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Abstract 

This thesis is composed of three articles that survey and assess the sustainability of various 

automotive and power generation technologies. 

 

“Four economies of sustainable automotive transportation” is a journal article has been accepted 

by Biofuels, Bioproducts, and Biorefining, while “Survey of power generation technologies” is a 

draft chapter for the upcoming book Handbook of Data Mining for Power Systems, and finally, 

“Four economies of sustainable power generation” is a draft journal article. 

 

Vehicles fueled by compressed natural gas were found to offer the best overall performance 

considering operating cost, water usage, energy efficiency, and greenhouse gas emissions for the 

automotive scenarios analyzed in first paper. The second paper is a review of power generation 

technologies, from which no conclusions are drawn. Offshore wind power was found to have the 

best overall performance considering cost of electricity, water usage, energy conversion 

efficiency, and greenhouse gas emissions of the power generation technologies and metrics 

analyzed in the third paper. 
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General Introduction 

Concerns over environmental issues and resource availability have prompted many to evaluate 

the way energy is produced and consumed. Individual studies generally focus on transportation 

fuels, vehicle platforms (referred to collectively as automotive scenarios), or power generation 

technologies. A method that takes into account all processes involved in either creating, 

operating, or dismantling an energy technology has become popular over the past few decades. 

This method is commonly referred to as life-cycle analysis when applied to power generation 

technologies and well-to-wheels (WTW) analysis when applied to automotive scenarios.  

 

WTW analysis traditionally focuses on the energy requirements and emissions (greenhouse 

gases, particulate matter, volatile organic compounds, oxides of sulfur, etc.) associated with the 

creation and utilization of fuel. However, it is becoming more apparent that other metrics should 

be included when evaluating the overall sustainability of transportation fuels, specifically water 

usage and cost of operation. Most life-cycle studies of power generation technologies include 

economic as well as a wide variety of environmental metrics, generally in the form of various 

emissions previously mentioned. Water usage, however, is less commonly included in this sector 

as well. 

 

The primary focus of the present study is on both automotive scenarios and power generation 

technologies. Both categories of energy technologies are surveyed and analyzed for their overall 

sustainability from a broad perspective. 
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Background 

In 1991, DeLuchi conducted a comprehensive survey of greenhouse gas (GHG) emissions from 

transportation fuels and power generation technologies.
 (1)

 His work provided a foundation for 

the GREET model, which was first introduced in 1996.
 (2)

 The GREET model has gone through 

several revisions since then, and is now widely utilized for evaluating transportation fuels on a 

WTW basis.
 (3), (4), (5) 

In 1994, Gleick 
(6)

 conducted an extensive survey of the water consumption 

associated with various transportation fuel processing and power generation technologies. The 

purpose of Gleick’s study was to examine the link between water consumption and energy 

production. 
 

 

Both Gleick’s work and DeLuchi’s work are among the few papers that simultaneously evaluate 

automotive scenarios and power generation technologies. The remainder of this section offers a 

brief look at the history of analysis done for either automotive scenarios or power generation 

technologies. 

 

Automotive Scenarios 

Well-to-wheels analysis is currently one of the more popular forms of life-cycle analysis of 

automotive scenarios. Many WTW studies strictly evaluate automotive scenarios for their 

technical characteristics, usually energy consumption and greenhouse gas emissions, without 

drawing any conclusions from these attributes.
 (7), (8), (9)

 In fact, Simpson
 (8)

 surveyed over 30 

automotive scenarios, while Brinkman et al
 (7)

 evaluated over 100 automotive scenarios. Both of 

these reports provided information of the WTW energy use and emissions of light duty vehicles. 

Beer et al examined heavy duty vehicles for their air quality and GHG emissions, as well as other 
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occupational health and safety, functionality and viability, and sustainable ecological 

development issues. 
(10)

 Their study compared these metrics for fifteen fuels from a wide variety 

of feedstocks against low sulfur diesel. However, the study cited insufficient knowledge of 

appropriate risk-weighting factors for evaluating the relative effects of the metrics they chose.
 (10)

 

It is therefore unclear which fuel scenario is the overall best performer from this analysis. 

 

Other studies focus more on technologies for resource extraction and refinement into final fuel 

products, and offer less intensive analysis on vehicle platforms. While these studies are not 

always on a full WTW basis, they do provide useful techno-economic information regarding the 

processes involved in fuel production. Brandt has published several papers related to energy 

requirements and GHG emissions of synthetic crude oil production and use from both tar sands 

and oil shale.
 (11), (12) 

Bartis et al analyzed the viability of utilizing oil shale in the U.S. for 

synthetic crude oil production considering the cost and performance of available extraction and 

processing technologies.
 (13)

  

 

There are some studies that draw overall conclusions from multi-criteria comparisons. Safaei 

Mohamadabi, Tichowsky, and Kumar developed a comparison methodology based on the fuel 

cost, relative vehicle cost, distance between refueling stations, GHG emissions, and market share 

of each vehicle type (referred to as “number of consumer options” in their paper).
 (14)

 Their study 

included six vehicle platforms: gasoline, diesel, biodiesel, E85, compressed natural gas (CNG), 

and electric-hybrids. They concluded that gasoline vehicles did the best when economic factors 

had higher weighting, while hybrid vehicles did the best when environmental factors had higher 

weighting.
 (14)

 Tzeng, Lin, and Opricovic studied twelve scenarios for alternative fuel buses in 
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Taiwan.
 (15)

 Their results showed that hybrid electric buses using gasoline were the most suitable 

in the near term, while pure electric buses would become the best alternative once the driving 

range could be extended.
 (15)

 

 

Power Generation  

Multi-criteria and externality assessments are two of the most common ways to evaluate power 

generation technologies on a life-cycle basis. Externality studies assign costs to the 

environmental impacts of power plants (i.e. dollar amount of damage caused by emissions). 

Multi-criteria assessments evaluate and rank power generation technologies based on their 

performance under a given set of metrics. Mirasgedia and Diakoulaki compared these two 

methodologies by ranking seven power generation technologies using each method to test the 

accuracy of externality analysis.
 (16)

 Their results showed that externality assessments did in fact 

give reasonable results when environmental metrics were included as part of the multi-criteria 

analysis.
 (16)

 

 

Roth and Ambs studied the externalities of fourteen power generation technologies, and their 

results indicated that landfill gas recovery power plants were the cheapest when external costs 

were accounted for.
 (17)

 Afgan and Carvalho conducted a multi-criteria analysis of ten power 

generation technologies considering their energy conversion efficiency, capital cost, electricity 

production cost, carbon dioxide emissions, and land requirement.
 (18)

 The focus of their study was 

to demonstrate the usefulness of the methodology they developed, rather than make critical 

assessments of power generation technologies. Pohekar and Ramachandran published a very 

comprehensive review article on the application of multi-criteria assessment for energy planning.
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(19)
 The purpose of this study was to comment on the general trend and functionality of multi-

criteria assessment tools. 

 

Other studies strictly evaluate technologies based on a common set of metrics. The International 

Energy Agency (IEA) has released a series of technology briefs that highlight the techno-

economic and environmental attributes of various power generation technologies, including: coal
 

(20)
, gas-fired

 (21)
, geothermal

 (22)
, hydroelectric

 (23)
, marine

 (24)
, and nuclear power

 (25)
. The U.S. 

Energy Information Administration has reported the heat rate and capital costs of 18 

technologies as part of the documentation of their National Energy Modeling System software.
 

(26)
 There have also been several books published in recent years that offer a detailed and 

comprehensive look at power generation technologies.
 (27), (28), (29), (30)

 

 

Some  life-cycle analysis studies have also been conducted for a specific geographic region. 

Pacca and Horvath examined the life-cycle GHG emissions of five power plants assuming they 

were to be built and operated in the Upper Colorado River Basin.
 (31)

 Their results showed that 

wind farms and hydroelectric plants had the lowest greenhouse gas emissions out of the included 

technologies.
 (31)

 Hondo
 (32)

 conducted a similar study of nine power generation technologies in a 

Japanese context, while Kannan et al
 (33)

 surveyed the energy usage, emissions, and cost of five 

technologies in Singapore.   
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Thesis Organization 

This thesis is the culmination of two journal articles and a book chapter: “Four economies of 

sustainable automotive transportation”
 (34)

, “Four economies of sustainable power production”
 

(35)
, and “Survey of power generation technologies”

 (36)
. 

 

“Four economies of sustainable automotive transportation”, a journal article, evaluates and ranks 

thirty automotive scenarios according to: operating cost, water usage, energy consumption, and 

greenhouse gas emissions. Each scenario is assigned a score based on the relative performance 

difference between itself and the best performing scenario. This score is used as a measure of 

overall sustainability relative to the other technologies evaluated. 

 

“Survey of power generation technologies”, a book chapter, reviews twenty power generation 

technologies either currently in use or under development. Technologies are evaluated under a 

set of eighteen possible metrics, and estimates on capital cost reductions from gains in 

experience are also provided.  

 

“Four economies of sustainable power production” is a short article that evaluates and ranks ten 

power generation technologies using the same methodology that was developed for, and applied 

to, automotive scenarios.  



7 
 

Four Economies of Sustainable Automotive Transportation 

A paper accepted by Biofuels, Bioproducts & Biorefining 

Joshua D. Gifford
a
 and Robert C. Brown

a,b
. 

a
Department of Mechanical Engineering 

b
Center for Sustainable Environmental Technologies 

Iowa State University 

 

 

Abstract 

Life cycle analysis for automotive transportation, commonly known as wells-to-wheels (WTW) 

analysis, has traditionally focused on greenhouse gas (GHG) emissions and primary energy 

consumption. Clearly, economizing on the use of primary energy sources and the amount of 

greenhouse gas emission associated with automotive transportation are important sustainability 

metrics. Other important metrics are water usage and cost of vehicle operation. Thus, we propose 

the evaluation of four economies in WTW analysis: primary energy consumption, greenhouse 

gas emissions, water usage, and cost of vehicle operation. No scenario is likely to simultaneously 

minimize all four metrics, suggesting the identification of a single figure of merit that 

encompasses all four economies of transportation fuels. We employed a normalization scheme 

that allowed calculation of a single composite score for each scenario called the CWEG (Cost-

Water-Energy-GHG) score. Automotive transportation scenarios evaluated in this paper included 

a variety of fossil and renewable primary energy sources; several energy carriers as 

transportation fuels; and three distinct vehicle platforms including internal combustion engines, 

battery electric vehicles, and fuel cell electric vehicles. Compressed natural gas scored highest, 

with CWEG scores of 71 to 74 out of a possible score of 100, well above the next highest score, 
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which was 45 for conventional diesel hybrid electric vehicles. Fuel cell vehicles running on 

hydrogen generated using power from the U.S. electric grid had the lowest CWEG scores, 

ranging from 13 to 15. 

 

1. Introduction 

 The value chain of transportation fuels includes four major operations: resource recovery, 

consisting of extraction, harvesting, or otherwise recovering a primary energy source; fuel 

refining, which converts the primary energy source into fuel molecules or electrochemical 

energy; fuel utilization, which converts stored chemical energy into motive power; and energy 

distribution, which moves primary energy sources and finished fuel products among the other 

operations of fuel production. Each operation must be considered in the life cycle analysis of 

transportation fuels, which is known as “well-to-wheels” (WTW) analysis.
1-4

 Previous WTW 

studies typically focus on primary energy consumption and greenhouse gas (GHG) emissions.
1-4

 

Clearly, economizing on primary energy sources and GHG emissions are important 

considerations in devising sustainable energy options, but other metrics should also be 

considered. Water is now recognized as an increasingly scarce resource that should be 

economized in the production of transportation fuels. In addition to these three environmental 

metrics, the cost of operating a vehicle should be considered as a metric of economic 

sustainability. Thus, we propose evaluating four economies in WTW analysis: primary energy 

consumption, greenhouse gas emissions, water usage, and operating cost. Of course, other 

economies such as sulfur and nitrogen emissions, water pollution discharges, and land use 

requirements might be considered, but these are beyond the scope of the current study. 
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The objective of this study is to perform comparative WTW analyses for several advanced 

automotive transportation scenarios using the proposed set of four sustainability metrics. As 

shown by Figure 1, no scenario simultaneously minimizes all four metrics, suggesting the 

identification of a single figure of merit that encompasses all four economies of transportation 

fuels. We combine these four metrics to provide a relative measure of sustainability for these 

automotive transportation scenarios called the CWEG (Cost-Water-Energy-GHG) score. 

 

2. Automotive Transportation Scenarios 

Our analysis evaluated five different engine platforms: conventional internal combustion engines 

(ICE), hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV), fuel cell hybrid electric 

vehicles (FCHEV), and lithium-ion battery electric vehicles (BEV). Six different transportation 

fuels were considered (gasoline, diesel, natural gas, electricity, hydrogen, and ethanol) produced 

from a variety of primary energy sources (both fossil and renewable) and evaluated for one or 

more engine platforms.  

 

Three fossil primary energy sources were evaluated for gasoline and diesel production: 

petroleum, tar sand derived synthetic crude oil (TS SCO), and oil shale derived synthetic crude 

oil (OS SCO). Two fossil primary energy sources were evaluated for hydrogen production: 

electrolysis using power from the U.S. electric grid and coal gasification. Two electric power 

generation pathways were included for evaluating BEV’s: power from the U.S. electric grid and 

power from a natural gas-fired combined cycle power plant (NGCC). Ethanol from both corn 

grain and cellulosic feedstocks were included in this comparison, as well as compressed natural 
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gas-fueled (CNG) internal combustion engines. Acronyms used to describe these various 

technologies are found in Table 1. 

 

Combinations of primary energy resource, transportation fuel, and engine platform are referred 

to as automotive transportation scenarios. These scenarios are categorized as either hybrid 

vehicles or non-hybrid vehicles for the purpose of discussing the results. Each of these two 

categories includes 15 automotive transportation scenarios, which are summarized in Table 2.  

 

3. Methodology 

3.1 Definition of Metrics 

All metrics are expressed on the basis of a unit distance traveled (one kilometer). Operating costs 

have units of cents per kilometer; water usage is expressed as liters per kilometer; primary 

energy consumption has units of megajoules per kilometer; and GHG emissions are expressed as 

grams of carbon dioxide equivalent per kilometer. These units were selected for their 

convenience in graphically comparing the results of the analysis.  

