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ABSTRACT

As haptic devices become more common, the afford-ability, complexity, and size of the
device are all factors in considering appropriate applications. A popular haptic device is the
PHANTOM Omni, a six degree of freedom (6 DOF) positioning manipulator with 3 DOF force
feedback. To increase the usability of the class of under actuated devices that include the
common PHANTOM Omni, an impedance requiring full 6 DOF force feedback control law for
under actuated devices based on a virtual mechanism (VM) was developed. The goal of this
control law is to mask the un-actuated joints of a physical robot manipulator (RM) using force
feedback on the actuated joints. The control theory includes using a VM as a constraint for
the RM. Weighted matrices and the pseudo inverse Jacobian control law place the VM as to
minimize the error between the current RM position and somewhere on the path of the VM.
A pseudo inverse Jacobian control law is used to generate a force to send to user of the RM.
The theory is tested using the PHANTOM Omni with six cases where the importance of the

position error and orientation error for the manipulator are varied.



CHAPTER 1. OVERVIEW

Haptic feedback is sent to the user as touch. The forces for haptic interaction can be created
using a computer and a robotic device and generated by a computer along with graphics to
create an interactive virtual environment. Within a virtual environment haptics can be used
to create, manipulate, or explore. Haptics can also be used in teleoperation and simulation
environments. Medicine is a common place for teleoperation and simulation, as surgeries can
be simulated for surgeons to practice, and minimal invasive surgery is now possible through
teleoperation. Haptics are being used in consumer goods such as cell phones that give a physical
response to users as they type on a touch screen, and on video game controllers to allow users to
feel effects of the virtual environment they are in. While haptics are becoming more common
in many fields and consumer goods there are still limitations on the devices such as cost,

functionality, and complexity.

1.1 Motivation

As haptic devices become more common, the afford-ability, complexity, and size of the
device are all factors in considering appropriate applications. In order to fully sense a three
dimensional environment a haptic device is required to have six degree of freedom ( 6 DOF) both
in positioning and force feedback. To accomplish this the device would need to have a minimum
of six sensors and six actuators, increasing the size, complexity, and cost of any haptic device.
6 DOF devices with 6 DOF positional with 3 DOF force feedback allow the user to see the
position and orientation of the device, but only feel tactile feedback in 3 DOF. The PHANTOM
Omni is a 6 DOF sensing haptic device, and a popular choice of haptic device due to its ease of

use, small footprint, and inexpensive price. The drawback to this device is the missing torque



feedback; only three Cartesian forces can be sent back to the user. Work has been done [3] to
study the need for combined torque and force feedback. Some applications, like drawing and
tracing require only force feedback [2], while in other cases like surgical simulators, a torque
sensation is required. These 6 DOF devices with sensing and force feedback at every joint are
often not affordable. To increase the usability of the class of under actuated devices that include
the common phantom design applications, an impedance requiring full 6 DOF force feedback
control law for under actuated devices based on a virtual mechanism was developed [1, 11].
To continue this work, six cases are explored using this theory in two and three dimensional

space.

1.2 Preview of Report

In Chapter 2, a general overview of robotics will be presented. This includes manipulator
kinematics including: forward kinematics, inverse kinematics, and rate kinematics; and a def-
inition of a Jacobian matrix are given. This will later be used to aid in the development of
control theory and implementation. A brief overview of the PHANTOM Omni will be given,
the PHANTOM Omni is the haptic device that will be used in experiments for this report. In
Chapter 3, the control theory, including specific implementation techniques, is described. In
Chapter 4, experimental results from testing the theory in one degree of freedom, then testing
in three degrees of freedom are presented with a brief discussion of each case. In Chapter 5, an
overall discussion of the control law application will be given. This report will cover theory and
results of the control approach applied to the PHANTOM Omni and will include only C++
code developed for implementing theory on the haptic device. The C++ code is located in
Appendix D. For a better understanding of how to render the device in C++ code see [8, 9].
An important part of using haptic devices in a virtual environment are the graphics for the user
to gain more channels of feedback. Implementation of graphics for each case are not included,

for more information on graphics programming see [10].



CHAPTER 2. REVIEW

The control approach presented in this report depends on the details of the theoretical
development of the robotic positions and rate kinematics, thus a brief review of robotics will
be presented in the following chapter. A brief overview of the PHANTOM Omni, the haptic

device used for implementing control theory, is also given.

2.1 Review of Robotics

This section presents a general overview of robotics. First parameters of the manipulator
need to be defined, Denavit Hartenberg notation will be used. Next, general manipulator
kinematics including: forward kinematics, inverse kinematics and rate kinematics are described.
A Jacobian matrix will be defined, and finally a brief overview of force and torque relations.
Spacial descriptions are used to relate one robotic frame to another, a review is given in
Appendix A. For further understanding of general robotics in terms of kinematics and control
see [6]. A general overview of linear algebra may be needed to understand matrix properties and
basic mathematical operations, see [5]. Also trigonometric identities are used for simplification,

a list of trigonometric identities is included in Appendix C.

2.1.1 Forward kinematics

Kinematics tells how motion will occur in a manipulator, without including forces or dy-
namics of the manipulator. Forward kinematics (fk) finds the relations between each joint that
makes up the robotic manipulator. If all parameters of every joint are known for a certain

manipulator, the fk will find the placement of the end-effector of that manipulator.



2.1.1.1 Denavit-Hartenberg Notation

A link, i, can be described in four parameters (o, a;, d;, and 6;). Three of these four are
fixed link parameters while one is a joint variable. For a revolute joint, the joint variable is
considered to be 6;, while for a prismatic joint it is d;. Assigning of the four parameters for

each link is done using Denavit-Hartenberg (DH) notation.

Denavit-Hartenberg notation
a;, link length, distance from z; to z;11 measured along x;
oy, link twist, angle from z; to z;4+1 measured about x;
Description of joint
d;, link offset, distance x;_1 to x; measured along z;

0;, joint angle, angle x;_1 to x; measured about z;

The DH frame assignment for link and joint parameters are described in Figure 2.1.

Figure 2.1 Link Description



To better understand using the DH parameters, a solution of fk for a two link manipula-
tor, shown in Figure 2.2 will be presented. The DH Parameter assignment for the two link

manipulator can be seen in Table 2.1.

Figure 2.2 Two Link Manipulator

Table 2.1 Denavit Hartenberg Parameters of Two Link Manipulator

[i [ [ [di] 6]
1] 0] 0 |06
2 Ly | 0 |06,
3 Ly | 0 |00

The next step in defining a manipulator is to determine the transforms between joint frames.

2.1.1.2 Transforms

Using the assigned DH parameters, the space between one joint to another joint attached
by a link can be defined by a transformation matrix. Every transformation can be described

using Rx(ai—1), Dy(ai—1), Rz(0;), and Dz(d;). A general transformation from one joint



frame to the next joint frame can be found using the assigned DH parameters in

cos(6;)

0

sin(#;) cos(ai—1)

sin(6;) sin(c;—1)

—sin(6;) 0 a;—1

0

cos(@i) COS(Oéi_l — Sin(ai_l) — Sin(ai_l)di

cos(0;)sin(c;—1) cos(a;—1)  sin(a;—1)d;

0 1

(2.1)

After DH parameters are defined for the manipulator the transformations between each joint

are found. In the example of the two link manipulator, the transformations between joints are

as follows.

cos(f1) —sin(61) 0 0
0 _ sin(f1) cos(f1) 0 O
0 =
0 0 10
0 0 0 1]
cos(f2) —sin(f2) 0 Iy
L sin(f2) cos(f2) 0 O
T =
0 0 1 0
0 0 0 1]
1 0 0 Lo
01 0 O
=
001 0
000 1]

Thus, the fk of the two link manipulator is,

o7 =) Ty T3T

(2.3)

(2.5)

Due to space limitations in writing the solution, sin() will be replaced with sf and cos(6) with

ch.

