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ABSTRACT

In this study, we first address the problem of visibility-based target tracking for a team of

mobile observers trying to track a team of mobile targets. Initially, we introduce the notion of

pursuit fields for a single observer to track a single target around a corner based on the previous

work. Pursuit fields are used to generate navigation strategies for a single observer. In order to

account for the scenario with the presence of more than one observer or target, we propose a

hierarchical approach. At first a ranking and aggregation technique is used for allocating each

observer to a target. Subsequently, each observer computes its navigation strategy based on the

results of the single observer-single target problem, thereby, decomposing a large multi-agent

problem into numerous 2-agent problems. Based on the aforementioned analysis, we present

a scalable algorithm that can accommodate an arbitrary number of observers and targets.

The performance of this algorithm is evaluated based on simulation and implementation. To

implement the strategy in reality, we further propose a setup of omni-directional camera, which

can be used to get the visual information of the surroundings. With the help of this setup,

we apply a position estimation technique for the pursuer to locate the evader. Experimental

results show that the error has considerable effect when the measuring distance is very large.

Due to this reason, the aforementioned tracking strategy is modified to keep the evader in an

effective range for estimation. Finally, based on the error in position estimation, we present

PID controllers for the pursuer to track the evader along a straight line. The responses of the

proposed controllers are given by simulations.

Considering the situation that pursuer does not have an on board vision sensor, we propose

a novel tracking strategy based on the information on social network. We first introduce

the notion of common agents, who take pictures around and share them on social network

website. In order to take advantage of these images, a network evolution algorithm and an

image scanning algorithm are presented. Based on the information from these images, evader



xi

can be located accordingly. Implementation results are presented to validate the feasibility.

In the rest of the thesis, we address the scheduling and motion planning problem for an

autonomous grain cart serving multiple combines. In the first part, we present the mathematical

models of both combine harvester and grain cart. Based on the models, we propose a scheduling

scheme which allows grain cart to unload all the combines without interruption in the harvesting

activity. The proposed scheme is generalized to an arbitrary number of combines. In the second

part, we present path planning analysis for the grain cart to switch between two combines. A

numerical approach and a primitive-based approach are considered to obtain the time-optimal

solution. The former approach needs a value function corresponding to the goal position to

be computed beforehand. Based on the value function, a time-optimal path can be obtained

accordingly. In the latter approach, path consists of singular primitives and regular primitives

which ensure local time optimality. Finally, simulation results are presented to validate the

feasibility of the proposed techniques.
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CHAPTER 1. INTRODUCTION

1.1 Overview

In my thesis, we address a target tracking problem, as well as a logistics scheduling and

motion planning problem.

At first, we present an extension on the previous target tracking work about a cell decom-

position of the workspace based on strategies of the players. We consider the case with the

presence of multiple pursuers and evaders in a general environment. To assign all pursuers for

tracking tasks, we propose a ranking aggregation algorithm which unifies all available rank-

ings and improve the pursuer assignment result. Moreover, we present a robot setup using

omni-directional camera for tracking tasks. Based on the received images, evader’s location is

obtained by using position estimation technique. Uncertainty issue in locating the evader is

discussed. Subsequently, we address a different pursuit-evasion game in which the information

of evader comes from social website. We introduce the notion of common agents, who take

pictures around and share them on social network website. In order to utilize such images,

a network evolution algorithm and an image scanning algorithm are presented. Based on the

information online, evader can be located accordingly. Implementation results are presented to

validate the feasibility.

In the second problem, we address the logistics scheduling and motion planning of agricul-

tural vehicles. A scheduling scheme for the grain cart to proceed unloading task in a general

case is proposed. Regarding the motion planning of grain cart, we present a numerical ap-

proach and a primitive-based approach to obtain the time-optimal solution. Simulation results

are provided to demonstrate the feasibility.

Next, we provide an outline of the thesis.
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1.2 Thesis Outline

The thesis is outlined as follows. In Chapter 2, we present our work on visibility-based target

tracking problem and social network target tracking problem. Simulations and implementations

for both problems are posed. In Chapter 3, the work on logistics scheduling and motion planning

for an autonomous agricultural vehicle is presented. In Chapter 4, a brief summary is presented,

as well as the discussion of future work.

1.3 Publications

Published

• Mengzhe Zhang and Sourabh Bhattacharya (2014). Multi-agent Visibility Based Tar-

get Tracking Game. In International Symposium on Distributed Autonomous Robotic

Systems, 440-451.

• Rui Zou, Mengzhe Zhang and Sourabh Bhattacharya (2014). Particle Swarm Optimiza-

tion for Source Localization in Environment with Obstacles. In IEEE Multi-conference

on Systems and Control, 1602-1607.

Accepted

• Mengzhe Zhang and Sourabh Bhattacharya (2014). Multi-agent Visibility Based Target

Tracking Game. In Distributed Autonomous Robotic Systems.

Under review

• Mengzhe Zhang and Sourabh Bhattacharya (2015). Logistics Motion Planning for Agri-

cultural Vehicles. In ASCC 2015.

• Mengzhe Zhang and Sourabh Bhattacharya (2015). Unloading Motion Planning for Agri-

cultural Vehicles. In IFAC MVS 2015.

• Mengzhe Zhang and Sourabh Bhattacharya (2015). Logistics Scheduling and Motion

Planning for Agricultural Vehicles. In ICRA 2015.
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• Rui Zou, Mengzhe Zhang and Sourabh Bhattacharya (2015). Decentralized Multi-agent

Visibility Based Target Tracking Game. In ICRA 2015.

Under preparation

• Mengzhe Zhang and Sourabh Bhattacharya (2015). Logistics scheduling and Motion

Planning for Agricultural Vehicles. In Journal of Dynamic Systems, Measurement, and

Control.

• Mengzhe Zhang, Rui Zou and Sourabh Bhattacharya (2015). Multi-agent Visibility Based

Pursuit Evasion Game. In Autonomous Robots.
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CHAPTER 2. TARGET TRACKING GAME

2.1 Introduction

Surveillance is an important problem in many application areas such as crime preven-

tion, wildlife monitoring, traffic monitoring and industrial processes, etc. The development

of surveillance technology facilitates government and law enforcement on maintaining social

control, recognizing threats, and preventing criminal activities.

Among various branches of the study on surveillance problem, we focus on vision-based tar-

get tracking as our research. The problem is regarded as a pursuit-evasion game and subdivided

into single observer-single target case and multi-observer multi-target case. In the following

sections, we present an elaborated literature survey on both target tracking and pursuit-evasion

game.

2.1.1 Target tracking

Target tracking is a special class of surveillance in which the intent is to keep track of the

current state of a dynamic entity or an object of interest. Traditional target tracking methods

include using sonar, radio or infrared sensors. Schulz et al. (2001) utilize two laser range sensors

mounted on a mobile robot and get state information of the targets. Li et al. (2004) mount

infrared sensors on the robot and apply a fuzzy target tracking control scheme for tracking task.

Hollinger et al. (2012) use radio sensors to track a moving target radio node in the environment.

With the advent of computer vision, visibility-based target tracking gained a lot of interest

in the research community. Papanikolopoulos et al. (1993) propose algorithms on real-time

visual tracking of arbitrary 3D objects traveling at unknown velocities in a 2D space. PI

(proportional-integral) controller, pole assignment controller and discrete steady-state Kalman
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filter are considered for the problem. LaValle et al. (1997a) present algorithms for maintain-

ing visibility of a moving target. Depending on the information regarding the target’s future

actions, algorithms are proposed for a predictable as well as unpredictable target. Hu et al.

(2004) give a comprehensive research survey on visual surveillance of object motion and behav-

iors. The review includes recent developments and general strategies of surveillance problem

in different stages such as detection of motion, tracking, understanding and description of be-

haviors, etc. Kolling and Carpin (2007) present a distributed control algorithm which utilizes

information from vision sensors, communication, and a mechanism to predict the minimum

time before a robot loses a target. Tsalatsanis et al. (2007) use stereo vision and laser sensor

in the proposed target tracking and collision avoidance method. Vision sensor is responsible

for tracking predetermined or dynamically defined color so that target could be identified and

the relative distance could be computed. In the work of Lee et al. (2012), vision-based object

detection and tracking techniques for underwater robots have been studied in depth. Color

restoration algorithm, detection and tracking method for underwater targets are discussed.

There has been a substantial amount of research to address the single observer-single target

tracking problem. In the research of Gonzalez-Banos et al. (2002), a tracking algorithm is

proposed that computes motion strategy for the observer based on the notion of escape risk

and the computation of an escape-path tree. The escape-path tree is computed by taking

local measurements, storing the most effective escape routes for a target to escape observer’s

field of view. Lee et al. (2002) propose an approach to keep moving target in the field of

view without the assumption that a complete or partial model of the target’s behavior is

available. Bandyopadhyay et al. (2004, 2006, 2009) propose a tracking algorithm, and address

stealth tracking problem based on visual sensors. A risk function is formulated to determine

observer’s direction of motion. A guaranteed tracking strategy is provided by Bhattacharya

et al. (2007) for single observer-single target tracking problem in simple environments. The

strategy is mainly based on the partition of the visibility polygon around a single corner.

Al-Bluwi and Elnagar (2010a) tackle the tracking problem by considering three interacting

components, namely tracking, collision avoidance and motion selection. The solution supports

robot to tracking a moving target in a global dynamic environment. Anderson and Milutinovic
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(2011) consider the problem of maintaining a nominal distance between a unmanned aerial

vehicle and a ground-based moving target. A stochastic approach is introduced to address the

problem.

