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Abstract

Welded gusseted frame design for fatigue loading is largely not addressed in modern machine design 

texts.  This research intends to uncover stress solutions for critical locations on welded gusseted frames 

so that such a common engineering structure can have design basis.  The problem was approached 

using static equilibrium relations to populate coefficients of deliberately chosen line stress functions. 

The results from that analysis were used in a subsequent fracture mechanics analysis to develop the 

singular stress field at a weld toe.  The current research resulted in solutions for the two most critical 

stress states on welded gusseted frame structures.  
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Chapter 1:  Introduction 
1.1 Problem Definition

Gusseted frames are a common subject in mechanical design.  Frames are generally 

beam-based structures where the connection between beams is a moment carrying 

connection.  The use of gussetry in mechanical design is intended save material by 

allowing the reduction of the cross-section of at least one beam in a frame connection. 

Examples of gusseted frames are shown in the following figures.

Figure 1.1:  Gusseted frame example.  Rotating machinery supported by gusseted frame
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Figure 1.2:  Gusseted frame example.  Hydraulic cylinder actuated mechanism or 
machinery 

Despite the common uses of gusseted frames, current design and analysis literature does 

not address this topic from a structural failure perspective. Gaps in the literature exist for 

in-plane loading of finite 

parabolic plates, as well as for the contact problem of finite parabolic plates with beams. 

The literature also lacks weld metal mechanical properties for many common 

combinations of base metal and weld metal.  In particular, elastic material properties of 

MIG/MAG welded mild steel are not present.  Because the aforementioned items are not 

available in the literature, a stress analysis at the toe of a welded connection is not 

possible.  Consequently, fatigue failure criterion for welded connections cannot be 

applied to gusseted frame connections without significant effort in numerical simulation 

or physical testing.  

A very simple mechanical frame consisting of two beams and one moment connection 

should be the focus when moving towards a reliable method to determine frame stresses. 

Therefore the problem is constructed as such: Two welded beams are oriented 90 degrees 

from each other.  One beam is cantilevered and the other is loaded at its tip.  The addition 
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of a gusset is provided at the joint.  It is desired that the service life of the frame be 

determined through the use of common fatigue algorithms.  See figure 1.3 for clarity on 

the geometry of the problem.

Figure 1.3:  Problem definition

1.2 Objective

The objective of this paper is to create useful stress results in critical locations on the 

gusseted frame that can serve as inputs into a fatigue model.  

1.3 Organization of Sections

This paper consists of six main sections outside of this introduction. The first section is 

dedicated to exposing the existing literature on in-plane stress analysis in beams, plates, 

and contact problems.  The second section develops the methodology for finding the 

critical stresses in a gusseted frame.  The third section provides experimental results for 

Young's modulus of weld metal, as well as a discussion about the literature on material 

property acquisition.  The fourth section provides a stress analysis for the critical near-

field region of the gusset tip.  The fifth section details an effective design plan to use the 



    4

results of this research, as well as a worked example.  The sixth section comments on 

several possibilities on expanding the methodology to approach other complex 

geometries that require frequent stress analysis.  Conclusions based on the current project 

are also discussed. 
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Chapter 2:  Background

In order to develop the necessary critical stress states on gusseted frames, a 

thorough analysis of existing literature is most appropriate.  In particular, 'T' joints and 

beam-plate interactions, as well as plane elasticity literature are important to this 

research.  

Literature on T or L joints is limited.  The vast majority of studies regarding the 

stress distributions in T joints have been performed using finite element analysis (FEA) 

[N’Diaye, et al, 2009]. Analytical solutions are much more difficult to come by. This is 

perhaps because the function of contact stress is largely unknown, therefore, difficult 

variational calculus methods are often used for an exact solution. Solutions for mixed 

problems in elasticity do well in capturing complete stress distributions in all 

participating mechanical elements.  Popov and Tikhonenko [1974] finds the exact 

solution for a semi-infinite beam bonded to an elastic wedge.  In a separate paper, Popov 

and Tikhonenko [1975] find a similar solution for two beams in contact with a wedge. 

These solutions utilize the calculus of variations where the contact interface is the 

unknown functional. This paper would like to deviate from the variational calculus 

approach and assume a contact stress function which can be determined from either 

observation or some other concept in analytical mechanics. Concepts in elasticity such as 

peeling stress, elastic mismatch stress, and the stress field due to corner and free edge 

singularities present local varying stress fields that are dependent on local geometry, 

material properties, and local nominal stress fields. They can be used to fulfill the 

unknown contact stress requirement. These varying stress fields could be superimposed 
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on the nominal stress fields from plane stress and beam solutions to potentially guide the 

design process. A discussion about each of these stress concepts will follow. 

This paper will draw upon work from several areas of study in mechanics. Each 

element in the T or L joint has easily calculated nominal stress distributions. The basic 

beam stresses and deflections can be determined from a simple strength of materials 

approach [Hibbeler, 2005]. The various gusset plates used in this paper will be 

sufficiently thin so that plane stress conditions can be assumed. For a simple straight 

sided gusset plate, Airy's stress function can be used to develop the 2-D plane stress 

distribution [Timoshenko, 1951]. Airy's stress formulations for plane problems involves 

directly integrating stresses rather than displacements to find equilibrium within the 

confines of prescribed boundary conditions. This is the preferred method when solving 

plane problems. However, for more complicated gusset geometries, such as the finite 

gusset with a parabolic free edge, more complicated methods must be employed. 

