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ABSTRACT 

The National Energy Modeling System (NEMS) is a computational model that 

forecasts the production, consumption, and prices of energy in the United States. Although 

NEMS is a complex and detailed model, it does not currently represent the multitude of 

uncertainties associated with the US energy system. These uncertainties need to be 

communicated to policy makers in order for them to develop better-informed decisions 

regarding energy policy. In this study, uncertainty is added to the vehicle miles traveled 

(VMT) equation of NEMS to demonstrate the importance and benefit of uncertainty in the 

model. The VMT model is derived and its uncertain parameters are estimated using 

maximum likelihood estimation. A Monte Carlo simulation is performed to model the 

uncertain VMT equation and demonstrate the range of possible VMT forecasts when these 

uncertainties are included. This simulation shows that the deterministic forecast does not 

adequately reflect all of the possible futures of VMT, which could lead policy makers to be 

unintentionally misinformed about the impacts of proposed policies. Finally, it is shown how 

the uncertain VMT equation could be used to help policy makers decide on the best policy to 

reduce transportation greenhouse gas emissions. A target is set for VMT for each of the 

projected years, and four decision-making techniques are used to calculate the fuel tax 

required to reduce VMT to this specified goal. These methods could guide policy makers to 

better-informed energy policy decisions, but they are only possible if some amount of 

uncertainty is incorporated into the model.
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Energy forecasts are commonly used in the United States to predict energy use up to 

25 years in the future. They provide the foundation for the energy industry, and play a vital 

role in the formation of energy and environmental policy. Energy forecasts inspire research 

in energy production and conversion, warn of environmental impacts such as climate change 

and air pollution, and suggest the need for energy and environmental policy.  

The Energy Information Administration (EIA) of the US Department of Energy has 

been publishing energy forecasts in their Annual Energy Outlook (AEO) for nearly thirty 

years (EIA, 2010a).  In 1982, the EIA started using the Intermediate Future Forecasting 

System (IFFS) to make energy predictions. The National Energy Modeling System (NEMS) 

replaced the IFFS model in 1994 (EIA, 2010b). NEMS is a computer based energy-economy 

modeling system that forecasts the production, consumption, conversion, and prices of 

energy in the United States (EIA, 2009). It is designed to model the complex interactions of 

supply and demand in US energy markets (Gabriel, Kydes, & Whitman, 2001). NEMS is 

used by the EIA to gain insight on the impact of energy policies and different economic 

assumptions.  

NEMS is organized into a modular structure due to the diversity of energy markets. 

The model consists of four end-use demand modules, four supply modules, two conversion 

modules, one economic module, one international module, and a module that finds the 

market equilibrium across all the NEMS modules (EIA, 2009). The modularity of NEMS 
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allows for each sector of the US energy system to use the procedures and techniques best 

suited for that particular module. Each module is also divided geographically. NEMS is a 

regional model because supply, demand, and other characteristics of the energy system vary 

widely across the United States. Projections in the AEO 2010 span from the present to the 

year 2035. The EIA believes technology, demographics, and economic conditions are 

understood well enough to sufficiently represent the US energy market in this time period.  

1.2 Motivation 

The EIA’s projections have a significant influence on energy policy, making it 

important to analyze the accuracy of NEMS. Evaluating the performance of previous energy 

projections can provide insight into the possible errors connected to current projections. Error 

analyses also direct researchers toward the cause of such errors, which could lead to 

improvements in the model. Studies agree that NEMS has repeatedly underestimated total 

energy consumption (Fischer, Herrnstadt, & Morgenstern, 2009; O'Neill & Desai, 2005; 

Winebrake & Sakva, 2006). Fischer, Herrnstadt, and Morgenstern (2009) and Winebrake and 

Sakva (2006) argue that it is misleading to judge the accuracy of energy projections by the 

error in total energy demand, and the errors need to be broken down to the different sectors 

modeled by NEMS. This approach shows that low errors for the total energy consumption 

are hiding much higher errors in the individual sectors, which tend to cancel each other out 

when combined. In addition, O’Neill & Desai (2005) find no evidence that suggests the 

accuracy of these forecasts has improved since the EIA first began making energy 

projections.  
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The limitations of energy forecasts need to be communicated to the policy makers 

who rely heavily on their results to make informed policy decisions. The EIA attempts to 

address this by forecasting five different scenarios: a reference case, high economic growth 

case, low economic growth case, high oil price case, and low oil price case (EIA, 2009). 

However, these five cases do not account for the myriad of uncertainties that lie within the 

US energy system. In their research on long-term policy analysis Lempert, Popper, and 

Bankes (2003) suggest hundreds to millions of scenarios are needed to span the range of 

plausible outcomes in order to find the most robust policy strategy. This type of 

comprehensive scenario analysis is not a practical method for a model as complex as NEMS.  

Forecasts such as NEMS depend significantly on a variety of economic assumptions, 

future oil prices, consumer preferences and behaviors, new technologies yet to be developed, 

and numerous other inputs which are impossible to predict and inherently uncertain. If 

NEMS inputs are uncertain, then NEMS forecasts must be uncertain as well. Baghelai, 

Moumen, Cohen, Kydes, and Harris (1995a; 1995b) discuss techniques for characterizing the 

uncertainty in NEMS, though very little has been done to put these methods to practice. 