 

We employed a normalization scheme to calculate an unweighted average of the four metrics to 

generate a single composite score for each scenario as a baseline case. Four additional cases 

using weighted averages of the four metrics were also explored. This composite scoring of the 

four sustainability metrics is called the CWEG (cost-water-energy-GHG) score. The calculation 

of CWEG begins by normalizing the values for each of the four metrics in the range of 0 to 100. 

For each metric, the automotive transportation scenario with the best economy (that is, lowest 

fuel operational cost, water usage, energy consumption, or GHG emissions per kilometer 
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traveled) was assigned a score of 100. Other automotive transportation scenarios were assigned 

scores that were inversely proportional to the ratio of the metric values for that particular 

scenario and the best performing scenario. Formally, the normalized score, Si, j for the i
th

 scenario 

with respect to metric j was calculated according to:  

     
    

    
           

where Xi, j is the value of metric j for the i
th

 scenario and XL, j is the lowest value (best economy) 

of metric j among the various scenarios. The composite score for the i
th

 scenario, CWEGi, is 

calculated as the average of all four normalized scores for that scenario. 

      
 

 
     

 

   

       

It is important to note that Si, j and CWEGi must be recalculated if a new scenario is introduced 

that has one or more metrics that are lower than  the previous set of scenarios. 

 

3.2 CWEG Data 

WTW analysis is composed of two parts: well-to-tank and tank-to-wheels.
1,2

 The well-to-tank 

(WTT) portion represents all processes that take place before the fuel is stored within a vehicle. 

Tank-to-wheels (TTW) characterizes the conversion of this energy into mechanical work (the 

vehicle’s fuel consumption). The TTW data used here was adapted from Simpson,
1
 who drew 

heavily on data from a report by Beer et al.
3
 and other sources.

4
 Data for WTT comes from many 

sources as subsequently described.  
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For a given automotive transportation scenario, the published literature reveals wide ranges for 

the four metrics. An arithmetic average gives undue weight to high range values under this 

circumstance, thus the geometric mean was used to calculate average values for metrics. 

 

3.2.1 Operating Cost 

The operating cost of a vehicle includes fuel refining costs and capital costs of the vehicle 

platform. Fuel refining cost is the sum of the cost of primary energy used for fuel production and 

other processing costs such as labor, utilities, and chemicals.
5
 Because primary energy resources 

have proved highly variable over time, average inflation-adjusted costs (2010 dollars) were 

calculated over time frames indicated below for various primary energy sources. Inflation factors 

came from the Bureau of Labor Statistics.
6
 Capital costs for vehicles and vehicle subsystems 

(such as battery packs) were straight line depreciated over their expected lifetimes. Other 

operating costs associated with an automotive transportation scenario, such as infrastructure 

depreciation for new kinds of fueling stations, have been deliberately excluded in this analysis. 

These are often difficult to calculate and can distort comparisons between technologies that 

require new infrastructure investment (fuel cell, battery electric, or compressed natural gas 

vehicles) and those that rely on existing but aging infrastructure (internal combustion engines 

fueled by liquid hydrocarbons). Estimated fuel refining (or electric generation) costs used in this 

study are summarized in Table 3. 

 

 The cost of refining petroleum-based gasoline and diesel is the sum of the monthly-averaged 

market price (rather than extraction cost) of petroleum between 1989 and 2009
7
 and other fuel 

refining costs as reported in Gary, Handwerk, and Kaiser.
8
 The cost of refining synthetic 
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gasoline and diesel from tar sands (TS) and oil shale (OS) is the sum of the production cost of 

synthetic crude oil from these alternative energy resources (rather than the market price of 

petroleum) and other fuel refining costs as reported in Gary, Handwerk, and Kaiser.
8
  The 

production costs of synthetic crude oil from tar sands (TS SCO) was assumed to be $73 per 

barrel in 2010 dollars, which is based on Shell’s Athabasca Oil Sands Project in Canada.
9 

As a 

caveat, TS SCO production costs in the U.S. are likely to be higher due to less favorable 

characteristics of TS deposits in the U.S.
10

 Unlike TS, oil shale (OS) has yet to be commercially 

exploited to any significant extent, and there is more uncertainty about the cost of producing 

synthetic crude oil from oil sands (OS SCO). First-of-a kind OS SCO facilities will likely 

produce SCO in the range of $78 to $106 per barrel (2010 dollars).
11,12

 For this analysis, a 

geometric mean of $91 per barrel was assumed for OS SCO. 

 

For automotive transportation scenarios based on compressed natural gas (CNG), the monthly-

averaged market price for natural gas in the U.S. from 1989 to 2009 was employed.
13 

Other 

processing costs for this scenario, consisting mostly of gas compression, are estimated from 

Beer, et al.
3
 

 

In the case of battery electric vehicles, fuel refining is the generation of electric power to charge 

electric vehicles (that is, the fuel is electrochemical energy stored in batteries). One electric 

vehicle scenario assumes power is obtained from the U.S. electrical grid, which charges different 

rates to different kinds of customers. For this analysis it was assumed that industrial electricity 

rates applied. The cost, averaged between all months from 1996 to 2009, was 6 cents per 

kilowatt-hour.
14

 The other electric vehicle scenario assumed power was obtained from natural 
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gas-fired combined cycle (NGCC) plants, which are more energy efficient and emit fewer 

greenhouse gases than the rest of the U.S. electric grid. This cost was 7 cents per kilowatt-hour in 

2010 dollars.
15

  

 

The cost of hydrogen produced via electrolysis and from coal gasification come from the U.S. 

National Research Council Committee report on hydrogen energy.
16

 The cost of cellulosic 

ethanol was found by taking the geometric mean of several values presented by Kazi, et al.
17

 The 

production cost of ethanol from grain was obtained from the study by Kwiatkowski et al.
18

 

 

Offer, et al provided vehicle capital cost estimations for the BEV, gasoline ICE, FCEV, and 

FCHEV platforms.
19

 It was assumed that the ethanol ICE and HEV platforms had identical costs 

to their gasoline counterparts.
20

 Capital costs for the other vehicle platforms (gasoline HEV, 

diesel ICE, diesel HEV, CNG ICE, and CNG HEV) were found by multiplying data presented by 

Offer, et al
19

 by the ratio between the cost of a vehicle platform and the cost of a gasoline ICE 

vehicle. This ratio was found by consulting manufacturer data.
21,22,23

  

 

It was assumed that the battery in a BEV will last 1,000 cycles, which translates into a lifetime of 

roughly 150,000 kilometers when combined with manufacturer data on driving range per cycle.
24

 

FCEV’s are estimated to have lifetimes of 100,000 kilometers, and it was assumed that 

FCHEV’s had identical lifetimes.
25

 All other vehicle platforms were assumed to have lifetimes of 

240,000 kilometers. Vehicle lifetime and power train costs for HEV’s and ICE’s burning 

hydrogen were assumed to be equal to HEV’s and ICE’s running on CNG. 
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The capital costs and vehicle lifetimes used in this analysis are tabulated in Table 4. 

  

3.2.2 Water Usage 

Water usage is defined as withdrawal from any water source, and is mainly the result of primary 

energy extraction and fuel refining. Water usage data are summarized in Table 5. Most water 

usage data (OS SCO, TS SCO, petroleum-based gasoline and diesel, hydrogen from coal 

gasification, and CNG) were adapted from Gleick.
26 

Water usage analysis for scenarios based on 

electricity, hydrogen, and ethanol are described below.  

 

Water usage for electric power generation varies widely for different kinds of primary energy 

consumption (biomass, coal, natural gas, nuclear, wind, etc). For this study a national average 

was estimated that took into account the mix of power generation technologies in the United 

States and their different water consumption rates. This required calculating both the amount of 

water consumed in extracting fossil fuels and converting these primary energy sources into 

electricity. Water consumption for coal and natural gas extraction came from Gleick as well as 

King and Webber.
26,27

 These data were weighted according to their contribution to total 

electricity production in the U.S.
27

 No carbon capture and sequestration was assumed for any of 

the electric power scenarios. Water consumption for coal-fired (steam) power plants came from 

Torcellini, Long, and Judkoff
28

 while water consumption for natural gas-fired (combined cycle) 

power plants was calculated by adding the water needed for fuel extraction
27

 to the water needed 

for steam condensing.
15
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Water usage for production of hydrogen via electrolysis was calculated according to water 

decomposition stoichiometry. It should be noted that water directly consumed by electrolysis is 

small compared to the water consumed to produce the electricity needed for electrolysis, whether 

the electricity comes from a steam power plant or hydroelectric power plant.  

 

Water consumption in crop production depends upon whether the crop is irrigated. Only 4% of 

the U.S. corn crop is currently irrigated,
29 

but it accounts for much of the water usage associated 

with grain ethanol. Water consumption for converting corn grain to ethanol also comes from data 

presented by Aden.
29

 Water usage for production of cellulosic biomass was based on non-

irrigated cropping systems.
29

 Water consumption for cellulosic biofuels depends upon whether 

the process is biochemical or thermochemical. For this analysis, the geometric mean in water 

consumption for these two options was employed.
29

  

 

3.2.3 Energy Consumption 

Primary energy consumption for the production of gasoline and diesel from petroleum comes 

from Simpson.
1
 Primary energy consumption for the use of compressed natural gas in internal 

combustion engines also comes from Simpson.
1
  

 

The overall thermodynamic efficiency of the U.S. electric grid was estimated from 2008 data 

obtained from the U.S. Energy Information Administration.
30

 Net electric generation for each 

power plant was divided by the national total amount of energy consumed for generating 

electricity. These results were then summed to obtain a nationally averaged electric generation 

efficiency, which was roughly 33%.  
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In several instances WTT energy consumption was calculated from overall energy efficiencies of 

processes reported in the literature. This included 54% for OS SCO;
31

 70-75% for TS SCO;
32

 

62.3% for hydrogen from coal gasification;
33

 54% for NGCC electric power;
34

 38% for grain 

ethanol;
35

 36% for cellulosic ethanol.
2 

 

Table 6 includes both TTW energy consumption and WTW energy consumption. The calculation 

of TTW is based on lower heating values of fuels, which are tabulated in Table 3. 

 

3.2.4 Greenhouse Gas Emissions  

 Greenhouse gas emissions for each automotive transportation scenario are presented on the basis 

of both energy consumption (g CO2/MJ) and distance driven (g CO2/km) in Table 6. 

Greenhouse gas emissions associated with petroleum-derived fuels and compressed natural gas 

were adopted from Simpson.
1
  

 

TS SCO and OS SCO emissions were estimated by taking the geometric mean of the high and 

low cases given by Brandt and Farrell,
12

 who state that the order of magnitude of the GHG 

emissions estimate for OS SCO has been corroborated by other sources, but the exact value is 

highly uncertain. 

 

Greenhouse gas emissions for power from the electric grid (g CO2/MW) were found by dividing 

the total emissions attributed to the electric sector (g CO2/yr) by the net generation (MWh) for 
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2008.
 14,35

 The GHG emissions associated with NGCC were adopted from Klara and Wimer,
15

 

which assumes no carbon capture and sequestration is employed. 

 

GHG emissions for hydrogen production using power from the electric grid are from Brinkman 

et al.
4 

for the P90 scenario (90% probability that values will be at or below what is specified). 

Greenhouse gas emissions for hydrogen produced via coal gasification were estimated from data 

presented in the U.S. National Research Council Committee report assuming use of currently 

available technology and no carbon capture.
16

 

 

Grain ethanol GHG emissions are estimated as the geometric mean of the values presented for 

several configurations of ethanol plants presented in Liska et al.
36

 while emissions for cellulosic 

ethanol are from Farrell et al.
37 

 

4. Results 

CWEG scores for non-hybrid vehicle platforms are given in Figure 2. CWEG scores for hybrid 

vehicle platforms are shown in Figure 3. These results are discussed below. 

 

4.1 Compressed Natural Gas 

Despite reliance on fossil fuels, compressed natural gas (CNG) powered vehicles had the highest 

CWEG scores among all the automotive transportation scenarios, scoring well in all 

sustainability metrics. Vehicles fueled with CNG had CWEG scores of 71 and74 for non-hybrid 

and hybrid scenarios, respectively, compared to 45 for the next highest scoring fuel scenario. 

CNG needs little processing once extracted, which helps minimize primary energy consumption. 
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The amount of water consumed for fuel processing is also very low at 0.02 and0.03 L/km for the 

non-hybrid and hybrid scenarios, respectively, compared to an average of 3 L/km.
26

 Vehicle 

operating costs of CNG are roughly one-fourth the average cost among the scenarios 

investigated, making it the least expensive automotive scenarios on the basis of dollars per 

kilometer. On the other hand, GHG emissions from CNG are significantly higher than any of the 

renewable energy scenarios. It should be noted that the price of CNG used in this analysis is 

based on historical prices; future prices could increase significantly if CNG was widely used for 

transportation. Because of its wide use to heat homes and businesses, CNG prices are extremely 

sensitive to weather, historically varying by as much as a factor of seven in the past decade,
38

 

which detracts from its attractiveness as transportation fuel. 

 

4.2 Electricity 

The battery electric vehicle (BEV) scenario using electric power from a natural gas-fired 

combined cycle (NGCC) power plant performed well in this analysis, with CWEG scores of 39 

and 37, respectively, for the non-hybrid and hybrid vehicle categories. This BEV scenario ranked 

third in non-hybrid vehicle category. The greatest factors in lowering the overall score of NGCC 

BEV scenarios were vehicle operating costs and the high water usage associated with steam 

condensing at the NGCC power plant. Although the cost of electricity per kilometer driven is 

attractive compared to other fuel options, the high cost of batteries and their relatively short life 

added considerably to the operating cost of the BEV.  

 

Low primary energy consumption was the leading reason the NGCC BEV scenarios scored so 

well. In fact, the NGCC BEV had the lowest WTW energy consumption of all the automotive 
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transportation scenarios. Battery electric vehicles have a distinct advantage over vehicles 

powered by combustion engines because of the higher efficiency of converting electrochemical 

energy to motive power compared to burning fuels in internal combustion engines. This 

advantage is lessened when combustion engines are operated as hybrid systems. 

