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ABSTRACT

As haptic devices become more common, the afford-ability, complexity, and size of the

device are all factors in considering appropriate applications. A popular haptic device is the

PHANTOM Omni, a six degree of freedom (6 DOF) positioning manipulator with 3 DOF force

feedback. To increase the usability of the class of under actuated devices that include the

common PHANTOM Omni, an impedance requiring full 6 DOF force feedback control law for

under actuated devices based on a virtual mechanism (VM) was developed. The goal of this

control law is to mask the un-actuated joints of a physical robot manipulator (RM) using force

feedback on the actuated joints. The control theory includes using a VM as a constraint for

the RM. Weighted matrices and the pseudo inverse Jacobian control law place the VM as to

minimize the error between the current RM position and somewhere on the path of the VM.

A pseudo inverse Jacobian control law is used to generate a force to send to user of the RM.

The theory is tested using the PHANTOM Omni with six cases where the importance of the

position error and orientation error for the manipulator are varied.
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CHAPTER 1. OVERVIEW

Haptic feedback is sent to the user as touch. The forces for haptic interaction can be created

using a computer and a robotic device and generated by a computer along with graphics to

create an interactive virtual environment. Within a virtual environment haptics can be used

to create, manipulate, or explore. Haptics can also be used in teleoperation and simulation

environments. Medicine is a common place for teleoperation and simulation, as surgeries can

be simulated for surgeons to practice, and minimal invasive surgery is now possible through

teleoperation. Haptics are being used in consumer goods such as cell phones that give a physical

response to users as they type on a touch screen, and on video game controllers to allow users to

feel effects of the virtual environment they are in. While haptics are becoming more common

in many fields and consumer goods there are still limitations on the devices such as cost,

functionality, and complexity.

1.1 Motivation

As haptic devices become more common, the afford-ability, complexity, and size of the

device are all factors in considering appropriate applications. In order to fully sense a three

dimensional environment a haptic device is required to have six degree of freedom ( 6 DOF) both

in positioning and force feedback. To accomplish this the device would need to have a minimum

of six sensors and six actuators, increasing the size, complexity, and cost of any haptic device.

6 DOF devices with 6 DOF positional with 3 DOF force feedback allow the user to see the

position and orientation of the device, but only feel tactile feedback in 3 DOF. The PHANTOM

Omni is a 6 DOF sensing haptic device, and a popular choice of haptic device due to its ease of

use, small footprint, and inexpensive price. The drawback to this device is the missing torque
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feedback; only three Cartesian forces can be sent back to the user. Work has been done [3] to

study the need for combined torque and force feedback. Some applications, like drawing and

tracing require only force feedback [2], while in other cases like surgical simulators, a torque

sensation is required. These 6 DOF devices with sensing and force feedback at every joint are

often not affordable. To increase the usability of the class of under actuated devices that include

the common phantom design applications, an impedance requiring full 6 DOF force feedback

control law for under actuated devices based on a virtual mechanism was developed [1, 11].

To continue this work, six cases are explored using this theory in two and three dimensional

space.

1.2 Preview of Report

In Chapter 2, a general overview of robotics will be presented. This includes manipulator

kinematics including: forward kinematics, inverse kinematics, and rate kinematics; and a def-

inition of a Jacobian matrix are given. This will later be used to aid in the development of

control theory and implementation. A brief overview of the PHANTOM Omni will be given,

the PHANTOM Omni is the haptic device that will be used in experiments for this report. In

Chapter 3, the control theory, including specific implementation techniques, is described. In

Chapter 4, experimental results from testing the theory in one degree of freedom, then testing

in three degrees of freedom are presented with a brief discussion of each case. In Chapter 5, an

overall discussion of the control law application will be given. This report will cover theory and

results of the control approach applied to the PHANTOM Omni and will include only C++

code developed for implementing theory on the haptic device. The C++ code is located in

Appendix D. For a better understanding of how to render the device in C++ code see [8, 9].

An important part of using haptic devices in a virtual environment are the graphics for the user

to gain more channels of feedback. Implementation of graphics for each case are not included,

for more information on graphics programming see [10].
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CHAPTER 2. REVIEW

The control approach presented in this report depends on the details of the theoretical

development of the robotic positions and rate kinematics, thus a brief review of robotics will

be presented in the following chapter. A brief overview of the PHANTOM Omni, the haptic

device used for implementing control theory, is also given.

2.1 Review of Robotics

This section presents a general overview of robotics. First parameters of the manipulator

need to be defined, Denavit Hartenberg notation will be used. Next, general manipulator

kinematics including: forward kinematics, inverse kinematics and rate kinematics are described.

A Jacobian matrix will be defined, and finally a brief overview of force and torque relations.

Spacial descriptions are used to relate one robotic frame to another, a review is given in

Appendix A. For further understanding of general robotics in terms of kinematics and control

see [6]. A general overview of linear algebra may be needed to understand matrix properties and

basic mathematical operations, see [5]. Also trigonometric identities are used for simplification,

a list of trigonometric identities is included in Appendix C.

2.1.1 Forward kinematics

Kinematics tells how motion will occur in a manipulator, without including forces or dy-

namics of the manipulator. Forward kinematics (fk) finds the relations between each joint that

makes up the robotic manipulator. If all parameters of every joint are known for a certain

manipulator, the fk will find the placement of the end-effector of that manipulator.
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2.1.1.1 Denavit-Hartenberg Notation

A link, i, can be described in four parameters (αi, ai, di, and θi). Three of these four are

fixed link parameters while one is a joint variable. For a revolute joint, the joint variable is

considered to be θi, while for a prismatic joint it is di. Assigning of the four parameters for

each link is done using Denavit-Hartenberg (DH) notation.

Denavit-Hartenberg notation

ai, link length, distance from zi to zi+1 measured along xi

αi, link twist, angle from zi to zi+1 measured about xi

Description of joint

di, link offset, distance xi−1 to xi measured along zi

θi, joint angle, angle xi−1 to xi measured about zi

The DH frame assignment for link and joint parameters are described in Figure 2.1.

Figure 2.1 Link Description
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To better understand using the DH parameters, a solution of fk for a two link manipula-

tor, shown in Figure 2.2 will be presented. The DH Parameter assignment for the two link

manipulator can be seen in Table 2.1.

Figure 2.2 Two Link Manipulator

Table 2.1 Denavit Hartenberg Parameters of Two Link Manipulator

i ai−1 αi−1 di θi

1 0 0 0 θ1
2 L1 0 0 θ2
3 L2 0 0 0

The next step in defining a manipulator is to determine the transforms between joint frames.

2.1.1.2 Transforms

Using the assigned DH parameters, the space between one joint to another joint attached

by a link can be defined by a transformation matrix. Every transformation can be described

using RX(αi− 1), Dx(ai−1), RZ(θi), and DZ(di). A general transformation from one joint
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frame to the next joint frame can be found using the assigned DH parameters in

i
jT =



cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1 − sin(αi−1) − sin(αi−1)di

sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) sin(αi−1)di

0 0 0 1


(2.1)

After DH parameters are defined for the manipulator the transformations between each joint

are found. In the example of the two link manipulator, the transformations between joints are

as follows.

0
1T =



cos(θ1) − sin(θ1) 0 0

sin(θ1) cos(θ1) 0 0

0 0 1 0

0 0 0 1


(2.2)

1
2T =



cos(θ2) − sin(θ2) 0 L1

sin(θ2) cos(θ2) 0 0

0 0 1 0

0 0 0 1


(2.3)

0
3T =



1 0 0 L2

0 1 0 0

0 0 1 0

0 0 0 1


(2.4)

Thus, the fk of the two link manipulator is,

0
3T =0

1 T
1
2 T

2
3 T (2.5)

Due to space limitations in writing the solution, sin(θ) will be replaced with sθ and cos(θ) with

cθ.

0
3T =



cθ1cθ2 − sθ1sθ2 −cθ1sθ2 − cθ2sθ1 0 L2(cθ1cθ2 − sθ1sθ2) + L1cθ1

cθ1sθ2 + cθ2sθ1 cθ1cθ2 − sθ1sθ2 0 L2(cθ1sθ2 + cθ2sθ1) + L1 ∗ sθ1

0 0 1 0

0 0 0 1


(2.6)
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2.1.2 Inverse kinematics

From the previous section, it was shown that fk of a manipulator finds the final transfor-

mation and position using the joint variables and fixed link parameters. Inverse kinematics

(ik) uses the final transformation (goal frame) and fixed link parameters to find all joint vari-

ables for a manipulator. There is no generic solution of inverse kinematics that works for all

manipulators, as it depends on the geometry of the manipulator. A goal frame contains the

desired orientation and position of the end-effector of the manipulator. There may not be a

unique solution, or any solution at all for a given goal frame. If the goal frame lies outside the

workspace of the manipulator, there will be no joint angles that could cause the end-effector to

arrive at the goal frame, thus no solution is possible. A unique solution only occurs if there is

only one possible set of joint angles to reach the goal frame. When programming the trajectory

of a manipulator it is important to choose the best, or shortest overall solution for ik.

2.2 Rate kinematics

To solve for rate kinematics the velocity starts at the base frame, and propagates, or moves

through each frame based on the previous frames linear and angular velocity. Once the final

frame is reached, a rotation matrix from the base frame to the final frame may by used to

find the velocity of the final frame in reference to the base frame. The equations for finding

velocity propagation through links are now presented. For finding a vector dot product, a skew

symmetric matrix is used.