Without explicitly including uncertainties in forecasts, policy makers can be unintentionally 

misinformed about the impacts of proposed policies. It is important to understand that no 

forecasting model, no matter how complex, can exactly predict the future of the US energy 

system. However, including uncertainty in NEMS forecasts would at least allow policy 

makers to develop better-informed decisions regarding energy policy.  
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1.3 Objective 

It is no secret that the world is going through a climate change, largely due to 

increased emissions of greenhouse gases (GHG). Transportation sources contribute nearly a 

third of the total US GHG emissions, and are responsible for half of the net increase in total 

US emissions since 1990. Transportation is also the largest source of carbon dioxide (CO2) 

emissions, which is the most notorious greenhouse gas (EPA, 2010). Reducing CO2 

emissions from the transportation industry is a vital part of United States’ efforts to mitigate 

the effect of greenhouse gases on global climate change.  

Since transportation is the fastest growing source of GHG emissions, it also presents 

the potential to be a leading source of GHG reductions. Several studies have been done to 

determine the best policy strategies to reduce GHG emissions in the transportation sector 

(DeCicco & Mark, 1998; Greene & Plotkin, 2001; McCollum & Yang, 2009; Morrow, 

Gallagher, Collantes, & Lee, 2010). Based on an analysis using three scenarios of future 

transportation energy use, Greene and Plotkin (2001) conclude GHG emissions would 

continue to rise without dramatic increases in fuel prices. Although increasing the Corporate 

Average Fuel Economy standards and using low carbon fuels slow this growth, these 

strategies require some time to affect emissions due to the slow turnover of the vehicle fleet 

and the slow rate of new technology development. According to McCollum and Yang 

(2009), a combination of these policy scenarios are needed to make significant cuts to 

transportation emissions. However, slowing the growth in vehicle miles traveled (VMT) is 

the most effective way to decrease GHG emissions, and increasing the cost of driving with a 

fuel tax is the only strategy that could significantly reduce VMT (Morrow et al., 2010).  



 5 

The EIA includes projections of VMT in the Transportation Sector Module of NEMS. 

While the main purpose of the Transportation Module is to project transportation energy 

demand by fuel type, it also estimates vehicle stock, energy efficiency of vehicles, 

deployment of new transportation technologies, and vehicle miles traveled (EIA, 2010c). The 

module is divided into four modules representing different modes of travel: light-duty 

vehicle, air travel, freight transport, and miscellaneous energy demand. Within the Light-

Duty Vehicle Module is the VMT Submodule, which generates a projection of the demand 

for personal travel. 

The purpose of this research is to incorporate uncertainty in the VMT model of 

NEMS in order to help policy makers formulate better-informed decisions regarding 

transportation energy policy. This starts by deriving the model and estimating its parameters 

and their corresponding standard errors. Three estimation techniques are applied in order to 

find the most appropriate estimation method. A Monte Carlo simulation is performed to 

demonstrate the variety of VMT projections possible when uncertainty is included in the 

model. Four methods are then used to determine a fuel tax that would increase the cost of 

driving, thus decreasing vehicle miles traveled and CO2 emissions. 
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 CHAPTER 2: ESTIMATING THE VMT MODEL 

2.1 Introduction 

The first step in developing an uncertain VMT model is deriving the model and 

estimating its parameters. The goal is to incorporate uncertainty in the existing VMT model 

without changing the structure of the model itself. Therefore, the uncertain model will look 

the same as the VMT model currently used by NEMS, with the addition of an error term.  

Parameter estimation is based on historical data for each of the inputs. The EIA does 

not explicitly state which historical data was used when estimating the parameters for their 

model. The historical data used in this parameter estimation was compiled from various 

tables published by the Federal Highway Administration (FHWA, 2010) and the Bureau of 

Economic Analysis (BEA, 2009). The most accurate, reliable, and comprehensive historical 

data available is used here. However, this data is likely different from the data used by the 

EIA, which results in different parameter estimates. The historical data used for the inputs is 

given in Table 1.  

  Greene (2008) explains several methods that can be used to estimate the parameters 

of a time series model. All of the estimation methods covered in this chapter are programmed 

using MATLAB. LeSage (1999) describes how MATLAB can be used to implement various 

econometric estimation techniques. In order to find the most appropriate estimation method, 

three different techniques are applied to the VMT model: Cochrane-Orcutt, maximum 

likelihood, and Prais-Winsten. This chapter describes each of these procedures and compares 

their results to discover the preferred method.  
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year 

vehicle miles 

traveled per  

licensed driver 

(thousand miles) 

per capita   

disposable     

personal income 

(2000 dollars) 

fuel cost of       

driving 1 mile      

(2000 cents/mile) 

1966 8.603 11,827.39 10.27 

1967 8.770 12,149.87 10.27 

1968 9.042 12,532.69 10.29 

1969 9.203 12,756.51 10.28 

1970 9.350 13,072.67 10.09 

1971 9.681 13,397.91 9.58 

1972 9.985 13,779.33 9.24 

1973 10.103 14,552.71 9.53 

1974 9.531 14,483.48 11.66 

1975 9.556 14,518.74 11.33 

1976 9.774 14,917.30 11.16 

1977 9.891 15,296.19 10.82 

1978 10.175 15,842.36 10.45 

1979 9.870 16,116.53 12.76 

1980 9.723 16,325.56 15.07 

1981 9.793 16,508.97 14.80 

1982 9.836 16,621.71 12.75 

1983 9.919 17,074.43 11.67 

1984 10.255 18,142.93 10.77 

1985 10.498 18,587.13 10.39 

1986 10.681 19,071.14 7.88 

1987 11.015 19,362.62 7.67 

1988 11.559 20,122.50 7.17 

1989 11.767 20,573.53 7.45 

1990 11.929 20,877.18 7.92 

1991 11.934 20,788.65 7.25 

1992 12.061 21,354.14 7.03 

1993 12.304 21,428.54 6.85 

1994 12.434 21,839.89 6.68 

1995 12.672 22,255.25 6.67 

1996 12.790 22,783.76 7.00 

1997 12.935 23,332.02 6.84 

1998 13.126 24,397.08 5.85 

1999 13.254 24,883.44 6.35 

2000 13.292 25,944.00 7.77 

2001 13.495 26,212.72 7.38 

2002 13.557 26,751.54 6.89 

2003 13.589 27,135.78 7.91 

2004 13.762 27,744.67 8.93 

2005 13.762 27,762.47 10.26 

2006 13.732 28,465.56 11.06 

2007 13.601 28,748.06 11.60 

2008 13.148 28,968.01 13.17 

Table 1: Historical data for the inputs of the VMT equation.  
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2.2 The VMT Model 

