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solvation potential Ũ2 with the Lennard-Jones potential ULJ
AA: a) DLA

regime: εAA/εBB = 8.0, C2 = 0.51; b) RLA regime: εAA/εBB = 4.0,

C2=3.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 3.8 Comparison of gAA(r̂) predicted by improved LD model with corre-

sponding MD result at time t̂ = 86.5: a) DLA regime: εAA/εBB = 8.0;

b) RLA regime: εAA/εBB = 4.0. . . . . . . . . . . . . . . . . . . . . . 85

Figure 3.9 Comparison of the cluster size distribution predicted by improved LD

model with corresponding MD result at time t̂ = 86.5: a) DLA regime:

εAA/εBB = 8.0; b) RLA regime: εAA/εBB = 4.0. . . . . . . . . . . . 86



xi

Figure 3.10 Normalized cluster size distributions in the RLA regime ε̂AA/ε̂BB = 4.0

[top panel (a),(b) and (c)], and the DLA regime ε̂AA/ε̂BB = 8.0 [bottom

panel (d), (e) and (f)] at different times t̂ = tD∞/σ2 for MD simula-

tions with LJ potential [left column (a) & (d)]; LD simulations with LJ

potential [middle column (b) & (e)]; LD with improved potential [right

column (c) & (f)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 3.11 Comparison between MD and LD (unmodified LJ and improved poten-

tial) of the extent of aggregation ξ for RLA regime: ε̂AA/ε̂BB = 4.0

[top panel: (a) and (b)], and DLA regime: ε̂AA/ε̂BB = 8.0 [bottom

panel: (c) and (d)]. LD simulations with unmodified LJ potential are

compared with MD in the left column [(a) & (c)], while LD with the

improved potential is compared with MD in the right column [(b) & (d)]. 88

Figure 3.12 Indirect average relative acceleration between A-A pairs resulting solely

from other A particle interactions. Improved LD model (10,000 A-

type particles) compared with MD simulation (10,000 A-type parti-

cles and 813,218 B-type particles) at time t̂ = 86.5: a) DLA regime:

εAA/εBB = 8.0; b) RLA regime: εAA/εBB = 4.0. . . . . . . . . . . . 89

Figure 3.13 Schematic showing a “probe” solvent molecule p which can occupy any

point in 3-d space except volumes of solute particles 1 and 2, thus

defining the domain of integration for the relative acceleration calculation. 90

Figure 3.14 Comparison of computed indirect average relative acceleration with the

analytical result at n̂ = 0.1: a) 1-d case, computations with 150,000

particles averaged over 3,000 multiple independent trials, b) 2-d case,

computations with 823,000 particles averaged over 240 multiple inde-

pendent trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



xii

Figure 4.1 Space of dimensionless parameters in which we scale to characterize

aggregation outcomes for Gτ
(1)
v as a function of the dimensionless po-

tential well depth ε̂, dimensionless diffusion coefficient D̂∞, and Péclet

number Pe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 4.2 Gτ
(1)
v as a function of the dimensionless potential well depth ε̂ and

Péclet number Pe for LD simulations. . . . . . . . . . . . . . . . . . . . 101

Figure 4.3 Evolution of kinetic energy in mean velocity 〈Emean〉 and kinetic energy

in fluctuating particle velocity 〈Efluct〉 in kBTref units for system with

ε̂ = 8 and Pe = 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 4.4 Evolution of the trace of each component in Eq. 4.11 in σ3
v∞/σ units

for system with ε̂ = 8 and Pe = 2.1. Inset represents the same values

at longer time when system reaches a steady–state. . . . . . . . . . . . 104

Figure 4.5 The fractal dimension Df from the LD with effective potential ULD
eff at

time t̂ = 3244: a) simulations are done with ε̂ = 8.0; b) simulations are

done with ε̂ = 50.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 4.6 Snapshots for two typical aggregates for ε̂ = 50.0 at time t̂ = 3244:

a) aggregate containing 150 monomers with the radius of gyration Rg =

2.8 σ; b) aggregate containing 966 monomers with the radius of gyration

Rg = 7.1 σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 4.7 The fractal dimension Df from the LD with effective potential ULD
eff

under shear flow with Pe = 2.1 at time t̂ = 113. . . . . . . . . . . . . . 111

Figure 4.8 Snapshots for typical aggregate for ε̂ = 50.0 at time t̂ = 113 for aggre-

gate containing 7144 monomers with the radius of gyration Rg = 15 σ. 111

Figure 4.9 For aggregation without shear the dimensionless local volumetric poten-
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CHAPTER 1. INTRODUCTION

Nanoparticles are widely used as building blocks in nanotechnology research and they offer

the promise of creating new materials and new applications in the nanoscale range. Moreover,

properties of such materials differs from bulk material properties [1]. These novel properties

are observable only at the nano-scale dimensions have already found their first commercial

applications [2]. For example, latex nanoparticles are used for a variety of biological applica-

tions [3].

Two high-rate synthesis methods are commonly used in the industry: aerosol reactors in a

gaseous environment and colloidal reactors in a fluid environment [1, 4]. In both methods the

synthesis of the particles occurs in turbulent reactors due to the reaction of chemical precursors

and the formation of nuclei, which rapidly grow due to surface addition and/or aggregation.

Such a synthesis process subjects nanoparticle aggregates to a spatially homogeneous, time-

varying shear flow and is characterized by the variety of time–scales and length–scales from

size of single particle to the size of particles aggregate. The next generation of applications

will require improvement in the quality of the monodispersity, purity, and uniform surface

chemistry of nanoparticles [4]. Since the aggregation of the sheared colloidal nanoparticles is the

important part of this process, a better understanding of the sheared aggregation phenomenon

will help to improve synthesis methods.

Aggregating systems that are studied in the literature can be classified by: (a) their com-

positions: for example solute particles in solvent (latex particles in solvent), polymer chains

in colloidal systems, etc; (b) concentration of substance; (c) presence (or absence) of external

force: gravitational force, shear flow, etc. In aggregating systems a rich variety of phenomena is

observed. Competition between the physical mechanisms of interparticle attraction, intensity
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(a)

(b) (c)

Figure 1.1: Figures taken from Cerda et al. [5] for different aggregating regimes: (a) system at

equilibrium with dimensionless potential well–depth Û = U/kBT = 3.125; (b) non–equilibrium

aggregation with dimensionless potential well–depth Û = U/kBT = 4.0; (c) gelation with

dimensionless potential well–depth Û = U/kBT = 7.0.
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of external shear flow, and thermal energy determines whether a system will evolve reversibly

or irreversibly as shown, for example, on Figure 1.1. These different regimes are observed

by varying the strength of interparticle interaction related to thermal energy (Û = U/kBT ).

When interparticle interaction is weak relative to thermal energy and is lesser than some criti-

cal value then the formation of only small aggregates is observed (Figure 1.1a). As interparticle

interaction become stronger, larger aggregates are formed (Figure 1.1b,c).

Application of external shear force to the nanoparticle aggregation system is important

because in large–scale reactors, the flow is turbulent and aggregating nanoparticles will be

subjected to time varying shear flow at the Kolmogorov scale. In such a system the wide

range of time and length scales are present. The wide range of time scales is introduced

by the presence of short-time Brownian motion and the long-time hydrodynamic behavior

of solvent. The wide range of length scales occurs due to the size separation of clusters

of colloidal nanoparticles and solvent molecules. However, because of the scale separation

between nanoparticle clusters and Kolmogorov scale, for a first approximation the flow can be

treated as locally uniform time-varying shear. Once formed, aggregates do not break apart,

and to introduce breakage some external forces such as shear flow must be introduced into

the system. When the thermal energy and kinetic energy associated with external shear flow

is able to overcome the interparticle interactions then a reversible change is expected. If

interparticle attraction dominates, then an irreversible change is expected. In sheared colloidal

systems, aggregation may occur due to particle–cluster (monomer addition) and cluster–cluster

aggregation. The breakage and restructuring of these clusters is promoted by shear flow, and all

these processes are related to irreversible changes. Recent experiments observe restructuring of

clusters in the presence of external shear force [6]. However, there is no complete explanation

of such behavior, which is a good reason to use computational approach for such a case.

Before discussing the characterization of aggregation outcomes, it is useful to clarify some

terminology specific to aggregation. Colloidal aggregation is sometimes classified as reversible

or irreversible depending on the system’s characteristics (Figure 1.1a and Figure 1.1b,c cor-

respondingly). However, the thermodynamic definition of a reversible process and reversible
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aggregation phenomenon are different. Thermodynamically a reversible change is one that

is performed quasi-statically such that the system remains infinitesimally close to thermody-

namic equilibrium. Such changes can always be reversed and the system brought back to its

original thermodynamic state without causing any changes in the thermodynamic state of the

universe [7]. But when we are talking about a reversible aggregation process we mean a sys-

tem at non-equilibrium steady state (NESS). In aggregating systems, once aggregation starts it

continues irreversibly. Reversibility (due to aggregate breakage) may occur only through shear

flow or increase in thermal energy. Thus, we can conclude that aggregating systems cannot

be in thermodynamic equilibrium, instead, aggregating systems are in non–equilibrium steady

states (NESS). An example of aggregating irreversible system is represented on Figure 1.1b

from simulations performed by Cerda et al. [5] for 2D systems where large and dense aggre-

gates are formed together with the presence of single particles. After an irreversible change the

system cannot be brought back to its original thermodynamic state without causing a change

in the thermodynamic state of the universe [7]. Based on this definition we can conclude that

an irreversible colloidal nanoparticle aggregation leads to such non–equilibrium steady state

as gelation which is a first order phase transition (as in a first order phase transition a system

either absorbs or releases a fixed amount of energy). An aggregate structure that corresponds

to the gelation stage is represented on Figure 1.1c from Cerda et al. [5] work. In this case large

aggregates with a ramified structure are formed that occupy all the system’s volume. At this

stage no single particles are observed.

There also have been efforts to classify this phase–change behavior of aggregating systems

on a phase diagram. Anderson and Lekkerkerker [8] described all these regimes with the

phase diagram for the colloid–polymer systems. In these systems polymer is added to colloidal

systems to produce an attraction between the particles. By varying the relative size of polymer

and the colloid; the polymer concentration and colloid volume fraction the range of particle–

particle interaction can be tuned and a variety of phase diagrams can be realized. Anderson

and Lekkerkerker [8] reported that the aggregating outcome depends on the initial conditions

and slight change in one condition may significantly change the outcome. They conclude that it
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is difficult to reliably predict the transition mechanisms of colloid and colloid–polymer systems.

The processes of aggregate formation and aggregate breakage have been investigated from

an experimental and computational perspective [9, 10, 11, 12]. Researchers agree that colloidal

particle aggregating phenomena is very complex and multiscale problem where aggregation

outcome depends significantly on the initial conditions. However, a single unified aggregation

map that would determine different aggregating outcomes based on the initial parameters of

the sheared aggregating system is not available. Such an aggregation map would be very useful

when designing efficient turbulent reactors used for synthesis of the particles with good size

control of product.

In principle, such an aggregation regime map could be generated based on a purely the-

oretical description of aggregation; or using experimental approach; or using a computation

approach. Colloidal particles aggregation phenomena is not completely described yet therefore

pure theoretical approach for describing aggregating phenomena is not appropriate. Experi-

mental approach allows to measure aggregation in real systems. However, it is not feasible to

control and measure all the parameters that determine aggregation phenomena. Therefore, in

this dissertation a computational approach is adopted to develop a fundamental understanding

of colloidal aggregation.

The focus area of this dissertation with respect to the work of other researchers is shown

in Figure 1.2. The system complexity axis on this map represents model approaches used to

study aggregation processes beginning from the simplest model LJ systems to more detailed

and complicated systems such as protein molecules. The solute–concentration axis represents

the range of solute densities, while the shear axis represents increase in shear flow intensity

in the system. Dark–gray areas represent work of other researchers, such as Hobbie [13] who

had performed experimental studies of depletion–driven phase separation for dilute polystyrene

spheres. Aggregation processes under shear flow for dilute latex nanoparticles were studied

by Chakrabarti, Sorensen, et al. [14]. Aggregation in systems with dense polymeric spherical

nanoparticles are performed by Lekkerkerker [9] as well as Shepherd [10] for systems with

and without shear. On this map the focus of the present work is represented with light–gray
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Model
LJ systems

AO
(depletion
colloids)

Latex
nanoparticles

Composites/
Proteins

Shear

No shear
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Dilute

Hobbie [13]

Chakrabarti &
Sorensen et al. [14]

Lekkerkerker group [8]

Focus of
present
work

Solute concentration
Shepherd et al. [10]

System complexity

Figure 1.2: The focus area of this dissertation relative to other work on colloidal aggregating

system under shear.

area which represents dilute systems of solute particles in solvent, with and without shear

flow, for LJ model systems and depletion colloids. Since this work is a computational study,

corresponding model systems are used instead of physical ones due to feasibility limitations of

numerical methods. Therefore, the focus of this dissertation is on simple LJ model systems

and depletion colloids. Dilute systems are chosen to compare our aggregating results with

experimental results obtained by Mokhtari et al. [14] for latex nanoparticles. And shear flow

is applied to aggregating systems for the reasons given before.

A fundamental understanding of changes in aggregate structure due to presence of the

external shear flow is required to correctly describe aggregation growth and breakage processes.

Therefore, an efficient numerical model that would accurately predict aggregation phenomenon

in colloidal nanoparticles systems must be chosen.

Currently, the following simulation approaches for aggregation are commonly used [11],

[15]-[18]

1. Molecular dynamics (MD), which is a microscale method (described in Chapter 2).

2. Mesoscale methods, such as Langevin dynamics (LD) and Brownian dynamics (BD)
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(described in Chapter 2), stochastic rotational dynamics (SRD), and dissipative particle

dynamics (DPD).