S =


0 −ΩZ ΩY

ΩZ 0 −ΩX

−ΩY ΩX 0

 (2.7)

Using DH notation, rotation of a frame happens about the Z axis. A Z axis in it’s own

frame will always be a unit vector along the Z axis

i+1(̂Z)i+1 =


0

0

1

 (2.8)
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Using Eq(2.7) to represent a dot product, the rotational velocity can be written as a 3 X 3

matrix.

iωi =


ωX

ωY

ωZ

 =


0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0

 (2.9)

For a revolute joint, angular velocity is given by

i+1ωi+1 =i+1
i Riωi + θ̇i+1

i+1 (̂Z)i+1 (2.10)

and linear velocity is

i+1νi+1 =i+1
i R(iνi +1 ωi ×i Pi+1) (2.11)

Rate propagation does not consider dynamics or the manipulator structure, but is dependent

on the geometry of the structure. Rate kinematics can be used to find the Jacobian of the

manipulator.

2.2.1 Jacobian

A Jacobian matrix contains the partial differentiable equations of each joint stored in a

matrix. Consider Y to contain n functions of m independent variables X.

y1 = f1(x1, x2, . . . , xm)

y2 = f2(x1, x2, . . . , xm)

...

yn = fn(x1, x2, . . . , xm)

The derivative of each function can be written as

δy1 =
δf1
δx1

δx1 +
δf1
δx2

δx2 + . . .+
δf1
δxm

δxm

δy2 =
δf2
δx1

δx1 +
δf2
δx2

δx2 + . . .+
δf2
δxm

δxm

...

δyn =
δfn
δx1

δx1 +
δfn
δx2

δx2 + . . .+
δfn
δxm

δxm
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This can be rewritten, defining the Jacabian J(X) as a nxm matrix of partial differential

equations.

δY =
δF

δX
δX = J(X)δX (2.12)

For the robotic manipulator the Jacobian can be found from rate kinematics, a Jacobian

written in base frame {0} would be

0J(Θ)Θ̇ =0 v =

0ν

0ω

 (2.13)

2.2.1.1 Force

To describe the Jacobian in the force domain

F T δX = τT δθ (2.14)

Using Eq(2.12), Eq(2.14) can be rewritten as

F TJδθ = τT δθ (2.15)

Which simplifies to

τ = JTF (2.16)

Using error force control, force can be defined as

F = GAINδX (2.17)

The transpose-Jacobian control is given by

τ = JT δX = JTGAINδX (2.18)

while the inverse-Jacobian control is defined by

τ = GAINδθ = GAINJ−1δX (2.19)

These are considered intuitive schemes of Cartesian control [6].



10

2.3 PHANTOM Omni

The PHANTOM Omni is an inexpensive portable six degree of freedom positional sensing

haptic device made by SensAble Technologies. It is considered an under actuated six degree of

freedom (DOF) robot, it is classified as such as it has six revolute joints. The first three joints

define the position of the end effector, consider Cartesian space (x, y, z). The last three joints

are attached at a point, and define the orientation of the end effector(roll, pitch, yaw). The

PHANTOM Omni is considered under actuated due to that only the first three joints (x, y, z)

are actuated. This means that although both position and orientation can be manipulated

by the user and sensed by the manipulator, force can only be sent back to the first three

joints, or position. To program the PHANTOM Omni, Visual Studio with C++ language was

used. Analysis of the phantom involved find the DH parameters, forward kinematics, inverse

kinematics, and rate kinematics, this is included in Appendix B.
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CHAPTER 3. CONTROL THEORY

The PHANTOM Omni is an under actuated robotic manipulator, the user can freely change

the position and orientation of the end effector, although it is not possible to apply force directly

to the last three joints: torque around the three orientation joints. This limits the effective

use of the device in applications where torque feedback is required. In order to overcome this

limitation, it is necessary to generate feedback forces in the three actuated linear joints in such

a way as to mask the missing rotational joint torques. This will give the user a feel similar to

moment forces being applied based on the orientation of the end effector. To accomplish this, a

control approach using a virtual manipulator (VM) for a constraint force will be studied. First

a general overview of the control theory is presented, next specific theory for a VM constrained

in two dimensional space, and finally the VM constrained in three dimensional space will be

presented. For each of these cases it will be shown that the VM approach can be used to mask

the missing actuation of the under actuated device.

3.1 Virtual Manipulator For Constraint Force

The VM is a computer generated manipulator that moves in virtual 6 degree of freedom

(DOF) space without full motion kinematics. The physical robot manipulator (RM) is located

in real 6 DOF space, and has full motion kinematics. For this haptic feedback approach, the

VM kinematics will be used to control the position of the RM. For full 6 DOF haptic interaction,

the VM will be modeled as a 5 DOF manipulator with two prismatic joints and three revolute

joints. In a physical sense this can be thought of as a probe on a surface with the two prismatic

joints representing friction, and the three revolute joints representing the orientation of the

probe [1]. First, the forward kinematics (fk) of the VM are developed in 6 DOF space. The fk
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yield a transformation matrix,

0
tT =

0X̂t
0Ŷt

0Ẑt
0PtORG

0 0 0 1

 (3.1)

that contains the position 0PtORG as a point represented in Cartesian coordinates, and orien-

tation about each axis represented by 0X̂t,
0Ŷt, and 0Ẑt.

The position of the end effector as a function of fk for given joint angles can be represented

in general 6 DOF space as

X = Φ(θ) =



x

y

z

θx

θy

θz


(3.2)

The general equation for force control generates a torque for each joint based on the Jacobian

of that manipulator and the specified force vector. The relation between torque required by

the VM τv, the Jacobian of the VM Jv, and the force FH can be found using the Jacobian

relation:

τv = JTv FH (3.3)

Because the VM has reduced DOF kinematics, there are only five joint torques. There are

still six generalized forces applied, three linear forces and three rotational torques. To get a

generalized force for a given set of joint torques, the equation must be rearranged and the inverse

of the Jacobian must be found. A matrix must be square and non-singular to be invertible.

The size and rank of the VM Jacobian vary by the particular constraint it is describing, so it is

impossible to guarantee a Jacobian will be invertible. Thus a Moore-Penrose pseudo inversion

will be used,

(JTv )
−1

= Jv(J
T
v Jv)

−1 (3.4)

Now that the VM Jacobian can be inverted, the force at the end effector, corresponding to a
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“given set” of VM joint torques, can be described in a general sense by F ∗
H

F ∗
H = Jv(J

T
v Jv)

−1τv (3.5)

Substituting Eq(3.3) into Eq(3.5) yields

F ∗
H = Jv(J

T
v Jv)

−1JTv FH (3.6)

which gives a general force representation of the VM based on the force applied to the end

effector by the user of the RM.

To find how much force needs to be applied to oppose the motion of the RM, the difference

of the force applied by the user and the general force from the VM is found,

fmotion = FH − F ∗
H (3.7)

= FH − Jv(JTv Jv)−1JTv FH

= (I − Jv(JTv Jv)−1JTv )FH

The force can be described by a general error feedback law show as

FH = (Kpe+Kv ė) (3.8)

using the placement of the VM as the desired origin.

The position error, e, is the difference between the VM position , Xd and the RM position,

XR.

e = Xd −X = XV −XR (3.9)

and the velocity error, ė, is defined as the difference between the VM and RM velocities.

ė = Ẋd − Ẋ = ẊV − ẊR (3.10)

The VM is virtual, so the velocity can be set to any desired value. Setting the desired velocity

to zero would increase the damping in the system. Assuming the desired velocity is equal to

the current velocity will cause the velocity error to be zero, ė ≈ 0, Eq(3.7) then becomes

fmotion = (I − Jv(JTv Jv)−1JTv ) ∗ (Kpe+Kv ė) (3.11)
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The joint torque feedback for the RM can then be found using the Jacobian relationship

between the RM and the applied hand force using

τr = JTr Fmotion = JTr (I − Jv(JTv Jv)−1JTv ) ∗ (Kpe+Kv ė) (3.12)

Note that the Jacobian and applied forces must be in the same frame of reference, usually the

base frame.

3.2 Positioning the Virtual Manipulator

Recall that the VM is imaginary, in order to find the error the VM must be placed in some

position. In general, the end effector position of the VM does not necessarily have to coincide

with the end effector position of the RM. In this control approach forces will be generated to

move both the VM and the RM to the same position. The RM has higher degrees of freedom

than the VM, thus the VM will not be able to reach all positions the RM can. For simplicity

consider a VM as a probe constrained to a point in a plane as shown in Figure 3.2. The VM

is able to move only in a circular trajectory of radius the link length, while the RM has the

ability to move anywhere in the plane.

One way to position the VM is to place VM as close as possible to the RM, regardless of

the end effector orientation. In Figure 3.3 this is shown as the perpendicular distance between

the VM trajectory and the position of the RM in the plane.

Another possibility for positioning the VM is to align the VM end effector with the RM

end effector based on orientation as shown in Figure 3.2.

