                      (3.3) 

 The total volumetric flow rate ( ̇      for cases E%NH3 = 20, 50 and 80 is kept constant 

at 2 standard liters per minute (slpm). Due to higher flame speeds for case E%NH3 = 0 (pure 

H2-air), a total volumetric flow rate  ̇     = 12 slpm is employed to avoid flame propagation 

into the fuel tube. Hence, the effects of heat transfer are expected to vary somewhat for cases 

with and without NH3, necessitating temperature measurements near the tube exit, as 

discussed further below. 
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 Table 3.1. Inlet conditions for case E%NH3 = 0                       Table 3.2. Inlet conditions for case E%NH3 = 20 

 

 

Table 3.3. Inlet conditions for case E%NH3 = 50                      Table 3.4. Inlet conditions for case E%NH3 = 80 

 

3.2.2 Computational modeling 

 A 1-D, laminar, freely propagating flame model is employed in CHEMKIN Pro 4.0 for 

predicting laminar flame speeds. Such flames, which are assumed to be free from external 

instabilities and wall effects, represent an idealized model for conducting fundamental 

Tube ID = 4.65 mm 

E%NH3 = 0 

∅ 
NH3 H2 Air  ̇     

(slpm) (slpm) (slpm) (slpm) 

1.1 0 3.79 8.21 12 

1.0 0 3.55 8.45 12 

0.95 0 3.42 8.58 12 

0.9 0 3.29 8.71 12 

0.8 0 3.02 8.98 12 

0.7 0 2.73 9.27 12 

0.6 0 2.42 9.58 12 

0.5 0 2.08 9.92 12 

Tube ID = 4.65 mm 

E%NH3 = 20 

∅ 
NH3 H2 Air  ̇     

(slpm) (slpm) (slpm) (slpm) 
1.1 0.0819 0.522 1.40 2 
1 0.0766 0.488 1.44 2 

0.95 0.0738 0.470 1.46 2 
0.9 0.0709 0.452 1.48 2 
0.8 0.0649 0.414 1.52 2 
0.7 0.0585 0.373 1.57 2 
0.6 0.0518 0.330 1.62 2 
0.5 0.0446 0.284 1.67 2 

Tube ID = 4.65 mm 

E%NH3 = 50 

∅ 
NH3 H2 Air  ̇     

(slpm) (slpm) (slpm) (slpm) 

1.1 0.215 0.343 1.44 2 

1 0.201 0.320 1.48 2 

0.95 0.193 0.308 1.50 2 

0.9 0.186 0.296 1.52 2 

0.8 0.170 0.270 1.56 2 

0.7 0.152 0.243 1.60 2 

0.6 0.134 0.214 1.65 2 

0.55 0.125 0.211 1.68 2 

Tube ID = 11.11 mm 

E%NH3 = 80 

∅ 
NH3 H2 Air  ̇     

(slpm) (slpm) (slpm) (slpm) 

1.1 0.215 0.343 1.44 2 

1 0.201 0.320 1.48 2 

0.95 0.193 0.308 1.50 2 

0.9 0.186 0.296 1.52 2 

0.8 0.170 0.270 1.56 2 

0.7 0.152 0.243 1.60 2 

0.6 0.134 0.214 1.65 2 

0.55 0.125 0.211 1.68 2 
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studies. As noted earlier, three reaction mechanisms are used for flame speed predictions: 

Tian et al. [13], Konnov [12], and GRI-Mech3.0 [22]. While Miller and Bowman [7] used 19 

species and 73 reactions, the full Konnov mechanism has over 85 species and 1200 reactions 

for C, H, N, and O elements [26]. It has been used for a wide range of fuel mixtures, 

including NH3, H2, N2O, NO, NO2, and carbon species. However, for the current 

experiments, all the carbon species and associated reactions are eliminated due to absence of 

carbon in the fuel mixture. The final mechanism has 31 species and 241 reactions as used by 

Duynslaegher, et al. [27]. The Tian mechanism includes 84 species with 703 reactions 

focusing primarily on CH4-NH3 flames [13]. GRI-Mech3.0 is the result of considerable 

research on detailed kinetic mechanisms for NOx formation and re-burning for natural gas or 

CH4 fuel systems. It has been well established for predicting flame structure of pure CH4 or 

CH4 mixtures with other species such as H2 and CO, among others. The GRI-Mech3.0 

mechanism is included in this study for reference, but it has not been updated as recently as 

the Tian and Konnov mechanisms, especially for NH3 chemistry in H2-NH3-air mixtures 

[13,26]. Each of the three chemical mechanisms is incorporated into CHEMKIN Pro 4.0 for 

evaluation of flame speed predictions. However, the GRI-Mech3.0 mechanism failed to 

converge for a number of conditions, especially with high levels of NH3. In addition to 

predictions of flame speed, a study of radical concentrations and a sensitivity analysis of NH3 

decomposition are carried out to help explain differences between model predictions using 

the Tian and Konnov mechanisms.  
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3.2.2.1 Heat transfer model and corrected flame speeds 

 In the present study of flame speed for H2-NH3-Air mixtures, heat is not only lost to the 

ambient via radiation by major species in the flame, but also from the flame base to the 

burner tube exit. This is observed by monitoring the temperature at the tube exit for each 

condition. As established from previous work [20,28], flame speed is directly correlated to 

the flame temperature due to increased reaction rates and thermal and mass diffusivities with 

increased temperature. Thus, it is important to consider heat losses to ensure the accuracy of 

CHEMKIN predictions. To determine the heat losses, the tubing is considered to be an 

extended surface with the following governing equation in Eq. 3.4. The non-dimensional 

form is shown in Eq. 3.5. 

   

    (
  

   
) (        (3.4) 

or                      

   

    (                   (3.5)  

Here,   and     are the tube surface and ambient temperatures (K), respectively,   is the 

convective heat transfer coefficient (W/m
2
·K),   is the conductivity of the tube (W/m·K),   

is the inner perimeter of the tube (m),    is the cross-sectional area (m
2
) of the tube,   

     , and          . 

 To provide the boundary conditions for solving Eq. 3.5, the tube surface temperatures 

are measured with two K-type thermocouples at Location A (at the tube exit, x = 0 mm) and 

Location B (x = 50 mm upstream), as shown in Fig. 3.3. Each temperature measurement is 

time averaged over 60 seconds and care is taken to ensure that the tube surface and the 
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attached thermocouple are in thermal equilibrium at both locations A and B. The absolute 

accuracy in the temperature measurement is estimated to be within        using a calibrated 

temperature source, with an uncertainty of  1%. Since the temperature measured at Location 

B is in close proximity to the ambient temperature, an adiabatic boundary condition is 

assumed at x = 50 mm which results in the following solution:  

 

  
 

      (    

(        
                                                             (6) 

where,   is the separation distance between the thermocouples (50 mm). 

 For each experimental condition, the temperature profile along the tube length is 

estimated by using Eq. 3.3. Further, the prescribed 50-mm tube length is discretized into 100 

sections, each being 0.5 mm in length (Fig. 3.3).  

 

Fig. 3.3. Tube flame and discretization for heat transfer analysis. 
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 For each discretized section, heat from the inner wall is convected back to the unburnt 

fuel-air mixture by forced convection, whereas heat is lost to the surroundings by free 

convection and natural convection from the outer wall.  

 The total heat transfer ( ̇     ) from the flame to the tube would be as follows; 

   ̇        (  ̇              ̇           ̇              
   
  (3.6) 

However due to the assumption that  ̇            is transferred back to the unburnt fuel-air 

mixture, only heat transfer due to   ̇           ̇          is considered as heat loss from the 

flame to the ambient, denoted as  ̇          

 ̇            ( ̇           ̇         )
   
                                    (3.7) 

 Total heat transfer from the flame to the tube ( ̇      ) and heat loss to the ambient by 

free convection and radiation ( ̇         ) are obtained for the entire set of conditions listed in 

Tables 3.1- 3.4, as shown in Figs. 3.4a and 3.4b respectively.  

 

Fig. 3.4. Experimentally determined profiles of (a)  ̇      and (b)  ̇         with respect to ∅ for cases E%NH3 

= 0, 20, 50 and 80. 
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 The heat loss is provided as an input into the PREMIX subroutine module of CHEMKIN 

Pro 4.0 to adjust the flame speed predictions for both the Konnov and Tian mechanisms. 

From Fig. 3.4a, it can be easily seen that the total rate of heat transfer from the flame to the 

burner tube is almost 4 times higher near stoichiometric conditions as compared to fuel lean 

conditions due to higher flame temperatures. For the same reason, the rate of heat loss 

increases with equivalence ratio, as shown in Fig. 3.4b. Note that the rate of heat transfer 

decreases as NH3 is added for E%NH3 from 20 to 80. This is expected due to the decrease in 

flame temperature with NH3 addition. The case with E%NH3 = 20 is higher than that for 

E%NH3 = 0, likely due, in part, to the higher flowrate needed for the latter. 

 

3.3 Results 

 Flame speeds are measured for each flame condition with the method explained in 

section 3.2.1 for equivalence ratios from 0.5 to 1.1. These are compared with flame speed 

predictions from a 1-D, laminar, freely propagating flame model in CHEMKIN Pro 4.0 with 

the Konnov [12]  and Tian [13] mechanisms. The models are employed under uncorrected 

(adiabatic) and corrected (non-adiabatic) conditions at standard temperature and pressure. 

For the uncorrected condition, heat losses are assumed to be zero when computing the 

theoretical flame speeds. However, for the corrected model, heat loss ( ̇           at each 

condition is estimated based on the heat-transfer analysis as described in section 3.2.2.1 and 

provided as input to the model. Also, for the adiabatic model, flame speed predictions are 

evaluated using GRI-Mech3.0 mechanism at each condition and compared with the Tian and 
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Konnov mechanisms. Subsequently, the effects of reaction rates for specific radicals on the 

flame speed predictions are analyzed and compared. 

3.3.1 H2-air flames with 0% NH3 in H2 by energy(E%NH3 = 0) 

 To further characterize the laminar flame speed measurements and check the validity of 

the Matlab code for identifying the luminous conical edge of the flame, pure H2-Air (E%NH3 

= 0) flames are established for the conditions shown in Table 3.1. Experimental flame speeds 

are calculated based on the method discussed in the previous section for the equivalence ratio 

range from 0.5 to 1.1. Figure 3.5a shows the variations of the measured laminar flame speed 

with increasing equivalence ratio and its comparison for three different mechanisms. The 

uncorrected (adiabatic) flame speed predictions for Konnov, Tian, and GRI-Mech3.0 

mechanisms (Fig. 3.5a) follow similar trends and match closely with measured flame speeds 

for equivalence ratios from 0.5 to 0.9. However, the experimental data are lower than the 

predictions at higher equivalence ratios for all three mechanisms. This discrepancy can be 

attributed to the assumption of an adiabatic flame for the 1-D, laminar, freely propagation 

flame model. Heat losses could be significant in the experimental arrangement at higher 

equivalence ratios due to higher flame temperatures. It is notable that the current 

experimental data agree closely with that of Dong et al. [23], who also used a laminar 

premixed jet flame for studies of flame speed and who would have been subject to the same 

effects of heat transfer at higher equivalence ratios. While this agreement gives confidence 

that the current approach gives repeatable results for a given fuel mixture, it is clearly 

important to account for heat transfer effects when comparing flame speed data with 

numerical models [24]. 
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Fig. 3.5. Comparison of measured and predicted laminar flame speeds vs. ∅ for case E%NH3 = 0, for (a) 

uncorrected and (b) corrected models. Lines with symbols: predictions, symbols: measured. 

 

 Figure 3.5b shows the corrected (non-adiabatic) flame speed predictions by 

incorporating heat losses ( ̇           into the model for the Tian, Konnov and GRI-Mech3.0 

mechanisms. It is apparent that the inclusion of heat transfer effects reduces the predicted 

flame speed at higher equivalence ratios to more closely match that of the experimental data 

(within ~10%). The main discrepancy is with the Konnov mechanism, which under predicts 

the experimental flame speeds at equivalence ratios of 0.7 and 0.8. Flame speed predictions 

for GRI-Mech3.0 mechanism are reasonable, but deviate away from the experimental data 

for lower equivalence ratios. At ∅   0.5, the GRI-Mech3.0 mechanism fails to converge, 

indicating flame lift-off. The Tian mechanism agrees favorably with the experimental data 

for the full range of equivalence ratios as well as with the literature [23,29] more so than the 

predictions using the Konnov or GRI-Mech3.0 mechanisms.  

 We conclude from these data that laminar flame speed measurements using the 

premixed jet flame configuration may underestimate the adiabatic flame speed by 25% to 

30% at higher equivalence ratios unless they are corrected for heat losses. In comparison to 
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flame speed measurements from the freely propagating spherical flames of Lee [9], for 

example, we estimate that corrected flame speed measurements are marginally higher by 

only 5% and 0.3% at equivalence ratios of 0.6 and 1.0, respectively (see Appendix A).  Since 

many premixed flames used in practice experience some heat losses and are not at the 

adiabatic flame temperature, these data also indicate that flame speeds measured using 

spherical or planar freely propagating flames at higher equivalence ratio may overpredict 

actual flame speeds used in practice if heat transfer effects are significant. 

 

3.3.2 H2-NH3-air flames 

 Instantaneous flame images are shown in Fig. 3.6 for H2-NH3-air flames at 

stoichiometric conditions, including E%NH3 = 20, 50 and 80. The flame structure and color 

change significantly with increased ammonia addition to the fuel mixture. The case of 

E%NH3 = 20 appears most closely attached to the tube, as evident from the close proximity 

of the peak signal to the tube exit. This is another potential reason why heat transfer effects 

are highest for this case, as shown previously in Fig. 3.4.  
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Fig. 3.6. Instantaneous laminar flame images at ∅ = 1.0, for E%NH3 of (a) 20, (b) 50 and (c) 80. 

 

 The increase in flame length from 6 mm (for E%NH3 = 20) to 28 mm for (E%NH3 = 80) 

clearly indicates that the reaction zone shifts away from the burner exit with NH3 addition, 

which corresponds to a reduction in flame speed. The luminous color change from white to 

yellow to red for E%NH3 of 20, 50, and 80, respectively, also confirms a change in flame 

chemistry with addition of NH3. The flame-speed data for these conditions are presented and 

discussed in the following sections.  

 

3.3.2.1 NH3 addition at 20% by energy in H2 (E%NH3 = 20) 

 Flow rates for achieving E%NH3 = 20 were shown previously in Table 3.2. For this 

case, E%NH3 = 20 and  ̇    = 2 slpm are kept constant for the entire equivalence ratio range 

from 0.5 to 1.1. Variations in experimentally measured laminar flame speeds with respect to 

equivalence ratio are presented in Fig. 3.7a, along with uncorrected theoretical flame speeds 

for the Konnov, Tian, and GRI-Mech3.0 mechanisms.  
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Fig. 3.7. Comparison of measured and predicted laminar flame speeds vs. ∅ for case E%NH3 = 20, for (a) 

uncorrected and (b) corrected models. Lines with symbols: predictions, symbols: measured. 

 

 The measured flame speed for E%NH3 = 20 rises gradually with increasing equivalence 

ratio from 35.8 cm/s at ∅   0.5 to 132.3 cm/s at  ∅   1.1. These data are lower by 

approximately 6% and 15% for ∅   0.6 and 1.0, respectively, with heat losses increasing at 

higher equivalence ratio. 

As is the case for H2-air flames shown in the previous section, the experimental data 

match closely with the Tian and Konnov model predictions for fuel-lean mixtures, while the 

GRI-Mech3.0 mechanism seems to under-predict measured flame speeds. At higher 

equivalence ratios, all three mechanisms agree but predict higher flame speeds than the 

experimental data if heat losses are not considered.  

 The corrected (non-adiabatic) flame speed predictions, which incorporate corresponding 

heat losses ( ̇          into the Konnov and Tian models, are shown in Fig. 3.7b along with 

the experimental data. Flame speeds after corrections for heat losses are not included for the 

GRI-Mech3.0 mechanism because the model failed to converge.  For fuel lean mixtures 

(equivalence ratio 0.5 and 0.6), the corrected flame speed predictions using Tian and Konnov 
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mechanisms reduce only slightly from that shown in Fig. 3.7a due to marginal heat losses 

from the flame. For equivalence ratios from 0.9 to 1.1, the corrected flame speed predictions 

are considerably lower due to increased heat losses. From Fig. 3.7b, it can also be observed 

that the corrected flame speed predictions for the Tian mechanism are in close agreement 

with the experimental data except at ∅   0.8, where the model prediction is 24% lower than 

the experimental data. Overall, both mechanisms follow the same trend, but the Tian 

mechanism more closely matches the experimental data. It is notable that the flame speeds 

drop by nearly a factor of two from E%NH3 = 0 to 20, and the model and experimental data 

are capturing this drop with a high degree of accuracy for most equivalence ratios. 

3.3.2.2 NH3 addition at 50% by energy in H2 (E%NH3 = 50) 

 Figures 3.8a and 3.8b illustrate the measurements and predictions of laminar flame 

speed as a function of equivalence ratio for E%NH3 = 50 based on operating conditions 

shown previously in Table 3.3. In Fig. 3.8a, the measured flame speeds increase from 8.4 to 

44.9 cm/s as equivalence ratio increases from 0.55 to 1.1. These are somewhat lower than 

Lee [19], who reported upstretched flame speeds of  19.5, 36.2 and 53.4  cm/s at equivalence 

ratios 0.6, 0.8 and 1.0  respectively, for E%NH3 = 50 in a spherical propagating flame. Lee 

[19] measured flame speeds approximately 25% higher compared to the present work for 

∅   0.6 and 1.0, and 6% higher for an equivalence ratio of 0.8 (see Appendix). Given the 

nearly six-fold drop in flame speed from E%NH3 of 0 to 50 and differences in heat losses 

between the two flame configurations, this agreement is fairly remarkable. 

 It is also clear from Fig. 3.8a that theoretical flame speeds begin to deviate significantly 

when comparing the Tian, Konnov, and GRI-Mech3.0 mechanisms at this condition. The 
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uncorrected flame speed predictions for the Tian mechanism increase with equivalence ratio 

at a much higher rate than the Konnov mechanism. For example, the uncorrected flame speed 

for the Tian mechanism is 41% and 72% higher than the Konnov mechanism at ∅   0.55 and 

1.1, respectively. The theoretical flame speed for the GRI-Mech3.0 mechanism follows a 

very similar trend as the Tian mechanism for the full range of equivalence ratios, but 

consistently predicts a lower flame speed. In fact, the GRI-Mech3.0 mechanism fails to 

converge at equivalence ratios of 0.5 and 0.6 where flame speeds are lowest, predicting flame 

lift-off under these conditions. 

 

Fig. 3.8. Comparison of experimental flame speeds with predicted laminar flame speeds as a function of ∅ for 

E%NH3 = 50, for (a) uncorrected and (b) corrected models. Lines with symbols: predictions, symbols: 

measured. 

 

 In Fig. 3.8b, it can be seen that incorporating the heat losses in the model for flame 

speed predictions has a significant impact for both the Tian and Konnov mechanisms. 

Because the effects of heat losses are greatest at high equivalence ratio, the corrected flame 

speeds for the Tian mechanism are brought into close agreement with the experimental data, 

except at ∅   0.8 where the prediction underestimates the flame speed to a greater degree. 
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However, the predictions using the Konnov mechanism drop the theoretical flame speeds 

much below that of the experimental data for the entire range of equivalence ratios. 

  

3.3.2.3 NH3 addition at 80% by energy in H2 (E%NH3 = 80) 

 For case of E%NH3 = 80, the measured flame speeds for various equivalence ratios (see 

Table 4) are displayed in Fig. 3.9. The measured flame speeds increase gradually from 4.9 to 

13.2 cm/s for equivalence ratios from 0.5 to 0.95. This is followed by a steep increase from 

0.95 to 1.1, reaching a peak flame speed of 21.4 cm/s. These data are approximately a factor 

of 10 to 15 lower than the case of E%NH3 = 0 (H2-air only). The unstretched laminar flame 

speeds measured by Lee et al. [19] for case E%NH3 = 80, at equivalence ratios 0.6, 0.8 and 

1.0 are 6.3, 14.6 and 22.1 cm/s, respectively, whereas experimental flame speeds for current 

study at equivalence ratio 0.6, 0.8 and 1.0 are recorded as 6.1, 7.4 and 17.2 cm/s respectively 

(see Appendix 3.A). Hence, the flame speed data of Lee [19] agree with the current work to 

within 6% at low equivalence ratio (∅   0.6) where heat losses are minimal, but are 48% and 

22% lower at equivalence ratios of 0.8 and 1.0 due to increased heat losses.  

 Unlike the previous cases from E%NH3 of 0 to 50, the corrected flame speed predictions 

for E%NH3 = 80 using the Konnov mechanism capture the experimental trend for the full 

range of equivalence ratios (see Fig. 3.9b), while the Tian mechanism significantly under 

predicts the experimental flame speeds. At low equivalence ratio, the Tian mechanism is 

unable to converge for E%NH3 = 80, indicating flame lift-off. As usual, the GRI-Mech3.0 

mechanism follows a similar trend as the Tian mechanism, but with an even lower predicted 

flame speed.  
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Fig. 3.9. Experimentally measured flame speeds and theoretical laminar flame speeds with respect to ∅ for case 

E%NH3 = 80, for (a) uncorrected and (b) corrected models. Lines with symbols: predictions, symbols: 

measured. 

 

 Based on these observations, we conclude that the Konnov mechanism is more suitable 

for estimating theoretical laminar flame speeds when NH3 content is very high in the fuel 

mixture. The high level of agreement between the Konnov and Tian mechanisms for E%NH3 

of 0 and 20 and the poor level of agreement at E%NH3 of 50 and 80 point to fundamental 

differences in the treatment of NH3 chemistry between the two mechanisms. Differences are 

particularly evident at higher equivalence ratio. Furthermore, the high sensitivity of the two 

mechanisms to heat losses with high NH3 addition indicates that further investigation of key 

elementary reactions may shed light on differences between the Tian and Konnov 

mechanisms, as discussed below.  

 

3.3.3 Effects of radicals on flame speed 

 From the flame speed analysis in the previous section, it is clear from Figs. 3.7, 3.8 and 

3.9 that the heat losses reduce the laminar flame speeds of the fuel-air mixtures. Heat loss 

from the flame reduces the flame temperature and, thereby, lowers the rate of radical 
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formation reactions. To investigate the effects of heat loss on radical species and flame speed 

in the CHEMKIN models, the concentration profiles of H, O and OH radicals are plotted for 

uncorrected (adiabatic) and corrected (non-adiabatic) models in Fig. 3.10 at an equivalence 

ratio of 1.0 for E%NH3 = 50 using the Konnov mechanism.  

 

Fig. 3.10. Mole-fraction profiles of H, O, and OH radicals for Konnov mechanism at ∅ = 1.0 for E%NH3 = 50. 

 

 From Fig. 3.10, it can be clearly seen that peak H, O and OH concentrations for the 

corrected (non-adiabatic) model are significantly lower compared to the adiabatic 

(uncorrected) model. The largest reductions are seen in the H radical, followed by the OH 

and O radicals. This follows the trend in which flame speed is significantly reduced in the 

model predictions when heat losses are considered. 

 To further investigate the effects of reduced radical concentrations on the rate of NH3 

decomposition at different equivalence ratios, the mole fractions of H, O and OH radicals for 

both the Tian and Konnov mechanisms are plotted in Figs. 3.11a and 3.11b for E%NH3 = 50 

using the uncorrected (adiabatic) model.  
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Fig. 3.11. Mole fraction profiles of H, O, and OH for both Tian and Konnov mechanisms at (a) ∅ = 0.6 and (b) 

∅ = 1.0 for case E%NH3 = 50 using uncorrected (adiabatic) model. 

 

 The data in Fig. 3.11a show that the profiles of H, O and OH are only slightly higher for 

the Konnov mechanism early in the flame for  = 0.6, with the Tian mechanism having 

slightly higher OH further downstream. Then, at  = 1.0, the radical mole fractions increase 

significantly and deviate between the two mechanisms, with the Tian mechanism showing 

much higher radical mole fractions along the entire length of the fame. These data roughly 

correspond to the trends in flame speed seen previously in Fig. 3.8. 

 To assess the relative impact of specific radical species on flame speed and help explain 

differences in flame speed predictions, a sensitivity analysis of NH3 decomposition is 

performed for the Tian and Konnov mechanisms, as shown in Tables 3.5 and 3.6. The 

location chosen for this analysis is within the reaction zone of the 1-D flame at the location 

of peak heat release, which varies for each condition but generally occurs along the rising 

edge shown in Fig. 3.11. It is revealed that the major reaction pathways contributing towards 

ammonia decomposition include: 

                 (Rxn # 1) 



91 

 

  

                (Rxn # 2) 

               (Rxn # 3) 

 At  = 0.6, the sensitivity analysis assigns the greatest significance (~90%) to OH 

radicals in the decomposition of NH3, followed by O and H radicals, for both the Tian and 

Konnov mechanisms. This helps to explain why the Tian mechanism has a slightly higher 

flame speed at  = 0.6 (see Fig. 3.8). At  = 1.0, reactions involving OH and H radicals are 

most critical, together accounting for over 90% of NH3 decomposition. As shown in Figs. 

3.10 and 3.11, significant changes in OH and H radicals could lead to significant changes in 

flame speed with heat losses and changes in equivalence ratio. These data help to explain 

differences in flame speed between the Tian and Konnov mechanisms. In particular, because 

OH has the greatest effect on NH3 decomposition, the relatively high mole fraction of OH 

radicals for the Tian mechanism leads to a higher flame speed at  = 0.6 and a greater 

increase in flame speed at higher equivalence ratio. 

Table 3.5. Relative contribution of each NH3 reaction (1-3) to rate of NH3 

decomposition. Relative contributions of Konnov and Tian mechanisms are 

compared for equivalence ratio of 0.6, E%NH3 = 50, and uncorrected for heat 

transfer effects.  

 

 

 

 

 

 

 

 

Rxn 
# 

 
Reaction 

% Contribution 
Konnov Tian 

1 NH3+OH ↔ NH2+H2O 91.38 85.59 
2 NH3+H ↔ NH2+H2 2.96 2.84 
3 NH3+O ↔ NH2+OH 5.66 11.58 
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Table 3.6. Relative contribution of each NH3 reaction (1-3) to rate of NH3 

decomposition. Relative contributions of Konnov and Tian mechanisms are 

compared for equivalence ratio of 1.0, E%NH3 = 50, and, uncorrected for heat 

transfer effects.  

 

 

 

 To quantify this effect further, the rates of production and decomposition of NH3 are 

computed for E%NH3 = 50 at equivalence ratios of 0.6 and 1.0 for the Konnov and Tian 

mechanisms. As with the sensitivity analysis discussed above, the location chosen for this 

analysis is at the peak heat release within the reaction zone. The total rate of production 

(ROP) and total rate of decomposition (ROD) are shown with positive and negative signs, 

respectively, in Table 3.7. The rate of decomposition is nearly two orders of magnitude 

higher than the rate of production and will have the most impact on flame speeds. At an 

equivalence ratio of 1.0, the higher rate of decomposition for the Tian mechanism is 

consistent with the higher flame speeds shown in Fig. 3.8. At  = 0.6, however, the Konnov 

mechanism displays a higher rate of NH3 decomposition at the location chosen for sensitivity 

analysis (near the peak heat release) because of the higher concentrations of OH, H, and O 

radicals. This is not consistent with the slightly lower flame speeds for the Konnov 

mechanism, shown previously in Fig. 3.8a.  

 

 

Rxn 
# 

 
Reaction 

% Contribution 
Konnov Tian 

1 NH3+OH ↔ NH2+H2O 61.8 66.79 
2 NH3+H ↔ NH2+H2 31.1 23.57 
3 NH3+O ↔ NH2+OH 7.02 9.63 
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Table 3.7. Total rates of production (ROP) and decomposition (ROD) of NH3 at location 

of peak heat release for Tian and Konnov mechanisms at ∅ = 0.6 and 1.0 for case E%NH3 

= 50. 

E%NH3 ∅ 

Total Rate of Decomposition 
(ROD) 

Total Rate of Decomposition 
(ROD) 

Tian Konnov Tian Konnov 

50 
0.6 2.81E-05 2.29E-5 -1.62E-03 -3.24E-03 

1.0 2.39E-04 1.09E-04 -1.07E-02 -7.38E-03 

    

 To explain the higher flame speeds for the Tian mechanism at  = 0.6, it is necessary to 

attribute a significant role to the OH radical, which dictates NH3 decomposition at  = 0.6 

(see Table 3.5) and is higher for the Tian mechanism beyond the location of peak heat release 

as shown in Fig. 3.11a. These data highlight the role of OH in determining flame speeds at 

different equivalence ratios, with and without heat losses, and for the different chemical 

mechanisms. 

 

3.4 Conclusions 

 Flame speed measurements are performed for H2-NH3-Air mixtures in a laminar jet 

flame configuration. Data are compared with flame speed predictions using the Tian and 

Konnov chemical mechanisms in a 1-D, laminar, freely propagating flame speed model in 

CHEMKIN Pro 4.0. Cases include equivalence ratios of 0.5 to 1.1 and NH3 as a percent of 

the energy in H2 of E%NH3 = 0 (pure H2-Air), 20, 50 and 80. The heat loss for each 

condition is determined from thermocouple measurements along the burner tube and 

incorporated into the theoretical model. Flame speed predictions for the GRI-Mech3.0 
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mechanism are also computed for the adiabatic model and compared with the Tian and 

Konnov mechanisms for a limited number of cases. 