In the recent years, there has been some efforts to address the problem when a team of

observers is deployed for the tracking task. A distributed heuristic approach has been proposed

by Parker (2002) based on local force vectors that causes robots to be attracted to nearby

targets, and to be repelled from nearby robots. Jung and Sukhatme (2002, 2006, 2010) propose

a region-based approach which controls the robot deployment by a coarse deployment controller

and a target-following controller. An algorithm is presented that treats the densities of robots

and targets as properties of the environment in which they are embedded. In the research

of Frew and Elston (2008), a new task assignment algorithm that integrates area search and

target tracking is presented. Frew (2009) further treats target tracking problem with ordered

upwind methods, which can efficiently compute the target track boundary over a discretized

nonuniform mesh of the environment. Hollinger et al. (2009) propose a scalable algorithm

for efficiently solving the problem of planning paths for multiple robotic searchers trying to

locate a non-adversarial target. Derenick et al. (2009) propose an optimization framework for

dynamic target tracking by introducing the notion of weighted visibility graph. The framework

guarantees that each target is tracked by at least one single team member. In the work of

Lee et al. (2010), a distributed approach, which consists of two constituent algorithms: local

interaction and target tracking, is presented to enable mobile robot swarms to track multiple

targets moving unpredictably. A switching strategy is presented by Wu and Zhang (2013) for

tracking a single target using mobile sensing agents that take bearings-only measurements. In

the work of Ahmad et al. (2013), the problem of cooperative localization and target tracking

is modeled within a team of agents as a least squares minimization problem, and show that it

can be efficiently solved using sparse optimization methods. Xu et al. (2013) introduce learning

models for target tracking, and propose a mechanism which reduces required communications

among agents.
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2.1.2 Pursuit-evasion game

In some cases, target tracking problem can be treated as a pursuit-evasion game. Pursuit-

evasion game is a family of problems in which one team of members tries to capture another

team in an environment. Observer and target in tracking problem could be interpreted as

pursuer and evader, respectively. Pursuers attempt to catch evaders who, in turn, try to avoid

being captured.

In recent years, search problem has received significant attention. The problem is originally

introduced by Suzuki and Yamashita (1992) and could be described as follows. Given a 2D

bounded Euclidean workspace, multiple pursuers equipped with vision sensors, an evader that

has unknown position, pursuers would like to find a path which eventually leads them to the

evader. During the process, pursuers are able to detect a subset of the environment based on

their vision sensors. A large amount of approaches have been suggested to solve the problem.

Under the work of LaValle et al. (1997b) and Guibas et al. (1997), control algorithms are

proposed to guarantee that finally evader will lie in at least one visibility region of pursuers.

Searching in unknown environment and with bounded speed are analyzed by Sachs et al. (2004)

and Tovar and LaValle (2008), respectively. Gerkey et al. (2006) address search problem by

introducing the notion of φ-searcher and present the analysis on searching multiple evaders in

a given environment with limited field of view. Kolling and Carpin (2010) study the problem

by modeling environment as a graph and let robot team execute sweep and block actions to

detect intruders.

A similar problem in the research field is maintaining visibility, which could also be con-

sidered as a tracking problem. The problem is firstly suggested by LaValle et al. (1997b).

Bhattacharya and Hutchinson (2008, 2011) study the case of which one pursuer and one evader

present. The strategies are based on the result of partitioning environment into multiple re-

gions. A sufficient condition of escape for the target is given. Murrieta-Cid et al. (2008)

decompose the environment in another way. They define two graphs, namely mutual visibility

graph and accessibility graph, for maintaining visibility and providing possible transitions of

both pursuer and evader, respectively. Al-Bluwi and Elnagar (2010b) propose an approach to



8

track single evader in a dynamic environment. The solution is carried out by using three sepa-

rate components, namely, occlusion advisor, collision advisor and decision maker. Chung et al.

(2011) present a detailed literature survey on search and pursuit-evasion in mobile robotics.

They highlight the variances of pursuit-evasion games with different assumptions on searchers,

targets and environment. Panagou and Kumar (2012) consider the problem as a leader-follower

problem. They define a visibility set and translating the problem to controlling the robots so

that the system trajectories start in the set and always remain in the set. This work is further

extended to multiple agents by Panagou and Kumar (2014).

In the following sections, we present a visibility-based target tracking problem and a social

network target tracking problem. For both problems, we provide tracking strategies which are

validated by implementations. Next, we start elaborating the visibility-based problem.

2.2 Visibility-based Target Tracking Game

2.2.1 Problem description

The target tracking problem is formulated as follows. Consider a planar environment con-

taining polygonal obstacles. The environment is assumed to contain two teams of mobile

agents. One team of mobile agents, called the observers (pursuers), are equipped with sensors

for surveillance. In this work, we assume that the sensor mounted on top of each observer is an

omni-directional camera having an infinite range. The objective of the team of observers is to

track another team of mobile agents, called the targets (evaders). By tracking, we mean that

each member in the target team should be visible to at least one member in the observer team.

Since the cameras are assumed to have an infinite range, the line-of-sight between the target

and the observer is assumed to be only obstructed by the obstacles present in the environment.

Let Np and Ne denote the numbers of pursuers and evaders, respectively. Throughout this

work, the term “observer” will be used interchangeably with the term “pursuer”, and the term

“target” will be used interchangeably with the term “evader”.

Next, we describe the motion model for the mobile agents. In this work, we assume that
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all the agents have the following kinematic model

ẋ = u cos θ, ẏ = u sin θ, (2.1)

where (x, y) denotes the position of the agent in the plane, and u denotes the speed of agent.

Let vp and ve denote the maximum speed of the pursuer and evader, respectively. In this work,

we assume that all agents in each team possess the same maximum speed. Let a denote the

ratio of their maximum speeds, i.e., a = ve/vp. Next, we describe the common information

available to agents in each team. All agents in both teams are assumed to have a complete

map of the environment, and are also assumed to have an exact knowledge of the positions of

their team mates at all times, including themselves. Finally, we assume that each evader is

visible to at least one pursuer initially. Given the initial positions of all the agents, we address

the following question: What should be the strategy for the team of pursuers to track all the

evaders for the maximum possible time?

In order to account for the worst-case scenarios, we assume that the evaders are adversarial

in nature, and try to minimize the time required to escape from the region visible to the team

of pursuers. For the simplest case, when all the agents have a complete information about

the positions of all the players, the assumption of an antagonistic team of evaders leads to a

two-person zero-sum differential game in between the two teams. Bhattacharya et al. (2007)

have presented a thorough investigation of the problem for the special case when Np = Ne = 1.

A complete solution to the aforementioned case in general environments containing polygonal

obstacles is still unknown (Bhattacharya and Hutchinson (2008)). However, the authors have

provided a complete solution to the problem for specific environments. For example, in case of

an environment containing a semi-infinite obstacle having one corner, a complete solution has

been provided. In this work, we extend this work to propose algorithms for general environment

containing polygonal obstacles that can handle arbitrary number of observers and targets. In

the next section, we summarize the main results from Bhattacharya and Hutchinson (2011).

2.2.2 Cell decomposition around a corner

Bhattacharya and Hutchinson (2011) pose the target-tracking problem as a pursuit-evasion
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game of kind (Isaacs (1965)) in which the observer is modeled as a pursuer and the evader is

modeled as a target. The pursuer wants to maintain the line-of-sight to the target, and the

evader wants to break the line-of-sight in finite amount of time. The authors present a cell

decomposition of the workspace around a corner based on the strategy used by the winner

to ensure a successful outcome. Given the initial position of the pursuer, Figure 2.1 depicts

the geometry of the individual cells or partitions, and Table 2.1 provides the strategies of the

winner. Figure 2.2 depicts the same partitions computed by fixing the position of the evader.

The pursuer wins the game in all partitions except for Region 1. However, the strategy used by

the pursuer in Region 1 maximizes the time for which it can keep the evader in sight irrespective

of the evader’s strategy.

Figure 2.1: Pursuer-based partition

Table 2.1: Policies for the agents

Evader Policies Evader Region Control Law

A 1 and φe ∈ [α− π, π2 ] ṙe(t) = −ve
1 and φe ∈ [π2 , π + φp] ẏe(t) = −ve

Pursuer Policies Evader Region Control Law

B 2, 4 ẏp(t) = vp

C 3 ut(t) =
rp(t)
re(t)
|vt(t)|

ur(t) = − rp(t)
re(t)
|vr(t)|

D 5 ut(t) = vp

Based on the current position of the evader around the corner, the pursuer has an optimal

direction of motion that maximizes the time for which the evader is visible depending on the



11

Figure 2.2: The partitions computed by fixing

evader position

Figure 2.3: Pursuit fields with given evader

position

Table 2.2: Vector fields for optimal navigation around a corner

Region Vector Fields

1LU, 2RU cosα ∂
∂x − sinα ∂

∂y

1LD, 2RD cos θ ∂
∂x − sin θ ∂

∂y

1R − sin θ ∂
∂x + cos θ ∂

∂y

2R ∂
∂y

3 − sin θ ∂
∂x + cos θ ∂

∂y

4 ∂
∂y

5 1√
x2+y2

(− sin θ ∂
∂x + cos θ ∂

∂y )

partition in which it is placed. Since the optimal direction of motion at a point can be denoted

by a vector, this generates a vector field in the environment that defines the optimal direction

of motion for the pursuer at any instant in time. Since the positions of the pursuer and the

evader change with time, the vector fields are time varying in nature. We use the term Pursuit

Fields to represent these vector fields. The pursuer can navigate this time varying vector field

to optimally track the evader. Figure 2.3 shows the vector fields for a given position of the

pursuer and the evader. Table 2.2 provides the vector fields generated by the evader in the

partitions. In the table, ∂
∂x and ∂

∂y represent the basis vectors of the tangent space at a given

point.
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2.2.3 Extension to general environments

2.2.3.1 Case 1: Np = Ne = 1

In this subsection, we use the results for a single corner in order to provide navigation

strategies for the pursuer in general polygonal environments. From the previous section, one

can construct pursuit fields based on the position of the evader around a corner. One can use

the pursuit fields to generate pursuit strategies for environments containing multiple obstacles.