Variational techniques or conformal mapping of complex potentials onto multiple polar 

coordinate systems would have to be developed for an exact solution of stress 

distribution. An advanced mathematical background and extremely developed 

mechanical insight, not to mention and enormous time investment, is required for such a 

solution. It does not offer significant advantages over a reasonable estimate of the 

maximum stress on the parabolic free edge. 

The interaction between the bonded beams (T or L joint) can potentially be 

studied from the perspective of peeling or cleavage stresses. Peeling stress concepts came 

about in the study of adhesively bonded joints. Kaelble [1960] develops the theory for 

peeling stresses and provides experimental results to verify his findings. Peeling or 
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cleavage occurs when forces act on a joint as to pry or peel the joint apart. It is a widely 

used theory in adhesive-bonded joint design. The interfacial stresses provided by peeling 

stress theory can potentially help quantify local stress singularities at free edges at 

bonded interfaces. Numerical studies of cleavage stress distributions are shown in Kong, 

You, Zheng and Yu, [2007], these results clearly show the contribution of peeling to the 

entire stress state of a joint. Malek, Hamed and Ehsani [1998] apply the fundamentals of 

peeling stress concepts to a uniform beam reinforced by a uniform plate. The solution is 

derived from elasticity principles. While the result of this analysis is not practical for use 

in gusseted joint design, the methodology is very telling. This method is extended in 

[Stratford and Cadei, 2006] where non uniform reinforcing plates are considered. 

However, as mentioned in [Stratford and Cadei, 2006], the problem becomes complicated 

enough that an analytical solution is no longer practical or useful. The study resorts to 

numerical studies to quantify peeling stresses. Methods of quantifying the varying 

stiffness of the reinforcing plate is how Stratford and Cadei [2006] becomes useful to this 

project. A large time frame in this study was dedicated to finding a peeling stress result 

for the interfacial effects of beam bending stresses; however, it was concluded here, like 

in Stratford and Cadie [2006], that a peeling stress result is not possible to attain for small 

beam sections. In this author's perspective, a peeling stress solution to the problem of a 

welded T or L joint would be optimal because it would provide a complete interfacial 

normal and shear stress distribution. However, developing boundary conditions for the 

complementary solution for peeling stresses becomes very difficult. The normal stress 

distribution of peeling stresses for semi-infinite beams follows some variation of the 

fundamental solution for fourth order differential equations where the (x=0) occurs at the 
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free edge of the beams and -x corresponds to the longitudinal ordinate into the beam 

space. In past peeling stress results, it was assumed that the normal stress at the 

interface went to zero as x tended towards negative infinity. Therefore, the final term in 

the complementary solution was dropped. This simplified the problem greatly. The two 

remaining boundary conditions were formulated using known values for shear stress at 

the interface [Malek, Hamed and Ehsani, 1998]. Dropping the final term in the 

complementary solution is not possible for finite, and more specifically, small, beam 

sections because the peeling stress result does not have enough longitudinal space to 

return to a uniform value equal to beam bending stress. From observation 

of many FE models, the normal stress at the opposite free edge (x = xend) is some 

superposition of nominal bending stresses and peeling stress effects. Unfortunately, this is 

unknown and can no longer be used as a boundary condition. The peeling stress problem 

returns to an under-defined state. When considering a gusset reinforced T/L joint, the 

boundary conditions become further complicated because the variation of stiffness of the 

gusset and beam combination is a function of longitudinal distance. 

Given the background on contact stresses and finite plates with irregular 

geometry, the subsequent analysis is used to develop a contact stress function and an 

estimate for stresses in a finite gusset with a parabolic free edge. The contact stress 

function is assumed to be cubic in nature. It does not include the singularity at the free 

edge. The singularity will be discussed in chapter 5. 
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Chapter 3:  Problem Formulation and Solution

The problem defined in section 1.1 will be formulated here.  A solution is drawn from 

existing work, equilibrium relations, and stiffness considerations.  

Figure 3.1:  Gusseted joint.

A gusseted joint is shown in figure 3.1. The joint is cut at the joint interface. 
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Figure 3.2:  Frame cut at joint interface.

Figure 3.2 serves as the free body diagram for this problem.  From this point in this 

analysis, it is assumed that lb is sufficiently large and FR will be neglected because MR 

will dominate the stress state at the interface.  The stress distribution at the interface will 

be primarily determined by MR.  In this case, MR = F x lb.  

Observing the cross section taken at the cut, it is easy to separate the joint interface into 

two elements: the beam interface and the gusset interface.  The beam interface has an 

area moment of inertia of Ib about its neutral axis at the ordinate of y = -y1, and an area of 

A1. The gusset interface has an area moment of inertia of Ig about its neutral axis at y = y2, 

and an area of A2.  
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Figure 3.3:  Cross section of interface.

To proceed, it is necessary to find the neutral axis of the entire cross section.  From 

elementary mechanics it is known that

yneutral∑ An=∑ yn An  therefore, 

(1)  y3=
∑ yn An

∑ An

=
y1 A1 y2 A2

A1A2
 

noting that y1 has a negative value associated with it.

y3 = neutral axis ordinate for entire cross section.

It is also necessary to determine the area moment of inertia for the entire interface.  Using 

the parallel axis theorem, it is known that
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(2)  I total=I bA1y1− y3
2
I gA2 y2− y3

2  

noting that y1 is typically negative.

It is now possible to capture the nominal bending stress distribution.  By the strength of 

materials approach, bending stress Sb is 

Sb y =
M R y− y3

I total
where -h1 ≤ y ≤ h2.

 h1 and h2 are defined as the height of each elemental cross section.  See figure 3.4 for 

further clarification.

Figure 3.4:  View of cross section with all relevant geometric parameters for stress 
distribution calculation.