 

BEVs charged from the U.S. electric grid did not fare as well in this analysis placing in the 

bottom fourth of both groups. Battery electric vehicles charged from the current U.S. electric 

grid scored between 23 and 24. This scenario suffered from relatively high water usage, which is 

attributable to the relatively large contribution of hydroelectric power to the U.S. grid. The large 

impoundments of water maintained for hydroelectric stations promote evaporation of water, 

which must be counted against water usage for this scenario.
28

 High power train costs and a 

relatively short vehicle lifetime were also responsible for the grid BEV scoring so low.
 
 

 

4.3 Ethanol 

Cellulosic ethanol placed fourth in the non-hybrid group with a score of 37, and fifth among the 

hybrids with a score of 41. Cellulosic ethanol has relatively low GHG emissions and water 

usage. On the other hand, primary energy consumption is well above the average of the 

scenarios. Fuel refining cost is also higher than average, which is attributable to both relatively 

high cost of biomass feedstocks compared to fossil fuels and fuel processing costs that remain 

high at present. Grain ethanol did not fare nearly as well as cellulosic ethanol, with CWEG 

scores of 28 and 33 for the non-hybrid and hybrid vehicle groups, respectively, which is well 

below petroleum-derived gasoline and diesel. High water usage and primary energy consumption 

account for the relatively poor showing of grain ethanol. This could be improved by eliminating 
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irrigated corn from the feedstock supply and reducing drying and distillation costs in fuel 

production. 

 

4.4 Hydrogen 

The fuel cell electric vehicle (FCEV) and fuel cell hybrid electric vehicle (FCHEV) powered by 

hydrogen produced from coal gasification scenarios respectively scored 29 and 31 in the non-

hybrid and hybrid groups. Total energy usage associated with FCEV’s powered by hydrogen 

from coal, although not as low as for the BEVs, is lower than most other scenarios presented 

here. Greenhouse gas emissions on the basis of grams of carbon dioxide-equivalent per kilometer 

traveled are lower than the average among the scenarios, which can be explained by the superior 

efficiency of the FCEV or FCHEV compared to an ICE or HEV. Water usage for this automotive 

transportation scenario is also lower than the average among the scenarios. High power train 

costs combined with a relatively short lifetime made the vehicle operating costs the main 

contributing factor to the low score of these scenarios. 

 

The ICE vehicle fueled by hydrogen from coal gasification had a CWEG score of 37 within the 

non-hybrid vehicle group, which made it slightly superior to petroleum-based gasoline and 

slightly inferior to petroleum-based diesel. When operated as a hybrid vehicle, the hydrogen-

powered ICE vehicle had a CWEG score of 45, which placed it just below HEV’s fueled by 

anything petroleum-based. All vehicle scenarios based on hydrogen from coal gasification 

consumed less water than petroleum-based fuels, which can be attributed to the high water 

consumption of enhanced recovery methods sometimes used for crude oil.
26

 The ICE and HEV 
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platforms do not have the high operating costs of the FCEV platform, which explains the higher 

score of these scenarios.  

 

Hydrogen from electrolysis using power from the electric grid had CWEG scores of 13 and 17, 

respectively, for the non-hybrid and hybrid vehicle groups, which are the second lowest scores 

among the automotive vehicle scenarios evaluated in this study. Much of the disadvantage arises 

from high primary energy consumption required to overcome multiple conversion losses 

including those associated with electric power generation, electrolysis, and compression of 

hydrogen. Water usage is fairly high compared to the other fuel types, mostly due to generation 

of grid electricity.  

 

4.5 Petroleum-Derived Gasoline and Diesel 

Petroleum-derived gasoline and diesel ranked in the top half of the non-hybrid group and in the 

top three in the hybrid group with diesel scoring 41 and 45, respectively, and gasoline scoring 36 

and 44, respectively. Gasoline and diesel have ICE’s and HEV’s have the lowest power train 

costs, highest vehicle lifetimes, and relatively low fuel refining costs among the scenarios, 

making their operating costs lower than most other scenarios. Since this scenario assumes 

purchase of crude oil at market prices, production costs would likely be significantly lower if a 

petroleum company extracted its own crude oil and refined it into final fuel products. The 

primary energy consumption for both gasoline and diesel is significantly lower than most other 

fuels. Low primary energy consumption and operating costs are the main reasons that these 

scenarios scored as well as they did.  
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4.6 Synthetic Crude Oil 

Diesel derived from tar sand synthetic crude oil (TS SCO) respectively ranked sixth and seventh 

for the hybrid and non-hybrid groups.. TS SCO gasoline scored just below TS SCO diesel in 

both groups. CWEG scores for TS SCO diesel were 33 and 38 for non-hybrid and hybrid 

options, respectively. CWEG scores for TS SCO gasoline were 27 and 35 for non-hybrid and 

hybrid options, respectively. The higher cost of synthetic crude oil from tar sands compared to 

petroleum purchased at market prices is primarily responsible for the different CWEG scores 

among these scenarios. It is very likely the price differential with be exacerbated if the tar sands 

are extracted in the U.S. Production costs were based on experience with commercially-attractive 

deposits of tar sand in Alberta,
10 

whereas deposits in the U.S. have not been found attractive to 

exploit to date. Greenhouse gas emissions associated with TS SCO diesel and gasoline, while 

better than the average among vehicle scenarios evaluated, are worse than petroleum-based 

diesel and gasoline. 

 

Synthetic gasoline and diesel from oil share synthetic crude oil (OS SCO) scored well below 

petroleum-based gasoline and diesel for both non-hybrid and hybrid groups. The costs for both 

of these fuels were based on an OS SCO production cost of about $90 per barrel, which is more 

than twice the assumed cost of petroleum.
11

 Greenhouse gas emissions associated with OS SCO 

diesel and gasoline scenarios were much higher than most other scenarios investigated, and were 

far worse than petroleum-based scenarios. However, water usage for OS SCO derived fuels was 

lower than all other fuel types except for CNG. Diesel from OS SCO scored 27 and 30, 

respectively, while gasoline from OS SCO scored 22 and 28, respectively, for non-hybrid and 

hybrid options.  
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4.7 CWEG Scores with Unequal Weighting 

CWEG scores for selected automotive transportation pathways were recalculated using different 

weighting factors for the four metrics. The technologies selected as representative of the 

diversity of scenarios included: CNG ICE, cellulosic ethanol ICE, grain ethanol ICE, and grid 

electrolysis hydrogen FCEV. A weight of 50% was applied to each of the four metrics in turn, 

with the remaining 50% divided equally among the other three metrics. The resulting weighted 

CWEG scores are plotted in Figure 4 (labeled cost, water, energy and GHG corresponding to the 

metric that was weighted at 50%) along with the previously calculated unweighted CWEG 

scores for these four scenarios.   

 

In the case of unweighted CWEG scores, CNG had the highest score among the four selected 

scenarios followed by cellulosic ethanol, grain ethanol, and electric grid hydrogen. Very little 

change in the relatively scoring of the four scenarios is observed with changes in weighting 

except for the case where the GHG metric is weighted at 50%.  In this case, cellulosic ethanol s 

slightly outscores the CNG scenario.  

 

5. Conclusion 

In evaluating automotive transportation scenarios, economies in cost, water usage, primary 

energy consumption, and greenhouse gas emissions should all be included as sustainability 

metrics. To better facilitate comparisons among fuel scenarios, a composite score of these four 

metrics called the CWEG was devised. 
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Thirty automotive transportation scenarios were evaluated, which consisted of hybrid and non-

hybrid versions of fifteen distinct energy utilization pathways. Compressed natural gas had the 

highest CWEG scores (71 and 74, respectively, for non-hybrid and hybrid options) out of a 

possible score of 100, which are well above the next highest score, which was 45 for 

conventional diesel HEV’s. The study quantifies the advantages of natural gas for automotive 

transportation, whether used as compressed natural gas directly in vehicles or used to generate 

electric power for BEVs. However, both CNG and BEV scenarios are disadvantaged by the need 

for expensive infrastructure changes, including vehicles, fuel storage and distribution, and 

fueling stations, before wide-scale adoption can be achieved. The cost of these infrastructure 

changes is difficult to estimate accurately, but clearly will add significantly to the overall 

operating cost of these automotive transportation scenarios. Nevertheless, cost is only one of four 

economies included in this analysis and the natural-gas based transportation scenarios are likely 

to remain relatively attractive in a CWEG analysis even if new infrastructure is included as a 

depreciated cost of vehicle operation.  

 

Fuel cell vehicles running on hydrogen generated with power from the U.S. electric grid had the 

lowest CWEG score, ranging from 13 to 15. This poor showing resulted from having low scores 

for all four CWEG sustainability metrics. Although eliminating coal plants from the U.S. electric 

grid would greatly reduce GHG emissions for hydrogen fuel scenarios, the other metrics 

(operating cost, primary energy consumption, and water usage) remain among the highest of all 

the scenarios evaluated. 
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Appendix 

 

Table 1: Nomenclature used with automotive transportation scenarios 

Abbreviation Meaning

CNG Compressed Natural Gas

NGCC Natural Gas Combined Cycle

TS SCO Tar Sands Synthetic Crude Oil

OS SCO Oil Shale Synthetic Crude Oil

BEV Battery Electric Vehicle

FCEV Fuel Cell Electric Vehicle

FCHEV Fuel Cell Hybrid Electric Vehicle

ICE Internal Combustion Engine

HEV Hybrid Electric Vehicle  
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Table 2: Automotive transportation scenarios 

Primary Energy Source Energy Carriers Primary Movers

Conventional Crude Oil Gasoline ICE, HEV

Conventional Crude Oil Diesel ICE, HEV

Tar Sands Synthetic Crude Oil Gasoline ICE, HEV

Tar Sands Synthetic Crude Oil Diesel ICE, HEV

Oil Shale Synthetic Crude Oil Gasoline ICE, HEV

Oil Shale Synthetic Crude Oil Diesel ICE, HEV

Natural Gas Compressed Natural Gas ICE, HEV

Natural Gas Electricity BEV

Electric Grid Electricity BEV

Electric Grid Hydrogen ICE, HEV

Electric Grid Hydrogen FCEV, FCHEV

Coal Hydrogen ICE, HEV

Coal Hydrogen FCEV, FCHEV

Corn Grain Ethanol ICE, HEV

Corn Stover Ethanol ICE, HEV  

 

Table 3: Fuel refining costs* 

Fuel Price Price Units LHV LHV Units

Gasoline 1.327,8 $/gal 12142 MJ/gal

Diesel 1.477,8 $/gal 13842 MJ/gal

Grain Ethanol 1.1618 $/gal 8042 MJ/gal

Cellulosic Ethanol 6.0517 $/GGE 12142 MJ/gal

CNG 5.753,13 $/1000 ft3 98142 MJ/1000 ft3

Electricity 0.0614 $/kWh - -

Coal Hydrogen 1.1116 $/kg 12016 MJ/kg

Grid Hydrogen 5.0016 $/kg 12016 MJ/kg

OS Gasoline 2.388,11 $/gal 12142 MJ/gal

OS Diesel 2.648,11 $/gal 13842 MJ/gal

TS Gasoline 1.958,9 $/gal 12142 MJ/gal

TS Diesel 2.168,9 $/gal 13842 MJ/gal

*All values ammended by author as described in the methodology section

Superscripted numbers represent numerical references used in this paper  
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Table 4: Vehicle platform costs 

Platform Cost ($) Lifetime (km)

Gasoline ICE 2,20019 240,000

Gasoline HEV 3,100 240,000

Diesel ICE 2,591 240,000

Diesel HEV 3,651 240,000

CNG ICE 3,548 240,000

CNG HEV 4,999 240,000

Ethanol ICE 2,200 240,000

Ethanol HEV 3,100 240,000

BEV 26,70019 150,00024

FCEV 47,40019 100,00025

FCHEV 19,70019 100,000

Superscripted numbers represent numerical references used in this paper.
 