3. Monte Carlo methods, such as lattice Monte Carlo (LMC) method and off-lattice Monte

Carlo (OLMC) method.

However, requirement for a significant aggregation statistics leads to consideration of large

simulation systems that can significantly increase computational costs and decrease simula-

tion efficiency. Ideally the model which is chosen to predict sheared colloidal nanoparticle

aggregation should accurately describe physico-chemical interactions of relatively large physi-

cal systems, and at the same time, simulate at a low computational cost. In reality this is hard

to achieve. In many cases if the model is very accurate it is usually not efficient and cannot

be used to simulate a physical problem. On the other hand, more efficient models usually

are not very accurate in terms of representing the physics, thereby limiting their applicability.

Thus, a computational model which is chosen to predict a sheared aggregation of colloidal

nanoparticles should maintain the balance between the level of accuracy and computational

efficiency.

System size

Ο(100)

Fichthorn
[40,47,48,51]

Chakrabarti &
Sorensen et al. [35,36,39,50]

Present
work

Simulation
method

Ο(106)

Ο(105)

MD Mesoscale MC

Accuracy Less cost

model
solvent

no solvent

solvent

Others [11,16,19-21,23,27]

Figure 1.3: Dependence of the maximum system size versus simulation method.
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To study sheared aggregation we focus on coarse-grained (or mesoscale) simulation methods

such as a Langevin dynamics. These methods are computationally efficient when compared

with microscale methods such as molecular dynamics, and they have the ability to accurately

represent the aggregate structure when compared with the Monte Carlo methods. The hierar-

chy of these methods is represented on Figure 1.3. From this Figure we can observe decrease

in the maximum system size (represents the number of solute particles in a system) for models

with more detailed solvent representation such as MD. And increase in the system size when

solvent effect is removed (Monte Carlo methods). The mesoscale methods still include solvent

effect through solvent modeling that allows to decrease computational cost and increase system

size to get good aggregation statistics.

As we show in Chapter 2, using MD to simulate aggregation phenomenon for realistic sys-

tems is too expensive. At the same time the off-lattice Monte Carlo (OLMC) simulation has

limitations in simulating aggregate restructuring, because it is not capable of representing re-

structuring of the cluster after the cluster is formed. On the other hand, the mesoscale methods

such as BD, LD, DPD, and SRD have the promise of low cost and accurate representation of

aggregation structure on today’s computers, but it applicability for simulating non-equilibrium

systems should be established. The development of LD and BD methods for solving sheared

aggregation problems requires consideration of the following points:

1. The current LD and BD models are not adequate for aggregation.

2. Numerical accuracy and approach not well established in context of aggregation. This

leads to Chapter 2.

3. Model accuracy of LD and BD is not satisfactory for aggregating systems when compared

with established MD approach. This motivates the need for improved BD model with

potential mean force (PMF) that accounts for solvent interaction in non-equilibrium

aggregating systems which leads to Chapter 3.

4. The minimum set of characteristics and metrics required for complete description of

sheared aggregation phenomenon is not established and the correspondent aggregation
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map is not defined. This leads to development of new characteristics and metrics fully

described in Chapter 4.

Also accurate modeling of physico-chemical interactions is required. This can be achieved

by developing the coarse–grained particle interaction potentials derived from quantum mechan-

ics calculations, that are suitable for large scale nanoparticle aggregation simulations. In this

case, the atomic models for surface molecules of polystyrene nanoparticles can be developed

to calculate surface-molecule, surface-surface, and molecule-molecule interaction forces. These

results can be validated by atomic force microscopy (AFM) measurements of polystyrene-

polystyrene nanoparticles, and used in simulation of nanoparticles aggregation as a physical

potential.

1.1 Simulation Approaches

In this subsection the various approaches used to simulate nanoparticle aggregation are

briefly reviewed and their advantages and disadvantages are considered.

1.1.1 Molecular Dynamics

Molecular dynamics (MD) simulation is an established technique that can simulate col-

loidal nanoparticle aggregation [15]. In the MD approach, solute and solvent particles interact

through a modeled, intermolecular potential, and the positions and velocities of these parti-

cles evolve in time according to Newton’s equations of motion. In most MD simulations, the

intermolecular potential energy is taken to be the sum of isolated pair interactions, which is

called the pairwise additivity assumption. The main difficulty with such an approach is that

it cannot be used to model aggregation of a realistic system of colloidal nanoparticles. The

requirements of large size separation between nanoparticles and solvent molecules (dNP ∼ 40

nm, dsolv ∼ 0.3 nm and dNP /dsolv ∼ 100 at solvent molecules volume fraction λsolv ∼ 0.45 and

very low nanoparticle volume fraction λsolute ∼ 0.005), and the large number of nanoparticles

that are modeled to have good statistics of aggregated clusters lead to an enormous number of

solvent molecules in the system (on the order of 1010). Moreover, calculation of intermolecular
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forces between solvent molecules in MD would require resolving time scales on the order of

τ̂F = 0.125. However, the time scale of evolution of cluster statistics is much larger and is

on the order of τ̂cl ∼ 40, 000.00. Therefore, simulating any colloidal system even far from

realistic physical parameters is a challenging and sometimes even impossible task. Alterna-

tive approaches are needed to resolve this problem. One alternative is to use Monte Carlo

approaches for nanoparticle aggregation simulation.

1.1.2 Monte Carlo Simulation Algorithms

Based on the off-lattice Monte Carlo (OLMC) simulation, several methods are frequently

used to model nanoparticle aggregation. These models include diffusion-limited aggrega-

tion (DLA), diffusion-limited cluster aggregation (DLCA), ballistic-limited aggregation (BLA),

ballistic-limited cluster aggregation (BLCA), reaction-limited aggregation (RLA), and reaction-

limited cluster aggregation (RLCA).

In DLA models, particles diffuse through a random-walk from distant points and finally

arrive and stick to the surface of the growing aggregate [16, 19]. In the DLCA model, the

particles and clusters move in random-walk trajectories, which represent the Brownian motion

of the particles and clusters in a dense fluid [20, 21]. According to this model, particles

and aggregates are moved randomly, and when the distance between centers of two particles

approach “cluster distance” rcl (the maximum distance between two neighbor particles which

belong to the same cluster) they irreversibly link. After this linking if the distance between any

pair of particles in two different clusters appears to be less than rcl, two clusters move apart

along their approach path until the separation is equal to the cluster distance. Thus, stickiness

probability pstick for these two approaches is unity. DLCA is the more appropriate model when

simulating colloidal aggregation because in reality, aggregates grow not only due to cluster-

monomer interaction but also due to the cluster-cluster interaction. Both DLA and DLCA

models allow simulating the aggregation of systems with more than a million nanoparticles,

which gives good statistics of aggregates. However, these approaches can only be applied if the

interparticle interactions are smaller than kBTref , where kB is the Boltzmann constant and
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Tref is the reference temperature. If the interactions are large compared with kBTref for some

length scale l, the structure of the resulting aggregates will be changed over this length scale,

and fractal dimensionality may be changed if the interactions are sufficiently strong [22].

In BLA models, particles and clusters are added to each other through linear paths. Each

path is chosen randomly from all possible paths that could result in a collision between the

particle and cluster [23]. Similarly, the BLCA approach models cluster-cluster collisions in

addition to the particle-cluster collision used in BLA [24]. BLA and BLCA approaches were

developed in the 1960s. These models were used because at that time it was not sufficiently

efficient to carry out simulations with random walk trajectories which are implemented in

DLA and DLCA models. The use of BLA and BLCA approaches for colloidal nanoparticle

aggregation modeling is limited due to the assumption of linear paths between collisions, which

can lead to incorrect cluster size distributions.

In RLA and RLCA models, particles and clusters (just particles in the RLA case) follow

random walk trajectories, but they do not form a new cluster each time they come into contact

[25]. Instead, they continue their random walk paths and many collisions are usually required

before a pair of clusters will join. This behavior is dictated by the presence of a repulsive

barrier in the particle-particle pair potential. Only when this barrier is overcome will the

short-range attractive force finally hold two clusters together. This process is identical to DLA

and DLCA models with a small sticking probability pstick. A disadvantage of this method is

the very large amount of computer time required if the sticking probability is small.

All the models represented above (DLA, DLCA, BLA, BLCA, RLA, RLCA) help to char-

acterize complexity of aggregate structures by extracting important characteristics, such as

the size distribution of aggregating clusters, dimensionality of the cluster structure, and local

concentration of the particles in the system in very efficient way. However, there are several

features which do not allow to obtain correct results from simulations of the aggregation of

colloidal nanoparticles:

(i) All these models imply an irreversible linking of particle-cluster and cluster-cluster when

new clusters are formed. This prohibits rearrangement of nanoparticles within a cluster
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as well as dissociation of one cluster into two or more. This will bring to incorrect results

in aggregation structure, especially when nanoparticle aggregation is simulated with shear

force. In this case, depending on the magnitude of the shear force the aggregates structure

can be rearranged which significantly changes fractal dimension Df of aggregates.

(ii) The structure of clusters obtained with these models depends on model parameter such as

cluster distance rcl, which makes it impossible to implement any of these models for the

dynamic simulation of the colloidal nanoparticle aggregation.

(iii) With these models it is impossible to use interaction potentials which can be derived from

quantum mechanics calculations for a realistic physical system.

To overcome these problems and keep simulation efficiency it is also proposed to use off-lattice

Dynamic Monte Carlo simulation (DMC) for 1-d case [26]. However, to extent this approach to

2-d and 3-d cases will require a number of enhancements, the most significant of which are the

inclusion of rotational motion, intra-cluster relaxation and reactions and improved calculation

of reaction rate constants.

1.1.3 Mesoscale Methods

Another alternative to MD simulations are mesoscale models. There is a wide variety

of mesoscale simulation techniques to model the dynamics of colloidal suspensions. Among

these techniques the Langevin dynamics (LD) and Brownian dynamics (BD) techniques are

the most frequently used to simulate diffusion problems. On the other hand such techniques

as dissipative particle dynamics (DPD), and stochastic rotational dynamics (SRD) are most

advanced one.

Dissipative Particle Dynamics

Dissipative particle dynamics [17, 27] is an alternative to standard MD techniques and

includes hydrodynamic and Brownian fluctuations. In DPD, fluid molecules themselves are

not represented, but instead, groups of molecules called dissipative particles are considered.

These dissipative particles are simulated to obtain a flow field. These dissipative particles
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interact with each other dissipatively, exchange momentum, and move randomly like Brownian

particles. The main advantage of DPD is that in this method the multibody hydrodynamic

interactions among colloidal particles are automatically reproduced through the interactions

with dissipative particles. However, even though the number of dissipative particles in DPD

is less than in MD, this method is still computationally expensive, because the dissipative

particles still interact through the pairwise potentials and the number of colloid nanoparticles

Np is much smaller than the number of dissipative particles Ndp.

Stochastic Rotational Dynamics

In the SRD approach [11], all the space in SRD is partitioned using a rectangular grid.

Nanoparticles and solvent particles move in continuous space according to Newton’s laws of

motion, excluding solvent-solvent interaction. This excluded interaction is modeled by col-

lision events at discrete times called collision time steps. At these collision events, solvent

particles inside each cell exchange momentum by rotating their velocity vector relative to the

center of mass velocity of the cell around a randomly chosen axis. This method is more ef-

ficient than MD because there is no direct computation of solvent-solvent interactions; but

instead this solvent-solvent collision is simulated at every collision step which is much greater

than the computational time step. This method successfully models aggregation of colloidal

nanoparticles [28].

In the LD/BD approaches, [18] it is assumed that the collisions of colloidal nanoparticles

with solvent molecules induce their random displacement. As a result, the positions and

velocities of the colloidal nanoparticles change accordingly. In LD and BD the local momentum

is not conserved; however, it satisfies the average momentum conservation (ensemble average).

This approach is very attractive for simulation of colloidal nanoparticle aggregation due to its

simplicity and efficiency [29]. In the present work Brownian dynamics method will be described

and analyzed in detail with respect to the aggregation of colloidal nanoparticles.
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1.2 Research Objectives

A need to develop a numerical method for sheared aggregating system that would be able to

predict aggregation outcome accurately and efficiently was identified earlier. To infer physics

and get complete understanding of aggregating phenomenon as well as characterize aggregating

structure the following questions should be answered:

1. How does a colloidal system aggregate in the absence of shear?

2. What are the characteristics that control aggregation phenomenon? What are the metrics

that characterize aggregate structures?

Careful description of aggregation phenomenon for non–sheared systems allows to create

the “reference systems” before introducing the shear flow. The shear flow when introduced

into aggregating system not only introduce additional time and length scales but also may

cause aggregate restructure and change in aggregates spatial configuration. The need for an

aggregation map and a better understanding of the physical mechanisms in sheared aggregating

systems promotes the following questions:

1. What is the aggregation regime map for non–sheared and sheared aggregating systems

that would predict aggregate outcome for different aggregating regimes?

2. What are the sources for aggregate restructuring when shear flow is applied? When shear

flow is applied how does the aggregate structure change?

3. What are the characteristics and metrics that control and describe aggregation outcome

for sheared aggregating systems? Are these different than those used for non–sheared

aggregating systems?

When using the proposed Langevin dynamics (LD) method, which is one of the mesoscale

methods, for modeling aggregating phenomenon some of the questions with regard to LD

applicability to solve this kind of problems should be answered:

1. Is it appropriate to use a Lennard–Jones potential as the mean–field potential in LD

model for reproducing aggregation phenomenon? Which coarse–graining method should
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we use to extract the mean–field potential in aggregating system which is not in thermal

equilibrium?