691092 — 891892
c1505 + cl50,

0

0

—cl1809 — chy56
cb1cly — 501562
0
0

0 L2(091092 — 891802) + L1691 ]
0 L2(091802 + 692891) + L1 * 86

1 0

0 1



2.1.2 Inverse kinematics

From the previous section, it was shown that fk of a manipulator finds the final transfor-
mation and position using the joint variables and fixed link parameters. Inverse kinematics
(ik) uses the final transformation (goal frame) and fixed link parameters to find all joint vari-
ables for a manipulator. There is no generic solution of inverse kinematics that works for all
manipulators, as it depends on the geometry of the manipulator. A goal frame contains the
desired orientation and position of the end-effector of the manipulator. There may not be a
unique solution, or any solution at all for a given goal frame. If the goal frame lies outside the
workspace of the manipulator, there will be no joint angles that could cause the end-effector to
arrive at the goal frame, thus no solution is possible. A unique solution only occurs if there is
only one possible set of joint angles to reach the goal frame. When programming the trajectory

of a manipulator it is important to choose the best, or shortest overall solution for ik.

2.2 Rate kinematics

To solve for rate kinematics the velocity starts at the base frame, and propagates, or moves
through each frame based on the previous frames linear and angular velocity. Once the final
frame is reached, a rotation matrix from the base frame to the final frame may by used to
find the velocity of the final frame in reference to the base frame. The equations for finding
velocity propagation through links are now presented. For finding a vector dot product, a skew

symmetric matrix is used.

0 —Qz Qv
S = Oy 0 —Qx (27)
—Qy  Qx 0

Using DH notation, rotation of a frame happens about the Z axis. A 7 axis in it’s own

frame will always be a unit vector along the Z axis

0
HH )i = o (2.8)

1



Using Eq(2.7) to represent a dot product, the rotational velocity can be written as a 3 X 3

matrix.
wx 0 —Wz Wy
[
Wi = |wy | = | wz 0 —Wx (2'9)
wyz —Wy wx 0

For a revolute joint, angular velocity is given by
+1wl+1 H_l szz + 91+1( )z+1 (2'10)

and linear velocity is

= H R('vi +' wi x* Pijy) (2.11)

Rate propagation does not consider dynamics or the manipulator structure, but is dependent
on the geometry of the structure. Rate kinematics can be used to find the Jacobian of the

manipulator.

2.2.1 Jacobian

A Jacobian matrix contains the partial differentiable equations of each joint stored in a

matrix. Consider Y to contain n functions of m independent variables X.

Y1 :fl(xl,xg,...,:cm)
Y2 ng(.%'l,.%'g,...,a}m)
Yn = fn(xhlfzy---,iﬁm)
The derivative of each function can be written as
1) 1)
sy = gy sy g
(5%1 ox xI9 5a:m
1) 1)
Syp = 25y M2 O
(5.731 ox X9 &Em
Ofn Ofn Ofn
OYn = f51—|— féxg—i—...—i— f&vm
(51‘1 5332 5$m



This can be rewritten, defining the Jacabian J(X) as a nzm matrix of partial differential
equations.
F

For the robotic manipulator the Jacobian can be found from rate kinematics, a Jacobian

written in base frame {0} would be

07(©)6 =" v = Y (2.13)
Ow
2.2.1.1 Force
To describe the Jacobian in the force domain
FT5X =7756 (2.14)
Using Eq(2.12), Eq(2.14) can be rewritten as
FTJ60 =766 (2.15)
Which simplifies to
r=J'F (2.16)
Using error force control, force can be defined as
F=GAIN/X (2.17)
The transpose-Jacobian control is given by
7 =JV6X = JTGAINSX (2.18)
while the inverse-Jacobian control is defined by
T =GAINS) = GAINT 16X (2.19)

These are considered intuitive schemes of Cartesian control [6].
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2.3 PHANTOM Omni

The PHANTOM Omni is an inexpensive portable six degree of freedom positional sensing
haptic device made by SensAble Technologies. It is considered an under actuated six degree of
freedom (DOF) robot, it is classified as such as it has six revolute joints. The first three joints
define the position of the end effector, consider Cartesian space (x,y, z). The last three joints
are attached at a point, and define the orientation of the end effector(roll, pitch, yaw). The
PHANTOM Omni is considered under actuated due to that only the first three joints (z,y, 2)
are actuated. This means that although both position and orientation can be manipulated
by the user and sensed by the manipulator, force can only be sent back to the first three
joints, or position. To program the PHANTOM Omni, Visual Studio with C++ language was
used. Analysis of the phantom involved find the DH parameters, forward kinematics, inverse

kinematics, and rate kinematics, this is included in Appendix B.
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CHAPTER 3. CONTROL THEORY

The PHANTOM Omni is an under actuated robotic manipulator, the user can freely change
the position and orientation of the end effector, although it is not possible to apply force directly
to the last three joints: torque around the three orientation joints. This limits the effective
use of the device in applications where torque feedback is required. In order to overcome this
limitation, it is necessary to generate feedback forces in the three actuated linear joints in such
a way as to mask the missing rotational joint torques. This will give the user a feel similar to
moment forces being applied based on the orientation of the end effector. To accomplish this, a
control approach using a virtual manipulator (VM) for a constraint force will be studied. First
a general overview of the control theory is presented, next specific theory for a VM constrained
in two dimensional space, and finally the VM constrained in three dimensional space will be
presented. For each of these cases it will be shown that the VM approach can be used to mask

the missing actuation of the under actuated device.

3.1 Virtual Manipulator For Constraint Force

The VM is a computer generated manipulator that moves in virtual 6 degree of freedom
(DOF) space without full motion kinematics. The physical robot manipulator (RM) is located
in real 6 DOF space, and has full motion kinematics. For this haptic feedback approach, the
VM kinematics will be used to control the position of the RM. For full 6 DOF haptic interaction,
the VM will be modeled as a 5 DOF manipulator with two prismatic joints and three revolute
joints. In a physical sense this can be thought of as a probe on a surface with the two prismatic
joints representing friction, and the three revolute joints representing the orientation of the

probe [1]. First, the forward kinematics (fk) of the VM are developed in 6 DOF space. The fk
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yield a transformation matrix,

OX OY/ OZ OP

t t t tORG

o1 = (3.1)
0 0 0 1

that contains the position " P,ora as a point represented in Cartesian coordinates, and orien-

tation about each axis represented by OX}, Of/t, and °Z,.

The position of the end effector as a function of fk for given joint angles can be represented

in general 6 DOF space as

8

> > >
<

z

The general equation for force control generates a torque for each joint based on the Jacobian
of that manipulator and the specified force vector. The relation between torque required by
the VM 7, the Jacobian of the VM J,, and the force F can be found using the Jacobian

relation:

7o =Jy Fu (3.3)

Because the VM has reduced DOF kinematics, there are only five joint torques. There are
still six generalized forces applied, three linear forces and three rotational torques. To get a
generalized force for a given set of joint torques, the equation must be rearranged and the inverse
of the Jacobian must be found. A matrix must be square and non-singular to be invertible.
The size and rank of the VM Jacobian vary by the particular constraint it is describing, so it is
impossible to guarantee a Jacobian will be invertible. Thus a Moore-Penrose pseudo inversion
will be used,

D = g (T (3.4)

Now that the VM Jacobian can be inverted, the force at the end effector, corresponding to a
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“given set” of VM joint torques, can be described in a general sense by F;
Fip = Jo(J) Jo) "'y (3.5)
Substituting Eq(3.3) into Eq(3.5) yields
Fip = Juo(J) Jo) " ) Fa (3.6)

which gives a general force representation of the VM based on the force applied to the end
effector by the user of the RM.
To find how much force needs to be applied to oppose the motion of the RM, the difference

of the force applied by the user and the general force from the VM is found,
fmotion = FH - F;:I (37)
= Fy — J,(JIJ,) VI Fy

= (I - Jv(Jz?Jv)_ljg)FH
The force can be described by a general error feedback law show as
Fp = (Kpe+ K€) (3.8)

using the placement of the VM as the desired origin.
The position error, e, is the difference between the VM position , X4 and the RM position,
Xg.

e=Xg— X=Xy —Xp (3.9)
and the velocity error, é, is defined as the difference between the VM and RM velocities.
é=Xg— X =Xy — Xp (3.10)
The VM is virtual, so the velocity can be set to any desired value. Setting the desired velocity
to zero would increase the damping in the system. Assuming the desired velocity is equal to
the current velocity will cause the velocity error to be zero, é &~ 0, Eq(3.7) then becomes

fmotion = (I - JU(JZJU)_IJT) * (er + Kve) (311)

(2
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The joint torque feedback for the RM can then be found using the Jacobian relationship

between the RM and the applied hand force using
e = I} Fonotion = JL (I — Ty (JL Tp) "1 ID) % (Kpe + Kyé) (3.12)

Note that the Jacobian and applied forces must be in the same frame of reference, usually the

base frame.