Table 5: Water usage  

Feedstock Water Usage (L/MJ)

Crude Oil 0.25326

Corn Grain 1.64629,42

Corn Stover 0.16029,42

NG 0.00926

Grid Electricity 2.30527,28

NGCC Electricity 0.36227,37

Coal 0.06226

Grid Electroylsis 2.38027,28*

OS SCO 0.18226

TS SCO 0.30726

*Value ammended by author as described in the methodology section

Superscripted numbers represent numerical references used in this paper
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Table 6: Summary of primary energy consumption (WTW), greenhouse gas emissions (WTW GHG), refining costs, and water usage for thirty automotive 

transportation scenarios  

 

Superscripted numbers represent numerical references used in this paper  

WTT Energy WTT Energy TTW1 WTW WTW GHG WTW GHG Operating Cost Water Use

(%) (MJ/MJ) (MJ/km) (MJ/km) (gCO2/MJ) (gCO2/km) (cents/km) (L/km)

Gasoline ICE 87.721 1.141 3.25 3.71 88.801 288.60 3.55 0.94

Gasoline HEV 87.721 1.141 2.47 2.82 88.801 219.34 2.69 0.71

TS SCO Gasoline ICE 74.4631,32 1.3831,32 3.25 5.14 119.1212 387.15 5.24 1.38

TS SCO Gasoline HEV 74.4631,32 1.3831,32 2.47 3.91 119.1212 294.23 3.98 1.05

OS SCO Gasoline ICE 53.8331 1.8631 3.25 8.10 176.2312 572.74 6.39 1.10

OS SCO Gasoline HEV 53.8331 1.8631 2.47 6.20 176.2312 435.29 4.86 0.84

Diesel ICE 79.001 1.271 2.62 3.32 91.901 240.78 2.79 0.84

Diesel HEV 79.001 1.271 2.21 2.80 91.901 203.10 2.35 0.71

TS SCO Diesel ICE 74.4631,32 1.3831,32 2.62 4.14 119.1212 312.10 4.10 1.11

TS SCO Diesel HEV 74.4631,32 1.3831,32 2.21 3.49 119.1212 263.26 3.46 0.94

OS SCO Diesel ICE 53.8331 1.8631 2.62 7.30 176.2312 461.72 5.01 0.89

OS SCO Diesel HEV 53.8331 1.8631 2.21 6.20 176.2312 389.47 4.23 0.75

Grain Ethanol ICE 60.2736 1.6636 3.08 8.11 44.6036 137.37 4.47 5.07

Grain Ethanol HEV 60.2736 1.6636 2.33 6.13 44.6036 103.92 3.38 3.84

Cellulosic Ethanol ICE 35.542 2.812 3.08 8.67 11.0037 33.88 15.40 0.49

Cellulosic Ethanol HEV 35.542 2.812 2.33 6.56 11.0037 25.63 11.65 0.37

CNG ICE 91.741 1.091 2.95 3.22 66.501 196.18 1.73 0.03

CNG HEV 91.741 1.091 2.37 2.58 66.501 157.61 1.39 0.02

Coal H2 ICE 62.3016 1.6116 2.71 5.07 156.3316 423.66 2.51 0.27

Coal H2 HEV 62.3016 1.6116 2.03 3.80 156.3316 317.36 1.88 0.20

Grid H2 ICE 30.704 3.264 2.71 13.17 315.504 855.01 11.29 21.01

Grid H2 HEV 30.704 3.264 2.03 9.87 315.504 640.47 8.46 15.74

Grid Li-Ion BEV 35.2930 2.8330 1.14 3.23 159.0814,35 181.35 1.90 7.45

NGCC Li-Ion BEV 54.4134 1.8434 1.14 2.41 83.8630 95.60 2.22 0.76

Coal H2 FCEV 62.3016 1.6116 1.66 3.11 156.3316 259.51 1.54 0.17

Coal H2 FCHEV 62.3016 1.6116 1.55 2.90 156.3316 242.32 1.43 0.15

Grid H2 FCEV 30.704 3.264 1.66 7.90 315.504 523.73 6.92 12.87

Grid H2 FCHEV 30.704 3.264 1.55 7.38 315.504 489.03 6.46 12.02

Platform
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Figure 1: Four economies of vehicular transportation scenarios: water usage, primary energy, greenhouse gas (GHG) emissions, and fuel refining cost.  Units are 

different for each of the four economies; refer to chart legend for appropriate units. See Table 1 for description of acronyms. 
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Figure 2: CWEG scores for fifteen non-hybrid vehicular transportation scenarios. See Table 1 for descriptions of 

acronyms. 
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Figure 3: CWEG scores for fifteen hybrid vehicular transportation scenarios. See Table 1 for descriptions of acronyms. 
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Figure 4: Effect of consecutive 50% weighting for each of the four metrics for four of the automotive scenarios. 
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Abstract 

This chapter reviews twenty power generation technologies. Performance metrics include capital 

costs, operation and maintenance costs, criteria pollutants, energy conversion efficiency, 

greenhouse gas, non-methane volatile organic compound, oxides of sulfur and nitrogen, and 

particulate matter emissions.  Estimates of capital cost reductions achieved by incremental  

capacity addition, commonly referred to as the learning rate for a new technology, have also 

been given.  

 

Introduction 

This chapter reviews twenty power generation technologies using a wide variety of metrics, 

which are defined in the next section. Surveyed technologies include fossil, nuclear, and 

renewable energy. This chapter is divided up into subsections corresponding to a specific 

technology. Each section contains information gathered from a literature review for each 

technology type, as well a brief description of how each technology works. Some technologies 

presented here, such as pulverized coal, nuclear, and solar thermal, can be categorized further 

into more specific technology types. In order to give a more general overview, the information 

presented here is an aggregate of these subcategories of technologies. Finally, estimates on 

capital cost reduction from capacity expansion are also given in the last section of this chapter. 
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Definition of Metrics 

Performance metrics are summarized in Table 1. All cost data is adjusted for inflation to 2010 

dollars using data from the Bureau of Labor Statistics. (1) The investment cost, given as million 

dollars per megawatt of capacity, represents the capital needed to build the facility. Retirement 

costs are typically assumed to range from negligibly small to anywhere from 3 to 15% of the 

investment cost. (2), (3), (4) This database assumes a retirement cost of 7.4% of the investment 

cost, which is the geometric mean of the assumed decommissioning costs found in Rama as well 

as Kannan, et al. (3), (4). Fixed operation and maintenance (O&M) costs have units of dollars per 

kilowatt of capacity per year, and are representative of things such as employee salaries and 

routine maintenance. (5) Variable operation and maintenance costs are given as dollars per 

megawatt-hour and are composed of costs arising from unexpected outages, lube oil, spare parts, 

etc. (5), (6) Variable O&M costs also include fuel costs, but these estimates have been excluded 

from this database. 

 

The heat rate for a power plant is the ratio of fuel energy input to electrical energy output, and 

has units of million BTU per megawatt-hour (MMBTU/MWh). The thermodynamic conversion 

efficiency is found by multiplying the heat rate by a unit conversion factor:  

   
    

  
                   

where η is the conversion efficiency, HR is the heat rate (in units of million BTU per megawatt-

hour), and 1 megawatt-hour is equal to 3.41 million BTUs. 

 

Regulated emissions from power plants include oxides of nitrogen (NOx) and sulfur (SOx), 

particulate matter (PM), non-methane volatile organic compounds (NMVOC), and greenhouse 
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gases (GHG). These are reported as kilograms per megawatt-hour of electrical energy out. 

Nitrogen dioxide (NO2) is registered as a GHG gas and is excluded from the NOx category. 

Methane emissions are also accounted for under the GHG emissions category. Construction 

GHG emissions represent the greenhouse gas emissions that can be attributed to building a 

power plant, and are often expressed in the literature as kilograms of carbon dioxide equivalent 

(CO2e) per megawatt-hour. However, construction GHG emissions can also be expressed in 

terms of capacity instead of energy output. The estimated construction GHG emission category 

converts the GHG emissions per unit energy into Mg CO2e per megawatt of capacity by 

multiplying unit conversion factors with the mean construction time, given in years under the 

lead/lag time metric. This is formally expressed as: 

   
         

     
            

where EC is the estimated construction GHG emissions, C is the construction GHG emissions (in 

kilograms CO2e per megawatt-hour), L is the lead/lag time of the power plant (in years),  8,760 

is the number of hours per year and there are 1,000 kilograms in a Mg. 

 

The facility land requirement is the physical footprint of the power plant, excluding land used for 

mining and offsite fuel preprocessing, per unit energy delivered over the lifetime of the plant 

expressed as square meters per megawatt-hour. The estimated facility land requirement is the 

physical footprint of the power plant per unit of power output, and has units of hectares per 

megawatt of capacity. This is found by multiplying unit conversion factors with the facility land 

requirement and lifetime of the plant, expressed in years under the lifetime metric. The estimated 

facility land requirement is formally expressed as:  
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where EF is the estimated facility land requirement, F is the facility land requirement (in square 

meters per megawatt-hour), LT is the lifetime of the power plant (in years), 8,760 is the number 

of hours per year and 10,000 is the number of square meters in a hectare. 

 

Forced outage rate (FOR), expressed as a percentage, estimates the probability that a power plant 

will have to shut down for an unexpected reason. (6) 

 

The literature generally reveals a high range of values for these metrics, and as such, the high, 

mean, and low values are reported for each metric. In some cases there is insufficient data 

available to calculate a mean; only one value is reported under these circumstances. 

Table 1: Summary of metrics 

Metric Units

Investment Cost* $

Retirement Cost* $

Fixed O&M* $

Variable O&M* $

Heat Rate MMBTU/MWh

Conversion Efficiency %

Operational NOx kg/MWh

Operational SOx kg/MWh

Operational PM kg/MWh

Operational NMVOC kg/MWh

Operational GHG kg CO2e/MWh

Construction GHG kg CO2e/MWh

Estimated Construction GHG Mg CO2e/MW

Facility Land Requirement m2/MWh
Estimated Facility Land Requirement ha/MW

Lifetime years

Lead/Lag Time years

FOR %

*2010 dollars  
 



41 
 

 

Power Generation Technologies 

This section provides the survey results of twenty power generation technologies. These 

technologies range from more conventional technologies such as pulverized coal, to less 

conventional technologies such as wave power. Power plants that rely on thermal energy input 

(i.e. biomass, coal, natural gas, and nuclear) typically use one of two thermodynamic cycles to 

create electricity: the Rankine cycle, and the Brayton cycle.  

 

In the Rankine cycle, steam is produced in a boiler and sent through a steam turbine. The turbine 

spins a generator in order to create electricity. The steam then exists the turbine and is condensed 

into liquid water and pumped back into the boiler; completing the cycle. In the Brayton cycle, 

ambient air is drawn in, compressed, and sent into a gas turbine. (6) The air mixes with fuel, 

which then ignites in the combustion chamber of the turbine. The hot gases move through the 

turbine, which spins a generator, before being exhausted. Some power plants will use the exhaust 

of a Brayton cycle  to provide the heat input for a Rankine cycle. 

 

Nuclear 

In the U.S. there are only two categories of commercially operating nuclear power plants :  

boiling water reactors (BWRs) and pressurized water reactors (PWRs). In both designs heat is 

produced from the fission of the fuel in the reactor, typically uranium. BWRs use the Rankine 

cycle to produce electricity. Typical temperatures and pressures for steam entering the turbine 

are around 300 °C and 7 MPa. (7)  
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PWRs are divided into two parts, the primary side and the secondary side. The primary side is 

enclosed within a containment structure and includes the reactor, pressurizer, reactor coolant 

pump(s), and steam generator(s). The pressurizer acts as a surge volume and helps maintain the 

primary side of the plant at the appropriate pressure. (7)  High pressure water at approximately 

14-16 MPa (5) is passed through the reactor on the primary side of the plant, where it is heated to 

around 320 °C. (7) The high temperature, high pressure water then goes into a steam generator 

where it transfers its heat to water on the secondary side of the plant. The high temperature, high 

pressure water then enters the steam generator where water from the secondary side of the plant 

is boiled to steam at a temperature of  300 °C and  pressure of 8 MPa. (5) The steam is expanded 

through  a turbine, which spins a generator to produce electricity. The steam is condensed into 

liquid water and pumped back into the steam generator. 

 

The investment cost of nuclear power plants range from around $2 to $3.4 million per megawatt. 

(8), (9) Fixed O&M costs varied between $34 to $94 per kilowatt per year. (9), (10), (11) 

Variable O&M costs ranged from $0.5 to $6 per megawatt-hour. (9), (10) The heat rate varied 

between 9.7 and 10.6 million BTU per megawatt-hour, which corresponds to a thermal 

efficiency range of 32-35%. (9), (12), (13) Nuclear power plants have no operational emissions, 

providing a distinct advantage over many other types of power plants. GHG emissions associated 

with the construction of  nuclear power plants are approximately 2 kilograms of carbon dioxide-

equivalent per megawatt-hour. (14) Plant lifetime is between 30 and 60 years. (8), (15) The 

lead/lag time for constructing a new plant varies between 4 and 6.7 years. (8), (9) Estimates of 

the forced outage rate fell between 5% and 12%. (9), (15), (16) The high, mean, and low values 
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for each metric for nuclear power has been tabulated in Table 2. The values reported here are 

typical for a Generation II nuclear facility. 

 

Pulverized Coal 

Coal-fired power plants made up approximately 45% of all electricity produced in the US in 

2009. (17) These power plants use the Rankine cycle to produce power. Steam exists the boiler at  

temperatures typically around 600 °C  pressures around 25 MPa. (6)  

 

The investment cost for pulverized coal plants varies between $1 and $2.4 million per megawatt. 

(9), (18) Fixed O&M costs range from about $16 to $74 per kilowatt per year, while variable 

O&M costs are typically between $2 and $3.7 per megawatt-hour. (9), (11), (18) The heat rate 

for pulverized coal plants varies from 7.3 to 11.4 million BTU per megawatt-hour, which 

respectively correspond to thermodynamic efficiencies of 47% and 30%. (9) The operational 

NOx emissions are between 0.2 and 1.3 kilograms per megawatt-hour, and operational SOx 

emissions vary between 0.1 to 3 kilograms per megawatt-hour. (11), (18), (19) Operational 

particulate matter emissions range from around 0.01 to 0.16 kilograms per megawatt-hour. (11), 

(18), (19) Non-methane volatile organic compound emissions are roughly 2x10
-3

 kilograms per 

megawatt-hour. (18) Construction GHG emissions are estimated to be 21.3 kilograms of carbon 

dioxide equivalent per megawatt-hour. (14) Operational GHG emissions are between 

approximately 730 and 890 kilograms of carbon dioxide equivalent per megawatt-hour. (11), 

(12), (19) The estimated facility land requirement for pulverized coal plants varies between 0.2 

and 1.1 hectares per megawatt. (20) The lifetime of pulverized coal plants ranges between 30 and 

40 years. (12), (14), (18), (19) The lead/lag time for pulverized coal varies between 3.3 to 4.2 
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years. (9), (10), (21) The forced outage rate is between 2% and 8%. (9), (19) The high, mean, 

and low values for each metric for pulverized coal power plants have been tabulated in Table 3. 

 

Combustion Turbines 

Combustion turbines, or gas turbines, use the Brayton cycle to produce electricity, and are 

typically used to meet peak loads in electricity demand because of their ability to start-up 

quickly. (5), (6) Ambient air is compressed to pressures typically ranging between 1.5-2 MPa. 

(6) The ambient air is combined with fuel, typically natural gas, and ignited, producing exhaust 

gas at temperatures as high as 1,400 °C. (6)  

 

The investment cost for a combustion turbine power plant ranges from a low of $0.32 to a high 

of $0.63 million per megawatt. (5) The fixed O&M costs vary between $8.4 and $26.4 per 

kilowatt per year. (9) The variable O&M costs range from $3.2 to $5.3 per megawatt-hour. (9), 

(10) The heat rate, which is taken from data presented in Kehlhofer, et al. (9), is estimated to be 

between 8.12 and 9.74 million BTU per megawatt-hour. This corresponds to a thermodynamic 

efficiency range of 35-42%. The operational NOx emissions range from 0.05 and 0.6 kilograms 

per megawatt-hour. (18), (22) Operational particulate matter vary between 0 and 0.01 kilograms 

per megawatt-hour, while the operational NMVOC emissions range from 0 to 3x10
-3

 kilograms 

per megawatt-hour. (18), (22) Operational GHG emissions are between roughly 480 and 575 

kilograms of carbon dioxide equivalent per megawatt-hour. (12), (22), (23) The range of values 

presented by the literature for the expected lifetime of the plant is 25 to 30 years. (12), (18), (22) 

The lead/lag time varies from 1 to 2.5 years. (9), (10), (22) The forced outage rate varies between 
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5% to 10%. (9), (22) The high, mean, and low values for each metric for combustion turbine 

power plants are given in Table 4. 