2. Is LD model a valid approach for representing aggregation phenomenon? Is this approach

accurate when reproducing aggregate structure? How to verify LD method with respect

to the aggregation phenomenon under shear flow?

Answering to all these questions allows complete description of the aggregation phenomenon

of colloidal particles simulated with mesoscale LD model.

In summary, the principal objectives of this study are to:

1. Gain a better fundamental understanding of aggregation in sheared and non–sheared

model systems.

2. Delineate aggregation outcomes for sheared and non–sheared cases in regime maps that

identify the key dimensionless parameters that determine aggregation.

3. Characterize and understand the role of aggregating structure in sheared and non–sheared

systems using mesoscale simulation method.

4. Establish the requirements for a numerically accurate mesoscale simulation method.

5. Develop a coarse–graining procedure to infer mesoscale interaction potentials for atomic

interaction for aggregating systems.

1.3 Original Contributions of this Dissertation

1. Developed semi–analytical coarse–graining approach to infer mesoscale interaction poten-

tials in aggregating systems to calculate the relative acceleration between solute particles

in a solvent bath and to reproduce the pair correlation function and cluster size distrib-

ution in the RLA and DLA regimes. Developed computational algorithms and code to

implement this approach.
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2. Established guidelines for numerical accuracy of simulations of aggregation problems

using mesoscale approaches such as LD and BD. Characterized numerical convergence

and accuracy of LD and BD in simple test problems.

3. Gained a fundamental understanding of aggregation in non–sheared systems by explain-

ing the dependence of aggregate structure on interaction potential.

4. Characterized aggregation outcomes of LD and BD simulations of non–sheared systems

on a D̂ − ε̂ plane, and showed that dimensionless well–depth of the interaction potential

controls the aggregation outcome, while the dimensionless diffusion only controls the rate

at which this outcome is reached.

5. Explained the scaling of aggregate size with dimensionless shear rate through a simple

mechanistic model.

6. Performed a budget analysis of the energy balance equation for LD simulations of sheared

and non–sheared aggregating systems. In the non–sheared case at steady state the princi-

pal balance is between dissipation and random (Wiener) terms, while the force–velocity

correlation term is negligible. In sheared systems, at steady state, the force–velocity

correlation is large compared to the non–sheared case and contributes significantly to

the principal balance with dissipation and random terms. The unsteady evolution of

energy in velocity fluctuation shows that the production (position–velocity correlation)

of velocity fluctuation arising from position–velocity correlation provides a mechanism to

transfer the energy from mean energy to the velocity fluctuating energy. The initial rapid

increase in velocity fluctuation results in high dissipation and transfer of this energy into

force–velocity autocorrelation term that is a signature of aggregate restructuring.

7. Characterized aggregate anisotropy and restructuring in sheared systems. Aggregate

anisotropy is characterized by anisotropy coefficient and restructuring by LPED (local

volumetric potential energy density).

8. Identified the relevant dimensionless parameter (a dimensionless force ratio ) that char-
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acterizes aggregation outcomes of LD simulations of sheared systems in the Pe− ε̂ plane.

Aggregate size and structure are characterized by specifying the maximum radius of

gyration, fractal dimension, and LPED that allows the delineation of three distinct ag-

gregation regimes on the Pe−ε̂ map: (a) non–aggregating regime, (b) aggregating regime

with less dense local structure, (c) aggregating regime with compact local structure.

1.4 Outline of the Dissertation

The dissertation is structured as following: convergence of mesoscale BD/LD method and

its simulation accuracy is outlined in Chapter 2. Also, in this chapter characteristics and

metrics that control and characterize aggregate structure for non–sheared aggregating systems

are determined and used to create regime aggregating map for non–sheared systems. Evidence

of inapplicability of LJ potential in BD/LD models for reproducing aggregation phenomenon

in reaction limited regime is presented in Chapter 3. Importance of the relative acceleration

approach for developing a new method to derive the mean–field potential is described in the

same chapter. A new improved BD/LD model is proposed that allow to improve aggregating

statistics for non–sheared systems from diffusion limited to reaction limited regimes. Chapter 4

deals with sheared aggregating systems in the context of complete description of the effect

of shear on aggregate structure/outcome. A new method for the kinetic energy analysis is

proposed that allows to determine the source for the aggregate restructuring when shear is

applied. Effect of shear on global and local structure of aggregates and on the maximum size

of aggregates is outlined in the same chapter. The aggregating map is introduced that allows

to predict the aggregating outcome/structure based on the initial characteristics. Chapter 5

presents the conclusions of this work and some ideas on future work.
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CHAPTER 2. ON BROWNIAN DYNAMICS SIMULATION OF

AGGREGATION

A paper is published in Industrial and Engineering Chemistry Research

Sergiy Markutsya, Shankar Subramaniam, R. Dennis Vigil, Rodney O. Fox

2.1 Abstract

Accurate simulation and control of nanoparticle aggregation in chemical reactors requires

that population balance equations be solved by using realistic expressions for aggregation

and breakage rate kernels. Obtaining such expressions requires that atomistic simulation ap-

proaches that can account for microscopic details of particle collisions be used. In principle,

molecular dynamics simulations can provide the needed microscopic information, but because

of the separation in length scales between the aggregates and solvent molecules, such simula-

tions are too costly. Brownian dynamics simulations provide an alternative to the molecular

dynamics approach for simulation of particle aggregation, but there has been no systematic

attempt to validate the Brownian dynamics method for this class of problems. In this work we

attempt to develop a better understanding of Brownian dynamics simulations of aggregation

by (1) developing convergence criteria, (2) determining criteria for aggregation to occur in BD

simulations using dimensionless variables, and (3) directly comparing BD and MD simulation

predictions for a model aggregation problem.

2.2 Introduction

In recent years there has been an explosion of interest in the synthesis of nanoparticles

because they serve as building blocks for materials with novel mechanical, optical, electric,
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magnetic, thermal, chemical, and biological properties.[1] Consequently, the ability to predict

and control nanoparticle aggregation in reactors used to synthesize these particles is of prime

importance.[2] The traditional approach to modeling colloidal particle aggregation at the re-

actor scale is to employ mean-field rate equations, also known as population balance equations

(PBEs). For example, the case of irreversible aggregation in a well-stirred batch reactor can

be represented by the much-studied discrete PBE

dck

dt
=

1

2

∑

i+j=k

Kijcicj − ck

∞
∑

i=1

Kkici, (2.1)

where ck is the concentration of particles with mass k and Kij is a symmetric matrix of rate

constants describing the aggregation of particles with masses i and j. This PBE can also

be formulated in continuous form, and it has been elaborated to include mechanisms such

as nucleation, growth, breakage, and feed and removal. More recently, with the introduction

of the direct quadrature method of moments,[3] multivariate forms of the PBE have received

increased attention, corresponding to an increased interest in predicting and controlling not

only the particle size distribution but also particle morphology.

In order to solve (either analytically or numerically) equations of the type (2.1), the func-

tional form of the aggregation kernel, which depends upon particle transport mechanisms and

microscopic details of the particle collision events, must be specified. To this end, the aggre-

gation kernel is often decomposed into the product of a collision efficiency, 0 < αij ≤ 1, and

a collision frequency function, βij , such that Kij = αijβij . Approximate expressions for the

collision frequency function, βij , have been derived for certain limiting cases, such as when

the motion of the aggregates can be considered to be Brownian[4] (particle sizes smaller than

the characteristic shear gradients) or for the instance in which particles are large relative to

shear gradients but smaller than the Kolmogorov micro-scale.[5] The derivation of these ex-

pressions, however, requires the invocation of a number of ad-hoc assumptions, such as the

neglect of long range particle-particle interactions and the assumption that all aggregates are

spherical. Although the latter assumption can be relaxed so that particles have an arbitrary

fractal dimension, df , it is still necessary to invoke assumptions concerning the mobility (both

translational and rotational) of fractal aggregates. Derivation of an analytical expression for
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the collision efficiency αij is even more problematic, since the probability that an aggregation

event occurs upon collision of particles of sizes i and j can in general be expected to depend

upon many microscopic details including the strength of particle-particle forces, and the mor-

phology, angle of approach, and momenta of the colliding particles. Of course αij is averaged

over these microscopic collision variables so that it depends explicitly only upon measurable

bulk properties and on the particle size variables, i and j, but in order to perform the required

averaging over the microscopic collision variables, an atomistic simulation approach must be

used that can generate the relevant particle configuration ensembles.

Atomistic simulation methods such as molecular dynamics (MD) can in principle provide

the detailed information concerning collision, aggregation, and breakage events that is needed

to derive realistic expressions for aggregation (and breakage) rate kernels, because they explic-

itly represent all molecules in the system (both solute and solvent) and compute the motion

of these molecules using classical Newtonian mechanics.[6] However, in order to carry out such

simulations, information is required concerning the interaction forces between all of the con-

stituent molecules. Usually, these forces are assumed to be pairwise additive so that it is

only necessary to define force laws between each type of molecule (e.g. solute-solute, solute-

solvent, and solvent-solvent). Typically these forces are obtained by differentiating presumed

intermolecular potential energy functions (such as the well-known Lennard-Jones potential)

fitted to experimental data. These presumed potential energy functions mimic the competi-

tion between near-range repulsions arising from the overlap of electronic shells and long-range

attractive Van der Waals forces. Hence, interaction potentials typically display a potential

energy minima at intermediate distances that arises from the balance of the longer-range at-

tractive forces and short range repulsive forces. More recently, there have been efforts to

avoid the use of presumed interaction potentials by instead using coarse-graining procedures

to compute these interaction potentials using information obtained from quantum mechanical

calculations.[7, 8]

Even when accurate pairwise interaction potentials are available, however, other problems

with using the MD approach for simulation of aggregation remain. In particular, the sep-
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aration in scales between the sizes of the solvent molecules (typically 10−10 − 10−9 m) and

nanoparticle aggregates (usually 10−8 − 10−7 m) requires that an enormous number of solvent

molecules be simulated, especially for dilute systems. For example, consider Figure 2.1, which

shows the CPU time required for each simulation time step as a function of the total number

of molecules (solute and solvent) simulated using the MD simulation software LAMMPS[9].

Results for two sets of MD simulations are shown, each carried out under identical conditions
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Figure 2.1: Dependence of MD simulation CPU time on the number of Lennard-Jones par-

ticles, N , and the solute/solvent diameter ratio, R for non-aggregating particles. All other

simulation parameters are identical in the two sets of simulations. Solute volume fraction was

chosen to be 0.01.

except for the solute/solvent diameter ratio used (equal solute and solvent sizes in one case,

solute diameter twice that of the solvent in the other case). It is readily apparent that the CPU

time scales approximately linearly with the number of molecules, but that the CPU time grows

more rapidly with increasing solute/solvent size ratio, since as size ratio increases the number

of solvent molecules involved in solute-solvent interaction increase. In view of the fact that
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realistic simulations would require solute/solvent size ratios on the order of at least 10-100, it

is evident that MD simulation of aggregation, even when using nano-scale primary particles,

is computationally demanding. Furthermore, the dynamic range of the largest aggregates to

the primary nanoparticles can itself be two to three orders of magnitude in light-scattering

experiments.[10] Hence, to obtain a meaningful statistical distribution of aggregates, it is clear

that very large systems will need to be simulated. All these factors contribute to the con-

clusion that MD simulation of aggregation with existing simulation packages and hardware is

computationally prohibitive.

In order to circumvent the computational limitations that result from the large number

of solvent molecules required in MD simulations of nanoparticle aggregation, the Brownian

dynamics (BD) approach can be used. In this method, the solute-solvent interactions are

incorporated into Langevin equations for solute particles, and therefore there is no need to

track solvent molecules explicitly. For example, in an isotropic system if particles are sufficiently

small so that they are unaffected by fluid shear, the i-th solute particle position, ri, and velocity,

vi, can be described by

dri = vidt, (2.2)

and

dvi = −γvidt +
1

mi
F({ri})dt +

√

2γσv∞dWi. (2.3)

In the above equations, mi is the mass of particle i, γ is the frictional coefficient, F({ri}) is

the net force exerted on the i-th particle due to its interactions with all other particles, σ2
v∞

is the equilibrium velocity variance (= kBT∞/mi), and dWi is a Wiener process increment.

For cases in which the relaxation time for the particle velocities 1/γ is short compared with

the relaxation time for particle position (which includes most cases of practical interest for

particles suspended in liquids), Equations 2.2 and 2.3 can be integrated so that only the

following position Langevin (PL) equation must be evolved:[11]

dri =
F({ri})

miγ
dt + σv∞

√

2

γ
dWi. (2.4)

The advantage of using BD simulations rather than MD simulations in terms of computa-

tional cost is evident in Table 2.1, which compares results for MD simulations (using LAMMPS)
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and BD simulations (of the position equation 2.2 and the velocity Langevin equation 2.3 im-

plemented in an in-house code) of identical systems with an order of magnitude separation in

length scales between the solute particles and solvent molecules. In particular, a comparison

Table 2.1: Comparison of MD and position-velocity Langevin BD simulation time for 31 non-

aggregating solute particles. All solvent and solute particle interactions were modeled using

Lennard-Jones potentials with well depth ε and particle radius σ. The time increment in both

types of simulations was fixed at 5 × 10−15 seconds.