The factors that affect vehicle miles traveled per licensed driver in year y  yM  are 

the VMT from the previous year  1yM  , per capita disposable personal income  yI , and 

the fuel cost of driving one mile  yC . The natural logarithm of each of these inputs is taken 

before inserting them into the model. To condense the notation, let the lowercase inputs 

represent the natural logarithm of the actual inputs. 

 

 

 

 

log

log

log

y y

y y

y y

m M

i I

c C







 (2.1) 

These inputs, along with their corresponding unknown parameters   , create the time series 

model given below.  

 
0 1y M y I y C y ym m i c          (2.2)  

The EIA assumes this is a first order autoregressive, or AR(1), model. More 

complicated processes are sometimes difficult to analyze and unnecessarily complex for this 

research. The model should stay simple enough for policy makers to understand. The AR(1) 

model is a convenient yet reasonable model to start with when the actual time series model is 

unknown (Greene, 2008). An AR(1) model is defined by its serially correlated errors,  

 
1

1 1

y y yN 



 

  
 (2.3) 

with the assumption that  2Normal 0,yN  .  
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The autocorrelation coefficient,  , describes the dependence of VMT on its own 

past. The estimation techniques used in this chapter cannot be applied when this serial 

correlation is present. To solve this problem, the model is transformed by lagging (2.2) by 

one year, multiplying by  ,  

 
1 0 2 1 1 1y M y I y C y ym m i c               (2.4) 

and taking the difference between (2.2) and (2.4). 

 

 

 

 

 

1 0

1 2

1

1

1y y

M y y

I y y

C y y

y

m m

m m

i i

c c

N

  

 

 

 



 





  

 

 

 



 (2.5) 

The model is shortened by combining the inputs, lagged inputs, and beta coefficients into 

their respective matrices.  

 

1

1 2 1 1

0

1

1

y y y y

y y y y

M

I

C

x m i c

x m i c












   

   

   

 
 
 
 
 
 

 (2.6) 

Expressing (2.5) in terms of (2.6) gives the final VMT equation.    

  1 1y y y y ym m x x N        (2.7) 
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2.3 Cochrane-Orcutt 

The Cochrane-Orcutt procedure (Cochrane & Orcutt, 1949) has been used to calculate 

VMT since NEMS was first ran in 1994. The iterative process begins by choosing a starting 

value for   such as 0  . This value for   is used to calculate the starred variables below.  

 

*

1

*

1

y y y

y y y

m m m

x x x









 

 
 (2.8) 

Equation (2.7) is rewritten in terms of (2.8), and the normal error term is dropped.  

 
* *

y ym x   (2.9) 

An ordinary least squares regression is ran on (2.9) to get an estimate for  . Then (2.2) and 

the estimated   are used to calculate the errors and lagged errors.  

 
1 1 1

y y y

y y y

m x

m x

 

   

 

 
 (2.10) 

A second ordinary least squares regression is done to estimate the correlation coefficient.  

 
1y y    (2.11) 

This completes the first iteration, and the new estimate for   is used in (2.8) to start the 

second iteration. The procedure continues until two successive estimates for   differ by less 

than some predetermined value. The final   is then used calculate the final estimate for  . 
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2.4 Maximum Likelihood 

Next, maximum likelihood estimation is used to estimate the parameters of the model. 

As with all maximum likelihood estimation, this begins with calculating the likelihood 

function.  

          1 2 1 2

1

, , ,
Y

Y Y y

y

L f m m m f m f m f m f m


    (2.12) 

Using the fact that  2Normal 0,yN   the distribution of 
ym  is calculated to be 

  
 

2

22

2

1

2

yF

yf m e 



 
  
 

 (2.13)  

where 

      1 1,y y y y yF F m m x x           (2.14) 

When attempting to maximize the likelihood function it is often computationally easier to 

minimize the negative log-likelihood function. Substituting (2.13) into (2.12) and taking the 

negative logarithm yields 

 

   

     

1

2

2
1

log log

1
log 2 log

2 2

Y

y

y

Y

y

y

L f m

Y
Y F 







   
 

                




 (2.15) 

The first derivative of (2.15) with respect to   is 
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   

  (2.16) 

Since  0,  , the 1   factor in front can be dropped when solving  log 0L       . 
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The partial derivatives of (2.15) with respect to the rest of the parameters are given below. 
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 (2.18) 

Just as before, the 
21  factor cannot force the partial derivatives in (2.18) to equal zero. 

Dropping this term from (2.18) gives the conditions which must be satisfied in order for the 

negative log-likelihood function to be minimized.  
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 (2.19) 

Finding the parameters that satisfy (2.19) simplifies to minimizing the following function. 
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  (2.20) 

The MATLAB function “lsqnonlin”, which solves nonlinear least squares data-fitting 

problems, is used to minimize (2.20) with respect to   and  . These estimates are then 

substituted into (2.17) to get an estimate for  . 