 

Natural Gas Combined Cycle 

Natural gas combined cycle (NGCC) power plants consist of a Brayton (gas) cycle and a 

Rankine (steam) cycle operated in tandem.  The hot exhaust gas from the combustion turbine in 

the Brayton cycle generates steam for the Rankine cycle. The Brayton side of the power plant is 

commonly referred to as the topping cycle, while the Rankine side is referred to as the bottoming 

cycle. Heat transfer between the cycles is accomplished with a heat recovery steam generator 

(HRSG). Typical temperature and pressures for the inlet of the steam turbine are roughly 540 °C 

and 10-16 MPa; respectively. (9) 

 

Literature values for the investment cost for a natural gas combined cycle power plant vary from 

$0.58 to $0.84 million per megawatt. (9) Fixed O&M costs range widely from $7.9 to $70.4 per 

kilowatt per year. (9) The variable O&M costs range between $1.7 and $4.2 per megawatt-hour. 

(9), (11) The heat rate varies between 5.78 to 6.82 million BTU per megawatt-hour, 

corresponding to an efficiency range of 50-59%. (9) Operational NOx emission estimates ranges 

from 0.03 to 0.7 kilograms per megawatt-hour. (11), (18), (22), (24) Operational particulate 

matter emission estimates vary between 0 and approximately 0.01 kilograms per megawatt-hour. 

(11), (18), (22) NMVOC emissions range from 0 to 3x10
-3

 kilograms per megawatt-hour. (18), 

(22) Operational GHG emission estimates vary from about 330 to 410 kilograms of carbon 

dioxide equivalent per megawatt-hour. (11), (12), (22) Construction related GHG emissions are 

estimated to be roughly 420 Mg of carbon dioxide equivalent per megawatt. (25) 
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Table 2: Survey of nuclear power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
3.43 2.72 2.11

Retirement Cost 

(million$/MW)
0.25 0.20 0.16

Fixed O&M Cost 

($/kW-yr)
93.54 53.73 33.76

Variable O&M Cost 

($/MWh)
6.08 2.90 0.52

Heat Rate 

(MMBTU/MWh)
10.62 10.32 9.74

Estimated 

Efficiency (%)
35.00 33.07 32.10

Construction GHG        

(kg CO2e/MWh)

Estimated 

Construction GHG        

(Mg CO2e/MW)

111 86.89 66.55

Lifetime (yr) 60.00 40.00 30.00

Lead/Lag Time (yr) 6.67 5.22 4.00

FOR (%) 12.00 8.25 5.00

1.90

 

 

 

 

Table 3: Survey of pulverized coal power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
2.36 1.54 1.06

Retirement Cost 

(million$/MW)
0.17 0.11 0.08

Fixed O&M Cost 

($/kW-yr)
74.47 32.00 15.83

Variable O&M Cost 

($/MWh)
3.69 2.64 1.97

Heat Rate 

(MMBTU/MWh)
11.37 9.12 7.26

Estimated 

Efficiency (%)
47.00 38.50 30.00

Operational NOx 

(kg/MWh)
1.30 0.79 0.18

Operational SOx 

(kg/MWh)
2.85 0.92 0.11

Operational PM 

(kg/MWh)
0.15 0.08 8.00E-03

Operational 

NMVOC (kg/MWh)

Operational GHG          

(kg CO2e/MWh)
886 834 730

Construction GHG        

(kg CO2e/MWh)

Estimated 

Construction GHG        

(Mg CO2e/MW)

47.43 43.40 37.95

Facility Land 

Requirement 

(m2/MWh)

0.03 0.02 0.01

Estimated Facility 

Land Requirement 

(ha/MW)

1.14 0.55 0.16

Lifetime (yr) 40.00 36.25 30.00

Lead/Lag Time (yr) 4.17 3.81 3.33

FOR (%) 8.00 5.33 2.00

1.30

2.01E-03
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The lifetime of a NGCC facility is estimated at 30 years. (12), (18), (22) The lead/lag time 

estimates vary from 1.67 to 3 years. (9), (10), (26) The forced outage rate varies between 6% and 

10%. (9), (22) The high, mean, and low values for each metric for natural gas combined cycle 

power plants are given in Table 5. 

 

Integrated Gasification Combined Cycle 

Coal 

Integrated gasification combined cycle (IGCC) coal power plants closely resemble NGCC power 

plants except that the fuel gas for the IGCC plant comes from gasifying coal or other solid fuels. 

(9) The so-called syngas is burned in the gas turbine cycle in the same manner as natural gas in 

the NGCC plant. 

 

The investment cost vary from $1.2 to $2.8 million per megawatt. (10), (11), (16), (18) Estimates 

for fixed O&M costs range between $23.5 and $72 per kilowatt per year, while estimates for 

variable O&M costs vary between $1.1 and $3 per megawatt-hour. (10), (11), (16), (18) An 

exchange rate of 1 CAD to 0.83 USD is assumed when converting 2005 Canadian dollars into 

2005 US dollars. (27) The heat rate varies between 7.78 and 8.89 million BTU per megawatt-

hour, which indicates a thermodynamic efficiency range of around 38% to 44%. (9), (11), (18) 

Operational NOx emissions range between 0.1 and 1.3 kilograms per megawatt-hour, while 

operational SOx emission estimates vary from 0.1 to 2.9 kilograms per megawatt-hour. (9), (11), 

(18)
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Table 4: Survey of combustion turbines 

Metrics High Mean Low

Investment Cost 

(million$/MW)
0.63 0.47 0.32

Retirement Cost 

(million$/MW)
0.05 0.04 0.02

Fixed O&M Cost 

($/kW-yr)
26.38 15.90 8.44

Variable O&M Cost 

($/MWh)
5.28 4.09 3.17

Heat Rate 

(MMBTU/MWh)
9.74 8.84 8.12

Estimated 

Efficiency (%)
42.00 38.75 35.00

Operational NOx 

(kg/MWh)
0.62 0.33 0.05

Operational PM 

(kg/MWh)
1.02E-02 5.11E-03 0.00

Operational 

NMVOC (kg/MWh)
3.25E-03 1.62E-03 0.00

Operational GHG          

(kg CO2e/MWh)
575 504 478

Lifetime (yr) 30.00 28.33 25.00

Lead/Lag Time (yr) 2.50 1.88 1.00

FOR (%) 10.00 7.67 5.00

 

 

 

Table 5: Survey of natural gas combined cycle power 

plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
0.84 0.71 0.58

Retirement Cost 

(million$/MW)
0.06 0.05 0.04

Fixed O&M Cost 

($/kW-yr)
70.36 35.56 7.91

Variable O&M Cost 

($/MWh)
4.22 2.79 1.68

Heat Rate 

(MMBTU/MWh)
6.82 6.28 5.78

Estimated 

Efficiency (%)
59.00 54.50 50.00

Operational NOx 

(kg/MWh)
0.62 0.31 3.00E-02

Operational PM 

(kg/MWh)
1.02E-02 3.40E-03 0.00

Operational 

NMVOC (kg/MWh)
3.25E-03 1.62E-03 0.00

Operational GHG          

(kg CO2e/MWh)
407 369 330

Construction GHG        

(kg CO2e/MWh)

Estimated 

Construction GHG        

(Mg CO2e/MW)

495 420 275

Lifetime (yr) 30.00 30.00 30.00

Lead/Lag Time (yr) 3.00 2.54 1.67

FOR (%) 10.00 8.00 6.00

18.85
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Operational particulate matter emissions are estimated to range between 2.5x10
-3

 to 0.2 

kilograms per megawatt-hour. (9), (11), (18) Operational NMVOC emissions are said to be 2x10
-

3
 kilograms per megawatt-hour. (18) GHG emissions associated with fuel combustion range 

between approximately 700 to 980 kilograms of carbon dioxide equivalent per megawatt-hour. 

(9), (11), (16) GHG emissions associated with power plant construction are estimated to be 

roughly 1 kilogram of carbon dioxide equivalent per megawatt-hour. (23) The lifetime of the an 

IGCC facility is estimated to be between 35 and 40 years. (18), (19) Estimates on the 

construction lead/lag time vary between 3.75 and 5 years. (16), (21), (28) Forced outage rate 

estimates vary between 8% and 21%. (19), (21) The high, mean, and low values for each metric 

for natural gas combined cycle power plants are given in Table 6. 

 

Biomass 

Integrated gasification combined cycle biomass power plants are very similar to their coal-fueled 

counter parts.  Differences in the physical and chemical properties of biomass and coal usually 

require different kinds of gasifiers and gas clean-up equipment, but the power producing 

equipment is identical.  

 

The investment cost for integrated biomass gasification combined cycle power plants ranges 

from around $1.6 to $2.2 million per megawatt. (6), (29), (30), (31) The fixed O&M costs varies 

from approximately $60 to $67 per kilowatt per year, while the variable O&M costs range from 

$4.9 to $5.2 per megawatt-hour. (31) Estimates on the heat rate vary from 9.2 to 10 million BTU 

per megawatt-hour, which corresponds to a thermal efficiency range of 37 to 36%. (29), (30), 

(31) Operational NOx emissions vary from 0.2 to 1 kilograms per megawatt-hour. (29), (30) 
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Operational SOx emission estimates range from 0.02 to 0.1 kilograms per megawatt-hour, while 

operational particulate matter emission estimates range from 2x10
-3

 to 5x10
-3

 kilograms per 

megawatt-hour. (29), (30) Operational NMVOC emissions are estimated to be 0.5 kilograms per 

megawatt-hour, and operational GHG emissions are estimated to be roughly 50 kilograms of 

carbon dioxide equivalent per megawatt-hour. (29) GHG emissions attributed to plant 

construction are estimated at 12 kilograms per megawatt-hour. (29) The estimated facility land 

requirement is about 3 hectares per megawatt. (20) Mann and Spath as well as Bain, et al. 

estimate the plant lifetime to be 30 years. (29), (31) The lead/lag time is estimated to be 2 years. 

(31)  The high, mean, and low values for each metric for integrated gasification combined cycle 

biomass power plants have been tabulated in Table 7. 

 

Integrated Pyrolysis Combined Cycle 

Integrated pyrolysis combined cycle (IPCC) is another route for utilizing biomass to create 

electricity. It is similar to IGCC except that solid biomass is turned into a liquid known as bio-oil 

instead of syngas. The bio-oil is used as a fuel for the gas turbine cycle, while the waste heat 

from the gas turbine is used to produce steam on the Rankine side of the plant just like NGCC or 

IGCC. (32) 

 

All data for integrated pyrolysis combined cycle power plants are adopted from Sandvidg et al. 

(32). The investment cost varies between around $2 to $3.7 million per megawatt. 
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Table 6: Survey of integrated gasification combined 

cycle coal power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
2.76 2.12 1.22

Retirement Cost 

(million$/MW)
0.20 0.16 0.09

Fixed O&M Cost 

($/kW-yr)
72.04 50.06 23.53

Variable O&M Cost 

($/MWh)
3.04 2.26 1.15

Heat Rate 

(MMBTU/MWh)
8.89 8.43 7.78

Estimated 

Efficiency (%)
43.84 40.55 38.34

Operational NOx 

(kg/MWh)
1.30 0.57 0.08

Operational SOx 

(kg/MWh)
2.85 1.01 0.07

Operational PM 

(kg/MWh)
0.15 0.07 2.50E-03

Operational 

NMVOC (kg/MWh)

Operational GHG          

(kg CO2e/MWh)
980 785 700

Construction GHG        

(kg CO2e/MWh)

Estimated 

Construction GHG        

(Mg CO2e/MW)

43.78 37.22 32.84

Lifetime (yr) 40.00 37.50 35.00

Lead/Lag Time (yr) 5.00 4.25 3.75

FOR (%) 21.00 15.67 8.00

1.00

2.01E-03

 

 

 

Table 7: Survey of integrated gasification combined 

cycle biomass power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
2.24 1.91 1.59

Retirement Cost 

(million$/MW)
0.17 0.14 0.12

Fixed O&M Cost 

($/kW-yr)
67.10 63.13 59.53

Variable O&M Cost 

($/MWh)
5.19 5.07 4.94

Heat Rate 

(MMBTU/MWh)
10.03 9.56 9.17

Estimated 

Efficiency (%)
37.20 35.72 34.00

Operational NOx 

(kg/MWh)
1.00 0.56 0.19

Operational SOx 

(kg/MWh)
0.09 0.06 2.27E-02

Operational 

NMVOC (kg/MWh)

Operational GHG          

(kg CO2e/MWh)

Construction GHG        

(kg CO2e/MWh)

Estimated 

Construction GHG        

(Mg CO2e/MW)

Facility Land 

Requirement 

(m2/MWh)

Estimated Facility 

Land Requirement 

(ha/MW)

Lifetime (yr)

Lead/Lag Time (yr)

30.00

2.00

12.00

210

0.52

49

0.13

3.31
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Fixed O&M costs ranges from about $120 to $144 per kilowatt per year, while variable O&M 

costs are estimated to be around $16 per megawatt-hour. The heat rate, and corresponding 

thermodynamic efficiency, are respectively about 9 million BTU per megawatt-hour and 37%. 

Finally, the lead/lag time is estimated at 2 years. The high, mean, and low values for each metric 

for integrated pyrolysis combined cycle power plants are given in Table 8. 