3.2 Positioning the Virtual Manipulator

Recall that the VM is imaginary, in order to find the error the VM must be placed in some
position. In general, the end effector position of the VM does not necessarily have to coincide
with the end effector position of the RM. In this control approach forces will be generated to
move both the VM and the RM to the same position. The RM has higher degrees of freedom
than the VM, thus the VM will not be able to reach all positions the RM can. For simplicity
consider a VM as a probe constrained to a point in a plane as shown in Figure 3.2. The VM
is able to move only in a circular trajectory of radius the link length, while the RM has the
ability to move anywhere in the plane.

One way to position the VM is to place VM as close as possible to the RM, regardless of
the end effector orientation. In Figure 3.3 this is shown as the perpendicular distance between
the VM trajectory and the position of the RM in the plane.

Another possibility for positioning the VM is to align the VM end effector with the RM
end effector based on orientation as shown in Figure 3.2.

It is possible to place the desired position of the VM anywhere on the VM trajectory, and
desired to place the VM somewhere between X(0r) and X(#y) to minimize orientation and
position errors. The error must be examined to determine how to place the VM. The position
error is defined as in Eq(3.9). Using the definition of the Jacobian the location of the VM can
be found to minimize this error.

5Xy = Jy o0y (3.13)

Using the desired position for the VM to be as close as possible to the current position



15

WM as avirtual probe - One DOF
140

VM End Effector

¥ position

Allowable VM Trajectbry

X position

(a) VM as virtual probe in planer in 1 DOF case

RM for general planer motion - 3 DOF

RM End Efiector

¥ position

L L . L L
0 20 w0 0 El 100 120 140 160 180 20
x position

(b) RM for general planer motion (x,y,0)

Figure 3.1 Defining the VM



¥ position

140

120

100

a0

B0

40

20

16

One Degree Of Freedom

Wi

-a0

1 1
50 100 150
¥ position

o

Figure 3.2 Placing the VM based on orientation of RM

¥ position

160

140

120

100

a0

B0

40

20

COne Degree Of Freedam

Rt

—

Tl

-50 o a0 100 150

¥ position

Figure 3.3 Placing the VM based on position of RM



17

of the RM, Xy josireq i set to be equal to X, the current position of the RM. The VM can
initially be placed anywhere on the trajectory of the VM. Using the pseudo inverse of the VM
Jacobian, 060y, the amount the angle should change to decrease the error in Xy and Xpg is
found. Using an arbitrary value for 6y, an initial Jacobian Jy¢ can be computed and the

following relation can be found,

-1
(59\/* = (JVOTJV()) JVOT(XR — Xv) (3.14)

A weight matrix, W, can be used to vary the amount the RM position or orientation

influence the positioning of the VM.

—1
80y = (Jyo" Wvo)  Jvo W(Xg — Xv) (3.15)

9{/ = 9V0 + (Sev* (316)

This process can be repeated until the change in §6y is small in an iterative loop.

The weight matrix, W, can be used to describe only un-actuated joints,

000 0 0 O
o000 0 0 O

000 0 0 0
W=W,= (3.17)

x

000 O 0 we

Z_

For the planer 1 DOF case applying Eq(3.17) the error for orientation can be found to be:
50y = (Jvo " Wodvo)  Jvo" Wo(Xg — Xy) (3.18)

‘Which reduces to

50y* = 0p — Oyo =0 (3.19)

Ay is then found to be equal to the orientation angles of the RM



18

Oy =0g (3.20)

The weight matrix, W, can also be used to describe only actuated joints,

W=Ww,= (3.21)

0O 0 0 000

For the planer 1 DOF case applying this the error for orientation can be found to be:
—1
(59‘/* = (JV()TWPJV()) JVOTWP(XR — Xv) (3.22)

Multiplying out the equation reduces to,

ey cos(fy) € sin(fy)
80y x = L =0 (3.23)

0y is then found to be the nearest position on the path of the VM based on the current

position of the RM

Oy = tan™! :—y (3.24)
€T

When describing angles, 6y will be described as the angles to cause the VM to go to the
nearest position on the path of the VM based on the current position of the RM, while 0 will
be described as the angles that cause the VM to align with the current orientation of the RM.

First the VM will be considered as a 1 DOF manipulator, or probe with sufficient friction
to be fixed to a point. Later, unilateral constraints can be added to the VM to allow it to move
along the surface as if friction has been overcome. The second case will consider the VM as a 3
DOF manipulator and the RM as a 6 DOF manipulator with three un-actuated joints. This is

similar to a probe in free space constrained to a point. For each case, the forward kinematics
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and Jacobian of the VM are found and implemented in code using C++4 programming language.

The code for implementation of control in C4++ can be seen in Appendix D.

3.3 One Degree of Freedom

The VM is considered as one joint connected to one link. To accomplish this, the 5 DOF
manipulator constrained to a plane to mimic a 1 DOF manipulator as shown in Figure 3.4. The
VM is constrained to a point with motion of the VM only allowed for movement in a circular
path with radius equal to the VM link length. The PHANTOM Omni is considered a 3 DOF
RM with one un-actuated joint. The objective of this control approach is to mask the missing
RM joint actuator. The VM and RM will be moved regardless of the user applied forces to
allow the user to feel a torque like force. To simulate this, the first joint is held constant and
only rotation about the z axis in the wrist is considered. = To position the virtual manipulator
in the 1 DOF case the fk of the VM are found using the homogeneous transformation matrix

relating the motion of the VM handle to the base frame

cos(f) —sin(d) 0 Lcos(d)

sin(6 cos(0 0 L sin(6
o [00) cos®) 0) 525)
0 0 1 0

0 0 0 1

The VM can move in three planar dimensions, but there are constraints in the motion. The

forward kinematics can be written as:

Xo + L cos(fy)
Yy + Lsin(6y)

Xv—a0)=| (3.26)
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The Jacobian is then found to be

—Lsin(fy)

L cos(fy)

Jy (3.27)

Note that in many planar robotics examples, the Jacobian described as a 3z1 matrix. However,
general 6 DOF motion still requires a 6x1 Jacobian. To keep the results more general for the

1 DOF and 3 DOF cases, the Jacobian is shown with all six rows.

3.3.1 Find Error

The position angle is given by 6, = tan™! )};:}2}, while the orientation angle is given by

05
_ —1 _Zty
0r = tan A

. The tan™! or atan2 function, as previously defined, allows the angle to be
ta:R

in the correct quadrant using both the sine and cosine of the function. Using the fk of VM,
desired center of the circle, and current position of RM position error and orientation error are

found and shown below.

ex = Xy — Xg
ey:Yv—YR
ez =2y —ZR
6995:0
egy =0

ep, = Oy — Or

Now that the error and control law are known the gains must be set. Orientation error

is an angle in radians, to get this in the same order of magnitude it must be multiplied by
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the circumference C of the circle, C' = 2nr, where r is the radius of the circle. K, is then

represented by

kp, O
0 k,
0 0
K, =
0 0
0 0
0 0

0 0
0 0
k, 0
0 ky27L
0 0
0 0

0
kp2mL

0

0
0

kp2mL

(3.28)

The control can now be implemented as in Appendix D, and tested on the PHANTOM

Omni.