Molecular Dynamics Brownian Dynamics

Solvent Solute Solvent Solute

σ (m) 2.85 × 10−10 4.0 × 10−9 N/A 4.0 × 10−9

m (kg) 1.33 × 10−26 3.686 × 10−23 N/A 3.686 × 10−23

ε (kg-m2/s2) 1.073 × 10−21 1.646 × 10−20 N/A 1.646 × 10−20

N 146,840 31 N/A 31

time steps/CPU sec 0.06 100

(1 processor)

Time for 107 steps 115 days 2 hrs

(20 processors)

of the number of simulation time steps executed per second of CPU time demonstrates that

there is more than three orders of magnitude speedup in the BD simulations as a result of

the fact that individual solvent molecules are not simulated, and positions and velocities are

calculated only for solute particles. This speedup is a necessity for simulating aggregation in

colloidal systems, where the number of solute particles and the aggregate sizes are relatively

large.

Although several investigators have employed the BD approach to simulate particle ag-

gregation, [13, 14, 15, 16, 17, 18] we are not aware of any systematic effort to establish the

legitimacy and accuracy of this approach with respect to aggregation. Furthermore, it has

not been demonstrated that BD simulations of aggregation duplicate the predictions produced

by corresponding MD simulations, nor is it understood in general how to establish correspon-

dence between the two types of simulations. In order to address these issues, the following

questions must be answered: (1) What are the minimal requirements for numerical convergence

of BD simulations of aggregation? (2) Under what conditions is particle aggregation significant
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in BD simulations? (3) How accurate are BD simulations of aggregation? and (4) How can

model coefficients for BD simulations of aggregation be obtained from MD simulations or other

methods? The remainder of this paper describes efforts to begin to address questions (1) -

(3). Specifically, in section 2.3 we estimate requirements for convergence of BD simulations of

aggregation by considering a simple model problem with a known analytical solution and by

computing the deterministic and statistical contributions to the error. In section 2.4 we carry

out a dimensional analysis in order to delineate regions in parameter space where significant

aggregation occurs in BD simulations. The regions in parameter space where the PVL to

PL reduction are admissible are also identified. In section 2.5 we consider a model problem

for directly comparing predictions of MD and BD simulations of aggregation, and in the last

section we conclude the paper by suggesting an approach for addressing question (4) above.

2.3 Convergence of Brownian Dynamics Simulations

The ultimate goal of performing BD or MD simulations is to extract statistics. For aggregat-

ing systems, these statistics are usually the cluster size distribution, or its moments. While the

numerical convergence requirements of MD and BD simulations of equilibrium non-aggregating

systems are reasonably well understood, the same is not true for aggregating systems. In order

to gain an understanding of convergence criteria for BD simulations of aggregation phenomena,

information is needed concerning how the error associated with evolving Eqs. 2.2 and 2.3 with

finite integration step size (∆t) affects estimates of aggregation statistics.[1] It is also neces-

sary to determine how these estimates are affected by the averaging procedure (for example

by the use of multiple independent simulations or time averaging). Following the standard

approach,[21] the error in any estimate can be decomposed into a deterministic and statistical

part. The deterministic error is due to the finite integration step size, and it arises from the

numerical approximations involved in integrating Eqs. 2.2 and 2.3. In contrast, the statistical

error depends on the number of samples. It is important to note that in aggregating systems

the number of samples is not the number of particles N , but is the number of independent

realizations of the N -particle system.
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Calculation of the deterministic and statistical components of the error associated with

using BD simulations requires that a test problem with a known analytical solution be chosen.

Any such test problem will by necessity be relatively simple, and we propose one such problem

here that bears similarity to the classical Kramer’s problem.[19] Presently, we consider the

one-dimensional motion of a single particle immersed in a fluid in the absence of fluid shear

and under the influence of the ramp-well potential depicted in Figure 2.2 and defined by:

U(x) =







































∞, 0 < x < σ

−ε
x − xa

σ − xa
, σ ≤ x ≤ xa

0, xa ≤ x ≤ L

∞, x > L

(2.5)

The systematic force in Eq. 2.3 can be found by differentiating the above expression so

σ xa L

-ε

0

U
(x

)

Figure 2.2: Illustration of the ramp-well potential.

that Fx = −dU/dx. Hence, the essential feature of the ramp well potential is that it produces

a constant force of attraction, in contrast to the more commonly-used square well, which is
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everywhere zero except at the boundaries of the well where the force is singular.

Klyatskin [20] has derived a separable analytical solution for the position-velocity prob-

ability density function of a multiparticle system evolving by the position-velocity Langevin

equations. Here, we calculate the solution for the single particle position-velocity probability

density function, p(x, v), which can be decomposed into the product p(x, v) = pxpv in the

ramp-well test problem. The position probability distribution is given by

px = Cx exp
(

− U(x)

kBT∞

)

. (2.6)

The velocity probability pv is given by the Maxwell distribution function

pv =

√

m

2πkBT∞
exp
(

− mv2

2kBT∞

)

. (2.7)

The constant Cx can be found by normalization, and it can subsequently be shown that the

probability that the particle lies in the interval σ < x < xa is given by

pa =
1 − e−ε̂

1 − e−ε̂
[

1 +
ε̂(L − xa)

(σ − xa)

]

, (2.8)

where ε̂ = ε/kBT∞. The probability pa can in some sense be considered to be a “trapping”

probability corresponding to the system being in an aggregated state. In comparing BD sim-

ulation predictions with the analytical solution given by Eq. 2.8, we have chosen the system

parameters (σ, ε, xa,m, T ) to satisfy two cases with pa = 0.74, and pa = 0.90. Brownian dynam-

ics simulations were then carried out using one-dimensional versions of the position-velocity

Langevin equations 2.2 and 2.3. In the simulations, initial particle positions were chosen ran-

domly using a uniform distribution in the interval σ < x < L, and the initial velocity was

chosen to be a Gaussian corresponding to T∞.

As was discussed above, the total error associated with the BD simulations arises from at

least two sources. A deterministic error, Dp is incurred due to the fact that a finite time step

∆t must be used to integrate Eqs. 2.2 and 2.3. Furthermore, as a consequence of the fact that

only a finite number of samples M can be computed, a statistical error Sp is also incurred.

Hence, the total error is given by e = Dp + Sp. In ergodic statistically stationary systems the
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statistical error can be reduced either by averaging over longer times in a single simulation or by

carrying out multiple independent simulations. However, in an aggregation-dominated system

that produces a single volume spanning cluster, the system can become trapped in a gelled state

and therefore may not sample the accessible states with the proper frequency. Hence, in order

to develop convergence criteria that are applicable to general problems involving aggregation

including those that produce gelled states, we carry out M multiple independent simulations

executed using fixed time step sizes, ∆t. Each independent simulation was carried out for

2 × 107 time steps. For each independent simulation using time step ∆t, the estimate for the

probability {p}∆t that the particle resided in the interval σ < x < xa was computed. The

ensemble average for M such simulations using time step ∆t is denoted {p}∆t,M . Therefore,

the total error e can be decomposed as follows:

e = {p}∆t,M − pa

= {p}∆t,M − {p}∆t,∞ + {p}∆t,∞ − pa (2.9)

= Sp + Dp

In the above expression {p}∆t,∞ is the expected value of the trapping probability for an infinite

number of independent simulations carried out using an integration time step ∆t. In practice

this quantity must be approximated by carrying out a finite but large number of simulations.

We approximated {p}∆t,∞ by choosing M = 1 × 107.

The deterministic error Dp = {p}∆t,∞ − pa will depend upon the nature of the numerical

integration scheme used,[21] and for example using a first order in time method one expects

that Dp ∼ ∆t. We have verified this prediction and we find that Dp can be kept below 0.06%

for σv∞∆t/σ ≤ 0.004, where σ is the particle radius. Assuming that the errors for individual

simulations are normally distributed, it can be expected that the statistical error Sp obeys

Sp = {p}∆t,M − {p}∆t,∞ ∼ 1√
M

. (2.10)

Figure 2.3 demonstrates that this prediction is indeed fulfilled. Also it shows that even for high

pa = 0.90 the statistical error magnitude remains similar to that for pa = 0.74. Therefore

the statistical error of 30% for a single simulation requires that at least 100 simulations be



28

log10(M)

lo
g 10

(S
p)

0 1 2 3 4 5 6
-5

-4

-3

-2

-1

0

pa = 0.90 computed data
pa = 0.90 linear fit
pa = 0.74 computed data
pa = 0.74 linear fit

Figure 2.3: Dependence of statistical error, Sp on number of independent simulations, M for

a time step σv∞∆t/σ = 0.002. The slope of the linear fit is -0.52 for pa = 0.9, and is -0.54 for

pa = 0.74.

performed in order to reduce the statistical error so that it is comparable with the determin-

istic error, Dp. Moreover, because these results were obtained for a simple one-dimensional

simulation with only a single particle, the number of simulations required to converge the pre-

dictions of BD simulations of the aggregation of a large number of particles may in many cases

be prohibitive or may require the development of other methods for more rapidly reducing the

statistical error. Furthermore, the rate of convergence will depend on the aggregation statistic

that one seeks to extract from the BD simulations, with higher moments of the cluster size

distribution converging more slowly. This analysis also demonstrates that calculations from a

single BD simulation of an aggregation process are likely not converged statistically.
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2.4 Aggregation Regime

In principle, given sufficient computational power and memory, converged BD simulations

of aggregation can be executed if pairwise particle interaction potentials are known. However,

it is not necessarily the case that significant aggregation will always occur in these systems,

depending upon several system parameters. In this section we develop two important non-

dimensional parameters and use them to characterize clustering outcomes and thereby delineate

a criterion for aggregation to occur in BD simulations.

Table 2.2 lists several relevant characteristic scales for BD simulations of interacting parti-

cles in the absence of fluid shear (see Appendix A for details), and selecting from among these

we identify the dimensionless reduced potential well depth and diffusivity,

ε̂ =
ε

kBT∞

D̂∞ =
D∞

σ

√

m

kBT∞
. (2.11)

The particle volume fraction is also an important dimensionless parameter that is likely to

influence clustering outcomes, but we will consider only cases of low particle loading (< 1%

by volume) so that variations in this parameter can be neglected. The product ε̂D̂∞ can

be interpreted as the ratio of the frictional and systematic force time scales.1 Therefore if

ε̂D̂∞ << 1 (as is the case for nanoparticles suspended in liquids) there is sufficient separation

in time scales such that the BD simulations can be carried out using a position-only Langevin

scheme obtained by integrating Eq.2.3.[11]

In order to quantify the clustering of particles, we calculate the extent of aggregation,

0 ≤ ξ < 1, defined as

ξ = 1 − M0(t)

M0(0)
. (2.12)

where M0 is the zeroth moment or total concentration of clusters. Hence ξ is an aggrega-

tion progress variable that approaches unity as the system mass accumulates in a single clus-

ter. Three-dimensional Brownian dynamics simulations were carried out using our in-house

1Although there are three terms in the BD velocity evolution equation 2.3, the coefficient of the noise term
is related to that of the frictional term by the fluctuation-dissipation theorem. Therefore, there are only two
independent timescales in that equation.
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Table 2.2: Characteristic length, time, and velocity scales in BD simulations. The parameter

ε represents the intermolecular potential energy minimum, or well depth.

Parameter Dimension Description

σ Length Particle Size

rc Length Interaction Potential Cutoff Distance

1/γ Time Velocity Relaxation Time

τF =
σ

ε

√

mkBT∞ Time Force Time Scale

√

kBT∞

m
Velocity Velocity Standard Deviation

BD code to evolve 10000 primary particles with random non-overlapping initial positions.

Particle-particle interactions were modeled by Lennard-Jones potentials, and simulations were

continued until the clustering index ξ approached steady state. Other simulation details are

provided in Table 2.3. Simulations were carried out for several fixed values of ε̂D̂∞, and the

results are shown in Figure 2.4. It is evident that the extent of aggregation depends most

sensitively on the value of the reduced interaction potential well depth, ε̂, and in fact ε̂ >≈ 2 is

a necessary condition for significant aggregation to occur. Hence, for sufficiently small values

of ε̂ corresponding to high temperatures or shallow interaction potential well depths, colliding

particles have low probability of sticking because thermal fluctuations are large enough for the

particles to overcome the potential energy barrier that otherwise would keep them together.

Therefore ε̂ controls how “sticky” the particles are and it must play a major role in deter-

mining the collision efficiency function, αij . In contrast, ξ is relatively insensitive to the value

of the reduced diffusivity. This latter observation is consistent with the fact that the Gibbs

stationary solution of the Fokker-Planck equation corresponding to Eqs. 2.2 and 2.3 yields a

Boltzmann distribution of particle coordinates independent of diffusivity.
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Table 2.3: Simulation parameters used to produce Figure 2.4. Particle interactions were mod-

eled using Lennard-Jones potentials and simulations were carried out using the LAMMPS[9]

software package.

Parameter Description Value

N Number of Particles 10000

fv Particle Volume Fraction 0.005

σ Particle Diameter 3.4 × 10−10 m.

T Temperature 121 K

σγ

σv∞

Dimensionless Friction Coefficient 1.31

2.5 Simulation Accuracy

Although the Brownian dynamics method has been used by many investigators to simulate

aggregation processes, little consideration has been given to the accuracy of such simulations

even if statistically converged results can be obtained. Here we use the word “accuracy” in

reference to how well the BD simulation predictions of aggregation reproduce those obtained

from corresponding MD simulations, since the BD technique is essentially a reduction of the

MD method. Because this reduction is obtained by eliminating the explicit representation of

solvent molecules and replacing solvent-solute interactions with a mathematical model con-

sisting of a stochastic fluctuating force and a deterministic frictional term, any discrepancies

between predictions of the two methods are likely due to breakdowns in the assumptions and

approximations implicit in these terms.