 

Oil-Fired 

Oil can be direct-fired in an internal combustion engine or a gas turbine to generate electric 

power. The over-night investment cost for an oil-fired power plant varies between $1 to $1.7 

million per megawatt. (6), (18) The fixed O&M costs range from $13 to $20 per kilowatt per 

year, and the variable O&M costs range from $1.6 to $6 per megawatt-hour. (18), (33) The high 

values are indicative of a oil-fired gas turbine, while the low values correspond to a oil-fired 

power plant using a steam turbine. (33) The heat rate varies very little between sources, ranging 

from 9.2 to 9.4 million BTU per megawatt-hour. (12), (18), (34) This corresponds to a 

thermodynamic efficiency range of 36-37%. Operational NOx emissions, adopted from Breeze 

as well as Roth and Ambs, vary widely from 0.7 to 20 kilograms per megawatt-hour. (6), (18) 

Operational SOx emissions range from 2 to 14 kilograms per megawatt-hour. (18), (24) 

Operational particulate matter and NMVOC emissions, found from data presented by Roth and 

Ambs, are respectively 0.2 and 4x10
-3

 kilograms per megawatt-hour. (18) Operational GHG 

emissions are between 700 and 760 kilograms of carbon dioxide equivalent per megawatt-hour 

(12), (23). The operating lifetime of an oil-fired power plant is between 20 and 30 years. (12), 

(33) The lead/lag time is estimated to be 3 years. (28) The high, mean, and low values for each 

metric for oil-fired power plants have been tabulated in Table 9. 
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Municipal Solid Waste 

Municipal solid waste can be burned in a boiler similar to a traditional coal-fired power plant, 

gasified like coal or biomass, or used as the feedstock in a pyrolysis unit.  

 

Investment cost estimates for municipal solid waste power plants vary from$ 5.6 to $11.2 million 

per megawatt. (6), (18) Fixed O&M costs are estimated to be $215 per kilowatt per year, while 

the variable O&M costs are estimated to be around $22.5 per megawatt-hour. (18) The heat rate 

are estimated to be roughly 16.9 million BTU per megawatt-hour, which corresponds to a 

thermal efficiency of 20%. (18) Operational NOx emissions range from 0.01 to 1.6 kilograms per 

megawatt-hour. (18), (35) Operational SOx emissions are estimated at 0.6 kilograms per 

megawatt-hour and operational particulate matter emissions at 0.04 kilograms per megawatt-

hour. (18) Operational NMVOC and GHG emissions are respectively estimated at 0.01 and 150 

kilograms per megawatt-hour. (18) The lifetime is estimated at 25 years. (18) The high, mean, 

and low values for each metric for municipal solid waste power plants have been tabulated in 

Table 10. 

 

Landfill Gas Recovery 

Landfill gas, consisting of about 70% methane and 30% carbon dioxide, can be used for electric 

power generation. (36).  Most landfill gas recovery power plants are too small for steam or gas 

turbine systems.  They currently use engine generator sets although micro-turbines and fuel cells 

may eventually find markets in landfill gas power generation.  
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Table 8: Survey of integrated pyrolysis combined cycle 

power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
3.71 2.85 2.00

Retirement Cost 

(million$/MW)
0.27 0.21 0.15

Fixed O&M Cost 

($/kW-yr)
144 132 119

Variable O&M Cost 

($/MWh)

Heat Rate 

(MMBTU/MWh)

Estimated 

Efficiency (%)

Lead/Lag Time (yr)

16.12

9.11

37.42

2.00

 

 

 

 

Table 9: Survey of oil-fired power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
1.71 1.44 1.03

Retirement Cost 

(million$/MW)
0.13 0.11 0.08

Fixed O&M Cost 

($/kW-yr)
19.83 16.75 13.38

Variable O&M Cost 

($/MWh)
6.08 3.21 1.58

Heat Rate 

(MMBTU/MWh)
9.43 9.36 9.22

Estimated 

Efficiency (%)
37.00 36.45 36.16

Operational NOx 

(kg/MWh)
20.00 9.23 0.68

Operational SOx 

(kg/MWh)
14.15 8.22 2.29

Operational PM 

(kg/MWh)

Operational 

NMVOC (kg/MWh)

Operational GHG          

(kg CO2e/MWh)
762 733 704

Lifetime (yr) 30.00 26.67 20.00

Lead/Lag Time (yr) 3.00

3.56E-03

0.17
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Investment costs range from around $1.9 to $2.8 million per megawatt of capacity. (10), (18), 

(37) Fixed O&M costs are estimated to vary between $74.5 and $119 per kilowatt per year, while 

the variable O&M costs range from $0 to $0.01 per megawatt-hour. (10), (18) Estimates for the 

heat rate vary between 10.4 and 13.6 million BTU per megawatt-hour, which corresponds to a 

thermal efficiency range of 25% to 33%. (10), (18), (38) Operational NOx emissions range from 

approximately 0.2 to 2.2 kilograms per megawatt-hour. (31) Operational particulate matter 

emission estimates vary from 0.04 to 0.4 kilograms per megawatt-hour. (31) The lifetime of 

these power plants is estimated to be 20 years. (18) The lead/lag time of landfill gas recovery 

facilities is estimated to be 3 years. (10) The high, mean, and low values for each metric for 

landfill gas recovery power plants are given in Table 11. 

 

Fuel Cells 

Fuel cells employ electrochemical rather than thermo-mechanical processes to turn chemical 

energy into electricity.  They consist of positive and negative electrodes where fuel and oxygen 

are converted to ions and an intervening liquid or solid electrolyte that expedites the counter flow 

of positive ions (cations) and negative ions (anions) that generates the electromotive force 

between the electrodes. (36) 

 

Investment costs range between $2.1 and $5 million per megawatt. (6), (18), (10) Estimations for 

fixed O&M costs vary widely between approximately $6 to $323 per kilowatt per year, while 

variable O&M costs are estimated to range from $41 to $50 per megawatt-hour. (10), (18) 

Literature values for the heat rate for fuel cell power plants range between 5.7 and 8.5 million 

BTU per megawatt-hour, which translates to a thermal efficiency between 40% and 60%. (18), 
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(39), (40) Operational NOx emissions estimates vary from 2x10
-3

 to 0.02 kilograms per 

megawatt-hour, while both SOx and particulate matter emissions range from 0 to 9x10
-4

 and 0 to 

1.4x10
-3

kilograms per megawatt-hour; respectively. (18), (40) NMVOC emissions vary between 

0 and 0.01 kilograms per megawatt-hour. (18), (40) Operational GHG emission estimates range 

from 180 to 510 kilograms of carbon dioxide equivalent per megawatt-hour. (18), (40) 

Construction GHG emissions are estimated to be 2 kilograms of carbon dioxide equivalent per 

megawatt-hour. (41) Power plant lifetime is estimated at 25 years. (18) The forced outage rate is 

3%. (10), (28) The high, mean, and low values for each metric for fuel cell power plants have 

been listed in Table 12. 

 

Solar Photovoltaic 

Solar photovoltaic (PV) panels work by directly converting solar energy, more specifically 

photons, into electricity. In a process known as the photoelectric effect, incoming photons 

displace electrons thus creating electricity. A semiconductor material usually provides the 

electrons in a solar PV panel. (42) Solar PV power plants are generally made up of many arrays 

of PV panels, which can either be stationary or have a tracking mechanism that follows  the sun. 

Investment costs vary from $5.6 to $6.2 million per megawatt. (6), (10), (18) Fixed O&M costs 

range from $12 to around $14 per kilowatt per year, while variable O&M costs are estimated to 

be 0. (10), (18) Sunlight to electricity conversion efficiencies for solar PV power plants range 

from 13% to 14%. (6), (18) Estimates for construction GHG emissions range from 220 to 375 

kilograms of carbon dioxide equivalent per megawatt-hour. (6), (42) 
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Table 10: Survey of municipal solid waste power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
11.20 8.10 5.60

Retirement Cost 

(million$/MW)
0.83 0.60 0.41

Fixed O&M Cost 

($/kW-yr)

Variable O&M Cost 

($/MWh)

Heat Rate 

(MMBTU/MWh)

Estimated 

Efficiency (%)

Operational NOx 

(kg/MWh)
1.55 0.66 7.74E-02

Operational SOx 

(kg/MWh)

Operational PM 

(kg/MWh)

Operational 

NMVOC (kg/MWh)

Operational GHG          

(kg CO2e/MWh)

Lifetime (yr)

20.21

216

22.46

16.87

0.59

3.56E-02

1.38E-02

148

25.00

 

Table 11: Survey of landfill gas recovery power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
2.78 2.28 1.91

Retirement Cost 

(million$/MW)
0.21 0.17 0.14

Fixed O&M Cost 

($/kW-yr)

Variable O&M Cost 

($/MWh)

Heat Rate 

(MMBTU/MWh)
13.65 12.07 10.40

Estimated 

Efficiency (%)
32.79 28.61 24.99

Operational NOx 

(kg/MWh)
2.15 1.06 0.15

Operational PM 

(kg/MWh)
0.41 0.22 3.63E-02

Lifetime (yr)

Lead/Lag Time (yr)

0.00

119

20.00

3.00
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The estimated facility land requirement for falls between 11 and 57 hectares per megawatt. (20) 

Literature values for the lifetime of solar PV plants range from 30 years to 60 years. (12), (20) 

The construction lead/lag time is estimated to be 2 years. (10), (28) The high, mean, and low 

values for each metric for solar photovoltaic are given in Table 13. 

 

Solar Thermal 

Solar thermal power plants create electricity by concentrating sunlight into receivers that can 

reach temperatures of 100 °C  to 1,500 °C, depending upon the design.  The heat is used to 

generate steam to drive a  Rankine cycle. Several schemes have been developed for 

concentrating solar energy for thermal cycles: power towers, parabolic troughs, and parabolic 

dishes. (43) 

 

Investment costs for solar thermal power plants fall between $2.7 and $4.9 million per megawatt. 

(6), (10), (18) Literature values for fixed O&M costs vary from $59 to $63 per kilowatt per year, 

while the variable O&M costs range from $0 to $7.4 per megawatt-hour. (10), (18) The heat rate 

varies from 9.9 to 22.7 million BTU per megawatt-hour, which corresponds to a thermal 

efficiency range of 15% to roughly 35%. (6), (10) Construction GHG emissions vary from 13 to 

40 kilograms of carbon dioxide equivalent per megawatt-hour. (6), (24), (42) The estimated 

facility land requirement falls between 10 and 15 hectares per megawatt. (20) The power plant 

lifetime is estimated to be 30 years. (18), (20) The construction lead/lag time is estimated to be 3 

years. (10) The high, mean, and low values for each metric for solar thermal power plants have 

been tabulated in Table 14. 
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Geothermal 

Geothermal power plants convert thermal energy within the earth’s crust into electricity usually 

via a Rankine cycle. Geothermal energy is available worldwide, provided the well is drilled deep 

enough. In some parts of the world, like Iceland, geothermal energy is very close to the surface.  

More typically, wells need to be drilled to depths ranging from around 2 to 8 kilometers to reach 

temperatures high enough to generate steam. (43) 

 

Literature estimates for the investment cost of geothermal power plants range from $1.7 to $4.6 

million per megawatt. (10), (44) Fixed O&M costs are estimated to be $171 per kilowatt per 

year, while variable O&M costs are estimated to be 0. (10) The heat rate varies from 22.7 to 42.6 

million BTU per megawatt-hour, which equates to a thermal efficiency range of 8-15%. (10), 

(44), (45) Operational SOx emissions are estimated between 0 and 0.02 kilograms per megawatt-

hour. (42), (44) Estimates for operational GHG emissions range from 0 to 380 kilograms of 

carbon dioxide equivalent per megawatt-hour. (23), (44), (46) Construction GHG emissions vary 

widely between 1 to 38 kilograms of carbon dioxide equivalent per megawatt-hour. (23), (42) 

The estimated facility land requirement varies from roughly 470 to 3,200 hectares per megawatt. 

(47) The lifetime varies from 30 to 50 years. (44) The construction lead/lag times range from 1 to 

4 years. (10), (44) The forced outage rate is estimated at 5%. (44) The high, mean, and low 

values for each metric for geothermal power plants are given in Table 15. 
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Land-based Wind Power 

Wind turbines convert the kinetic energy of wind into electricity. The wind spins the rotor blades 

that are attached to a shaft that turns the generator. The energy potential in wind is proportional 

to the wind speed raised to the third power. (6)  

 

The investment costs of inland wind turbines range from approximately $1 to $2 million per 

megawatt hour. (10), (18), (48) Fixed O&M costs vary from $12.7 to $38 per kilowatt per year, 

while variable O&M costs range between $0 and roughly $11 per megawatt-hour. (10), (18), 

(48) The efficiency of wind turbines is between 26% and 36%. (49) Estimates on construction 

GHG emissions vary from 10 to 18 kilograms of carbon dioxide equivalent per megawatt-hour. 

(42), (50) Estimates on land usage vary from around 23 to 61 hectares per megawatt. The 

lifetime of wind turbines is 25 years. (14), (18) The lead/lag time varies between 1 and 3 years. 

(10), (28) The forced outage rate is estimated to be 10%. (28) The high, mean, and low values for 

each metric for inland wind turbines have been tabulated in Table 16. 

 

Offshore Wind Power 

Offshore wind farms offer some advantages over inland wind farms, including steadier and more 

predictable winds along with lower turbulence. Political opposition to siting wind turbines on 

land in some locations has forced developers to consider offshore wind farms. (6) 
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Table 12: Survey of fuel cell power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
5.04 3.38 1.57

Retirement Cost 

(million$/MW)
0.37 0.25 0.12

Fixed O&M Cost 

($/kW-yr)
323 164 5.87

Variable O&M Cost 

($/MWh)
49.80 45.39 40.98

Heat Rate 

(MMBTU/MWh)
8.53 7.15 5.68

Estimated 

Efficiency (%)
60.00 48.74 40.00

Operational NOx 

(kg/MWh)
1.60E-02 8.77E-03 1.55E-03

Operational 

NMVOC (kg/MWh)
7.74E-03 3.87E-03 0.00E+00

Operational GHG          

(kg CO2e/MWh)
508 344 181

Construction GHG        

(kg CO2e/MWh)

Estimated 

Construction GHG        

(Mg CO2e/MW)

Lifetime (yr)

Lead/Lag Time (yr) 3.00 3.00 3.00

2.04

53.68

25.00

 

 

 

Table 13: Survey of solar photovoltaic plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
6.17 5.92 5.60

Retirement Cost 

(million$/MW)
0.46 0.44 0.41

Fixed O&M Cost 

($/kW-yr)
13.66 12.90 12.13

Efficiency (%) 14.00 13.50 13.00

Construction GHG        

(kg CO2e/MWh)
170 123 99

Estimated 

Construction GHG        

(Mg CO2e/MW)

2,977 2,154 1,734

Facility Land 

Requirement 

(m2/MWh)

0.44 0.33 0.16

Estimated Facility 

Land Requirement 

(ha/MW)

23.00 11.66 4.31

Lifetime (yr) 60.00 40.00 30.00

Lead/Lag Time (yr) 2.00 2.00 2.00
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The investment costs for offshore wind turbines range from $1.6 to $3.5 million per megawatt. 