3.4 Three Degree of Freedom

The VM is considered as three joints connected to one link, as shown in Figure 3.5. When

constrained to a point this allows for movement of the RM in a spherical path with radius

equal to the VM link length. The PHANTOM Omni is considered a 6 DOF RM. The first

three joints are actuated while the last three are not. .

rll
r21

r31

0

r12

722

r32
0

113 P,
r23 P,
r33 P,
0 1

The fk given for the 3 DOF VM are

(3.29)
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where,

r11 = sin(6q) sin(fs) + cos(fy) cos(f2) cos(f3)
721 = sin(61) cos(f2) cos(f3) — cos(61) sin(03)

r31 = sin(62) cos(3)

r12 = sin(61) cos(63) — cos(61) cos(62) sin(6s)
722 = — cos(f1) cos(f3) — sin(61) cos(f2) sin(f3)

r32 = —sin(fy) sin(63)

713 = cos(61) sin(62)
r23 = sin(6) sin(62)

r33 = — cos(f2)

P, = L cos(6;) sin(62)
Py = Lsin(6;)sin(6)

P, = —L cos(62)

The position of the end effector can be given as:

Xo + L cos(fy1) sin(fy2)
5/0 + L Sin(QVl) Sin(@vg)
Zy — L cos(by2)

X(Ov) = @u(0v) = (3.30)
0

Ovo

Ov1

In this case it was found that the third angle does not affect position of the VM, thus it will

not be included in the Jacobian of the VM. Consider the example of twisting a pencil verses
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rotating a pencil on a table, the pencil will twist freely but when we try to rotate or bend the

pencil a force trying to move the pencil will be felt. The Jacobian J, for the VM is found to be

3 sin(fy1) sin(fy2) L cos(fy1) cos(By2) 0 ]
L cos(0y1)sin(fy2)  Lsin(fy1) cos(fy2) 0
7= 0 L siny5) 0 (3.31)
0 sin(fy1) cos(fy1) sin(fy2)
0 —cos(fy1) sin(fy 1) sin(fy2)
i 1 0 —cos(fva) |

3.4.1 Find Error

The first position angle is given just as in the 1 DOF case 6y-1 =tan~! ;(/:7)}2). For the second

angle the inverse cosine function will be used. The VM is a specified length, but the distance of

the RM from the desired sphere center may not be accurate, so a variable equal to the distance of

the RM to the desired center of the sphere is created LL = /(X — X0)2 + (Y — Yp)2 + (Z — Zp)2.
Now the second position angle is found to be @5 = 7 - cos™! %. The orientation angles
are found based on orientation using the forward kinematics of the RM. the first orientation
angle is Op1 = tan~! ‘(E:ZZ’ and the second fpy = 7 - cos™! OZtZR. The third orientation angle
is the twist about the x axis. If the desired angle is always set to equal the current angle, the

angle error will always be zero. Now the fk for the VM is defined, so the error for position and

orientation is defined as below.

er = Ty — TR (3.32)
ey = yv — U (3.33)
€, =2y — ZR (3.34)
gz = Ovg —Oprs =0 (3.35)
epy = Ova — ORra (3.36)

egr = 0v1 — Om (3.37)
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The gain Kp is defined as in Eq(3.28). All components of control are found, thus it can
be implemented as on PHANTOM Omni. The code for implementing this code is shown in

Appendix D.
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CHAPTER 4. RESULTS

This chapter includes results for the 1 DOF and 3 DOF cases. Error based on position is
considered as finding the nearest position on the path of the VM based on the current position of
the RM, or error in the x, y and z directions. This error will be multiplied by K,,s. Orientation
error, or the difference in orientation of the VM and the RM will be multiplied by Kyn:. The
values of gains for the position, K., and orientation,K,,,; can be adjusted as to make the
position or orientation of the RM more or less important on generating force to be felt by the
user. The following cases were selected to test the theory on the phantom:

Case 1: One DOF, K,,s = 0.5, Koppt = 0

Case 2: One DOF, K,os = 0.5, Kot = 0.5*circumference

Case 3: One DOF, K5 = 0.6, Korpe = 0.5%circumference

Case 4: One DOF, Kps = 0.5, Koppt = 1*circumference

Case 5: Three DOF, Kpys = 0.5, Korpt = 0

Case 6: Three DOF, Kp,s = 0.5, Koppe = 0.5*circumference

4.1 One Degree of Freedom

4.1.1 Case 1l

The 1 DOF case considers the VM as one link connected by a revolute joint to the base.
When Kyt = 0, the error ignores orientation error (error in 6, 6,, and 6), and the RM is
constrained to the circular path of the VM. For the 1 DOF VM, only rotation about the z axis is
considered,thus setting the error of 6, equal to zero should result in the RM being constrained
to anywhere on the circular path of the VM. Figure 4.1 shows the RM located outside the path

of the VM, while Figure 4.2 shows the RM located on the path of the VM.
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The force sent to the RM for the user to feel is shown as a magenta line. The force is shown
in two thiner lines that show f, and f,, while the thicker magenta line is the two dimensional
force vector. The force magnitude has been multiplied by a constant to be easier to see, but
contains the same directional information. The red line inside the path of the VM, is the VM
based on X(6y ), the nearest position of the RM. Force in this direction is normal to the surface
of the circle. The green line located inside the path of the VM is the VM location based on
OR, the orientation of the RM. The figure also contains a representation of the RM as a 3 DOF
manipulator. The following cases in this chapter will represent data in the same way.

The time history of the position of the RM, VM(6g), and VM(fy ) in the x and y directions
is shown in Figure 4.3. This figure also includes a time history of force both in the x and
y directions. For the case where orientation error is set to zero K.+ = 0, when the RM is
located on the path of the VM there is no position error and thus no force. When the RM is
not of the path of the VM the force is felt by the is normal to the surface of the circle, it will
generate a force to take the user directly to the closest point on the path of the VM. When the
force is dependent only on current position or X(6y ), force will only be created when there is
a difference in the position of the RM and X(y). It is clearly shown in Figure 4.3 that when
there is no error between the current position of the RM and X(6y ), the force created is zero,
when the current position of RM is greater than X(fy) a negative force is created pulling the

RM back to the VM. The force generated is independent of X(6g).

4.1.2 Case 2

In this case, force is computed based on both orientation and position error. The gain
matrix can be adjusted to make error of position or orientation of the RM more important.
This case considers orientation error and position error weighted equally. The RM located
outside the path of the VM can be seen in Figure 4.4, while the RM on the path of the VM is
shown in Figure 4.5. The data is shown in the same manor as in Figure 4.1.

A time history is also included for this set of data shown in Figure 4.6.  When the RM

is not on the path of the VM, the force acting on the RM causes the RM to go to a location
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on the VM path between X(0y) and X(6r). It appears the force acting on the RM will force
the user closer to the position on the path generated by X(6y ), or the current position of the
VM. When the RM is on the path of the VM, a force is generated to the user to cause the user
to go towards the position based on the orientation of the RM. This force generated gives the
user a feeling similar to a bending force. The time history data in Figure 4.6 shows when there

is small error based on X(fy) the force generated is strongly based on the error in orientation,

or X(@R)

4.2 One Degree of Freedom Adjust Kp

4.2.1 Case 3

By adjusting the error gains the amount of force generated can cause the RM to want to
go to the nearest position on the path of the VM, or have the VM align with the current
orientation of the RM. Case 3 has a greater the gain based on position error increased while
the orientation error remains the same as in Case 2. The RM outside the path of the VM is
shown in Figure 4.7. The RM on the path of the VM is shown in Figure 4.8. The representation
of lines on the diagram are similar to Figure 4.1.

A time history is also included for this set of data shown in Figure 4.9. In this case,
position error is weighted more heavily that orientation error. In Figure 4.7 it appears that the
force acting on the RM is very similar to the case were equal position and orientation weights
were used when calculating Kp. When looking at Figure 4.9 it can be seen that there is some

force created due to orientation error, but less than that based on position error as expected.