 Results show that for E%NH3 = 0, the laminar flame speed predictions for all three 

mechanisms are comparable, with the GRI-Mech3.0 mechanism showing lower flame speeds 

by a factor of two only at the lowest equivalence ratio of 0.5. With corrections for heat 

losses, however, only the Tian mechanism showed agreement with experimental date for the 

full range of equivalence ratios. Similarly, for E%NH3 of 20 and 50, the Tian mechanism is 

shown to be more robust than Konnov mechanism in predicting laminar flame speeds for H2-

NH3-air mixtures. The GRI-Mech3.0 mechanism followed the same trends as the Tian 

mechanism, but underpredicted flame speeds and had difficulty with model convergence 

(indicating flame lift-off) at lower equivalence ratios. In contrast, for E%NH3 = 80, the Tian 

mechanism failed to predict experimental flame speeds as well as the Konnov mechanism. 

Hence, the Konnov mechanism is found to more suitable for fuel mixtures having high 

ammonia content. Similarly, the GRI-Mech3.0 mechanism is not recommended at lean 

conditions or for fuel-air mixtures having high NH3 concentrations.  

 The mole fractions of H, O and OH radicals are used to evaluate possible sources of 

deviation between the Tian and Konnov mechanisms and are found to differ significantly for 

∅ = 1.0. At this condition, the theoretical flame speeds predicted by the Tian mechanism are 

found to be higher than Konnov and correspond with higher peak mole fractions of OH, H, 

and O radicals. From sensitivity analyses of NH3 decomposition rates, it is verified that the 

radical pool of OH, H, and O play an important role in controlling the total rate of 
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decomposition of NH3 via three primary reaction pathways, with OH having a more 

significant impact. 

 From the current study, it is revealed that the radical mole fractions have strong 

implications on the predicted flame speeds. Therefore it is of future interest to validate these 

radical concentrations, which is experimentally convenient using the laminar jet flame 

configuration of the current study. Similarly, these differences in radical mole fractions may 

be consequential for the NO formation in the flame. Hence, follow-on work will include 

investigation of the effects of radical species on the NO formation rates in H2-NH3-air flames 

using both the Tian and Konnov mechanisms. 
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Appendix: Comparisons with spherical freely propagating flames 

 In comparison to measurements from the freely propagating spherical flames of Lee et 

al. [9,19], the current data show lower flame speeds primarily due to heat losses to the flame 

tube. Comparisons at each condition in common with the work of Lee [9,19] are described in 

the previous sections and are summarized further in Table 3.8 below. As noted earlier, with 
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no NH3 addition, the data agree to within 6% from low to high equivalence ratio. With 20% 

NH3 addition by energy, the data agree to within 6% at low equivalence ratio and to within 

15% at high equivalence ratio. With 50% NH3 addition by energy, more significant 

deviations occur potentially due to the low flame speeds involved, with the current 

measurements being 6% to 25% lower than that of Lee. With 80% NH3 addition by energy, 

the data are again comparable but are 5% to 48% lower than that of Lee.  

Table 3.8. Comparison of current flame speed data with that of Lee et al. [9, 19].  

  
E%NH3 

Flame speed (cm/s) 

∅ = 0.6 ∅ = 0.8 ∅ = 1 

Lee Current Lee Current Lee Current 

0 93.8 98.8 na na 193 193 

20 48.3 45.5 na na 127 108 

50 19.5 14.4 36.3 34.1 53.5 42.0 

80 6.3 6.1 14.6 7.4 22.1 17.2 
 

 

Fig. 3.12. Comparison of current flame speed data with that of Lee et al. [9, 19] at ∅ = 0.6 and 1.0 with and 

without corrections for heat losses. 
 

 Despite some differences with the data of Lee [9,19], the current experimental data show 

excellent agreement when the current CHEMKIN Pro 4.0 model using the Konnov [12] and 
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Tian [13] chemical mechanisms after the effects of heat losses are considered. Hence it 

should be possible to use this model to estimate the effects of heat losses to see if the current 

experimental data would otherwise be close to the adiabatic measurements of Lee [9,19]. Fig. 

3.12 shows such a comparison after an approximate correction is applied to the current 

experimental data using the CHEMKIN model.  

 

3.5 References 

 [1] Zamfirescu C, Dincer I. Using ammonia as a sustainable fuel. J. Power Sources 

2008;185:459-465. 

 

[2] Zamfirescu C, Dincer I. Ammonia as a green fuel and hydrogen source for vehicular 

applications. Fuel Process Technol 2009;90:729-737. 

 

 [3] Brandhorst H, Baltazar-Lopez M, Tatarchuk B, Cahela DR, Barron T. Ammonia – itʼs 

transformation and effective utilization. 6
th

 International Energy Conversion 

Engineering Conference. Cleveland, Ohio; 2008. p. 1-11. 

 

[4] Thomas G, Parks G. Potential roles of ammonia in a hydrogen economy. 2006. 

<http://www.hydrogen.energy.gov/>. 

 

[5] Fenimore CP, Jones GW. Oxidation of ammonia in flames. J Phys Chem 1961;65:298-

303. 

 

[6] Bian J. Experimental study of the formation of nitrous and nitric oxides in H2-O2-Ar 

flames seeded with NO and/or NH3. Symposium (International) On Combustion 

1991;23:379-386. 

 

[7] Miller JA, Bowman CT. Mechanism and modeling of nitrogen chemistry in 

combustion. Prog Energ Combust 1989;15:287-338. 

 

[8] Reiter AJ, Kong SC. Combustion and emissions characteristics of compression-ignition 

engine using dual ammonia-diesel fuel. Fuel 2011;90:87-97. 

 

[9] Lee JH, Lee SI, Kwon OC. Effects of ammonia substitution on hydrogen/air flame 

propagation and emissions. Int J Hydrogen Energ 2010;35:11332-11341. 

 

file:///D:/My%20Dropbox/2011%20Papers/PKumar%20FlameSpeedPaper2011/%3chttp:/www.hydrogen.energy.gov/%3e


98 

 

  

[10] Glarborg P. Fuel nitrogen conversion in solid fuel fired systems. Prog Energ Combust 

2003;29:89-113. 

 

[11] Mendiara T, Glarborg P. Ammonia chemistry in oxy-fuel combustion of methane. 

Combust Flame 2009;156:1937-1949. 

 

[12] Konnov AA. Implementation of the NCN pathway of prompt-NO formation in the 

detailed reaction mechanism. Combust Flame 2009;156:2093-2105. 

 

[13] Tian Z, Li Y, Zhang L, Glarborg P, Qi F. An experimental and kinetic modeling study 

of premixed NH3/CH4/O2/Ar flames at low pressure. Combust Flame 2009;156:1413-

1426. 

 

[14] Duynslaegher C, Jeanmart H, Vandooren J. Flame structure studies of premixed 

ammonia/hydrogen/oxygen/argon flames: experimental and numerical investigation. 

Proc Combust Inst 2009;32:1277-1284. 

 

[15] Shmakov AG, Korobeinichev OP, Rybitskaya IV, Chernov AA, Knyazkov DA, 

Bolshova TA, Konnov AA. Formation and consumption of NO in H2/O2/N2 flames 

doped with NO or NH3 at atmospheric pressure. Combust Flame 2010;157:556-565. 

[16] Zhang K, Li Y, Yuan T, Cai J, Glarborg P, Qi F. An experimental and kinetic modeling 

study of premixed nitromethane flames at low pressure. Proc Combust Inst 

2011;33:407-414. 

 

[17] Hansen S, Glarborg P. Simplified model for reburning chemistry. Energ Fuel 

2010;24:4185-4192. 

 

[18] Duynslaegher C, Jeanmart H, Vandooren J. Use of ammonia as a fuel for SI engine. 

Combustion.org.uk 2009:1-6. 

 

[19] Lee JH, Kim JH, Park JH, Kwon OC. Studies on properties of laminar premixed 

hydrogen-added ammonia/air flames for hydrogen production. Int J Hydrogen Energ 

2010;35:1054-1064. 

 

[20] Natarajan J, Lieuwen T, Seitzman J. Laminar flame speeds of H2/CO mixtures: effect 

of CO2 dilution, preheat temperature, and pressure. Combust Flame 2007;151:104-119.  

 

[21] Bouvet N, Chauveau C, Gökalp I, Lee SY, Santoro RJ. Characterization of syngas 

laminar flames using the bunsen burner configuration. Int J Hydrogen Energ 

2011;36:992-1005. 

 

[22] Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. 

GRI-mech. 3.0. <http://www.me.berkeley.edu/gri_mech/>.  

 

file:///D:/My%20Dropbox/2011%20Papers/PKumar%20FlameSpeedPaper2011/%3chttp:/www.me.berkeley.edu/gri_mech/%3e


99 

 

  

[23] Dong C, Zhou Q, Zhao Q, Zhang Y, Xu T, Hui S. Experimental study on the laminar 

flame speed of hydrogen/carbon monoxide/air mixtures. Fuel 2009;88:1858-1863. 

[24] Turns SR. An introduction to combustion: concepts and applications. New York:  

McGraw-Hill; 2001. 

 

[25] Coppens F, Deruyck J, Konnov AA. Effects of hydrogen enrichment on adiabatic 

burning velocity and NO formation in methane-air flames. Exp Therm Fluid Sci 

2007;3:437-444. 

 

[26] Konnov A. Development and validation of a detailed reaction mechanism for the 

combustion of small hydrocarbons. 28
th

 Symposium (Int.) on Combustion, Edinburgh, 

2000 [abstract symposium. paper: 317]. 

 

[27] Duynslaegher C, Jeanmart H, Vandooren J. Ammonia combustion at elevated pressure 

and temperature conditions. Fuel 2010;89:3540-3545. 

 

[28] Gu X. Laminar burning velocity and markstein lengths of methane–air mixtures. 

Combust Flame 2000;121:41-58. 

 

[29] Huang Z, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D. Measurements of laminar 

burning velocities for natural gas–hydrogen–air mixtures. Combust Flame 

2006;146:302-311.  

 

 

 

 

 

 

 

 

 

 

 



100 

 

  

CHAPTER 4. A COMPARISON OF DETAILED CHEMICAL 

KINETIC MECHANISMS FOR NO FORMATION IN LAMINAR H2-

NH3-AIR PREMIXED JET FLAMES 

 

A paper to be submitted in Fuel Journal, 2012 

Praveen Kumar and Terrence R. Meyer
 

 

Abstract   

 A number of detailed chemical mechanisms have been developed to predict NO and NH3 

reaction kinetics for a variety of fuel mixtures. Despite extensive experimental validation, the 

chemical pathways and predictions of net NO production can differ substantially. In the current 

work, a numerical study of premixed H2-NH3-air flames is conducted using three detailed 

chemical mechanisms to compare NO and NH3 reaction kinetics for the same flow conditions 

and to identify and resolve key sources of disagreement. As a validation method, NO emission 

measurements are performed for 0% to 80% NH3 in H2 by energy (E%NH3) laminar premixed 

flames on an eight port tube burner setup. 

 The Tian, Konnov and GRI-Mech3.0 detailed mechanisms are employed in a 1-D, laminar 

freely propagating flame model in CHEMKIN PRO with up to 80% NH3 in H2 by energy and 

for equivalence ratios from 0.7 to 1.1. A sensitivity analysis is performed to determine the 

relative contributions of various precursors, radical species, and reaction pathways to NO and 

NH3 production and destruction in the flame zone. Based on these analyses, significant 

differences in numerical predictions are identified, and a modified GRI-Mech3.0 mechanism 

with three additional reactions and updated rate parameters is proposed.  The new mechanism 
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verifies the key role of these reactions in net NO production and allows improved agreement 

for lean and rich conditions.  

Keywords:  Hydrogen, H2, Ammonia, NH3, Nitric Oxide, NO, Premixed flame, Combustion 

kinetics, Chemical Kinetics, Detailed chemistry, GRI-Mech3.0. 
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4.1 Introduction 

 Ammonia (NH3) is a component of fuel gases generated from biomass or waste-to-energy 

gasification and can be a significant source of flame-generated nitric oxide (NO) emissions.  

The role of NH3 as a direct carrier for hydrogen  has also increased interest in NH3 chemistry 

due to its relatively high energy density and established infrastructure for distribution and 

storage [1]. A number of studies have focused on the flame structure and combustion 

characteristics of NH3-seeded flames using conventional fuels such as H2, CH4, diesel, etc. [2-

6]. For accurate prediction of emissions due to fuel-bound nitrogen, a comprehensive 

understanding of NH3 combustion chemistry and NO formation is required. Miller and 
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Bowman [7] developed a detailed chemical mechanism for predicting the production of 

nitrogen species such as NO, N2O, and NO2 in hydrocarbon/NH3 and H2/NH3 mixtures. 

Subsequently, Bian et al. [5] established a simplified kinetics mechanism by proposing several 

modifications to the NH2 and NH species rate constants based on investigations of the effects 

of NH3 seeding in H2/O2/Ar flames under both lean and stoichiometric conditions. Later, 

Glarborg et al. [8] proposed pathways for the formation of N2 and NO from NH3 under fuel-

rich conditions. For these flames, it was established that radical concentrations play an 

important role in determining fuel oxidation rates and thus affect not only the laminar burning 

velocity but also the flame structure and emissions.  

 The GRI-Mech3.0 mechanism [9], primarily intended for predicting the flame structure of 

methane flames, has also been utilized for predicting the combustion chemistry of pure H2-air 

and NH3-seeded methane flames, with limited success. For example, Harrington et al. [10] 

measured concentrations of NO and OH by using laser-induced fluorescence (LIF) as well as 

temperature profiles in 38-torr and 78-torr premixed H2/air flames and showed considerable 

disagreement between the experiments and modeling results with the simplified GRI-Mech 

2.11 mechanism. Subsequently, Sullivan et al. [11] compared the Glarborg and GRI-Mech3.0 

mechanisms for NH3-seeded CH4-air laminar diffusion flames and showed better agreement for 

the Glarborg mechanism with the experimental data. 

 In recent years, a more detailed version of chemical mechanisms for hydrocarbon/NH3 and 

H2/NH3 mixtures have been developed by Konnov [12] as well as by Glarborg and coworkers 

in Tian et al. [13].  The Konnov mechanism [12] has been widely used for predicting the flame 

structures of various NH3/NO/N2O-seeded H2 and hydrocarbon flames. For some flames, it has 
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shown remarkable agreement with the experimental data. For instance, Konnov et al. [14] 

measured the concentrations of NO in CH4/NH3/O2/N2 flames and found satisfactory 

agreement between experiments and predictions in major species concentrations like CO, CO2, 

O2 and NOx under lean conditions.  However, this success was not repeated for CH4-O2-N2  

premixed flames doped with NO for lean conditions at standard pressure and temperature [15].  

 Similarly, the detailed mechanism developed by Tian et al. [13], based on the framework 

of Skriberg et al. [16], has been successfully demonstrated to predict the flame structure of 

CH4-NH3 and nitro-methane flames in close agreement with the experimental data for 11 

premixed NH3/CH4/O2/Ar flames at low-pressure (4.0 kPa) and  stoichiometric conditions. 

With comprehensive validation over a range of conditions, the Tian mechanism is increasingly 

being utilized [17] in place of the GRI-Mech3.0 mechanism for some cases [18]. 

 In addition to work on detailed chemical kinetic mechanisms, the development of 

simplified chemistry for NH3 flames has been pursued to reduce the computational cost in 

combustion modeling. Lindstedt et al. [19] developed a simplified chemical mechanism for 

NH3 oxidation having 22 species and 97 reactions with experimental validation in NH3-seeded 

H2/O2, H2/NO/O2 and pure NH3/O2 premixed laminar flames. Recently, Duynslaegher et al. 

[20] utilized a reduced version of the Konnov mechanism (by eliminating all carbon species 

and associated reactions) in predicting the effects of initial H2 content on NH3-H2-O2-Ar 

flames. These authors showed good agreement between modeling and experimental data, 

except for NH2 and N2O species, but reported poor performance for the Lindstedt and GRI-

Mech3.0 mechanisms in predicting the flame structure compared to the more detailed but 

“carbon-free” Konnov mechanism. Subsequently, the same reduced version (31 species and 
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245 reactions) of the Konnov detailed mechanism was further used in simulating the flame 

structures of NH3 flames at elevated pressure and temperature conditions by Duynslaegher et 

al. [21]. Later Shmakov et al. [22] studied NO and NH3 doped H2-O2-N2 flames experimentally 

and numerically using  another integral part of the Konnov detailed mechanism and employed 

modifications to the reaction chemistry based on the experimental data for better overall 

agreement.  While their results were promising, we are not aware of their modified mechanism 

being readily available in the literature.    

 For NH3-seeded flames, therefore, a number of possible detailed chemical kinetic 

mechanisms can be used which have demonstrated some success in predicting flame structure.  

However, these mechanisms have not been compared directly under the same flame conditions, 

especially with regard to predicting NO chemistry in NH3-seeded flames. Hence it is unclear if 

the level of detail in each mechanism leads to substantial differences in predicted NO 

emissions, and it is unclear which elementary reactions and sub-mechanisms contribute most 

significantly to these differences.  Recently, for example, Lee et al. [23,24] utilized the Miller 

and Bowman mechanism [7] to predict NO formation for H2-NH3-air mixtures in a spherical, 

freely propagating flame. This compact mechanism has been validated under certain 

conditions, but the NH3 oxidation pathways and NO formation chemistry via NNH are 

considered incomplete and potentially could predict substantially different NO concentrations 

as compared with the more detailed mechanisms discussed above.  

 Thus far, we are not aware of a study that has compared the performance of these different 

chemical kinetic mechanisms under similar flame conditions and determined the impact of 

certain reaction pathways on predictions of NO emissions, especially for NHx chemistry. The 
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goal of the current work is to compare predictions of NO formation for several detailed 

chemical mechanisms that have undergone significant development and validation in recent 

years. This includes the Konnov and Tian mechanisms, which are considered to be the most 

detailed, as well as GRI-Mech3.0, which is commonly used in commercial numerical models 

but has not been optimized for NHx chemistry.  We will only briefly compare results with the 

Miller and Bowman mechanism as the focus here is on the more recently updated, detailed 

kinetics models.  The present study will employ these mechanisms to model premixed H2-NH3-

air flames with three primary objectives: (1) comparison of the NO predictions with varying 

NH3 content in the fuel mixture for lean and rich conditions, (2) sensitivity analyses of NO 

chemistry to identify the key precursors, radicals, and NO production and decomposition 

pathways for each mechanism, and (3) modifications of the key NO chemistry pathways to 

rectify significant differences in NO predictions among the three mechanisms. 

 

4.2 Numerical modeling 

 A 1-D laminar, adiabatic freely propagating flame model is employed in CHEMKIN PRO 

for the different chemical mechanisms. The Tian mechanism [13] includes 703 reactions and 

84 species, whereas the Konnov mechanism includes 241 reactions and 31 species with carbon 

species removed based on Duynslaegher et al. [20]. The GRI-Mech3.0 mechanism [9], which 

is optimized for methane flames, includes 325 reactions and 53 species.  

 A two-point boundary value solver (TWOPNT) is used within CHEMKIN to 

calculate equilibrium concentrations on a coarse grid as a starting point to solve the 

discretized species and energy equations. Subsequently, the grid spacing is refined and the 
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discretized equations are solved iteratively until the solution converges. A windward 

differencing discretization scheme is used with initial adaptive grid control using gradient 

(GRAD) and curvature (CURV) settings as 0.9 each. Mixture-averaged transport properties 

(e.g., for mass and thermal diffusion) are used.  

 Table 4.1 displays the operating conditions with given inlet species mole fractions 

and total flow rates,  ̇   , in standard liters per minute (slpm) for equivalence ratios of 0.7, 

1.0 and 1.1.  

Table 4.1. Inlet conditions for ∅ = 0.7, 1.0 and 1.1. 

Case     
    

    
    

  ̇   (            Tube ID (OD)  

 
∅ = 0.7 

 

1 0.0000 0.2273 0.1623 0.6105 12 0 0.1875 (1/4 in) 
2 0.0293 0.1867 0.1646 0.6194 2 20 0.1875 (1/4 in) 
3 0.0523 0.1548 0.1665 0.6264 2 35 0.1875 (1/4 in) 
4 0.0650 0.1373 0.1676 0.6304 2 43 0.1875 (1/4 in) 
5 0.0763 0.1216 0.1684 0.6336 2 50 0.1875 (1/4 in) 
6 0.1274 0.0505 0.1726 0.6494 2 80 0.4375 (1/2 in) 
 

∅ = 1.0 
 

7 0.0000 0.2958 0.1479 0.5563 12 0 0.1875 (1/4 in) 
8 0.0383 0.2441 0.1507 0.5668 2 20 0.1875 (1/4 in) 
9 0.0686 0.2031 0.1529 0.5754 2 35 0.1875 (1/4 in) 

10 0.0854 0.1805 0.1541 0.5799 2 43 0.1875 (1/4 in) 
11 0.1004 0.1601 0.1553 0.5842 2 50 0.1875 (1/4 in) 
12 0.1690 0.0674 0.1602 0.6028 2 80 0.4375 (1/2 in) 

 
∅ = 1.1 

 

13 0.0000 0.3161 0.1436 0.5403 12 0 0.1875 (1/4 in) 
14 0.0410 0.2612 0.1466 0.5514 2 20 0.1875 (1/4 in) 
15 0.0735 0.2175 0.1489 0.5601 2 35 0.1875 (1/4 in) 
16 0.0915 0.1934 0.1502 0.5649 2 43 0.1875 (1/4 in) 
17 0.1077 0.1717 0.1513 0.5692 2 50 0.1875 (1/4 in) 
18 0.1816 0.0724 0.1567 0.5893 2 80 0.4375 (1/2 in) 
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 For each equivalence ratio, the flame is simulated for six different amounts of NH3 

varying from 0% to 80% by energy. Equivalence ratios from 0.7 to 1.1 are similar to the 

conditions encountered in premixed combustion and engine systems and is selected for 

practical interest. 

 

4.3 Experimental setup 

 Figures 4.1a and 4.1b shows the schematic of the 8 port tube flame burner and an 

instantaneous flame image at ∅ = 1.0 for case E%NH3 = 50, respectively. An eight port circular 

burner assembled from eight individual similar ¼” tubing (ID = 4.76 mm) is used for the 

present study.  Each individual port of the burner is arranged in a symmetrical fashion so that 

each port flows an identical amount of incoming reactant mixture resulting in eight identical 

flame structures (as shown in Fig. 4.1b) for each flame condition. This eight port tube burner 

geometry is built to accommodate the sampling rate required by the exhaust gas analyzers 

without significant sample dilution. For the present set of experiments, premixed laminar 

flames are stabilized over the eight port tube burner; the inner diameter of ~4.67mm ensured a 

stable flame without flashback or blow-off for the entire range of equivalence ratios for cases 

of 0%, 20%, 35%, 43%, 50%, 65% and 80% NH3 in H2 by energy. The percent of NH3 by 

energy is designated here as E%NH3 and is defined as: 

       [
(                

(                       
]   (4.1) 

Conditions for equivalence ratios 0.7, 1.0 and 1.1 are established for cases E%NH3 = 0, 20, 35, 

43, 50, 65 and 80.  
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 To establish identical flames over each port on the eight port tube burner, flowrates of each 

individual species are specified as eight times (8×) the flowrates shown in Table 4.1.  

 

Fig. 4.1. (a) Schematic of eight port tube burner and (b) instantaneous flame image for case E%NH3 = 50 at ∅ = 

1.0. 

 

 The volumetric flow rate of H2 and air are measured with mass flow controllers (Alicat, 

±1.0% full scale), whereas the NH3 flow rate is controlled by a rotameter (Aalborg, ±5% full 
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scale). To ensure uniform mixing of the reactants a flow mixer is utilized along with additional 

mixing effects provided by the tube manifold on each side of the eight port burner. Sufficiently 

long tubes are used to ensure laminar fully developed flow at the exit of each port. To keep the 

flames from surrounding disturbances, flames are established in an enclosed aluminum 

rectangular duct. For emissions sampling, a sampling probed is placed at the center of the eight 

port tube burner at 75 mm downstream from the tube exit, from which emission sample is first 

passed through a gas conditioner to remove any moisture from the sample and then fed to a 

portable combustion gas analyzer for NO and NO2 (IMR 1400-PS) with NO measuring range 

up to 1%.   

 

4.4 Results and discussions 

 Experimental validation of the chemical mechanisms (Tian and Konnov) has been 

performed in a companion study of flame speeds for the same laminar H2-NH3-air mixtures, 

which are briefly summarized below. This is followed by a discussion of the comparison of 

experimentally measured NO emissions with numerically predicted NO mole fractions for the 

Tian, Konnov and GRI-Mech3.0 mechanisms from lean to rich equivalence ratios and at the 

operating conditions shown in Table 4.1.  Finally, we present sensitivity and rate of production 

analyses for NO and NH3 species as well as modification of the GRI-Mech3.0 mechanism and 

comparisons with the Tian and Konnov mechanisms. 
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4.4.1 Experimental validation of chemical mechanisms 

Previous efforts to validate the detailed chemical kinetic mechanisms discussed in the 

current work focused on comparisons of experimentally measured and numerically predicted 

flame speeds in H2-NH3-air mixtures. Because the flame speed of NH3 is an order of magnitude 

lower than H2 and is sensitive to the concentrations of O, H, and OH radicals in the flame, this 

provides a first order test of the accuracy of the chemical mechanisms evaluated here.  

 

Fig. 4.2. Experimentally measured and numerically predicted laminar flame speeds for Tian and Konnov 

mechanisms with respect to ∅ for E%NH3 = (a) 20, (b) 50 and (c) 80. Lines with symbols: predictions, symbols: 

experimental data. 

 

Figure 4.2 shows a comparison of the theoretically predicted laminar flame speeds for the 

Tian and Konnov mechanisms with the experimentally determined flame speed data for 
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E%NH3 = 20, 50, and 80. For E%NH3 = 20 (Fig. 4.2a), the flame speed predictions from both 

the Tian and Konnov mechanisms are nearly equivalent and are in good agreement with the 

experimental data over the complete range of the equivalence ratios. For E%NH3 = 50 (Fig. 

4.2b), the Tian mechanism appears to capture the correct flame speeds for the full range of 

equivalence ratios, while the Konnov mechanism appears to be a factor of 2× too slow.  For the 

case of E%NH3 = 80 (Fig. 4.2c), the Konnov mechanism appears to match the experimentally 

measured flame speeds and the Tian mechanism is a factor of 2× too slow, especially for 

equivalence ratios below 0.6 and above 0.95.  These data indicate that the validation efforts 

used to derive the detailed Konnov and Tian mechanisms have led to successful predictions of 

NH3 chemistry, but differences in the chemical pathways still persist and can lead to substantial 

disagreement with increasing levels of NH3.   

4.4.2 Comparison of measured NO emissions with modeling results 

 It is anticipated that differences in NH3 oxidation rates may also lead to differences in NO 

formation chemistry.  Predicted NO mole fractions for the case of ∅ = 0.7 are shown in Fig. 

4.3a for varying amounts of NH3 in H2 for the Tian, Konnov and GRI-Mech3.0 mechanisms, 

along with experimental NO emission measurements. The measured NO emission initially 

increases from 2 ppm to 1830 ppm with E%NH3 varying from 0 to 50. With higher NH3 

seeding from 50 to 80, NO was reduced to 1/2 of the maximum NO and exhibited 

approximately 800 ppm of NO.   

 Figure 4.3b shows a qualitative comparison of the variation of normalized measured NO 

mole fractions with increasing NH3 content in the fuel mixture with the three chemical 

mechanisms. The agreement between the experimental NO data and the numerical predictions 
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by all three chemical mechanisms are found to be fairly reasonable with a discrepancy for case 

E%NH3 = 50. Among the chemical mechanisms, the trends are observed to be approximately 

similar. For example, the predicted NO mole fractions increase with higher levels of NH3 in the 

fuel mixture and peak at nearly identical NO mole fractions at E%NH3 ~35-43.  

 

 

 For pure H2/air premixed flames (E%NH3 = 0), the measured NO is recorded to be 5 ppm 

with 1% uncertainty of full range (~500 ppm), meaning measured NO is expected to in the 

range of 0 – 10 ppm, which is found to be in close proximity of NO predictions ( ~ 7 ppm) by 

all the three chemical mechanisms. This shows that for a pure H2/air premixed flame, the 

agreement between the experimental and numerically predicted NO concentrations is excellent. 

 The poor agreement of quantitative experimental NO mole fractions with the NO 

predictions by the chemical mechanisms for all the NH3 seeded cases (E%NH3 from 20-80) 

may result from the possibility of NO reduction by the remaining NH3 in the exhaust. The heat 

loss from the flame to the tubing may also impact the NO reductions, but the effects of heat 

loss are expected to be minimal on the NO concentrations due to minor role of thermal NO 

pathways in NH3 seeded flames. 

 In general, the agreement in predicted NO mole fractions is closer among the three 

mechanisms at lower levels of NH3 in the fuel mixture, with the Tian and Konnov mechanisms 

predicting nearly identical mole fractions from 0-43 E%NH3.  The similar performance of the 

Tian and Konnov mechanisms in this range is also noted in the flame-speed study discussed 

earlier [25]. At higher levels of NH3, there is more substantial disagreement among the 
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mechanisms. For example, the Tian mechanism predicts higher and lower NO mole fractions 

than the Konnov mechanism at E%NH3 = 50 and 80, respectively. This is the same range of 

E%NH3 in which the Tian and Konnov mechanisms begin to deviate substantially with regard 

to predicted flames speeds in Fig. 4.2 [25]. 

 
Fig. 4.3. (a) Experimentally measured NO and (b) normalized measured XNO with predicted NO mole fractions 

versus E%NH3 for the Tian, Konnov and GRI-Mech3.0 mechanisms at ∅ = 0.7.  

 

 The predicted NO mole fractions as a function of NH3 substitution in the fuel mixture are 

displayed and compared with measured NO emissions in the exhaust both quantitatively and 

qualitatively in Fig. 4.4a and Fig. 4.4b respectively, for stoichiometric conditions (∅ = 1.0). 

Although not discussed in great detail in this work, NO mole fractions computed by Lee et al. 

[23,24] at ∅ = 1.0 by using the Miller and Bowman mechanism are also presented for 

comparison.  