(6), (11), (51) Fixed O&M costs vary from $17 to $88 per kilowatt per year, while the variable 

O&M costs are said to be $0. (6), (11) The efficiency was estimated at 40%. (52) Estimates on 

the GHG emissions from construction range from 7 to 9 kilograms of carbon dioxide equivalent 

per megawatt-hour. (6), (42) The lifetime of offshore wind turbines is 20 years. (52) The lead/lag 

time vary from 2 to 4 years. (10), (28) The forced outage rate varies between 5% and 15%. (28), 

(53) The high, mean, and low values for each metric for offshore wind turbines are listed in 

Table 17. 

 

Hydroelectric  

Hydroelectric stations convert the potential energy of impounded water or the kinetic energy of 

flowing water into electricity. The mass of water acting under the force of gravity spins a turbine 

that is connected to an electric generator. Hydroelectric stations can be located along rivers with 

high water velocities (run-of-river); dams can be constructed to create a height difference along a 

river (impoundment hydropower); or water can be pumped to a higher elevation and later 

released (pumped storage). (43) Investment costs for hydroelectric stations are estimated to be 

between $2.1 and $5.1 million per megawatt. (10), (54) Fixed O&M costs are estimated at $14 

per kilowatt per year, while the variable O&M costs are estimated at $2.5 per megawatt-hour. 

(10) Estimates on the efficiency of hydroelectric stations vary from about 65% to 76%. (55) 

Construction GHG emission estimates range from 10 to 13 kilograms of carbon dioxide 

equivalent per megawatt-hour. (42) 
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Table 14: Survey of solar thermal power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
4.88 3.92 2.69

Retirement Cost 

(million$/MW)
0.36 0.29 0.20

Fixed O&M Cost 

($/kW-yr)
63.04 61.02 58.99

Variable O&M Cost 

($/MWh)
7.35 3.68 0.00

Heat Rate 

(MMBTU/MWh)
22.73 15.26 9.88

Estimated 

Efficiency (%)
34.50 24.88 15.00

Construction GHG        

(kg CO2e/MWh)
39.98 25.84 13.40

Estimated 

Construction GHG        

(Mg CO2e/MW)

1,051 679 352

Facility Land 

Requirement 

(m2/MWh)

0.55 0.46 0.37

Estimated Facility 

Land Requirement 

(ha/MW)

14.49 12.05 9.61

Lifetime (yr) 30.00 30.00 30.00

Lead/Lag Time (yr) 3.00

 

 

 

Table 15: Survey of geothermal power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
4.57 3.24 1.69

Retirement Cost 

(million$/MW)
0.34 0.24 0.13

Fixed O&M Cost 

($/kW-yr)

Variable O&M Cost 

($/MWh)

Heat Rate 

(MMBTU/MWh)
42.63 31.69 22.73

Estimated 

Efficiency (%)
15.00 11.34 8.00

Operational SOx 

(kg/MWh)
0.06 3.08E-02 0.00

Operational GHG          

(kg CO2e/MWh)
380 112 0.00

Construction GHG        

(kg CO2e/MWh)
37.79 19.40 1.00

Estimated 

Construction GHG        

(Mg CO2e/MW)

1324 425 8.76

Facility Land 

Requirement 

(m2/MWh)

74 46 18

Estimated Facility 

Land Requirement 

(ha/MW)

3,238 1,610 473

Lifetime (yr) 50.00 40.00 30.00

Lead/Lag Time (yr) 4.00 2.50 1.00

FOR (%) 5.00

0.00

171
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Table 16: Survey of land-based wind turbines 

Metrics High Mean Low

Investment Cost 

(million$/MW)
1.91 1.51 0.95

Retirement Cost 

(million$/MW)
0.14 0.11 0.11

Fixed O&M Cost 

($/kW-yr)
38.12 25.70 12.71

Variable O&M Cost 

($/MWh)
15.25 7.17 0.00

Efficiency (%) 36.53 31.57 26.64

Construction GHG        

(kg CO2e/MWh)
17.65 13.92 10.20

Estimated 

Construction GHG        

(Mg CO2e/MW)

464 244 89.34

Facility Land 

Requirement 

(m2/MWh)

2.78 1.95 1.03

Estimated Facility 

Land Requirement 

(ha/MW)

60.81 42.66 22.53

Lifetime (yr) 25.00 25.00 25.00

Lead/Lag Time (yr) 3.00 2.00 1.00

FOR (%) 10.00

 

 

 

Table 17: Survey of offshore wind turbines 

Metrics High Mean Low

Investment Cost 

(million$/MW)
3.55 2.39 1.60

Retirement Cost 

(million$/MW)
0.26 0.18 0.12

Fixed O&M Cost 

($/kW-yr)
88.31 52.56 16.81

Efficiency (%)

Construction GHG        

(kg CO2e/MWh)
8.90 7.93 6.96

Estimated 

Construction GHG        

(Mg CO2e/MW)

312 208 122

Lifetime (yr)

Lead/Lag Time (yr) 4.00 3.00 2.00

FOR (%) 15.00 10.00 5.00

40.00

20.00
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The estimated facility land requirement varies widely from 0.1 to 2,200 hectares per megawatt. 

(20) Lifetime estimates of hydroelectric stations range from 30 years to 100 years. (20), (54) The 

lead/lag time estimates range from 0.5 to 8 years. (10), (54) The forced outage rate is estimated 

at 2%. (54) The high, mean, and low values for each metric for hydroelectric stations have been 

tabulated in Table 18. 

 

Ocean Thermal Energy Conversion 

There are two different types of ocean thermal energy conversion (OTEC) power plants: direct 

and indirect. Direct OTEC plants flash water at around 25 °C into steam, which is then passed 

through a low pressure turbine. Indirect OTEC plants resemble the bottoming cycle portion of 

combined cycle power plants. However, ammonia, propane, or Freon is typically used as the 

working fluid instead of water in these plants. (43) 

 

Estimates on the investment costs for oceanic thermal energy conversion power plants vary 

widely between $4.5 and $39 million per megawatt. (6), (56), (57) The heat rate ranges from 114 

to 171 million BTU per megawatt-hour, which corresponds to a thermal efficiency range of 2% 

to 3%. (6), (58), (59) Construction GHG emission estimates vary between 4 and 5 kilograms of 

carbon dioxide equivalent per megawatt-hour. (23), (60) The lifetime of the plant is estimated to 

be 30 years. (57) The lead/lag time is estimated to be 2 years. (56), (57) The high, mean, and low 

values for each metric for oceanic thermal energy conversion power plants have been tabulated 

in Table 19. 
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Tidal Power 

Tidal power plants  convert the potential energy in the tides into electrical energy. A basin 

behind a barrage is used to store water. Changes in the tides spin a r vane that is located below a 

barrage. Sluice gates are used on either side of the barrage to help control the flow of water into 

and out of the basin. (6) 

 

Investment cost estimates for tidal power plants vary from $3.4 to $6.6 million per megawatt. 

(56), (61) The lifetime of tidal power plants ranges from 25 to 80 years. (56), (61) Estimates for 

the lead/lag time range from 1 to 8.3 years. (56), (61) Finally, the forced outage rate is estimated 

to be between 2% and 5%. (61) The high, mean, and low values for each metric for tidal power 

have been listed in Table 20. 

 

Wave Power 

There are several ways to convert the kinetic energy of waves into electricity. For example, 

waves can be used to move a pendulum, or compress an air column that spins a generator. A 

raised lagoon can also be used to capture water, which can then be used to spin a turbine when it 

flows back into the ocean through the return line. (6) Investment costs range between $3.7 and 

$7.6 million per megawatt. (56), (61) The lifetime of the power plant is estimated to vary 

between 25 and 45 years. (56), (61) The lead/lag time varies from 1 to 3 years. (61) The forced 

outage rate percentage was estimated to be 5%. (61) The high, mean, and lows for each metric 

for wave power are given in Table 21.  
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Table 18: Survey of hydroelectric stations 

Metrics High Mean Low

Investment Cost 

(million$/MW)
5.08 3.96 2.12

Retirement Cost 

(million$/MW)
0.38 0.29 0.16

Fixed O&M Cost 

($/kW-yr)

Variable O&M Cost 

($/MWh)

Efficiency (%) 75.89 70.37 64.56

Construction GHG        

(kg CO2e/MWh)
13.00 11.50 10.00

Estimated 

Construction GHG        

(Mg CO2e/MW)

911 336 43.79

Facility Land 

Requirement 

(m2/MWh)

25 8 0.00

Estimated Facility 

Land Requirement 

(ha/MW)

2,188 408 0.08

Lifetime (yr) 100 60.00 30.00

Lead/Lag Time (yr) 8.00 3.33 0.50

FOR (%) 2.00

14.16

2.53

 

 

 

Table 19: Survey of ocean thermal energy conversion 

power plants  

Metrics High Mean Low

Investment Cost 

(million$/MW)
38.50 23.46 4.48

Retirement Cost 

(million$/MW)
2.85 1.74 0.33

Heat Rate 

(MMBTU/MWh)
171 142 114

Estimated 

Efficiency (%)
3.00 2.50 2.00

Construction GHG        

(kg CO2e/MWh)
5.00 4.35 3.70

Estimated 

Construction GHG        

(Mg CO2e/MW)

87.57 76.18 64.79

Lifetime (yr)

Lead/Lag Time (yr) 2.00 2.00 2.00

30.00
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Table 20: Survey of tidal power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
6.61 5.18 3.45

Retirement Cost 

(million$/MW)
0.49 0.38 0.26

Lifetime (yr) 120 62.50 25.00

Lead/Lag Time (yr) 8.33 3.58 1.00

FOR (%) 5.00 3.50 2.00

 

 

 

Table 21: Survey of wave power plants 

Metrics High Mean Low

Investment Cost 

(million$/MW)
7.62 5.70 3.70

Retirement Cost 

(million$/MW)
0.56 0.42 0.27

Lifetime (yr) 45.00 31.67 25.00

Lead/Lag Time (yr) 3.00 2.00 1.00

FOR (%) 5.00

Learning Rates 

Specific capital costs are often reduced as experience is gained in the design and construction of 

a certain power generation technology. This phenomenon is commonly referred to as learning-

by-doing, and is quantifiable with a methodology known as the experience curve. These curves 

assume that capital costs per unit capacity reduce by a constant percentage for every doubling of 

installed capacity. This percentage reduction in cost is known as the learning rate. (62) The 

experience curve is formally expressed as: 

        
         

where Pt is the specific cost in dollars per capacity of a technology at time t, Po is the specific 

cost of one unit of cumulative capacity, Ct is the cumulative capacity installed at time t, and E is 

the “experience parameter” found according to: 

  
         

             

where LR is the learning rate for a technology. (62)  
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Learning rates for nuclear, NGCC, combustion turbine, and hydroelectric stations were adopted 

from the IEA. (63) Data for inland wind, oil-fired power, ICGCC, and solar PV came from 

Kumbaroglu, et al. and data for fuel cells, geothermal, solar thermal, and offshore wind came 

from EIA. (10), (28) The learning rate for wave power was taken from data presented by 

Hammons. (64) Due to similarities between facilities, the learning rates for IGCC biomass power 

plants and IPCC power plants were assumed to be identical to IGCC coal plants. The learning 

rates for the capital costs for some of the technologies presented earlier have been tabulated in 

Table 22. 

 
Table 22: Learning rates of various power generation technologies 

Technology Learning Rate (%)

Nuclear 5.80
Pulverized Coal 5.00

Combustion Turbine 13.00
NGCC 4.00

IGCC (coal) 5.00
IGCC (biomass) 5.00

IPCC 5.00
Oil 1.00

Fuel Cell 20.00
Solar PV 20.00

Solar Thermal 20.00
Geothermal 8.00

Land-based Wind 10.00
Offshore Wind 20.00

Hydro 1.40
Wave Power 18.00  
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Abstract 

Sustainability of power generation is primarily composed of two categories: economic and 

environmental. Economic sustainability has been measured by the levelized cost of electricity, 

which accounts for capital, operation and maintenance, and fuel costs. Environmental 

sustainability has been measured by the water usage, energy payback time, and greenhouse gas 

(GHG) emissions associated with a  power plant. This study evaluates these characteristics of 

power generation technologies from a broad perspective. Renewable, fossil, and nuclear power 

generation technologies were included in this analysis, and the CWEG (Cost-Water-Energy-

GHG) methodology was used for scoring and ranking technologies. Offshore wind ranked first 

this analysis, which a CWEG score of 66 out of a possible 100.  Hydroelectric stations ranked 

the lowest in this analysis with a CWEG score of approximately 17.  

 

1. Introduction 

Sustainable power generation can be broken down into at least two main components: economic 

and environmental sustainability. Economic sustainability has been measured by the levelized 

cost of electricity, which accounts for such as capital, operation and maintenance (O&M), and 

fuel costs. Other expenditures such as taxes and siting permits can also be included in this 



76 
 

 

category, but these are beyond the scope of this study. Environmental sustainability has been 

measured by the water usage and greenhouse gas emissions associated with a  power plant. 