It is possible to place the desired position of the VM anywhere on the VM trajectory, and

desired to place the VM somewhere between X(θR) and X(θV ) to minimize orientation and

position errors. The error must be examined to determine how to place the VM. The position

error is defined as in Eq(3.9). Using the definition of the Jacobian the location of the VM can

be found to minimize this error.

δXV = JV δθV (3.13)

Using the desired position for the VM to be as close as possible to the current position



15

(a) VM as virtual probe in planer in 1 DOF case

(b) RM for general planer motion (x,y,θ)

Figure 3.1 Defining the VM
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Figure 3.2 Placing the VM based on orientation of RM

Figure 3.3 Placing the VM based on position of RM
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of the RM, XV desired is set to be equal to XR, the current position of the RM. The VM can

initially be placed anywhere on the trajectory of the VM. Using the pseudo inverse of the VM

Jacobian, δθV , the amount the angle should change to decrease the error in XV and XR is

found. Using an arbitrary value for θV 0, an initial Jacobian JV 0 can be computed and the

following relation can be found,

δθV ∗ = (JV 0
TJV 0)

−1
JV 0

T (XR −XV ) (3.14)

A weight matrix, W, can be used to vary the amount the RM position or orientation

influence the positioning of the VM.

δθV ∗ = (JV 0
TWJV 0)

−1
JV 0

TW (XR −XV ) (3.15)

θV = θV 0 + δθV ∗ (3.16)

This process can be repeated until the change in δθV is small in an iterative loop.

The weight matrix, W, can be used to describe only un-actuated joints,

W = Wo =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 wθx 0 0

0 0 0 0 wθy 0

0 0 0 0 0 wθz


(3.17)

For the planer 1 DOF case applying Eq(3.17) the error for orientation can be found to be:

δθV ∗ = (JV 0
TWoJV 0)

−1
JV 0

TWo(XR −XV ) (3.18)

Which reduces to

δθV ∗ = θR − θV 0 = 0 (3.19)

θV is then found to be equal to the orientation angles of the RM
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θV = θR (3.20)

The weight matrix, W, can also be used to describe only actuated joints,

W = Wp =



wx 0 0 0 0 0

0 wy 0 0 0 0

0 0 wz 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.21)

For the planer 1 DOF case applying this the error for orientation can be found to be:

δθV ∗ = (JV 0
TWpJV 0)

−1
JV 0

TWp(XR −XV ) (3.22)

Multiplying out the equation reduces to,

δθV ∗ =
ey cos(θV )

L
− ex sin(θV )

L
= 0 (3.23)

θV is then found to be the nearest position on the path of the VM based on the current

position of the RM

θV = tan−1 ey
ex

(3.24)

When describing angles, θV will be described as the angles to cause the VM to go to the

nearest position on the path of the VM based on the current position of the RM, while θR will

be described as the angles that cause the VM to align with the current orientation of the RM.

First the VM will be considered as a 1 DOF manipulator, or probe with sufficient friction

to be fixed to a point. Later, unilateral constraints can be added to the VM to allow it to move

along the surface as if friction has been overcome. The second case will consider the VM as a 3

DOF manipulator and the RM as a 6 DOF manipulator with three un-actuated joints. This is

similar to a probe in free space constrained to a point. For each case, the forward kinematics
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and Jacobian of the VM are found and implemented in code using C++ programming language.

The code for implementation of control in C++ can be seen in Appendix D.

3.3 One Degree of Freedom

The VM is considered as one joint connected to one link. To accomplish this, the 5 DOF

manipulator constrained to a plane to mimic a 1 DOF manipulator as shown in Figure 3.4. The

VM is constrained to a point with motion of the VM only allowed for movement in a circular

path with radius equal to the VM link length. The PHANTOM Omni is considered a 3 DOF

RM with one un-actuated joint. The objective of this control approach is to mask the missing

RM joint actuator. The VM and RM will be moved regardless of the user applied forces to

allow the user to feel a torque like force. To simulate this, the first joint is held constant and

only rotation about the z axis in the wrist is considered. To position the virtual manipulator

in the 1 DOF case the fk of the VM are found using the homogeneous transformation matrix

relating the motion of the VM handle to the base frame

0
2T =



cos(θ) − sin(θ) 0 L cos(θ)

sin(θ) cos(θ) 0 L sin(θ)

0 0 1 0

0 0 0 1


(3.25)

The VM can move in three planar dimensions, but there are constraints in the motion. The

forward kinematics can be written as:

XV = Φv(θV ) =



X0 + L cos(θV )

Y0 + L sin(θV )

Z0

0

0

θv


(3.26)
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The Jacobian is then found to be

JV =



−L sin(θV )

L cos(θV )

0

0

0

1


(3.27)

Note that in many planar robotics examples, the Jacobian described as a 3x1 matrix. However,

general 6 DOF motion still requires a 6x1 Jacobian. To keep the results more general for the

1 DOF and 3 DOF cases, the Jacobian is shown with all six rows.

3.3.1 Find Error

The position angle is given by θV = tan−1 Y−Y0
X−X0

, while the orientation angle is given by

θR = tan−1
0Ẑtyr
0ẐtxR

. The tan−1 or atan2 function, as previously defined, allows the angle to be

in the correct quadrant using both the sine and cosine of the function. Using the fk of VM,

desired center of the circle, and current position of RM position error and orientation error are

found and shown below.

ex = XV −XR

ey = YV − YR

ez = ZV − ZR

eθx = 0

eθy = 0

eθz = θV − θR

Now that the error and control law are known the gains must be set. Orientation error

is an angle in radians, to get this in the same order of magnitude it must be multiplied by
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the circumference C of the circle, C = 2πr, where r is the radius of the circle. Kp is then

represented by

Kp =



kp 0 0 0 0 0

0 kp 0 0 0 0

0 0 kp 0 0 0

0 0 0 kp2πL 0 0

0 0 0 0 kp2πL 0

0 0 0 0 0 kp2πL


(3.28)

The control can now be implemented as in Appendix D, and tested on the PHANTOM

Omni.

3.4 Three Degree of Freedom

The VM is considered as three joints connected to one link, as shown in Figure 3.5. When

constrained to a point this allows for movement of the RM in a spherical path with radius

equal to the VM link length. The PHANTOM Omni is considered a 6 DOF RM. The first

three joints are actuated while the last three are not. . The fk given for the 3 DOF VM are

0
4T =



r11 r12 r13 Px

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1


(3.29)
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where,

r11 = sin(θ1) sin(θ3) + cos(θ1) cos(θ2) cos(θ3)

r21 = sin(θ1) cos(θ2) cos(θ3)− cos(θ1) sin(θ3)

r31 = sin(θ2) cos(θ3)

r12 = sin(θ1) cos(θ3)− cos(θ1) cos(θ2) sin(θ3)

r22 = − cos(θ1) cos(θ3)− sin(θ1) cos(θ2) sin(θ3)

r32 = − sin(θ2) sin(θ3)

r13 = cos(θ1) sin(θ2)

r23 = sin(θ1) sin(θ2)

r33 = − cos(θ2)

Px = L cos(θ1) sin(θ2)

Py = L sin(θ1) sin(θ2)

Pz = −L cos(θ2)

The position of the end effector can be given as:

X(θV ) = Φv(θV ) =



X0 + L cos(θV 1) sin(θV 2)

Y0 + L sin(θV 1) sin(θV 2)

Z0 − L cos(θV 2)

0

θV 2

θV 1


(3.30)

In this case it was found that the third angle does not affect position of the VM, thus it will

not be included in the Jacobian of the VM. Consider the example of twisting a pencil verses
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rotating a pencil on a table, the pencil will twist freely but when we try to rotate or bend the

pencil a force trying to move the pencil will be felt. The Jacobian Jv for the VM is found to be

Jv =



−L sin(θV 1) sin(θV 2) L cos(θV 1) cos(θV 2) 0

L cos(θV 1) sin(θV 2) L sin(θV 1) cos(θV 2) 0

0 L sin θV 2) 0

0 sin(θV 1) cos(θV 1) sin(θV 2)

0 − cos(θV 1) sin(θV 1) sin(θV 2)

1 0 − cos(θV 2)


(3.31)

3.4.1 Find Error

The first position angle is given just as in the 1 DOF case θV 1 =tan−1 Y−Y0
X−X0

. For the second

angle the inverse cosine function will be used. The VM is a specified length, but the distance of

the RM from the desired sphere center may not be accurate, so a variable equal to the distance of

the RM to the desired center of the sphere is created LL =
√

(X −X0)2 + (Y − Y0)2 + (Z − Z0)2.