 The measured NO emission for the stoichiometric flame condition (∅ = 1.0) displays a 

similar trend with E%NH3 as noted for ∅ = 0.7. The NO increases linearly approximately from 

2 ppm to 2300 ppm with an increase in NH3 seeding level from 0 to 43, with further reduction 

in NO to 850 ppm with increase in E%NH3 from 50 to 80. In addition, the measured NO 
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magnitude for the stoichiometric flame is found to be higher than NO emissions for the lean 

flames as noticed in Fig. 4.3 (∅ = 0.7). 

 Similar to lean flames, the qualitative comparison between the experimental data and the 

predicted NO mole fractions (Fig.4.4b) for stoichiometric flames appeared to be in excellent 

agreement supporting the accurate NO trend predictions, however significant discrepancies are 

observed between the experimental and numerical NO concentrations quantitatively (Fig. 

4.4a). The overprediction in NO concentrations by the CHEMKIN modeling utilizing Tian, 

Konnov and GRI-Mech3.0 chemical mechanisms for the NH3 seeding cases (E%NH3 from 20 

-80) can be ascribed to the complete NH3 burn predictions in H2/NH3 flame conditions which 

may not occur in experimental flame conditions.   

 To determine the effects of incorporating heat loss measurements in the CHEMKIN 

numerical NO modeling to mimic the experimental flame conditions, NO predictions are 

evaluated for the Tian and Konnov mechanisms for case E%NH3 = 20 at  ∅ = 1.0, for non-

adiabatic numerical modeling. For the Tian mechanism, 25% reduction in temperature is found 

to reduce the NO prediction by only 15% compared to adiabatic modeling results. Similarly, 

22% and 6% reductions are noticed for the temperature and NO mole fraction respectively, for 

the Konnov mechanism. From the analysis, it is established that due to non-significant 

differences in NO predictions between adiabatic and non-adiabatic CHEMKIN modeling for 

the chemical mechanisms, comparisons of experimentally measured NO data with the NO 

predictions by the adiabatic CHEMKIN  PRO model as displayed in Figs. 4.3, 4.4 and 4.5 are 

fairly reasonable. 
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 For this case (∅ = 1.0), the Tian and Konnov mechanisms are nearly in complete 

agreement until E%NH3 = 80, upon which they differ by as much as 40%.  It is clear from Fig. 

4.4 that the differences with the GRI-Mech3.0 mechanism have increased substantially for this 

equivalence ratio, both in terms of the general trend and predicted mole fractions.  Moreover, 

differences are most substantial (~2×) with the Miller and Bowman mechanism, as might be 

expected given the level of detail within the other three mechanisms. However, none of the 

chemical mechanisms could produce results near that of experimentally measured NO 

emissions data. 

 

Fig. 4.4. (a) Measured NO emission and (b) normalized NO mole fraction with predicted NO mole fractions for 

Tian, Konnov, GRI-Mech3.0, and Miller and Bowman (from Lee et al., 2010) mechanisms with respect to 

E%NH3 at ∅ = 1.0. 

 

 The quantitative and qualitative NO mole fraction profiles as a function of NH3 for 

slightly fuel rich conditions (∅ = 1.1) predicted using the Tian, Konnov and GRI-Mech3.0 

mechanisms along with the measured NO emission profile are displayed in Fig. 4.5a and 4.5b 

respectively. The quantitative NO concentrations for the Tian, Konnov and GRI-Mech3.0 

mechanisms exhibit similar trends for ∅ = 1.1 as observed previously for ∅ = 0.7 (Fig. 4.3a) 

and ∅ = 1.0 (Fig. 4.4b), although with reduced NO mole fractions overall. A similar qualitative 
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trend was reported by Lee et al. [24], with reduced NO mole fractions at higher equivalence 

ratios.  For the GRI-Mech3.0 mechanism at ∅ = 1.1, the NO concentration profile again shows 

significant disagreement with the predictions of NO mole fraction from the Tian and Konnov 

mechanisms. The only exception is at E%NH3 = 80, where NO predictions using the GRI-

Mech3.0 mechanism are in relatively good agreement with the Tian mechanism. 

 

Fig. 4.5. (a) Measured NO emission and (b) normalized XNO with predicted NO mole fractions for Tian, 

Konnov, GRI-Mech3.0, with respect to E%NH3 at ∅ = 1.1. 

 

The experimentally measured NO profile displayed a similar profile as observed for 

stoichiometric flame condition with marginal increase in peak NO measurement at E%NH3 = 

43. The qualitative agreement of the measured NO profiles with the predicted NO 

concentration fits well over the entire range of NH3 seeding from cases E%NH3 = 0 to 80 (Fig. 

4.5b), indicating model’s capability in capturing the trend of the experimental data. Repeatedly, 

for rich flame conditions, the predicted NO profiles for the chemical mechanisms are found to 

overshoot the experimental data but with less pronounced effects (Fig. 4.5a) as for lean 

conditions. 
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The data from ∅ = 0.7 to 1.1 show that there is good agreement between the Tian and 

Konnov mechanisms at lower levels of NH3, and that this agreement is less consistent at higher 

levels of NH3.  In addition, the GRI-Mech3.0 mechanism has substantial disagreement with the 

Tian and Konnov mechanisms, especially at higher equivalence ratios.  In the following 

section, we analyze sources of disagreement in NO predictions among the three detailed 

mechanisms (Tian, Konnov, and GRI-Mech3.0) and provide a possible means of improving the 

performance of the GRI-Mech3.0 mechanism. 

 

4.4.3 Sensitivity and net rate of production analysis 

 To comprehend the causes of disagreement in NO mole fraction trends among the Tian, 

Konnov and GRI-Mech3.0 mechanisms with increasing NH3 substitution in H2 and from lean 

to rich flames, a rate of NO production analyses followed by a sensitivity analyses of NH3 

oxidation, NO production and NO decomposition are performed for cases E%NH3 = 20 and 80 

at ∅ = 0.7 and 1.0. In addition, NH3 conversion pathways to NO are examined for two different 

cases (E%NH3 = 20 and 80) at equivalence ratios of 0.7 and 1.0. These analyses are carried out 

at the maximum heat release location in the reaction zone using the CHEMKIN PRO reaction 

path analyzer module for the 1-D laminar freely propagating flame model. The total rate of 

production (ROP) and total rate of decomposition (ROD) of species are represented with 

positive and negative signs, respectively. The net rate of production of species is estimated 

from the difference of the ROP and ROD magnitudes. 

 The net NO production rate with E%NH3 = 20 and 80 for ∅ = 0.7 and 1.0 are evaluated 

and displayed in Table 4.2a and 4.2b respectively, for the Konnov, Tian, and GRI-Mech3.0 
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mechanisms.  It is evident from Table 4.2a that for case E%NH3 = 20 and ∅ = 0.7, the net NO 

production rate for Konnov and GRI-Mech3.0 are in close proximity. At E%NH3 = 80 and ∅ = 

0.7, the net NO production rate for the Tian mechanism is noticed to be ~3.5 times higher than 

the GRI-Mech3.0 mechanism (Table 4.2a), however, the predicted NO mole fraction for GRI-

Mech3.0 mechanism is found more than ~2x compared to Tian mechanism (Fig. 4.3).  

 Similarly at stoichiometric conditions (∅ = 1.0), for case E%NH3 = 20, the net rate of NO 

production rate for all the three chemical mechanisms (Table 4.2b) are found in the similar 

trend of their predicted NO concentrations as displayed in Fig. 4.4. However, the net NO 

production rate magnitude for Konnov and GRI-Mech3.0 mechanisms are found in close 

proximity as opposed to the predicted NO mole fraction trend (Fig. 4.4), where Tian and 

Konnov mechanisms are closer. Likewise, for case E%NH3 = 80 and ∅ = 1.0 (Table 4.2b), the 

net NO production rate trend among the three chemical mechanisms are found in contradiction 

of their corresponding predicted NO trends (Fig 4.4). For example, the GRI-Mech3.0 

mechanism displays the lowest net NO rate of production, but the predicted NO concentration 

is approximately ~2.5x times higher than Tian mechanism (refer Fig. 4.4).   

 The rate of production analyses for NO molecule revealed that generally at any flame 

operating conditions, the final predicted NO concentration for a chemical mechanism is not 

truly reflected by the net NO production rate at the peak heat release location, but seems to be 

dependent on the NO chemistry over the entire flame zone. 

 

 



119 

 

  

Table 4.2a. Net rate of production (
    

     
) of NO for the Konnov, Tian, 

and GRI-Mech3.0 mechanisms for E%NH3 = 20 and 80 at ∅ = 0.7. 

 

 

 

 

 

 

 

 

 

Table 4.2b. Net rate of production (
    

     
) of NO for the Konnov, Tian, 

and GRI-Mech3.0 mechanisms for E%NH3 = 20 and 80 at ∅ = 1.0. 

 

 

 

 

  

  

 To investigate this further, the spatial gradients of NO mole fraction (
   

  
) along the 

reaction zone (x-axis) are plotted for Konnov, Tian and GRI-Mech3.0 mechanisms for cases 

E%NH3 = 20 and 80 for equivalence ratios 0.7 and 1.0 in Figs. 4.6 and 4.7 respectively. At ∅ = 

0.7, the spatial gradient of NO mole fraction profiles for Konnov, Tian and GRI-Mech3.0 

mechanisms are displayed in Fig. 4.6a and Fig. 4.6b for cases E%NH3 = 20 and 80, 

respectively. It is noticed for both cases that the peak NO spatial gradient location coincides 

with the corresponding peak heat release location for each chemical mechanisms, thus 

verifying the assumption of highest net NO production rate and supporting the best suitability 

of peak heat release location for sensitivity analyses. It is also verified that the predicted NO 

Equivalence Ratio 0.7 

E%NH3 
Net NO production rate 

Konnov Tian GRI-Mech3.0 

20 2.04E-03 2.98E-03 1.84E-03 

80 2.50E-05 5.50E-05 1.50E-05 

Equivalence Ratio 1.0 

E%NH3 
Net NO production rate 

Konnov Tian GRI-Mech3.0 

20 5.54E-03 8.00E-03 4.46E-03 

80 2.60E-04 1.46E-04 7.90E-05 
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concentration requires the integral of the spatial gradient of NO over the x-axis (area under the 

curve, eq. 4.2). 

                 ∫ (
   

  
)

      

  
                                          (4.2) 

 

 In the light of these observations, it is further noted that for case E%NH3 = 20 and ∅ = 0.7 

(Fig. 4.6a), the integral (area under the curve) estimated for the Tian and Konnov mechanisms 

are nearly identical and found lowest for the GRI-Mech3.0 mechanism, which is similar to the 

predicted NO mole fractions trend as noticed in Fig. 4.3.  

 For case E%NH3 = 80 and ∅ = 0.7 (Fig. 4.6b), the peak NO spatial gradient for the GRI-

Mech3.0 mechanism seemed to be shifted approximately 5 mm downstream compared to the 

Tian and Konnov mechanisms, suggesting slow flame speed prediction for the GRI-Mech3.0. 

Interestingly, even though the peak gradient of GRI-Mech3.0 is observed to be the minimum 

among the three mechanisms, the integral (area under the curve) for the GRI-Mech3.0 

mechanisms is found approximately 10% higher than Konnov leading to highest predicted NO 

mole fraction (shown in Fig. 4.3). It is apparent from the Fig. 4.6b, that due to smallest area 

under the curve, the Tian mechanism predicted minimum NO concentration (Fig. 4.3). 

 
Fig. 4.6. NO concentration gradient along the centerline for cases (a) E%NH3 = 20 and (b) 80 at for Tian, 

Konnov, and GRI-Mech3.0 at ∅ = 0.7. 
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 Likewise, the spatial gradient NO profile for the Konnov, Tian and GRI-Mech3.0 

mechanisms are plotted for case E%NH3 = 20 and 80 in Fig. 4.7a and 4.7b respectively, at ∅ = 

1.0. The integral of NO spatial gradient profiles for the three chemical mechanisms display 

similar trends as predicted NO mole fractions as observed for both cases E%NH3 = 20 and 80 

at ∅ = 1.0, in Fig. 4.4.  

 
Fig. 4.7. NO concentration gradient along the centerline for cases (a) E%NH3 = 20 and (b) 80 at for Tian, 

Konnov, and GRI-Mech3.0 at ∅ = 1.0. 

 

 For example, for case E%NH3 = 20, the Tian and GRI-Mech3.0 mechanisms exhibited 

maximum and minimum integral (area under the curve) respectively, thus resulting in highest 

predicted NO concentration and GRI-Mech3.0 leads to minimum NO prediction. Likewise, for 

similar reasons, the Konnov and Tian mechanisms predict highest and lowest NO 

concentrations respectively for case E%NH3 = 80 and ∅ = 1.0. 

 

4.4.3.1 NH3 oxidation 

 To identify the key reactions involved in the NH3 oxidation, a sensitivity analysis of NH3 

oxidation is performed for the Konnov, Tian and GRI-Mech3.0 mechanisms at the prescribed 

conditions. Figure 4.8 shows the reaction pathways for NH3 conversion to NO for E%NH3 = 

20 for the Tian, Konnov and GRI-Mech3.0 mechanisms at ∅ = 0.7. For these conditions, 
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sensitivity analysis reveals that NH3 oxidation is caused primarily by OH, H and O radicals via 

the following reactions:  

                 (Rxn # 1) 

                (Rxn # 2) 

               (Rxn # 3) 

 

Fig. 4.8. Reaction pathways for NO formation via NH3 for (a) Konnov, (b) Tian and (c) GRI-Mech3.0 

mechanisms for E%NH3 = 20 and ∅ = 0.7. Colored pathways show the radicals associated with the 

corresponding reaction path. 

 

 The relative contributions of Rxns 1, 2 and 3 towards NH3 decomposition for E%NH3 = 

20 and (∅ = 0.7) are shown in Table 4.3a and indicate that the OH radical is responsible for at 

least 65% of NH3 decomposition for the Tian, Konnov and GRI-Mech3.0 mechanisms. In fact, 

the initial NH3 decomposition chemistry is similar and equivalent among the chemical 

mechanisms, which may cause similar total rates of decomposition of NH3 among the 

mechanisms for E%NH3 = 20 and ∅ = 0.7 (Table 4.4a).    
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 The amine (NH2) radicals are further reduced to NH and HNO species due to H-

abstraction reactions (Rxns # 4-6) via the same key free radicals (OH, H and O), as shown 

below.  

                (Rxn # 4) 

                (Rxn # 5) 

              (Rxn # 6) 

Table 4.3a. Relative contribution of each NH3 reaction (Rxns # 1-3) to rate of NH3 

decomposition.  Relative contributions of Konnov, Tian, and GRI-Mech3.0 mechanisms 

are compared for E%NH3 = 20 and 80 for ∅ = 0.7. 

 

 

Table 4.3b. Relative contribution of each NH3 reaction (Rxns # 1-3) to rate of NH3 

decomposition.  Relative contributions of Konnov, Tian, and GRI-Mech3.0 mechanisms 

are compared for E%NH3 = 20 and 80 for ∅ = 1.0. 

∅ E%NH3 Rxn 
# 

 
Reaction 

% Contribution 
Konnov Tian GRI-

Mech3.0 

0.7 

20 
1 NH3+OH↔NH2+H2O 70.86 68.09 65.47 
2 NH3+H↔NH2+H2 16.6 14.56 18.53 
3 NH3+O↔NH2+OH 12.5 17.35 16.00 

      

80 
1 NH3+OH↔NH2+H2O 91.18 93.61 88.58 
2 NH3+H↔NH2+H2 5.17 0.00 0.00 
3 NH3+O↔NH2+OH 3.65 6.39 11.42 

∅ E%NH3 Rxn 
# 

 
Reaction 

% Contribution 
Konnov Tian GRI-

Mech3.0 

1.0 

20 
1 NH3+OH↔NH2+H2O 55.50 62.91 52.93 
2 NH3+H↔NH2+H2 35.17 35.38 31.5 
3 NH3+O↔NH2+OH 9.31 1.70 15.5 

      

80 
1 NH3+OH↔NH2+H2O 72.50 86.46 85.99 
2 NH3+H↔NH2+H2 22.13 8.57 14.10 
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Table 4.4a. Total rate of production (
    

     
) (ROP) and rate of decomposition (

    

     
) (ROD) of NH3 for the 

Konnov, Tian, and GRI-Mech3.0 mechanisms for E%NH3 = 20 and 80 at ∅ = 0.7. 

Equivalence Ratio 0.7 

  
Total Rate of Production 

(ROP) 

Total Rate of Decomposition 

(ROD) 

E%NH3 Species Konnov Tian GRI-Mech3.0 Konnov Tian GRI-Mech3.0 

20 NH3 2.27E-04 1.31E-04 0.0 -4.71E-03 -4.58E-03 -4.12E-03 

80 NH3 4.54E-05 2.02E-05 1.91E-06 -1.07E-03 -4.38E-04 -1.64E-04 

 

Table 4.4b. Total rate of production (
    

     
) (ROP) and rate of decomposition (

    

     
) (ROD) of NH3 for the 

Konnov, Tian, and GRI-Mech3.0 mechanisms for E%NH3 = 20 and 80 at ∅ = 1.0. 

Equivalence Ratio 1.0 

  
Total Rate of Production 

(ROP) 

Total Rate of Decomposition 

(ROD) 

E%NH3 Species Konnov Tian GRI-Mech3.0 Konnov Tian GRI-Mech3.0 

20 NH3 1.14E-03 1.05E-03 0.0 -1.72E-02 -1.39E-02 -1.36E-02 

80 NH3 1.11E-04 9.97E-05 0.0 -5.56E-03 -1.36E-03 -7.64E-04 

 

 The HNO and NH species are found as critical NO precursors from the ammonia to nitric 

oxide conversion pathways (see Fig. 4.8) and lead to several-fold higher NO formation for NH3 

enriched flames, as seen previously in Figs. 4.3–4.5. The NH3 to NO conversion pathways for 

the Tian, Konnov and GRI-Mech3.0 mechanisms as displayed in Fig. 4.8 for E%NH3 = 20 and 

∅ = 0.7 reveal that, after the formation of NH2, the HNO and NH species formed in Rxns 4-6 

lead to NO via branching reactions of intermediate species such as NNH, N2O, NO2, and 

HONO with the help of the free radicals H, O, OH, and HO2. Some differences between the 
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chemical mechanisms can be observed, such as an NH2OH sub-mechanism playing a 

significant role only in the Konnov mechanism, and NNH playing a role only in the Tian and 

GRI-Mech3.0 mechanisms. In general, the GRI-Mech3.0 mechanism bears greater similarity 

with the Tian mechanism but exhibits less complex NH3 conversion pathways to NO as 

compared to the Tian and Konnov mechanisms. 

 For E%NH3 = 80 and ∅ = 0.7, the NH3 sensitivity analysis (Table 4.3a) reveals that the 

contribution of Rxn 2 (NH3+H↔NH2+H2) to NH3 oxidation becomes negligible because of 

reduced H radicals caused by decreased H2 in the fuel mixture.  Hence, for high levels of NH3 

in the fuel, NH3 decomposition is governed almost entirely by Rxns 1 (NH3+OH↔NH2+H2O) 

and 3 (NH3+O↔NH2+OH).   

 The rate sensitivity analyses for case E%NH3 = 20 at ∅ = 1.0 show similar NH3 oxidation 

chemistry (see Table 4.3b) as observed at ∅ = 0.7 (see Table 4.3a) for the Tian, Konnov and 

GRI-Mech3.0 mechanisms, although with ~2× enhanced contribution by Rxn 2. The increased 

role of Rxn 2 likely results from an increase in H radicals relative to O or OH radicals near 

stoichiometric conditions. 

 For the case of E%NH3 = 80 and ∅ = 1.0, the relative contribution of major NH3 

decomposition reaction pathways obtained from sensitivity analysis is presented in Table 4.3b. 

It is noted that the relative contribution of Rxn 1 for ∅ = 1.0 is more dominant for the case of 

E%NH3 = 80 than for E%NH3 = 20 (shown previously in Table 4.3a). For E%NH3 = 80, the 

added NH3 reduces the availability of H radicals and the corresponding contribution of Rxn 2. 
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4.4.3.2 NO production 

 The relative contributions of reactions responsible for NO production for cases E%NH3 = 

20 and 80 at ∅ = 0.7 and 1.0 are presented in Tables 4.5a and 4.5b, respectively.  

Table 4.5a. Relative contribution of each NH3 reaction to rate of NO production. 

Relative contributions of Konnov, Tian, and GRI-Mech3.0 mechanisms are compared 

for E%NH3 = 20 and 80 for ∅ = 0.7.  

 

Table 4.5b. Relative contribution of each NH3 reaction to rate of NO production. 

Relative contributions of Konnov, Tian, and GRI-Mech3.0 mechanisms are compared 

for E%NH3 = 20 and 80 for ∅ = 1.0.  

 

 It appears from Table 4.5a that for case E%NH3 = 20 and ∅ = 0.7, HNO is the dominant 

pathway for all three chemical mechanisms, accounting for 70–80% of the NO formation via 

∅ E%NH3 Rxn 
# 

 
Reaction 

% Contribution 
Konnov Tian GRI-

Mech3.0 

0.7 

20 

7 HNO+H↔NO+H2 68.12 59.1 69.49 
8 NO2+H↔NO+OH 9.39 5.68 8.36 
9 HNO+OH↔NO+H2O 4.04 14.75 2.23 

10 NH+O↔NO+H 9.36 12.48 9.46 
      

80 

7 HNO+H↔NO+H2 33.71 12.27 0.00 
9 HNO+OH↔NO+H2O 18.13 40.21 24.15 

15 HNO(+M)↔H+NO (+M) 0.00 0.00 26.49 
16 HNO+NH2↔NH3+NO 13.36 0.00 0.00 
17 HNO+O2↔NO+HO2 0.00 17.34 22.02 

∅ E%NH3 Rxn 
# 

 
Reaction 

% Contribution 
Konnov Tian GRI-

Mech3.0 

1.0 

20 

7 HNO+H↔NO+H2 67.36 65.51 64.40 
9 HNO+OH↔NO+H2O 0.0 6.69 2.23 

10 NH+O↔NO+H 13.91 14.78 12.1 
19 N+O2↔NO+O (thermal NO) 0.0 0.0 10.03 
20 N+OH↔NO+H (thermal NO) 0.0 0.0 10.56 

      

80 

7 HNO+H↔NO+H2 32.97 29.70 45.18 
9 HNO+OH↔NO+H2O 0.00 25.86 13.91 

10 NH+O↔NO+H 44.97 0.00 0.00 
15 HNO(+M)↔NO(+M)+H 0.00 17.30 39.34 
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Rxns 7 and 9. In addition, it appears that the H atom is the most important radical responsible 

for NO formation under these conditions, with a weighting of 60–80% via Rxns 7 and 8.   

 Hence, while the OH radical is responsible for NH3 decomposition initially, the H radical 

is responsible for the final production of NO under these conditions. Interestingly, the reactions 

have similar contributions for all the three mechanisms. 

 For case E%NH3 = 80 and ∅ = 0.7 (Table 4.5a), while HNO contributes to more than 60% 

of the NO production for all three mechanisms, the Tian and Konnov mechanisms rely 

primarily on the H and OH radicals to form NO. For the GRI-Mech3.0 mechanism again, due 

to the reduction of H2 in the fuel mixture, the role of OH in NO production is increased for 

flames with high NH3 content. This is in contrast to the case with E%NH3 = 20 (Table 4.5a), in 

which OH played a relatively small role as compared with the H atom. While the GRI-Mech3.0 

mechanism differs substantially from the other two mechanisms, it bears the closest 

resemblance to the Tian mechanism with regard to NO production.  The key difference with 

the Tian mechanism is that GRI-Mech3.0 relies heavily on thermal decomposition of HNO to 

produce NO and H via Rxn 15 and eliminates reactions requiring H for NO production.  

 Key reactions involved in NO production for the Tian, Konnov and GRI-Mech3.0 

mechanisms at E%NH3 = 20 and 80 for ∅ = 1.0 are shown in Table 4.5b. It can be seen from 

Table 4.5b that HNO is the dominant NO precursor via Rxn 7 for case E%NH3 = 20, as was 

found for lean conditions in Table 4.5a. In fact, the contributions of Rxns 7, 9, 10 are similar 

for both ∅ = 0.7 and 1.0, as shown in Tables 4.5a and 4.5b, respectively. However,  the GRI-

Mech3.0 mechanism attributes approximately 20% of NO production to the Zeldovich 

(thermal) mechanism via Rxns 19 and 20, likely due to increased temperatures at ∅ = 1.0. This 
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is in contrast with the Tian and Konnov mechanisms, which do not attribute any NO 

production to Rxns 19 and 20.   

            (Rxn # 19) 

             (Rxn # 20) 

 For case E%NH3 = 80 at ∅ = 1.0, the major reaction pathways for NO production are 

shown in Tables 4.5b. As is apparent in Table 4.5b, Rxn 7 is no longer the dominant pathway 

to NO production, as was the case for E%NH3 = 20 and ∅ = 1.0 (Table 4.5b), which is 

consistent with a reduction in H radicals with increased NH3. All three mechanisms appear to 

follow similar trends, but no two mechanisms agree on the relative significance of each 

pathway. The most striking difference is that the Konnov mechanisms predicts a substantial 

contribution to NO production through reactions of NH and O, whereas the Tian and GRI-

Mech3.0 mechanisms rely solely on reactions of HNO, either through thermal decomposition 

or reactions with H and OH radicals.  However, as shown in Fig. 4.4, the predicted NO mole 

fractions agree most closely between the Konnov and GRI-Mech3.0 mechanisms.  

4.4.3.3 NO decomposition 

 There are substantial differences between the contributions of each reaction pathway to the 

rate of NO decomposition for all three mechanisms, as shown for cases E%NH3 = 20 and 80 

for ∅ = 0.7 and 1.0 in Tables 4.6a and 4.6b, respectively.   
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Table 4.6a. Relative contribution of each NH3 reaction to rate of NO decomposition. 

Relative contributions of Konnov, Tian, and GRI-Mech3.0 mechanisms are compared for 

E%NH3 = 20 and 80 for ∅ = 0.7.  

 

 

Table 4.6b. Relative contribution of each NH3 reaction to rate of NO decomposition. 
Relative contributions of Konnov, Tian, and GRI-Mech3.0 mechanisms are compared 
for E%NH3 = 20 and 80 for ∅ = 1.0.  
 

 

 For example for case E%NH3 =20 at ∅ = 0.7 (Table 4.6a), Rxn 11 plays a much more 

significant role in NO decomposition for GRI-Mech3.0 as compared with the Tian and Konnov 

mechanisms. At the same time, GRI-Mech3.0 has zero contribution from Rxns 13 and 14, 

which are important for the Tian and Konnov mechanisms. In fact, the contributions of various 

∅ E%NH3 Rxn 
# 

 
Reaction 

% Contribution 
Konnov Tian GRI-

Mech3.0 

0.7 

20 

11 NH+NO↔N2O+H 18.71 0.00 32.12 
12 N+NO↔N2+O  15.86 29.20 26.78 
13 NH2+NO↔N2+H2O  15.19 19.73 0.00 
14 NH2+NO↔NNH+OH  9.97 8.13 0.00 
15 H+NO(+M)↔HNO(+M) 9.76 32.9 14.29 

      

80 

11 NH+NO↔N2O+H 22.18 0.00 64.03 
13 NH2+NO↔N2+H2O  36.53 37.2 0.00 
14 NH2+NO↔NNH+OH  32.02 41.98 0.00 
18 NH+NO↔N2+OH 0.00 13.85 18.23 

∅ E%NH3 Rxn 
# 

 
Reaction 

% Contribution 
Konnov Tian GRI-

Mech3.0 

1.0 

20 

11 NH+NO↔N2O+H 19.89 0.0 50.67 
12 N+NO↔N2+O 61.70 80.0 12.71 
13 NH2+NO↔N2+H2O  9.31 20 0.0 
15 H+NO(+M)↔HNO(+M) 9.10 0.0 23.2 

      

80 

11 NH+NO↔N2O+H 33.74 0.00 61.52 
12 N+NO↔N2+O 20.5 0.00 0.00 
13 NH2+NO↔N2+H2O  0.00 26.01 0.00 
14 NH2+NO↔NNH+OH  23.97 38.46 0.00 
18 NH+NO↔N2+OH 0.00 20.96 19.98 
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reactions for the Tian and Konnov mechanisms are much closer to each other than to the GRI-

Mech3.0 mechanism, which is evident in the net NO production (NO spatial gradient profile) 

shown previously at E%NH3 and ∅ = 0.7 in Fig. 4.6a. The differences in major NO 

decomposition reaction pathways with the GRI-Mech3.0 mechanisms are directly related to the 

differences in the net NO production rate as displayed by spatial gradient of NO profile. 

 While NO production is dominated by HNO, NO decomposition is dominated by NHx 

pathways for the Konnov, Tian and GRI-Mech3.0 mechanisms. As shown in Table 4.6a, for 

case E%NH3 = 80 at ∅ = 0.7, NHx radicals play an important role in causing NO reduction to 

N2O, N2 and NNH and are responsible for up to 90% of NO decomposition for all the three 

chemical mechanisms. From Table 4.6a, the NO decomposition by NH2 via Rxns 13 and 14 are 

most critical for the Tian and Konnov mechanisms, accounting for 70-80% of NO 

decomposition. The other major reactions for the Tian and Konnov mechanisms rely on 

decomposition of NO via NH, but the Konnov mechanism presumes the products are N2O and 

H while the Tian mechanisms presumes that the products are N2 and OH. This may be a source 

of deviation between the two mechanisms. In striking contrast to the Tian and Konnov 

mechanisms, GRI-Mech3.0 relies almost entirely on NH via Rxns 11 and 18 and has no 

activity via NH2.  However, the GRI-Mech3.0 mechanism bears the most resemblance to the 

Konnov mechanism for this condition because of the common use of Rxn 11 between the two 

mechanisms. This explains why the GRI-Mech3.0 mechanism differs most from the Tian 

mechanism for the case of E%NH3 = 80 and ∅ = 0.7, as shown previously in Fig. 4.3. 