The stress distribution over the gusset element will be defined by

(3) Sb y =
M R  y− y3

I total
 where 0 ≤ y ≤ h2. 
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The stress distribution over the beam cross section will be defined by 

(4) Sb y =
M R  y− y3

I total
where -h1 ≤ y ≤ 0.

Note that y3 can be negative given the working coordinate system described in figure 4.

By observing many beam-gusset interfaces in FE models, it is noticed that the stress 

distribution in the gusset section of the interface does not behave as described in equation 

(3).  The stress distribution in the gusset at the interface changes as the profile of the 

gusset changes.  The various gussets available to engineers provide stress distributions 

that can be approximated by using a variation of the stiffness method.  The stress 

distribution is characterized in three steps. The first step is assuming a load path through 

the gusset plane. The second step is establishing equilibrium. The third step is solving for 

the interfacial stress distribution. 

Step 1:  Assume load path through the gusset

It is possible to assume a reasonably accurate load path through a gusset.  The 

distribution of stresses in a wedge has been developed [Timoshenko and Goodier, 1951]. 

The results from that analysis can be used to approximate a load path.  It is seen that 

stress flows in a radial path about R=0 (see figure 3.5).  To make this useful, the length of 

the paths need to be quantified so that ratios of pseudo stiffness can be developed.  The 

stiffness of an axially loaded bar is:

k=
AE
L

 

where A = area, E = elastic modulus, and L = length of bar.

For the purposes of this analysis, take L to be the length of the radial load path instead of 

the length of a bar.  Since the thickness of the gusset is assumed to be uniform, A is 
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removed from the analysis.  The material properties of the gusset are also assumed 

constant, therefore, E is set to unity.  The equation for stiffness reduces to (5).

(5) k=
1

r
 

where r = radial coordinate on gusset,  = angular range.  r and  are clarified in figureϕ ϕ  
3.5.

Figure 3.5:  Gusset with radial stress contours.

The previous formulation for stiffness presents problems near the free edges of the gusset 

where the radial lines are no longer continuous on the gusset.  The limiting case for this 

simple formulation is when a radial stress contour line is tangent with the free edge 

nearest to the origin.  In the case of a typical straight-edged gusset that is symmetrical 

about θ = π/4, the limiting case is defined as rL in (6).

(6) r L= l legl tip
2

2
 

Where lleg and ltip are defined in figure 6.
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Figure 3.6:  Straight-edged gusset with referenced parameters defined.

The load path length for a longest radial contour line is given by (7).

(7)  
k L=

1

r L


2
  

In the case of a parabolic gusset, the limiting radius is given in (8).

(8) r L= 2 lleg
2
−r p  

where the appropriate parameters are defined in figure 7.  The stiffness of the load path is 

calculated the same way as in the straight-edged gusset case, except that rL from (8) is 

substituted into (7). 
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Figure 3.7:  Parabolic gusset with referenced parameters defined.

When r > rL, the load path becomes slightly more complicated.  When a free edge 

obstructs a load path, it serves as the new load path until the radial line re-enters the 

gusset material space.  An example of this is shown (figure 3.8) for a case of a parabolic 

gusset where the example load path is at 

r = lleg.
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Figure 3.8:  The load path at R = lleg is shown in red.  The radial contour line is followed 
wherever possible except for where a free edge serves as the load path.

The length of the load path at  R = lleg needs to be quantified. For the case of the straight-

edged gusset where r2 is the equation for the long diagonal free edge on the gusset,

(9) r 2= l legl tip
2

2
sec −



4


To solve for θ in (9) where r2 intersects r1 = lleg, (r1 is the radius of longest load path), take

r 2=r 1=l leg

Solving for θ from (9):

(10) 1 ,2=


4
±arccos 1

l leg  1
2
l legl tip

2


To find the length of the load path, D1, at r1 = lleg, geometric relations are used. The result 

is (11). 

(11) D1=2 l leg1 2 l leg
2
−2 l leg

2 cos 1−2  
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therefore, the stiffness of this load path is given by (12).

(12) k end=
1

D 1

For the case of the parabolic gusset, similar steps are employed as in the load path 

formulation for the straight-edged gusset.  In this case, the equation for the parabolic free 

edge, r3, is given by the solution of:

(13) r 3
2
−2 r3 r0 cos −



4
r 0

2
=r p

2
 

where r p= lleg−l tip (see figure 3.7), and r 0=l leg  2

The load path radius is set equal to r3,

r 3=r 1=l leg

Solving (13) for θ, 

(14) 3 ,4=


4
±arccos r 3

2
−l tip−l leg

2
r0

2

2r3 r 0


Using the result for θ, the load path length, D2, for r1 = lleg is given by (15).

(15) D2=2 l leg3r p3−4

therefore, the stiffness for this load path is given in (16) using D2 from (15). 

(16) k end=
1
D2

The results for kL and kend will become useful later in this analysis.

Step 2: Establishing equilibrium. 

Recall that the bending stress at the beam-gusset interface was described in the strength 

of materials context as being linearly distributed over the entire section.  It was argued 
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that this is not an entirely true representation of the stress distribution in the gusset space. 

However, it is observed that this is mostly accurate in the beam space.  This can be used 

to help develop the stress distribution in the gusset space.  

Recall, Sb=
M R y− y3

I total
Where 0 ≤ y ≤ -h1, is the stress distribution over the beam 

space.

Integrating the bending stress over the beam space will result in the total resultant force 

acting in the beam space.  The magnitude of the total stress in the gusset space must equal 

the total stress in the beam space; it must also act in the opposite direction to maintain a 

force equilibrium.  