Now the second position angle is found to be θV 2 = π - cos−1 Z−Z0
LL . The orientation angles

are found based on orientation using the forward kinematics of the RM. the first orientation

angle is θR1 = tan−1
0ẐtyR
0ẐtxR

, and the second θR2 = π - cos−1 0ẐtzR . The third orientation angle

is the twist about the x axis. If the desired angle is always set to equal the current angle, the

angle error will always be zero. Now the fk for the VM is defined, so the error for position and

orientation is defined as below.

ex = xV − xR (3.32)

ey = yV − yR (3.33)

ez = zV − zR (3.34)

eθx = θV 3 − θR3 = 0 (3.35)

eθy = θV 2 − θR2 (3.36)

eθz = θV 1 − θR1 (3.37)
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The gain Kp is defined as in Eq(3.28). All components of control are found, thus it can

be implemented as on PHANTOM Omni. The code for implementing this code is shown in

Appendix D.
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CHAPTER 4. RESULTS

This chapter includes results for the 1 DOF and 3 DOF cases. Error based on position is

considered as finding the nearest position on the path of the VM based on the current position of

the RM, or error in the x, y and z directions. This error will be multiplied by Kpos. Orientation

error, or the difference in orientation of the VM and the RM will be multiplied by Kornt. The

values of gains for the position, Kpos, and orientation,Kornt can be adjusted as to make the

position or orientation of the RM more or less important on generating force to be felt by the

user. The following cases were selected to test the theory on the phantom:

Case 1: One DOF, Kpos = 0.5, Kornt = 0

Case 2: One DOF, Kpos = 0.5, Kornt = 0.5*circumference

Case 3: One DOF, Kpos = 0.6, Kornt = 0.5*circumference

Case 4: One DOF, Kpos = 0.5, Kornt = 1*circumference

Case 5: Three DOF, Kpos = 0.5, Kornt = 0

Case 6: Three DOF, Kpos = 0.5, Kornt = 0.5*circumference

4.1 One Degree of Freedom

4.1.1 Case 1

The 1 DOF case considers the VM as one link connected by a revolute joint to the base.

When Kornt = 0, the error ignores orientation error (error in θx, θy, and θz), and the RM is

constrained to the circular path of the VM. For the 1 DOF VM, only rotation about the z axis is

considered,thus setting the error of θz equal to zero should result in the RM being constrained

to anywhere on the circular path of the VM. Figure 4.1 shows the RM located outside the path

of the VM,while Figure 4.2 shows the RM located on the path of the VM.
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The force sent to the RM for the user to feel is shown as a magenta line. The force is shown

in two thiner lines that show fx and fy, while the thicker magenta line is the two dimensional

force vector. The force magnitude has been multiplied by a constant to be easier to see, but

contains the same directional information. The red line inside the path of the VM, is the VM

based on X(θV ), the nearest position of the RM. Force in this direction is normal to the surface

of the circle. The green line located inside the path of the VM is the VM location based on

θR, the orientation of the RM. The figure also contains a representation of the RM as a 3 DOF

manipulator. The following cases in this chapter will represent data in the same way.

The time history of the position of the RM, VM(θR), and VM(θV ) in the x and y directions

is shown in Figure 4.3. This figure also includes a time history of force both in the x and

y directions. For the case where orientation error is set to zero Kornt = 0, when the RM is

located on the path of the VM there is no position error and thus no force. When the RM is

not of the path of the VM the force is felt by the is normal to the surface of the circle, it will

generate a force to take the user directly to the closest point on the path of the VM. When the

force is dependent only on current position or X(θV ), force will only be created when there is

a difference in the position of the RM and X(θV ). It is clearly shown in Figure 4.3 that when

there is no error between the current position of the RM and X(θV ), the force created is zero,

when the current position of RM is greater than X(θV ) a negative force is created pulling the

RM back to the VM. The force generated is independent of X(θR).

4.1.2 Case 2

In this case, force is computed based on both orientation and position error. The gain

matrix can be adjusted to make error of position or orientation of the RM more important.

This case considers orientation error and position error weighted equally. The RM located

outside the path of the VM can be seen in Figure 4.4, while the RM on the path of the VM is

shown in Figure 4.5. The data is shown in the same manor as in Figure 4.1.

A time history is also included for this set of data shown in Figure 4.6. When the RM

is not on the path of the VM, the force acting on the RM causes the RM to go to a location
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on the VM path between X(θV ) and X(θR). It appears the force acting on the RM will force

the user closer to the position on the path generated by X(θV ), or the current position of the

VM. When the RM is on the path of the VM, a force is generated to the user to cause the user

to go towards the position based on the orientation of the RM. This force generated gives the

user a feeling similar to a bending force. The time history data in Figure 4.6 shows when there

is small error based on X(θV ) the force generated is strongly based on the error in orientation,

or X(θR).

4.2 One Degree of Freedom Adjust Kp

4.2.1 Case 3

By adjusting the error gains the amount of force generated can cause the RM to want to

go to the nearest position on the path of the VM, or have the VM align with the current

orientation of the RM. Case 3 has a greater the gain based on position error increased while

the orientation error remains the same as in Case 2. The RM outside the path of the VM is

shown in Figure 4.7.The RM on the path of the VM is shown in Figure 4.8. The representation

of lines on the diagram are similar to Figure 4.1.

A time history is also included for this set of data shown in Figure 4.9. In this case,

position error is weighted more heavily that orientation error. In Figure 4.7 it appears that the

force acting on the RM is very similar to the case were equal position and orientation weights

were used when calculating Kp. When looking at Figure 4.9 it can be seen that there is some

force created due to orientation error, but less than that based on position error as expected.

4.2.2 Case 4

This case generates Kp to more heavily weight orientation error than position error. This

put a greater importance on aligning the VM with the orientation of the RM. The RM outside

the path of the VM is shown in Figure 4.10, while the RM on the path of the VM is shown in

Figure 4.11.
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The representation of lines on the diagram are similar to Figure 4.1, it is seen in Figure 4.10

that the force is pushing the RM towards the path of the VM between X(θV ) and X(θR). The

force acting in the negative x direction is much greater than the force acting in the negative y

direction; while pulling the RM closer to the path of the VM the orientation is being heavily

weighted. The x axis of the time history graph in Figure 4.12 shows that as the RM gets farther

away from the path of the VM the force is much greater than the force felt when the RM is on

the path of the VM.

4.3 Three Degrees of Freedom

4.3.1 Case 5

The 3 DOF case considers the probe as one link connected to the base by three revolute

joints. As in the 1 DOF Case 1, the error in orientation can be considered zero and the RM is

constrained to the path of the VM. For the 3 DOF the RM will be constrained to a spherical

path of the VM. Figure 4.13 shows the RM located outside the path of the VM. Figure 4.14

and Figure 4.15 show multiple views of the RM located outside the path of the VM. The VM

located on the path of the VM is shown in Figure 4.16 with Figure 4.17 and Figure 4.18 showing

multiple views.

The force is shown in three thiner lines that show fx, fy, and fz, while the thicker magenta

line is the three dimensional force vector. The force magnitude has been multiplied by a

constant to be easier to see, but contains the same directional information. The red line inside

the path of the VM, is the VM based on X(θV ), the nearest position of the RM. The black

line located inside the path of the VM is the VM location based on θR, the orientation of the

RM. The black line located outside the path of the VM is the handle of the RM, a 6 DOF

manipulator.The time history of position error of the RM in relations to X(θR) and X(θV ) in

the x, y, and z directions are shown in Figure 4.19. The error based on orientation is much

greater than that based on position, Figure 4.20 shows the same time history with the error

plots zoomed in on position error based on the closest position.

The force generated by the position error forces the RM to the VM based on X(θV ), or
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the closest position. The position error of X(θR) is shown, but this does not affect the force

generated by the control law. The error and force for each axis shown as a time history shows

the error between the currant position of the RM and X(θV ) remains similar throughout the

first half of the run while the orientation angle placing X(θR) is varied. When the error in

X(θV ) is small almost no force is generated, when the RM is moved away from the path of the

VM the force generated is in the direction that causes the RM to move towards the position of

X(θV ) on the path the of VM. When the RM is on the path of the VM no force is generated.

The response in this case is similar to the response in Case 1.

4.3.2 Case 6

For the last case in three dimensions, position and orientation error will be considered. The

position error and orientation error are weighted equally. The forces generated when the RM

is outside the pathe of the VM are shown in Figure 4.21,Figure 4.22, and Figure 4.23.

The representation of the lines is similar to Figure 4.13. All three figures show the force

acting on the RM causing the RM to move towards the sphere in a direction between X(θV ) and

X(θR). When the RM is farther away from the spherical path of the VM the force generated

to pull the RM directly onto the path are much greater than those to pull the RM to the

position that would match the orientation. The response in this case is found to be similar to

the response in Case 2. The forces generated when the RM is located on the path of the VM

are shown in Figure 4.24,Figure 4.25,and Figure 4.26.

When the RM is on the path of the VM, the forces generated will cause the RM to move

towards the location of the VM based on orientation. A time history of force and position error

is shown in figure Figure 4.27. As in Case 5 the error pased on posistion is much smaller than

that based on orientation, so a zoomed in portion of error based on closest position to spherical

path is shown in Figure 4.28.

The time history shows that when the RM is on the path of the VM, the force generated is

dependent on the orientation error, but as the error between the location of the RM and the

path of the VM gets larger the force generated is dependent on the error between the RM and
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closest position on the sphere.

Due to the complications with viewing the three dimensional cases and the similarities

between cases 1 and 5 and the similarities between cases 2 and 6 it is assumed that the method

as applied in 1 DOF will work similarly in higher DOF, thus more cases in 3 DOF and higher

DOF are not part of this project.