 From Table 4.6b, it is observed that at stoichiometric conditions for case E%NH3 = 20, the 

destruction of NO for the Konnov and Tian mechanisms is dominated by N radicals via Rxn 
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12, with some contributions from reactions with NH NH2, NH, and H radicals via Rxns 11, 13, 

and 15. For the GRI-Mech3.0 mechanism, the NO decomposition chemistry is noted to be 

significantly different, particularly when compared with the Tian mechanism, and occurs 

primarily by reaction with NH to produce N2O. This results in significant differences between 

the NO mole fractions predicted by GRI-Mech3.0 and that predicted by the Tian and Konnov 

mechanisms, as shown previously in Fig. 4.4. 

 For the case of E%NH3 = 80 and ∅ = 1.0, the NO reformation chemistry among the three 

chemical mechanisms are significantly different. From Table 4.6b, it is noted that NO 

reduction by NH radicals via Rxns 11 and 18 carry out more than 80% NO reformation for 

GRI-Mech3.0 mechanism without any activity of NH2 radical contribution from Rxns 13 and 

14, which played an important role in NO decomposition for Tian and Konnov mechanisms. In 

addition to that, considerable changes in NO decomposition chemistry are noticed between 

Tian and Konnov mechanisms. Rxns 11 and 12 showed dominance in Konnov mechanism, 

whereas Rxns 13 and 18 found important for NO destruction in the Tian mechanism. 

 

4.4.3.4 Comparison between Tian and Modified GRI-Mech3.0 mechanisms 

 In an effort to improve the overall agreement in NO concentration between Tian and GRI-

Mech3.0 mechanisms over the entire range of flame conditions, the rate kinetics parameters 

(pre-exponential factor (A), pre-factor (b) and activation energy (Ea)) of the key NO formation 

and destruction pathways in the GRI-Mech3.0 mechanism are modified and three new NO 

reformation pathways are added: Rxns 11(duplicate), 13 and 14 resulting in a new modified 

GRI-Mech3.0 (Mod. GRI-Mech) mechanism having 53 species and 328 reactions.  
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             (            (Rxn # 11) 

                 (Rxn # 13) 

                (Rxn # 14) 

 From the analysis (section 4.4.3), it is anticipated that the rate kinetics of Rxn 11 needs to 

be reduced and rate constants of Rxns 13 and 14 are required to be increased in order to bring 

the NO concentration trend for GRI-Mech3.0 closer to Tian’s NO profile. The final updated 

rate kinetics parameters for the modified GRI-Mech3.0 (Mod. GRI-Mech) mechanism is 

displayed in Tables 4.7a and 4.7b for key NO production and decomposition pathways, 

respectively. 

Table 4.7a. Major NO production pathways with updated kinetics parameters for the 

new modified GRI-Mech3.0 mechanism. A = pre-exponential factor, b = pre-factor 

and Ea = activation energy.   

 

 

 

 

Table 4.7b. Major NO decomposition pathways with updated kinetics parameters for 

the new modified GRI-Mech3.0 mechanism. A = pre-exponential factor, b = pre-

factor and Ea = activation energy.   

 

 

 

   

Rxn 
# 

Reaction 
Rate parameters 

A b Ea 
7 HNO+H↔NO+H2 8.80E+11 0.72 650 
8 NO2+H↔NO+OH 1.30E+14 0.00 362 
9 HNO+OH↔NO+H2O 3.60E+13 0.00 0.00 

10 NH+O↔NO+H 3.68E+14 0.00 0.00 
17 HNO+O2↔HO2+NO 2.00E+13 0.00 16000 
19 N+O2↔NO+O 6.40E+09 1.00 6280 
20 N+OH↔NO+H 3.80E+13 0.00 0.00 

Rxn 
# 

Reaction 
Rate parameters 

A b Ea 

11 
NH+NO↔N2O+H 2.90E+14 -0.400 0.00 
NH+NO↔N2O+H (dup) 2.20E+13 -0.230 0.00 

12 N+NO↔N2+O  1.05E+12 1.50 0.00 
13 NH2+NO↔N2+H2O  2.80E+20 -2.654 1258.0 
14 NH2+NO↔NNH+OH  2.30E+10 0.425 -814.0 
15 NO+H(+M)↔HNO(+M) 1.50E+15 -1.410 0.00 
18 NH+NO↔N2+OH  2.20E+13 -0.230 0.00 
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 The NO concentrations profiles for the modified GRI-Mech3.0 and Tian mechanisms are 

compared for the E%NH3 range from 0% to 80% for equivalence ratios 0.7, 1.0 and 1.1. In 

order to assess the improvement in agreement of laminar flame speed predictions between 

GRI-Mech3.0 and the Mod. GRI-Mech mechanisms, the adiabatic laminar flame speeds using 

the Mod. GRI-Mech mechanism are evaluated at E%NH3 = 0%, 20%, 50% and 80% for 

equivalence ratios 0.7, 1.0 and 1.1, and compared with Tian and GRI-Mech3.0 flame speed 

data [25]. 

 Figure 4.9a and 4.9b show the variations of the NO mole fractions and adiabatic laminar 

flame speed profile respectively for the modified GRI-Mech3.0 mechanism compared to Tian 

mechanism for ∅ = 0.7. From Fig. 4.9a, it can be seen that the NO concentration profile for the 

modified GRI-Mech mechanism has been improved significantly and is in fairly good 

agreement with the Tian’s NO mole fractions, compared to the GRI-Mech3.0 mechanism as 

shown in Fig. 4.3. The maximum difference in NO prediction between the modified GRI-

Mech3.0 and Tian mechanisms is observed to be within 10 % at E%NH3 = 20. Similarly from 

Fig. 4.9b, the adiabatic laminar flame speed profile of the modified GRI-Mech3.0 has 

improved significantly especially at E%NH3 = 20 and 50 compared to standard GRI-Mech3.0 

mechanism and found to be fairly equivalent with Tian’s adiabatic flame speed profile. 



134 

 

  

 
Fig. 4.9. (a) Theoretical NO mole fractions as a function of E%NH3 for Tian, Konnov and Mod. GRI-Mech3.0 

and (b) flame speed variations for modified GRI-Mech3.0, Tian and GRI-Mech3.0 at ∅ = 0.7. Lines with 

symbols: predictions. 

 

 Likewise, the NO mole fraction and adiabatic laminar flame speed profiles for ∅ = 1.0 are 

displayed in Figs. 4.10a and 4.10b respectively for modified GRI-Mech3.0 mechanism and 

compared with Tian mechanism. From Fig. 4.10a, a significant improvement in NO mole 

fraction trend for the new modified GRI-Mech3.0 mechanism is observed for lower range of 

E%NH3 = 0% to 35% and at E%NH3 = 80, however for E%NH3 range from 50 to 80, the 

modified GRI-Mech3.0 mechanism seemed to over predict NO compared to Tian’s NO 

predictions. The maximum difference in NO mole fraction between modified GRI-Meh3.0 and 

Tian mechanisms is observed at E%NH3 = 50, where theoretical NO mole fraction for the 

modified GRI-Mech3.0 is found to be approximately 25% higher than Tian’s NO mole 

fraction. Similarly, the laminar adiabatic flame speed trend for the modified GRI-Mech3.0 

mechanism has improved in agreement with Tian’s flame speed data noticeably, as observed in 

Fig. 4.10b. 
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Fig. 4.10. (a) Theoretical NO mole fractions as a function of E%NH3 for Tian, Konnov and Mod. GRI-Mech3.0 

and (b) flame speed variations for modified GRI-Mech3.0, Tian and GRI-Mech3.0 at ∅ = 1.0. 

 

 For fuel rich conditions (∅ = 1.1), excellent improvement is observed in agreement of the 

NO mole fraction trend between the modified GRI-Mech3.0 and Tian mechanisms with 

maximum difference of 7% in NO mole fraction at E%NH3 = 20, as shown in Fig. 4.11a. Also 

from Fig. 4.11b, the laminar flame speed trend for the modified GRI-Mech3.0 mechanism is 

seen to be in close agreement with Tian’s laminar flame speed data. 

 

 
Fig. 4.11. (a) Theoretical NO mole fractions as a function of E%NH3 for Tian, Konnov and Mod. GRI-Mech3.0 

and (b) flame speed variations for modified GRI-Mech3.0, Tian and GRI-Mech3.0 at ∅ = 1.1. 

 

 The new modified GRI-Mech3.0 (Mod. GRI-Mech) mechanism is also tested for 

evaluating the laminar flame speed for a non-adiabatic flame speed model by providing 

experimentally determined heat loss from the flame as an input in the PREMIX code at 

E%NH3 = 20 for ∅ = 0.7. This method of evaluating non-adiabatic flame speed by calculating 
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heat loss from the flame is explained more elaborately in the literature [25]. The laminar flame 

speed calculated for the  new modified GRI-Mech3.0 mechanism is found to be within 0.1%  

of the Tian’s laminar flame speed value [25]; whereas for the same condition, the laminar 

flame speed for GRI-Mech3.0 was noticed to be 39% slower than the flame speed value for 

Tian mechanism [25].   

 

4.5 Conclusions 

 The theoretical NO formation is computed in a 1-D, laminar, freely propagating flame 

speed model in CHEMKIN PRO 4.0 by using three different chemical mechanisms; (1) Tian, 

(2) Konnov and (3) GRI-Mech3.0. Data are compared with the experimentally measured NO 

emissions for H2-NH3-air premixed flames. Cases include six different ammonia seeding levels 

in the fuel mixture with a range from E%NH3 = 0% to 80% for equivalence ratios 0.7, 1.0 and 

1.1. Qualitatively, the predicted NO profiles with respect to NH3 seeding levels are found to be 

in fairly good agreement with the measured NO, however significant discrepancy is noticed in 

quantitative comparisons.  

 Results show that the NO concentration trends with varying E%NH3 in the fuel mixture 

among the three mechanisms remain similar for the lower range of ammonia substitution and 

lean conditions. However, for rich conditions as well as with increasing ammonia substitution, 

the NO trends for the three mechanisms begin to deviate from each other. This deviation in NO 

mole fraction from Tian’s NO predictions is observed to be much more pronounced for GRI-

Mech3.0 mechanism compared to Konnov mechanism. 
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 From the sensitivity and rate of production analysis, HNO and NH species are found to be 

the key precursors for NO formations in ammonia seeded flames for all three mechanisms, 

although significant dissimilarities are observed in NO decomposition chemistry between the 

GRI-Mech3.0 and Tian mechanisms. The discrepancies become wider with increasing 

ammonia content or the flame temperature. Eventually these differences in the reaction 

pathways lead to the differences in the net NO production rate among the three mechanisms, 

resulting in deviations in NO trends at higher ranges of ammonia content in the fuel mixture. 

  The reaction pathway analyses also allowed identification of the key reactions responsible 

for the disagreement between the Tian and GRI-Mech3.0 mechanisms. A new modified GRI-

Mech3.0 mechanism (53 species and 328 reactions) by adding three extra reactions 

             (            (Rxn # 11) 

                 (Rxn # 13) 

                (Rxn # 14) 

to the GRI-Mech3.0 mechanism with updated rate parameters provided a fairly good 

agreement of NO concentration trends and laminar flame speed data between Tian and GRI-

Mech3.0 mechanisms. The number of non-carbon species in the new modified GRI-Mech3.0 

mechanism are 40% less compared to Tian mechanism. 
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CHAPTER 5. INVESTIGATIONS OF NO CHEMISTRY IN 

LAMINAR H2/NH3 DIFFUSION FLAMES BY IN-SITU NO-PLIF AND 

CFD MODELING 

 

A paper to be submitted in Fuel Journal, 2012 

Praveen Kumar and Terrence R. Meyer
 

Abstract 

 To study the effects of NH3 seeding on NOx formation and validation of chemical 

mechanisms such as, Tian, GRI-Mech3.0, and a proposed modified GRI-Mech3.0 (Mod. GRI-

Mech) chemical mechanisms for ammonia seeded H2/air laminar diffusion flames, in-situ NO 

planar laser induced fluorescence (PLIF) measurements are performed and compared 

quantitatively with the corresponding 2-D computational NO PLIF, for varying amounts of 

NH3 energy percentage in H2 (E%NH3) from 0 to 80%. For quantitative comparisons, 

simulated NO fluorescence signals are generated from predicted NOx mole fractions via the 

UNICORN code by incorporating corrections for Boltzmann fraction, quenching corrections 

and a calibration constant (  ), for all three chemical mechanisms. A calibration flame, CH4-air 

laminar premixed flame seeded with NO range from 0 – 600 ppm at equivalence ratio 0.8 is 

established at identical experimental settings to evaluate the calibration constant (  ) correlated 

with absorption coefficient, overlap integral and optical efficiency. In-situ PLIF signals are 

corrected for background noise, beam profile and laser energy for each test condition.  

 Experimentally, with increasing NH3 addition from 0 to 80% to H2/air laminar diffusion 

flames, the flame length and NO concentration distribution seem to grow proportionally, with 
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higher NO concentration near the fuel-oxidizer interface. The predicted NO profiles as well as 

the flame structure by the Tian mechanism seem to be in reasonable agreement with the 

experimental NO-PLIF data, with discrepancy within 10 mm from the tube burner exit, where 

the Tian mechanism produces a local NO peak (bell shape curve), in contrast to gradual 

increasing experimental NO-PLIF data. Unlike Tian mechanism, the GRI-Mech3.0 mechanism 

is found to be in complete disagreement with the experimental flame length trend and NO 

concentration distribution. Interestingly, improved and reasonable agreements of NO mapping 

as well as flame length are recorded for the modified GRI-Mech3.0 mechanism, supporting the 

updates applied to standard GRI-Mech3.0 to predict NH3 seeded flames. Although post flame 

NO concentration for the modified GRI-Mech3.0 mechanism are in proximity of the Tian 

mechanism, it failed to capture the in-flame NO concentration trends. Overall, the Tian 

mechanism is found to be superior in agreement with the NO-PLIF experimental data, among 

the three chemical mechanisms, with further room of improvement.   

   

5.1 Introduction 

 

 Non-intrusive, in-situ laser induced fluorescence (LIF) has been proven to be a powerful 

tool in recent decades [1,2] for probing flame characteristics such as species concentrations, 

flame temperature. An advanced version of LIF is planar laser-induced fluorescence (PLIF), 

which is used to make simultaneous measurements over a planar (2-D) field compared to single 

point measurements [3,4]. The fluorescence signal intensity for a molecule excited by a 

suitable laser pulse is dependent on many factors such as the molecule’s number density, laser 
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energy, laser profile, population distribution across energy states, and molecular quenching. To 

perform a quantitative measurement, all these factors need to be considered. 

 LIF or PLIF has been largely used to diagnose temperature distributions and species 

concentrations (both qualitative and quantitative) in a wide range of combusting flowfields. For 

example, Hirano and Tsujishita [5] used planar laser induced fluorescence (PLIF) diagnostics 

for measurements of NO, CH, CN, NH species to probe the prompt NO formation mechanism. 

They harnessed the NO rotational spectrum to estimate 2-D flame temperature. They 

successfully showed the usefulness of this analytical tool for combustion studies. Similarly, to 

understand the nitric oxide formation in a modern diesel engine combustion chamber, Demory 

et al. [6] measured qualitative OH and NO concentrations by laser induced fluorescence and 

compared simulated OH distributions using the KIVA 3V code. Likewise, numerous 

demonstrations were performed for NO and soot evolution investigations in engine 

applications [7–10]. 

 Laser induced fluorescence has been proven helpful in improving chemical kinetics of fuel 

pyrolysis, oxidation, and pollutant formation. For example, Ravikrishna and Laurendeau [11] 

used LIF for quantitative measurements of NO in CH4-air and C2H6-air counterflow diffusion 

flames for the validation of flame structure predicted by the Sandia opposed-flow flame code 

[12]  utilizing GRI-Mech2.11 [13]. Based on the comparisons, refinements in rate coefficients 

were suggested for the prompt-NO initiation reactions in the chemical mechanism. To develop 

a more thorough understanding of NO kinetics in flames, more accurate in-situ NO 

measurements are required to validate any proposed chemical mechanism. In this effort, 

Douglas and Laurendeau [14] made quantitative NO measurements in flat, laminar premixed 
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CH4-O2-N2 flames with equivalence ratio range from 0.65 – 1.5 and compared with the NO 

predictions using the Sandia opposed flame code with GRI-Mech2.11. They found good 

agreement between the measured and predicted NO  for lean flames, however, predictions 

failed to match with experimental NO quantitatively as well as qualitatively. Suggestions for 

refined rate coefficients parameters were made for the key reactions. In another application, 

LIF was applied to capture quantitative NO production in high-pressure, swirl-stabilized spray 

flames of liquid heptane [15,16]. 

 In early studies, Hahn and Wendt [17] tested the kinetics of NO formation from fuel 

nitrogen by introducing anhydrous ammonia with fuel and then with an oxidizer jet. The NOx 

kinetics predicted NOx formation in agreement with experimental data in the case of NH3 

doped with fuel, but agreement was poor when NH3 was injected in the air side. This indicated 

deficiencies in the NH3 pyrolysis kinetic mechanism when it was utilized in the absence of HC 

fragments. Later, Battles and Hanson [18] presented a method for quantifying OH and NO 

radicals from PLIF images in high pressure flames utilizing a developed model for quenching 

cross-sections of OH and NO by Paul and co-workers [19,20]. The model was confirmed in 

lean CH4-air flames and the inclusion of interferences from O2 was recommended for NO 

fluorescence measurements.  

 The effects of acoustic forcing at frequencies 22 – 55 Hz on changes in the creation of NO 

were also studied by facilitating phase-resolved NO planar laser-induced fluorescence 

measurements [21]. The authors of this study concluded that variations of NO concentrations 

lead the OH field variations, which were attributed to greater sensitivity of NO to flame 

temperature. Barlow and co-workers [22,23] investigated the NO formation structure in 
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turbulent H2 jet flames with and without N2 dilution utilizing LIF techniques. Later, Barlow et 

al. [24], compared major species concentrations such as N2, O2, CH4, CO2, H2O, CO, and H2, 

OH, and NO measured by LIF in a porous cylindrical burner for different equivalence ratios; 

they employed numerical calculations using GRI-Mech 2.11, 3.0 [13] and detailed Miller 

chemical mechanisms [25] . GRI-Mech 2.11 and 3.0 underpredicted and overpredicted, 

respectively, the NO concentration in fuel-rich conditions. A similar trend was displayed for 

the Miller mechanism which otherwise seemed to be in fair agreement with the experimental 

measurements. Data also showed significant dependence of flame structure and NO 

formations on radiation. 

 Previous to Barlow’s work, Cattolica et al. [26], measured the NO profiles in H2/O2/N2 

flames using laser induced fluorescence. Driscoll et al. [27], pioneered the application of even 

lower time resolved (picosecond) laser-induced fluorescence (ps-LIF) and performed NO 

measurements in a non-premixed, counterflow CH4/air flame. The authors reported linear ps-

LIF was less susceptible to interferences in fuel-rich regions of the flame and less affected by 

errors resulting from rotational energy transfer (RET). It was also found that the experimental 

NO concentrations agreed favorably with flame model results within uncertainties of current 

prompt-NO reaction mechanisms. Hanson and co-workers [28,29] optimized the NO-LIF 

techniques for high pressure combustion environments by studying different excitation 

strategies for NO laser induced fluorescence. Utilizing previous results in identifying LIF 

interference from O2 and CO2 in high pressure flames, Lee et al. [30] optimized the LIF 

detection wavelengths for  2-D imaging of NO in CH4/air high pressure flames and compared 

results with model calculations utilizing the GRI-Mech3.0 chemical mechanism. These authors 
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demonstrated and discussed a practical guideline for 2-D NO-LIF application in high pressure 

flames. 

 In a recent study, Powell et al. [31] investigated the NO profiles via saturated LIF for 

nitrogen diluted H2/N2O premixed flames for the equivalence ratio range 0.95 to 1.55 and 

compared the experimental data with three different chemical mechanisms incorporating 

H2/O2/NxHy chemistry. It was found that the model predictions varied by more than 47% for 

fuel rich conditions, unlike those for the stoichiometric conditions, where disagreement was 

observed to be approximately 38%. Among the three chemical mechanisms, the Konnov 

mechanism was found within the range of experimental uncertainty. From the sensitivity and 

rate-of-production analyses, NHx/NO chemical interactions, as well as NHx to NxHy 

recombination reactions under fuel-rich conditions, were reported to be critical to accurately 

modeling NO profiles in hydrogen-nitrous oxide flames. 

 In a study of NO formation in laminar, nitrogen-diluted methane diffusion flames seeded 

with NH3, Bell et al. [32] compared numerical simulations with detailed chemistry against 

laser-induced fluorescence (LIF) imaging measurements for a range of ammonia injection 

rates. Pathways such as prompt NO, followed by the NNH mechanism, thermal NO, and the 

N2O mechanism were reported to play important roles in NO formation. In addition, with 

increasing NH3 levels, nitrogen levels in the post flame zone were observed to be enhanced 

and fuel-NO found to be the dominant mechanism. Later, Rahinov et al. [33] studied the 

formation of the amidogen (NH2) molecule in a NH3 doped CH4/air flame by measuring it via  

laser absorption spectroscopy and comparing results with 1-D model predictions utilizing 

several chemical mechanisms. The GRI-Mech3.0 mechanism overpredicted the concentration 
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significantly in the vicinity of the burner surface. It was reported that the NH2 radical 

concentration predicted by all chemical mechanisms were in agreement for NH3 doped flames 

and found unaffected by the equivalence ratio, unlike nitrogen oxides doped flames.   

 Venizelos and Sausa [34] carried out experimental and chemical modeling studies of a 60 

torr NH3/N2O/Ar flames for the refinement and testing of a detailed chemical mechanism with 

87 reactions and 20 species. Spatial profiles of NH3, N2O, N2, H2O, NO, O2, NH, O, and OH 

were recorded using molecular beam mass spectrometry (MB/MS), LIF, or both, and 

compared with those obtained using both equilibrium and PREMIX flame code calculations. 

Overall, PREMIX code predictions for majority of the species (like NH3, N2O, N2, H2O etc.) 

matched fairly well with the experimental data with a discrepancy in NO concentrations in 

post flame zone. Hence, the authors recommended a refined version of the chemical 

mechanism. 

 In another detailed investigation, Volker [35] studied NO chemistry by quantitative laser 

spectroscopic measurements of NO in methane-air counterflow diffusion flames and detailed 

chemical kinetic modeling. Experimental NO profiles for pure CH4/air as well as NO and 

NH3 seeded CH4/air flames were compared with the detailed modeling results of a chemical 

mechanism with 74 species and 506 reactions. Acceptable agreement was observed between 

experiments and modeling, and a recommendation for prompt NO formation in GRI-Mech 

2.11 was made.  

 This literature review reveals that many detailed studies regarding the development of the 

chemical kinetics of conventional fuel mixtures (H2, CH4 etc.) with moderate complex 

chemistry by adding additives (e.g. NO2, NO, NH3) have been conducted. Despite several 



148 

 

  

investigations on the NO chemistry pathways in NH3 seeded H2 flames, NO formations in NH3 

seeded flames are still in the development stage, and no satisfactory chemical mechanism has 

been found that can predict the combustion characteristics of the NH3 seeded H2 flames under 

most flame conditions. 

 To better understand the NO formation decomposition pathways in NH3 seeded H2-air 

diffusion flames, detailed quantitative in-situ NO PLIF measurements with varying NH3 

seeding levels in H2 are compared with 2-D NO predictions. The predictions utilize the 

UNICORN high fidelity CFDC numerical code developed by Katta and Roquemore [36] and 

employ three different chemical mechanisms: (1) Tian, (2) GRI-Mech3.0, and (3) modified 

GRI-Mech3.0, a newly proposed chemical mechanism from previous work (Chapter 4).  In 

addition, in-situ NO diagnostics in ammonia doped hydrogen-air laminar diffusion flames have 

been studied and considered as the secondary objective of the present study. 

 

Nomenclature 

                       

                    

                                                                        

                                         (    
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5.2 Experimental setup 
 

 The NO-PLIF laser diagnostics setup for the current study has been divided into two 

sections: (a) laminar diffusion jet flame setup and (b) planar laser-induced fluorescence (PLIF) 

setup including, optics layout, excitation and emissions spectrum, etc., and (c) data collection 

optics.  

5.2.1 Laminar diffusion jet flame setup 
 

 A laminar tube-flame setup is employed where open-air laminar diffusion flames at 

atmospheric pressure are established for H2/NH3 fuel mixtures with varying NH3 seeding level. 

A schematic of laminar diffusion tube flame setup is shown in Fig. 5.1. The fuel mixtures are 

metered by using Alicat mass flow controllers (MFCs. Before feeding into the fuel tube, the 

fuel is ensured to be mixed properly in a mixing manifold and fully developed by using 

sufficiently long tube length. To keep the flame from the surrounding drifts and maintain flame 

stability, the entire tube flame setup is surrounded by 4-in × 4-in square aluminum duct with 

two 15-cm × 0.635-cm slots on the sides of the duct that allow the laser sheets to pass through 

the flame. For non-corrosive gases, e.g., CH4 and H2, a 0-1 standard liter per minute (SLPM) 

range mass flow controller (MFC) is employed; for corrosive anhydrous NH3, a relatively 

smaller flowrate range 0-200 standard cubic per minute (SCCM) is used. All of these MFCs 

are remotely controlled by a LabView program. 
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Fig. 5.1. Schematic of laminar diffusion flame 

 

 

 

5.2.2 In-situ NO measurement setup (NO-PLIF) 
 

 Figure 5.2 shows a schematic of the NO planar laser induced fluorescence setup. A 

general description of each component is summarized in Table 5.1.  

Table 5.1. In-situ NO measurements setup specifications. 

Parts Specifications 
Pump Laser Nd:YAG Second Harmonic (200mJ @ 532nm) 
Dye Laser Two-Stage Dye Laser and BBO crystal 
Camera Princeton Instrument ® PI-MAX II i1024 ICCD Camera  
Lens UV Lens, focal length f = 45 nm, f/1.8 aperture  
Optical Filters a set of mirrors with a spectrally narrow reflectivity curve,  
Gate Time 20 ns  
Gain 200×  
Gates per Exposure 50 – 300 
Laser Sheet 60 mm x 0.5 mm 
Laser Pulse Energy 3 mJ 
Pulse Width 8ns 

Excitation  226.034 vacuum nm (online) and 226.042 vacuum nm (offline)  

Excitation Scheme P1(23.5), Q1 + P12(14.5), Q2 + R12(20.5), A – X (0,0) band 
Emission Band A - X (0,1), (0,2) and (0,3) bands 
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 As shown in Fig. 5.2, a Nd:YAG (Neodymium Yttrium Aluminum Garnet) laser (Spectra-

Physics PIV400) generates a fundamental 1064 nm wavelength by seeding of an internal diode 

laser at 1064 nm. 

 

Fig. 5.2. In-situ NO diagnostic setup (NO-PLIF). 

 The fundamental 1064 nm is frequency doubled via a doubling crystal, to generate a 

second harmonic at 532 nm (from Nd:YAG), as shown in the Fig. 5.2. 

       

                 
→                     
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 The 532 nm is further used to pump the dye laser containing Rhodamine (R590) dye to 

produce output at 610 nm (Fig. 5.2). 

      

                     
→                        

 From the Nd:YAG laser, 1064 nm and 532 nm are brought to a wave mixer from a 

separate route to produce a UV beam at 355 nm.  

               
         
→               

 Subsequently, the 610 nm from the dye laser and 355 nm from the wave mixer are routed 

to a wave mixing crystal and generate 226.034 nm. The 226.034 nm beam is further passed 

through a focusing lens and cylindrical (diverging) lens to produce a planar laser sheet 60 mm 

high and 0.2 mm thick (approximately) that is made passed through the center of the laminar 

diffusion jet flame (see Fig. 5.2). 

              
              
→                      

 The final output laser at 226.034 nm has a frequency of 10 pulse/sec and energy density 

range from 2.5 – 4.0 mJ/pulse with pulse width of approximately 7 ns (         sec).  

  

5.2.3 Data collection system 
 

 For signal collection optics, a 45 mm focal length Cerco UV objective lens with f/1.8 is 

placed before the ICCD chip at 90 degrees to the planar laser sheet. The fluorescence signal 

comprised a spectral width of 11 nm detected over a spectral region centered at 248 nm, which 

corresponds to the A-X (0, 2) band of NO. Prior to detection, the PLIF signal is filtered to 

eliminate Rayleigh scattering from the surrounding surfaces using a set of reflecting mirrors 

with reflectivity band 248   11 nm. This configuration allows only the PLIF signal to pass 
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through and thus spurious signals are eliminated. For 2-D PLIF image acquisition, an ICCD 

camera (Princeton Instruments, PI-MAX II i1024) is used. With 2×2 pixel binning, the camera 

records images with a 512×512 pixels at a frame rate of 10 frames per second (fps). A built-in 

image intensifier is used to enhance the signal-to-noise ratio. Due to varying PLIF signal 

strengths among the flame conditions, the gates per exposure for image acquisitions are kept in 

the range from 50 – 300, 50 for highest and 300 for lowest NO-PLIF signal flame conditions. 

However, to maintain the consistency and comparability among PLIF signals of the flame 

conditions, the average PLIF signal is obtained from the average of 300 shots for each 

condition. Fig. 5.3 shows the variation of PLIF signal intensity with respect to gates per 

exposure, with fixed 300-shot accumulations. It is confirmed that the PLIF signal intensity is 

fairly independent of gates per exposure as long as number of shots accumulated are the same 

(Fig. 5.3); thus, images at different flame conditions with different gates per exposure rates are 

still comparable. The detection system utilizes Winview 32 (Princeton Instruments) software to 

monitor and control the data acquisition process.  