A plausible way to do so is described next. The presence of an evader in the environment

generates a set of pursuit fields, each corresponding to a corner visible to the pursuer around

which the evader can escape. In order to generate the guidance law for the pursuer, one can

use different metrics to obtain a resultant vector field from the set of pursuit fields. In this

work, we use a weighted summation of the individual pursuit fields in order to compute the

resultant vector field for pursuer navigation, i.e.,

v(x) =
∑
|Ci|

wivi, (2.2)

where Ci is the ith corner in the environment visible to the pursuer. The vector w = [w1, . . . , wk]

is called the Risk Vector. The ith element of the risk vector models the relative risk of the

evader breaking the line-of-sight with the pursuer around the ith corner. Define di to be the

distance between evader and the ith corner, we consider the following metrics for measuring

risk:

1. Uniform risk: wi = 1
k

2. Majority risk: wi = 1, where i = arg max 1
di

3. Proportional risk: wi =
d−1i∑
|Cj | d

−1
j

The uniform risk vector provides equal weight to all the corners visible to the pursuer around

which the evader can escape. The majority risk vector only takes into account the pursuit field

generated by the corner that is nearest to the evader. The proportional risk vector assigns a

weight to each corner that depends on the proximity of the evader from the corner. Figure

2.5 shows the vector fields that are generated for an environment using the three different
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techniques. The strategy of the pursuer at any given instant is to navigate along the vector

field based on a chosen risk vector. Figure 2.6 shows the trajectories of the pursuer generated

by the three risk vectors for a fixed evader trajectory. Red dots stand for the trajectory of

evader. Green, black and blue dots show the trajectories of pursuers using uniform, majority

and proportional risk, respectively. Three pursuers are placed at the same starting position.

(a) Uniform risk (b) Majority risk (c) Proportional risk

Figure 2.5: Vector fields

Figure 2.6: Trajectories of pursuers using uniform, majority and proportional risk

2.2.3.2 Case 2: Np > 1, Ne > 1

In this subsection, we present an extension of the previous technique for the case Np > 1,

Ne > 1. Initially, we discuss the case when all the pursuers use the same risk function to

compute the risk associated with a team of targets, following which, we discuss the case when

each pursuer may have its own risk function.
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First, let us analyze the case when all pursuers have the same risk function. For a given

pursuer and evader, one can compute the risk of evasion directly. For two teams of pursuers

and evaders, one can compute the risks associated with each pair of pursuer and evader, and

use the Hungarian algorithm (Kuhn (1955)) in order to compute the minimum matching. This

works perfectly if Np = Ne. If Np > Ne, we have some pursuers that remain unassigned for the

tracking task. In this case, there can be several ways to solve the reassignment problem. In

our implementation, for each pursuer that remains unassigned, we let it stay stationary until

it is included in the output of Hungarian algorithm. On the other hand, if Np < Ne, there are

some evaders that might not be assigned to any pursuer. As long as they are visible to at least

one pursuer, they are being tracked by definition.

Next we discuss the case when all pursuers do not use the same risk function. In this

case, it is not possible to use the above technique since the values of risk generated by all

pursuers may not be comparable. In order to resolve this issue, we propose a ranking and

aggregation algorithm. Each pursuer ranks the evaders that are in its field of view. Based

on the risk function, pursuer i will have a sequence of risks associated with each evader in its

field of view. By sorting this sequence of risks, the pursuer obtains a ranking for the evaders.

Therefore, each pursuer will have a ranking of the evaders in its visibility polygon. In order

to aggregate the ranking obtained from different pursuers, we use the Borda Count (Emerson

(2013)) corresponding to each evader. In each ranking, points are allocated to an evader based

on its position in the ranking. Finally, the cumulative score for an evader is obtained by adding

the points obtained from all the rankings. All the evaders present in the environment can be

ranked based on this score. This provides an aggregation scheme to generate a unique ranking

of the evaders from the individual preference of the pursuers.

After the aggregation stage, pursuers are allocated to the evaders based on the final scores

obtained from the Borda Counts. First, we define S ∈ RNp × RNe as follows:

Sij =

 Borda Score of Evader j If evader j is visible to pursuer i

∞ If evader j is not visible to pursuer i
(2.3)

We apply Hungarian algorithm to S, and obtain an assignment minimizing the total score.

Based on the result, we allocate pursuers to the targets. If Np ≤ Ne, we have a matching which
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leaves no pursuer unassigned. However, if Np > Ne, we assign to each unassigned pursuer an

evader that is in its field of view, and has the maximum non-infinity Borda score. This reflects

the strategy that these remaining pursuers try to track the most risky evaders. The complete

algorithm is presented in Algorithm 1.

2.2.4 Position estimation algorithm

In the aforementioned strategy, it requires the camera to have infinite range of sight and

accurate positions of evaders which is not reasonable in real life due to the limitations on

camera. For this reason, we present an omni-directional camera setup which can be used in

real experiments on visibility-based tracking. By using this setup, we will further apply a

position estimation technique for locating the evader.

2.2.4.1 Omni-camera setup

In order to have the omni-directional view, we consider the following setup, which consists

of a pursuer (viewed from the side) and an evader (view from the front).

Figure 2.7: Omni-camera setup

The focal length is obtained by dividing the diameter of the reflective sphere by four (i.e.

F = D/4). This value can be used to calculate the height h of the focal length from the bottom

stage. The angle ϕ between the vertical axis and the reflected tracing ray to the bottom edge of

the evaders colored shell, could be used to compute the quantity d, which is the actual distance
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from the pursuers camera to the evaders sides. With the camera mounted, we can obtain the

output images as shown in Figure 2.8 and 2.9:

Figure 2.8: Omni-camera image sketch Figure 2.9: Omni-camera image

Based on the geometric relationships shown in Figure 2.7, we know that

d = h tanϕ ≈ h tan
p

k
(2.4)

where k is a constant value that depends on the factors such as mirror shape and distance

of the camera from the reflective surface (Scaramuzza (2008)). The value of k needs to be

experimentally calibrated before we can use this equation to estimate the distance. In the next

subsection, we describe the procedures for calibrating k.

2.2.4.2 Calibration procedures for k

The procedures of calibration could be described as follows:

1. Place the evader 15 inches away from the center of the camera.

2. Acquire the image from the camera.

3. Measure the pixel distance between the center of the camera to the sides of the evader

from the acquired image. This will be the value p.

4. Repeat procedures 1-3 with distances of 20, 25, 30, 35, 40, 45, 50, 55 and 60 inches.

5. Compute the k value corresponding to each distance and use the mean value as the final

k.
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Based on the experimental result, we set k = 107. Once this has been done, we can measure

the pixel distance to the object in the image plane and have the equation output the estimated

actual distance. Considering the noise in the obtained images, we apply dilation and erosion

to the original image and finally use a color threshold to find the target.

Figure 2.10 illustrates the performance of distance estimation technique when evader locates

in different direction to the camera. We compute the standard deviation of estimated distance

within all directions, as shown in Figure 2.12. Figure 2.11 depicts the absolute error between

the average of estimated distance and real distance.

Figure 2.10: Estimated distance with respect to direction angle

2.2.4.3 Evader localization

Since the orientation of the pursuer in the actual world, denoted by θp, is a prior knowledge

to us, we can calculate the bearing to the evader from the front of the mobile robot, denoted
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Figure 2.11: Absolute error of estimated dis-

tance with respect to real distance

Figure 2.12: Standard deviation of esitmated

distnace with respect to real distance

by α, based on the position of the detected evader in the image plane. Thus,

θe = θp + α (2.5)

Figure 2.13: Omni-camera image sketch

The position of the evader could be estimated as follows

xe = xp + d cos θe, ye = yp + d sin θe (2.6)

2.2.5 Modified pursuer strategy

From experimental results, we have learned that notable errors occur when the measuring

distance between camera and target is too large. To resolve the issue, we add a vector towards
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evader, denoted as v′, to the original vector field, denoted as vo. In particular, the motion of

pursuer could be described as

v = wvo + (1− w)v′ (2.7)

where 0 ≤ w ≤ 1 is a weight parameter.

As shown in Figure 2.14, the modified strategy aims to track evader and meanwhile keep

evader in an effective range of sight for position estimation.

Figure 2.14: Vector combination

2.2.6 PID controller design

At last, we consider the problem that pursuer tracking evader along a straight line. In

this simplified scenario, we would like to design a PID controller for the pursuer to maintain a

desired distance r with the evader. Denote the displacements of pursuer and evader as xp and

xe, respectively, Figure 2.15 shows the aforementioned pursuit-evasion system.

According to the data illustrated in Figure 2.11, we fit the error as a parabola as follows

e(xe − xp) = a(xe − xp)2 + b(xe − xp) + c (2.8)

where a, b and c are constants.

Let x̃e to be the estimated xe and y to be (xe−xp), we design P, PI, PD and PID controllers

for the pursuer to perform tracking task. In the following designs, KP , KI and KD are used

to denote the proportional, integral and derivative constants, respectively.
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Figure 2.15: System of pursuer and evader

2.2.6.1 P controller

ẋp =ẋe +KP [(x̃e − xp)− r]

ẋp =ẋe +KP [(xe − xp)− (xe − x̂e)− r]

ẋp =ẋe +KP [(xe − xp)− e(xe − xp)− r]

− ˙(xe − xp) =KP [(xe − xp)− e(xe − xp)− r]

ẏ =KP [ay2 + (b− 1)y + c+ r] (2.9)

2.2.6.2 PI controller

ẋp =ẋe +KP [(x̃e − xp)− r] +KI

t∫
0

[(x̃e − xp)− r]dt

ÿ =KP [ay2 + (b− 1)y + c+ r] +KI

t∫
0

[ay2 + (b− 1)y + c+ r]dt

ÿ =KP [2ayẏ + (b− 1)ẏ] +KI [ay
2 + (b− 1)y + c+ r] (2.10)
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2.2.6.3 PD controller

ẋp =ẋe +KP [(x̃e − xp)− r] +KD
d[(x̃e − xp)− r]

dt

ẏ =KP [ay2 + (b− 1)y + c+ r] +KD
d[ay2 + (b− 1)y + c+ r]

dt

ẏ =KP [ay2 + (b− 1)y + c+ r] +KD[2ayẏ + (b− 1)ẏ]

ẏ =
KP [ay2 + (b− 1)y + c+ r]

1− 2aKDy −KD(b− 1)
(2.11)

2.2.6.4 PID controller

ẋp =ẋe +KP [(x̃e − xp)− r] +KI

t∫
0

[(x̃e − xp)− r]dt+KD
d[(x̃e − xp)− r]

dt

ẏ =KP [ay2 + (b− 1)y + c+ r] +KI

t∫
0

[ay2 + (b− 1)y + c+ r]dt+KD
d[ay2 + (b− 1)y + c+ r]

dt

ÿ =KP [2ayẏ + (b− 1)ẏ] +KI [ay
2 + (b− 1)y + c+ r] +KD[2aẏ2 + 2ayÿ + (b− 1)ÿ]

ÿ =
KP [2ayẏ + (b− 1)ẏ] +KI [ay

2 + (b− 1)y + c+ r] + 2aKDẏ
2

1− 2aKDy − (b− 1)
(2.12)

2.2.7 Simulation

In this subsection, we present the simulation results using the original strategy. Simulations

are conducted within a 4000×4000 environment with rectangular obstacles. t1, t2 and t3 denote

the time for which the pursuers can track the evaders using the three risk vectors above. In our

simulations, we choose a = 0.3 and vp = 300. The following simulations are done for random

initial positions of the agents with the constraint that every evader is visible to at least one

pursuer.