The accuracy of BD simulations for dilute non-aggregating systems has previously been

considered by Giro et al[22]. These investigators considered the situation in which the solute

particles are identical to the solvent molecules, and they showed that the BD simulations closely

reproduce the equilibrium solute-solute radial distribution function, g(r). However, they also
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Figure 2.4: Clustering index (see color legend) as a function of reduced interaction potential

well depth, ε̂ and reduced diffusivity, D̂∞. Each curve represents constant ε̂D̂∞. The region

bounded by ε̂D̂∞ � 1 represents the regime of validity of the position and velocity Langevin

to PL reduction.

found that the BD-computed solute diffusivities are larger than those predicted by the MD

method, and they attributed this discrepancy to the fact that the the frictional coefficient γ

in the Langevin Equation 2.3 is assumed to be constant, whereas a more realistic description

(particularly for liquids) requires that the frictional coefficient be replaced by a time-dependent

memory function. The fact that the BD method can accurately compute the equilibrium

solute-solute radial distribution function and yet incur noticeable error in the calculation of

diffusivity is perhaps to be expected for reasons mentioned in the previous section - namely that

the stationary solution of the Fokker-Planck equation is independent of the diffusivity. Hence,

one expects that in general, BD predictions of system dynamics will not match the predictions

of corresponding MD simulations, but that equilibrium quantities can be well-predicted by BD

simulations. If follows, therefore, that BD simulations of the early stages of an aggregation
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process far from equilibrium may differ substantially from corresponding MD calculations. In

spite of this observation (and the fact that MD simulation of systems with large aggregate-

solvent size scale separation is not feasible), we have endeavored to perform MD simulations

with sufficiently large numbers of solute particles such that a particle size distribution can be

computed (at least during the early stages of aggregation) with the aim of directly comparing

these MD predictions with corresponding BD calculations.

We seek a computationally tractable model system of aggregation appropriate for com-

parison of BD and MD methods, within the limitations discussed above. Consequently, we

follow Giro’s example and carry out simulations using equal-diameter Lennard-Jones solute

and solvent particles. However, in contrast with the work of Giro, the solute-solute interaction

potential well depth, ε, was chosen such that solute aggregation was favored (as was discussed

in the previous section). Additionally, the ratio of the mass of a single solute primary particle

to a solvent molecule, msolute/msolvent = 50, was chosen to be relatively large to ensure that

the solute particles had lower mobility than the solvent molecules, despite the fact that they

have equal size. All MD simulations were carried out using LAMMPS on an IBM eServer Blue

Gene which consists of 1024 dual-core PPC440 CPUs running at 700Mhz, with 512MB of RAM

per node. Each run on the Blue Gene took up to 5 hours on 1024 CPUs, and other simulation

details are listed in Table 2.4. In the case of BD simulations, the position-velocity equations

were used because the position-only reduction is not applicable for this set of parameters.

In order to determine the accuracy of the BD simulations for aggregating systems, in

Fig. 2.5 we compare the extent of aggregation ξ (as defined in 2.12) with that obtained from

MD simulations for the system described in Table 2.4. It is clear that on the basis of the

dimensionless time used to compare the two methods, the BD calculation predicts significantly

more aggregation than does the MD simulation. The large disparity between the two curves

suggests that the proper time scaling relation between the BD and MD is not given by t̂ =

σt/σv∞ , although it is unclear what the correct relation should be. Hence, in order to provide

a better basis of comparison for the two methods, we shall compare the predicted cluster size

distributions at the same extent of aggregation, ξ.
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Table 2.4: Simulation parameters used to produce Figure 2.5. Particle interactions were mod-

eled using Lennard-Jones potentials. MD simulations were carried out using the LAMMPS[9]

software package.

Parameter Description Value (MD) Value (BD)

Nsolvent Number of Solvent Particles 809,787 N/A

Nsolute Number of Solute Particles 10,000 10,000

ε/kBT∞ Reduced Well Depth 8 8

fv,solvent Solvent Volume Fraction 0.44 N/A

fv,solute Solute Volume Fraction 0.005 0.005

σ Particle Diameter 3.4 × 10−10 m. 3.4 × 10−10 m.

D∞/σσv∞ Dimensionless Diffusion Coefficient N/A 0.787

σtstop/σv∞ Dimensionless Simulation Time 329.8 329.8

Figure 2.6 shows a direct comparison of the cluster size distributions computed using cor-

responding MD and BD simulations at ξ = 0.89. Although the two cluster size distributions

appear to compare favorably in general, we have omitted from this plot the data for monomer

frequency (which is quite large for the MD case) in order to depict in detail the comparisons

for clusters. In fact the agreement between the MD and BD simulations is very poor for

the monomer frequency (471 monomers in the MD simulation and only 97 in the BD sim-

ulation), and hence the BD simulations predict a larger number average cluster size (10.2

particles/cluster versus 8.5 particles/cluster for MD). If the monomers are de-emphasized by

computing the mass-average cluster size (ratio of the second to first moment of the cluster size

distribution), the mean particle size is 20.2 particles/cluster for the MD simulations and 15.7

for BD simulations. The larger mass-average particle size in the MD simulations (despite the

fact that the MD simulations produce a much larger population of monomers) is a reflection
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Figure 2.5: Extent of aggregation as a function of dimensionless time, t̂ = σt/σv∞ , for BD

and MD simulations described in Table 2.4.

of the fact that the tail of the cluster size distribution (at large size) for the MD case decays

more slowly than in the BD case.

An alternative method for comparing the cluster size distributions computed using the MD

and BD simulation methods is to employ a dynamic scaling relation. In particular, it has been

observed for a very wide range of aggregation processes that cluster size distributions can be

collapsed by employing the following scaling ansatz:[23]

Nk = s−2(t)φ(k/s(t)), (2.13)

where Nk is the concentration of clusters containing k monomers, s(t) is the mass-averaged

particle size, and φ is a scaling function. If Eq.2.13 is valid, then a plot of s2Nk vs. k/s

should collapse the cluster size distributions for all sufficiently large values of t such that

the self-preserving regime has been reached. Figures 2.7 and 2.8 show such plots for the

MD and BD cases, respectively. Despite the relatively large statistical error associated with
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Figure 2.6: Comparison of cluster size distributions obtained from MD and BD simulations

of aggregation carried out under conditions specified in Table 2.4 and at the same extent of

aggregation ξ = 0.89.

only carrying out a small number of independent simulations, in both cases the cluster size

distributions do appear to fall on universal curves when plotted using Eq.2.13. However,

comparison of Figures 2.7 and 2.8 demonstrates that the shape of the scaling functions are

clearly different for the MD and BD cases. Consequently, it can be concluded that the BD

simulations produce different cluster size distributions than the MD simulations, independent of

any difficulties in comparing them due to lack of information concerning the proper time scaling

to be used. In particular, we see that the MD simulations generate cluster size distributions

that decay monotonically in size, whereas the BD simulations produce cluster size distributions

that exhibit a maxima in Nk.

The morphology of the aggregates generated by MD and BD simulations can be compared

by computing the volume fractal dimension, df , as illustrated in Figures 2.9 and 2.10 for

ξ = 0.89. Both types of simulations produce clusters with df ≈ 2.5, which is a relatively
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Figure 2.7: Scaled cluster size distributions for MD simulations.

large value indicating that the clusters are quite compact. Indeed, this fractal dimension

is comparable to the value produced in processes with diffusion-limited growth by monomer

addition[24]. Hence one could infer that the collisions between small clusters and large clusters

are more important than are the collisions between two large clusters in both the MD and BD

simulations, even at large extents of aggregation.

2.6 Summary and Discussion

In the introduction we posed the question as to how BD model coefficients can be obtained

from MD simulations or other methods. Although the Giro et al. study[22] showed that in

non-aggregating dilute systems the potential of mean force for BD could be inferred by curve-

fitting the equilibrium pair correlation function W (r) = −kBT∞ ln g∞(r), this approach is not

feasible in aggregating systems. One reason is because the pair correlation function is itself

evolving as the system aggregates. It is possible that matching the pair correlation function
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Figure 2.8: Scaled cluster size distributions for BD simulations.

from a BD simulation to the corresponding MD simulation of an aggregating system is a

necessary condition for an accurate simulation. Subramaniam and Pai [25] outline an approach

for deriving the evolution equation of the pair correlation function in MD simulations that

reveals the importance of the relative velocity and relative acceleration between particle pairs,

conditional on their separation distance. It is possible that matching the conditional relative

acceleration statistics from MD to BD through the potential for mean force specification can

guarantee the matching of the pair-correlation function.

However, it is important to note that the cluster size distribution that determines important

aggregation statistics contains more information regarding connectivity of the monomers in

clusters that is not available in the pair-correlation function. The requirement for matching

moments of the cluster size distribution, and their relation to the pair correlation function,

can provide a rational specification for model coefficients in the BD equations.

Clearly the progress of aggregation as characterized by ξ is another important quantity that
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described in Table 2.4. The slope of the linear fit is the volume fractal dimension, df .

BD simulations should capture accurately. Although this may seem to be closely related to the

accuracy of BD in predicting the diffusivity of monomers, the issues involved are somewhat

more complex. As noted earlier, even the notion of computing a diffusivity from mean-squared

displacements of the monomers is questionable in aggregating systems, and therefore it is

unclear whether the trends in predicted diffusivity from dilute non-aggregating BD simulations

can be used to infer the physics of aggregating systems. Secondly, it seems more likely that the

mean relative velocity between particle pairs conditional on their separation (or the implied

second-order diffusivity [25]) determines aggregation, rather than the single particle diffusivity.
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CHAPTER 3. COARSE-GRAINING APPROACH TO INFER

MESOSCALE INTERACTION POTENTIALS FROM ATOMISTIC

INTERACTIONS FOR AGGREGATING SYSTEMS

A paper is submitted in Physical Review E

Sergiy Markutsya, Shankar Subramaniam

3.1 ABSTRACT

A coarse-graining (CG) approach is developed to infer mesoscale interaction potentials in

aggregating systems, resulting in an improved potential of mean force for Langevin dynamics

(LD) and Brownian dynamics (BD) simulations. Starting from the evolution equation for the

solute pair correlation function, this semi–analytical CG approach identifies accurate modeling

of the relative acceleration between solute particles in a solvent bath as a reliable route to pre-

dicting the time–evolving structural properties of non–equilibrium aggregating systems. Noting

that the solute–solvent pair correlation function attains a steady state rapidly compared to

characteristic aggregation time scales, this CG approach derives the effective relative accelera-

tion between a pair solute particles in the presence of this steady solute–solvent pair correlation

by formally integrating the solvent force on each solute particle. This results in an improved

potential of mean force that explicitly depends on the solute–solute and solute–solvent pair

potentials with the capability of representing both solvophilic and solvophobic interactions

that give rise to solvation forces. This approach overcomes the difficulty in specifying the

LD/BD potential of mean force in aggregating systems where the solute pair correlation func-

tion evolves in time, and the Kirkwood formula U(r) = −kBT ln g(r) that is applicable in

equilibrium diffusion problems cannot be used. LD simulations are compared with molecu-
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lar dynamics (MD) simulations for a model colloidal system interacting with Lennard-Jones

pair potentials to develop and validate the improved potential of mean force. LD simulations

using the improved potential of mean force predict a solute pair correlation function that is

in excellent match with MD in all aggregation regimes, whereas using the unmodified MD

solute-solute pair potential in LD results in a poor match in the reaction–limited aggregation

regime. The improved potential also dramatically improves the predicted extent of aggregation

and evolution of cluster size distributions that exhibit the same self–similar scaling found in

MD. This technique of coarse–graining MD potentials to obtain an improved potential of mean

force can be applied in a general multiscale framework for non–equilibrium systems where the

evolution of aggregate structure is important.

3.2 INTRODUCTION

In high-rate methods for nanoparticle synthesis, nuclei that are formed by turbulent mixing

of chemical precursors grow rapidly by surface addition and aggregation. A fundamental

understanding of aggregation in colloidal systems is needed to optimize these methods such

that they yield nanoparticle aggregates of desired size. While a complete characterization of

nanoparticle aggregation will depend on the specific chemical precursors and solvent, several

general characteristics of the phenomenon have been studied in a simplified generic system of

latex nanoparticles [1, 2] in water destabilized by the addition of MgCl2 salt. Experiments show

the emergence of different aggregate structures depending on the extent of aggregation, and

the duration and intensity of applied shear [1, 2, 3]. The structure of aggregates in turn affects

the aggregation rate, resulting in a coupled nonlinear phenomenon. Therefore, a simulation

method used to predict aggregation in colloidal systems must accurately describe the structure

of aggregates.

A variety of simulation approaches have been employed to study aggregation, ranging from

population balance approaches at the macroscale to molecular dynamics at the microscale

(MD) [4]. Each level of description represents a trade-off between the fidelity with which the

physico-chemical interactions are represented and the associated computational cost. Monte
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Carlo methods are frequently used to simulate aggregation because their computational cost

scales favorably for large systems. They are classified on the basis of the physico-chemical

regimes of aggregation that they are intended to describe. In non-sheared systems, aggregation

outcomes emerge from a dynamic balance between interparticle attractive forces arising from

a solute interaction potential and random thermal motions that can disrupt this attraction.

If on average the attractive forces dominate then aggregates or clusters of solute particles

form. Aggregation regimes can be defined in terms of reaction-diffusion terminology based on

whether the rate-limiting step arises from diffusion or reaction. Thus, in the diffusion–limited

aggregation (DLA) regime, once the aggregating particles have diffused close enough towards

each other they always stick together and form an aggregate due to strong attractive forces

between them. In the reaction–limited aggregation (RLA) regime, particles do not always

aggregate every time they come into contact because the sticking probability is less than 1.