An advantage to using maximum likelihood estimation is that additional calculations 

can be done to estimate the standard errors of the parameters. These standard errors are 

needed to model the uncertainty of VMT, which is done in Chapter 3. The Cramér-Rao 

Lower Bound is used to approximate the standard errors. The Cramér-Rao Lower Bound 

states that if   is a vector of parameters, then the inverse of the Fisher information matrix is 

a lower bound on the variance of  .  

  
 

 

1
2

1 ln
Var

 T

L
I E


 

 



   
            

 (2.21) 

The variances of the estimated parameters are provided in the diagonal of the above matrix. 

2.5 Prais-Winsten 

The maximum likelihood approach to estimating the parameters of a time series 

model is sometimes criticized because it neglects to include the first year of known historical 

data. Prais and Winsten (1954) offer an alternative procedure that addresses this problem. 

Recall the VMT model derived in Section 2.2.  

  1 1y y y y ym m x x N      
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The Prais-Winsten procedure uses a different model for the first year of data, thus one more 

year of the historical data can be utilized. The model for the first year of data is explained in 

Appendix A. 
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 (2.22) 

Estimating the parameters of this model is more complicated than the maximum likelihood 

procedure due to the transformed model for the first year, but it essentially requires the same 

steps. The process starts by calculating the distribution of 
ym . 

 

 
  

 
 

22
1 1

2

2

2

1
2

2
1 2

2

2

1

2

1
          2,3,...,

2

y

m x

F

y

f m e

f m e y Y

 











 







 

 (2.23) 

These distributions are used to calculate the negative log-likelihood function. 
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

 (2.24) 

Again, the negative log-likelihood function is minimized by setting each of its partial 

derivatives equal to zero and simplifying. 
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 (2.26) 

Solving the above system of equations does not simplify to the minimization of a less 

complicated equation, as is the case with the maximum likelihood method. The MATLAB 

function “fsolve” is used to simultaneously solve the system of equations in (2.26) for   and 

 . These estimates are then inserted into (2.25) to estimate  . Again, (2.21) is used to 

approximate the standard errors of each of the parameters.  
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2.6 Results 

Parameter Estimates (standard errors) 

  ρ β0 βM  βI βC σ 

Cochrane- 0.3158 -0.6991 0.5582 0.1971 -0.0768 - 

Orcutt - - - - - - 

Maximum 0.3158 -0.6991 0.5582 0.1971 -0.0768 0.0121 

Likelihood (0.1486) (0.0028) (0.0011) (0.0003) (0.0012) (0.0013) 

Prais- 0.7032 -1.6264 0.2932 0.3590 -0.0930 0.0123 

Winsten (0.1034) (0.0061) (0.0026) (0.0006) (0.0028) (0.0013) 

Table 2: Parameter estimates and standard errors from three estimation techniques. 

The results from the previous sections are compiled in Table 2. Unlike Cochrane-Orcutt, 

the maximum likelihood and Prais-Winsten procedures both produce an estimate for  . 

Furthermore, the Cramér-Rao Lower Bound can be used to estimate the standard errors of 

maximum likelihood and Prais-Winsten parameter estimates. The estimate for   plays an 

important role in Chapter 4, and the standard errors are necessary to model the uncertainty in 

the parameters in Chapter 3. Bootstrapping methods could be used to estimate the standard 

errors of the Cochrane-Orcutt parameters, but these estimates would be less accurate and 

require more work. For these reasons, Cochrane-Orcutt is not a suitable parameter estimation 

method for this research.  

The maximum likelihood and Prais-Winsten methods both provide accurate estimates 

for the parameters and standard errors. Prais-Winsten requires the same procedure as 

maximum likelihood, with the addition of a different model for the first year of known 

historical data. The parameters from both estimation methods were used in the VMT model 

to show how the model compares to the historic VMT. From these VMT estimates, the sum 
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of the squared residuals for maximum likelihood and Prais-Winsten parameters were 

calculated to be 1.70 and 2.36 respectively. This suggests the parameters from maximum 

likelihood estimation produce VMT estimates closer to the historic VMT than those of Prais-

Winsten estimation. It seems as though Prais-Winsten makes an assumption to fix a 

negligible problem, and only makes the procedure more complex and less accurate. 

Therefore, maximum likelihood is the best estimation method for the VMT equation.  
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CHAPTER 3: MODELING THE UNCERTAINTY IN VMT  

3.1 Introduction 

The VMT equation is currently treated as a deterministic equation in NEMS. Each of 

its parameters and inputs are considered known values for every year of the projection. 

Therefore, each time the equation is run it will produce exactly the same output. In reality, 

the only inputs that are known for certain are the VMT, income, and cost of driving from the 

years before the projection is made. The rest of the inputs and parameters are uncertain and 

have a probability distribution associated with them. The maximum likelihood parameter 

estimates and their standard errors from Chapter 2 provide the necessary statistics to add 

uncertainty to the parameters and the error term  yN  of the VMT model.  

In this chapter a Monte Carlo simulation is performed to model the uncertain VMT 

equation and demonstrate the range of VMT forecasts possible when these uncertainties are 

no longer ignored. In a Monte Carlo simulation the uncertain inputs are randomly drawn 

from their respective probability distributions, and then inserted into the model to calculate 

an output. This is repeated hundreds or even thousands of times to produce a range of 

possible outcomes (Gentle, 2002).  