 
Fig. 5.3. Variation of PLIF signal intensity with respect to gates per exposure 
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5.3 Numerical modeling 

 

 A time-dependent 2-D computational fluid dynamics code with chemistry, known as 

UNICORN (UNsteady Ignition and COmbustion with ReactioNs), has been used in the present 

numerical studies. The UNICORN code has been developed to better comprehend the flame 

dynamics of hydrocarbon flames, i.e., ignition, blow-out, instabilities and species compositions 

with sufficient accuracy [34]. UNICORN, that solves full PDEs of continuity/mass, u- and v- 

momentum, species and enthalpy conservation equations in both radial (r) and axial (z) 

directions, has been methodically developed and validated over a number of years. For 

numerous complex combustion phenomena, UNICORN has successfully predicted flame 

dynamics (mixing, velocity field) and species concentrations for major, minor, and 

intermediate species when coupled with detailed chemical mechanisms. For example, 

predictions of recirculation zone and soot structures for a laminar ethylene-air flame by 

UNICORN were confirmed by experimental measurements of flow-field and soot using Mie 

scattering and laser induced incandescence (LII), respectively [35]. In another study, for low-

speed buoyant H2/air non-premixed flames, the local temperature and NO concentrations were 

predicted to be higher in the compressed region of the flame and lower in the stretch regions 

due to the effects of curvature and non-unity Lewis number [36]. Later, Carter and Barlow [37] 

made time-resolved measurements of NO and OH using PLIF and temperature with thin-

filament pyrometry. The time evolution of temperature, OH and NO concentration for both 

experiments and simulations seemed to be in excellent agreement. Thus, it is established that 

the UNICORN predictions combined with PLIF measurements is a powerful research tool to 

study flame structure in both laminar and turbulent flames.  
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5.3.1 Numerical procedure 

 

 For the present work, a CFL number of 0.5 is used on grid system of (201x64) with time 

step,              . The procedure for each time of iteration is as follows: 

1. Estimate transport properties, i.e., kinematic viscosity (), thermal diffusivity (), 

mass diffusion coefficient (Dij), etc. for each species first, followed by the mixture. 

2. Solve species and energy equations to calculate Yi and sensible enthalpy (hmix) 

3. Solve for temperature (T) of mixture from ideal gas law. 

4. Estimate density () from ideal gas law. 

5. Solve u-velocity, v-velocity momentum equations 

6. Solve pressure (p) from Poisson equation. 

 (                                 (      

7. Velocity field, u- and v- velocity are corrected based on pressure gradients. 

 

5.3.2 Computational domain 

 

 To eliminate the uncertainty from the numerical simulations due to the grid domain, a grid 

independence test is performed. Four different grid sizes (1) 128x 64, (2) 201x64, (3) 251x90 

and (4) 301x161 are used to study the flame structure of a standard 2-D laminar CH4-air flame. 

For each grid system, the input parameters, chemical mechanism, boundary, and initial 

conditions are kept identical. Figure 5.4 shows the temperature contours for different grid 

systems. It is apparent that choosing an appropriate grid system is also critical for numerical 

simulations, where the grid of 128x64 is significantly off from the other three grid systems. 
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Fig. 5.4. Temperature contours of CH4-air diffusion flame for different grid sizes. Simulations with GRI-

Mech3.0 

 

 From the comparisons of centerline temperature profiles among the grid systems in Fig. 

5.5, it can be observed that temperature profile for grid 201x64 is in close proximity of both 

251x90 and 301x161 in region of interests (0 – 60 mm). Thus, a grid system of 201x64 is 

selected as a final computational domain for all further numerical modeling. 



157 

 

  

 
Fig. 5.5. Axial centerline temperature (K) profile for different grid sizes. 

 

5.4 Methodology of quantitative comparison 

 

 For a quantitative comparison between the experimental 2-D PLIF images and the 2-D 

NO computational results for each test condition, the following methodology is employed.  

 
Fig. 5.6. Laser beam (        profile with Gauss 5 and 7 curve fit in axial direction. 
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 The experimental 2-D NO-PLIF image is normalized by the corresponding laser beam 

profile and laser pulse energy (        for each test run. The result is referred to as the 

normalized NO signal represented as                , where                  
       

      
, in 

arbitrary units (counts). The laser pulse energy (        is evaluated by averaging the pulse 

energy recorded at the beginning and ending of each test run. A typical laser beam profile is 

shown in Fig. 5.6. 

 However, for computational modeling results, the predicted 2-D NO mole fraction (   ) 

image is converted back to a simulated PLIF signal represented as                  in arbitrary 

units (counts), by incorporating the effects of (1) the overlap-integral ( ), (2) Einstein 

absorption coefficient (   ), (3) optical efficiency, (4) NO number density (5) Boltzmann 

fraction, and (6) fluorescence efficiency. Overall, for a computational test run, the NO intensity 

counts                   can be represented by the following eq. 5.1. 

                                           (
   

       
)       (5.1) 

 The laser energy (        corrections are not required for the  computational PLIF signal, 

as the experimental NO-PLIF images are already normalized by laser beam profile (      ), so 

equation 5.2 is utilized;  

                                    (
   

       
)        (5.2) 

 Also, the overlap-integral ( ), Einstein absorption coefficient (     and optical efficiency 

(      are kept identical among all the test runs due to same excitation scheme and NO-PLIF 

setup, which simplifies the eq. 5.2 to 5.3  

                            (
   

       
)        (5.3) 
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where    is a calibration constant: 

 

                     (5.4) 

5.4.1 NO number density (   )  
 

 The NO number density (   ) can be expressed in terms of NO mole fraction (   ), as 

follows: 

         (
 

  
)         (5.5) 

where, the Boltzmann constant,                     
     

    
. From the knowledge of 

temperature and species concentrations from CFD modeling,     can be easily estimated by 

using eq. 5.5.  

 

5.4.2 Boltzmann fraction (  )  

 The Boltzmann fraction    as a function of temperature (shown in Fig. 5.7) is estimated by 

convolution of the Boltzmann fraction for the NO excitation scheme P1(23.5), Q1 + P12(14.5), 

Q2 + R12(20.5), in the A – X (0,0) band identified using LIFBASE [38].  
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Fig. 5.7. Boltzmann fraction vs. temperature for NO molecule. Excitation band A – X (0,0). 

 

 A curve fit for the Boltzmann fraction is estimated from the LIFBASE database and used 

for Boltzmann fraction corrections. Based on the comparison in Fig. 5.7, the curve fit exhibits 

excellent agreement with the LIFBASE database within the temperature range 300 K to 2200 

K, which is a typical temperature range for the current flame conditions.   

 

5.4.3 Fluorescence efficiency (             )  

 

 The fluorescence efficiency, sometimes known as fluorescence yield, is defined as the 

ratio of Einstein spontaneous emissions to the total emission: 

               
   

       
                                                        (5.6) 

For the fluorescence efficiency (             ), the spontaneous Einstein coefficient for A-X 

(0, 0) band for NO is                [39] and the collisional quenching rate is expressed as 

[17]:  
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        √

   

   
                                                       (5.7) 

where   ,    and    are  mole fraction, collisional cross-section and reduced mass of the i
th
 

colliding species, respectively. However, a more direct expression for NO quenching rate by 

major colliding species,   , like CO2, N2, H2, CH4, H2O, CO2, O2, H and OH are used  from 

Tamura et al. [40]. The present flames have significant concentration of NO and NH3 as well 

and both species have been proven to be a significant NO quenchers. However, the NO 

quenching rate for both NO and NH3 species was unknown until now. The total quenching rate 

(   ) is evaluated as: 

                                                                (5.8) 

and fluorescence efficiency is estimated using eq. 5.6.  

5.4.4 Calibration constant (  )  
 

 To determine the calibration constant (  ) comprised of the overlap-integral ( ), Einstein 

absorption coefficient (    , and optical efficiency(     , as shown in eq. 5.4, a laminar 

premixed CH4-air flame is established as the calibration flame. In past work [41,42], a standard 

lean premixed CH4-air flame has been widely used as a standard calibration flame to correlate 

the PLIF intensity counts to the NO mole fractions concentration in the flame. This premixed 

flame is preferred because the low flame temperature inhibits in-flame NO generation, leading 

to a known NO concentration in the exhaust region. This is advantageous over the use of a 

diffusion flame, where the combustion occurs in the stoichiometric region and NO generation 

in the flame is inevitable, leading to unknown NO concentration in the far flame zone. In this 

type of in-situ calibration, the standard flame is seeded with a known amount of NO and the 

NO-PLIF intensity is recorded.  
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Fig. 5.8. NO-PLIF intensity counts vs. NO seeding for calibration flame. 

 Previous studies [43] have shown that for lean premixed flames, the effects of NO seeding 

from the range 0 – 600 ppm on the flame characteristics such as species concentrations, flame 

length and temperature, etc. are insignificant. Thus, in-situ calibration in lean premixed flames 

with NO seeding range 0 – 600 ppm are considered more accurate than the calibration cell 

method [44]. For the present experiments, the calibration data is obtained from a lean premixed 

CH4/O2/N2/NO flame at an equivalence ratio of 0.8 with NO seeding in range of 0 – 600 ppm 

[45] as the NO-PLIF setup is kept identical. The variation of NO-PLIF intensity counts with 

NO seeding is shown in Fig. 5.8.  

 The calibration is accomplished using Eq. 5.9, where NO-PLIF intensity counts 

(              ), NO number density (   ), Einstein emission coefficient (   ), and boltzmann 

fraction (  ) for the calibration flames are known. Also, quenching rate of NO by major 

species (   ) is estimated based on the known concentrations of major species and NO-PLIF 

intensity counts for the calibration flame.  
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                          (
   

       
)      (5.9) 

 Based on these known parameters, a calibration constant cc is estimated from Eq. 5.10 as: 

    
                

       (
   

       
)  
      (5.10) 

and recorded to be as                          . This calibration constant (    is used 

to convert the 2-D simulated NO mole fraction images into a simulated NO-PLIF signal 

(                  with arbitrary units (counts) for all the flame conditions. 

  

5.5 Results and discussions 

 As described in previous sections, calculating absolute NO concentration with NO-PLIF 

images requires corrections for quenching by other species and local temperature 

distribution. Simulated NO-PLIF signals (                  are obtained by using the 2-D 

CFD modeling results of laminar H2/NH3 diffusion flames utilizing the Tian, GRI-Mech3.0 

and the modified GRI-Mech3.0 chemical mechanisms. Data from calibration flames (in-situ 

NO measurements in laminar CH4/air premixed flames) are used to convert the NO mole 

fractions into signal intensity counts, as described in previous section. For ease of qualitative 

comparison, both experimental (               ) and simulated (                  NO 

fluorescence 2-D maps are normalized by the peak NO value among NH3 seeding flames 

from E%NH3 = 0% to 80%. 

 Figure 5.9 shows the normalized 2-D in-situ NO contours for H2/NH3 laminar diffusion 

flame with varying NH3 seeding level in the fuel mixture. The flame length increases with 

increasing NH3 in the fuel mixture, which can be attributed to the change in stoichiometric 
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mass fraction of fuel (        ). Theories on predicting flame length for laminar non-premixed 

flames, such as Burke-Schumann [46] for constant density flow and Fay [47] for variable 

density flow, have established that flame length is inversely proportional to the stoichiometric 

nozzle-fluid mass fraction, expressed as: 

        
  

        
         (5.11) 

 For example,  for pure H2-air flames, one mole of H2 requires half moles of O2 or      

(         moles of air to achieve the stoichiometry (∅    . Whereas, for NH3, the required 

moles of air to achieve complete combustion is  1    (        . Thus with the ammonia 

addition in H2, the required amount of air to achieve stoichiometric condtion increases, leading 

to an overall increase in flame height (Fig. 5.9).  

 
Fig. 5.9. Experimental in-situ NO images for H2/NH3 laminar diffusion flame with NH3 seeding levels from 0% 

to 80%. 
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 Also from Fig. 5.9, the measured 2-D in-situ NO contours for H2/NH3 laminar diffusion 

flames are observed to be increasing monotonically with increasing NH3 doping level. 

Although the NO-PLIF signal distributions in NH3 seeded H2/NH3 flames are not uniform, 

significant NO formation is observed to be occring in a region between the high temperature 

and fuel-lean region of the flames. This is unlike methane-ammonia fuel mixtures, where 

significant NO is formed in the central region of the flame near tube exit [45]. Due to random 

background signal caused by inherently low signal-to-noise ratio, the experimental in-situ NO 

measurements display non-smooth spatial distributions. 

 Figure 5.10 shows the 2-D simulated NO-PLIF signal (                   contours by the 

Tian mechanism for NH3 seeding levels from 0% to 80% for H2/NH3 laminar diffusion flames. 

The flame length predictions by the Tian mechanism, as shown in Fig. 5.10, are in a good 

agreement with the experimental data (Fig. 5.9). Simulated 2-D, NO-PLIF signal contours (Fig. 

5.10) display not only a linear increase in NO with increasing NH3 doping level, but also 

significant NO formation occuring in fuel-lean region, as observed in the experimental data 

(Fig. 5.9). Similarly, the growth of NO signal in the post flame zone region is noticed for both 

experimental and CFD data. Overall, for model validation, the internal flame structures are 

comparable between the experiments and Tian mechanism simulations.  
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Fig. 5.10. Simulated NO-PLIF signal contours for NH3 seeding level from 0% to 80% for H2/NH3 laminar 

diffusion flame by the Tian mechanism. 

 

 Similarly, 2-D simulated NO-PLIF signal (                  contours by the GRI-

Mech3.0 mechanism are displayed in Fig. 5.11 with varying NH3 levels in the H2/NH3 fuel 

mixture. On comparison with in-situ NO distributions (Fig. 5.9), the flame structure and NO 

distribution predictions by GRI-Mech3.0 diplay inaccurate trends and significant discrepancies 

in flame length predictions as well as in NO distribution, especially for higher levels of NH3 

seeding in H2/NH3 laminar diffusion flames.  
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Fig. 5.11. Simulated NO-PLIF signal contours for NH3 seeding level from 0% to 80% for H2/NH3 laminar 

diffusion flame by the GRI-Mech3.0 mechanism. 

 

 Figure 5.12 shows the simulated 2-D NO PLIF signal (                ) contours 

generated by the newly proposed modified GRI-Mech3.0 based on the recommendations from 

the previous work (Chapter 4). Unlike the GRI-Mech3.0 mechanism, the apparent flame length 

variation, as well as the NO distribtion (Fig. 5.12), are improved and compare well with the 

experimental NO fluorescence signal (               ) contours (Fig. 5.9), indicating the 

capability of the newly developed chemical mechanism in predicting flame structures for NH3 

seeded H2 flames. 
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Fig. 5.12. Simulated NO-PLIF signal contours for NH3 seeding level from 0% to 80% for H2/NH3 laminar 

diffusion flame by the modified GRI-Mech3.0 mechanism. 

 

 

5.5.1 Comparison of measured NO emissions with predictions 

 As a preliminary validation method, NO predictions by the Tian, GRI-Mech3.0 and 

modified GRI-Mech3.0 chemical mechanisms are compared with the experimentally measured 

NO emissions (as shown in Fig. 5.13) at a location 60 mm downstream along the centerline 

axis with varying NH3 seeding level, i.e. E%NH3 from 0 to 80. In Fig. 5.13, the measured NO 

exhibited NO mole fractions in the range of 5-7 ppm for pure H2/air diffusion flame and 

increase steeply with increase in E%NH3 from 0 to 20. With further increases in E%NH3 in the 

range from 20 to 80, the NO trend seems to increase gradually with increasing NH3 seeding 

level, and peak NO emission is measured as 407 ppm for case E%NH3 = 80. 

 Qualitatively, the trend captured by the Tian and the GRI-Mech3.0 chemical mechanisms 

are in fairly reasonable agreement over the entire range of E%NH3 from 0 to 80. For the 
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modified GRI-Mech3.0 mechanism, noticeable discrepancy is observed in the NH3 seeding 

range from 0 to 20 where minor enhancement in predicted NO is noticed. For all three 

chemical mechanisms, the predicted NO concentrations are found approximately one order 

magnitude higher in comparison to the measured NO emissions for the entire range of 

ammonia seeding levels. Overall, the Tian mechanism was observed to be the closest in 

agreement with the experimental NO emission data, followed by the modified GRI-Mech3.0 

mechanism. 

 
Fig. 5.13.  Measured NO emission profile with predicted NO mole fractions by the Tian, GRI-Mech3.0 and 

modified GRI-Mech mechanisms for range of NH3 seeding level from 0 to 80. 

 

 Figure 5.14 shows the comparison of measured NO emission data, at 60 mm downstream 

by using a NO-analyzer (IMR 1400-PS) with the calculated NO mole fractions from the in-situ 

NO measurements for H2/NH3 diffusion flames with E%NH3 varying from 0 to 80. To convert 

the NO-PLIF signals (unit; counts) into NO mole fractions for each E%NH3 case, major 

species concentrations including O2, OH, H, H2O, N2, H2 etc., and temperature from the Tian 

mechanism’s predictions at 60 mm are utilized to incorporate the Boltzmann fraction    
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corrections (Fig. 5.7) and quenching    corrections (Eq. 5.6 ). It is argued that the CFD model 

is sufficiently accurate to predict the major species concentrations and temperature.  

 The calibration constant    (Eq. 5.10) obtained from the premixed CH4/N2/O2/NO 

calibration flame is used to finally convert the NO-PLIF signal (unit; counts) to NO mole 

fractions.  

 The vertical uncertainty contributions in XNO (PLIF) as shown in Fig. 5.14 are estimated 

from uncertainties in 1) beam profile and fluctuation, 2) Boltzmann fraction, 3) quenching 

correction, 4) temperature and, 5) major species concentrations. The horizontal uncertainties 

bar are evaluated from the uncertainties in species mass flow rates. The uncertainty analysis of 

NO mole fractions via in-situ measurements are discussed in detail in appendix section A.6. 

The measured NO emission data sampled from the exhaust with the NO analyzer is displayed 

with a 95% confidence interval in Fig. 5.14 

 

Fig. 5.14. Comparison of measured NO mole fractions by the NO sensor with the converted NO mole fractions 

by NO-PLIF measurements for range of NH3 seeding level from 0 to 80 at 60 mm downstream. 
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 From Fig. 5.14, it can be observed that the agreement between the NO mole fractions by 

in-situ technique (PLIF) and NO-analyzer at 60 mm downstream location is excellent for the 

mid-range of the NH3 seeding i.e., E%NH3 from 20 -40, with increasing disagreement between 

the two on both extreme ranges of E%NH3. For the lower range of E%NH3 (0 to 10), relatively 

higher in-situ NO mole fraction magnitude can be ascribed to the assumption of neglecting NO 

PLIF signal quenching via NO self-quenching and NH3 while incorporating quenching 

corrections. In contrast, for the higher range of E%NH3 (50-80) (Fig. 5.14), relatively lower 

magnitude for the NO mole fractions by PLIF compared to the measured NO emissions in the 

exhaust may have been due to discrepancies in temperature and major species concentration 

predictions by the Tian mechanism compared to actual flames, thus leading to over quenching 

of NO signal resulting in lower NO mole fraction.  

 

5.5.2 Centerline NO profiles 

 As apparent from Figs. 5.9 to 5.12, discrepencies are observed in qualitative comparison 

of 2-D in-situ NO profiles with the simulated NO-PLIF signal by the Tian, GRI-Mech3.0 and 

modified GRI-Mech3.0 (Mod. GRI-Mech) chemical mechanisms, which are further analysed 

in the following sections.   

 Centerline (     profiles of in-situ NO measurements and simulated NO-PLIF by the 

Tian, GRI-Mech3.0, and the modified GRI-Mech3.0 mechanisms are compared for the lower 

range of NH3 seeding from E%NH3 = 0% to 30% and for the higher range of NH3 doping from 

E%NH3 = 40% to 80%, as shown in Figs. 5.15 and 5.16, respectively, for laminar H2/NH3 

diffusion flames. 
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Fig. 5.15. Centerline quantitative comparison of in-situ NO profile with simulated NO-PLIF signals by the 

Tian, GRI-Mech3.0 and modified GRI-Mech mechanisms for lower range of NH3 seeding level; (a) E%NH3 = 

0, (b) E%NH3 = 5, (c) E%NH3 = 20 and (d) E%NH3 = 30. 

 

 For the ammonia-free flame (E%NH3 = 0), both the Tian and GRI-Mech3.0 mechanisms 

capture the in-situ NO trend along the centerline, as shown in Fig. 5.15a. In the proximity of 

tube exit (within 10 mm), the quantitative simulated NO-PLIF by GRI-Mech3.0 is in excellent 
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agreement with the experimental data, whereas the Tian mechanism overpredicts by almost 

~3x times. Farther away from the tube exit, both the Tian and GRI-Mech3.0 mechanisms 

exhibited equivalent NO trends and overpredict the NO concentration compared to the 

experimental data. Unlike Tian and GRI-Mech3.0, the NO trend displayed by the modified 

GRI-Mech3.0 mechanism deviated from the experimental data by more than an order of 

magnitude.  

 For the lower range of ammonia seeding levels i.e., E%NH3 = 5%, 20% and 30% (Figs. 

5.15b, 5.15c and 5.15d), the in-situ NO profile exhibits a gradual linear increase in NO 

concentration near tube exit region and then displays approximately constant NO profile with 

minor fluctuations further downstream along the centerline. The increasing stretch of the linear 

NO growth region with increasing NH3 seeding levels clearly indicates the shifting of reaction 

zone farther away from the tube exit, which can be attributed towards the higher moles of air 

requirements for NH3 to reach stoichiometry. 

 The simulated NO-PLIF profile by the Tian mechanism is in fairly good agreement with 

the in-situ NO profiles in the high temperature and post flame regions for lower NH3 seeding 

range (E%NH3 = 5, 20 and 30). However, in the proximity of the tube exit region, the predicted 

NO by the Tian mechanism exhibits an interesting two-peak structure, in contrast to linear NO 

growth in experiments. For small NH3 seeding (E%NH3 = 5) in the fuel mixture, the simulated 

NO-PLIF by the Tian mechanism shows an onset of two-peak structure or a bell-shaped profile 

in near tube exit region (within 10 mm), with a sharp jump in NO concentration followed by 

gradual NO receding. The 1
st
 peak magnitude is linearly increasing along with stretching of 
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NO receding region, as NH3 content increases in the H2/NH3 fuel mixture (E%NH3 = 20 and 

30).   

 As can be noticed from Fig. 5.15, for NH3 seeding levels E%NH3 = 5, 20 and 30, the 

simulated NO-PLIF profiles by the GRI-Mech3.0 mechanism are in strong disagreement with 

the experimental in-situ NO in near tube exit region, where predicted NO increases steeply in 

comparison to experimental data (see Fig 5.15). In contrast to in-situ NO profiles, the simulated 

NO profiles by the GRI-Mech3.0 mechanism are noticed to be shifting towards the tube exit 

upstream with increasing NH3 content in the H2/NH3 fuel mixture (refer Fig. 5.15). However, 

the GRI-Mech3.0 mechanism manages to capture the experimental NO trend in the post flame 

region with significant over prediction in magnitude compared to in-situ NO measurements. 

For example, for E%NH3 = 5, the difference between the experimental and simulated NO-PLIF 

by GRI-Mech3.0 is approximately more than one order of magnitude, which seems to grow 

larger by more than two orders of magnitude with increasing NH3 level (E%NH3 = 20 and 30).   

 Surprisingly, the modified GRI-Mech3.0 (Mod. GRI-Mech) mechanism significantly 

under-predicts the NO concentration in the proximity of tube burner exit as noticed in Fig. 

5.15, thus failing to capture the NO formation in low temperature regions of the flame for cases 

E%NH3 = 5, 20 and 30. However, the predicted NO trend by the modified GRI-Mech3.0 

mechanism seems to improve significantly and found to approach towards the experimental 

NO-PLIF data in high temperature region and post flame zone, thus reducing the differences 

between the two mechanisms for all the three cases. 

 Similarly, for higher ammonia seeding ranges in H2/NH3 laminar diffusion flames from 

E%NH3 = 40 to 80 (Fig. 5.16), the in-situ NO profiles exhibit even more gradual linear 
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increase in NO concentration in near tube exit region and then display approximately constant 

NO profile. 

 
Fig. 5.16. Centerline quantitative comparison of in-situ NO profile with simulated NO-PLIF signals by the 

Tian, GRI-Mech3.0 and modified GRI-Mech mechanisms for higher range of NH3 seeding level; (a) E%NH3 = 

40, (b) E%NH3 = 50, (c) E%NH3 = 60 and (d) E%NH3 = 80. 

 

 For E%NH3 = 40 to 80, the simulated NO-PLIF profiles by the Tian mechanism are in 

fairly good agreement with the in-situ NO profiles qualitatively in high temperature and post 
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flame regions. However, the magnitude of the 1
st
 peak of the two-peak structure of predicted 

NO  builds with the addition of ammonia.    

 In contrast, GRI-Mech3.0 shows greater disagreement when predicting flame structure, as 

well as quantitative NO, in comparison to experimental data (Fig. 5.16) for the higher range of 

NH3 seeding (E%NH3 from 40 – 80). For example, in the near tube exit region, the simulated 

NO-PLIF signal magnitudes predicted by the GRI-Mech3.0 mechanism are two orders of 

magnitude higher, which are maintained further downstream along the centerline. For the 

modified GRI-Mech3.0 chemical mechanism, the NO trends for E%NH3 = 40, 50, and 60, in 

Fig. 5.16, repeated similar behaviors as observed for the lower NH3 seeding levels i.e., E%NH3 

= 5, 20 and 30. On the contrary, for E%NH3 = 80, the simulated NO-PLIF signal for the 

modified GRI-Mech3.0 showed fairly good agreement with the experimental NO-PLIF data 

within 10 mm, and the differences increased gradually in the post flame region along the 

centerline. 

 From the above discussions, the Tian mechanism is in reasonable agreement with the 

experimental in-situ NO data, and displays superior potential in predicting flame structure of 

NH3 seeded H2/NH3 laminar diffusion flames and when compared to the GRI-Mech3.0 and 

modified GRI-Mech3.0 mechanisms. In comparison to standard GRI-Mech3.0 mechanisms, 

the NO trends for the modified GRI-Mech3.0 mechanism are observed to be in better 

agreement with the experimental NO profiles, especially in post flame region, for all the NH3 

seeding levels from E%NH3 = 5 to 80. 
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5.5.3 Radial NO profiles (          

 In this section, comparisons of in-situ NO measurements are performed with the simulated 

NO-PLIF signals obtained by the three chemical mechanisms along the radial axis at an axial 

location of 20 mm for both lower and higher levels of NH3 seeding. For ammonia-free flames 

(E%NH3 = 0), both the Tian and GRI-Mech3.0 mechanisms capture the in-situ NO trend along 

the radial axis, as shown in Fig. 5.17, with equivalent discrepancy in NO magnitudes in 

comparison to the experimental data. Farther away from the high flame temperature zone, both 

the Tian and GRI-Mech3.0 mechanisms exhibit less disagreement with the measured in-situ 

NO data. Unlike Tian and GRI-Mech3.0, the NO trend displayed by the modified GRI-

Mech3.0 is over-predicting almost by an order of magnitude for pure H2-air flame, as indicated 

along the centerline.  

 For the lower range of ammonia seeding levels, E%NH3 = 5%, 20% and 30% (Fig. 5.17), 

the overall concentrations of in-situ NO are enhanced compared to the pure H2-air case 

(E%NH3 = 0). Consistently for all the lower NH3 seeding levels, the peak in-situ NO is 

identified at the center of the flame and then reduces gradually moving away from the center 

axis in the radial direction. Interestingly, the simulated NO-PLIF profile by the Tian 

mechanism is in disagreement with the experimental NO-PLIF data in the near centerline and 

high temperature regions. The profile broadens with increasing NH3 seeding levels. Significant 

differences are observed at the onset of NO formation for the Tian mechanism, near the 

centerline region, with increasing under prediction as the seeding of NO as NH3 in the flame 

rises.  
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Fig. 5.17. Radial quantitative comparison of in-situ NO profile with simulated NO-PLIF signals by the Tian, 

GRI-Mech3.0 and modified GRI-Mech mechanisms at axial location 20 mm, for lower range of NH3 seeding 

level; (a) E%NH3 = 0, (b) E%NH3 = 5, (c) E%NH3 = 20 and (d) E%NH3 = 30. 

 

 In contrast to the Tian mechanism, the NO trends for the GRI-Mech3.0 mechanism appear 

to significantly overpredict the experimental data (approximately by an order of magnitude) 

near the centerline region (Fig. 5.17). However, the agreement improved at the lean side of the 

flame (away from the centerline) for all E%NH3 cases (5-30). For example, for E%NH3 = 5, 
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the difference between the experimental and simulated NO-PLIF by GRI-Mech3.0 is 

approximately 5 times higher, and builds with increasing NH3 level (E%NH3 = 20 and 30). The 

modified GRI-Mech3.0 (Mod. GRI-Mech) mechanism’s NO profile deviates significantly from 

the experimental NO-PLIF data for the pure H2-air diffusion flame, unlike the Tian and GRI-

Mech3.0 mechanisms (Fig 5.17). However, for lower level NH3 seeding cases (E%NH3 = 5, 

20, 30), the Mod. GRI-Mech mechanism predicted better agreement of NO profiles with the in-

situ NO compared to the GRI-Mech3.0 mechanism (Fig. 5.17). 

 Among higher NH3 seeding level cases (E%NH3 40 to 80), shown in Fig. 5.18, the 

experimental in-situ NO trends  transitioned from a linear profile to a bell shaped curve due to 

significantly reduced NO concentration near the centerline region. The observed in-situ NO 

trend may indicate enhanced activation of the NO decomposition reactions in the near 

centerline region, resulting in reduced NO concentrations. As observed in Fig. 5.18, due to a 

reduction in in-situ NO measurements near the centerline region, the NO trends predicted by 

the Tian mechanism are in fairly good agreement with experimental NO-PLIF data within 5 

mm on the radial axis for the higher ranges of NH3 seeding levels (E%NH3 = 50, 60 and 80). 