In the first simulation, we consider using the same risk function for computing the risk of

each pair of pursuer and evader. The risk function is described as follows

rij =
∑
|Ck|

d−1jk . (2.13)
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where Ck is the kth corner which is visible to both pursuer i and evader j, djk denotes the

distance between evader j and corner k. Figure 2.16, 2.17 and 2.18 show the average values

of t1, t2 and t3 for 1000 simulations as we change the number of pursuers and evaders in

the environment. These histograms indicate that the proposed strategies offer pursuers good

tracking performances. When Np ≥ Ne, all the values of t1 are greater than 50 time units. The

minimum average value of t1 is 74.62 units when Np = 1 and Ne = 4, which shows that the

strategies can still work when more evaders present. From the simulation results, we can see

that with a given number of pursuer, the tracking time decreases when the number of evader

increases. Similarly, fixing the number of evader, tracking time increases when the number

of pursuer increases. Furthermore, as the number of agents increases, the variances between

t1, t2 and t3 increase, which means using different risk vectors has a growing influence on the

tracking time.

In the second simulation, we consider the case of three pursuers using three different risk

functions. Figure 2.19 shows the average tracking time of using ranking and aggregation al-

gorithm for 1000 simulations. As a reference, we arrange another two teams of pursuers in

the game. Each team has three pursuers, using the same risk functions with the first team.

Pursuers in one team are assigned randomly to their visible targets, pursuers in the other team

are assigned to the most risky evader according to their own ranking results. When Ne = 1, all

the teams of pursuers reach the maximum time we count. But for multiple evaders, especially

when Np ≥ Ne, ranking and aggregation algorithm shows a better performance.

Figure 2.16: Tracking time t1 of pursuers using

uniform risk vector.

Figure 2.17: Tracking time t2 of pursuers using

majority risk vector.
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Figure 2.18: Tracking time t3 of pursuers using

proportional risk vector.

Figure 2.19: Tracking time with different allo-

cations

In the last simulation, we plot the responses of aforementioned P, PI, PD and PID con-

trollers. We take desired distance r = 200. Based on the data of error in Figure 2.11, we apply

constants a = 0.001062, b = −0.7598 and c = 137. For the initial conditions, we use y(0) = 100

and ẏ(0) = 0. Figure 2.20 illustrates the performances of these controllers with PID constants

KP = 10, KI = 5 and KD = 1.

Figure 2.20: Responses of PID controllers

2.2.8 Implementation

Next, we present a description of the experimental testbed that is used to implement the

strategies above. As shown in Figure 2.23, the environment is a 4000 mm × 4000 mm plane.
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All obstacles are rectangular with four corners. Vicon tracking system is used for collecting

real-time positions of all agents. Both pursuers and evaders are differential drive ground robots.

Figure 2.21 and 2.22 show the normal ground robot and omni-cam robot setup, respectively.

Each robot is equipped with an Arduino Mega 2560 board as the controller, and a XBee module

as the communication unit. In each iteration, a work station collects all the data and computes

the control of each pursuer based on the proposed strategies. The commands are sent through

XBee module accordingly.

Figure 2.24 shows the user interface written for the experiments. The bottom left monitor

shows visibility relationships among pursuers and evaders. A line-of-sight and a chase between

a pursuer and an evader are denoted by a black edge and a purple edge, respectively. The

mini-map on the right shows the motions of all agents. Green rectangles are obstacles, with

orange boxes around them being the actual boundaries in case of collision with robots. Offset

between orange boxes and obstacles is 160 mm. Next, we will present the experimental results.

Figure 2.21: Ground robot Figure 2.22: Omni-cam setup on real robot

Figure 2.23: Implementation setup Figure 2.24: User interface
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2.2.8.1 Original tracking strategy using the same risk function

In this part, we present the implementation result of the strategy proposed in Section 2.2.3.

We consider three scenarios using Equation (2.13) as risk function for all pursuers.

• Np < Ne: In the scenario of Np = 3 and Ne = 4, each pursuer is allocated to one evader

based on the result of Hungarian algorithm. All the pursuers can successfully follow their

targets according to proposed moving strategies. Once the matching changes, pursuer

switches its target accordingly.

• Np = Ne: In the scenario of Np = Ne = 3, pursuers have different targets, and all of them

are able to follow their assigned targets.

• Np > Ne: In the scenario of Np = 4 and Ne = 3, three evaders are tracked by three

pursuers initially, and one pursuer remains unassigned. When the matching changes, the

stationary pursuer takes over and starts moving. In this case, all the evaders are tracked

and algorithm can automatically choose the best combination of pursuers for tracking

assignments.

2.2.8.2 Original tracking strategy using different risk functions

In this case, we implement ranking and aggregation algorithm by letting Np = 4 and

Ne = 3. Figure 2.25 indicates the implementation result which shows that the algorithm can

appropriately allocate all pursuers, including one extra pursuer. In addition, all the pursuers

are able to follow their targets.

Figure 2.25: Implementation of original tracking strategy with 4 pursuers and 3 evaders using

different risk functions
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2.2.8.3 Modified tracking strategy

To demonstrate the feasibility of evader localization method and modified pursuer strategy,

we implement them with a single pursuer and a single evader. In the experiment, pursuer uses

the setup presented in Subsection 2.2.4.1 (Figure 2.22). we set the weight parameter w = 0.5.

Figure 2.26 shows the implementation result, which shows that pursuer can locate evader and

follow it effectively. To facilitate observation, we attach the image from omni-camera and a

mini-map on the bottom of each figure.

Figure 2.26: Implementation of modified tracking strategy with single pursuer and single evader

The case of 2 pursuers chasing 2 evaders is implemented as shown in Figure 2.27. Red and

green shells are used to distinguish the two evaders. During the experiment, both pursuers are

able to trail their targets without interruption.

Figure 2.27: Implementation of modified tracking strategy with 2 pursuers and 2 evaders

2.2.9 Conclusion

In this section, the problem of visibility-based target tracking for a team of mobile observers

trying to track a team of mobile targets was addressed. Initially, we introduced the notion of
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pursuit fields for a single observer to track a single target around a corner based on the results

obtained by Bhattacharya and Hutchinson (2011). We used the pursuit fields to generate

navigation strategies for a single observer. In order to tackle the scenario when more than

one observer or target was present, we proposed a hierarchical approach. At first a ranking

and aggregation technique was used for allocating each observer to a target. Subsequently,

each observer computed its navigation strategy based on the results of the single observer-

single target problem, thereby, decomposing a large multi-agent problem into numerous 2-agent

problems. Based on the aforementioned analysis, we presented a scalable algorithm that can

accommodate an arbitrary number of observers and targets. The performance of this algorithm

was evaluated based on simulation and implementation.

We further considered the real situation of which each pursuer was equipped with a finite

range omni-camera. We applied a position estimation technique based on the images from omni-

camera. Due to the error caused by large relative distance, we proposed a modified navigation

strategy which lets pursuer be able to keep evader in an effective observing range. Additionally,

we designed PID controllers for the pursuer to track evader based on the experimental data

on the error of position estimation. The proposed algorithm and strategy were validated by

implementation with real robots.

2.3 Social Network Target Tracking Game

In the previous section, the positions of evaders are obtained by either global tracking system

or omni-cameras. But in reality, we do not always have such devices or technologies around.

In other words, if a pursuer does not have vision sensors on-board, it cannot locate evader’s

position. Therefore, previous strategies are not feasible at this point. A similar situation

occurs when pursuer cannot see evader initially. The tracking strategies cannot be applied since

pursuer does not have any information regarding evader. To address this problem, we consider

taking advantage of the Internet and letting pursuer to collect available online information.

One way to do so is to search on the social network website. Next, we will formulate the

problem and present the approach we use for this problem.
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2.3.1 Problem description

Consider a planar environment with multiple obstacles and landmarks. Obstacles are as-

sumed to be polygonal and can occlude visibility. Landmarks are unique and fixed in the

environment. The environment contains one pursuer, one evader and multiple agents, namely

common agents, who are equipped with vision sensors. These sensors are assumed to have a

limited visual angle. Common agents can only use their vision sensors to take pictures around.

Both pursuer and common agents have access to the Internet. Once the pictures are taken,

common agents will post the pictures on the social website without any time delay. This mod-

els the situation that people post their pictures to social website in real life. The objective of

pursuer is to find evader according to the online information and track its path.

In this problem, we assume all the mobile agents have the same model as described in

previous section. We consider the entire map of the environment, including the information of

landmarks, as prior knowledge to all agents. We also assume that pursuer and evader know

their own positions at all times. The initial positions of all agents are given randomly so that

evader may not be seen by any agent at the beginning. So we would like to find an Internet-

based approach which can lead pursuer to track evader’s path. In the following sections, we

present the approach for searching evader.

2.3.2 Searching approach based on social network

From previous section, we know that the pictures taken from common agents are kept

under their online social network accounts. With this in mind, we would like to let pursuer get

access to these pictures. So in the first step, pursuer needs to send friend requests on social

website in order to get access. Let F denote the set of friend agents. At the beginning of

network evolution, pursuer would like to send requests to new common agents. Depending on

the responses, the requested agents can be placed into three categories. The first one represents

those who accept. In this case, the agents can be added to F directly. In the second category,

we have those agents who reject the requests. To tackle this case, pursuer will try to resend

friend requests. The last category contains those agents who don’t respond. For each of them,
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we set up an counter. If the counter exceeds the maximum waiting time Twait, we look for new

common agent instead of keep waiting the respond. Note that the counter also ticks when an

agent rejects friend request. This ensures that the pursuer will pass the uncooperative agent

when it keeps rejecting. Considering the energy capacity of pursuer, we constrain the number

of requests sent in one iteration by Nreq, and the total number of friend agents by Nf . In other

words, pursuer will not send more than Nreq requests at one iteration and will not have more

that Nf friends. Furthermore, friend agents may unfriend with pursuer at any time instant.