4.2.2 Case 4

This case generates Kp to more heavily weight orientation error than position error. This
put a greater importance on aligning the VM with the orientation of the RM. The RM outside
the path of the VM is shown in Figure 4.10, while the RM on the path of the VM is shown in

Figure 4.11.
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The representation of lines on the diagram are similar to Figure 4.1, it is seen in Figure 4.10
that the force is pushing the RM towards the path of the VM between X(6y) and X(6g). The
force acting in the negative x direction is much greater than the force acting in the negative y
direction; while pulling the RM closer to the path of the VM the orientation is being heavily
weighted. The x axis of the time history graph in Figure 4.12 shows that as the RM gets farther
away from the path of the VM the force is much greater than the force felt when the RM is on

the path of the VM.

4.3 Three Degrees of Freedom

4.3.1 Case 5

The 3 DOF case considers the probe as one link connected to the base by three revolute
joints. As in the 1 DOF Case 1, the error in orientation can be considered zero and the RM is
constrained to the path of the VM. For the 3 DOF the RM will be constrained to a spherical
path of the VM. Figure 4.13 shows the RM located outside the path of the VM. Figure 4.14
and Figure 4.15 show multiple views of the RM located outside the path of the VM. The VM
located on the path of the VM is shown in Figure 4.16 with Figure 4.17 and Figure 4.18 showing
multiple views.

The force is shown in three thiner lines that show f., f,, and f., while the thicker magenta
line is the three dimensional force vector. The force magnitude has been multiplied by a
constant to be easier to see, but contains the same directional information. The red line inside
the path of the VM, is the VM based on X(fy ), the nearest position of the RM. The black
line located inside the path of the VM is the VM location based on 6p, the orientation of the
RM. The black line located outside the path of the VM is the handle of the RM, a 6 DOF
manipulator.The time history of position error of the RM in relations to X(6r) and X(6y) in
the x, y, and z directions are shown in Figure 4.19. The error based on orientation is much
greater than that based on position, Figure 4.20 shows the same time history with the error
plots zoomed in on position error based on the closest position.

The force generated by the position error forces the RM to the VM based on X(6y ), or
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the closest position. The position error of X(6g) is shown, but this does not affect the force
generated by the control law. The error and force for each axis shown as a time history shows
the error between the currant position of the RM and X(fy) remains similar throughout the
first half of the run while the orientation angle placing X(fg) is varied. When the error in
X(fy) is small almost no force is generated, when the RM is moved away from the path of the
VM the force generated is in the direction that causes the RM to move towards the position of
X(fy) on the path the of VM. When the RM is on the path of the VM no force is generated.

The response in this case is similar to the response in Case 1.

4.3.2 Case 6

For the last case in three dimensions, position and orientation error will be considered. The
position error and orientation error are weighted equally. The forces generated when the RM
is outside the pathe of the VM are shown in Figure 4.21,Figure 4.22, and Figure 4.23.

The representation of the lines is similar to Figure 4.13. All three figures show the force
acting on the RM causing the RM to move towards the sphere in a direction between X(6y) and
X(0r). When the RM is farther away from the spherical path of the VM the force generated
to pull the RM directly onto the path are much greater than those to pull the RM to the
position that would match the orientation. The response in this case is found to be similar to
the response in Case 2. The forces generated when the RM is located on the path of the VM
are shown in Figure 4.24 Figure 4.25,and Figure 4.26.

When the RM is on the path of the VM, the forces generated will cause the RM to move
towards the location of the VM based on orientation. A time history of force and position error
is shown in figure Figure 4.27. As in Case 5 the error pased on posistion is much smaller than
that based on orientation, so a zoomed in portion of error based on closest position to spherical
path is shown in Figure 4.28.

The time history shows that when the RM is on the path of the VM, the force generated is
dependent on the orientation error, but as the error between the location of the RM and the

path of the VM gets larger the force generated is dependent on the error between the RM and
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closest position on the sphere.

Due to the complications with viewing the three dimensional cases and the similarities
between cases 1 and 5 and the similarities between cases 2 and 6 it is assumed that the method
as applied in 1 DOF will work similarly in higher DOF, thus more cases in 3 DOF and higher

DOF are not part of this project.
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CHAPTER 5. DISCUSSION AND CONCLUSION

This report discussed developing haptic constraints with a virtual manipulator (VM) for
use with under actuated robots, the control was then applied to physical robot manipulator
(RM), specifically the PHANTOM Omni. The goal of the control was to mask the missing
joint torques by generating feedback forces to the actuated joints. The control theory included
using weighted matrices to place the VM and the pseudo inverse Jacobian control law to place
the VM to minimize the error between the current RM position and orientation somewhere on
the path of the VM. A pseudo inverse Jacobian control law was then used again to generate a
force to send to user if the RM. The theory was then tested with six cases which varied in the
importance of the position error and orientation error when generating the force feedback.

All the cases show the control theory is able to apply force based on both position and
orientation error as desired. The VM can be placed to be in the nearest position on the path
based on the current position of the RM. When only position error is considered, the RM
is constrained to anywhere on the path of the VM, due to there being no error when the
closest current position is equal to the current position. The amount of torque like force felt
by the user is able to be varied based on the gain applied to the orientation and position error.
The toque force can be increased by increasing the gain of orientation error. In Case 4, the
higher orientation gain caused the user to notice the virtual manipulator to be much more
responsive to changes in orientation. When the RM was outside the path of the VM, all cases
generated a force that pulled the RM onto the path of the VM. The control proved to place the
VM somewhere on or between the location produced by using the and closest position angle
(fy) and current orientation angle (6r). When the RM was located on the path of the VM

and orientation error was considered the force generated caused the RM to move towards the
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location based on orientation angle along the path of the VM.

When finding the error, the weighted matrix to find closest position to the RM was used.
To continue with this work experiments using different weighted matrix to find the error could
be used. Also this theory could be tested using a VM with higher degrees of freedom. These
experiments used a RM that is a haptic, although the theory does not require the use of a

haptic device, similar experiments could be performed on a different RM.
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APPENDIX A. SPACIAL DESCRIPTION

To define a robotic manipulator, first the space in which that robotic manipulator is located
needs to be defined. Spacial descriptions are also a way to reference the physical space the user
may be using in a virtual environment. In addition it may be necessary to define more than
one space, as a tool frame may be different from the control frame. In order to define a location
in the frame, two sets of information must be given: the position and orientation in reference

to the origin.

Position and Orientation

In a defined coordinate system the location of a point in the three dimensional space of the
coordinate system can be defined by a 3 X 1 position vector. The position vector gives the

distance in the x, y, and z direction from the origin.

Ap _
P=1p, (A.1)
P,
A general position vector, Eq( A.1), can be seen in Figure A.1l. A position vector can

be mapped into different frames and retain positional information. One type of mapping is
translation mapping. Two translated frames have the same orientation, but different origins.
There exists a translational position vector describing the origin of one frame in reference to
the other. Translated frames are shown in Figure A.2, with the dashed line containing data of
the position vector APporc that described the translation. A position in frame {B} can be
described in frame {A} by AP = BP 4+ APpora,  While location in a frame is given by a

position vector, orientation given by rotation matrix, Eq(A.2), which is made up of three unit
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at

Figure A.1 Position of a point in Cartesian space

Figure A.2 Translated frames
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vectors X , Y , and Z . Each unit vector describes the rotation about that axis. For example
AXp would map X in frame {B} into frame {A}. A position vector can be mapped from frame
{A} to frame {B} by 4P = 4RBP. A property of rotation matrices is they are orthogonal.

This means the transpose of the matrix is equal to the inverse, or ’gR_l = ’gRT = BR.

i1 Ti2 T13

Ap_lag. ap. As | —

BR=|4Xp AYp AZp| = |ra1 ra 7T (A.2)
31 T32 T33

Rotations can happen about the X, Y, or Z axis. The three rotation matrices are shown below.