Further along the radial axis, the Tian mechanism captured the NO concentration trend fairly 

well, with significant over-prediction of the NO magnitude in the high flame temperature 

region.  

 The simulated NO-PLIF signals by the GRI-Mech3.0 mechanism in Fig. 5.18 are 

observed to be similar in trend for higher NH3 seeding cases (E%NH3 = 40 to 80) as noted for 

the lower ammonia seeding levels (E%NH3 = 5, 20 & 30). The NO is over-predicted in the 
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near centerline region by slightly more than two orders of magnitude with the agreement 

improving slightly on the lean side of the flame region. 

 
Fig. 5.18. Radial quantitative comparison of in-situ NO profile with simulated NO-PLIF signals by the Tian, 

GRI-Mech3.0 and modified GRI-Mech mechanisms at axial location 20 mm, for higher range of NH3 seeding 

level; (a) E%NH3 = 40, (b) E%NH3 = 50, (c) E%NH3 = 60 and (d) E%NH3 = 80. 

 

 For the near centerline region along the radial axis, the NO trends recorded by the 

modified GRI-Mech3.0 mechanism differ significantly from the experimental NO trends. In 
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contrast, the Tian mechanism captured the NO concentrations profiles for all cases of higher 

ammonia seeding levels. The agreement between the modified GRI-Mech3.0 and the Tian 

mechanism was observed to be reasonable on the lean side of the higher level NH3-seeded 

diffusion flames (E%NH3 = 40 to 80).   

 The Tian mechanism, is the most effective in capturing the fundamental flame 

characteristics, including flame length, in-flame NO distributions, etc., and is further analyzed 

to understand the NO kinetics.  In order to investigate the cause of the
 
first bell shaped curve of 

the simulated NO-PLIF, along the centerline by the Tian mechanism (Figs 5.15 and 5.16), the 

temperature and species profiles are investigated in detail. Figure 5.19 shows the predicted 

centerline flame temperature by the Tian mechanism with varying NH3 content in fuel mixtures 

from E%NH3 = 0 to 80. The peak temperature magnitude and its location appeared to be drop 

and shift downstream with ammonia addition, as expected due to low adiabatic flame 

temperature and reactivity of ammonia.  

 
Fig. 5.19. Centerline flame temperature (K) profiles predicted by Tian mechanism with varying NH3 levels; 

E%NH3 = 0 to 80.  
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 The axial location and the temperature magnitudes of the first peak of simulated NO 

profiles by the Tian mechanism, with varying ammonia content in the H2/NH3 fuel mixture, are 

displayed in Table 5.2. The first peak location for all NH3 seeding cases is well within 5 mm 

from the tube exit, and the local flame temperature is observed to be within 400 K. This 

indicates that the NO kinetics with very low activation energy impact the NO formations in this 

low temperature region (within 5 mm). 

Table 5.2. Axial location and flame temperature of 1
st
 peak of simulated NO-PLIF profiles for the Tian 

mechanism, with varying amounts of NH3 in H2/NH3 fuel mixture.  

 

 E%NH3 (Tian Mechanism) 
 0 5 20 30 40 50 60 80 

z (mm) NA 1.3 2.4 2.6 2.65 2.95 3.1 4 
T (K) 303 340 395 380 355 345 325 310 

 

 Effects of NH3 seeding on the centerline species profiles, (a) H, (b) OH, (c) O and (d) O2, 

predicted by the Tian mechanism are shown in Fig. 5.20. Peak concentration of the H radical 

within 5 mm is predicted to be in the order of ~      for pure H2-air (E%NH3 = 0) diffusion 

flame, and monotonically decreases to ~       with increasing NH3 in the fuel mixture. On the 

contrary, concentrations of OH and O radicals are negligible for all cases of NH3 seeding 

within 5 mm, playing a key role in determining ammonia oxidation in the flame zone. 

 Interestingly, the predicted mole fractions of O2 along the centerline of the flame by the 

Tian mechanism is enhanced by orders of magnitude with increasing NH3 within 5 mm of the 

tube exit region. In addition, the shapes of the O2 profiles are comparable with the simulated 

NO-PLIF profiles for the Tian mechanisms, as observed in Figs. 5.15 and 5.16. Fig. 5.20 shows 

that the pathways associated with the O2 production in the reaction zone, especially within 20 

mm along the centerline, may also have significant impact on the NO formation pathways. 
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This association may be a potential cause for the first peak bell shape NO curve elicited by the 

Tian mechanism apart from contributions from the radicals H, O, and OH.  

 

 
Fig. 5.20. Centerline profiles of predicted mole fractions of species like (a) H, (b) OH, (c) O and (d) O2 with 

varying NH3 seeding level from E%NH3 = 0 to 80, for the Tian mechanism. 
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5.5.4 Reaction rate analyses 
 

 The NO production and decomposition pathways in the Tian mechanism are displayed in 

Tables 5.3 and 5.4 respectively, with corresponding rate parameters. The reaction rates of all 

the NO production and decomposition reactions for the Tian mechanism are estimated within 

the computational domain, based on the rate parameters shown in the following tables.  

Table 5.3. NO production pathways for the Tian mechanism. A = pre-

exponential factor, b = pre-factor and Ea = activation energy. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rxn 
# 

Reaction 
Rate parameters 

A b Ea 
304 HNO+H↔NO+H2 4.40E+11 0.72 650 
305 HNO+O↔NO+OH 2.30E+13 0 0 
306 HNO+OH↔NO+H2O 3.60E+13 0 0 
307 HNO+O2↔HO2+NO 2.00E+13 0 16000 
309 HNO+NO2↔HONO+NO 4.40E+04 2.64 4040 
315 NO2+H↔NO+OH 1.30E+14 0 362 
316 NO2+O↔NO+O2 1.10E+14 -0.52 0 
323 2NO2↔NO+NO+O2 4.50E+12 0 27599 
324 2NO2↔NO3+NO  9.60E+09 0.73 20900 
326 HONO+H↔NO+H2O 8.10E+06 1.89 3850 
329 HONO+NO2↔HONO2+NO 2.00E+11 0 32700 
330 2HONO↔NO+NO2+H2O 3.50E-01 3.64 12140 
338 NO3+NO2↔NO+NO2+O2 5.00E+10 0 2940 
346 N2O+O↔NO+NO 9.20E+13 0 27679 
349 N2O+OH↔HNO+NO 1.20E-04 4.33 25080 
369 NH2+HNO↔NH3+NO 3.60E+06 1.63 -1250 
374 NH2+NO2↔H2NO+NO 6.50E+16 -1.44 268 
376 NH+O↔NO+H 9.20E+13 0 0 
380 NH+O2↔NO+OH 1.30E+06 1.5 100 
388 N+OH↔NO+H 3.80E+13 0 0 
389 N+O2↔NO+O 6.40E+09 1 6280 
395 NNH+O↔NH+NO 5.00E+13 0 0 
413 N2H3+O↔NH2+NO+H 3.00E+13 0 0 
425 N2H2+O↔NH2+NO 1.00E+13 0 0 
435 H2NN+O↔NH2+NO 7.00E+13 0 0 
437 H2NN+OH↔NH2+NO+H 2.00E+12 0 0 
438 H2NN+HO2↔NH2+NO+OH 9.00E+12 0 0 
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 Based on the reaction rate analyses, contributions of various pathways toward NO 

production within 10 mm region from the tube exit for cases E%NH3 = 5 and 50 are displayed 

in Fig. 5.21. For example, for HNO pathways, only Rxns 304 (magnitude       ) and 307 

(      ) are dominant. NO2 pathways for Rxns 315 and 323 play a minor role in NO 

production. The contribution of NH2, NH and N species via Rxns 380 and 389 are on the order 

of        for NO production. In contrast, contributions towards NO production within the 10 

mm region from the tube exit are negligible for pathways controlled by species such as HONO, 

NNH, N2O, NiHi and H2NN. 

 
Fig. 5.21. Reaction rates for key NO production pathways for Tian mechanisms for NH3 seeding level (a) 

E%NH3 = 5 and (b) E%NH3 = 50. 
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Table 5.4. NO decomposition pathways for the Tian mechanism. A = pre-

exponential factor, b = pre-factor and Ea = activation energy. 

  

 

 

 

 

 

 

 Similarly, the rate of reactions for NO decomposition pathways (Table 5.4) are estimated 

along the centerline axis for the Tian mechanism for both E%NH3 = 5 and 50 cases. As shown 

in Fig. 5.22, several key reactions are identified as responsible for NO decomposition within a 

10 mm region from the tube exit for both cases. For example, NO decompositions by H (Rxn 

310) and OH (Rxn 313) radicals are the most dominant pathways with an order of magnitude 

~10
2.5

 and 10
1.2

, respectively, for both E%NH3 = 5 and 50 (Fig. 5.22). Amine radicals (NH2, 

NH) are observed to be significant contributors to NO decomposition via Rxns 370, 371, 383 

and 385, with equivalent magnitude order in a range of       . On the contrary, contributions 

towards NO decomposition via other reaction pathways (Table 5.4) are negligible. 

Rxn 
# 

Reaction 
Rate parameters 

A b Ea 
310 NO+H(+M)↔HNO(+M) 1.50E+15 -0.41 0 
311 NO+O(+M)↔NO2(+M) 1.30E+15 -0.75 0 
312 NO+O(+AR)↔NO2(+AR) 1.30E+15 -0.75 0 

313 NO+OH(+M)↔HONO(+M) 1.10E+14 -0.3 0 
314 NO+O2↔NO2+OH 2.10E+12 0 497 
350 N2O+NO↔NO2+N2 5.30E+05 2.23 46280 
370 NH2+NO↔N2+H2O 2.80E+20 -2.654 1258 
371 NH2+NO↔NNH+OH 2.30E+10 0.425 814 
383 NH+NO↔N2O+H 2.90E+14 -0.4 0 
385 NH+NO↔N2+OH 2.20E+13 -0.23 0 
390 N+NO↔N2+O 2.10E+13 0 0 
401 NNH+NO↔N2+HNO 5.00E+13 0 0 
429 N2H2+NO↔N2O+NH2 4.00E+12 0 11922 
451 H2NO+NO↔HNO+HNO 2.00E+04 2 13000 
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Fig. 5.22. Reaction rates for key NO decomposition pathways for Tian mechanisms for NH3 seeding level (a) 

E%NH3 = 5 and (b) E%NH3 = 50. 

 

 

5.5.5 Effects of key reactions on NO formation 

 Analysis of the reaction rates of all the NO production and decomposition reactions 

(Tables 5.3 and 5.4), indicates that major critical reactions have relatively higher reaction rates 

within the 10 mm region from the tube exit, as shown in Figs 5.21 and 5.22. The individual 

effects of each important NO production and decomposition pathway on the NO formation (or 

simulated NO PLIF) trend by the Tian mechanism are studied. For each individual NO 

pathway effects, simulated NO-PLIF counts are estimated by the CFD simulation using the 

Tian mechanism, by disabling the NO pathway. With this method, the effects of a total of 24 

reaction pathways on the NO formation are investigated (Rxn 304 to 390), including three 

pathways of O2 formations via Rxns 5.1, 5.2 and 5.3, due to their low activation energies. 

Reaction pathways of O2 formation in the Tian mechanism are analyzed based on the observed 

trend of O2 formation along the centerline, which is similar to simulated NO PLIF by the Tian 

mechanism.    
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     (         (     (Rxn # 5.1) 

                    (Rxn # 5.2) 

                      (Rxn # 5.3) 

 

5.5.5.1  Axial direction 

 In Fig. 5.23, among all the NO production pathways via HNO, only Rxn 304 affected the 

NO trend, with relatively higher NO concentrations within 10 mm region from the exit for 

E%NH3 = 5. As noted in Fig. 5.23, suppressing NO decomposition pathway Rxns 311 and 314 

showed significant reduction in NO in the proximity of the tube burner and subdued NO 

magnitude in the post flame region. Pathways including NHi, N2O, H2NN, thermal NO, and 

free radicals H and OH, have a relatively insignificant affect over NO formation for E%NH3 = 

5. Unexpectedly, reaction pathways of O2 formation (Rxns 5.1, 5.2 and 5.3) have negligible 

effects on the NO trend as well as for E%NH3 = 5.    

 
Fig. 5.23. Predicted NO counts profiles by suppressing Reactions 304, 311 and 314 for Tian mechanisms with 

predicted NO profile by original Tian mechanism and compared with experimental NO-PLIF counts for case 

E%NH3 = 5. 
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Fig. 5.24. Predicted NO counts profiles by suppressing Reactions 311, 312 and 314 for Tian mechanisms are 

shown along with predicted NO profile by original Tian mechanism and compared with experimental NO-PLIF 

counts for case E%NH3 = 50. 

 

 Figure 5.24 shows the predicted NO count profiles created by suppressing Rxns 311, 312 

and 314 for the Tian mechanism for E%NH3 = 50, located along the centerline. For E%NH3 = 

50, most of the reaction pathways exhibited similar affects over NO formation as observed for 

case E%NH3 = 5, with minor differences. Suppression of Rxns 311, 312 and 314 exhibits 

similar axial NO profiles and underpredicts NO by more than two orders of magnitude 

compared to the experimental data. The trends show significant deviation from the 

experimental NO-PLIF data. Similar to E%NH3 =5, the effects of O2 production pathways via 

Rxns 5.1, 5.2 and 5.3 are found negligible for E%NH3 = 50.   

 

5.5.5.2  Radial direction 
 

 The effects of suppression of critical NO kinetics pathways on NO profiles along the 

radial direction at an axial location of 20 mm away from the tube burner are illustrated and 
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compared with the original Tian mechanism and the experimental NO-PLIF data for both 

E%NH3 = 5 and 50. 

 As noted from Fig. 5.25, for E%NH3 = 5, the radial NO profile from the original Tian 

mechanism is in reasonable agreement with the experimental NO-PLIF data, and has 

significantly overpredicted values from 3-9 mm along the entire radial distance. Among the 

entire Tian NO chemistry set, Rxns 304, 311, 312 and 314 are the most influential for the NO 

chemistry as illustrated  by the significant changes  in radial NO profiles. With Rxn 304, the 

simulated NO signal closes toward the experimental NO-PLIF within 2 mm, but significantly 

overpredicts the rest of the radial distance, thus indicating no favorable NO agreement with the 

experimental data. However, deactivation of reactions 311, 312 and 314 displayed relatively 

better agreement of the NO trend with the NO-PLIF.  

 
Fig. 5.25. Predicted radial NO counts profiles by suppressing Reactions 304, 311, 312 and 314 for Tian 

mechanisms are shown along with predicted NO profile by original Tian mechanism and compared with 

experimental NO-PLIF counts for case E%NH3 = 5 at 20 mm axial position. 
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 Similar to centerline comparisons, the pathways involving NH2, NH, N2O and free 

radicals don’t significantly affect the NO trend. O2 generation pathways via Rxns 5.1, 5.2 and 

5.3 exhibited negligible effects on NO production or decomposition. 

 Figure 5.26 shows the comparison of NO trends obtained by deactivating Rxns 304, 311, 

312 and 314, with the original Tian mechanism, along the radial direction at 20 mm axial 

distance for E%NH3 = 50. The original Tian mechanism is in reasonable agreement with NO-

PLIF in near centerline region and significantly overpredicts in the high flame temperature 

zone. Unlike E%NH3 = 5, many NO pathways are activated in the NO chemistry as observed 

by changes in radial NO profiles by deactivation of those chemical pathways in the original 

Tian mechanism. Reactions 304, 311, 312 and 314 have pronounced effects on the Tian’s NO 

profile, however, comparable effects are noted for NO production via NH2 pathways (315, 316, 

323, 326). In contrast, to the case of E%NH3 = 5, O2 production pathways 5.1, 5,2 and 5.3 have 

similar effects as Rxn 304, along the radial direction for E%NH3 = 50. 

 
Fig. 5.26. Predicted radial NO counts profiles by suppressing Reactions 304, 311, 312 and 314 for Tian 

mechanisms are shown along with predicted NO profile by original Tian mechanism and compared with 

experimental NO-PLIF counts for case E%NH3 = 50 at 20 mm axial position. 
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5.6 Conclusions 

 Detailed study of NO chemistry is performed with various levels of ammonia seeding in 

H2/NH3 laminar diffusion flames by comparing the in-situ quantitative 2-D NO measurements 

via planar laser-induced fluorescence with predicted 2-D NO contours by CFD modeling with 

the UNICORN code using the Tian, GRI-Mech3.0, and new modified GRI-Mech3.0 (Mod. 

GRI-Mech) chemical mechanisms. A CH4-air laminar premixed calibration flame seeded with 

NO range from 0 – 600 ppm at equivalence ratio 0.8, is used at identical experimental settings 

to obtain a relationship between in-situ signal intensity with NO concentrations in the flame. 

PLIF signals are corrected for background noise, laser energy, beam profile, Boltzmann 

fraction distribution and quenching of the NO signal by major species. From NO contour map 

comparisons, the flame length predictions and the qualitative distribution of NO in the entire 

flame domain is in relatively good correlation with the experimental NO-PLIF data for the Tian 

mechanism, followed by the modified GRI-Mech3.0 mechanism.  

 Comparison of in-situ NO measurements with the simulated NO-PLIF signals 

(                  for the three chemical mechanisms along the centerline and radial axes for 

the entire range of NH3 seeding from E%NH3 = 0 to 80  the predicted NO profiles as well as 

the flame structure by the Tian mechanism are in reasonable agreement with the experimental 

NO-PLIF data, followed by the he modified GRI-Mech3.0 mechanism. Along the centerline 

axis, the discrepancy is within 10 mm near the tube burner exit where the Tian mechanism is 

observed to produce a local NO peak (bell shape curve), in contrast to the more gradually 

increasing experimental NO-PLIF data. On the contrary, the GRI-Mech3.0 mechanism is in 
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poor overall agreement with the experimental flame length trend and NO concentration 

distribution along both the centerline and radial axis. 

 Interestingly, improved and reasonable agreement of simulated NO-PLIF data with the in-

situ NO measurements, as well as flame length, are recorded for the modified GRI-Mech3.0 

mechanism, which is proposed to simplify the chemistry for NH3 seeded flames from previous 

studies (Chapter 4). Overall, the modified GRI-Mech3.0 failed to predict the accurate NO 

distribution in lower flame temperature zones. However, it is in reasonable agreement with the 

experimental data, as well as the Tian mechanism’s NO predictions in the post-flame region 

and  the lean side of the flame along the centerline and the radial axes, respectively, for all 

levels of ammonia seeding (E%NH3 = 0 to 80). Among the three chemical mechanisms, the 

Tian mechanism is superior in predicting NO trends. 

 The reaction kinetics studies, utilizing the Tian mechanism, are used to investigate the 

cause of the first peak in NO (bell shape curve) along the centerline axis. The most critical NO 

production and decomposition pathways are narrowed dfrom the Tian NO pathways. The effect 

of each critical NO pathway for the original Tian mechanism are analyzed for two cases, 

E%NH3 = 5 and 50. Reactions 304, 311, 312 and 314 have the most pronounced effects on NO 

chemistry compared to other reactions. However, none of the reactions contribute sufficiently 

to be identified as the cause of the local NO peak generation for the Tian mechanism for 

E%NH3 = 5 and 50. Based on the NO reaction path analysis, simultaneous deactivation of 

multiple pathways for NO production and decomposition is suggested as the cause of the local 

NO peak structure, rather than individual pathway deactivation. This is due to the inherent 

complexity involved in NO chemistry under ammonia seeding conditions. 
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CHAPTER 6. GENERAL CONCLUSIONS 

 

6.1 General discussions 

 Based on the potential for the use of ammonia (NH3) as a zero-carbon fuel, it is 

considered as a potential sustainable energy resource. However, ammonia as a fuel poses 

severe challenges due to its low reactivity and tendency to produce significant amounts of 

NOx in flames. In this dissertation, two major aspects of anhydrous ammonia combustion are 

explored. First is the development of strategies and burner designs to achieve pure ammonia 

combustion up to a heat rate of ~40 kW and with an ultra-low emissions in a swirl-stabilized 

turbulent flame. Second is the study of NOx formation and decomposition pathways in NH3 

seeded H2 flames. The fundamental flame studies are supported by the state-of-the-art tools 

and techniques, such as CHEMKIN flame speed, reaction path and  sensitivity analyses; 

numerical simulations of 2-D flame structure by CFDC (Computational Fluid Dynamics with 

Chemistry) using the UNICORN (UNsteady Ignition and COmbustion with ReactioNs) code, 

and in-situ NO measurements by planar laser-induced fluorescence (PLIF) of NO, for 

H2/NH3 fuel mixtures.  

 In Chapter 2, an extensive parametric, application based study of combustion of 

ammonia (vapor NH3) mixtures with contemporary fuels e.g., H2 and CH4, is detailed in a 40 

kW, turbulent, swirl-stabilized domestic oil heating furnace.  Parameters studied include (a) 

air temperature, (b) equivalence ratio, (c) heat-rate, (d) nozzle position, (e), swirl effects, and 

(f) burner geometry, which are varied to optimize the flame stability for both H2/NH3 and 

CH4/NH3 fuel. From these experiments, it is observed that the flame-holder burner geometry 

helps to achieve higher E%NH3 levels, lower NOx emissions, and lower NH3 slip. 
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Significantly greater mixing of fuel and air facilitates a reduction of NO created by remaining 

NH3 in the mixing zone for the case with the flame-holder. In this case, near stoichiometric 

conditions are also superior to fuel-line conditions when using a flame holder… An 

optimized set of parameters is identified and along with a custom-designed fuel nozzle is 

used to achieve a pure NH3 flame (E%NH3 = 100) with an ultra-low NOx (3-5 ppm), 

although with significantly higher NH3 slip (800-1300 ppm) without air preheating. 

 To understand the chemical kinetics of NO and NH3 interactions in H2/NH3 flames, 

fundamental flame studies of the H2/NH3 fuel mixture are conducted under both premixed 

and diffusion flame conditions. In Chapter 3, flame speed measurements for H2-NH3-Air 

mixtures in a laminar jet flame configuration are compared with the flame speed predictions 

using the Tian, Konnov and GRI-Mech3.0 chemical mechanisms in a 1-D, laminar, freely 

propagating flame speed model in CHEMKIN PRO 4.0 for both adiabatic and non-adiabatic 

flame conditions. Cases include equivalence ratios of 0.5 to 1.1 and NH3 as a percent of the 

energy in H2 of E%NH3 = 0 (pure H2-Air), 20, 50 and 80. The Tian and Konnov mechanisms 

are found to be in fairly good agreement for lower and higher range of E%NH3. Conversely, 

GRI-Mech3.0 consistently failed to capture the experimental flame speed trends for all 

ammonia doped flames. More importantly, the radical mole fractions have strong 

implications on the predicted flame speeds, inferring that it is critical for a chemical 

mechanism to predict accurate radical concentrations in order to predict an accurate flame 

structure.  

 After analysis of the effects of flame radicals on the flame speeds of the H2/NH3 laminar 

premixed flame, analysis of the effects of radical concentrations on NO chemistry via NO 
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production and decomposition pathways in NH3 seeded flames is conducted. In  Chapter 4, a 

numerical study of laminar premixed H2-NH3-air flames is conducted to compare the NO and 

NH3 reaction kinetics among the (1) Tian, (2) Konnov and (3) GRI-Mech3.0 chemical 

mechanisms for the same flow conditions and to identify and resolve the key sources of 

disagreement among the chemical mechanisms. Both sensitivity and rate of production 

analyses are performed to determine the relative contributions of various precursors, radical 

species, and reaction pathways to NO and NH3 production and destruction in the flame zone. 

Based on the sensitivity and rate of production analyses, significant differences in NO 

decomposition pathways are observed between the Tian and GRI-Mech3.0 mechanisms, 

which widen with increasing NH3 seeding levels in H2/NH3 flames where disagreements are 

noted in both NO production and decomposition reactions. A modified GRI-Mech3.0 (Mod. 

GRI-Mech) mechanism with 328 reactions and 53 species is proposed. The new mechanism 

verifies the key role of these reactions in net NO production and displays improved 

agreement for lean and rich conditions.  

 Comprehensive validation of the contemporary chemical mechanisms, i.e., the Tian, 

GRI-Mech3.0 and the newly proposed modified GRI-Mech3.0 (Mod. GRI-Mech) chemical 

mechanism is performed using 2-D in-situ NO-PLIF measurements in laminar H2/NH3 

diffusion flames with varying amounts of NH3 content (E%NH3 = 0 to 80). The data are 

quantitatively compared with the corresponding computational 2-D NO concentration 

predictions from the UNICORN code by utilizing the above mentioned chemical 

mechanisms (Chapter 5). Overall, the predicted NO profiles as well as the flame structure 

predicted by the Tian mechanism are in fairly good agreement with the trends of the 
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experimental NO-PLIF data. A discrepancy is noted within 10 mm from the tube burner exit 

along the center line, where the Tian mechanism recorded a local NO peak (bell shape 

curve), in contrast to the gradually increasing experimental NO-PLIF data. On the other 

hand, the GRI-Mech3.0 mechanism is in significant disagreement in predicting flame length 

trends and NO concentration distributions with varying ammonia seeding in H2-air diffusion 

flames. Interestingly, improved and reasonable agreement of 2-D NO mapping, as well as 

flame length, is recorded for the modified GRI-Mech3.0 mechanism with the experimental 

NO measurements along both the axial centerline and radial directions. These findings 

support the modifications made to the GRI-Mech3.0 chemical mechanism to build the new 

modified GRI-Mech3.0 chemical mechanism. 

 

6.2   Future recommendations 

 From the swirl-stabilized turbulent flame studies in H2/NH3 mixtures, for an optimized 

burner design, 100% ammonia combustion is achieved for a heat rate range of 16 kW without 

requiring any air preheating with ultra-low levels of NOx. However, NH3 slip from the burner 

system is in a significantly higher range from 900 – 1300 ppm, and is considered a key 

remaining challenge in practical application of anhydrous ammonia as a fuel. 

 Continuing improvements in the burner performance include NH3 preheating prior to 

injection, utilizing the available combustion heat to support the catalytic decomposition of 

NH3 into H2 and N2. The NH3 can be heated up to a sufficiently high temperature, where in 

the presence of Ni catalyst, partial decomposition of NH3 would produce higher H2 content 

along with N2. From these experimental studies, H2 enhances the combustion performance of 
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NH3 due to its high reactivity and low ignition temperature. Hence, partial catalytic 

decomposition of NH3 is expected to improve the heat-rate range, but more importantly 

significant abatement in NH3 slip can be achieved even with NH3 burning at higher heat 

rates.  

 From the flame speed validation method and NO chemistry analyses among the 

contemporary chemical mechanisms (Tian, Konnov, and GRI-Mech3.0) noted in Chapters 3 

and 4 respectively, the sensitivity and reaction path analyses are performed at the peak heat 

release location of the 1-D premixed H2/NH3 flame structures. Effects of radical 

concentrations on NH3 and NO decompositions are also investigated at this particular 

location by assuming that reaction rates would be highest at the peak heat release location. 

Further studies would provide support for the present assumption if the sensitivity and 

reaction path analysis can be performed at the other locations of the 1-D flame structures.  

 As an improved and accurate validation method, the predicted 2-D NO concentrations 

for the Tian, GRI-Mech3.0 and the modified GRI-Mech3.0 chemical mechanisms (a 

proposed chemical mechanism from previous work) are compared quantitatively with the in-

situ NO measurements by using planar laser-induced fluorescence (PLIF). For appropriate 

comparison, predicted NO concentrations are converted from mole fractions to simulated 

NO-PLIF signals with arbitrary units in counts by incorporating corrections from the laser 

beam profile, Boltzmann fraction, optical efficiency and quenching corrections of NO signals 

by other major species. The quenching corrections for almost all of the major species such as 

O2, CO2, N2, OH, CO are found from the literature except the NO self-quenching and NH3 

quenching parameters for the NO molecule. It would be of significant importance to measure 
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the quenching parameters of the NO molecule by NH3 and NO self-quenching species as the 

concentrations of both NO and NH3 are abundant in H2/NH3 diffusion flames. 
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APPENDIX A. UNCERTAINTY ANALYSES 

 

A. 1  Flowrate uncertainty 

 As described in Chapter 5, experimental in-situ NO measurements by planar laser-induced 

fluorescence (PLIF) had many sources of uncertainty, including laser beam profile, Boltzmann 

fraction correction, optical efficiency and quenching corrections. Also included is the 

uncertainty in flow measurements from the mass flow controllers, which are given as      of 

the maximum range as suggested by the manufacturers. To estimate the effects of the mass 

flow controller uncertainty in simulated NO-PLIF signals, numerical results of the Tian 

mechanisms are re-run for two new flow rate cases; (1) Uncertainty +5, where the flow rates of 

each of the species is specified as 5% higher than the set H2 and NH3 flow rates for the Tian 

mechanism simulations and (2) Uncertainty -5, where the flow rates of both the species are set 

~ 5% lower than the original set flow rates for simulations by the Tian mechanism. 

 Figure A.1 shows the simulated NO counts for the set flow rates of H2 and NH3 species 

comparison with both flow rate uncertainty cases; (1) Uncertainty +5 and (2) Uncertainty -5, 

along the centerline axis for a particular case of 5% NH3 by energy in H2 (E%NH3 = 5). Minor 

fluctuations within the range of      of the flow rates result in significant discrepancy in 

simulated NO signal by the Tian mechanism, within the region of 10 mm from the tube exit of 

the burner, along the central axis. Whereas, in the high temperature zone (after approximately 

20 mm), no significant affects are observed on the NO concentrations by both plus and minus 5 

uncertainty levels. Fig. A.2 shows the percent error for both cases of uncertainties estimated 

with respect to the Tian results. As noted earlier, the overprediction for both cases was up to 10 

times higher in the region of 10 to 20 mm along the centerline axis. On the contrary, for the 
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high temperature flame zone and fuel lean region, the percentage error is negligible, indicating 

no effects. 

 
Fig. A.1. Comparison of simulated NO counts with ±5% uncertainty in the flowrates of H2 and NH3 along the 

centerline axis for case E%NH3 = 5. 