(17) F resultant=∫ S b dA1

The interface region must also maintain a rotational equilibrium about the neutral axis. 

Therefore, the moment caused by the stress distribution in the beam space must equal the 

moment acting in the gusset space of the interface. This enforces the force equilibrium 

condition as well as the moment equilibrium condition. Integrating for the total moment 

across the beam space results in (18). 

(18) M resultant=∫ Sb y dA1
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Figure 3.9:  The stress distribution across the interface.
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Step 3:  Solving for angular gusset stress distribution at interface. 

A stress function for the gusset space of the interface is proposed in simple cubic form.

(19) S g=My 3
Ny2

O yP

The unknown coefficients M, N, and O can be solved for by using the equilibrium and 

stiffness relations developed in the previous sections, as well as the known stress at y = 0. 

The following system of equations is used to solve for the coefficients.

First,

(20) S g y=0=Sb y=0=P

∫ S g dAg=F res where Ag is the area of the gusset at the interface; gusset thickness, t, is 

assumed to be uniform, therefore, from (17):  

(21)
h2 t

12
3 M h2

3
4 N h2

2
6 O h212 P =F res

∫ S g x dAg=M res  where Ag is the area of the gusset at the interface; gusset thickness, 

t, is assumed to be uniform, therefore, from (18):

(22)
h2

2 t
60

12 M h2
3
15 N h2

2
20O h230 P=M res

and from the stiffness relations (7) and (12) or (16):

(23)
k L

k end

=
S g  y=r L

S g  y=h2
=

M r L
3
N r L

2
O r LP

M h2
3
N h2

2
O h2P
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Solving for M,N, and O (eqns. 24,25, 26):

By substituting (24), (25), and (26) into (19), the angular gusset interface stress 

distribution (not including corner stress intensities) is now fully characterized by Sg.  The 

angular stress at the tip of the gusset is given in (27).

(27) S tip=S g y=l leg

The stress at the limiting radial line is the maximum stress in the cubic distribution.  It is 

given by (28).

(28) SrL=S g y=r L

This characterizes the stress distribution over the beam-gusset interface.  There is another 

critical stress area on typical gusseted frames that needs to be checked.  Referring to 

figure 3.8, the normal stress on the parabolic free edge of the gusset at θ = 45 degrees is 

often critical in low-cycle fatigue.  It can also be critical if gusset materials are too thin. 

The angular stress distribution about an axis defined at  θ = 45 degrees is observed to be 

very linear.  A linear stress function is assumed for the angular stresses on this axis.  

(29) S45= I rJ

Where I, J are arbitrary coefficients and r is the radial coordinate referring to figure 3.8.

M=
−5 12Mres h2

2 k L12 M res k end r L
2−24 M res h2 k L r L−3 P h2

4 k L t−3 P h2
4 kend t4 P h2

3 k L r L t8 P h2
3 k end r L t−6 P h2

2 k end r L
2 t 

h2
3t 3h2

4 k L−20 k end r L
415h2

2 k L r L
2−12 h2

2 k end r L
2−16 h2

3 k L r L30 h2 kend r L
3 

O=
3 r L 40 M res h2

3 k L20 M res k end r L
3
−60 M res h2

2 k L r L−12 P h2
5 k L t−8 P h2

5 k end t15 P h2
4 k L r L t15 P h2

4 k end r L t−10 P h2
2 kend r L

3 t 

h2
3 t 3 h2

4 k L−20 kend r L
4
15 h2

2 k L r L
2
−12 h2

2 k end r L
2
−16h2

3 k L r L30h2 k end r L
3


N=
6 10 M res h2

3 k L20 M res k end r L
3
−30 M res h2 k L r L

2
−3 P h2

5 k L t−2 P h2
5 k end t5 P h2

3 k L r L
2 t−10 P h2

2 k end r L
3 t10 P h2

3 k end r L
2 t 

h2
3 t 3h2

4 k L−20 k end r L
4
15 h2

2 k L r L
2
−12 h2

2 k end r L
2
−16 h2

3 k L r L30 h2 k end r L
3

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As shown previously, the stress at the origin is equal to the maximum beam stress in the 

beam 1.  However, due to the orientation of the angular stresses, it is necessary to 

transform the bending stress  45 degrees (30).  Also, equilibrium is enforced in (31) using 

a relation similar to (22).

(30) S45=
Sb02

2

(31) ∫ S 45r dA45=M res

Where A45 is the cross-sectional area that is coincident with a radial line drawn 45 

degrees into material gusset space from a gusset free edge.  Mres was calculated for (22). 

The calculation of the coefficients I and J simply becomes the solution of two 

simultaneous equations given by (32) and (33).

(32) I=
12 M res−32 r L

2 t S b0

4 r L
3 t

(33) J=
2 Sb 0

2

The development of angular stress distribution about a 45 degree axis is complete. 
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Until now, the stresses under consideration were specifically in-plane angular stresses 

about the origin of the gusset.  There is also a radial stress that exists at the boundaries of 

the gusset space.  This radial stress is nominally equal to the maximum beam bending 

stress at the gusset tip. 

Figure 3.10:  Beam bending

To a certain extent, it is acceptable to think of part of the gusset as just a part of the beam, 

but as the gusset height increases, it begins behaving independently from the beam.  For 

this analysis, the total height of the gusset is key in determining the bending stress 

contribution to the critical location at the midpoint of the parabolic free edge.  It is found, 

through numerical simulation and observation, that the beam bending stress contributes to 

the stress state following the relation given in (34).