61

CHAPTER 5. DISCUSSION AND CONCLUSION

This report discussed developing haptic constraints with a virtual manipulator (VM) for

use with under actuated robots, the control was then applied to physical robot manipulator

(RM), specifically the PHANTOM Omni. The goal of the control was to mask the missing

joint torques by generating feedback forces to the actuated joints. The control theory included

using weighted matrices to place the VM and the pseudo inverse Jacobian control law to place

the VM to minimize the error between the current RM position and orientation somewhere on

the path of the VM. A pseudo inverse Jacobian control law was then used again to generate a

force to send to user if the RM. The theory was then tested with six cases which varied in the

importance of the position error and orientation error when generating the force feedback.

All the cases show the control theory is able to apply force based on both position and

orientation error as desired. The VM can be placed to be in the nearest position on the path

based on the current position of the RM. When only position error is considered, the RM

is constrained to anywhere on the path of the VM, due to there being no error when the

closest current position is equal to the current position. The amount of torque like force felt

by the user is able to be varied based on the gain applied to the orientation and position error.

The toque force can be increased by increasing the gain of orientation error. In Case 4, the

higher orientation gain caused the user to notice the virtual manipulator to be much more

responsive to changes in orientation. When the RM was outside the path of the VM, all cases

generated a force that pulled the RM onto the path of the VM. The control proved to place the

VM somewhere on or between the location produced by using the and closest position angle

(θV ) and current orientation angle (θR). When the RM was located on the path of the VM

and orientation error was considered the force generated caused the RM to move towards the
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location based on orientation angle along the path of the VM.

When finding the error, the weighted matrix to find closest position to the RM was used.

To continue with this work experiments using different weighted matrix to find the error could

be used. Also this theory could be tested using a VM with higher degrees of freedom. These

experiments used a RM that is a haptic, although the theory does not require the use of a

haptic device, similar experiments could be performed on a different RM.
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APPENDIX A. SPACIAL DESCRIPTION

To define a robotic manipulator, first the space in which that robotic manipulator is located

needs to be defined. Spacial descriptions are also a way to reference the physical space the user

may be using in a virtual environment. In addition it may be necessary to define more than

one space, as a tool frame may be different from the control frame. In order to define a location

in the frame, two sets of information must be given: the position and orientation in reference

to the origin.

Position and Orientation

In a defined coordinate system the location of a point in the three dimensional space of the

coordinate system can be defined by a 3 X 1 position vector. The position vector gives the

distance in the x, y, and z direction from the origin.

AP =


Px

Py

Pz

 (A.1)

A general position vector, Eq( A.1), can be seen in Figure A.1. A position vector can

be mapped into different frames and retain positional information. One type of mapping is

translation mapping. Two translated frames have the same orientation, but different origins.

There exists a translational position vector describing the origin of one frame in reference to

the other. Translated frames are shown in Figure A.2, with the dashed line containing data of

the position vector APBORG that described the translation. A position in frame {B} can be

described in frame {A} by AP = BP + APBORG, While location in a frame is given by a

position vector, orientation given by rotation matrix, Eq(A.2), which is made up of three unit
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Figure A.1 Position of a point in Cartesian space

Figure A.2 Translated frames
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vectors X̂ , Ŷ , and Ẑ . Each unit vector describes the rotation about that axis. For example

AX̂B would map X̂ in frame {B} into frame {A}. A position vector can be mapped from frame

{A} to frame {B} by AP = A
BR

BP . A property of rotation matrices is they are orthogonal.

This means the transpose of the matrix is equal to the inverse, or A
BR

−1 = A
BR

T = B
AR.

A
BR =

[
AX̂B

AŶB
AẐB

]
=


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (A.2)

Rotations can happen about the X, Y, or Z axis. The three rotation matrices are shown below.

RX(θ) =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 (A.3)

RY (θ) =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 (A.4)

RZ(θ) =


cos(θ) − sin(θ 0

sin(θ) cos(θ) 0

0 0 1

 (A.5)

A simple example of rotating a frame about the Z axis by θ is shown in Figure A.3, the Z axis

remains the same, but the X and Y axis in the new frame are rotated by θ

A mapping from one frame to another that includes both translational and rotational map-

ping can be described with a transformation matrix. A transformation matrix is not orthogonal,

but is invertible.

A
BT =

 A
BR

APBORG

0 0 0 1

 (A.6)

A simple example of mapping one frame to another is shown in Figure A.4. The dashed

line is the mapping of APB, while the rotation mapping is A
BR



66

Figure A.3 Frames rotated about the Z axis

Figure A.4 Position vector mapped from one frame to another
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Compound transformations, or transformations through multiple frames are given by

A
CT =

 A
BR

B
CR

A
BR

BPCORG +A PBORG

0 0 0 1

 (A.7)

While the inverse of a transform, mapping from frame{B} to frame {A} instead of from

{A} to frame {B} is given by

A
BT

−1 =B
A T =

 A
BR

T −ABRTAPBORG

0 0 0 1

 (A.8)

Joints and Links

Most manipulators are constructed from joints having one degree of freedom. The two main

types of joints used in manipulators are revolute joints Figure A.5(a) and prismatic joints

Figure A.5(b). A revolute joint provides rotation motion in single axis, while a prismatic joint

allows for sliding motion on a single axis. A classic example of the two joints is an inverted

pendulum on a cart. The cart would be a prismatic joint, which allows for sliding movement.

The inverted pendulum would be a revolute joint attached to a link which allows for rotation

about the joints axis.

(a) Revolute Joint (b) Prismatic Joint

Figure A.5 Joint Definition

When defining spacial descriptions of a manipulator the distance and offset of joints are

considered. A link is thus described as a rigid body that defines the relationship between two

neighboring joint axes of a manipulator [6].
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APPENDIX B. PHANTOM OMNI KINEMATICS

Omni Forward Kinematics

The frame attachment for the PHANTOM Omni is shown in Figure B.1, the DH parameters

based on this frame assignment are described as in Table B.1.

Figure B.1 Frame attachment of PHANTOM Omni

Transforms

Using the DH parameters and the transformation matrix equation, the equations below

show the transformations describing each frame in reference to the previous frame in terms of
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Table B.1 Denavit Hartenberg Parameters

i ai−1 αi−1 di θi

1 0 0 L0 θ1
2 0 90 0 θ2
3 L1 0 0 θ3
4 0 90 L2 θ4
5 0 -90 0 −90 + θ5
6 0 -90 0 90 + θ6

the joint angle.Base frame to the first frame

0
1T =



cθ1 −sθ1 0 0

sθ1 cθ1 0 0

0 0 1 L0

0 0 0 1


(B.1)

First frame to the second frame

1
2T =



cθ2 −sθ2 0 0

0 0 −1 0

sθ2 cθ2 0 0

0 0 0 1


(B.2)

Second frame to the third frame

2
3T =



cθ3 −sθ3 0 L1

sθ3 cθ3 0 0

0 0 1 0

0 0 0 1


(B.3)

Third frame to the fourth frame

3
4T =



cθ4 −sθ4 0 0

0 0 −1 0

sθ4 cθ4 0 −L2

0 0 0 1


(B.4)
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Fourth frame to the fifth frame

4
5T =



sθ5 −cθ5 0 0

0 0 −1 0

cθ5 sθ5 0 0

0 0 0 1


(B.5)

Fifth frame to the sixth frame

5
6T =



−sθ6 −cθ6 0 0

0 0 −1 0

−cθ6 sθ6 0 0

0 0 0 1


(B.6)

The end effector can be offset from the last joint due to the length of a link attached to the last

joint. This transformation can happen after the kinematics for the system have been described.

6
tT =



1 0 0 0

0 1 0 0

0 0 1 −Lt

0 0 0 1


(B.7)

The transformation from the base to the third frame

0
3T =0

1 T
1
2 T

2
3 T =



cθ1(cθ2cθ3 − sθ2sθ3) −cθ1(sθ2cθ3 + cθ2sθ3) sθ1 cθ1cθ2L1

sθ1(cθ2cθ3 − sθ2sθ3) −sθ1(sθ2cθ3 + cθ2sθ3) −cθ1 sθ1cθ2L1

sθ2cθ3 + cθ2sθ3 cθ2cθ3 + sθ2sθ3 0 sθ2L1 + L0

0 0 0 1


(B.8)

cos(θ1 + θ2) = cθ1+2 (B.9)

sin(θ1 + θ2) = sθ1+2 (B.10)
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Using trigonometric identities and substituting Eq(B.9) and Eq(B.10) into Eq(B.8) yields

0
3T =0

1 T
1
2 T

2
3 T =



cθ1cθ2+3 −cθ1sθ2+3 sθ1 cθ1cθ2L1

sθ1cθ2+3 −sθ1sθ2+3 −cθ1 sθ1cθ2L1

sθ2+3 cθ2+3 0 sθ2L1 + L0

0 0 0 1


(B.11)

The wrist frame is defined as the last three joints which are connected at a point, this defines

the orientation of the end effector. The wrist frame in relation to frame three is given by

3
6T =3

4 T
4
5 T

5
6 T =



−cθ4sθ5sθ6 + sθ4cθ6 −cθ4sθ5cθ6 − sθ4sθ6 cθ4cθ5 0

cθ5sθ6 cθ5cθ6 sθ5 −L2

−sθ4sθ5sθ6 − cθ4cθ6 −sθ4sθ5cθ6 + cθ4sθ6 sθ4cθ5 0

0 0 0 1


(B.12)