At a microscopic level, this can be due to the presence of a repulsive barrier in the solute

interaction potential. The most commonly used Monte-Carlo methods to simulate aggregation

in colloidal systems are diffusion-limited cluster aggregation (DLCA), ballistic-limited cluster

aggregation (BLCA), and reaction-limited cluster aggregation (RLCA) [5, 6, 7, 8, 9, 10, 11].

However, because of their simple sticking probability rules for cluster formation, the MC-based

approaches are not able to account for rearrangement of aggregates within a cluster due to

thermal motion, or restructuring of the aggregates under shear.

Molecular dynamics simulations yield unparalleled physical insight into aggregation in col-

loidal systems and enable prediction of colloidal structure for different colloidal systems such

as systems of solvophilic or solvophobic solute particles. However, because all the interparti-

cle forces (solute-solute, solute-solvent, and solvent-solvent) are represented in MD, the large

proportion of solvent molecules in a dilute system makes the MD system very large. Also,

disparity in solute and solvent particle size (e.g., latex nanoparticles ∼ 10 − 100 × 10−9m to

water molecules ∼ 10−10m) slows down the MD calculations significantly because the relatively

large nanoparticles have many solvent neighbors whose interactions must be accounted for [12].

The need for a wide dynamic range of aggregate sizes to reliably extract aggregate statistics
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also demands MD simulation of a very large number of particles.

The need for reliable statistical characterization of aggregate size and structure in aggre-

gation problems motivates us to examine coarse-graining techniques for molecular dynamics.

Mesoscale methods such as Brownian dynamics (BD) [13, 14], dissipative particle dynamics

(DPD) [15, 16], and stochastic rotational dynamics (SRD) [17] are established approaches to

coarse-graining MD. However, the predictive capability of these coarse-graining approaches in

aggregation problems needs to be validated. While the classical problem of the diffusion of

large inertial solute particles in a bath of solvent molecules is what motivated the BD approach,

its capability to accurately predict aggregate structure in colloidal systems is not established.

Brownian or Langevin dynamics is a simulation approach that is formally obtained by using

a projection operator technique on the MD equations, which effectively replaces the solute-

solvent interactions by frictional and random forces [13, 14]. DPD and SRD models account

for solute-solvent interactions more faithfully, with resultant increase in their computational

expense relative to LD. While all these mesoscale methods are orders of magnitude faster than

MD, the cost of SRD and DPD depends on the solute/solvent volume fraction and size ratios.

The cost of LD is independent of the solute/solvent size ratio, but can depend on the solute

volume fraction if hydrodynamic interactions are included. Among these mesoscale models we

have chosen the LD approach for simulating aggregation because it is the most computationally

efficient, while still being capable of representing aggregate structure. However, because the

LD coarse-graining approach was not originally developed for aggregation problems it needs

further testing and development.

The LD model requires the specification of a potential of mean force to account for the

effect of solvent molecules on solute interparticle interaction. Typically the LD model is used

in equilibrium systems where the Kirkwood formula [18]

ULD
AA (r) = −kBT ln geqm

AA (r) (3.1)

is used to specify the potential of mean force. However, for non-equilibrium aggregating sys-

tems the choice of appropriate interaction potential between solute particles in the presence of

solvent molecules is not well established. The interaction of a pair of nanoparticle aggregates
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in the presence of solvent molecules has been studied using MD simulations [19, 20] and exper-

iment [21]. The simulations [19, 20] show that the presence of solvent molecules changes the

interaction between an aggregate pair. The nature of this change in the interaction depends on

the geometry and size of the aggregates, and also very strongly on the solute-solvent interaction

behavior (solvophilic solute particles vs. solvophobic particles). These works [19, 20, 21] point

to the importance of the solute-solvent interaction, and motivate its introduction into the LD

potential of mean force. However, the results of these studies cannot be directly applied to the

LD potential of mean force because they do not take into account the statistical distribution

of solute and solvent particles. What is needed is a statistical approach to connect the mi-

croscale solute-solvent interactions to the mesoscale solute-solute interactions, which is critical

to establish sound coarse-graining procedures for aggregation problems.

There are several coarse–graining methods that are commonly used to derive an effective

potential such as energy–based coarse–graining, Boltzmann Inversion (BI), Iterative Boltzmann

Inversion (IBI), Inverse Monte Carlo (IMC), and Force Matching (FM) approaches [22, 23].

Useful categorizations of CG methods are based on the target (structure or thermodynamics)

and method of linking (forces, effective interactive potentials) [22], or whether the method is

iterative or non–iterative [23]. In energy–based coarse–graining approach [24, 25] the CG po-

tential is developed to fit free energies in the system. This method is useful for processes such

as lipid membrane association. However, energy–based coarse–graining does not guarantee re-

production of the atomistic structure of the system, which is essential for aggregation problems.

BI, IBI, and IMC approaches [26, 27, 28] are structure–based methods that reproduce a pre–

defined target equilibrium structure described by a set of radial distribution functions obtained

from full molecular simulations of the reference system. These approaches are not suitable

for predicting the time–evolving structure of an aggregating system. The FM approach [29]

is used to reproduce thermodynamic properties of systems at equilibrium. In this method the

difference between the instantaneous CG forces and the forces from full molecular simulation

are minimized using a least–squares fitting procedure. However, this method does not guaran-

tee an exact reproduction of local structural properties such as the pair distribution function,
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nor is it applicable to time–evolving non–equilibrium systems. In summary, these existing CG

approaches do not address the problem of time–evolving structure in non–equilibrium systems,

which characterizes aggregation.

In this work we propose such a new method for deriving the potential of mean force for the

LD model that accurately captures aggregation statistics in non-equilibrium systems. The CG

method developed in our work is a non–iterative, semi–analytical, force–matching method that

exploits rapid relaxation of the solute–solvent pair correlation function to derive an analytical

expression for the effective potential that is used to predict time–evolving structure (including

pair correlation function) in a non–equilibrium system. In the context of accurately comput-

ing aggregation statistics, we identify the need for LD to accurately reproduce the solute pair

correlation function. This in turn leads us to derive the evolution of the second-order density

(unnormalized pair correlation function) corresponding to the MD and LD dynamical equa-

tions. This transport equation for second-order density is used as a route to improve the LD

model based on the relative acceleration concept. This theoretical basis provides the necessary

connection between microscale and mesoscale interactions for coarse-graining of aggregating

systems.

We propose an improved LD model where we modify the direct interaction between solute

particles based on their MD pair potential by adding a potential that accounts for the presence

of solvent molecules. We computed key aggregation statistics from MD and compared with the

standard and improved LD models. The results show significant improvement in LD prediction

of solute particle pair correlation function, dynamic scaling of the cluster size distribution, and

extent of aggregation with the improved LD model.

The rest of this paper is organized as follows. First, we describe the simulation methods

used in this work. We assess the performance of the standard LD method in DLA and RLA

regimes by comparing with benchmark MD simulations. This comparison reveals the need for

an improved LD model in the RLA regime. The analysis of solute relative acceleration from

the MD simulations allows us to directly quantify the importance of solute-solvent interaction

in the RLA regime. The transport equation for the unnormalized pair correlation function is
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used as a route to build an improved LD model. The algorithm for computing the improved LD

potential of mean force that takes into account influence of solvent molecules is then described.

Then the aggregation statistics calculated from the improved LD method are analyzed and

compared with the benchmark MD simulations, revealing a marked improvement in the LD

model predictions. Generalization of the approach to other mesoscale methods, as well as

the assumptions and limitations underlying the improved LD model are then discussed. The

principal conclusions are then summarized. Appendix C gives the details of the pair correlation

calculation for binary mixtures. A detailed derivation of the transport equation for the two–

particle density leading to a phase–space expression of the relative acceleration between two

particles is given in Appendix D. Appendix B describes a method for analytical calculation of

the relative acceleration, and its comparison with results from numerical simulation for simple

test problems.

3.3 METHODS

We simulate aggregation of solute particles immersed in liquid solvent using molecular dy-

namics and Langevin dynamics models, in order to assess the accuracy of LD and propose

improvements. Direct MD calculation of physical systems (e.g., 20 nm latex nanoparticles in

water [30]) is computationally prohibitive even with state–of–the–art numerical implementa-

tions because of the large size separation between solute and solvent particles [12, 31]. A model

system with solute particles (denoted particles of type A) and solvent particles (type B) of the

same size (σ = 0.34 nm) is chosen so that MD computations can be performed in reasonable

time. This enables a direct comparison of LD simulations with MD results for the same system.

We account for the lower mobility of the solute particles relative to the solvent molecules by

assigning them higher mass mA = 2000 amu, as compared to mB = 40 amu for the solvent par-

ticles. Although our model system does not represent the size-separated case of nanoparticles

aggregating in water, it is useful because it gives insight into a system that would otherwise

be impossible to simulate. In fact, there are colloidal systems with hydrocarbon solvents such

as n-decane where the solvent molecule size approaches that of nanoparticle clusters [32, 33].
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Furthermore, using molecular dynamics simulations of size-separated systems with few solute

particles, Qin and Fichthorn [19, 20] show that the solvation force for solvophilic particles

when compared with the van der Waals force is important even when the solute particles are

9 times larger than the solvent molecules. Results from our model system show that we do

indeed capture these essential solute-solvent interactions that manifest as solvation forces.

3.3.1 Molecular Dynamics

In MD the solute-solute, solute-solvent and solvent-solvent interactions are described by a

truncated Lennard-Jones (12-6) potential,

UMD
αβ (rij) = ULJ

αβ (rij) =































4εαβ

[

(

σ
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)12

−
(

σ
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)6
]

, rij ≤ rcut

0, rij > rcut,

(3.2)

where σ is the particle diameter, rij is the separation between centers of particles i and j, rcut

is the cutoff distance chosen to be 2.5σ, and εαβ is the potential well-depth between α and β

particles (α, β = A,B). The dimensionless potential well depth is defined as

ε̂αβ =
εαβ

kBTref
, (3.3)

where Tref is the reference temperature chosen to be 121K in these simulations.

Two cases of aggregation are simulated: one in the DLA regime and one in the RLA regime.

These regimes are identified by generating a stability map from MD simulations to delineate

different aggregation regimes in the ε̂AA − D̂∞ parameter space. A similar stability map was

generated for Langevin dynamics [12] to characterize and efficiently probe the parameter space

for aggregating systems. This stability map reveals whether a system initialized at a given

point in the parameter space will lead to large clusters or not, and it also gives an estimate

of how long the formation of aggregates will take. In this map the extent of aggregation

ξ (which is defined as ξ = 1 − M0(t)/M0(0), where M0(t) is the zeroth moment or total

concentration of clusters at time t) is used as a metric to determine the extent of aggregation in

the dimensionless self-diffusion coefficient D̂∞ and dimensionless well-depth ε̂AA space. When
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the extent of aggregation approaches unity we identify these regions as belonging to the DLA

regime. If the extent of aggregation is closer to zero we identify these regions as belonging

to the RLA regime. The dimensionless well-depth corresponding to these regimes is listed in

Table 3.1. In both these systems the dimensionless number density (n̂ = n σ3) is 0.01 for

Table 3.1: Parameters used in MD simulations.

Aggregation regime ε̂AA ε̂AB ε̂BB NA NB

DLA 8.0 2.83 1.0 10,000 813,218

RLA 4.0 2.0 1.0 10,000 813,218

the solute particles, while it is 0.85 for solvent molecules. All simulations are performed in a

cubic domain with periodic boundary conditions. Each side of the cube is 98.53σ in particle

units, resulting in a total number of solute particles NA = 10, 000, and total number of solvent

molecules NB = 813, 218.

The MD simulations are performed using the LAMMPS [34] software package. The MD

simulations correspond to the NVT ensemble, which is appropriate for comparison with the

constant–temperature LD simulations. The initial spatial configuration of the particles is spec-

ified to ensure no overlaps between particles. This is accomplished by spatially distributing the

solute particles according to a hard–core Matérn point process [35], and by placing the solvent

molecules at FCC lattice sites. All particles are assigned a Maxwellian velocity distribution

corresponding to the reference temperature. From this configuration the system is allowed

to evolve and equilibrate to the initial condition for the aggregation simulations by allowing

particles to interact with a dimensionless well–depth ε̂αβ = 1.

3.3.2 Langevin Dynamics

Langevin dynamics is an approach to efficiently simulate the evolution of solute particles by

modeling the solute-solvent interactions in terms of frictional and random terms, and through

modification of the solute pair potential in the presence of solvent molecules. For this model

system, the relative magnitude of the timescales corresponding to the frictional and pairwise
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interaction force terms requires evolution of the full position and velocity Langevin equation

set for accurate LD simulations [13, 14, 12]. The LD equations for evolution of the position ri

and velocity vi of the i-th solute particle are [13, 14, 12]

dri = vidt, (3.4)

dvi = −γvidt +
1

mi
Fidt +

√

2γσv∞dWi, i = 1, . . . , N, (3.5)

where mi is the mass of particle i, γ = kBTref/miD∞ is the friction coefficient, D∞ is the

self-diffusion coefficient of the solute particles in solvent at infinite dilution, Fi = −∇rU
LD
AA

where ULD
AA is the potential of mean force between solute particles in the presence of solvent,

σ2
v∞ = kBTref/mi is the stationary velocity variance, dWi is a Wiener process increment, and

N is the total number of solute particles.