1 0 0
Rx(0) = [0 cos(d) —sin(0) (A.3)
0 sin(f)  cos(d) |

cos(f) 0 sin(0)
Ry(@)=| 0o 1 0 (A4)

—sin(f) 0 cos(0)

cos(f) —sin(@ O
Rz(0) = |sin(f) cos(d) 0 (A.5)
0 0 1
A simple example of rotating a frame about the Z axis by 6 is shown in Figure A.3, the 7 axis
remains the same, but the X and Y axis in the new frame are rotated by 6
A mapping from one frame to another that includes both translational and rotational map-
ping can be described with a transformation matrix. A transformation matrix is not orthogonal,

but is invertible.
4R AP
B BORG
4T = (A.6)
0 0 0 1
A simple example of mapping one frame to another is shown in Figure A.4. The dashed

line is the mapping of 4 Pg, while the rotation mapping is gR
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Rotate about Z

Figure A.3 Frames rotated about the Z axis

Figure A.4 Position vector mapped from one frame to another
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Compound transformations, or transformations through multiple frames are given by

A pB A pB A

RAR R” Pcora +7 PBoRra
Ap= | BT B (A7)
0 0 O 1

While the inverse of a transform, mapping from frame{B} to frame {A} instead of from

{A} to frame {B} is given by

ApT ApTA
R —5 R “Ppora
art=fr=|" b (A.8)
0 0 O 1

Joints and Links

Most manipulators are constructed from joints having one degree of freedom. The two main
types of joints used in manipulators are revolute joints Figure A.5(a) and prismatic joints
Figure A.5(b). A revolute joint provides rotation motion in single axis, while a prismatic joint
allows for sliding motion on a single axis. A classic example of the two joints is an inverted
pendulum on a cart. The cart would be a prismatic joint, which allows for sliding movement.
The inverted pendulum would be a revolute joint attached to a link which allows for rotation

about the joints axis.

I
<)

(a) Revolute Joint (b) Prismatic Joint

Figure A.5 Joint Definition

When defining spacial descriptions of a manipulator the distance and offset of joints are
considered. A link is thus described as a rigid body that defines the relationship between two

neighboring joint axes of a manipulator [6].
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APPENDIX B. PHANTOM OMNI KINEMATICS

Omni Forward Kinematics

The frame attachment for the PHANTOM Omni is shown in Figure B.1, the DH parameters

based on this frame assignment are described as in Table B.1.

wv

Figure B.1 Frame attachment of PHANTOM Omni

Transforms

Using the DH parameters and the transformation matrix equation, the equations below

show the transformations describing each frame in reference to the previous frame in terms of



Table B.1 Denavit Hartenberg Parameters
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[ilas[ain[d] 6 |
I 0 | Lo 01
20 0 | 9 | 0 02
30 L | 0 |0 03
41 0 | 90 | Ly 0,
50 0 | -90 | 0 | =90+ 65
6] 0 | -90 | 0| 90+06

the joint angle.Base frame to the first frame

691 —591
0 8(91 091
1=
0 0
i 0 0
First frame to the second frame
692 —892
0 0
T =
sty cby
i 0 0
Second frame to the third frame
693 *593
9 893 093
31 =
0 0
i 0 0
Third frame to the fourth frame
cly —sby
0 0
T —
s0y O
i 0 0

0 0]
0 0
1 Lo
0 1]
0 0
10
0 0
0 1
0 L]
0 0
10
0 1]
0 0|
10
0 —I,
0 1

(B.2)
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Fourth frame to the fifth frame

595 *695 0 0
0 0 -1 0
5T =
695 505 0 0
i 0 0 0 1_
Fifth frame to the sixth frame

—s0g —cbg 0 O

0 0 -1 0

-

—cbg  sbg 0 0
i 0 0 0 1_

(B.6)

The end effector can be offset from the last joint due to the length of a link attached to the last

joint. This transformation can happen after the kinematics for the system have been described.

100 0
010 0

0T =
001 L
000 1

The transformation from the base to the third frame

001 (6926(93 — 802593)

561 (clyclhs — 50950
07 0 7R - 1(cf2cl3 2563)
s69c03 + cl505

0

—ch1(s02c03 + cha503)
—501(s02c03 + cl2503)
clycl3 + s03503
0

COS((91 + 92) = cl142

sin(01 + 62) = 56142

s64
—ct
0
0

691692.[/1
8916(92L1
st L1 + Lo

1

(B.7)
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Using trigonometric identities and substituting Eq(B.9) and Eq(B.10) into Eq(B.8) yields

chictay3

s01c0243
O =V TyTET =

5643

0

—cB1sba43  sb; clicl214
—sb1s0oy3 —cBy  sbichalq
o3 0  sbLi+ Lo
0 0 1

(B.11)

The wrist frame is defined as the last three joints which are connected at a point, this defines

the orientation of the end effector. The wrist frame in relation to frame three is given by

—cl4805506 + s04clg

095896
0T =} TeTET =
—580450550¢ — cO4clg

0

—cl4805c0g — s0450¢
cl5clg
—580,4805c06 + cO450g
0

clc05
895
s0,4c05

0

0
— Ly
0
1

(B.12)

The forward kinematics, transformation of end effector in base frame given from joint angles,

is given by

0T =8 T3T =

rll r22 r33 P,

r21 r22 r23 P,

r3l r32 r33 P,
0 0 0 1]

(B.13)
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where,

r1l = b (—clays (—cly805505 + sO4c06) — sO213c05505) + (B.14)
501 (—s0450550 — chscb)

721 = $01 (—cbat3 (—chy805506 + s04cls) — sba43¢05506) +

b1 (—s04505506 — cO,clg)

r3l = 892+3 (—694895396 + 894096) + 692+3C(95896

712 = by (—cbay3 (—clys05c05 + s04506) — sbay3cl5c6g) +
801 (—s04505c05 — cl4566)
722 = 801 (—cha43 (—chs805c06 + s0450) — s0a43¢05c06) +
chy (—s04505c06 — c04505)

r32 = 50243 (—694895096 + 8(94896) ~+ cla43cl5ctg

rl3 = 691 (692+3094095 — 892+3895) + 891894095
r23 = 801 (092+3694C(95 — 892+3895) - 091894095

r33 = 892+3094695 + 092+3895

P, = 601592+3L2 + cO1cl9 1
Py = s01802, 3L + sO1cla Ly

Pz = —692+3L2 + 502L1 + L()
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Omni Inverse kinematics

The solution of the PHANTOM Omni inverse kinematics finds the joint angles based on
the final transformation matrix. Piepers Solution for a 6 DOF manipulator with spherical joint
'wrist’ is used to solve for a solution. The location of the final position does not include any
orientation information. Thus finding the solution for the transformation to the position of the

wrist is useful.

"Piorc =1 Ty TiT? Piora (B.15)

as

*Prorc = (B.16)

The next step it to continue going backwards through the frames and simplify

chs —sB3 0 L, 0 sO3Ls + Ly
93 8(93 093 0 0 —LQ —093L2
31" Piorg = = (B.17)
0 0 1 0 0 0
i 0 0 0 1 1L 1 | i 1 ]

New variables fi, fo, and f3 are created to further simplify solution

Ji=s803Ls + Ly (B.18)
fo = —cl3Ls
f3=0

The position vector from the base to the location of the end effector can then be written and
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simplified as

chicla f1 — 150 fo + 501 f3 cb1g1 — st g2
0 s01cty — 501502 fo — cb1 f3 50191 + cbigo
Pyora =
s0s f1 + cbs fo + Lo g3

Where g1, g2, and g3 are defined as

g1 = ctafi — st fo
92 = —f3

g3 = sba f1 + cla fa + Lo

The magnitude r is found, this can be written as

r=a’+y*+2°
r:g12+922+932

r = (chafi — s02f2)” + (—f3)* + (021 + chafo + Lo)?