The forward kinematics, transformation of end effector in base frame given from joint angles,

is given by

0
6T =0

3 T
3
6 T =



r11 r22 r33 Px

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1


(B.13)
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where,

r11 = cθ1 (−cθ2+3 (−cθ4sθ5sθ6 + sθ4cθ6)− sθ2+3cθ5sθ6) + (B.14)

sθ1 (−sθ4sθ5sθ6 − cθ4cθ6)

r21 = sθ1 (−cθ2+3 (−cθ4sθ5sθ6 + sθ4cθ6)− sθ2+3cθ5sθ6) +

cθ1 (−sθ4sθ5sθ6 − cθ4cθ6)

r31 = sθ2+3 (−cθ4sθ5sθ6 + sθ4cθ6) + cθ2+3cθ5sθ6

r12 = cθ1 (−cθ2+3 (−cθ4sθ5cθ6 + sθ4sθ6)− sθ2+3cθ5cθ6) +

sθ1 (−sθ4sθ5cθ6 − cθ4sθ6)

r22 = sθ1 (−cθ2+3 (−cθ4sθ5cθ6 + sθ4sθ6)− sθ2+3cθ5cθ6) +

cθ1 (−sθ4sθ5cθ6 − cθ4sθ6)

r32 = sθ2+3 (−cθ4sθ5cθ6 + sθ4sθ6) + cθ2+3cθ5cθ6

r13 = cθ1 (cθ2+3cθ4cθ5 − sθ2+3sθ5) + sθ1sθ4cθ5

r23 = sθ1 (cθ2+3cθ4cθ5 − sθ2+3sθ5)− cθ1sθ4cθ5

r33 = sθ2+3cθ4cθ5 + cθ2+3sθ5

Px = cθ1sθ2+3L2 + cθ1cθ2L1

Py = sθ1sθ2+3L2 + sθ1cθ2L1

Pz = −cθ2+3L2 + sθ2L1 + L0
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Omni Inverse kinematics

The solution of the PHANTOM Omni inverse kinematics finds the joint angles based on

the final transformation matrix. Piepers Solution for a 6 DOF manipulator with spherical joint

’wrist’ is used to solve for a solution. The location of the final position does not include any

orientation information. Thus finding the solution for the transformation to the position of the

wrist is useful.

0P4ORG =0
1 T

1
2 T

2
3 T

3P4ORG



x

y

z

1


(B.15)

From the transformation matrix from the third to fourth frame Eq(B.4), the position is given

as

3P4ORG =



0

−L2

0

1


(B.16)

The next step it to continue going backwards through the frames and simplify

2
3T

3P4ORG =



cθ3 −sθ3 0 L1

sθ3 cθ3 0 0

0 0 1 0

0 0 0 1





0

−L2

0

1


=



sθ3L2 + L1

−cθ3L2

0

1


(B.17)

New variables f1, f2, and f3 are created to further simplify solution

f1 = sθ3L2 + L1 (B.18)

f2 = −cθ3L2

f3 = 0

The position vector from the base to the location of the end effector can then be written and
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simplified as

0P4ORG



cθ1cθ2f1 − cθ1sθ2f2 + sθ1f3

sθ1cθ2 − sθ1sθ2f2 − cθ1f3

sθ2f1 + cθ2f2 + L0

1


=



cθ1g1 − sθ1g2

sθ1g1 + cθ1g2

g3

1


(B.19)

Where g1, g2, and g3 are defined as

g1 = cθ2f1 − sθ2f2 (B.20)

g2 = −f3

g3 = sθ2f1 + cθ2f2 + L0

The magnitude r is found, this can be written as

r = x2 + y2 + x2 (B.21)

r = g1
2 + g2

2 + g3
2 (B.22)

r = (cθ2f1 − sθ2f2)2 + (−f3)2 + (sθ2f1 + cθ2f2 + L0)
2 (B.23)

Using Eq(B.18) in Eq(B.23) results in

r

2d1
− z = (B.24)

2a1(k1cθ2 + k2sθ2) + 2d1k4 + d1sα1(k1sθ2 − k2cθ2) +K3

2d1

−(sα1(k1sθ2 − k2cθ2) + d1 + k4)

where r and x are given as

r = 2L1(k1cθ2 + k2sθ2) + k3 (B.25)

z = (k1sθ2 − k2cθ2) + L0 (B.26)
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and k1, k2,k3 are defined as

k1 = f1 (B.27)

k2 = −f2

k3 = f1
2 + f2

2 + L0
2

k4 = 0

First θ3 is solved:

r

2d1
− z =

2L0(k1cθ2 + k2sθ2) +K3

2L0
− (k1sθ2 − k2cθ2)− L0 (B.28)

r

2d1
− z =

K3

2L0
− L0 (B.29)

k3 = r − 2L0z + 2L0
2 = f1

2 + f2
2 + L)

2 (B.30)

r = f1
2 + f2

2 + L)
2 − 2L0

2 + 2L0z (B.31)

r = (sθ3L2 + L1)
2 + (cθ3L2)

2 − L0
2 + 2L0z (B.32)

Substitute an algebraic solution by reduction to polynomial given in Eq(B.33) into equaiton (B.32)

to get

u = tan
θ

2
(B.33)

cos θ =
1− u2

1 + u2

sin θ =
2u

1 + u2

r =

((
2u3

1 + u23

)
L2 + L1

)2

+

(
1− u23
1 + u23

)2

L2
2 − L0

2 + 2L0z (B.34)

where

u3 = tan
θ3
2

(B.35)
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Solving for u3:

u3 =
2L1L2

r − 2L0z − L1
2 + L0

2 − L2
2
+
− (B.36)√

2L1
2L2

2 − 4L0zL1
2 − r2 + 2rL1

2 − L0
2 + L2

2 − 4L0
2z2 + 4L0

3z

r − 2L0z − L1
2 + L0

2 − L2
2 ...

...
+2L1

2L0
2 − 4L0zL2

2 + 4rL0z − L14 − L0
4 − L2

4 + 2L0
2L2

2

r − 2L0z − L1
2 + L0

2 − L2
2

There are two possible solutions for u3,

θ3 = 2 tan−1(u1) (B.37)

There are two possible angles for θ3

Next solve for θ2:

z = ((sθ3L2 + L1) sθ2 + (−cθ3L2) cθ2) + L0 (B.38)

Using the substitution from Eq(B.33), Eq(B.38) becomes

z =

(
2u3

1 + u23

)
(sθ3L2 + L1)−

(
1− u23
1 + u23

)
L2cθ3 + L0 (B.39)

Solve for u2

u2 =
L1 + sθ3 + L2

+
−

√
L1

2 + 2L1sθ3L2 + sθ3
2L2

2 − z2 + 2zL0 + L2
2cθ3

2 − L2
0

z − L2cθ3 − L0
(B.40)

There are four possible solutions for u2, thus there are four possible solutions for theta2

θ2 = 2 tan−1(u2) (B.41)

Solve for θ1

0P4ORG =



cθ1g1 − sθ1g2

sθ1g1 − cθ1g2

g3

1


=



x

y

z

1


(B.42)



77

g1 = cθ2(sθ3L2 + L1)− sθ2L2cθ3 (B.43)

g2 = 0;

Looking back at the position vector Eq(B.42), using Eq(B.43 and solutions of θ2 and θ3, θ1 is

solved.

The Atan2 shown below is a function in C++ that allows for one solution of an angle based

on the cosine and sine of that angle.

Atan2(sin, cos) = tan−1 sin(θ)

cos(θ)
(B.44)

θ1 is then solved

θ1 = A tan 2(sin, cos) (B.45)

cθ1 = x/g1 (B.46)

sθ1 = y/g1 (B.47)

θ1 = Atan2(y/g1, x/g1) (B.48)

There are two possible solutions for θ3, and four possible solutions for θ2. Based on this there

will be eight possible solutions for θ1.

Now it is possible to solve for θ4 , θ5 , and θ6. The wrist orientation is shown in Figure B.2.

Where the equation for a ZYX Euler rotation matrix is given as

RZ′Y ′X′(α, β, γ) =

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ −sαsβsγ + cαcγ −sαsβcγ − cαsγ

−sβ cβsγ cβcγ

(B.49)

The inverse of the rotation matrix of the wrist is

6
4R

−1|θ4=0 ∗06 R = RZ′Y ′X′(α, β, γ) =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (B.50)
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Figure B.2 Euler Wrist

The solution of the three angles are found using the function Atan2. This gives the solution

θ5 = −β = −Atan2(−r31,
√
r322 + r33) (B.51)

θ4 = −α = −Atan2(−r21/cβ, r11/cβ) (B.52)

θ6 = γ = Atan2(r32/cβ, r33/cβ (B.53)

Rate kinematics

The rate kinematics are found using the method described in the robotics review section,

following velocity propagation joint to joint from the base frame. The Jacobian is then defined

based on the solution to the rate kinematics.
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Jacobian