Forecasts of income and cost of driving are needed to forecast VMT. Projections from 

the AEO 2010 are used for income, and the values for the cost of driving are calculated from 

AEO 2010 projections of fuel price and fuel economy (EIA, 2010a). This data is given in 

Table 3. 
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year 

vehicle miles 

traveled per  

licensed driver 

(thousand miles) 

per capita    

disposable      

personal income 

(2000 dollars) 

fuel cost of       

driving 1 mile      

(2000 cents/mile) 

2008 12.856 36,477.45 8.76 

2009 13.011 36,827.67 6.23 

2010 13.024 36,323.47 6.65 

2011 13.040 36,572.77 6.70 

2012 13.050 37,123.80 7.00 

2013 13.033 37,430.14 7.53 

2014 13.034 38,271.42 7.72 

2015 13.060 39,197.26 7.73 

2016 13.104 40,085.74 7.78 

2017 13.236 40,980.68 7.78 

2018 13.299 41,945.42 7.78 

2019 13.456 43,038.44 7.73 

2020 13.619 44,267.97 7.70 

2021 13.787 45,393.19 7.62 

2022 13.953 46,403.06 7.59 

2023 14.118 47,360.42 7.53 

2024 14.284 48,315.73 7.45 

2025 14.446 49,269.13 7.42 

2026 14.605 50,227.85 7.39 

2027 14.762 51,203.41 7.36 

2028 14.834 52,172.23 7.38 

2029 14.915 53,120.66 7.38 

2030 15.089 54,065.87 7.32 

2031 15.170 54,910.88 7.33 

2032 15.256 55,767.50 7.35 

2033 15.428 56,635.37 7.34 

2034 15.506 57,543.41 7.37 

2035 15.587 58,473.52 7.41 

Table 3: Projections for the VMT inputs used in the Mont Carlo simulation.  

3.2 Monte Carlo Simulation of VMT Trajectories  

Before beginning the Monte Carlo simulation each uncertain component of the model 

is assigned an appropriate probability distribution. By definition, the error is a normally 

distributed random variable with a mean of zero. Its standard deviation is  , which is 

estimated in Chapter 2. The maximum likelihood estimation in Chapter 2 also provides the 
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mean and standard deviations of the remaining parameters. It is tempting to designate each of 

the parameters with normal distributions, but they all have restrictions that need to be 

addressed. In Section 2.2   is defined to be between -1 and 1 for an AR(1) model. A normal 

distribution is used for   while ensuring the random numbers do not exceed these limits, 

which is extremely rare in this case. The rest of the parameters have restrictions on their sign. 

An increase in income would cause people to drive more, so I  must be positive. An 

increase in the cost of driving would cause people to drive less, so C  must be negative. The 

same logic shows that M  
must be positive and 0  must be negative. A log normal 

distribution is used to generate random numbers for each of these parameters. The log normal 

distribution produces positive random variables with the desired mean and standard 

deviation. The opposite of the log normal random variables is used for C  and 0 .  

In the Monte Carlo simulation, random numbers are generated for the parameters and 

error from their respective distributions. In each projection only one random variable is 

drawn for every parameter. However, 26 normal errors are generated because a new 

independent error is needed for each year of the projection. These numbers are used in (2.5) 

to calculate one VMT trajectory. New random variables are then drawn and the process is 

repeated.  

3.3 Results 

Figure 1 shows 100 VMT trajectories that were plotted in MATLAB from a Monte 

Carlo simulation. The black lines indicate a 90% trajectory interval. That is, 90% of the 
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projections for each year fall within the black lines. Ninety-nine percent confidence intervals 

were also added to the upper and lower limits of the trajectory interval. 

 
Figure 1: VMT trajectories with uncertainty in the parameters and error term. 

Figure 1 illustrates the variety of possible VMT forecasts when uncertainty is added 

to the model. It is clear that the EIA’s deterministic forecast does not adequately reflect all of 

the possible futures of VMT. This range of projections needs to be communicated to policy 

makers in order to help them make informed policy decisions.   

The mean and median of the 100 trajectories are also plotted with 99% confidence 

intervals in Figure 2 and Figure 3. The mean and median plots are nearly equal, and have 

very narrow 99% confidence intervals. These are both signs that the mean and median 

estimates are very reliable. The thin confidence interval is especially impressive because it 

was constructed from only 100 trajectories, which is a relatively small sample for a Monte 

Carlo simulation. 
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Figure 2: Mean of the Monte Carlo VMT trajectories.  

 
Figure 3: Median of the Monte Carlo VMT trajectories. 

 The Monte Carlo methods are applied two more times in order to find the main 

source of uncertainty in the VMT model. First, the error term is dropped from the model 

leaving only the uncertainty in the parameters. These trajectories are shown in Figure 4. 

Figure 5 provides the VMT trajectories when the parameters are held constant at their mean 

values, but the error term remains in the model.  
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Figure 4: VMT trajectories with uncertainty only in the parameters. 

 
Figure 5: VMT trajectories with uncertainty only in the error term. 

Both models span approximately the same range of outcomes, as their 90% trajectory 

intervals are very similar. However, Figure 5 clearly shows more variability within the 

trajectories. This is because a new normal random variable is drawn for the error term each 

year of the trajectory, while only one set of parameters is used for every year of a trajectory.  
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After comparing Figure 1 and Figure 5 it seems as though the error term alone 

accounts for nearly all the uncertainty in the model. Simply adding a normal error term to the 

model, while keeping the rest of the parameters and inputs deterministic, would include 

enough uncertainty to guide policy makers in their decision-making. 
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CHAPTER 4: DECISION-MAKING 

4.1 Introduction 

 This chapter shows how the uncertain VMT equation can be used to help policy 

makers decide on the best policy to reduce transportation GHG emissions. Increasing the cost 

of driving with a fuel tax is the only way to significantly reduce VMT, which must be done 

to decrease GHG emissions. Including a fuel tax in the model allows policy makers to have 

some control over the VMT projections. A target is set for VMT for each of the projected 

years, and a fuel tax is calculated to reduce VMT to this specified target. 