At this point we still proceed with the network evolution algorithm. The algorithm regards

these leaving agents as new common agents, and may try to connect them again. The complete

network evolution algorithm can be found in Algorithm 2.

In the next stage, pursuer proceeds by accessing social website accounts of its friends. For

each account, pursuer scans the most recent Nimg pictures for detecting evader and landmarks.

The complete scanning algorithm is presented in Algorithm 3. In one iteration, if evader

and any landmark are found in the same picture, evader can be located based on the known

information. The localization method will be elaborated in the next section.

2.3.3 Evader localization

In this section, we present the evader localization method based on image information

obtained from common agents. In order to figure out evader’s position, we have to find the

location of the common agent who took the picture (i.e. the position of the camera). With this

in mind, we analyze the received image, and first compute the distance d1 between one vertical

edge of the landmark and camera, based on the following equation.

d1 = f ∗ (dlandmark/(nedge/kppm)) (2.14)

where f is the focal length of camera, dlandmark is the real length of landmark’s edge, nedge is

the number of pixels of the edge on image plane, and kppm is the pixel density.

By using two vertical edges of the landmark, we are able to derive camera’s relative position

to the landmark by geometry, as shown in Figure 2.28. To get the orientation, we measure the

number of pixels that one edge deviates from image’s center on the image plane, denoted as
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ndev. Then orientation offset θ between one edge to camera’s front can be derived as follows

θ = atan(ddev/f) (2.15)

Figure 2.28: Common agent/camera localization

With real distances d1, d2 and angle θ, we are able to obtain the absolute position and

orientation of the camera. Similarly, by measuring the size of evader in picture, we can further

get the relations between the positions of the evader and the camera. Since the camera has

been located, evader’s location can be derived straightforwardly.

2.3.4 Implementation

In this section, we present the implementation results. The environment is an 8ft × 8ft

planar maze containing obstacles. Thirteen landmarks are places with known positions and all

of them are unique Chinese characters.

Due to the limitations on space and hardware, we consider a simplified case with one pursuer,

one evader, and three common agents. All of them are differential drive robots. Compared

with the robots used in Section 2.2, we additionally mount four infrared sensors on pursuer

and each common agent for collision avoidance. To model the activity of taking pictures, each

common agent is equipped with a wireless camera so that it can capture images of the scenes

on the front. Evader is attached with several identical markers, as shown in Figure 2.32, for

detection. All the robots are placed with random initial positions.
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To facilitate our experiment, a user interface program, as shown in Figure 2.30, is designed.

Mini-map on the right shows real-time position of the pursuer, which is collected from Vicon

tracking system. Blue lines are the boundaries of obstacles. Considering the obstacle avoidance

problem, the boundaries of obstacles (green lines) are offset in path planning computation. Red

disk and red lines indicates the location and trajectory of the pursuer, respectively.

Figure 2.29: Experiment setup Figure 2.30: User interface

Figure 2.31: Pursuer with infrared sensors Figure 2.32: Evader with a unique marker

2.3.4.1 Social activities

We implement our communication method among robots using Facebook website, which is

one of the biggest social networking service provider. We create a personal Facebook account for

each common agent, as well as the pursuer. With the help of Facebook Software Development

Kit (SDK), we are able to let robots interact with Facebook website automatically. For the

common agents, once any of them captures an image, it will automatically share the image

online under its Facebook account.
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For pursuer, social activities are also achieved by Facebook SDK. Due to the restrictions of

current SDK, friend requests cannot be sent by program. To model the same scenario, we let

pursuer connect to all common agents at the beginning, and simulate the network connectivity

variation by controlling which common agents ought to be checked. In other words, if a common

agent is not connected, pursuer will not check its images until they are reconnected. The second

stage of the searching approach is achieved by using the techniques of SURF detection, which

will be presented in the next subsection.

2.3.4.2 Speeded-up robust features detection

Speeded-Up Robust Features, abbreviated as SURF, is a robust feature detector developed

by Bay et al. (2008). It utilizes the sum of Haar wavelet response around the points for features

and can be computed very efficiently. In our case, we use this technique for searching evader

and landmarks. Initially, we store the feature descriptors of evader’s marker and all landmarks

as references. During the experiment, SURF detection is applied to compare the features of

online images and reference images. Once the similarities are found, the program will save the

results and inform the pursuer.

2.3.4.3 Path planning

In our experiment, common agents and pursuer are autonomous robots. This requires them

to have a path planning algorithm helping them in navigation. On one hand, the algorithm

should control robots proceed with their tasks. On the other hand, it should integrate collision

avoidance in case of hitting obstacles or other robots.

With this in mind, we develop the path planning strategy in the following way. For com-

mon agents, since they are randomly deployed in the environment and do not have specific

destinations, we let them move forward in every time instant till obstacle is met. For each of

them, we estimate the relative location of the obstacle nearby according to the measurements

of infrared sensors, and let common agent turn before collision. Since common agents are used

to model real people, this moving strategy satisfies the real situation that people walk around.

For pursuer, it needs to navigate to specific position when evader is located. So we apply
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Dijkstra’s algorithm for path planning. Dijkstra’s algorithm is a graph search algorithm for

finding the shortest path on a graph with non-negative edge path costs. This algorithm is

widely used in network routing and data structure, etc. To implement the algorithm, we define

a visibility graph G(V, E), where V is the set of all vertices of obstacles after offset, and E is

the set of corresponding edges based on visibility. The cost of each edge is the real distance

between corresponding nodes. Once evader is located, we update G by adding two vertices:

current position of the pursuer and estimated position of the evader. After constructing G, we

are able to compute the shortest path between pursuer and evader. But during the navigation,

pursuer still has chance to collide with obstacles. For this reason, four infrared sensors are

installed on-board. When pursuer proceeds from one node to another, it will deviate from

original path based on the measurements of sensors in order to avoid collision. This also helps

when pursuer meets other robots during navigation. The complete process can be found at

Algorithm 4. Therefore, by integrating Dijkstra’s algorithm and collision avoidance, pursuer is

able to reach evader’s estimated location safely.

2.3.4.4 Experimental result

In real experiment, the parameters we use in the algorithms are listed in Table 2.3. To

model social network changing, we set a friending probability and an unfriending probability

for each common agent. The values we use are listed in Table 2.4.

Table 2.3: Experiment parameters

Nreq 3

Twait 10

Nimg 1

Table 2.4: Probability parameters

Friending Unfriending

Common Agent 1 0.4 0.05

Common Agent 2 0.5 0.02

Common Agent 3 0.3 0.04
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Figure 2.33 depicts the experimental scene and Figure 2.34 illustrates the corresponding

connectivity changing. We can see that network evolution algorithm is effective in the network

development. All the three agents are connected in most of the time, and at least one of them

is connected in any time instant. Furthermore, with the help of proposed searching approach,

pursuer is able to track evader based on the online information. Path planning algorithms for

common agents and pursuer are feasible in real environment. Note that there exists obvious

time delay between the discovery of evader and the corresponding response of pursuer. This can

be caused by some reasons such as Internet transmission delay and wireless camera transmission

delay, etc.

Figure 2.33: Implementation

2.3.5 Conclusion

In this chapter, we described a pursuit-evasion game based on social network. The game is

different from those in previous chapters because the pursuer does not have any vision sensor

on-board. Instead, it has Internet access for collecting information. We first introduced the

notion of common agent. Rather than getting position information from global tracking system,

we established a searching approach with the help of social network website. The approach

included network evolution algorithm and image scanning algorithm, which were very useful to

locate the evader. SURF detection was used to find the evader and landmarks. Since the entire

map was regarded as prior knowledge to pursuer, we used a path planning strategy integrating

Dijkstra’s algorithm and collision avoidance based on the measurements of infrared sensors.

Implementation results demonstrated the feasibility of this tracking approach.
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Figure 2.34: Connectivity variation between pursuer and common agents
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CHAPTER 3. SCHEDULING AND MOTION PLANNING FOR

AGRICULTURAL VEHICLES

3.1 Introduction

Logistics problem can be described as the management of resources in order to meet specific

requirements, or customers. The resources to be dealt with include physical items such as

materials and tools, as well as abstract items such as information and energy. Recently, logistics

problem is embodied in many aspects, such as business, economics and agriculture. We address

the problem of logistics in motion planning for agricultural vehicles is addressed.

Currently, crop-harvesting is usually performed by agricultural machines called combines

(combine harvesters). Due to the limited capacities of the combines, a grain cart is involved for

transporting the grains from combines to the depot. Ali and Van Oudheusden (2009) address

the motion planing of one combine by using integer linear programming formulation. Scheuren

et al. (2013) present a path planning approach for the unloading vehicle.

If there are sufficient number of grain carts, each combine can go alongside with a grain

cart for unloading. However, if the number of combines exceeds the number of grain carts,

we have to consider the problem of scheduling the grain carts to unload all the combines.

Moreover, most farmers prefer to unload the combine when it is harvesting in order to improve

the efficiency. This indeed requires better coordination between the combines and grain cart so

that the unloading process can be performed without any interruption. Based on the fact that

the grain cart is primarily responsible for unloading grains, we explore the problem of motion

planning and scheduling for an autonomous grain cart that serves multiple combines in a field.

There have been some efforts in the past to address the problem of harvesting in large-

scale farming scenarios. Fokkens and Puylaert (1981) present a linear programming model for
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harvesting operations. The model gives the management results of harvesting operations at

the large scale grain farm. Foulds and Wilson (2005) and Basnet et al. (2006) analyze the

scheduling problem of farm-to-farm harvesting operations for hay, and rape seed. These works

mainly focus on scheduling harvesting operations from farm to farm. In contradistinction, our

research focuses on the motion planing for both harvesting and unloading vehicles.