0
6J =



j11 j12 j13 j14 j15 j16

j21 j22 j23 j24 j25 j26

j31 j32 j33 j34 j35 j36

j41 j42 j43 j44 j45 j46

j51 j52 j53 j54 j55 j56

j61 j62 j63 j64 j65 j66


(B.54)
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Where

j11 = s(θ1) ∗ (c(θ2)L1 + L2s(θ2)c(θ3) + L2c(θ2)s(θ3))

j12 = c(θ1)(−s(θ2)s(θ3)L2 + c(θ2)c(θ3)L2 − s(θ2)L1)

j13 = L2c(θ1)(c(θ2)c(θ3)− s(θ2)s(θ3))

j14 = 0

j15 = 0

j16 = 0

j21 = c(θ1)(c(θ2)L1 + L2s(θ2)c(θ3) + L2c(θ2)s(θ3))

j22 = s(θ1)(−s(θ2)s(θ3)L2 + c(θ2)c(θ3)L2 − s(θ2)L1)

j23 = L2s(θ1)(c(θ2)c(θ3)− s(θ2)s(θ3))

j24 = 0

j25 = 0

j26 = 0

j31 = 0

j32 = c(θ2)L1 + L2s(θ2)c(θ3) + L2c(θ2)s(θ3)

j33 = (s(θ2)c(θ3) + c(θ2)s(θ3))L2

j34 = 0

j35 = 0

j36 = 0
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j41 = 0

j42 = s(θ1)

j43 = s(θ1)

j44 = c(θ1)(s(θ2)c(θ3) + c(θ2)s(θ3))

j45 = c(θ1)s(θ4)c(θ2)c(θ3) + c(θ1)s(θ4)s(th2)s(θ3) + s(θ1)c(θ4)

j46 = c(θ5)c(θ4)c(θ1)c(θ2)c(θ3)− c(θ5)c(θ4)c(θ1)s(θ2)s(θ3) +

c(θ5)s(θ1) ∗ s(θ4)− s(θ5)c(θ1)c(θ2)s(θ3)− s(θ5)c(θ1)s(θ2)c(θ3)

j51 = 0

j52 = −c(θ1)

j53 = −c(θ1)

j54 = s(θ1)(s(θ2)c(θ3) + c(θ2)s(θ3))

j55 = s(θ1)s(θ4)s(θ2)s(θ3)− s(θ1)s(θ4)c(θ2)c(θ3)− c(θ1)c(θ4)

j56 = −c(θ5)c(θ4)s(θ1)s(θ2)s(θ3) + c(θ5)c(θ4)s(θ1)c(θ2)c(θ3)−

c(θ5)c(θ1)s(θ4)− s(θ5)s(θ1)c(θ2)s(θ3)− s(θ5)s(θ1)s(θ2)c(θ3)

j61 = 1

j62 = 0

j63 = 0

j64 = s(θ2)s(θ3)− c(θ2)c(θ3)

j65 = −s(θ4)(s(θ2)c(θ3) + c(θ2)s(θ3))

j66 = c(θ5)c(θ4)s(θ2)c(θ3) + c(θ5)c(θ4)c(θ2)s(θ3)− s(θ5)s(θ2)s(θ3) + s(θ5)c(θ2) ∗ c(θ3)
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APPENDIX C. TRIGONOMETRIC IDENTITIES

Trigonometric identities will be used to simplify mathematical models of the system, some

common identities are shown

cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2) (C.1)

sin(θ1 + θ2) = cos(θ1) sin(θ2) + sin(θ1) cos(θ2) (C.2)

sin(−90 + θ) = − cos(θ) (C.3)

cos(−90 + θ) = sin(θ) (C.4)

sin(90 + θ) = cos(θ) (C.5)

cos(90 + θ) = − sin(θ) (C.6)

cos(θ1) = cθ1 (C.7)

sin(θ1) = sθ1 (C.8)

cos(θ1 + θ2) = cθ1+2 (C.9)

sin(θ1 + θ2) = sθ1+2 (C.10)
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APPENDIX D. CODE

C++ code necessary for programming PHANTOM Omni.

Implementation of Theory

Listing D.1 Code: Define Variables
1 // Center o f VM − s t a t e v a r i a b l e

2 pivotLoc [ 0 ] = 0 ; pivotLoc [ 1 ] = 0 ; pivotLoc [ 2 ] = 0 ;

3

4 // l e n g t h o f VM − s t a t e v a r i a b l e

5 Lv [0 ]=50 ;

6

7 //GAIN FOR POSITION ERROR

8 f loat Kp1 = 1 ;

9

10 //GAIN FOR ANGLE ERROR

11 f loat gain = Kp1∗3.14∗Lv [ 0 ] ;

12

13 // i n i t i a l i z e v e c t o r s f o r matr ix o p e r a t i o n s

14 #define n 6

15 #define m 1

16 #define p 1

17

18 f loat JvT [m] [ n ] ;

19 f loat JvTWA[m] [ n ] ;

20 f loat JvTWAJv[m] [m] ;

21 f loat JvTWAJvinv [m] [m] ;

22 f loat JvTWAJvinv JvT [m] [ n ] ;

23 f loat Jv JvTWAJvinv JvT [ n ] [ n ] ;

24 f loat WAJv JvTWAJvinv JvT [ n ] [ n ] ;

25 f loat IminusWAJv JvTWAJvinv JvT [ n ] [ n ] ;

26 f loat Kpe [ n ] [ p ] ;

27 f loat fmotion [ n ] [ p ] ;

28 f loat e e r r o r [ n ] ;

29 f loat JV [ n ] ;

30 f loat fx ;

31 f loat fy ;

32 f loat f z ;

33

34 // i n i t i a l i z e v e c t o r s f o r system va l u e s
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35 f loat per ro r [ n ] [ p ] = {{ e e r r o r [ 0 ]} ,{ e e r r o r [ 1 ]} ,{ e e r r o r [ 2 ]} ,{ e e r r o r [ 3 ]} ,{ e e r r o r [ 4 ]} ,{ e e r r o r [ 5 ] } } ;

36 // Jacob ian i s a d i f f e r e n t s i z e f o r each 1 DOF and 2 DOF, needs to be i n i t i a l i z e d based on s i z e

37 f loat I [ n ] [ n ] = {{1 ,0 , 0 , 0 , 0 , 0} ,{0 ,1 , 0 , 0 , 0 , 0} ,{0 ,0 , 1 , 0 , 0 , 0} ,{0 ,0 , 0 , 1 , 0 , 0} ,{0 ,0 , 0 , 0 , 1 , 0} ,{0 ,0 , 0 , 0 , 0 , 1}} ;

38 f loat WA[ n ] [ n ] = {{1 ,0 , 0 , 0 , 0 , 0} ,{0 ,1 , 0 , 0 , 0 , 0} ,{0 ,0 , 1 , 0 , 0 , 0} ,{0 ,0 , 0 , 1 , 0 , 0} ,{0 ,0 , 0 , 0 , 1 , 0} ,{0 ,0 , 0 , 0 , 0 , 1}} ;

39 f loat kkp [ n ] [ n ] = {{Kp1,0 , 0 , 0 , 0 , 0} ,{0 ,Kp1 ,0 , 0 , 0 , 0} ,{0 ,0 ,Kp1 ,0 , 0 , 0} ,

40 {0 ,0 ,0 , gain , 0 , 0} ,{0 ,0 , 0 , 0 , gain , 0} ,{0 ,0 , 0 , 0 , 0 , gain }} ;

Listing D.2 Code: Matrix Operations
1 //Use Matr ix Opera t ions from ‘ ‘Kalman F i l t e r i n g ’ ’ by Dan Simon

2 matr ix t ranspose ( ( f loat ∗) Jv , n , m, ( f loat ∗) JvT ) ;

3 matr ix mul t ip ly ( ( f loat ∗) JvT , ( f loat ∗) WA, m, n , n , ( f loat ∗) JvTWA) ;

4 matr ix mul t ip ly ( ( f loat ∗) JvTWA, ( f loat ∗) Jv , m, n , m, ( f loat ∗) JvTWAJv) ;

5 mat r i x i nve r s i on ( ( f loat ∗) JvTWAJv, m, ( f loat ∗) JvTWAJvinv ) ;

6 matr ix mul t ip ly ( ( f loat ∗) JvTWAJvinv , ( f loat ∗) JvT , m, m, n , ( f loat ∗) JvTWAJvinv JvT ) ;

7 matr ix mul t ip ly ( ( f loat ∗) Jv , ( f loat ∗) JvTWAJvinv JvT , n , m, n , ( f loat ∗) Jv JvTWAJvinv JvT ) ;

8 matr ix mul t ip ly ( ( f loat ∗) WA, ( f loat ∗) Jv JvTWAJvinv JvT , n , n , n , ( f loat ∗) WAJv JvTWAJvinv JvT ) ;

9 mat r i x subt rac t i on ( ( f loat ∗) I , ( f loat ∗) WAJv JvTWAJvinv JvT , n , n , ( f loat ∗) IminusWAJv JvTWAJvinv JvT ) ;

10 matr ix mul t ip ly ( ( f loat ∗) kkp , ( f loat ∗) perror , n , n , p , ( f loat ∗) Kpe ) ;

11 matr ix mul t ip ly ( ( f loat ∗) IminusWAJv JvTWAJvinv JvT , ( f loat ∗)Kpe , n , n , p , ( f loat ∗) fmotion ) ;

Listing D.3 Code: Appl force to haptic device
12 // g e t f o r c e from matr ix o p e r a t i o n s

13 fx = fmotion [ 0 ] [ 0 ] ;

14 fy = fmotion [ 1 ] [ 0 ] ;

15 f z = fmotion [ 2 ] [ 0 ] ;