NEMS currently projects VMT per licensed driver to grow by 20% between 2010 and 

2035. The driving population is expected to rise by 27% over the same time span. This 

results in a 52% increase in total VMT from 2010 to 2035, and a 1.7% increase in total VMT 

each year (EIA, 2010a). The target is set to allow for a 1.2% increase in total VMT each year. 

This small change could lead to half a billion less miles driven by the US population in the 

year 2035 alone. The following sections explain four decision-making techniques for 

calculating the fuel tax required to keep VMT below this goal. 

Once again, forecasts from the AEO 2010 are used for the inputs of this model (EIA, 

2010a). The projections for VMT and income are the same as those used in Chapter 3, but 

more details are needed for the cost of driving in this chapter. The projections used are given 

in Table 4.  
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year 

vehicle miles 

traveled per  

licensed driver 

(thousand miles) 

per capita    

disposable      

personal income 

(2000 dollars) 

fuel price          

(2000 cents/gal) 

fuel economy  

(miles/gal) 

fuel cost of       

driving 1 mile      

(2000 cents/mile) 

2008 12.856 36,477.45 182.29 20.80 8.76 

2009 13.011 36,827.67 130.39 20.92 6.23 

2010 13.024 36,323.47 140.07 21.06 6.65 

2011 13.040 36,572.77 142.28 21.23 6.70 

2012 13.050 37,123.80 150.13 21.46 7.00 

2013 13.033 37,430.14 163.62 21.72 7.53 

2014 13.034 38,271.42 169.91 22.02 7.72 

2015 13.060 39,197.26 172.83 22.35 7.73 

2016 13.104 40,085.74 176.69 22.71 7.78 

2017 13.236 40,980.68 179.82 23.13 7.78 

2018 13.299 41,945.42 183.20 23.55 7.78 

2019 13.456 43,038.44 185.35 23.99 7.73 

2020 13.619 44,267.97 187.97 24.43 7.70 

2021 13.787 45,393.19 189.55 24.86 7.62 

2022 13.953 46,403.06 191.93 25.28 7.59 

2023 14.118 47,360.42 193.63 25.70 7.53 

2024 14.284 48,315.73 194.44 26.11 7.45 

2025 14.446 49,269.13 196.67 26.51 7.42 

2026 14.605 50,227.85 198.83 26.89 7.39 

2027 14.762 51,203.41 200.76 27.26 7.36 

2028 14.834 52,172.23 203.72 27.62 7.38 

2029 14.915 53,120.66 206.46 27.97 7.38 

2030 15.089 54,065.87 207.18 28.30 7.32 

2031 15.170 54,910.88 209.60 28.60 7.33 

2032 15.256 55,767.50 212.27 28.89 7.35 

2033 15.428 56,635.37 214.19 29.17 7.34 

2034 15.506 57,543.41 216.86 29.44 7.37 

2035 15.587 58,473.52 220.24 29.70 7.41 

Table 4: Projections for the VMT inputs used in the decision-making analysis.  

4.2 The VMT Model 

The same VMT model derived in Section 2.2 is used here; however, it is transformed 

into a version more suitable for this decision-making work. A fuel tax is added to this 

transformed model as part of the cost of driving. So, 
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where 
yP  is the price of one gallon of fuel, 

yT  is the tax per gallon of fuel, and 
yE  is the 

average fuel economy.  

Both the deterministic and probabilistic VMT models are utilized. Let 
yM  be the 

deterministic model and let yM  be the probabilistic model. The two models are derived in 

Appendix B and given below.  
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 (4.3) 

The parameters are held constant at their mean values in these models, so (4.3) includes three 

uncertain variables: 1yM  , 2yM  , and 
yN . These uncertainties need to be combined into one 

error term for each of the decision-making techniques, so the following probabilistic VMT 

model is used instead of (4.3). 
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 (4.4) 

The new error term, 
*

yN , is a weighted summation of all the previous normal errors. The 

derivation of (4.4) and 
*

yN  is given in Appendix C. 
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4.3 Deterministic 

The fuel tax is first calculated from the deterministic VMT model. For deterministic 

decision-making the tax must reduce the deterministic VMT model to a specific goal  yG . 

That is, find 
yT  such that  y y yM T G . 
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 (4.5) 

Computing the tax level simply involves solving (4.5) for 
yT . To avoid getting negative tax 

values, the tax is set to zero if VMT meets the goal without any tax at all. If  0y yM G , 

then 0yT  . Otherwise,  
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 (4.6) 

Then, (4.6) is substituted into (4.4) to get the uncertain VMT model for deterministic 

decision-making.  
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 (4.7) 
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4.4 Expected Value 

Expected value decision-making consists of calculating the fuel tax necessary to force 

the expected value of the uncertain VMT model to meet the goal. So, find 
yT  such that

 y y yE M T G  
 

.  
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 (4.8) 

If  0y yE M G    , then 0yT  . Otherwise,  
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 (4.9) 

Again, substituting this into (4.4) yields the probabilistic VMT model. 
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 (4.10) 

4.5 Markovian 

 For Markovian decision-making the tax is found from the Markov chain yM . A 

Markov chain is a discrete-time random process with the Markov property; the future state of 

the process depends only on the present state, and not on the past. Let yM  be the Markov 
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process defined below where yM  is probabilistic, but considered a known variable in the 

equation for yM . Then find 
yT  such that  y y yM T G .  
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 (4.11) 

If  0y yM G , then 0yT  . Otherwise,  
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This time the tax is substituted into (4.3) to arrive at the uncertain VMT model. 
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4.6 Probabilistic 

 In probabilistic decision-making the policy maker is allowed to choose  , the 

certainty at which the target is met.  Let 0.90  . Then a tax is found that gives a 90% 

chance of meeting the goal. That is, find yT  such that   y y yP M T G   . 