Using Eq(B.18) in Eq(B.23) results in

E
2d; B
2a1(k1cOg + kosba) + 2d1 kg + dysaq (k1502 — kachs) + K3

2d
—(8041 <k1892 — k‘QCQQ) +d + k4)

where r and x are given as

r = 2L1(k‘1092 + k:2502) + k3

z = (k?lseg — k‘QCQQ) + Lo

(B.19)

(B.20)

(B.21)
(B.22)

(B.23)

(B.24)

(B.25)

(B.26)
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and k1, ko,k3 are defined as

ki = fi (B.27)
ky = —f2

ks = fi? + f2* + Lo?

ks =0
First 63 is solved:
T 2Lo(k1cls + kasbOy) + K3
o — 2= — (klsOy — kocly) — L B.2
2d, 2Lo (klsta — kacf2) — Lo (B.28)
r K3
s —z2=—7—L B.2
2, 2Ly (B-29)
ks =1 —2Loz + 2Lo* = fi® + fo? + Ly? (B.30)
r=f"+ f2? + L)> — 2Lo* + 2Loz (B.31)
r= (893L2 + L1)2 + (693L2)2 — L02 + 2Lgz (B.32)

Substitute an algebraic solution by reduction to polynomial given in Eq(B.33) into equaiton (B.32)

to get
0
u:tan§ (B.33)
1— 2
cosf = v
1+ u?
. 2u
51n9:1+u2
= L L L5 — L 2L B.34
= ((F5g) e ) (15 - oo (B
where
03
ug = tan — (B.35)
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Solving for us:

201 L
uz = e (B.36)
r—2Loz — L1° 4+ Lo* — Lo
V2012092 — 4LozLq2 — 12 + 2rLy2 — Lo? + Lo? — 4L¢222 + 4Lz
T—2L02—L12—|—L02—L22
+201%2 Lg% — 4LgzLo? + 4rLoz — L1y — Lo* — Lo* 4 2Ly%Ly?
T*QLQZ*L12+L02*L22
There are two possible solutions for ug,
03 = 2tan"' (u;) (B.37)
There are two possible angles for 63
Next solve for 65:
z = ((893L2 + Ll) sty + (—CQng) 092) + Lo (B.38)
Using the substitution from Eq(B.33), Eq(B.38) becomes
243\ (5031 + L1) U A PR (B.39)
z=—=] (s ——= c .
1+ u% a2 ! 1+ u?,) 2078 0
Solve for us
Ly + 363 + Lo" [/ Ly? + 2L1s05 L + s65°Lo” — 22 + 2zLo + Lo ebs” — L3
Uy = (B.40)

zZ — L2693 — L[)

There are four possible solutions for us, thus there are four possible solutions for thetas

6y = 2tan™*(ug) (B.41)
Solve for 64
ch191 — sbhgo x
sthgr — ctgo y
"Piorc = = (B.42)
93 Z
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g1 = cla(sO3 Ly + L1) — sbaLochs (B.43)

g2 = 0;

Looking back at the position vector Eq(B.42), using Eq(B.43 and solutions of 62 and 63, 6, is
solved.
The Atan2 shown below is a function in C++4 that allows for one solution of an angle based

on the cosine and sine of that angle.

Atan2(sin, cos) = tan ! ::;((2 (B.44)
01 is then solved
01 = Atan2(sin, cos) (B.45)
cty =z/q (B.46)
st =y/gl (B.47)
01 = Atan2(y/g1, /1) (B.48)

There are two possible solutions for 63, and four possible solutions for f,. Based on this there
will be eight possible solutions for ;.
Now it is possible to solve for 4 , 05 , and 6. The wrist orientation is shown in Figure B.2.

Where the equation for a ZYX Euler rotation matrix is given as

cacf  casfsy — sacy  casfey + sasy
Rzryixi(a, B,7) = sac  —sasfBsy+ cacy —sasBey — casy (B.49)
—sp cBsvy cBey

The inverse of the rotation matrix of the wrist is

ril r12 r13
SR Yo,—0* R= Ryyrx/(a, B,7) = [r21 122 123 (B.50)

r3l r32 r33
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Zy

............. 2 ol

Figure B.2 Euler Wrist

The solution of the three angles are found using the function Atan2. This gives the solution

05 = —3 = —Atan2(—r31,\/r32% 4+ r33) (B.51)
0y = —a = —Atan2(—r21/cf,r11/cp) (B.52)
O = v = Atan2(r32/cf,133/cp3 (B.53)

Rate kinematics

The rate kinematics are found using the method described in the robotics review section,
following velocity propagation joint to joint from the base frame. The Jacobian is then defined

based on the solution to the rate kinematics.



Jacobian

11
j21
31
41
51

761

712
722
732
742
52

762

79

713
723
733
743
4§53

763

714
724
734
744
754

764

715
725
735
745
4§55

765

716
726
736
746
56

766

(B.54)
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Where

11 = 5(01) % (c(02) L1 + L25(62)c(63) + L2c(6)s(63))
712 = ¢(61)(—5(62)(83) La + ¢(62)c(63) Ls — 5(62)L1)
J13 = Lac(61)(c(62)c(fs) — 5(62)s(63))

j14 =0

j15 =0

716 =0

21 = ¢(01)(c(82) L1 + Los(62)c(03) + Loc(62)s(63))
722 = 5(601)(—5(62)5(83) Lo + c(B2)c(83) Ly — s(62)L1)
723 = Las(61)(c(02)c(03) — s(62)s(63))

j24 =0

j25 =0

726 =0

j31=0
32 = ¢(03) Ly + Lys(02)c(03) + Lac(62)s(6s)
733 = (s(62)c(83) + c(82)s(63)) Lz

§34=0

j35=0

736 =0
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j41 =0

j42 = s(6,)

43 = 5(61)

744 = c(01)(5(62)c(03) + c(62)s(03))

45 = c(61)s(04)c(02)c(03) + c(61)5(01)s(tha)s(83) + 5(61)c(6)
46 = c(85)c(82)c(81)c(82)c(B3) — c(B5)c(01)c(6r)s(8)s(8s) +

c(05)s(61) * s(04) — s(05)c(01)c(62)s(03) — s(05)c(01)s(02)c(03)

j51=0
j52 = —c(61)
53 = —c(6y)

754 = 5(01)(s(02)c(03) + c(02)s(03))
j55 = 8(91)8(94)8<92)8(93) — 3(91)8(94)0(92)0(93) — 6(91)6(94)
356 = —c(05)c(04)s(01)s(62)8(03) + c(b5)c(64)s(61)c(02)c(63) —

c(05)c(61)s(04) — s(65)s(01)c(62)s(03) — s(05)s(61)s(62)c(63)

j61 =1
762 =20

j63 =0

64 = 5(02)s(0) — c(62)c(63)

J65 = —s(04)(s(02)c(03) + c(62)s(63))

J66 = c(05)c(04)s(62)c(83) + c(85)c(64)c(62)s(03) — s(05)s(602)s(03) + s(05)c(02) * c(63)
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APPENDIX C. TRIGONOMETRIC IDENTITIES

Trigonometric identities will be used to simplify mathematical models of the system, some

common identities are shown

cos(fy + 02) = cos(61) cos(f2) — sin(6;) sin(62) (C.1)
sin(fy + 02) = cos(61) sin(62) + sin(6;) cos(62) (C.2)
sin(—90 + ) = — cos(0) (C.3)
cos(—90 + 6) = sin(6) (C.4)
sin(90 + ) = cos(0) (C.5)
cos(90 + ) = —sin(h) (C.6)
cos(01) = cby (C.7)

sin(6;) = sty (C.8)

cos(01 + 02) = 142 (C.9)

Sin(01 + 92) = S«91+2 (C.l())
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APPENDIX D. CODE

C++ code necessary for programming PHANTOM Omni.