16

17 // send f o r c e to s t a t e v a r i a b l e f o r h a p t i c d e v i c e

18 f o r c e [ 2 ] = f z ; // keep in t h e x y p l ane

19 f o r c e [ 0 ] = fx ;

20 f o r c e [ 1 ] = fy ;

21

22 // Save a l l components i n t o a s t a t e v a r i a b l e to e x po r t

23 s t a t e . compforce [ 0 ] = fmotion [ 0 ] [ 0 ] ;

24 s t a t e . compforce [ 1 ] = fmotion [ 1 ] [ 0 ] ;

25 s t a t e . compforce [ 2 ] = fmotion [ 2 ] [ 0 ] ;

26 s t a t e . compforce [ 3 ] = fmotion [ 3 ] [ 0 ] ;

27 s t a t e . compforce [ 4 ] = fmotion [ 4 ] [ 0 ] ;

28 s t a t e . compforce [ 5 ] = fmotion [ 5 ] [ 0 ] ;
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Code for One Degree of Freedom

Listing D.4 Code: One Degree of Freedom
29 // V i r t u a l Manipu la tor in XY p lane f i x e d to a po i n t

30

31 // d e f i n e an g l e s

32 f loat thetaV1=atan2 ( s t a t e . p o s i t i o n [1]− pivotLoc [ 1 ] , s t a t e . p o s i t i o n [0]− pivotLoc [ 0 ] ) ; // ang l e about z

33 f loat thetaR1=atan2 ( s t a t e . transform [ 9 ] , s t a t e . transform [ 8 ] ) ; // Or i en t a t i on ang l e about z a x i s

34

35 // d e f i n e e r r o r

36 e e r r o r [0 ]= pivotLoc [0 ]+Lv [ 0 ] ∗ cos ( thetaV1)− s t a t e . p o s i t i o n [ 0 ] ; // e r r o r in x

37 e e r r o r [1 ]= pivotLoc [1 ]+Lv [ 0 ] ∗ s i n ( thetaV1)− s t a t e . p o s i t i o n [ 1 ] ; // e r r o r in y

38 e e r r o r [2 ]= pivotLoc [2]− s t a t e . p o s i t i o n [ 2 ] ; // e r r o r in z

39 e e r r o r [ 3 ]=0 ; // e r r o r in t h e t a x

40 e e r r o r [ 4 ]=0 ; // e r r o r in t h e t a y

41 e e r r o r [5 ]= thetaV1−thetaR1 ; // e r r o r in t h e t a z

42

43 // d e f i n e Jacob ian

44 f loat Jv [ n ] [m] = {{JV[ 0 ]} ,{JV[ 1 ]} ,{JV[ 2 ]} ,{JV[ 3 ]} ,{JV[ 4 ]} ,{JV [ 5 ] } } ;

45 JV [ 0 ] = −Lv [ 0 ] ∗ s i n ( thetaV1 ) ;

46 JV [ 1 ] = Lv [ 0 ] ∗ cos ( thetaV1 ) ;

47 JV [ 2 ] = 0 ;

48 JV [ 3 ] = 0 ;

49 JV [ 4 ] = 0 ;

50 JV [ 5 ] = 1 ;

51

52 // Save an g l e s to S t a t e v a r i a b l e f o r use in g r a p h i c s

53 s t a t e . the ta r [ 0 ] = thetaR1 ;

54 s t a t e . thetav [ 0 ] = thetaV1 ;

55 fnow [ 0 ] = f o r c e [ 1 ] ;
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Code for Three Degrees of Freedom

Listing D.5 Code: Three Degrees of Freedom
1 // V i r t u a l Manipu la tor in XYZ p lane f i x e d to a po i n t

2

3 // Create l e n g t h v a r i a b l e f o r f i n d i n g an g l e s

4 f loat LL = ( sq r t ( ( s t a t e . p o s i t i o n [0]− pivotLoc [ 0 ] ) ∗ ( s t a t e . p o s i t i o n [0]− pivotLoc [ 0 ] )

5 + ( s t a t e . p o s i t i o n [1]− pivotLoc [ 1 ] ) ∗ ( s t a t e . p o s i t i o n [1]− pivotLoc [ 1 ] )

6 + ( s t a t e . p o s i t i o n [2]− pivotLoc [ 2 ] ) ∗ ( s t a t e . p o s i t i o n [2]− pivotLoc [ 2 ] ) ) ) ;

7

8 // d e f i n e an g l e s

9 f loat thetaV1 = ( atan2 ( s t a t e . p o s i t i o n [1]− pivotLoc [ 1 ] , s t a t e . p o s i t i o n [0]− pivotLoc [ 0 ] ) ) ; // ang l e about z

10 f loat thetaV2 = −PI−acos ( ( s t a t e . p o s i t i o n [2]− pivotLoc [ 2 ] ) / ( LL ) ) ; // ang l e about x

11 f loat thetaV3 = 0 ; // r o t a t i o n about y

12

13 f loat thetaR1 = atan2 ( s t a t e . transform [ 9 ] , s t a t e . transform [ 8 ] ) ; // Or i en t a t i on ang l e about z a x i s

14 f loat thetaR2 = −PI−acos ( ( s t a t e . transform [ 1 0 ] ) ) ; // Or i en t a t i on ang l e about x a x i s

15 f loat thetaR3 = 0 ; // Or i en t a t i on ang l e about y a x i s

16

17 f loat e e r r o r [ 6 ] ; // p o s i t i o n e r r o r

18 e e r r o r [ 0 ] = pivotLoc [0 ]+Lv [ 0 ] ∗ s i n ( thetaV2 )∗ cos ( thetaV1)− s t a t e . p o s i t i o n [ 0 ] ; // e r r o r in x

19 e e r r o r [ 1 ] =pivotLoc [1 ]+Lv [ 0 ] ∗ s i n ( thetaV2 )∗ s i n ( thetaV1)+pivotLoc [1]− s t a t e . p o s i t i o n [ 1 ] ; // e r r o r in y

20 e e r r o r [ 2 ] = pivotLoc [2]−Lv [ 0 ] ∗ cos ( thetaV2)− s t a t e . p o s i t i o n [ 2 ] ; // e r r o r in z

21 e e r r o r [ 3 ] = 0 ; // e r r o r in t h e t a x

22 e e r r o r [ 4 ] = thetaV2−thetaR2 ; // e r r o r in t h e t a y

23 e e r r o r [ 5 ] = thetaV1−thetaR1 ; // e r r o r in t h e t a z

24

25 ////Compute Jacob ian Based on I n i t i a l Ang les found above

26 f loat Jva [ 9 ] ;

27 Jva [ 0 ] = −Lv [ 0 ] ∗ ( s i n ( thetaV1 ) )∗ ( s i n ( thetaV2 ) ) ;

28 Jva [ 1 ] = Lv [ 0 ] ∗ ( cos ( thetaV1 ) )∗ ( cos ( thetaV2 ) ) ;

29 Jva [ 2 ] = 0 ;

30 Jva [ 3 ] = Lv [ 0 ] ∗ ( cos ( thetaV1 )∗ s i n ( thetaV2 ) ) ;

31 Jva [ 4 ] = Lv [ 0 ] ∗ ( s i n ( thetaV1 ) )∗ ( cos ( thetaV2 ) ) ;

32 Jva [ 5 ] = 0 ;

33 Jva [ 6 ] = 0 ;

34 Jva [ 7 ] = Lv [ 0 ] ∗ s i n ( thetaV2 ) ;

35 Jva [ 8 ] = 0 ;

36

37 f loat Jvb [ 9 ] ;

38 Jvb [ 0 ] = 0 ;

39 Jvb [ 1 ] = s in ( thetaV1 ) ; // check t h e s i g n on t h i s ! ! !

40 Jvb [ 2 ] = cos ( thetaV1 )∗ s i n ( thetaV2 ) ;

41 Jvb [ 3 ] = 0 ;

42 Jvb [ 4 ] = −cos ( thetaV1 ) ;

43 Jvb [ 5 ] = s in ( thetaV1 )∗ s i n ( thetaV2 ) ;

44 Jvb [ 6 ] = 1 ;

45 Jvb [ 7 ] = 0 ;

46 Jvb [ 8 ] = −cos ( thetaV2 ) ;

47

48 f loat Jv [ n ] [m] = {{Jva [ 0 ] , Jva [ 1 ] , Jva [ 2 ]} ,{ Jva [ 3 ] , Jva [ 4 ] , Jva [ 5 ] } , {Jva [ 6 ] , Jva [ 7 ] , Jva [ 8 ] } ,

49 {Jvb [ 0 ] , Jvb [ 1 ] , Jvb [ 2 ]} ,{ Jvb [ 3 ] , Jvb [ 4 ] , Jvb [ 5 ]} ,{ Jvb [ 6 ] , Jvb [ 7 ] , Jvb [ 8 ] } } ;
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50

51 // Save an g l e s i n t o g l o b a l v a r i a b l e to be used in g r a p h i c s

52 s t a t e . the ta r [ 0 ] = thetaR1 ;

53 s t a t e . the ta r [ 1 ] = thetaR2 ;

54 s t a t e . thetav [ 0 ] = thetaV1 ;

55 s t a t e . thetav [ 1 ] = thetaV2 ;
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