 31 

 

    

  

 
 

  

 

*
0

*

*

1 1

2 1 1

*

*

1
1 erf

2 2

I C
M

y

M

y y

y

y

Ny y y y

y y y y

y y y y

y y y

T

N

y yN

y y

y

M I P T
P M T G P e e G

M I E C

P N T

f n dn

F T

T

 
 

 

   















 

  



     
       

          

 





  
   

    



  (4.14) 

where 
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 (4.15) 

Then, (4.14) is solved for the tax level. If   0y yP M G   , then 0yT  . Otherwise, 
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 (4.16) 

Substituting this tax into (4.4) gives the uncertain VMT model for probabilistic decision-

making. 



 32 

 

 

   

*
0

*

1 1

2 1 1

* -1exp 2 erf 2 1

I C
M

y

M

y

Ny y y y

y

y y y y

Ny

y

M I P T
M e e

M I E C

G
e

 
 

 

   

 



 

  

    
     

    
    

 
 
   

  

 (4.17) 

4.7 Results 

 Several plots are made to compare the results from each of the decision-making 

techniques. In all of the figures in this section it appears as though there is no line for 

deterministic decision-making, but this is not the case. In each figure the plots for 

deterministic and expected value decision-making are so nearly identical that the expected 

value plot covers up the deterministic plot. The deterministic and expected value equations 

for VMT and the tax level are identical except for one term, the mean of the log normal 

random variable 
*
yN

e . Since 
*

1yN
E e  
 

, this term has almost no effect on the calculations.  

Figure 6 shows an uncertain VMT projection from each of the methods. The 

projection from probabilistic decision-making is below the other three projections, and 

consistently below the target. In this particular figure the Markovian projection is similar to 

the deterministic and expected value projections, and the three of them are mostly above the 

target line. However, recall that these are uncertain VMT projections. New projections for 

VMT will be plotted each time the MATLAB program is run. Because of this, the probability 

density function (PDF) of VMT is plotted in Figure 7 to show the relative likelihood of VMT 

violating the target in a given year. 
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Figure 6: Projections of uncertain VMT with a fuel tax. 

 
Figure 7: PDFs of VMT in 2020. 
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projections from Markovian decision-making tend to be closer to the target. All of the PDFs 

appear symmetric, indicating the mean and median of each method are very similar. Figure 8 

gives a closer look at how the mean and median of each decision-making method compares 

to the target. The mean and median from deterministic, expected value, and Markovian 

decision-making fall right on the target line. In fact, the deterministic median, expected value 

mean, and Markovian median are not plotted in Figure 8 because, by definition, they are 

exactly equal to the target.   

 
Figure 8: Mean and median VMT. 

 The purpose of this chapter is to show how the uncertain VMT equation can be used 
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Figure 9: Projections of fuel consumption per licensed driver.  

 
Figure 10: Projections of fuel consumption by all US drivers.  
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Figure 10 provides evidence that a fuel tax would reduce GHG emissions. However, 

this environmental benefit would come at a significant cost to drivers. Figure 11 gives the 

fuel tax necessary for VMT to meet the specified target mileage. As expected, probabilistic 

decision-making provides the highest projections of fuel tax. The total amount each driver 

can expect to spend on the fuel tax ever year is plotted in Figure 12. 

 
Figure 11: Projections of the fuel tax required to reduce VMT to the target. 

 
Figure 12: Projections of the total fuel tax paid each year per licensed driver.  
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 All four of the decision-making techniques discussed in this chapter achieve the 

primary goal: a tax is calculated that effectively reduces VMT to a specified target, which 

decreases the amount of transportation GHG emissions. Probabilistic decision-making is the 

most drastic of the four methods. It projects the highest fuel tax, lowest VMT, and lowest 

fuel consumption. However, it also allows policy makers to have the most control over the 

VMT projections because any degree of certainty    can be used. If the fuel tax seems too 

extreme, then the target could be raised or the degree of certainty lowered to produce more 

desirable forecasts. These methods could guide policy makers to better-informed policy 

decisions, but they are only possible if some amount of uncertainty is incorporated into the 

model. 
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CHAPTER 5: CONCLUSION 

5.1 Summary  

The National Energy Modeling System (NEMS) is a computational model that 

forecasts the production, consumption, and prices of energy in the United States. Policy 

makers rely heavily on NEMS forecasts to make informed energy policy decisions. These 

forecasts depend significantly on a variety of economic assumptions, future oil prices, 

consumer preferences and behaviors, new technologies yet to be developed, and numerous 

other uncertain inputs. The uncertainties in NEMS need to be communicated to policy 

makers in order for them to develop better-informed decisions regarding energy policy.  