(34) S b−applied =S b−beam20.25


h s

hbeam2


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where hbeam2 = height of the second beam (the second beam is the horizontal beam in 

figure 1). Sb-beam2 = strength of materials result for the average maximum bending stress in 

the second beam. hs is the critical stress height given by (35).

(35) hs=r L sin 4 
The angular and radial stress components for a gusset have been described in the 

preceding section.  The maximum angular stress result is equal to SrL.  The applied 

bending stress component is Sb-applied.  The shear stress component will be neglected for 

this analysis.  The stress state at the midpoint of the parabolic gusset free edge can now 

be constructed easily by superimposing the angular stresses given by (29), (32), and (33) 

and the bending stress contribution given by (34).  The stress state at the gusset tip off of 

the toe of the weld is still not completely developed and will require additional study in 

chapters 4 and 5.
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Chapter 4:  Experimental Results and Discussion

The acquisition of weld metal elastic modulus was facilitated by micro-hardness testing 

with a Knoop indenter. The equipment used was a Buelher MicroMet indentation system. 

The indentations were prepared with a variety of indentation forces ranging from 200 

grams force to 1000 grams force. It was observed that indentations made with more than 

500 grams force resulted in indentations with 'wavy' edges and were subsequently 

removed from the data set. The results included were only derived from indentations 

created with 200 to 500 grams force. The specimens tested consisted of two 1⁄2 inch thick 

plates welded together at a 90 degree angle to form a T joint. The weld bead had a throat 

dimension of 0.25 inches.   The parent material that was used was a mild steel (ASTM 

1018).  The welding wire was ER70S-6.  The composition of the shielding gas was 

95%Ar - 5%O.  A 0.052 inch electrode was used with 28-30 Volts at 370-420 Amps. 

Weld wire was fed feed at 435-530 in/min.  The specimen was sliced perpendicular to the 

direction of the weld bead to create a 1⁄2 inch thick slice. The freshly cut surface was 

ground and polished using several grit sanding and polishing papers. The final polishing 

disc used was a 30 micro-inch grit disc; the finish was very smooth. The next step was to 

etch the surface of the weld bead to positively identify the depth of penetration and to 

create boundaries for indentation. The specimen was then cut off near the welded joint so 

that it could fit into the micro indentation tester, then it was lightly polished again with 30 

micro-inch paper. Figure 4.1 shows the cut off and polished sample. 
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Figure 4.1:  Welded specimen prepared for micro-indentation testing.

Observing the specimen in figure 4.1 closely, the boundaries of the weld are easy to see. 

Ten indentations were performed on three such samples.  The long and short diagonals 

were measured for each indentation and the Knoop hardness number was recorded for 

each.  The conversion of hardness and geometric data to elastic modulus is provided by 

Conway [1986].  Conway developed a method for calculating approximate elastic 

modulus by measuring the long and short diagonals of the diamond shaped Knoop 

indentation.   His results are given by equation (36).

(36)  bR

bx


2

=1−21−
2
 tan

HKN
E

 

where E = elastic modulus, ν = Possion's ratio, 
γ = average half angle of Knoop indenter (typically 75 degrees), bR = measured short 
diagonal,
bx = measured long angle divided by 7.11, HKN = Knoop hardness number.

The average calculated elastic modulus for weld metal was approximately 150 GPa.  This 

result can now be used in the calculation of the dissimilar material corner singularity.
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Chapter 5:  Stress Analysis

Elastic mismatch is a source of local stress variation which can help characterize the 

interfacial stress distribution at a bonded joint. Elastic mismatch literature and peeling 

stress literature are very similar in that displacements of dissimilar bodies are set equal to 

each other and the resulting differential equation is solved. Timoshenko touched the 

concept of mechanical mismatch when studying the thermal mismatch in bimetallic 

thermostats [Timoshenko, 1925]. Since then, many solutions have used the thermal 

mismatch solution technique to study the effects of various mismatches in mechanical 

properties. Elastic mismatch is often encountered in the study of composite materials 

where stiffness varies from material to material. The stress field variations can be 

accounted using the solution techniques in Paranjpye, Beltz and MacDonald [2005]. 

Experimental and numerical studies have shown that the effects of elastic modulus 

mismatch can be significant in some cases. Welded joints inherently have elastic modulus 

mismatch built into them. Spot welded lap joints are very prevalent in elastic modulus 

mismatch literature; perhaps because of the prevalence of spot welded structures in 

automotive applications. In the case of an adhesive-plus-spot-welded lap joint examined 

in the paper by Darwish and Al-Samhan [2004], the free edge stresses vary as the elastic 

modulus of the adhesive varies. Although the author does not comment on this, the results 

are neatly graphed for three adhesives with unique elastic moduli. Analytical studies have 

been performed on similar lap joint geometries without the presence of the adhesive. The 

elastic modulus mismatch is slightly over- predictive of stresses in Lin and Pan [2008] 

because a spot weld is modeled as a rigid inclusion. The 
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motive and intention of finding a local stress concentration factor is preserved and local 

SCF's are derived from elasticity principles. The re-entrant corners inherent to these 

joints indicate that singular stress fields may be present. Re-entrant corner stress fields 

can be evaluated using an eigenfunction strategy [Richards, 2001]. Additional papers 

combine the mismatch and corner singularity effects to determine the variation in a 

local stress field in a bi-material corner [Bogy, 1971; Zhang 2003]. Using the 

eigenfunction expansion technique for a bi-material joint (e.g. steel and weld metal) will 

require that the eigenvalues and stress intensity factor be calculated using analytical 

contour integrals or numerical methods. Semi-analytical methods are preferred here 

because of path independence issues which help ensure a precise stress intensity factor. 