 
Fig. A.2. The percentage error in simulated NO counts estimated using the Tian mechanism and with ±5% 

uncertainty in the H2 and NH3 flowrates. 

 

 From the flow rate uncertainty analysis, the effects of flow rate uncertainties are more 

prevalent and dominant in the region close to the tube burner exit (within approximately 20 
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mm) where significant disagreement is observed between the Tian mechanism’s simulated NO 

signal and the in-situ NO measurements (shown in Chapter 5). Comparison is made to the high 

temperature and post flame zone where the flow rate uncertainty effects are negligible for all 

the cases of NH3 seeding in H2/NH3 laminar diffusion flames. 

 

A. 2  Laser profile uncertainty 

 For the quantification comparison of in-situ NO measurements with simulated 

fluorescence signal (                 , corrections of laser profiles are incorporated in the 

experimental in-situ NO data. Ideally, the laser profile should be a Gaussian distribution. 

However, in experimental measurements, the laser profiles were not precisely Gaussian for all 

the test runs. Thus, an additional curve fitting model was utilized to fit the laser profile for in-

situ NO normalization (
               

      
 , where        is the laser pulse energy or laser 

irradiance. 

 In Fig. A.3, a measured laser profile for the case of E%NH3 = 5 is plotted and compared 

with the curve fitting models using 5-Gaussian and 7-Gaussian fitted functions and is 

expressed in Matlab as: 

   ∑      [ (
(     

  
)

 

]

   

   

                                                  (     

 For all test runs, the range of Gaussian fitted functions were kept in the range of 5 to 7 for 

the curve fitting to maintain the R-square above 0.99, which captured the multiple peak or 

modes in the measured laser profile reasonably well. As seen in Fig. A.3, both 5-Gaussian and 

7-Gaussian functions closely replicate the experimentally measured laser profile in the central 
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region of the domain (axial location from 4 mm to 50 mm) with minor discrepancies near the 

boundaries.  

 
Fig. A.3. Measured laser profile, 5-Gaussian and 7-Gaussian curve fitted profiles. 

 The % errors in beam profile are plotted in Fig. A.4 for both 5-Gaussian and 7-Gaussian 

functions compared to the experimental data in Fig. A.3. Figure A.4. shows that both the 

Gaussian functions exhibit significant % error in range of 30% - 40% within 10 mm from the 

tube exit. However, the 7-Gaussian function stays fairly constant and within a 10% error. In 

contrast, the 5-Gaussian function error percent rises to approximately 30%. Overall, the 7-

Gaussian curve was chosen for the curve fitting.   

 From PLIF theory, the laser induced fluorescence signal is directly proportional to the 

laser profile, as; 

                          

The relative uncertainty of                 is observed to be directly related to the uncertainty 

of        as expressed in the following; 
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where  (   is the uncertainty of quantity “ ”. The significant error percentage in laser 

profile curve fitting could possibly be attributed to the relatively large fluctuations of in-situ 

NO signal,                 in the proximity of the tube exit.   

 The uncertainty caused due to temporal fluctuations of the laser profile was not estimated 

for any of the test runs, as the measured laser sheet profile is a temporal average of laser 

profiles images.  

 
Fig. A.4. The relative spatial error introduced by multi-Gaussian curve fitting.  

 

 The relative spatial error introduced by multi-Gaussian curve fitting, with respect to the 

actual measured beam profile, is calculated and shown in Fig. A.4. This error is encountered 

within 5% for the entire range of the centerline axis, except in the near tube exit region, where 

the curve fit profiles overpredict up to 40% higher than the actual beam intensity profile. 
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A. 3  Boltzmann fraction uncertainty 

 To ascertain the uncertainty due to Boltzmann fraction corrections applied to convert the 

numerical 2-D NO mole fractions into NO counts (arbitrary units) for comparison with the 

experimental in-situ NO measurements, the curve fit Boltzmann fraction profile of the NO 

molecule, as a function of temperature is compared with the LIFBASE database for NO 

molecule transitions aligned with the 226 nm wavelengths.  

 
Fig. A.5. Curve fit and LIFBASE Boltzmann fraction profiles as a function of temperature for NO molecule. 

 

 It is evident from Fig. A.5 that up to 2500 °K, the curve fit and the LIFBASE data are 

aligned, with only a slight deviation toward the high temperature limit. Overall, the uncertainty 

introduced due to Boltzmann fraction approximation is small because the temperature range 

encountered in the H2/NH3 flames stayed well within 2500 °K. 

 

A. 4  Laser power fluctuations 

 For each test run, laser pulse energy (        is recorded for a duration of five minutes, at 

the beginning and the end of the test run. For each power measurement recording, mean power 
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and the standard deviation are recorded. Given two sets of laser pulse energy measurements 

(                         ) for each test run, an overall averaged laser energy (        is 

estimated by the mean of the two laser energy measurements and the overall standard deviation 

calculated as; 

  
        

    
      

    (                    )
 
    (                  )

 

      
   (     

 

 For example, for test run E%NH3 = 5, the averaged laser pulse energy and the standard 

deviation recorded for five minutes duration at the beginning of the test run are shown in eq. 

A.4. 

                                                                                        (     

Likewise, the averaged laser pulse energy and the standard deviation recorded for five minutes 

duration at the ending of the test run are shown in eq. A.5.  

                                                                                      (     

Hence, the laser pulse energy (        is determined as follows; 

       
                        

 
                                                                    (     

The overall standard deviation (           estimated using equation A.3;  

                                                                                    (     

For all NO-PLIF measurements of H2/NH3 laminar diffusion flames, the 95% accuracy 

intervals are estimated based on the standard deviations measured.  

 The averaged laser energy (        is plotted with respect to test runs, i.e. E%NH3 range 

from 0% to 80% in Fig. A.6 along with the 95% confidence interval band. It is noticed that the 

fluctuation in laser energy stayed within 10% of the average energy for all the test runs. Hence, 
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the uncertainty in NO-PLIF measurements caused due to fluctuations in laser pulse energy is 

assumed to be negligible.  

 
Fig. A.6. Measured average laser beam power for cases of NH3 seeding (E%NH3) from 0 to 80s, with 95% 

confidence interval. 

 

A. 5  NO sensor measurements corrections  

 To ascertain the uncertainty of NO analyzer in NO measurements for the premixed 

H2/NH3/air flames (Chapter 4) as well as the for the NH3 seeded H2/air diffusion flames 

(Chapter 5), several NO calibration tests are performed on a laminar CH4/O2/N2/NO 

premixed flame at equivalence ratio 1.2 over an eight port tube burner with a total flowrate of 

4.4 slpm. To keep the flame from the surrounding drifts, the flame is established in an 

enclosed aluminum duct and the sampling probe is fixed at a location of 120 mm 

downstream from the tube exit.  

 In the established methane-air premixed flames, NO is doped in the flame ranging from 

0 – 3400 ppm, and for each doped NO flame, NO and NO2 measurements are recorded by an 

IMR analyzer. Figure A.7 displays an      comparison of measured NO (XNO measured) 
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with the doped NO concentration (XNO seeded). The true measured NO mole fraction is 

considered as the sum of the NO and NO2 sensor readings, due to a higher possibility of 

partial NO reburning into N2/NO2 for rich (∅       CH4/O2/N2/NO premixed flame.  

 From Fig. A.7, it can be observed that up to a 600 ppm NO seeding level, the measured 

NO by the analyzer is linearly increasing. However, for higher range of NO seeding e.g., 

1000 – 3400 ppm, the measured NO is deviating farther away with increasing NO seeding 

level. 

 
Fig. A.7. Measured NO mole fractions vs. seeded NO concentrations for NO analyzer, established with 

premixed CH4/O2/N2/O2 laminar flame.    

 

 The calibration curve for the NO sensor displayed in Fig. A.7 is later used for correcting 

the measured NO concentrations by the IMR analyzer for the premixed H2/NH3/air flames 

(Chapter 4). Whereas, NO measurements for the NH3 seeded H2/air diffusion flames are 

recorded to be in the linear region of the calibration curve, thus almost negligible correction 

factor is needed for the NO measurements.  
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 The NO sensor calibration experiments for the IMR sensor are extended further by cold 

flow test runs of NO seeding from 0 to 3400 ppm by utilizing a 4906 ppm NO with balance N2 

and a separate N2 gas bottle at a total flowrate ~ 6 slpm. 

 For each level of NO seeding, response of NO, NO2 and O2 sensors are recorded. Figure 

A.8 shows the recorded NO comparison to the linear trendline. 

 

Fig. A.8. Measured NO mole fractions vs. seeded NO concentrations for NO analyzer, established with cold 

flow of 4906 ppm NO in N2. 

 For each cold-flow test run, no dilution of NO and NO2 is observed as the measured O2 is 

recorded as zero from the sensor. Interestingly, the NO2 sensor displayed readings in the range 

of one order of magnitude lower than the NO seeding levels throughout the NO seeding test 

runs. Due to the absence of NO2 in the seeding mixture and minimal possibility of NO 

reburning into NO2 at cold flow conditions, it is ascertained that the NO2 sensor is sensitive to 

the NO molecule; however, the true NO measurements are taken from the NO sensor readings. 

 Overall, the linear trend exhibited by the NO sensor for the cold flow calibration tests (Fig. 
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A.8) showed improved agreement with the linear trendline compared to flame calibration tests 

(Fig. A7) for the higher NH3 seeding range. 

  

A. 6   Uncertainty estimation in     (PLIF) 

 The uncertainty estimation of    (PLIF) is obtained by starting from equation A.8 as 

follows; 

                                                    (A.8) 

                                                                 (A.9) 

Where    is represented as following; 

                     (A.10) 

and estimated using calibration flame data via Eq. (5.10). 

 In order to estimate the uncertainty in the    , first derivation of equation A.9 is evaluated 

in equation A.12,  with substitution of    derivative from equation A.11, as shown below; 

         (
 

  
)         (A.11) 

                

               
  

       

      
 (

    

   
  

  

 
)   

   

  
 

   

  
        (A.12) 

 In equation A.12,                 ,        ,    ,     and    are denoted as uncertainties 

in the PLIF signal, laser beam profile, Boltzmann fraction, and temperature, respectively. The 

    represents the NO mole fraction from the PLIF signal (see Fig. 5.14) as estimated by 

utilizing the Tian major species concentrations and temperature, and      represents the 

uncertainty in    , which is an unknown in equation A.12.   
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 The uncertainty fractions for each above listed parameter for each case of E%NH3 are 

shown in Table A.1, along with calculated uncertainty in NO mole fraction from the PLIF 

signal (    ).  

Table A.1. Uncertainty contributions of relevant parameters in     uncertainty (       

E%NH3   

 
 

   
  

 
   

  
 

       

      
 

                

               
 
          

0 0.04 5.52E-03 2.94E-02 2.70E-01 2.10E-01 1.91E-05 1.06E-05 
5 0.04 5.45E-03 1.47E-02 2.70E-01 1.30E-01 1.09E-04 5.02E-05 

10 0.04 5.43E-03 1.47E-02 2.70E-01 1.10E-01 2.12E-04 9.34E-05 
20 0.04 5.41E-03 2.94E-02 2.70E-01 1.40E-01 1.50E-04 7.29E-05 
30 0.04 5.42E-03 2.94E-02 2.70E-01 1.10E-01 2.04E-04 9.29E-05 
40 0.04 5.45E-03 2.94E-02 2.70E-01 1.00E-01 3.27E-04 1.45E-04 
50 0.04 5.49E-03 2.94E-02 2.70E-01 8.00E-02 1.90E-04 8.09E-05 
60 0.04 5.55E-03 2.94E-02 2.70E-01 8.00E-02 2.33E-04 9.92E-05 
70 0.04 5.63E-03 2.99E-02 2.70E-01 1.70E-01 2.54E-04 1.31E-04 
80 0.04 5.73E-03 2.99E-02 2.70E-01 1.20E-01 1.64E-04 7.64E-05 

 The uncertainty in temperature (  ) is estimated as 4% from the grid independence tests 

(Fig. 5.5) assumed to be same for major species concentrations and temperatures for all 

E%NH3 cases. Then, the uncertainty in Boltzmann fraction (   ) and fluorescence efficiency 

(   ) is calculated from the uncertainties in species and temperature. The uncertainty in laser 

beam profile (       ) is estimated from case E%NH3 = 60, due mostly to the fluctuating beam 

profile. It is assumed that the beam profile fluctuation would be similar for each case of NH3 

seeding. The uncertainty in NO-PLIF signal for each case is estimated from the NO-PLIF 

signal values in the axial range of 55 – 60 mm and the radial range of 0 – 15 mm. The exhaust 

measurements are performed ~75 mm downstream of the flame. Thus by substituting the 

relevant parameters (shown in Table A.1) into equation A.12, the uncertainty in NO mole 

fraction from the PLIF signal (      is estimated for each E%NH3 case and presented in 
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Table A.1. The uncertainty of mass flow controllers (Alicat, ±5.0% full scale) is utilized to 

estimate the uncertainty in E%NH3 for the case of NH3 seeding, resulting in horizontal error 

bars for the NO mole fraction from the PLIF signal, as shown in Fig. 5.14. 
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APPENDIX B. UNICORN CFD MODEL 

 

 A time-dependent 2D computational fluid dynamics code with chemistry (CFDC), known 

as UNICORN (UNsteady Ignition and COmbustion with ReactioNs), has been used in the 

present numerical studies. The UNICORN code has been developed to better comprehend the 

flame dynamics of hydrocarbon flames like ignition, blow-out, instabilities and species 

compositions [1]. UNICORN  solves full PDEs of continuity/mass, u- and v- momentum, 

species and enthalpy conservation equations in both radial (r) and axial (z) directions and has 

been one of the most methodically developed and validated CFDC codes. For numerous 

complex combustion phenomena, UNICORN has successfully predicted flame dynamics 

(mixing, velocity field) and species concentrations for major, minor and intermediate species 

when coupled with detailed chemical mechanisms. For example, predictions of flame, 

recirculation zone and soot structures for a laminar ethylene-air flame were confirmed by 

experimental measurements of flow-field and soot using Mie scattering and laser induced 

incandescence (LII)[2]. In another instance, for low-speed buoyant H2/air non-premixed 

flames, the local temperature and NO concentration was predicted to be higher in the 

compressed region of the flame and lower in the stretch regions due to the effects of curvature 

and non-unity Lewis number [3]. Later, Cater and Barlow [4] made time-resolved 

measurements of NO and OH using PLIF and of temperature using thin-filament pyrometry. 

The time evolution of temperature, OH, and NO concentrations for both experiments and 

simulations seemed to be in an excellent agreement. Thus, it is confirmed that the UNICORN 

predictions combined with PLIF measurements is a powerful approach for studying flame 

structure in both laminar and turbulent flames. 
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Fig. B.1. Evolution of temperature, OH concentration, and NO concentration in H2/air jet diffusion flame at 

axial location 80 mm above nozzle exit. Contour table is given at the top
5
. 

 

 For the formulation of a CFDC model to numerically integrate the fluid-dynamics with 

chemical kinetics, five key elements of the numerical model are identified; (1) governing 

equations with initial/boundary conditions, (2) discretization schemes, (3) computational 

domain, (4) chemical kinetics, and (5) thermodynamics and transport properties. Each of the 

key elements are elaborated further in the following sections. 

 

B.1  Governing equations 

 The time-dependent governing equations for a 2-D axisymmetric reacting flow problem 

can be written in the cylindrical (z, r) coordinate system as follows; 

 (  

  
 

 

 

 (    

  
 

 (   

  
                                                 (     

                                                 
5
 Comparison of predictions by Katta et al. [3] with experiments by Carter and Barlow [4]  
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where   represents density,   and   are the axial and radial components of the velocity vector, 

respectively, and p is the pressure. The equation B.2 represents a generalized form of   and   

momentum as well as species and enthalpy conservation, depending on the variable  , 

transport coefficient    and source term   , for which the correlations are listed in Table B.1. 

Here  , , and    are the viscosity, thermal conductivity, and specific heat of the mixture, 

respectively;    is the mass fraction; and   ̇  is the mass-production rate of the ith species;    is 

the density of air; and   is the gravitational acceleration.  

Table B.1. Variable  , transport coefficients, and source terms in governing equations. 

Equations         

Axial 
Momentum (B.3) 
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 The transport property        represents the mixture-averaged diffusion coefficients of 

the  th
 species in the gas mixture, where         .    is the total number of chemical 

species in the chemical mechanism. The enthalpy   is defined as  

   ∑  

  

   

   ∑  (  

  

   

     
   ∫     

 

  

                                      (     

where     is the total enthalpy of the  -th species,     
  is the  -th species heat of formation at 

standard temperature   . The Lewis number for each species is defined as; 

    
 

           
                                                                        (     

 With    representing the total number of species, the remaining unknowns include species 

mass fraction (           , enthalpy (  , temperature (  , density (  , pressure (    axial 

velocity (   and radial velocity (  , adding up to a total number of unknowns as     . To 

provide a closure to the problem set, two additional equations are used: (1) the sum of all mass 

fractions is unity (eq. B.5); 

   
     ∑   

    

   

                                                                     (     

and (2) equation of state (ideal gas law). By convention, the mass fraction of the largest major 

species is determined using eq. B.6. 

      ∑(
  

   
)                                                          (    

  

   

 

 For the energy equation, a sink term           ( 
    

   is introduced by assuming 

optically thin gas properties to account for the thermal radiation heat losses from the flame. 
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Here,    is the total absorption and emission coefficient from participating media (H2, CH4, 

CO, CO2 etc.) [5],  defined as              and       refers to the mean absorption 

coefficient of  -th species [6].  

 

B.2  Boundary conditions 

 The boundary conditions applied for a 2-D axisymmetric laminar flame problem are 

shown in Fig. B.2. The entire domain is bounded by four different boundary conditions. The 

vertical line on the left-most corner represents the center of the physical flame and is imposed 

with an axisymmetric boundary condition, meaning that the flux of mass and momentum is 

zero across this boundary.  

 
Fig. B.2. Schematic of boundary and initial conditions. 

 The bottom horizontal line represents the inlet boundary conditions, for both the fuel jet 

and co-flow. The inlet variables like u and v velocities, temperature, pressure, species mass 
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fractions (H2, CH4, NH3, O2, and N2 etc.) are provided as inputs. The fuel jet inlet conditions 

are provided in the computational range       , where    is the ID of the tube, whereas 

the air coflow boundary conditions are assigned in the range              with axial 

velocity ~0.001 m/s. The right-most vertical line represents the free flow boundary having the 

same boundary conditions as the coflow. The top horizontal line represents pressure outlet 

boundary, where the gradient of variables like (                 are zero in the axial direction.  

 

B.3  Chemical kinetics 

 For the present numerical modeling utilizes three detailed chemical mechanisms: (1) Tian 

[8] with 84 species and 706 reactions, (2) GRI-Mech3.0 [7] with 53 species and 325 reactions, 

and (3) Modified GRI-Mech with 53 species and 328 reactions. In the modeling, the net rate of 

production  ̇  of the i
th

 species is obtained by summing up all the individual contributions from 

each reaction, as given in eq. B.7: 

 ̇  ∑    

  

   

   (          
 ) (    ∏[  ]
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)              (     

  

where       is the stoichiometric coefficient on the product side for the  -th species in the  -th 

reaction and     
  is the stoichiometric coefficient from the reactant side for the  -th species in 

the  -th reaction;  [  ] is the molar concentration of the  -th species; and      and      are the 

forward and backward rate of  -th reaction, respectively. From Arrhenius rate law, the forward 

or backward rate of reaction              can be estimated as: 

                   ( 
  

   
)                                                               (     
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where,  ,  , and     are the pre-exponential factor, temperature exponent, and activation 

energy, respectively, for the chemical reaction. Subsequently, assuming equilibrium for the 

reaction, the other backward/forward rate of reaction can be estimated using following 

expressions 

   
    

    
    ( 

   
 

   
)                                                         (     

 

where    is the equilibrium constant,     
  is the standard gibbs energy, and    is the universal 

gas constant. 

 

B.4  Thermodynamics and transport properties 

 To determine the chemical kinetics and spatial distribution of the variables (e.g., species, 

temperature, etc.), it is imperative to provide thermodynamics and transport properties of the 

chemical species involved in the problem. Thermodynamic properties include specific enthalpy 

(   , constant specific heat (     , entropy (   , etc. for each species, whereas, transport 

properties include the binary diffusion coefficient (    ), thermal conductivity (  ), and 

viscosity (  ), which are estimated by the correlations based on the Chapman-Enskog collision 

theory [9], as follows; 
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 For polyatomic gases, the thermal conductivity is corrected for internal energy storage and 

  ( 
   and   ( 

   are known as transport collision integrals provided by Neufeld et al. [10]. 

The transport properties of the gaseous mixture are determined using following empirical 

correlations [11]: 
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where,     is defined as: 
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 For thermal radiation from major species like H2O, CO2, CH4, H2, and CO, the Planck 

mean absorption coefficients are utilized from Grosshandler et al. [5]. 

 

B.5  Numerical schemes 

 A hybrid discretization scheme (combined form of finite volume and finite difference 

schemes) developed by Spalding [12] is used to solve the PDEs of the species and enthalpy 

equations on a non-uniform staggered grid. However, a finite difference form of u- and v- 
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momentum equations are implemented using the implicit QUICKEST (Quadratic Upstream 

Interpolation for Convective Kinematics with Estimated Streaming Terms) scheme, developed 

by Leonard [13]. This scheme is third order accurate in both space and time and has very low 

numerical dissipation, which is important in buoyancy driven flames.  

 In Fig. B.3, a schematic of the QUICKEST scheme is shown. The variables in the N+1
th

 

time step when proceeding from N
th

 time step with known variables can be calculated from eq. 

B.17:   

    
          

        
        

          
          

        
   

     
          

         
       

                                                    (      
 

 

 
Fig. B.3. Schematic diagrams of the FVM/FDM schemes, courtesy of Katta et al. [14]. 

 Here,   
    represents a variable at the N+1

th
 time step. Subscripts P, denotes grid point 

“P” in the figure and E and W represent next neighboring grid points in the positive and 

negative z-direction, respectively; whereas grid points EE and WW represent two grid points 
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away from point P in the corresponding direction. A similar convention goes for the N, S, NN 

and SS grid points in r-direction.  

 The time step    is estimated from the CFL number by following correlation; 

 

       
     

| ⃑|   
                                                            (      

where       is the minimum distance between two grid points and | ⃑|    is the maximum 

velocity magnitude. The   coefficients on the neighboring grid points of point P and 

parameters on the right hand side of eq. B.17 are estimated based on parameters at the N
th

 time 

step: 
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 Likewise, the coefficients               can be expressed in terms of local Courant 

numbers. Here the local Courant numbers (        and the diffusion parameters (     ) are 
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Where,    ,    are defined as follows: 
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then, the coefficient     is calculated as: 
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B.6  Numerical procedure 

 For the present work, a CFL number of 0.5 is used on a grid system of 201x64 with time 

step              . The procedure for each time iteration is as follows: 

1. Transport properties (, , Dij) for each species are estimated first, followed by the 

mixture. 

2. Species and energy equations are solved next, to calculate Yi and sensible enthalpy 

(hmix). 

3. Ideal gas is utilized to estimate the mixture temperature (T) and density (). 

4. Momentum equations in both x and y directions are solved. 

5. The Poisson equation is solved for pressure (p). 

 (                                   (      

6. Velocity field, u- and v- velocity are corrected based on pressure gradients. 
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APPENDIX C. MODIFIED GRI-MECH3.0 MECHANISM 

 
-------------------- 

ELEMENTS     ATOMIC 

CONSIDERED   WEIGHT 

-------------------- 

1. O       15.9994 

2. H       1.00797 

3. C       12.0112 

4. N       14.0067 

5. AR      39.9480 

-------------------- 

 

 

(k = A T**b exp(-E/RT)) 

REACTIONS CONSIDERED                         A            b        E 

 

1. 2O+M<=>O2+M                                  1.20E+17   -1.0        0.0 

H2              Enhanced by    2.400E+00 

H2O             Enhanced by    1.540E+01 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.750E+00 

CO2             Enhanced by    3.600E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    8.300E-01 

2. O+H+M<=>OH+M                                 5.00E+17   -1.0        0.0 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

3. O+H2<=>H+OH                                  3.87E+04    2.7     6260.0 

4. O+HO2<=>OH+O2                                2.00E+13    0.0        0.0 

5. O+H2O2<=>OH+HO2                              9.63E+06    2.0     4000.0 

6. O+CH<=>H+CO                                  5.70E+13    0.0        0.0 

7. O+CH2<=>H+HCO                                8.00E+13    0.0        0.0 

8. O+CH2(S)<=>H2+CO                             1.50E+13    0.0        0.0 

9. O+CH2(S)<=>H+HCO                             1.50E+13    0.0        0.0 

10. O+CH3<=>H+CH2O                              5.06E+13    0.0        0.0 

11. O+CH4<=>OH+CH3                              1.02E+09    1.5     8600.0 

12. O+CO(+M)<=>CO2(+M)                          1.80E+10    0.0     2385.0 

Low pressure limit:  0.60200E+15  0.00000E+00  0.30000E+04 

H2              Enhanced by    2.000E+00 

O2              Enhanced by    6.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    3.500E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    5.000E-01 

13. O+HCO<=>OH+CO                               3.00E+13    0.0        0.0 
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14. O+HCO<=>H+CO2                               3.00E+13    0.0        0.0 

15. O+CH2O<=>OH+HCO                             3.90E+13    0.0     3540.0 

16. O+CH2OH<=>OH+CH2O                           1.00E+13    0.0        0.0 

17. O+CH3O<=>OH+CH2O                            1.00E+13    0.0        0.0 

18. O+CH3OH<=>OH+CH2OH                          3.88E+05    2.5     3100.0 

19. O+CH3OH<=>OH+CH3O                           1.30E+05    2.5     5000.0 

20. O+C2H<=>CH+CO                               5.00E+13    0.0        0.0 

21. O+C2H2<=>H+HCCO                             1.35E+07    2.0     1900.0 

22. O+C2H2<=>OH+C2H                             4.60E+19   -1.4    28950.0 

23. O+C2H2<=>CO+CH2                             6.94E+06    2.0     1900.0 

24. O+C2H3<=>H+CH2CO                            3.00E+13    0.0        0.0 

25. O+C2H4<=>CH3+HCO                            1.25E+07    1.8      220.0 

26. O+C2H5<=>CH3+CH2O                           2.24E+13    0.0        0.0 

27. O+C2H6<=>OH+C2H5                            8.98E+07    1.9     5690.0 

28. O+HCCO<=>H+2CO                              1.00E+14    0.0        0.0 

29. O+CH2CO<=>OH+HCCO                           1.00E+13    0.0     8000.0 

30. O+CH2CO<=>CH2+CO2                           1.75E+12    0.0     1350.0 

31. O2+CO<=>O+CO2                               2.50E+12    0.0    47800.0 

32. O2+CH2O<=>HO2+HCO                           1.00E+14    0.0    40000.0 

33. H+O2+M<=>HO2+M                              2.80E+18   -0.9        0.0 

O2              Enhanced by    0.000E+00 

H2O             Enhanced by    0.000E+00 

CO              Enhanced by    7.500E-01 

CO2             Enhanced by    1.500E+00 

C2H6            Enhanced by    1.500E+00 

N2              Enhanced by    0.000E+00 

AR              Enhanced by    0.000E+00 

34. H+2O2<=>HO2+O2                              2.08E+19   -1.2        0.0 

35. H+O2+H2O<=>HO2+H2O                          1.13E+19   -0.8        0.0 

36. H+O2+N2<=>HO2+N2                            2.60E+19   -1.2        0.0 

37. H+O2+AR<=>HO2+AR                            7.00E+17   -0.8        0.0 

38. H+O2<=>O+OH                                 2.65E+16   -0.7    17041.0 

39. 2H+M<=>H2+M                                 1.00E+18   -1.0        0.0 

H2              Enhanced by    0.000E+00 

H2O             Enhanced by    0.000E+00 

CH4             Enhanced by    2.000E+00 

CO2             Enhanced by    0.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    6.300E-01 

40. 2H+H2<=>2H2                                 9.00E+16   -0.6        0.0 

41. 2H+H2O<=>H2+H2O                             6.00E+19   -1.2        0.0 

42. 2H+CO2<=>H2+CO2                             5.50E+20   -2.0        0.0 

43. H+OH+M<=>H2O+M                              2.20E+22   -2.0        0.0 

H2              Enhanced by    7.300E-01 

H2O             Enhanced by    3.650E+00 

CH4             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    3.800E-01 

44. H+HO2<=>O+H2O                               3.97E+12    0.0      671.0 

45. H+HO2<=>O2+H2                               4.48E+13    0.0     1068.0 

46. H+HO2<=>2OH                                 8.40E+13    0.0      635.0 

47. H+H2O2<=>HO2+H2                             1.21E+07    2.0     5200.0 

48. H+H2O2<=>OH+H2O                             1.00E+13    0.0     3600.0 

49. H+CH<=>C+H2                                 1.65E+14    0.0        0.0 
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50. H+CH2(+M)<=>CH3(+M)                         6.00E+14    0.0        0.0 

Low pressure limit:  0.10400E+27 -0.27600E+01 0.16000E+04 

TROE centering:      0.56200E+00  0.91000E+02 0.58360E+04  0.85520E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

51. H+CH2(S)<=>CH+H2                            3.00E+13    0.0        0.0 

52. H+CH3(+M)<=>CH4(+M)                         1.39E+16   -0.5      536.0 

Low pressure limit:  0.26200E+34 -0.47600E+01 0.24400E+04 

TROE centering:      0.78300E+00  0.74000E+02 0.29410E+04  0.69640E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    3.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

53. H+CH4<=>CH3+H2                              6.60E+08    1.6    10840.0 

54. H+HCO(+M)<=>CH2O(+M)                        1.09E+12    0.5     -260.0 

Low pressure limit:  0.24700E+25 -0.25700E+01 0.42500E+03 

TROE centering:      0.78240E+00  0.27100E+03 0.27550E+04  0.65700E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