Recently, path planning of agricultural machines has received some attention in the research

community. Makino et al. (1999) develop a motion planning system, which integrates global

and local motion planning components, for agricultural vehicles. Oksanen and Visala (2009)

propose algorithms and methods to solve coverage path planning problem. The algorithms not

only aim to find an efficient route, but also ensure the coverage of the whole field. Hameed

et al. (2013) propose a coverage planning approach with the consideration of the presence of

obstacles. However, these works do not consider the presence of multiple harvesting machines,

which is a distinguishing feature of our work.

There has been some previous research to plan optimal trajectories for tractor-trailer model

which are prevalent in farming applications. Divelbiss and Wen (1994) present an algorithm

to find a feasible path which satisfies the given non-holonomic constraints. Divelbiss and Wen

(1997) propose a trajectory tracking strategy which controls a tractor-trailer system moving

along a path generated off-line. By introducing the notion of equivalent size, Liu et al. (2008)

propose an approach for path planning based on genetic algorithm. Yu and Hung (2012)

consider the tractor-trailer model as a Dubins vehicle, which can only move with constant

speed and turn with upper bounded curvature. The proposed algorithm is used to find the

shortest path in Dubins Traveling Salesman Problem with Neighborhoods Isaacs et al. (2011).

Based on the tractor-trailer model, Chyba and Sekhavat (1999) introduce the notion of regular

primitive and singular primitive which ensure local time optimality. Chitsaz (2013) present

an extension on the study on primitives and give a detailed characterization of the proposed

curves.
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3.2 Mathematical Modeling

3.2.1 Combine harvester

Combine harvester is the machine for harvesting crops, for example, wheat, oats, rye, barley

corn, soybeans and flax. Figure 3.1 shows a combine at work. In this active mode, the header

cuts the crop and feeds it into threshing cylinder. Grain and chaff are separated from the straw

when crop goes through the concaved grates. The grain, after being sieved, will be stored in the

on-board tank temporarily, and the waste straw is ejected. We use C to denote the maximum

capacity of on-board tank.

Figure 3.1: Combine harvester

Threshing grain loss is an important issue for combine harvester. For any combine, the

quantity of threshing grain loss greatly depends on the forward speed of the harvester. Flufy

and Stone (1983) show that automatic control has a better performance than manual control on

the threshing grain loss. The forward speed is controlled to give a level of crop feed according

to the required threshing grain loss. In this study, we simplify the model and assume that all

the combines posses identical constant speed, and the field has a constant density of crop. With

these assumptions, the filling rate of the tank, denoted as rf , can be regarded as a constant.

Since the tank does not hold a large capacity, modern combine usually has an unloading

auger for removing the grains from the tank to other vehicles. For most of the combines, the

auger is mounted on the left side, as shown in Figure 3.1. At this point, a vehicle has to be

on the left side of the combine to empty the tank. Here we denote the unloading rate of the

tank using auger as ru. So when a combine proceeds with the harvesting and the unloading
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operations simultaneously, the unloading rate is ru − rf (ru > rf ).

In general, for a rectangular field, multiple combines travel to harvest from the perimeter

of the field to its center (Zhang (2014)). In other words, when each combine finishes harvesting

the current row, it will move to the row along the perimeter of unharvested field. Figure 3.2

shows an example for 3 combines. This guarantees that each combine has an open space on its

left side, so that it can be unloaded anytime by a grain cart.

Figure 3.2: Motion planning of 3 combines

3.2.2 Grain cart

A grain cart, also known as chaser bin, is a trailer towed by a tractor. In the thesis, we use

term grain cart to represent the system including both the tractor and the trailer. Figure 3.3

(a) shows the appearance of a grain cart. Because of the larger capacity, one can use it to collect

grains from multiple combines so that the combines could keep working without interruption.

Figure 3.3: Grain cart and its mathematical model
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Figure 3.3 (b) shows the model a grain cart. We model the grain cart as a trailer attached

to a car-like robot. The robot is hitched by the trailer at the center. The equations of motion

for the grain cart are as follows:

q̇ =



ẋ

ẏ

θ̇

β̇


=



v cos θ

v sin θ

ω

−v sinβ + ω


where q = (x, y, θ, β) ∈ R2 × S1 × S1 is the configuration, (v, ω) ∈ U = [−1, 1]2 is the control

(Chyba and Sekhavat (1999) and Chitsaz (2013)). In the configuration q, (x, y) is the coordinate

of robot’s center, θ is the robot’s orientation, β is the angle between trailer orientation, and the

robot orientation. v and ω denote the speed and angular velocity of the robot, respectively.

3.3 Problem Description

Consider the scenario when N combines harvest the field in the manner described in the

previous section, and there is one grain cart that serves all of them. We assume all the combines

posses the same capacity C, filling rate rf and unloading rate ru. All of them harvest on different

rows of the field, and keep a constant distance between the ones on adjacent rows. Besides, for

the first (N − 1) combines, it takes ∆T for grain cart to move from one combine to the next.

Therefore, the travel time between the Nth combine and the first one will be (N − 1)∆T . This

models a real scenario since the distance could be a measure of the time for grain cart with a

constant speed. In this study, we address the following question: How to schedule the grain

cart for sequentially unloading the combines so that all the combines could keep harvesting,

and the tanks will not overflow?

3.4 Scheduling Strategy

In this section, we propose a sequential strategy for the grain cart to visit the combines,

and unload them. In other words, in the case of N combines, the grain cart will try to serve

the first one till the Nth one in order, and then come back to the first one. In order to motivate
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the proposed strategy for N combines, we first study the case when N = 2, 3, and generalize

the result to N combines with one grain cart.

3.4.1 2 combines with 1 grain cart

In order to solve the problem for N = 2, we first introduce a notion of waiting time t.

The waiting time starts when grain cart empties the serving combine, and ends when it leaves

the same combine. Figure 3.4 illustrates the waiting time at this point. During the waiting

time, the grain cart continues to empty the tank of combine which is being served. Based on

the scheduling, it can be seen form the figure that the waiting time t is associated with both

combines.

Figure 3.4: Scheduling for 2 combines

With this in mind, we can check if with waiting time t ≥ 0, the grain cart is able to serve

both combines and the scheduling pattern can be repeated. So t ≥ 0 can be considered as

a sufficient condition for the repeatability of this process. From Figure 3.4, we can infer the

following:

t =
C

rf
− 2∆T − C

ru − rf
≥ 0

⇒ ∆T ≤
ruC − 2rfC

2rf (ru − rf )
(3.1)

So, we obtain the constraint on ∆T from Equation (3.1) which indicates the solution to the

problem. Note that Figure 3.4 can also be interpreted as the scenario that the combines start

one after the other. This scenario satisfies real situation that farmers may ignite the combines

one after the other and proceed with the harvesting work.
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In the previous analysis, we assume that the distance d between two adjacent combines

keeps constant, so that ∆T does not change in each iteration. However, if the combines need

to work without interruption, d will become smaller based on the models described in Section

3.2. This can be inferred from the fact that two combines have different travel distances between

rows. Let us denote the initial horizontal distance between two combines as dinit and use the

subscription i to denote the iteration (i ≥ 1), then we have

di = dinit − 2l(i− 1)

where l is the width of field row. If the distance has a restriction dmin. Then we would have

dinit ≥ dmin + 2l(I − 1)

where I is the total number of iterations.

3.4.2 3 combines with 1 grain cart

In the case of 3 combines, we need to consider the situation when two combines require

unloading. It is intuitive that the grain cart is supposed to leave the current combine earlier

so that there is enough time to unload the other two combines. Figure 3.5 illustrates the

load variation among the three combines as a function of the time. Red, green and blue lines

represent the loads of three combines. In the beginning, let us assume that the grain cart is

engaged with the red combine. Let C ′ denote the load of the green combine when the grain

cart starts to unload its tank. The blue combine will be served when its tank is full.

To facilitate the computation, we extend the notion of waiting time. As shown in Figure

3.5, we use t′ to denote the time period for which the grain cart is following the green combine

after it finishes unloading its tank for the first time. t′ is different from the normal waiting

time t1 or t2 because it depends on C ′ instead of C.

Based on the results of the previous subsection, a sufficient condition to ensure that the

grain cart is able to serve all three combines is t′ ≥ 0, t1 ≥ 0 and t1 ≥ 0. From the figure, ∆T

is given by the following expression:

C ′

rf
−∆T = t1 + 2∆T +

C

ru − rf
(3.2)



43

Figure 3.5: Scheduling for 3 combines

Moreover, t1 ≥ 0 yields the following:

t1 =
C ′

rf
− C

ru − rf
− 3∆T ≥ 0

∆T ≤
(ru − rf )C ′ − rfC

3rf (ru − rf )
(3.3)

From the above computations, t2 is given by the following:

∆T +
C ′

ru − rf
+ t′ = t2 + ∆T +

C

ru − rf

t′ = t2 +
C − C ′

ru − rf
(3.4)

The condition t2 ≥ 0 implies that t′ ≥ C−C′

ru−rf . From Figure 3.5, we can infer the following:

t′ =
C

rf
−∆T =

C ′

ru − rf
− C ′

rf
≥ C − C ′

ru − rf

∆T ≤
(ru − rf )(C − C ′)− rfC

rf (ru − rf )
(3.5)

If we consider the case when t1 = t2 = 0, we can solve C ′ and ∆T by substituting inequalities

(3.3) and (3.5) by equalities. This leads to the following:

∆T =
(ru − rf )C ′ − rfC

3rf (ru − rf )
=

(ru − rf )(C − C ′)− rfC
rf (ru − rf )

C ′ =
(3ru − 5rf )C

4(ru − rf )
(3.6)

∆T =
(ru − 3rf )C

4rf (ru − rf )
(3.7)
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3.4.3 N combines with 1 grain cart

Based on the discussion in the previous subsections, we can generalize the scheduling scheme

to N combines with 1 grain cart. Figure 3.6 shows the load variation for this scenario. Since

there are N combines, we need to consider C ′1, C
′
2 · · · C ′N−2, t′1, t′2 · · · t′N−2 and t1, t2 · · · tN−1.

Similar to the analysis of 3 combines, t′1, t
′
2 · · · t′N−2 ≥ 0 and t1, t2 · · · tN−1 ≥ 0 in order to

ensure enough serving time for each combine.