Qian and Akisanya [1999] take a unique approach to finding stress intensity factors using 

finite element methodology that are very similar to those acquired through other 

numerical methods. For a well trained engineer, path dependence can be dealt with using 

simpler methods, like the one provided in the text by Sanford [2003], which involves 

linearly extrapolating apparent stress intensity factors using numerical simulation. 

Between elastic modulus mismatch and re-entrant corner singular stresses, an effective 

analytical model is developed. 

A typical fillet weld profile can be roughly approximated by a straight sided free edge. 

The location where the free edge intersects base metal is typically the location of interest 

as far as stress determination and fatigue evaluation are concerned.  That location is 

marked with an 'X' in figure 5.1.
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Figure 5.1:  Critical stress location

The problem is conveniently set up so that existing elastic mismatch methods from 

literature can help determine the critical stress magnitudes.  Figure 5.2 shows the critical 

stress location more closely.

Figure 5.2:  Local geometry of weld fillet–base metal interface

Notice, in figure 5.2, that the total angle of opening in the joint is 135 degrees.  This 

angle of opening only corresponds to a fillet weld joining two parent material parts at 

right angles.  If the parent material parts are oriented differently, than the opening angle 

will be different, and the resulting eigenvalues (and eventually, the stress solution) will be 



    31

different.  It is advantageous at this point to develop some notation regarding components 

of this opening angle.  The subscript 1 will denote base metal characteristics, the 

subscript 2 will denote weld metal.  Therefore, θ1 will correspond to the 90 degree angle 

shown in figure 3. θ2 will correspond to the 135 degree angle within the base metal space 

in figure 5.2.  The ψ axis equals zero at the material interface and is positive in the 

counterclockwise direction in figure 5.2.

Williams [1959] solution of a single ended crack in dissimilar media provides a basis for 

determining the severity of the stress singularity at a bimaterial re-entrant corner.  The 

solution is very similar to a homogeneous wedge problem, and can be solved for the 

single material case easily, as demonstrated in Williams literature.  The problem is solved 

by the complex stress function rλ+1 Fn(ψ),

Where Fn(ψ) s given by (37).

(37) F n=an sin1bn cos1cnsin −1d n cos −1

F1(ψ ) and F2(ψ ) are stress functions of base metal and weld metal respectively. 

Equilibrium equations are set up for both materials, including equal displacement 

relations at the material interface.  The free edge boundaries are given by (38).

(38) F 1 2 =F '1 2 =F 2 3
4 =F ' 23 

4 =0

Boundary conditions at the interface are given by (39), (40), (41), and (42).

(39) F 10=F2 0

(40) F ' 10=F ' 20

(41)
1

21

−F ' 10−4c11−1=
1

22

−F ' 20−4 c21−2
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(42)
1

21

−1 F10−4d 11−1=
1

22

−1F 20−4d 21− 2

These eight equations carry eight unknowns along with the constant λ.  In order for this 

system of equations to yield a non-trivial solution, λ must be defined so that the det[M] = 

0, where M is the 8x8 matrix carrying the terms of the above eight equations.  As 

Williams indicated in his paper, for the case where θ1 = -θ2. λ has no solution between 0 

and 1 if the materials are dissimilar.  Therefore, it was necessary to define λ as a complex 

eigenvalue, λ = λR+iλi.  However, since θ1 and θ2 are different values than what is seen in 

Williams, 1959, it is still possible that real eigenvalues exist between 0 and 1.    The 

methodology used by Qian and Akisanya [1999] in which a characteristic equation is 

solved for eigenvalues, is a very simple method that will be used for this analysis.  As a 

note, if the only eigenvalues between 0 and 1 were complex, then the analysis would turn 

to the methodology presented in Carpinteri and Paggi [2007].  The aforementioned have 

developed a method for calculating eigenvalues numerically using the condition of the 

equilibrium matrix.  The solution involves finding singular instances in the condition 

calculation of the equilibrium matrix and finding what real and imaginary eigenvalue 

parts correspond to those instances.  This method was used along with the one used in 

Qian and Akisanya [1999].  Both methods resulted in the same smallest positive 

eigenvalue of λ1 = 0.583.  There exist higher order eigenvalues, however they will be 

neglected for the purposes of this analysis. Since a complex polar stress function of the 

form rλ+1 Fn(ψ) results in a radial, angular, and shear stress components proportionate to 

the form rλ-1, any eigenvalue with 0<Re λ < 1 yields a singular stress field.  This is 

important in understanding the reasons behind the mathematical singularity as well as for 

calculating the numerical stress intensity factor.
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The next step is to quantify stress intensity factors that exist at this joint.  It is known that 

the stress intensity factor for cracked media is proportional to the applied nominal stress 

due to the linear nature of fracture mechanics.  The stress intensity factor is also 

proportional to a geometric shape factor which is unique for all geometries.  The stress 

intensity factor is given by (43).

(43) K 1=applied a1−1Y shape

where σapplied = nominal combined applied stress, Yshape = geometric shape factor, K1 = 

stress intensity factor, a = ltip/2

From numerical extrapolation studies based on the methods found in (Sanford, 2003), 

Yshape for this particular geometry is found in (44).