As noted earlier, the specification of the appropriate potential for mean force in aggregating

systems is not straightforward because Eq. 3.1 cannot be used when the solute pair correlation

function gAA is evolving in time through states not in equilibrium. It is useful to decompose

ULD
AA as follows

ULD
AA = UMD

AA + Ũ2, (3.6)

where UMD
AA is the potential corresponding to solvent–explicit MD simulations and Ũ2 is a

correction to account for the modeled solute–solvent interactions. The simplest choice is to

take ULD
AA = UMD

AA , which corresponds to the solute pair potential unmodified by the presence of

solvent molecules. This is identical to the LJ solute pair-potential used in the MD calculations

(Eq. 3.2).

The self-diffusion coefficient at infinite dilution is a required input parameter for the LD

model. The self-diffusion coefficient is extracted from MD simulation of the corresponding

system, but with only 125 solute particles initially located at minimum 19σ from each other.

This setup satisfies an infinite dilution condition for each individual particle and allows to

obtain 125 multiple independent simulations in one run to improve statistics. These MD

calculations are done in two stages. In the first stage the system is allowed to equilibrate for

approximately t = 0.89σ2/D∞ where σ2/D∞ is the diffusion timescale. Then, over the next
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t = 0.89σ2/D∞ diffusion timescales the mean squared displacement of the solute particles is

computed, and the self-diffusion coefficient at infinite dilution is obtained from the expression

〈|r(t) − r(0)|2〉 = 6D∞t, (3.7)

where t is time for which the system has evolved in the second stage. LD simulations are

performed for the same DLA and RLA cases described in Table 3.1 using an in-house code for

solving Eqs. 3.4-3.5 [12].

3.3.3 Aggregation Statistics

Aggregates resulting from the MD and LD simulations are characterized by calculating the

pair correlation function g(r), and cluster size distribution (CSD). The pair correlation function

g(r), and its Fourier transform the structure factor, are useful in characterizing aggregate

structure. The structure factor can also be inferred from light scattering experiments, and

the fractal dimension df of the aggregates can be extracted from the structure factor [3] (see

Appendix E for details). The expression for the pair correlation function in a binary system is

gαβ(r) =
〈Nαβ(r,∆r)〉
NαnβV (r,∆r)

, (3.8)

where 〈Nαβ(r,∆r)〉 is the average number of α–β pairs with a β particle in a shell (r,∆r)

separated by r from an α particle, Nα is the total number of α particles in the system,

nβV (r,∆r) is the expected number of β particles in the shell (r,∆r) with nβ denoting the

number density of β particles, and V (r,∆r) being the volume of the spherical shell (details

are provided in Appendix C). We use the sample mean over all α particles to estimate the

ensemble average 〈Nαβ(r,∆r)〉, leading to the following estimate for the pair correlation from

particle data

gαβ(r) ≈ 1

NαnβV (r,∆r)

(

1

Nα

Nα
∑

i=1

N
(i)
αβ(r,∆r)

)

.

The cluster size distribution (CSD) Nk(k) gives a statistical description of the relative oc-

currence of the number of clusters Nk, each composed of k monomers. The CSD is constructed

by first initializing all particles as individual clusters and then recursively checking the another

criterion to merge clusters. A particle is defined as belonging to a cluster if its center is within
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rcl = 1.4σ of at least one particle already in the cluster. If a particle simultaneously belongs

to two clusters this criterion is used to merge clusters.

3.4 PERFORMANCE OF LD MODEL

Here we compare the pair correlation function g(r) and cluster size distribution obtained

from Langevin dynamics with the MD results for the DLA and RLA systems described in

Table 3.1. Simulations are evolved to a nondimensional time t̂ = tD∞/σ2 = 86.5, where

σ2/D∞ is the diffusion timescale. The time step is chosen based on a previous study in which

the resolution requirements for accurate numerical simulation of aggregating systems using LD

and MD were established [12].

In the DLA regime the pair correlation function for solute particles gAA(r̂) and cluster size

distribution predicted by LD compare well with MD (Figs. 3.1a and 3.2a). However, in the

RLA regime the LD predicts a significantly different pair correlation function (Fig. 3.1b) and

cluster size distribution (Fig. 3.2b), as compared to MD.

The difference in gAA(r̂) calculated from MD simulations for different aggregation regimes

can be explained by considering the different values of sticking probability for the solute par-

ticles. In the DLA regime the sticking probability for solute particles is higher than in the

RLA regime. This decrease in sticking probability in the RLA regime occurs in part due to

the lower well-depth ε̂AA = 4.0 for pairwise interaction of the solute particles. In addition, in

RLA the solute-solvent interaction is relatively strong and therefore solvent particles (B-type

particles) attach to the solute particles (A-type particles). Therefore, solvent particles can

block solute particles from aggregating because they are of comparable size and the solute-

solute interaction is relatively weak. In contrast, in DLA regime a strong solute pair potential

ε̂AA = 8.0 is able to overcome the blockage effects of the B-type particles and large aggregates

are formed. Therefore, the interaction between A and B-type particles represented by ε̂AB

plays an important role in aggregation.

Based on these results we conclude that using the unmodified LJ potential for LD is ade-

quate in the DLA regime for non size-separated model systems. However, in the RLA regime
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the unmodified LJ potential is unable to capture the structure and size distribution of aggre-

gates. This motivates the development of an improved potential of mean force for LD that is

capable of accurately describe aggregate structure in both DLA and RLA regimes.

3.5 RELATIVE ACCELERATION

Since the use of unmodified MD potential in LD does not always result in good prediction

of the solute pair correlation gAA(r), we investigate the evolution of gAA(r) to gain an insight

into developing a better LD potential of mean force. The position-velocity pair correlation

function g(x1,x2,v1,v2, t) is related to the two-particle density ρ(2)(x1,x2,v1,v2, t) by

ρ(2)(x1,x2,v1,v2, t) = n2g(x1,x2,v1,v2, t), (3.9)

where n is the number density of particles. This leads us to consider the evolution of the

two-particle density (or unnormalized pair correlation function) corresponding to the MD and

LD dynamical equations. The two-particle density ρ(2)(x1,x2,v1,v2, t) is defined as [36]

ρ(2)(x1,x2,v1,v2, t) = 〈f ′
1f

′
2〉, (3.10)

where f ′
k =

∑N
i=1 δ(vk −V(i))δ(xk −X(i)), {X(i),V(i), i = 1, ...N} are the position and velocity

of the N particles in the ensemble, the product 〈f ′
1f

′
2〉 is formed over distinct pairs (j 6= i) over

all realizations of the multiparticle system. If the ith particle evolves according to dX(i)/dt =

V(i), and dV(i)/dt = A(i), then the evolution of ρ(2) can be derived from Eq. 3.10. Thus,

after differentiation of Eq. 3.10 and with additional assumptions of statistical homogeneity in

both position space as well as velocity space the following equation for evolution of ρ(2) is

obtained [36],

∂ρ(2)(r,w, t)

∂t
+ ∇r ·

(

wρ(2)
)

+ ∇w ·
(

〈∆A|r,w, t〉ρ(2)
)

= 0, (3.11)

where r = x2 − x1 is the pair-relative separation, w = v2 − v1 is the pair-relative velocity,

and 〈∆A|r,w, t〉 = 〈A(2)|r,w, t〉 − 〈A(1)|r,w, t〉 is the average relative acceleration. The two-

particle density evolves by a transport equation that contains two terms: one is a transport

term in relative pair-separation space r that contains the pair-relative velocity w, and the other
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is a transport term in pair relative velocity space w that contains the conditional expectation

of pair-relative acceleration 〈∆A|r,w, t〉.

If the dynamical equations that govern solute particle evolution corresponding to the LD

model (Eqs. 3.4,3.5) are used in deriving Eq. 3.11, then the evolution of ρ
(2)
AA implied by LD

is obtained. In the case of MD, by using the appropriate dynamical equations for particles

(solute particles and solvent molecules), Eq. 3.11 can be written for ρ
(2)
AA, ρ

(2)
BB , and ρ

(2)
AB . Of

course, only ρ
(2)
AA from the MD can be compared with LD.

Comparing the evolution of ρ
(2)
AA for MD and LD, it is clear that if the average relative

acceleration term 〈∆A|r,w, t〉 is accurately modeled, then the ρ
(2)
AA evolution will be identical.

The average relative acceleration 〈∆A|r,w, t〉 is conditioned on pair-relative separation r and

pair-relative velocity w, and is difficult to estimate accurately from simulations because of high

statistical error arising from few samples. It is useful to consider a class of mesoscale models

(to which LD belongs) that decompose this conditional relative acceleration as

〈∆A|r,w, t〉 = 〈∆A|w, t〉 + 〈∆A|r, t〉. (3.12)

In LD, the term 〈∆A|w, t〉 is modeled as −γw, and we provisionally accept this model as

adequate. We focus on improved modeling of the remaining term 〈∆A|r, t〉, the average pair-

relative acceleration conditioned on pair separation.

In both MD and LD, it is useful to decompose the average relative acceleration 〈∆A|r, t〉

into a direct contribution to the relative acceleration 〈∆AD|r, t〉 and an indirect part:

〈∆A|r, t〉 = 〈∆AD|r, t〉 + 〈∆AI |r, t〉. (3.13)

In MD, the direct contribution to the relative acceleration between two solute particles arises

from ∆AD = FMD
ij /mi−FMD

ji /mj = FMD
ij (1/mi + 1/mj), where mi and mj are the masses of

ith and jth particles respectively. The indirect contribution to relative acceleration arises from

the interaction of particles (1) and (2) with (a) other solute particles and (b) solvent molecules,

as shown in Figure 3.3. In LD, the direct contribution to relative acceleration between two

solute particles arises from ∆AD = Fij (1/mi + 1/mj), where Fij is the mean force between

two solute particles in the presence of solvent. The indirect contribution to relative acceleration
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in LD arises from the modeled interaction of particles (1) and (2) with other solute particles

(the presence of solvent is implicit).

Given a model for ULD(r), the potential of mean force in LD, we can compute the modeled

indirect contribution to relative acceleration and compare this with the corresponding result

from MD where the interactions with solvent are explicitly represented. Prior to carrying out

this comparison, we construct a simple test to verify the accuracy of our calculation of the

indirect relative acceleration. Details of the test, which verify our computation of the relative

acceleration with approximate analytic solutions, are given in Appendix B.

Figure 3.4 shows the indirect average relative acceleration of a pair of A-type particles to

other A-type particles for both MD and LD simulations. We see that the indirect average

relative acceleration calculated from MD and LD simulations match closely for systems in the

DLA regime (Figure 3.4a), whereas they are significantly different for systems in the RLA

regime (Figure 3.4b). Since in these simulations ULD = UMD we attribute the mismatch

between the MD and LD results in the RLA regime to the mismatch in the pair correlation

function (Figure 3.1b).

In order to investigate the influence of solvent particles on the indirect relative acceleration

between a pair of A-A type particles, we calculate the indirect relative acceleration between A-

A type particles due to the effect of only B-type particles from MD simulations (Figure 3.5).

Here we see that in the DLA regime the magnitude of relative acceleration due to B-type

particles (Figure 3.5a) is much smaller than the effect of A-type particles only (Figure 3.4a).

However, in the RLA regime, the relative acceleration due to A-type particles (Figure 3.4b,

MD results) and B-type particles (Figure 3.5b) are of comparable magnitude. Clearly in the

RLA regime, this effect of solvent in the relative acceleration that is unaccounted for in the LD

model is responsible for the mismatch of the pair correlation of solute particles in Figure 3.1b.

These results lead us to conclude that although the effect of solvent is not significant in the

DLA regime, it must be accounted for in the RLA regime.

The analytical expression for the indirect relative acceleration

〈∆AI |r〉 =

∫

AI:(2)(r′′, r)g(r′′)dr′′ −
∫

AI:(1)(r′, r)g(r′)dr′
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derived in Appendix B, which is valid for dilute systems where an approximate expression for

conditional three–particle statistics holds, reveals that the indirect average relative acceleration

obtained from MD and LD simulations can be matched only when both the interaction potential

and the pair correlation function are correctly described by the LD simulations. We now

describe an improved LD potential that takes into account the presence of solvent molecules.

3.6 IMPROVED BD MODEL

Since accurate simulation of aggregation using LD requires the incorporation of solvent

effects in the potential of mean force, an approach to generate an improved LD potential needs

to be developed. The theoretical framework described by Likos [37] is used as a basis to build

such an improved potential. Likos’ theoretical framework for a two-component solute (A) -

solvent (B) system defines an effective Hamiltonian Heff that depends solely on positions and

velocities of the solute particles, and which can be formally related to the full two-component

Hamiltonian H of the system [37]. This full two-component Hamiltonian (in our case defined

by the MD) is

H = HAA + HBB + HAB, (3.14)

where each Hαβ contains the interactions between α-type and β-type particles only. The

effective Hamiltonian Heff is related to the full Hamiltonian H by the following expression

exp(−βHeff) = TrB[exp(−βH)], (3.15)

where β = 1/kBTref, and TrB is the trace over solvent molecules, representing the multiple

integral over the positions and momenta of all degrees of freedom of the particles B, which are

solvent molecules in our case. The final expression for the effective Hamiltonian after invoking

the pair-potential approximation is [37]

Heff =

N1
∑

i=1

p2
i

2M
+

N1
∑

i=1

N1
∑

j=i+1

Ueff(|ri − rj|;nA, nB, Tref) + F0, (3.16)

which can be thought of as the sum of an effective Hamiltonian of the N1 solute particles condi-

tional on the solvent macrostate specified by the solvent number density nB and the reference
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temperature Tref. The volume terms F0 do not depend on the particle coordinates [37]. In the

above expression M , pi, ri are the mass, momentum and position of ith solute particle. The

effective interaction potential Ueff is given by [37]

Ueff(r = |ri − rj|;nA, nB , Tref) = UAA(r) + Ũ2(r;nA, nB, Tref), (3.17)

where UAA represents the direct interaction between solute particles, and Ũ2 is their interaction

mediated by the solvent molecules (also called the solvation potential), nA and nB are number

densities of solute particles and solvent molecules respectively, and Tref is the system reference

temperature.