55. H+HCO<=>H2+CO                               7.34E+13    0.0        0.0 

56. H+CH2O(+M)<=>CH2OH(+M)                      5.40E+11    0.5     3600.0 

Low pressure limit:  0.12700E+33 -0.48200E+01  0.65300E+04 

TROE centering:      0.71870E+00  0.10300E+03 0.12910E+04  0.41600E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

57. H+CH2O(+M)<=>CH3O(+M)                       5.40E+11    0.5     2600.0 

Low pressure limit:  0.22000E+31 -0.48000E+01  0.55600E+04 

TROE centering:      0.75800E+00  0.94000E+02 0.15550E+04  0.42000E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

58. H+CH2O<=>HCO+H2                             5.74E+07    1.9     2742.0 

59. H+CH2OH(+M)<=>CH3OH(+M)                     1.06E+12    0.5       86.0 

Low pressure limit:  0.43600E+32 -0.46500E+01  0.50800E+04 
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TROE centering:      0.60000E+00  0.10000E+03 0.90000E+05  0.10000E+05 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

60. H+CH2OH<=>H2+CH2O                           2.00E+13    0.0        0.0 

61. H+CH2OH<=>OH+CH3                            1.65E+11    0.7     -284.0 

62. H+CH2OH<=>CH2(S)+H2O                        3.28E+13   -0.1      610.0 

63. H+CH3O(+M)<=>CH3OH(+M)                      2.43E+12    0.5       50.0 

Low pressure limit:  0.46600E+42 -0.74400E+01  0.14080E+05 

TROE centering:      0.70000E+00  0.10000E+03 0.90000E+05  0.10000E+05 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

64. H+CH3O<=>H+CH2OH                            4.15E+07    1.6     1924.0 

65. H+CH3O<=>H2+CH2O                            2.00E+13    0.0        0.0 

66. H+CH3O<=>OH+CH3                             1.50E+12    0.5     -110.0 

67. H+CH3O<=>CH2(S)+H2O                         2.62E+14   -0.2     1070.0 

68. H+CH3OH<=>CH2OH+H2                          1.70E+07    2.1     4870.0 

69. H+CH3OH<=>CH3O+H2                           4.20E+06    2.1     4870.0 

70. H+C2H(+M)<=>C2H2(+M)                        1.00E+17   -1.0        0.0 

Low pressure limit:  0.37500E+34 -0.48000E+01  0.19000E+04 

TROE centering:      0.64640E+00  0.13200E+03 0.13150E+04  0.55660E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

71. H+C2H2(+M)<=>C2H3(+M)                       5.60E+12    0.0     2400.0 

Low pressure limit:  0.38000E+41 -0.72700E+01  0.72200E+04 

TROE centering:      0.75070E+00  0.98500E+02 0.13020E+04  0.41670E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

72. H+C2H3(+M)<=>C2H4(+M)                       6.08E+12    0.3      280.0 

Low pressure limit:  0.14000E+31 -0.38600E+01  0.33200E+04 

TROE centering:      0.78200E+00  0.20750E+03 0.26630E+04  0.60950E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 
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AR              Enhanced by    7.000E-01 

73. H+C2H3<=>H2+C2H2                            3.00E+13    0.0        0.0 

74. H+C2H4(+M)<=>C2H5(+M)                       5.40E+11    0.5     1820.0 

Low pressure limit:  0.60000E+42 -0.76200E+01  0.69700E+04 

TROE centering:      0.97530E+00  0.21000E+03 0.98400E+03  0.43740E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

75. H+C2H4<=>C2H3+H2                            1.32E+06    2.5    12240.0 

76. H+C2H5(+M)<=>C2H6(+M)                       5.21E+17   -1.0     1580.0 

Low pressure limit:  0.19900E+42 -0.70800E+01  0.66850E+04 

TROE centering:      0.84220E+00  0.12500E+03 0.22190E+04  0.68820E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

77. H+C2H5<=>H2+C2H4                            2.00E+12    0.0        0.0 

78. H+C2H6<=>C2H5+H2                            1.15E+08    1.9     7530.0 

79. H+HCCO<=>CH2(S)+CO                          1.00E+14    0.0        0.0 

80. H+CH2CO<=>HCCO+H2                           5.00E+13    0.0     8000.0 

81. H+CH2CO<=>CH3+CO                            1.13E+13    0.0     3428.0 

82. H+HCCOH<=>H+CH2CO                           1.00E+13    0.0        0.0 

83. H2+CO(+M)<=>CH2O(+M)                        4.30E+07    1.5    79600.0 

Low pressure limit:  0.50700E+28 -0.34200E+01  0.84350E+05 

TROE centering:      0.93200E+00  0.19700E+03 0.15400E+04  0.10300E+05 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

84. OH+H2<=>H+H2O                               2.16E+08    1.5     3430.0 

85. 2OH(+M)<=>H2O2(+M)                          7.40E+13   -0.4        0.0 

Low pressure limit:  0.23000E+19 -0.90000E+00 -0.17000E+04 

TROE centering:      0.73460E+00  0.94000E+02 0.17560E+04  0.51820E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

86. 2OH<=>O+H2O                                 3.57E+04    2.4    -2110.0 

87. OH+HO2<=>O2+H2O                             1.45E+13    0.0     -500.0 

Declared duplicate reaction... 

88. OH+H2O2<=>HO2+H2O                           2.00E+12    0.0      427.0 
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Declared duplicate reaction... 

89. OH+H2O2<=>HO2+H2O                           1.70E+18    0.0    29410.0 

Declared duplicate reaction... 

90. OH+C<=>H+CO                                 5.00E+13    0.0        0.0 

91. OH+CH<=>H+HCO                               3.00E+13    0.0        0.0 

92. OH+CH2<=>H+CH2O                             2.00E+13    0.0        0.0 

93. OH+CH2<=>CH+H2O                             1.13E+07    2.0     3000.0 

94. OH+CH2(S)<=>H+CH2O                          3.00E+13    0.0        0.0 

95. OH+CH3(+M)<=>CH3OH(+M)                      2.79E+18   -1.4     1330.0 

Low pressure limit:  0.40000E+37 -0.59200E+01  0.31400E+04 

TROE centering:      0.41200E+00  0.19500E+03 0.59000E+04  0.63940E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

96. OH+CH3<=>CH2+H2O                            5.60E+07    1.6     5420.0 

97. OH+CH3<=>CH2(S)+H2O                         6.44E+17   -1.3     1417.0 

98. OH+CH4<=>CH3+H2O                            1.00E+08    1.6     3120.0 

99. OH+CO<=>H+CO2                               4.76E+07    1.2       70.0 

100. OH+HCO<=>H2O+CO                            5.00E+13    0.0        0.0 

101. OH+CH2O<=>HCO+H2O                          3.43E+09    1.2     -447.0 

102. OH+CH2OH<=>H2O+CH2O                        5.00E+12    0.0        0.0 

103. OH+CH3O<=>H2O+CH2O                         5.00E+12    0.0        0.0 

104. OH+CH3OH<=>CH2OH+H2O                       1.44E+06    2.0     -840.0 

105. OH+CH3OH<=>CH3O+H2O                        6.30E+06    2.0     1500.0 

106. OH+C2H<=>H+HCCO                            2.00E+13    0.0        0.0 

107. OH+C2H2<=>H+CH2CO                          2.18E-04    4.5    -1000.0 

108. OH+C2H2<=>H+HCCOH                          5.04E+05    2.3    13500.0 

109. OH+C2H2<=>C2H+H2O                          3.37E+07    2.0    14000.0 

110. OH+C2H2<=>CH3+CO                           4.83E-04    4.0    -2000.0 

111. OH+C2H3<=>H2O+C2H2                         5.00E+12    0.0        0.0 

112. OH+C2H4<=>C2H3+H2O                         3.60E+06    2.0     2500.0 

113. OH+C2H6<=>C2H5+H2O                         3.54E+06    2.1      870.0 

114. OH+CH2CO<=>HCCO+H2O                        7.50E+12    0.0     2000.0 

115. 2HO2<=>O2+H2O2                             1.30E+11    0.0    -1630.0 

Declared duplicate reaction... 

116. 2HO2<=>O2+H2O2                             4.20E+14    0.0    12000.0 

Declared duplicate reaction... 

117. HO2+CH2<=>OH+CH2O                          2.00E+13    0.0        0.0 

118. HO2+CH3<=>O2+CH4                           1.00E+12    0.0        0.0 

119. HO2+CH3<=>OH+CH3O                          3.78E+13    0.0        0.0 

120. HO2+CO<=>OH+CO2                            1.50E+14    0.0    23600.0 

121. HO2+CH2O<=>HCO+H2O2                        5.60E+06    2.0    12000.0 

122. C+O2<=>O+CO                                5.80E+13    0.0      576.0 

123. C+CH2<=>H+C2H                              5.00E+13    0.0        0.0 

124. C+CH3<=>H+C2H2                             5.00E+13    0.0        0.0 

125. CH+O2<=>O+HCO                              6.71E+13    0.0        0.0 

126. CH+H2<=>H+CH2                              1.08E+14    0.0     3110.0 

127. CH+H2O<=>H+CH2O                            5.71E+12    0.0     -755.0 

128. CH+CH2<=>H+C2H2                            4.00E+13    0.0        0.0 

129. CH+CH3<=>H+C2H3                            3.00E+13    0.0        0.0 

130. CH+CH4<=>H+C2H4                            6.00E+13    0.0        0.0 
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131. CH+CO(+M)<=>HCCO(+M)                       5.00E+13    0.0        0.0 

Low pressure limit:  0.26900E+29 -0.37400E+01  0.19360E+04 

TROE centering:      0.57570E+00  0.23700E+03 0.16520E+04  0.50690E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

132. CH+CO2<=>HCO+CO                            1.90E+14    0.0    15792.0 

133. CH+CH2O<=>H+CH2CO                          9.46E+13    0.0     -515.0 

134. CH+HCCO<=>CO+C2H2                          5.00E+13    0.0        0.0 

135. CH2+O2=>OH+H+CO                            5.00E+12    0.0     1500.0 

136. CH2+H2<=>H+CH3                             5.00E+05    2.0     7230.0 

137. 2CH2<=>H2+C2H2                             1.60E+15    0.0    11944.0 

138. CH2+CH3<=>H+C2H4                           4.00E+13    0.0        0.0 

139. CH2+CH4<=>2CH3                             2.46E+06    2.0     8270.0 

140. CH2+CO(+M)<=>CH2CO(+M)                     8.10E+11    0.5     4510.0 

Low pressure limit:  0.26900E+34 -0.51100E+01  0.70950E+04 

TROE centering:      0.59070E+00  0.27500E+03 0.12260E+04  0.51850E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

141. CH2+HCCO<=>C2H3+CO                         3.00E+13    0.0        0.0 

142. CH2(S)+N2<=>CH2+N2                         1.50E+13    0.0      600.0 

143. CH2(S)+AR<=>CH2+AR                         9.00E+12    0.0      600.0 

144. CH2(S)+O2<=>H+OH+CO                        2.80E+13    0.0        0.0 

145. CH2(S)+O2<=>CO+H2O                         1.20E+13    0.0        0.0 

146. CH2(S)+H2<=>CH3+H                          7.00E+13    0.0        0.0 

147. CH2(S)+H2O(+M)<=>CH3OH(+M)                 4.82E+17   -1.2     1145.0 

Low pressure limit:  0.18800E+39 -0.63600E+01  0.50400E+04 

TROE centering:      0.60270E+00  0.20800E+03 0.39220E+04  0.10180E+05 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

148. CH2(S)+H2O<=>CH2+H2O                       3.00E+13    0.0        0.0 

149. CH2(S)+CH3<=>H+C2H4                        1.20E+13    0.0     -570.0 

150. CH2(S)+CH4<=>2CH3                          1.60E+13    0.0     -570.0 

151. CH2(S)+CO<=>CH2+CO                         9.00E+12    0.0        0.0 

152. CH2(S)+CO2<=>CH2+CO2                       7.00E+12    0.0        0.0 

153. CH2(S)+CO2<=>CO+CH2O                       1.40E+13    0.0        0.0 

154. CH2(S)+C2H6<=>CH3+C2H5                     4.00E+13    0.0     -550.0 

155. CH3+O2<=>O+CH3O                            3.56E+13    0.0    30480.0 

156. CH3+O2<=>OH+CH2O                           2.31E+12    0.0    20315.0 

157. CH3+H2O2<=>HO2+CH4                         2.45E+04    2.5     5180.0 

158. 2CH3(+M)<=>C2H6(+M)                        6.77E+16   -1.2      654.0 
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Low pressure limit:  0.34000E+42 -0.70300E+01  0.27620E+04 

TROE centering:      0.61900E+00  0.73200E+02 0.11800E+04  0.99990E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

159. 2CH3<=>H+C2H5                               6.84E+12    0.1    10600.0 

160. CH3+HCO<=>CH4+CO                            2.65E+13    0.0        0.0 

161. CH3+CH2O<=>HCO+CH4                          3.32E+03    2.8     5860.0 

162. CH3+CH3OH<=>CH2OH+CH4                       3.00E+07    1.5     9940.0 

163. CH3+CH3OH<=>CH3O+CH4                        1.00E+07    1.5     9940.0 

164. CH3+C2H4<=>C2H3+CH4                         2.27E+05    2.0     9200.0 

165. CH3+C2H6<=>C2H5+CH4                         6.14E+06    1.7    10450.0 

166. HCO+H2O<=>H+CO+H2O                          1.50E+18   -1.0    17000.0 

167. HCO+M<=>H+CO+M                              1.87E+17   -1.0    17000.0 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    0.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

168. HCO+O2<=>HO2+CO                              1.34E+13    0.0      400.0 

169. CH2OH+O2<=>HO2+CH2O                          1.80E+13    0.0      900.0 

170. CH3O+O2<=>HO2+CH2O                           4.28E-13    7.6    -3530.0 

171. C2H+O2<=>HCO+CO                              1.00E+13    0.0     -755.0 

172. C2H+H2<=>H+C2H2                              5.68E+10    0.9     1993.0 

173. C2H3+O2<=>HCO+CH2O                           4.58E+16   -1.4     1015.0 

174. C2H4(+M)<=>H2+C2H2(+M)                       8.00E+12    0.4    86770.0 

Low pressure limit:  0.15800E+52 -0.93000E+01  0.97800E+05 

TROE centering:      0.73450E+00  0.18000E+03 0.10350E+04  0.54170E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

175. C2H5+O2<=>HO2+C2H4                           8.40E+11    0.0     3875.0 

176. HCCO+O2<=>OH+2CO                             3.20E+12    0.0      854.0 

177. 2HCCO<=>2CO+C2H2                             1.00E+13    0.0        0.0 

178. N2O+O<=>N2+O2                                1.40E+12    0.0    10810.0 

179. N2O+O<=>2NO                                  2.90E+13    0.0    23150.0 

180. N2O+H<=>N2+OH                                3.87E+14    0.0    18880.0 

181. N2O+OH<=>N2+HO2                              2.00E+12    0.0    21060.0 

182. N2O(+M)<=>N2+O(+M)                           7.91E+10    0.0    56020.0 

Low pressure limit:  0.63700E+15  0.00000E+00  0.56640E+05 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 
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C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    6.250E-01 

183. HO2+NO<=>NO2+OH                              2.11E+12    0.0     -480.0 

184. NO+O+M<=>NO2+M                               1.06E+20   -1.4        0.0 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

185. NO2+O<=>NO+O2                                3.90E+12    0.0     -240.0 

186. NH+H<=>N+H2                                  3.20E+13    0.0      330.0 

187. NH+OH<=>HNO+H                                2.00E+13    0.0        0.0 

188. NH+OH<=>N+H2O                                2.00E+09    1.2        0.0 

189. NH+O2<=>HNO+O                                4.61E+05    2.0     6500.0 

190. NH+O2<=>NO+OH                                1.28E+06    1.5      100.0 

191. NH+N<=>N2+H                                  1.50E+13    0.0        0.0 

192. NH+H2O<=>HNO+H2                              2.00E+13    0.0    13850.0 

193. NH2+O<=>OH+NH                                3.00E+12    0.0        0.0 

194. NH2+O<=>H+HNO                                3.90E+13    0.0        0.0 

195. NH2+H<=>NH+H2                                4.00E+13    0.0     3650.0 

196. NH2+OH<=>NH+H2O                              9.00E+07    1.5     -460.0 

197. NNH<=>N2+H                                   3.30E+08    0.0        0.0 

198. NNH+M<=>N2+H+M                               1.30E+14   -0.1     4980.0 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

199. NNH+O2<=>HO2+N2                              5.00E+12    0.0        0.0 

200. NNH+O<=>OH+N2                                2.50E+13    0.0        0.0 

201. NNH+O<=>NH+NO                                7.00E+13    0.0        0.0 

202. NNH+H<=>H2+N2                                5.00E+13    0.0        0.0 

203. NNH+OH<=>H2O+N2                              2.00E+13    0.0        0.0 

204. NNH+CH3<=>CH4+N2                             2.50E+13    0.0        0.0 

205. HNO+O<=>NO+OH                                2.50E+13    0.0        0.0 

206. CN+O<=>CO+N                                  7.70E+13    0.0        0.0 

207. CN+OH<=>NCO+H                                4.00E+13    0.0        0.0 

208. CN+H2O<=>HCN+OH                              8.00E+12    0.0     7460.0 

209. CN+O2<=>NCO+O                                6.14E+12    0.0     -440.0 

210. CN+H2<=>HCN+H                                2.95E+05    2.5     2240.0 

211. NCO+O<=>NO+CO                                2.35E+13    0.0        0.0 

212. NCO+H<=>NH+CO                                5.40E+13    0.0        0.0 

213. NCO+OH<=>NO+H+CO                             2.50E+12    0.0        0.0 

214. NCO+N<=>N2+CO                                2.00E+13    0.0        0.0 

215. NCO+O2<=>NO+CO2                              2.00E+12    0.0    20000.0 

216. NCO+M<=>N+CO+M                               3.10E+14    0.0    54050.0 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 
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CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

217. NCO+NO<=>N2O+CO                              1.90E+17   -1.5      740.0 

218. NCO+NO<=>N2+CO2                              3.80E+18   -2.0      800.0 

219. HCN+M<=>H+CN+M                               1.04E+29   -3.3   126600.0 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

220. HCN+O<=>NCO+H                                2.03E+04    2.6     4980.0 

221. HCN+O<=>NH+CO                                5.07E+03    2.6     4980.0 

222. HCN+O<=>CN+OH                                3.91E+09    1.6    26600.0 

223. HCN+OH<=>HOCN+H                              1.10E+06    2.0    13370.0 

224. HCN+OH<=>HNCO+H                              4.40E+03    2.3     6400.0 

225. HCN+OH<=>NH2+CO                              1.60E+02    2.6     9000.0 

226. H+HCN(+M)<=>H2CN(+M)                         3.30E+13    0.0        0.0 

Low pressure limit:  0.14000E+27 -0.34000E+01  0.19000E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

227. H2CN+N<=>N2+CH2                              6.00E+13    0.0      400.0 

228. C+N2<=>CN+N                                  6.30E+13    0.0    46020.0 

229. CH+N2<=>HCN+N                                3.12E+09    0.9    20130.0 

230. CH+N2(+M)<=>HCNN(+M)                         3.10E+12    0.1        0.0 

Low pressure limit:  0.13000E+26 -0.31600E+01  0.74000E+03 

TROE centering:      0.66700E+00  0.23500E+03  0.21170E+04  0.45360E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    1.000E+00 

231. CH2+N2<=>HCN+NH                              1.00E+13    0.0    74000.0 

232. CH2(S)+N2<=>NH+HCN                           1.00E+11    0.0    65000.0 

233. C+NO<=>CN+O                                  1.90E+13    0.0        0.0 

234. C+NO<=>CO+N                                  2.90E+13    0.0        0.0 

235. CH+NO<=>HCN+O                                4.10E+13    0.0        0.0 

236. CH+NO<=>H+NCO                                1.62E+13    0.0        0.0 

237. CH+NO<=>N+HCO                                2.46E+13    0.0        0.0 

238. CH2+NO<=>H+HNCO                              3.10E+17   -1.4     1270.0 

239. CH2+NO<=>OH+HCN                              2.90E+14   -0.7      760.0 

240. CH2+NO<=>H+HCNO                              3.80E+13   -0.4      580.0 

241. CH2(S)+NO<=>H+HNCO                           3.10E+17   -1.4     1270.0 

242. CH2(S)+NO<=>OH+HCN                           2.90E+14   -0.7      760.0 

243. CH2(S)+NO<=>H+HCNO                           3.80E+13   -0.4      580.0 
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244. CH3+NO<=>HCN+H2O                             9.60E+13    0.0    28800.0 

245. CH3+NO<=>H2CN+OH                             1.00E+12    0.0    21750.0 

246. HCNN+O<=>CO+H+N2                             2.20E+13    0.0        0.0 

247. HCNN+O<=>HCN+NO                              2.00E+12    0.0        0.0 

248. HCNN+O2<=>O+HCO+N2                           1.20E+13    0.0        0.0 

249. HCNN+OH<=>H+HCO+N2                           1.20E+13    0.0        0.0 

250. HCNN+H<=>CH2+N2                              1.00E+14    0.0        0.0 

251. HNCO+O<=>NH+CO2                              9.80E+07    1.4     8500.0 

252. HNCO+O<=>HNO+CO                              1.50E+08    1.6    44000.0 

253. HNCO+O<=>NCO+OH                              2.20E+06    2.1    11400.0 

254. HNCO+H<=>NH2+CO                              2.25E+07    1.7     3800.0 

255. HNCO+H<=>H2+NCO                              1.05E+05    2.5    13300.0 

256. HNCO+OH<=>NCO+H2O                            3.30E+07    1.5     3600.0 

257. HNCO+OH<=>NH2+CO2                            3.30E+06    1.5     3600.0 

258. HNCO+M<=>NH+CO+M                             1.18E+16    0.0    84720.0 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

259. HCNO+H<=>H+HNCO                              2.10E+15   -0.7     2850.0 

260. HCNO+H<=>OH+HCN                              2.70E+11    0.2     2120.0 

261. HCNO+H<=>NH2+CO                              1.70E+14   -0.8     2890.0 

262. HOCN+H<=>H+HNCO                              2.00E+07    2.0     2000.0 

263. HCCO+NO<=>HCNO+CO                            9.00E+12    0.0        0.0 

264. CH3+N<=>H2CN+H                               6.10E+14   -0.3      290.0 

265. CH3+N<=>HCN+H2                               3.70E+12    0.1      -90.0 

266. NH3+H<=>NH2+H2                               5.40E+05    2.4     9915.0 

267. NH3+OH<=>NH2+H2O                             5.00E+07    1.6      955.0 

268. NH3+O<=>NH2+OH                               9.40E+06    1.9     6460.0 

269. NH+CO2<=>HNO+CO                              1.00E+13    0.0    14350.0 

270. CN+NO2<=>NCO+NO                              6.16E+15   -0.8      345.0 

271. NCO+NO2<=>N2O+CO2                            3.25E+12    0.0     -705.0 

272. N+CO2<=>NO+CO                                3.00E+12    0.0    11300.0 

273. O+CH3=>H+H2+CO                               3.37E+13    0.0        0.0 

274. O+C2H4<=>H+CH2CHO                            6.70E+06    1.8      220.0 

275. O+C2H5<=>H+CH3CHO                            1.10E+14    0.0        0.0 

276. OH+HO2<=>O2+H2O                              5.00E+15    0.0    17330.0 

Declared duplicate reaction... 

277. OH+CH3=>H2+CH2O                              8.00E+09    0.5    -1755.0 

278. CH+H2(+M)<=>CH3(+M)                          1.97E+12    0.4     -370.0 

Low pressure limit:  0.48200E+26 -0.28000E+01  0.59000E+03 

TROE centering:      0.57800E+00  0.12200E+03  0.25350E+04  0.93650E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

279. CH2+O2=>2H+CO2                               5.80E+12    0.0     1500.0 

280. CH2+O2<=>O+CH2O                              2.40E+12    0.0     1500.0 



241 

 

  

281. CH2+CH2=>2H+C2H2                             2.00E+14    0.0    10989.0 

282. CH2(S)+H2O=>H2+CH2O                          6.82E+10    0.2     -935.0 

283. C2H3+O2<=>O+CH2CHO                           3.03E+11    0.3       11.0 

284. C2H3+O2<=>HO2+C2H2                           1.34E+06    1.6     -384.0 

285. O+CH3CHO<=>OH+CH2CHO                         2.92E+12    0.0     1808.0 

286. O+CH3CHO=>OH+CH3+CO                          2.92E+12    0.0     1808.0 

287. O2+CH3CHO=>HO2+CH3+CO                        3.01E+13    0.0    39150.0 

288. H+CH3CHO<=>CH2CHO+H2                         2.05E+09    1.2     2405.0 

289. H+CH3CHO=>CH3+H2+CO                          2.05E+09    1.2     2405.0 

290. OH+CH3CHO=>CH3+H2O+CO                        2.34E+10    0.7    -1113.0 

291. HO2+CH3CHO=>CH3+H2O2+CO                      3.01E+12    0.0    11923.0 

292. CH3+CH3CHO=>CH3+CH4+CO                       2.72E+06    1.8     5920.0 

293. H+CH2CO(+M)<=>CH2CHO(+M)                     4.86E+11    0.4    -1755.0 

Low pressure limit:  0.10120E+43 -0.76300E+01  0.38540E+04 

TROE centering:      0.46500E+00  0.20100E+03 0.17730E+04  0.53330E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

294. O+CH2CHO=>H+CH2+CO2                          1.50E+14    0.0        0.0 

295. O2+CH2CHO=>OH+CO+CH2O                        1.81E+10    0.0        0.0 

296. O2+CH2CHO=>OH+2HCO                           2.35E+10    0.0        0.0 

297. H+CH2CHO<=>CH3+HCO                           2.20E+13    0.0        0.0 

298. H+CH2CHO<=>CH2CO+H2                          1.10E+13    0.0        0.0 

299. OH+CH2CHO<=>H2O+CH2CO                        1.20E+13    0.0        0.0 

300. OH+CH2CHO<=>HCO+CH2OH                        3.01E+13    0.0        0.0 

301. CH3+C2H5(+M)<=>C3H8(+M)                      9.43E+12    0.0        0.0 

Low pressure limit:  0.27100E+75 -0.16820E+02  0.13065E+05 

TROE centering:      0.15270E+00  0.29100E+03 0.27420E+04  0.77480E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

302. O+C3H8<=>OH+C3H7                             1.93E+05    2.7     3716.0 

303. H+C3H8<=>C3H7+H2                             1.32E+06    2.5     6756.0 

304. OH+C3H8<=>C3H7+H2O                           3.16E+07    1.8      934.0 

305. C3H7+H2O2<=>HO2+C3H8                         3.78E+02    2.7     1500.0 

306. CH3+C3H8<=>C3H7+CH4                          9.03E-01    3.6     7154.0 

307. CH3+C2H4(+M)<=>C3H7(+M)                      2.55E+06    1.6     5700.0 

Low pressure limit:  0.30000E+64 -0.14600E+02  0.18170E+05 

TROE centering:      0.18940E+00  0.27700E+03 0.87480E+04  0.78910E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 
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308. O+C3H7<=>C2H5+CH2O                           9.64E+13    0.0        0.0 

309. H+C3H7(+M)<=>C3H8(+M)                        3.61E+13    0.0        0.0 

Low pressure limit:  0.44200E+62 -0.13545E+02  0.11357E+05 

TROE centering:      0.31500E+00  0.36900E+03 0.32850E+04  0.66670E+04 

H2              Enhanced by    2.000E+00 

H2O             Enhanced by    6.000E+00 

CH4             Enhanced by    2.000E+00 

CO              Enhanced by    1.500E+00 

CO2             Enhanced by    2.000E+00 

C2H6            Enhanced by    3.000E+00 

AR              Enhanced by    7.000E-01 

310. H+C3H7<=>CH3+C2H5                           4.06E+06    2.2      890.0 

311. OH+C3H7<=>C2H5+CH2OH                        2.41E+13    0.0        0.0 

312. HO2+C3H7<=>O2+C3H8                          2.55E+10    0.3     -943.0 

313. HO2+C3H7=>OH+C2H5+CH2O                      2.41E+13    0.0        0.0 

314. CH3+C3H7<=>2C2H5                            1.93E+13   -0.3        0.0 

315. HNO+H=NO+H2                                 8.80E+11    0.7      650.0 

316. NO2+H=NO+OH                                 1.30E+14    0.0      362.0 

317. HNO+OH=NO+H2O                               3.60E+13    0.0        0.0 

318. NH+O=NO+H                                   3.68E+14    0.0        0.0 

319. HNO+O2=HO2+NO                               2.00E+13    0.0    16000.0 

320. N+O2=NO+O                                   6.40E+09    1.0     6280.0 

321. N+OH=NO+H                                   3.80E+13    0.0        0.0 

322. NH+NO=N2O+H                                 2.90E+14   -0.4        0.0 

Declared duplicate reaction... 

323. NH+NO=N2O+H                                 -2.20E+13   -0.2        0.0 

Declared duplicate reaction... 

324. N+NO=N2+O                                    1.05E+12    1.5        0.0 

325. NH2+NO<=>N2+H2O                              2.80E+20   -2.7     1258.0 

326. NH2+NO<=>NNH+OH                              2.30E+10    0.4     -814.0 

327. NO+H(+M)=HNO(+M)                             1.50E+15   -1.4        0.0 

Low pressure limit:  0.24000E+15  0.20600E+00 -0.15500E+04 

TROE centering:      0.82000E+00  0.10000E-29 0.10000E+31  0.10000E+31 

N2              Enhanced by    1.600E+00 

328. NH+NO=N2+OH                                 2.20E+13   -0.2        0.0 

 

UNITS for the preceding reactions (unless otherwise noted): 

A units mole-cm-sec-K, E units cal/mole 
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