Implementation of Theory

Listing D.1 Code: Define Variables

//Center of VM — state wariable

pivotLoc [0] = 0;pivotLoc[1] = 0;pivotLoc[2] = 0;

//length of VM — state wvariable
Lv[0]=50;

//GAIN FOR POSITION ERROR
float Kpl = 1;

//GAIN FOR ANGLE ERROR
float gain = Kpl*3.14*xLv[0];

//initialize vectors for matriz operations
#define n 6
#define m 1
#define p 1

float JvT [m][n];

float JVTWA[m][n];

float JVITWAJv[m] [m];

float JvITWAJvinv[m][m];

float JvTWAJvinv_JvT [m][n];
float Jv_JvTWAJvinv_JvT [n][n];
float WAJv_JvTWAJvinv_JvT [n][n];
float IminusWAJv_JvIWAJvinv_JvT [n][n];
float Kpe[n][p];

float fmotion[n][p];

float eerror[n];

float JV[n];

float fx;

float fy;

float fz;

//initialize wvectors for system walues
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float perror[n][p] = {{eerror[0]},{eerror[1]},{eerror[2]},{eerror[3]},{eerror[4]} ,{eerror[5]}};
//Jacobian ts a different size for each 1 DOF and 2 DOF, needs to be initialized based on size

float I[n][n] = {{1,0,0,0,0,0},{0,1,0,0,0,0},{0,0,1,0,0,0},{0,0,0,1,0,0},{0,0,0,0,1,0},{0,0,0,0,0,1}};
float WA[n][n] = {{1,0,0,0,0,0},{0,1,0,0,0,0},{0,0,1,0,0,0},{0,0,0,1,0,0},{0,0,0,0,1,0},{0,0,0,0,0,1}};
float kkp[n][n] = {{Kp1,0,0,0,0,0},{0,Kp1,0,0,0,0},{0,0,Kpl1,0,0,0},
{0,0,0,gain,0,0},{0,0,0,0,gain,0},{0,0,0,0,0,gain}};

Listing D.2  Code: Matrix Operations

//Use Matriz Operations from ‘‘Kalman Filtering '~ by Dan Simon

matrix_transpose ((floatx) Jv, n, m, (floatx) JvT);

matrix_multiply ((float=) JvT,(float*) WA, m, n, n,(float=x) JVIWA);

matrix-multiply (( float ) JVIWA, (floatx*) Jv, m, n, m, (floatx) JVIWAJv);

matrix_inversion ((float ) JVTWAJv, m, (float=x) JvIWAJvinv);

matrix-multiply (( float ) JvIWAJvinv, (floatx) JvT, m, m,n,(floatx) JvIWAJvinv_JvT);
matrix-multiply ((floatx) Jv, (floatx) JvITWAJvinv_JvT, n, m,n,(floatx) Jv_JvIWAJvinv_JvT);
matrix_multiply ((float+) WA, (float*) Jv_JvTWAJvinv_JvT, n, n,n,(float+) WAJv_IvIWAJvinv_JvT);
matrix_subtraction ((floatx*) I, (floatx) WAJv_.JvTWAJvinv.JvT, n,n,(float*) IminusWAJv_JvITWAJvinv_JvT);
matrix_multiply (( float*) kkp, (float=) perror, n, n, p, (floatx) Kpe);
matrix_multiply (( float ) IminusWAJv_JvTWAJvinv . JvT, (float*)Kpe,n, n, p, (floatx) fmotion);

Listing D.3  Code: Appl force to haptic device

//get force from matriz operations
fx = fmotion [0][0];

fmotion [1][0];

fy
fz = fmotion [2][0];

//send force to state wvariable for haptic device

force [2] = fz; //keep in the z y plane
force [0] = fx;
force [1] = fy;

//Save all components into a state wvariable to exzport

state.compforce [0] = fmotion [0][0];
state.compforce[1] = fmotion [1][0];
state.compforce [2] = fmotion [2][0];
state.compforce [3] = fmotion [3][0];
state.compforce [4] = fmotion [4][0];
state.compforce [5] = fmotion [5][0];
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Code for One Degree of Freedom

Listing D.4 Code: One Degree of Freedom

// Virtual Manipulator in XY plane fized to a point

//define angles
float thetaVl=atan2(state.position[l]—pivotLoc[1l],state.position[0]— pivotLoc[0]); //angle about =z

float thetaRl=atan2(state.transform [9],state.transform [8]); //Orientation angle about z azis

//define error
eerror [0]=pivotLoc[0]4+Lv[0]*cos(thetaV1l)—state.position [0]; //error in =z

eerror [1]=pivotLoc[1]4+Lv[0]*sin (thetaV1l)—state.position[1]; //error in y

eerror [2]=pivotLoc[2] —state.position [2]; //error in z
eerror [3]=0; //error in thetazx

eerror [4]=0; //error in thetay

eerror [5]=thetaV1l—thetaR1; //error in thetaz
//define Jacobian

float Jv[n][m] = {{JV[0]} ,{IV[1]},{IV[2]},{IV[3]},{IV[4]} ,{IV[5]}};
JV[0] = —Lv[0]*sin (thetaVl);

JV[1] = Lv[0]*cos(thetaV1l);

JVi2] = 0;

JV[3] = 0;

JV[4] = 0;

JV[5] = 1;

//Save angles to State wariable for wuse in graphics

state.thetar [0] = thetaR1;
state.thetav [0] = thetaVl;
fnow [0] = force[1];
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Code for Three Degrees of Freedom

Listing D.5 Code: Three Degrees of Freedom
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// Virtual Manipulator in XYZ plane fized to a point

variable

//Create
float LL = (sqrt((state.

length for

position [0] —pivotLoc [0])*(state.

finding angles

+ (state.position[l]—pivotLoc[1l])x(state.

+ (state.position[2] —pivotLoc[2])=(state.

position[0] — pivotLoc [0])

position[l] — pivotLoc[1])

position[2] — pivotLoc[2])));

//define angles

float thetaV1l = (atan2(state.position[l]—pivotLoc[1l],state.position[0]—pivotLoc[0])); //angle about z
float thetaV2 = —Pl—acos((state.position[2]—pivotLoc[2])/(LL)); //angle about =z

float thetaV3 = 0; //rotation about y

float thetaR1 = atan2(state.transform[9],state.transform [8]); //Orientation angle about z axzis
float thetaR2 = —PIl—acos((state.transform [10])); //Orientation angle about z azis

float thetaR3 = 0; //Orientation angle about y azis

float eerror [6];//position error

eerror [0] = pivotLoc[0]4+Lv[0]*sin (thetaV2)%cos(thetaVl)—state.position [0]; //error in =z
eerror [1] =pivotLoc[1]4+Lv[0]*sin(thetaV2)xsin (thetaV1l)+pivotLoc[l]— state.position[1l]; //error in y
eerror [2] = pivotLoc[2] —Lv[0]*cos(thetaV2)— state.position [2]; //error in z

eerror [3] = 0; //error in thetax

eerror [4] = thetaV2—thetaR2; //error in thetay

eerror [5] = thetaVl—thetaR1; //error in thetaz

////Compute Jacobian Based on Initial Angles found above

float Jva[9];

Jva[0] = —Lv[0]*(sin(thetaV1))*(sin (thetaV2));

Jva[l] = Lv[0]*(cos(thetaV1l))*(cos(thetaV2));

Jva[2] = 0;

Jva[3] = Lv[0]x*(cos(thetaV1l)*xsin(thetaV2));

Jva[4] = Lv[0]*(sin(thetaV1l))*(cos(thetaV2));

Jva[5] = 0;

Jva[6] = 0;

Jva[7] = Lv[0]*sin(thetaV2);

Jva[8] = 0;

float Jvb[9];

Jvb[0] = 0;

Jvb[1] = sin(thetaV1); //check the sign on this!!!

Jvb[2] = cos(thetaV1)xsin (thetaV2);

Jvb[3] = 0;

Jvb[4] = —cos(thetaV1l);

Jvb[5] = sin(thetaV1)xsin (thetaV2);

Jvb[6] = 1;

Jvb [7] = 0;

Jvb [8] = —cos(thetaV2);

float Jv[n][m] = {{Jva[0], Jva[l], Jva[2]},{Jva[3], Jva[4],Jva[b]}, {Jva[6], Jva[T7], Jva[8]},
{Jvb[0], Jvb[1],Jvb[2]},{Jvb[3],Jvb[4], Jvb[5]},{Jvb[6],Jvb[7], Jvb[8]}};




//Save angles into

state.thetar [0]
state.thetar [1]
state.thetav [0]

state.thetav [1]

global

thetaR1;
thetaR2;
thetaV1l;
thetaV2;

;

3

;

;

to

be

used
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in graphics
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