(44)   Yshape = 0.826

In application of the Sanford [2003] method, ANSYS® Advanced Academic Research, 

version 12.1, was used. The method aims to collect nodal stress or displacement results 

over a path approaching the re-entrant corner (the text requires that the path approaches a 

crack tip, but the appropriate modification is made). The apparent stress intensity factor is 

calculated by providing a best fit line through the linear portion of the stress or 

displacement gradient leading up to the corner. The apparent stress intensity factor is 

calculated to be the Y-intercept of the best fit line through the linear data.  A 3-d solid 

finite element model was created.  For the re-entrant corner geometry, solid187 elements 

with a collapsed node on two parallel faces were used to create the singular stress 

behavior.  The element edge length for the local mesh was 0.01 inches with an aspect 

ratio of nearly 1.  In figure 5.3, the geometry is divided into two bodies.  The body near 

the top of figure 5.3 has the elastic material properties of steel (ν = 0.3, E = 205 GPa). 
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The body near the bottom of figure 5.3 has the material properties of weld metal as 

measured earlier (ν=0.3, E=152.75 Gpa).  The above shape factors were calculated and 

checked for validity after apparent stress intensity factors were obtained using Sanford's 

extrapolation technique.

Figure 5.3:  Geometry for numerical study.

It can be observed that the typical fillet weld geometry has two corners of dissimilar 

material.  Figure 5.4 shows these locations as location 1 and location 2.  When beam 

bending stresses are much larger than gusset angular stresses, location 1 is typically in 

more danger of fatigue fracture.  When the angular gusset stresses are much larger than 

the beam stresses, then location 2 is more likely to fracture first.  Finally, when the 

bending and gusset angular stresses are the same, the two fillet corners are equally 

affected.  Therefore, there is much benefit in using a combined applied stress in the 

determination of the stress intensity factors.  Since the geometries are identical in the near 

field regions of 1 and 2, the stress intensity factor calculated above will automatically 

represent the worse of the two fillet corners. The applied stress will be dominated by the 

greater of the two stress components.
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Figure 5.4:  Critical Locations 1 and 2.  The material on the top and bottom is steel, the 
center material is weld metal.

K1 can be determined for any loading for this type of geometry. Here, the stress intensity 

factors may be compared to critical stress intensities for weld metal to determine if 

fracture is eminent.  This may be the preferred method for evaluating a corner like this, 

but critical fracture parameters for weld metal interfaces are sparse in literature. There 

are, however, data in the stress-life domain which would help an engineer determine if 

crack initiation is likely after n cycles. These stress intensity factors and eigenvalues will 

have to be substituted back into a stress solution like Williams [1959], or Qian and 

Akisanya [1999].  Solving for the stress distribution here would be redundant. Qian and 

Akisanya [1999] have the entire solution clearly outlined in an appendix.  See the 

example problem in chapter 6 for relevant coefficients from Qian and Akisanya [1999]. 

Using the singular stress field to predict crack initiation would likely entail using Dang 

Van and Fermer's principles or other industrial methods.
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Chapter 6:  Design Application

One intention behind the writing of this paper is to provide theoretical and empirical tools 

to an engineer so that he or she may perform better in the field of mechanical frame 

design. This section specifically describes how to implement these tools. To begin, it 

must be noted that the gusseted welded connection is tricky since, until now, there were 

no methods for determining gusset boundary conditions for design engineers, but also 

because the fatigue criteria at the weld and base metal inherently differ. In the case of 

mild steels, the endurance limit for base metal is typically 1.5 to 2 times greater than that 

of a fillet weld. Therefore, a gusset can be stressed up to 2 times higher than its welded 

boundary.  Despite the complications of disparate failure criterion, the optimal design 

with regards to minimizing weight can be achieved through the manipulation of just a 

few key variables.  Heading back to the gusseted frame shown in figure 1.3 and again 

here in figure 6.1, it must be realized that the beams must be designed with the 

knowledge that stress intensity factors will not allow the beams to maintain nominal 

strength of material stresses over their entire spans.  
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Figure 6.1:  Gusseted frame.

Referring to figure 6.1, it is immediately seen that the bending stress in beam 1 increases 

with the  distance from the applied force until the gusset tip meets the beam.  Therefore, 

an engineer should choose design stresses against a fatigue criteria using the nominal 

bending stresses at the gusset tip location on beam 1.  To anticipate the effects of the 

stress singularity at the gusset tip, an engineer should select a beam with a slightly higher 

section modulus than a beam suited for nominal bending stresses.  This should serve as 

the first design point for beam 1.  Similarly, for beam 2, although the bending stresses are 

nominally constant over the span, the engineer should choose a slightly over sized beam 

in anticipation of the effects of the stress singularity at the gusset tip.  

Regarding the design of the parabolic gusset, there are three variable to work with.  The 

thickness of the plate, the leg length, and the gusset tip height.  Gusset tip height can be 

removed from consideration because of the formulation of gusset tip stresses.  Thinking 

critically about the development of equation (27), it is known that larger ltip values result 

in larger Stip values, which, in turn, enter into the singular corner.  It is logical to reduce 

the stresses that enter into the corner singularity.  Therefore, it is appropriate to make ltip 
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as small as possible.  Ideally, ltip would be zero, however, issues such as weld burn 

through prevent this from happening.  Therefore, the weld size, gusset thickness, and 

welding method will determine what the minimum gusset tip height will be.

Thickness is another easily manipulated variable.  As a general rule of thumb, large thin 

gussets almost always perform better than small thick gussets in fatigue .  Therefore, an 

engineer should start thin.  It will be known immediately if the gusset is too thin because 

stresses at the mid-point of the parabolic free edge will be too high relative to fatigue or 

plate buckling criterion.  An engineer should iterate the gusset thickness to be as thin as 

possible while maintaining acceptable mid-free-edge stresses in order to utilize all 

available material efficiently. 