Figure 3.6: Scheduling for N combines

First, we analyze the relationship between t′n and tn+1 when 1 ≤ n ≤ N − 2. Based on the

parallelogram law, the following equation holds:

C ′n
ru − rf

+ t′n + ∆T = tn+1 + ∆T +
C

ru − rf

⇒ t′n = tn+1 +
C − C ′n
ru − rf

(3.8)

Then, from the position of each C ′, it can be seen that

t′n =


C′

n+1

rf
−∆T − C′

n
ru−rf −

C′
n
rf

1 ≤ n ≤ N − 3

C
rf
−∆T − C′

n
ru−rf −

C′
n
rf

n = N − 2

Since tn+1 ≥ 0 yields t′n ≥
C−C′

n
ru−rf (1 ≤ n ≤ N−2), we can find the corresponding constraints

of ∆T .

∆T ≤


(C′

n+1−C′
n)(ru−rf )−rfC

rf (ru−rf ) 1 ≤ n ≤ N − 3

(C−C′
n)(ru−rf )−rfC
rf (ru−rf ) n = N − 2
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Moreover, according to parallelogram law, the following equation can be obtained, as well

as the constraint on ∆T .

(t1 + · · ·+ tN−1) = (2N − 2)∆T +
(N − 1)C

ru − rf
− C

rf
≥ 0

∆T ≤
(ru − rf )C − (N − 1)rfC

rf (ru − rf )(2N − 2)
(3.9)

If we assume tn = 0 (1 ≤ n ≤ N − 1), we obtain the following expression for ∆T based on

Equation (3.9).

∆T =
(ru − rf )C − (N − 1)rfC

rf (ru − rf )(2N − 2)
(3.10)

Since we also have

∆T =


(C′

n+1−C′
n)(ru−rf )−rfC

rf (ru−rf ) 1 ≤ n ≤ N − 3

(C−C′
n)(ru−rf )−rfC
rf (ru−rf ) n = N − 2

we can recursively solve for all values of C ′. The solution also satisfies the results obtained in

the previous subsections for 2 and 3 combines.

3.5 Motion Planning for Agricultural Vehicles

In this chapter, we consider the time-optimal path planning problem for the grain cart to

move between combines on adjacent rows. In other words, we would like to find a path from the

initial configuration qi to the goal configuration qg with the minimum travel time. A numerical

approach and a primitive-based approach are studied to solve the problem. In the following

section, we present the numerical approach to compute the time-optimal path between two

specific configurations.

3.5.1 Numerical approach

In this section, we present a numerical approach used to obtain the time-optimal solution for

the navigation between two given configurations. We first define a value function for the entire

configuration space. Based on the definition of value function, we establish Hamilton-Jacobi

equation using tractor-trailer model. The trajectory is computed finally using the obtained

value function.
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3.5.1.1 Hamilton-Jacobi equation

Denote the set of admissible path from the configuration qi as Axi,yi,θi,βi . Given a goal

configuration qg, we define the corresponding value function u : q → R+ ∪ {0} (Takei et al.

(2010)):

u(q(T )) = inf{T : q(t) ∈ Axi,yi,θi,βi , q(T ) = qg} (3.11)

The value function can be regarded as the optimal cost-to-go for the tractor-trailer model

with given constraints, an initial configuration and a final configuration. By applying dynamic

programming principle for the Equation (3.11), we have

u(q(t)) = inf{u(q(t+ ∆t)) + ∆t : q(t) ∈ Axi,yi,θi,βi} (3.12)

Dividing the terms by ∆t and taking ∆t→ 0, we are able to derive

−1 = inf{Ou · q̇ : |v| = 1, |ω| ≤ 1} (3.13)

With the equations of motion of the grain cart, Hamilton-Jacobi-Bellman equation can be

obtained as follows

−1 = cos(θ)
∂u

∂x
+ sin(θ)

∂u

∂y
− sin(β)

∂u

∂β
+ inf
|ω|≤1
{θ̇(∂u

∂θ
+
∂u

∂β
)} (3.14)

The last term in Equation (3.14) can be eliminated by applying bang-bang principle w = ±1.

Since qi is the goal configuration which has no cost-to-go, we have u(qg) = 0. For the points

located in the obstacle or outside the space, we define the cost-to-go to be infinity. In the next

section, we present the update scheme of the defined value function.

3.5.1.2 Update scheme

In order to find the time-optimal path satisfying (3.14), we apply fast sweeping method and

propose an update scheme for the value function u(q) for the entire space. The basic idea is to

discretize the space, as well as the control. For each configuration, the dynamics is moved by a

small time step ∆t, and the value of this configuration is the smallest value among all the points

reachable adding ∆t. We compute all the points in the space until value function converges.
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For each configuration reachable, if it lies on the grids, we can know the value directly, if it is

not, we take the average of its neighbors.

With this idea, we set up a four dimensional uniform Cartesian grid with discritization re-

finements (hx, hy, hθ, hβ). Let ua,b,c,d = u(qa,b,c,d) = u(ahx, bhy, chθ, dhβ) be the approximation

of the solution on the grid nodes. We discretize ω in the range of [−1, 1] and further define

u∗a,b,c,d as follows

u∗a,b,c,d = min
ωi∈[−1,1]

{u(qa,b,c,d + q̇∆t)}+ ∆t (3.15)

where q̇ = (cos(chθ), sin(chθ), ωi,− sin(dhβ) + ωi))
T , ωi is the ith element in the discretization

and ∆t is the length of time step. The value of u(qa,b,c,d + q̇∆t) is approximated by taking the

average value of the adjacent nodes in the presented grid.

Finally, the update scheme can be described as follows

un+1
a,b,c,d = min{una,b,c,d, u∗na,b,c,d} (3.16)

where the superscripts denote the iteration. The termination condition of the computation

could be described as for any ε > 0, the following inequality holds.

(‖un+1
a,b,c,d − u

n
a,b,c,d‖2)2 < ε (3.17)

3.5.1.3 Computing trajectory

By using the obtained value function u(q), we are able to derive the time-optimal path

from any initial configuration qi to the goal configuration qg. According to Equation (3.14),

the control law can be summarized as follows

ẋ = cos θ (3.18)

ẏ = sin θ (3.19)

θ̇ = −sgn(
∂u

∂θ
+
∂u

∂β
) (3.20)

β̇ = − sinβ + θ̇. (3.21)

Note that the partial derivative in Equation (3.20) is obtained by applying centered difference

approximation. The values of u which are not on the nodes are computed using a nearest-

neighbor interpolation.
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The numerical approach computes the time-optimal trajectory efficiently if the correspond-

ing value function is provided. The main time consumption is in computing the value function

of the final configuration. But in real implementation, one can compute the value function

beforehand. Therefore, the time cost of computing the value function will not influence the

real operation on path planning.

3.5.2 Primitive-based approach

3.5.2.1 Related work

Based on the model presented in Section 3.2, the time-optimal trajectory satisfies Pontrya-

gin Maximum Principle. Chitsaz (2013) define adjoint variables λ = (λx, λy, λθ, λβ) and the

Hamiltonian as follows

H(q, λ, u) = λxẋ+ λyẏ + λθθ̇ + λββ̇

= v(λx cos θ + λy sin θ − λβ sinβ) + ω(λθ + λβ) (3.22)

Additionally, the switching functions are defined as

φv = λx cos θ + λy sin θ − λβ sinβ (3.23)

φω = λθ + λβ (3.24)

Depending on φv and φω, the optimal trajectory, which is called extremal, consists of two

categories, namely, regular and singular. On one hand, an extremal is called regular if the

times at which φv = 0 or φω = 0 have zero measure. On the other hand, an extremal is called

abnormal if it has both φv ≡ 0 and φω ≡ 0. A singular is an extremal which contains a positive

measure along which φv ≡ 0 or φω ≡ 0. The subtrajectories of a regular and a singular extremal

are called regular primitive and singular primitive, respectively.

In the regular primitive, φv 6= 0 and φω 6= 0. Based on the state equations, a regular
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primitive satisfies

θ(t) = ωt+ θ(t0) (3.25)

x(t) = x(t0) + (v/ω)(sin(θ)− sin(θ(t0))) (3.26)

y(t) = y(t0)− (v/ω)(cos(θ)− cos(θ(t0))) (3.27)

β(t) = 2(v/ω) arctan(
t− 2v +K1

t+K1
) (3.28)

K1 =
2

v − ω tan(β(t0)/2)

where t0 is the starting time instant and t is the passing time.

In singular primitive, we have either φv ≡ 0 or φω ≡ 0. Here since the grain cart has a

constant forward speed, we only consider the case of φω ≡ 0. It has been proved by Chitsaz

(2013) that if a φω-singular primitive contains a straight line segment, either the entire primitive

is a straight line segment, or

α(t) = ±2β(t) (3.29)

ω(t) = d = ±2 sin(β(t)) (3.30)

−π
6
≤ β(t) ≤ π

6
or

5π

6
≤ β(t) ≤ 7π

6
(3.31)

in which α denotes the angle between the robot orientation and the line, d denotes the distance

between robot’s center and the line. The path for the latter case is called a merging curve.

3.5.2.2 Path planning of grain cart

In our case, when the grain cart finishes unloading one combine, it should follow a path to

the second combine, and move parallel to it. This implies that the final path is supposed to

end with a singular primitive, denoted as Sg. Considering the fact that a merging curve has

the constraints (3.30) and (3.31), we propose a combination of the path containing 2 regular

primitives and 2 φω-singular primitives, as shown in Figure 3.7. The grain cart initially proceeds

with a regular primitive R1. S1 is a singular primitive connecting to R1. R2 and Sg are the

following regular primitive and goal singular primitive, respectively.

In order to minimize the travel time for the grain cart, we consider using straight lines

instead of merging curves for φω-singular primitives. Furthermore, since qi and qg has the same
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Figure 3.7: The path consists of 2 singular primitives (red lines) and 2 regular primitives (blue

lines)

θ, it is obvious that R1 and R2 should have the same length, and the same central angle γ as

well. Based on this fact, we can find that with a given γ, the slope of S1 can be computed.