Part of the Transportation Module of NEMS projects the demand for personal travel 

through its vehicle miles traveled (VMT) equation. In this research, uncertainty is added to 

the VMT model as a prototype to demonstrate the importance and benefit of uncertainty in 

NEMS. This starts with deriving the model and estimating its parameters. In order to find the 

most appropriate estimation method, three different techniques are applied to the VMT 

model: Cochrane-Orcutt, maximum likelihood, and Prais-Winsten. The maximum likelihood 

and Prais-Winsten techniques are both preferred over Cochrane-Orcutt because they both 

produce an estimate for  , and the Cramér-Rao Lower Bound can be used to estimate the 

standard errors of their parameters. Even though Prais-Winsten estimation attempts to 

improve upon maximum likelihood estimation, its parameter estimates are found to fit the 

historical data with less accuracy. Therefore, maximum likelihood is the best estimation 

method for the VMT equation. 
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The maximum likelihood parameter estimates and their standard errors provide the 

necessary statistics to add uncertainty to the parameters and the error term of the VMT 

equation. A Monte Carlo simulation is performed to model the uncertain VMT equation and 

demonstrate the range of possible VMT forecasts when these uncertainties are included. The 

100 trajectories that are modeled suggest the NEMS deterministic forecast does not 

adequately reflect all of the possible futures of VMT. Two more Monte Carlo simulations are 

done to find the main source of uncertainty in the VMT model. This reveals that the error 

term alone accounts for most of the uncertainty in the model. Simply adding a normal error 

term to the model, while keeping the rest of the parameters and inputs deterministic, would 

adequately represent the uncertainties present in the VMT model. 

Transportation sources contribute nearly a third of the total US greenhouse gas 

(GHG) emissions. Decreasing VMT is the most effective way to decrease GHG emissions, 

and significant reductions in VMT can only be achieved by increasing the cost of driving 

with a fuel tax. A target is set for VMT for each of the projected years, and four decision-

making techniques are used to calculate the fuel tax required to reduce VMT to this specified 

goal. Deterministic, expected value, and Markovian decision-making all have a mean and 

median very close or identical to the target. Their VMT projections meet the target about half 

of the time. Probabilistic decision-making projects the highest fuel tax, lowest VMT, and 

lowest fuel consumption. It also allows policy makers to decide the probability of the 

projection meeting the target. All four decision-making techniques calculate a fuel tax that 

reduces VMT to the target and decreases fuel consumption, thus reducing GHG emissions. 

This demonstrates that an uncertain VMT equation can be used to help policy makers decide 

on the best policy to reduce transportation GHG emissions. 
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5.2 Future Work 

 The Monte Carlo simulation used in Chapter 3 is an effective and practical method 

for the purposes of this research. Only one uncertain equation is modeled, and only 100 

random samples of the model are taken. If uncertainty was included in NEMS at a larger 

scale, then Monte Carlo methods would no longer be practical. NEMS is a detailed and 

complex model. Monte Carlo sampling from all of NEMS uncertain inputs would require far 

too much computation time. Gentle (2002) describes faster sampling methods such as quasi-

random, importance, and Latin Hypercube sampling. However, even these methods require 

too many evaluations of NEMS to be reasonable solutions. If uncertainty was included in 

large portions of NEMS then stochastic collocation strategies must be applied to model this 

uncertainty. Sparse grid collocation could model the uncertainty in NEMS with fast 

convergence and without changing the current deterministic code (Ganapathysubramanian & 

Zabaras, 2008).  
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APPENDIX A: VMT MODEL FOR PRAIS-WINSTEN ESTIMATION 

 The VMT model used in Prais-Winsten estimation is given below. 
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The Prais-Winsten model is unique in that it uses a different model for the first year of 

known historical data. To derive this equation, start with the time series model for the first 

year and repeatedly substitute in for 
y (2.3). 
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The last term here is also a normal variable. So let 
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Notice that the normal error in the model for the first year has a different variance then the 

rest of the normal errors. Prais-Winsten “corrects” this problem by making the assumption 

2

1 1
ˆ1 N N   where  2

1 Normal 0,N  . The final VMT model then becomes 
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APPENDIX B: VMT MODEL FOR DECISION-MAKING ANALYSIS 

This appendix shows how the VMT model used in Chapter 2 is converted into the 

VMT model used in Chapter 4. Only the probabilistic VMT model is derived here. The 

deterministic model is derived exactly the same way, except there is no error term at the end 

of the model. This may seem like a trivial review of algebra and logarithmic identities, but it 

is important to see that the two models are the same, though they look very different. 
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APPENDIX C: THE PROBABILISTIC VMT MODEL 

 Recall the deterministic (4.2) and probabilistic (4.3) VMT models used in Chapter 4 

and derived in Appendix B.  

 
 0 1 1

2 1 1

I C
M

M

y y y y

y

y y y y

M I P T
M e

M I E C

 
 

 

   



 

  

    
     

    
    

 

 
 0 1 1

2 1 1

I C
M

y

M

Ny y y y

y

y y y y

M I P T
M e e

M I E C

 
 

 

   



 

  

    
     

    
    

  

The three uncertain inputs of the probabilistic model need to be combined into one error term 

for some of the analysis done in Chapter 4. To ease the notation, condense all of the 

deterministic inputs of the probabilistic model into one term  y . 
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Now let 0M  be the actual VMT from the year before the projection is made. Similarly, let  

00M  be the actual VMT from two years before the projection is made. Then the equation for 

the first projected year is  
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Notice that if the deterministic model was being used here its equation would be the same 

except for the error term. So the probabilistic model can be written in terms of the 

deterministic model.   
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The equation for the second year is then calculated from (C.1), and (C.2)  is substituted into 

the model to get rid of the uncertainty in VMT.  
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Again, this probabilistic equation is written in terms of its corresponding deterministic 

equation. 
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The same process is done to get an equation for the third year.   
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At this point a pattern can be seen for the probabilistic VMT equation and its log normal 

error. Let 
*

yN  be the normal random variable such that 
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Substituting (4.2) into (C.8) yields the uncertain VMT model that is used in Chapter 4.  
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The new normal error  *

yN  is defined as follows.  
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