At this point, gusset leg length is the only design variable left to manipulate.  It is advised 

to iterate leg length until weld toe stresses off of the gusset tip are acceptable according to 

a weld fatigue criteria.  The optimal design of the L-shaped gusseted frames under fatigue 

loads is easily converged upon if the methodology in this paper were automated in a 

common spreadsheet software.

An example solution of gusset tip stresses has been included to highlight the utility of this 

work.  The results from this work have also been correlated with FEA results taken from 

ANSYS®.  Consider a mechanical frame (figure 6.1) cyclically loaded by a pseudo-static 

load of 100 lbf.  The frame consists of two beams connected perpendicularly to form an L 

frame.  Beam 1 is a 1 inch wide x 1 inch tall x 14 inch long beam.  Beam 2 is a 1 inch 

wide x 1.5 inch tall x 15 inch long beam.  A parabolic gusset supplements the connection 

between the two beams.  The gusset has leg lengths of 5 inches and a tip height of 0.5 

inches.  The gusset plate is 0.25 inches thick.  The beams and the gusset are both made of 
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steel (elastic modulus, E = 2.9x107 psi, Poisson's ratio, υ = 0.3).  

Using the methodology presented earlier, to find the gusset tip stresses, the stresses at the 

gusset-beam interface should be determined first.  The coefficients for the cubic stress 

function at the interface are found to be the following:

P=−102.959
lbf

inch2

M=4.625
lbf

inch5

N=−117.743
lbf

inch4

O=513.725
lbf

inch3

The nominal stress at the gusset tip due to gusset pull-out is 100.254 psi.  The bending 

stress from a strength of materials approach in beam 2 is 3733 psi.  Therefore, two 

components of normal stress are defined.  The resultant normal stress is 3833 psi, this 

will be the applied stress in the determination of the stress intensity factor for the singular 

stress field.  Plane strain conditions are assumed for the determination of the stress 

singularity at the weld toe.   The stress intensity factor calculated for an eigenvalue of 

0.583, a shape factor of 0.826, and a = ltip/2 is calculated as follows. 

K=applied a1−Y shape therefore ,

K=3738 psi 0.25 inch1−0.583
0.826

K=1732 psi inch1−0.583

The stresses on the top of beam 2 leading up to the toe of the weld can be calculated by 

following Williams [1959].  It is noted that for welded mild steel joints where a fillet 

weld is idealized to take a 45 degree departure away from the base metal surface, the 

stresses on the free edge of the base metal always take the form given by (45):

(45) =K1 r−1 f r1
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Where fr1 = 1.195 and r = the radial distance from the weld toe along the base metal free 

edge.  Therefore the stress distribution leading up to the weld toe follows this compact 

relation:

=1732 psi inch1−0.583 r0.583−11.195

The following is a plot of the stress on the free edge of the beam.  As expected, the 

asymptotic solution  is inaccurate far away from the weld toe.  This is seen in figure 6.2. 
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Figure 6.2:  Calculated stresses compared to FEA stresses off of weld toe on beam free 
edge.
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The stresses in the near field region of the weld toe correlates very well with FEA results 

as seen in figure 6.3.  
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Figure 6.3:  Calculated stresses compared to FEA stresses on beam free edge in a near 
field region to the weld toe.

The stress distribution due to the singularity can now be entered into any common 

industrial fatigue method to predict fatigue crack initiation.  
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Chapter 7:  Conclusions and Future Work

From the current work, several important design concepts and strategies have 

been observed.  When designing welded gusseted frames subject to fatigue loading, 

1) It is important to slightly oversize beams based on strength of materials methods.

2) Gusset tip heights on parabolic gussets should be made as small as possible while 

avoiding weld burn-through.

3) Gusset thickness should be based on the stresses at the midpoint of the parabolic 

free edge.

4) Gusset leg length will likely be the only design variable that will require iteration 

until an optimally light design is achieved.

5) Interfacial beam-gusset stresses are given in equations (19) and (24 – 26).

6) Stresses on the midpoint of a parabolic free edge are given by equations (29) and 

(32 - 34).

7) The stress distribution near the weld toe is given by equations (43 = 45).

It is also learned that using relative load path stiffness to determine load path intensities 

in complicated plate geometry is a good method to use when attempting to approximate a 

difficult stress solution.

Using the method of load path determination for in-plane loading in plates can greatly 

simplify the search for appropriate boundary conditions when features or defects in a 

plate are large enough to perturb nominal boundary conditions. This new method for 

determining boundary loads can be used when cuts in plates are too numerous or close to 

boundary conditions and traditional boundary perturbation methods become too 
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cumbersome to use effectively in a design situation. It is recommended that the load path 

stiffness method be developed further so that a useful and simple tool can be available to 

design engineers to determine contact stresses and boundary loads. 

The material property study and the results for weld metal modulus are inherently 

limited. There are many different weld processes, wire types, base metal types, and 

environmental factors that make additional testing of welded joint material properties 

necessary. The results here should be followed by changing the base metal to something 

with more carbon; something more heat treatable. The stiffness of the weld metal – steel 

slurry was more flexible than expected, future research should examine how that changes 

with more carbon in the mixture.  Concurrently, stress intensity factors should be updated 

as more weld metal material properties are tested and published. 

After cantilevered L frame design is firmly established, other configurations of 

boundary conditions and frame geometry should be evaluated for usable stress solutions. 

Some specific examples are 1) simply supported T frames 2) L frames loaded with a 

concentrated moment 3) L and T frames with combine loading, and 4) the confounding 

case where a frame is subject to torque where the gusset is forced to respond to out-of-

plane loading.  Many geometric frame configurations are found in common machine 

design and there is no shortage of opportunities for researchers in academia or industry to 

solve for unknown stress solutions.  
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