Since qi and qg are known, the entire path can be derived. To minimize the travel time, we

change the central angle corresponding to the regular primitives, and take the minimum time

trajectory in all feasible trajectories as the final path. The complete algorithm for computing

the trajectory can be found in Algorithm 5.

3.6 Simulation

In this section, we present the simulation results. The first simulation is carried out with

a 400 units × 275 units field. The land is divided into 11 rows. Two combines, as shown in

Figure 3.8 are harvesting on the path presented in Subsection 3.2.1. The simulation shows

that during the harvesting operation, the distance between combines keep decreasing. Also, all

combines keep an open space at their left side so that the unloading activities can be proceeded

safely.

Next, we present the simulation results for the proposed motion planning approaches. Fig-

ure 3.9 illustrates the paths obtained using the numerical approach and primitive-based ap-

proach. Note that due to the fact that the tractor-trailer model has four state variables, it

is hard to visualize the variations of all the variables. For this reason, in the simulation we
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Figure 3.8: Paths of two combines

only show the path of (x, y), which represents the physical position of grain cart. In the sim-

ulation, the initial and goal configuration are set to be qi = (1, 1, 0, 0)T and qg = (4, 4, 0, 0)T ,

respectively. For numerical approach, Table 3.1 lists all the refinement parameters in the com-

putation of value function. Angular velocity ω is discretized into 50 uniform nodes. In the

final trajectory, bang-bang control is used by letting ω = −sgn(∂u∂θ + ∂u
∂β ). In both approaches,

the path computation terminates when the state of the grain cart reaches a range of the final

configuration.

Table 3.1: Refinement parameters

hx 0.2

hy 0.2

hθ 0.251 (radium)

hβ 0.251 (radium)

∆t 0.05

ε 0.005

Simulation results show that both paths finally reach the goal configuration which validates

the proposed approaches. Note that in the numerical approach, the path is affected by the

error due to the large refinement parameters. With smaller refinement parameters, the path

could be more accurate, but leads to higher time consumption on the computation of value

function.

In the next simulation, we compare the travel time of using two proposed approaches. We
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Figure 3.9: Path of (x, y) with given initial and final configurations

keep yi = yg − 4 and plot the travel time corresponding to the two approaches with respect to

the ratio which is
xg−xi
yg−yi (Figure 3.10).

Figure 3.10: Travel time comparison of using two approaches

The results show that with a given ratio, the travel time of both approaches are very

close. Since the numerical approach provides us the time-optimal solution, we can know that

the primitive-based approach also has a good performance. Note that in some cases, the

performance of primitive-based approach is better due to the error in the numerical approach.
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3.7 Conclusion

In this chapter, we considered the scheduling and motion planning problem for N combines

with one grain cart. We first gave the mathematical models for both combine and grain cart.

Based on the presented models, we analyzed the scheduling problem with different number of

combines and finally provided the solution for a general case. In the second part, we presented

two approaches to find the time-optimal solution to the path planning problem. Firstly, a

numerical solution was carried out by applying bang-bang control based on a generated value

function. In the primitive-based approach, regular and singular primitives were introduced to

construct the final path. Both primitives guaranteed the local optimality. Simulation results

for both approaches were provided to demonstrate the feasibility.
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CHAPTER 4. RESEARCH SUMMARY

In this chapter, we present a brief summary for all the problems we have addressed. Some

directions of future work are also included.

4.1 Visibility-based Target Tracking Game

In this study, the problem of visibility-based target tracking for a team of mobile observers

trying to track a team of mobile targets was addressed. Based on the results of previous

work, the notion of pursuit fields around a single corner was introduced. We used the pursuit

fields to generate navigation strategies for a single observer to track a single target in general

environments. In order to tackle the case when more than one observer or target was present in

the environment, we proposed a two level hierarchical approach. At the upper level, the team

of observers used a ranking and aggregation technique for allocating each target to an observer.

At the lower level, each observer computed its navigation strategy based on the results of the

single observer-single target problem, thereby, decomposing a large multi-agent problem into

several 2-agent problems. Finally, we presented a scalable algorithm that can accommodate

an arbitrary number of observers and targets. An empirical evidence of the efficacy of our

algorithm was presented based on simulation and implementation results.

Furthermore, a setup of omni-directional camera was designed for the pursuers to get visual

information of the surroundings. Based on the aforementioned setup, we applied a position

estimation technique for locating the evader. The technique contained an internal parameter

which needed to be calibrated based on experimental results. According to the performance

of the technique, we found that the error has remarkable effect when the measuring distance

was very large. For this reason, we further presented a modified tracking strategy which kept
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the evader in an effective observing range for the position estimation algorithm. At last, we

presented PID controllers for the pursuer to track the evader in a simplified case using the data

of the error in position estimation technique. Performances of the controllers were given by

simulations.

4.2 Social Network Target Tracking Game

In order to address the situation that pursuer does not have an on-board vision sensor, we

considered performing a novel tracking strategy based on the available information on social

network. The strategy relied on using the images posted by common agents. To achieve

this, we further proposed a network evolution algorithm and an image scanning algorithm. In

the proposed approach, SURF feature tracking was used to recognize evader and landmarks.

Dijkstra’s algorithm was applied for pursuer path planning. With the help of the proposed

strategy, pursuer does not require to have vision sensor on-board, and the evader does not

require to be in pursuer’s field of view initially.

4.3 Logistics Planning for Agricultural Vehicles

In this study, we addressed the scheduling and motion planning problem for an autonomous

grain cart serving multiple combines. By giving the mathematical models of both combine

harvester and grain cart, we proposed a scheduling scheme which allows grain cart to unload

all the combines without interruption in the harvesting activity. The cases with different

number of combines were discussed. The scheme was finally generalized to an arbitrary number

of combines. Furthermore, we presented path planning analysis for the grain cart based on

tractor-trailer model. A numerical approach and a primitive-based approach were considered

to obtain the time-optimal solution for path planning. In the former approach, a value function

corresponding to the goal position was computed beforehand. Based on the value function, a

time-optimal path can be obtained accordingly. In the latter approach, path was composed

of singular primitives and regular primitives which guarantee local time-optimality. Finally,

simulation results were provided to validate the feasibility of the proposed techniques. In the
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next section, we present our future work corresponding to these projects.

4.4 Future Work

Visibility-based target tracking can be extended in several directions. One direction is to

consider the situation that pursuers and evaders do not have a complete communication graph.

In this decentralized case, each pursuer does not have the full information of evaders so that

evader assignment will be an interesting problem. Another direction is to consider different

risk vectors for the proposed strategy. Comparisons of these risk vectors may improve the

technique. Furthermore, other methods can be used for ranking and aggregation instead of

Borda Count. This may help pursuers make a better decision on the evader assignment.

For the social network tracking problem, future work involves considering the effect of

mutual friends when sending friend requests. People apt to accept requests from those who

have more mutual friends with them. Based on this fact, finding the critical persons to send

friend requests may help improve the network evolution algorithm. Moreover, based on real

data of people’s activities on social network, a better model may help improve the proposed

algorithms.

In the logistics problem of agricultural vehicles, one of the future directions is to account

for the backing up problem of the tractor-trailer model. Besides, studying the scenario when

more than one grain cart is deployed for multiple combines will be another direction. In this

case, cooperations among grain carts can be considered to improve the harvesting efficiency.
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APPENDIX A. TARGET TRACKING ALGORITHMS

Algorithm 1 Ranking and aggregation algorithm

1: call BordaCountMethod(rij) and return score ∈ RNe and rank ∈ RNe

2: declare S ∈ RNp×Ne

3: for i = 1→ Np do

4: for j = 1→ Ne do

5: if evader j is visible to pursuer i then

6: Sij = scorej
7: else

8: Sij =∞
9: end if

10: end for

11: end for

12: Apply Hungarian algorithm to S and assign pursuers accordingly

13: if Np > Ne then

14: for i = 1→ number of extra pursuers do

15: for j = 1→ Ne do

16: if evader rankj is visible to pursuer i then

17: Assign pursuer i to evader rankj
18: end if

19: end for

20: end for

21: end if

22: function BordaCountMethod(rij)

23: declare score ∈ RNe and rank ∈ RNe

24: for i = 1→ Np do

25: Rank the ith row of rij from high to low

26: for j = 1→ Ne do

27: scorek = scorek + (Ne − j) where k is the original column index of rij
28: end for

29: end for

30: Rank score from high to low and save each element’s original index to rank

31: return score and rank
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Algorithm 2 Network evolution algorithm

1: declare common agent set A = φ

2: declare friend agent set F = φ

3: declare counter set C = φ

4: for i = 1→ Nreq − length(A) do

5: if length(F ) + length(A) ≤ Nf then

6: Send friend request to new common agent a

7: Add a to A

8: Add counter ca = 0 to C

9: end if

10: end for

11: for i = 1→ length(A) do

12: Check whether common agent Ai accepts the request

13: if Common agent Ai accepts then

14: Add Ai to F

15: Delete Ai from A

16: Delete cAi from C

17: else if Common agent Ai rejects then

18: cAi = cAi + 1

19: Resend friend request to Ai
20: else

21: cAi = cAi + 1

22: if Counter cAi > Twait then

23: Delete Ai from A

24: Delete cAi from C

25: end if

26: end if

27: end for

Algorithm 3 Image scanning algorithm

1: declare F to be the set of friend agent

2: for i = 1→ length(F ) do

3: for j = 1→ Nimg do

4: Check the jth recent image of common agent Fi
5: end for

6: end for
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Algorithm 4 Pursuer path planning algorithm

1: declare visibility graph G(V, E)

2: if Evader is located then

3: Add current position of pursuer to V
4: Add estimated position of evader to V
5: Update set E and construct cost matrix

6: Apply Dijkstra’s algorithm to G

7: Navigate pursuer

8: end if
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APPENDIX B. PATH PLANNING ALGORITHMS

Algorithm 5 Trajectory computation using primitive-based approach

1: declare γ to be the central angle of regular primitives

2: declare Tf =∞ to be the travel time of final path

3: declare Pf to be the final path

4: for γ = 0→ π do

5: Compute the path Pγ starting from qi
6: if Pγ reaches qg then

7: if Travel time of Pγ < Tf then

8: Tf = Travel time of Pγ
9: Pf = Pγ

10: end if

11: end if

12: end for
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