 

The objective of this work is to compare overall sustainability of several power generation 

technologies from a broad perspective using a previously established comparison methodology 

called the CWEG.
 (1)

 

  

2. Power Generation Scenarios 

Ten power generation scenarios were selected for analysis: conventional coal, natural gas 

combined cycle (NGCC), integrated coal gasification combined cycle coal (IGCC coal),  

integrated gasification combined cycle biomass (IGCC biomass), light water nuclear reactors, 

hydroelectric stations, solar photovoltaic (PV), solar thermal, and inland and offshore wind 

farms. 

 

3. Methodology 

3.1 Definition of Metrics 

All metrics are given on the basis of one unit of electrical energy produced, energy payback time, 

which is expressed as years. Levelized cost of electricity (LCOE) has units of cents per kilowatt-

hour (kWh), water usage has units of liters per megawatt-hour (MWh), and GHG emissions are 

defined as kilograms of carbon dioxide equivalent (CO2e) per megawatt-hour. The energy 

payback time is a measure of the time it takes for a power plant to produce as much energy as 

was consumed for construction. 
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The levelized cost of electricity is the sum up of the following components: levelized capital, 

fixed O&M, variable O&M, and fuel costs, which are respectively calculated from Equations 1-

4. It was assumed that a 20 year loan with 6% interest was used for plant financing. The 

levelized capital cost is given by: 

   
      

  
         

 

       
  

        
  

        
           

where LC is the levelized capital cost (in cents per kWh), C is the capital cost (in million dollars 

per megawatt), and CF is the capacity factor 

 

The levelized fixed O&M cost can be expressed as: 

     
            

 

       
  

   
           

where LFOM is the levelized fixed O&M cost (in cents per kWh), FOM is the fixed O&M cost (in 

dollars per kilowatt per year), and CF is the capacity factor 

The levelized variable O&M cost (excluding fuel) can be formally expressed as: 

     
            

 

        
   

           

where LVOM is the levelized variable O&M cost (in cents per kWh), and VOM is the variable 

O&M cost (in dollars per MWh) 

 

The levelized fuel cost is given by: 
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where LF is the levelized fuel cost (in cents per kWh), F is the fuel cost (in dollars per million 

BTU), and HR is the heat rate (in million BTU/MWh) 

 

Finally, the total levelized cost of electricity is given by: 

                               

where LCOE is the levelized cost of electricity 

 

The CWEG methodology developed by Gifford and Brown was used for determining the scores 

of each technology for the LCOE, energy payback time, water usage, and GHG metrics.
(1)

  

 

3.2 Data 

All cost data was adjusted from inflation using data from the US Bureau of Labor Statistics.
(2)

 

Estimates for energy conversion efficiencies, fixed O&M costs, variable O&M costs, heat rates, 

construction GHG emissions, and operational GHG emissions were taken from the geometric 

mean of values presented by Gifford, Voss, and Brown.
(1)

 Solar PV facilities were assumed to 

have a capital cost of $4.11 per watt, which is the geometric mean of values found in the 

literature.
(4), (5), (6)

 All other capital costs were adopted from Gifford, Voss, and Brown.
(3)

  

 

The geometric mean of values presented by the literature was used for calculating the capacity 

factor of a power generation technology. The capacity factor for IGCC biomass power plants 

was assumed to be 80%.
(7)

 The capacity factor for IGCC coal power plants, roughly 80%.
(8), (9)

 

Pulverized coal was assumed to have a capacity factor of roughly 78%.
(8), (9)

 The capacity factor 

for hydroelectric stations was assumed to be around 46%.
(10)

  NGCC power plants were assumed 
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to have a capacity factor of around 53%.
(9), (11)

 The capacity factor for nuclear power, assumed to 

be 87%, was adopted from data presented by the International Energy Agency.
(12)

 Solar PV was 

assumed to have a capacity factor of about 17%
 (5), (6)

, while solar thermal power plants were 

assumed to have a capacity factor of 25%
 (6)

. It was assumed that land-based wind and offshore 

wind had respective capacity factors of 30%
 (5)

 and 42%
 (13)

. 

 

It was assumed that biomass could be delivered to the IGCC biomass facility at a price of $5 per 

gigajoule.
(14)

 The averaged price from 1997 to 2009 was used for calculating the cost of natural 

gas for an electric facility.
(15)

 The 1990 to 2009 average coal price was used for determining the 

fuel cost for both IGCC and pulverized coal-fired power plants.
(16)

 The prices of coal and natural 

gas were converted from dollars per mass, or volume, to dollars per million BTU (MMBTU) by 

multiplying the price with the energy density, which was found from data presented by 

ORNL.
(17)

 Nuclear power was assumed to have a fuel cost of 0.5 cents per kWh.
(5)

 It was 

assumed that the fuel costs for hydroelectric, solar PV, solar thermal, and wind farms were zero. 

The fuel costs and capacity factors used in this analysis have been tabulated in Table 1. 

 

Table 1: Capacity factors and fuel costs of selected technologies 

Capacity Factor Fuel Costs

Technology (%) ($/MMBTU)

Coal 78.15 1.03

Hydroelectric 46.23 0.00

IGCC (biomass) 80.00 5.28

IGCC (coal) 80.99 1.03

NGCC 52.51 5.92

Nuclear 87.21 1.47

Solar PV 16.52 0.00

Solar Thermal 25.00 0.00

Wind (land-based) 30.00 0.00

Wind (offshore) 42.00 0.00  
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Water usage was calculated by taken the geometric mean from data presented in Fthenakis and 

Chul Kim.
(18)

 Upstream processes, such as resource extraction, were also taken into account 

when calculating water usage. It was assumed that the water usage for both IGCC biomass and 

coal facilities were the same, and that non-irrigated biomass was used as fuel.  

 

The energy payback times for coal, hydroelectric stations, NGCC, nuclear, solar PV, and land-

based wind turbines were adopted from Kenny, Law, and Pearce.
(19)

 The energy payback time 

for offshore wind turbines was assumed to be 6 months.
(20)

 Solar thermal power plants were 

assumed to have an energy payback time of roughly 7 months.
(21)

 IGCC biomass and coal plants 

have roughly the same lifecycle energy efficiency, ratio of total energy output to total energy 

input over the lifecycle of a power plant.
(22), (23)

 This can be converted into energy payback time 

by multiplying the lifecycle energy efficiency with the capacity factor of the power plant. 

 

The LCOE, water use, energy payback time, and GHG emission data used in this analysis are 

summarized in Table 2. 

 
Table 2: Levelized cost of electricity, water usage, energy payback time, and GHG emissions of selected technologies 

LCOE Water Use Energy Payback GHG

(cents/kWh) (L/MWh) (yr) (kg CO2e/MWh)

Coal 4.49 1,640 3.18 815

Hydroelectric 14.52 17,000 2.43 13.3

IGCC (biomass) 5.80 1,455 3.57 61.0

IGCC (coal) 5.13 1,455 3.57 814

NGCC 4.62 397 7.00 386

Nuclear 6.56 2,210 2.50 1.90

Solar PV 46.00 15.00 1.64 127

Solar Thermal 30.01 1,434 0.55 24.0

Wind (land-based) 9.42 4.00 0.75 13.6

Wind (offshore) 11.55 4.00 0.50 7.9

Technology
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4. Results 

CWEG scores for all technologies are plotted on Figure 1. Scores for each technology under each 

metric are tabulated in Table 3. 

 

4.1 Biomass 

IBGCC had a CWEG score of 24, which placed it eighth in the group. This technology did well 

in terms of LCOE, but poor in the water usage and energy payback time metrics. The specific 

GHG emissions associated with an IBGCC power plant, while lower than any of the fossil-fueled 

technologies, were much higher than those from a nuclear plant. 

 

4.2 Coal 

Conventional coal-fired power ranked fourth with a CWEG score of roughly 29, while IGCC 

coal power plants ranked seventh with an overall score of about 26.  Both technologies had 

relatively low LCOE values. On the other hand, both conventional coal and IGCC coal power 

plants did poorly in terms of GHG emissions and water usage, which were the main contributing 

factors to the low scores of these technologies. The energy payback time for both of these 

technologies was also above the group average. 

 

4.3 Hydroelectric 

Hydroelectric power ranked tenth in this analysis with a CWEG score of 17. Hydroelectric 

power had a relatively high cost of electricity, and the highest water usage out of all the present 
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technologies, because of the increased evaporation rates from impoundment hydroelectric 

stations.
(18), (24)

 It also had a relatively high energy payback time. 

 

4.4 Natural Gas 

NGCC ranked sixth with a CWEG score of approximately 26. NGCC had a low LCOE value, 

which is why it scored as high as it did. The water usage associated with a NGCC facility, while 

better than the group average, was still several orders of magnitude greater than that of a wind 

farm. The GHG emissions coming from a NGCC power plant were greater than the group 

average, and the energy payback time was the highest out of the entire group.  

 

4.5 Nuclear 

Nuclear power scored 47, high enough to put it in third place. Nuclear power did poorly in terms 

of water usage, which is largely attributable to the large amounts of water needed for steam 

condensing.
(18)

 The levelized cost of electricity and energy payback time for nuclear power 

plants were slightly less than the group average. However, the GHG emissions arising from 

construction of nuclear power plants are approximately two orders of magnitude lower than the 

average, which was the lowest out of the entire group. 

  

4.6 Solar 

Solar thermal and solar PV respectively placed fifth and ninth place with CWEG scores of 

roughly 29 and 18. Solar PV had the second lowest water usage out of the entire group, while the 

water usage for a solar thermal power plant was comparable to IGCC facilities. The energy 

payback time for solar PV was slightly below the group average, while solar thermal had the 
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second lowest energy payback time. The LCOE values for both solar technologies were among 

the highest of the technologies analyzed, mainly due to the relatively high capital costs of these 

plants. 

 

4.7 Wind 

Both offshore and land-based wind did well in this analysis, respectively ranking first and second 

with scores of approximately 56 and 57. Offshore wind had a slightly lower energy payback 

time, and much lower GHG emissions when compared to inland wind. The LCOE for both 

options were just above the group average. The two technologies tied for the lowest water usage, 

which was significantly below the group average.  

 

Table 3: Individual metric scores for selected technologies 

Technology Cost Water Energy GHG

Wind (offshore) 38.8 100 100 24.1

Wind (land-based) 47.6 100 67.1 14.0

Nuclear 68.4 0.18 20.1 100

Coal 100 0.24 15.8 0.23

Solar Thermal 14.9 0.28 91.4 7.91

NGCC 97.0 1.01 7.2 0.49

IGCC (coal) 87.4 0.27 14.1 0.23

IGCC (biomass) 77.4 0.27 14.1 3.11

Solar PV 9.75 26.7 30.5 1.49

Hydroelectric 30.9 0.02 20.7 14.3  
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Figure 1: CWEG scores of selected power generation technologies 

 

5. Results Assuming Unequal Weighting 

The CWEG scores for offshore wind, nuclear, solar PV, and hydroelectric stations were 

recalculated while consecutively applying a 50% weight factor to each of the four metrics, while 

the remaining 50% was equally divided among the remaining three metrics. The original and 

recalculated results have been plotted in Figure 2, with the x-axis labels corresponding to the 

metric weighted at 50%. 

 

Offshore wind power is the most attractive option out of the four when either the water usage or 

energy conversion efficiency metrics are weighted at 50%. Nuclear power is first when the GHG 

is weighted at 50%, owing to its near-zero emissions. Solar PV is third in the energy and water 

usage cases, and last in the cost and GHG emissions cases.  
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Figure 2: Selected CWEG scores under a 50% weight factor for all four metrics 

 

6. Conclusion 

Ten power generation technologies were evaluated for their cost, water usage, energy conversion 

efficiency, and greenhouse gas emissions. The CWEG methodology was applied to simplify 

comparisons between technologies.
(1)

 Wind power favored well in this analysis, ranking first and 

second. Offshore wind power had the highest CWEG score of 66 out of 100, while land-based 

wind scored around 57. Incredibly low water usage, favorable levelized cost of electricity, low 

GHG emissions, and a short energy payback time were the main contributions to wind power’s 

high rank. Compared to inland wind, offshore wind’s higher LCOE was offset by lower GHG 

emissions and a shorter energy payback time. Hydroelectric stations had the lowest CWEG 

score, which was roughly 17. Water usage and upstream GHG emissions were the leading 

contributors to this low score.  
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General Conclusion 

Discussion 

Automotive scenarios and electricity generation technologies have been surveyed and analyzed 

for their overall sustainability. A methodology referred to as the CWEG was used to score and 

rank both technology groups based on their relative performance in terms of cost, water usage, 

energy consumption or energy payback time, and greenhouse gas emissions. This methodology 

adopted a broad perspective when ranking both automotive scenarios and power generation 

technologies.  

 

Conventional internal combustion engines fueled by compressed natural gas were found to offer 

the best overall performance. This scenario had the lowest overall water usage and operating 

costs out of all the automotive scenarios, as well as favorable energy efficiency. Fuel cell 

vehicles fueled with hydrogen produced from electrolysis using power from the U.S. grid had the 

worst overall performance out of the group. This scenario did poor in terms of greenhouse gas 

emissions, operating cost, and water usage, due mostly to the upstream water usage associated 

with power plants.  

 

Offshore wind farms did the best out of the power generation technologies examined. This 

technology had the lowest water usage and a relatively high energy conversion efficiency. 

Hydroelectric technologies ranked the lowest in the power generation group due to poor scores in 

water usage, cost of electricity, and upstream greenhouse gas emissions.  
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Future Research 

The power generation survey could be expanded to include more technologies. Some 

technologies were treated as aggregate groups that can be broken down further. For instance, 

“nuclear” can be broken down into pressurized water reactors, boiling water reactors, gas cooled 

reactors, etc. A narrowed view would give a better understanding of the characteristics of more 

specific technologies. 

 

There are other factors that can affect the sustainability of either an automotive scenario or 

power generation technology. For example, the rate of consumption of natural resources, such as 

petroleum and natural gas, could also be formed into another metric. This would no doubt affect 

the results of the sustainability assessments, but it is difficult to predict by how much.  

 

CWEG weighting factors could also be developed to study the sustainability of energy 

technologies in a regional context. For instance, the relative importance of water usage compared 

to the other metrics in various geographic regions could be used. However, adding a geographic 

dependence would also narrow the relevance of the study to that specific region. 
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