In the context of an improved LD model Eq. 3.17 tells us that the UAA potential represents

the direct interaction between solute particles, with the Ũ2 potential accounting for the inter-

action between solute particles mediated by solvent molecules. The direct interaction potential

UAA is simply the MD interaction potential between solute particles UMD
AA . The solvation po-

tential Ũ2 has been successfully extracted by different researchers [19, 20, 38]. In all these

works the solvation potential Ũ2 (or solvation force fs(r)) has been found for a liquid between

two fixed parallel surfaces at separation r [38], or between two fixed spheres at separation

r [19, 20]. However, to the best of our knowledge, a model for Ũ2 in dynamic aggregating

systems with a statistical description of solute particles and solvent has not been proposed yet.

In the present work we propose the following algorithm for calculation of Ũ2 based on the

hypothesis that the pair correlation function for the solvent molecules distributed around solute

particle gAB(r′, t) (r′ is the solute-solvent separation) reaches a steady state value gss
AB(r′) over

a time scale that is much smaller than characteristic aggregation time scales. Indeed this

hypothesis is supported by MD simulations as shown in Figure 3.6. This steady configuration

of solvent molecules relative to solute particles induces a potential UAB(r′) on each solute

particle, which we model using the Kirkwood formula

UAB(r′) = −kBTref ln gss
AB(r′). (3.18)

We now calculate the relative force between a pair of solute particles (marked (1) and (2) in

Fig. 3.13) induced by this potential UAB based on the relative acceleration idea introduced
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in the previous section. As shown in Appendix B, the average indirect relative acceleration

between the two solute particles (1) and (2) in Fig. 3.13 separated by r that is induced by the

solute–solvent potential UAB is given by

〈∆AI
AA|r〉 =

∫

A
I:(2)
AB (r′′, r)hAB(r′′|r)dr′′ −

∫

A
I:(1)
AB (r′, r)hAB(r′|r)dr′. (3.19)

This equation gives the average indirect relative acceleration conditional on solute pair sep-

aration r, in terms of conditional three–particle statistics hAB(r′′|r) and hAB(r′|r) that are

defined in Appendix B, by integrating out the effect of solvent as shown in Fig. 3.13. In gen-

eral the conditional three-particle statistics of systems are unknown, but assuming that in a

dilute system hAB(r′|r) and hAB(r′|r) are well approximated by

hAB(r′|r) ∼= gAB(r′) (3.20)

hAB(r′′|r) ∼= gAB(r′′), (3.21)

results in the following expression for the indirect relative acceleration that is completely

specified by the solute–solvent potential UAB and solute–solvent pair correlation gAB :

〈∆AI
AA|r〉 =

∫

A
I:(2)
AB (r′′, r)gAB(r′′)dr′′ −

∫

A
I:(1)
AB (r′, r)gAB(r′)dr′, (3.22)

where A
I:(k)
AB (r′, r), k = 1, 2 is computed as

A
I:(1)
AB (r′, r) =

F
(1)
AB(r′)

m
= − 1

mA
∇UAB(r′) (3.23)

A
I:(2)
AB (r′′, r) =

F
(2)
AB(r′′)

m
= − 1

mA
∇UAB(r′′) (3.24)

where mA is the mass of solute particles.

Analytical expressions have been derived for the relative acceleration in the simple 1-D and

2-D test problems shown in Appendix B. In 1-D the integrals in Eq. 3.22 are calculated as

follows. The centers of the pair of solute particles 1 and 2 (each of size σA) are located such

that they are separated by a distance r. Then the “probe” solvent particle p of size σB is

inserted at all allowable locations along the line (for 1-D case) that satisfy the conditions

|r′| = |r1 − rp| ≥ 1/2(σA + σB) (3.25)

|r′′| = |r2 − rp| ≥ 1/2(σA + σB) (3.26)
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to exclude overlap of solute and solvent particles. For each location of the “probe” particle p,

the force F
I:(1)
AB (r′, r) exerted by the probe particle on solute particle 1, and the force F

I:(2)
AB (r′′, r)

exerted by the probe particle on solute particle 2 is computed for each set of values r, r′,

and r′′ with U = UAB . These forces are weighted by the pair correlation function gAB and

integrated according to Eq. 3.22, to obtain the average indirect relative acceleration. By

repeating the procedure for every value of the solute pair separation r over a desired range,

the average indirect relative acceleration is calculated as a function of solute pair separation.

While analytical expressions can be derived for the relative acceleration in the simple 1-D and

2-D test problems shown in Appendix B, the 3-D integrals in Eq. 3.22 needed to calculate the

relative acceleration in the improved LD model have to be performed numerically.

The relative force between two solute particles induced by the UAB potential is denoted

mA〈∆AI
AA|r〉 = −∇rṽ2(r;nA, nB , Tref)

The final step is to add the force resulting from this semi-analytical calculation to the direct

A-A interaction and complete the LD specification of mean force as

F = −∇rU
LD
AA,eff = −∇rUAA −∇rŨ2 = −∇rUAA − C2∇rṽ2. (3.27)

In the above expression we have modeled the solvation potential Ũ2(r;nA, nB , Tref) by intro-

ducing a model coefficient C2 to relate it to the potential ṽ2, such that

Ũ2(r;nA, nB , Tref) = C2ṽ2(r;nA, nB, Tref), (3.28)

where ṽ2(r;nA, nB , Tref) is the mean potential between A-A particles induced by the solute-

solvent potential UAB(r′). For the case where the LJ potential is used in the MD, the potential

UAA = UMD
AA = ULJ

AA.

The model coefficient C2 is specified to match the indirect average relative acceleration for a

single solute particle pair. The indirect average relative acceleration between all pairs of solute

particles at a separation r due to the presence of solvent molecules is calculated from an MD

simulation that explicitly accounts for the solute-solvent and solvent-solvent interactions. The

modeled indirect average relative acceleration for the solute particle pair is given by −C2∇rṽ2.
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The coefficient C2 is determined by a least-squares fit of the model to the indirect average

relative acceleration results obtained from MD.

In Figure 3.7 we compare the improved LD potential Ueff with the Lennard-Jones potential

ULJ
AA and the modeled solvation potential Ũ2 for two cases: one with εAA/εBB = 4.0 typical

of the RLA regime, and another with εAA/εBB = 8.0 typical of the DLA regime. In the

DLA regime (Figure 3.7a) the modification of the LD potential due to solvation effects is not

significant and the improved LD potential is very close to the Lennard-Jones potential. On

the other hand, in the RLA regime (Figure 3.7b), the modification due to solvation effects is

significant, and the improved LD potential and the Lennard-Jones potential are significantly

different. Two interesting features of the improved LD potential in the RLA regime are worth

noting in Figure 3.7b. The first is that the primary minimum of the improved LD potential

(at r̂ = 1.1) has a well depth that is less than that of the LJ potential. The second is the

appearance of a secondary minimum (at r̂ = 2.1). These two minima are separated by a

potential barrier. The formation of this secondary minimum is a characteristic feature of

the RLA regime where aggregation occurs only if the solute particle has sufficient energy to

overcome a potential barrier. Since the improved LD potential is practically identical to the

unmodified MD potential in the DLA regime, we do not expect the improved LD potential

to change the structure of aggregates significantly. In the DLA regime the unmodified MD

potential is capable of capturing aggregate structure, and so we expect that the improved LD

model will not deviate significantly from these good results. Based on the potentials shown

in Figure 8, we expect that in the RLA regime the improved LD potential will significantly

change the predicted aggregate structure. In this section we have derived an improved LD

potential for aggregating systems that takes into account the presence of solvent molecules.

3.7 RESULTS WITH IMPROVED BD MODEL

We repeated the LD simulations reported in previous sections with the improved LD in-

terparticle force (Eq. 3.27) to ascertain if the improved LD potential gives a better prediction

of aggregate structure and other aggregation statistics. In Figure 3.8a we compare the pair
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correlation function predicted by the improved LD model with that from MD simulations and

find reasonable agreement in the DLA regime. There is no significant difference in the im-

proved LD model’s predictions from those of the original LD model in the DLA regime where

εAA/εBB = 8.0 (compare Figure 3.8a with Figure 3.1a). Therefore, the improved LD model

is as good as the original LD model in the DLA regime. However, in the RLA regime with

εAA/εBB = 4.0 there is a significant improvement in the pair correlation function predicted

by the improved LD model (Figure 3.8b) when compared with the original LD result (Fig-

ure 3.1b). The improved LD model’s representation of solvent effects on the potential of mean

force result in an excellent match with the MD pair correlation function (Figure 3.8b), whereas

the original LD with the unmodified MD potential (Lennard-Jones) resulted in a significant

difference in the predicted pair correlation function (Figure 3.1b). Since aggregation is a time-

dependent phenomenon, we also check if the improved LD model’s prediction of gAA(r̂, t) is

accurate at different time instants. The absolute relative error in gAA(r̂, t) between model and

MD is integrated over all r and averaged over three different time instants to quantify temporal

accuracy. The maximum error in both RLA and DLA regimes is 26% for the improved LD

model. For comparison, the same error for the original LD model is 600%.

We also compare the normalized cluster size distribution predicted by the improved LD

model with that of MD simulations. The cluster size distribution (CSD) is formed by calcu-

lating the number of clusters Nk that include k monomers from the steady solute particles

positions. Clusters are defined using the Stillinger criterion that is based purely on instan-

taneous physical proximity of the solute particles. When calculating Nk we assume that two

neighboring solute particles belong to the same cluster if they are separated by a distance less

than 1.4σ. The cluster sizes Nk are normalized by the zeroth moment of the cluster size dis-

tribution M0(t), which characterizes the total number of clusters formed at time t. The CSD

predicted by the improved LD model agrees very well with the MD result in both DLA and

RLA regimes (see Figures 3.9a and 3.9b). Recall that the original LD model did not predict

the CSD well in the RLA regime (cf. Figure 3.2b). The improvement in prediction of the

CSD with the improved LD model is a significant result because the CSD contains topological
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information that is not there in the pair correlation function.

Since in aggregation the CSD evolves in time, it is worthwhile to examine scaled cluster size

distributions computed using the MD and LD (with unmodified LJ and improved potential)

using a dynamic scaling relation. In particular, it has been observed for a very wide range of

aggregation processes that cluster size distributions can be collapsed by employing the following

scaling ansatz [40]:

Nk = s−2φ

(

k

s(t)

)

, (3.29)

where Nk is the concentration of clusters containing k monomers, s(t) is the mass-averaged

particle size, and φ is a scaling function. If Eq. 3.29 is valid, then a plot of s2Nk vs k/s should

collapse the cluster size distributions for all sufficiently large values of t in the self-preserving

regime. Figures 3.10a and 3.10b show such plots for the RLA regime case (ε̂AA = 4.0) using

MD, and LD with the unmodified LJ potential. While the MD shows a universal scaling for

the cluster size according to Eq. 3.29, the same is not evident in the LD with unmodified

potential. Furthermore, the shapes of the function φ are very different. Figure 3.10c shows

the same function φ for LD with the improved potential, and we see a marked improvement in

both the collapse and the comparison with the MD result. This is a remarkable justification

for the validity of the relative acceleration concept as a basis for generating the improved LD

potential. For the DLA regime case (ε̂AA = 8.0), Figures 3.10d and 3.10e show the same scaled

cluster size distrubution plots using MD, and LD with the unmodified LJ potential similar to

results previously reported in [12]. In the DLA regime the scaled cluster size distributions do

appear to fall on universal curves for both cases when plotted using Eq. 3.29, but the shape

of the scaling functions are clearly different. In the DLA regime the improved LD potential

has a smaller effect on the scaled cluster size distributions as seen in Figure 8(f). While

the maximum size of aggregates compares better with MD using the improved LD potential,

the peak is more enhanced showing a slight departure from the MD result. Nevertheless as

Figures 3.10c and 3.10f show, the improved LD potential gives a far better agreement for the

scaled cluster size distribution with MD than the unmodified LD potential.

To address the issue of proper time evolution of aggregation at the coarse–grained level we
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have included plots of the extent of aggregation 0 ≤ ξ < 1, defined as

ξ = 1 − M0(0)

M0(t)
(3.30)

where M0 is the zeroth moment or total concentration of clusters. Hence ξ is an aggregation

progress variable that approaches unity as the system mass accumulates in a single cluster.

We plot ξ obtained from MD, unmodified LD (LJ), and improved LD simulations for both

DLA and RLA regimes. In the RLA regime, LD with the unmodified LJ potential (Fig. 3.11a

predicts a very rapid increase in the extent of aggregation when compared with MD. However,

the improved LD potential results in a dramatic improvement in the match of predicted extent

of aggregation ξ with MD (Fig. 3.11b). This establishes that the coarse-graining approach is

able to represent mesoscale time evolution accurately. In the DLA regime, even LD with the

unmodified LJ potential (Fig. 3.11c) is reasonably close to the MD result and we ascribe the

difference to the simple model for the frictional term. As a result, even LD with the improved

potential shows the same difference with MD in the extent of aggregation (Fig. 3.11d).

We now examine the indirect average relative acceleration between solute particle pairs due

to other solute particles, since this was the quantity that motivated the model development.

The match between the improved LD model and the MD result in both RLA and DLA regimes

(Figures 3.12a and 3.12b) is much better than with the original LD model. In the RLA

regime the magnitude of the relative acceleration and its variation with separation r are much

improved in comparison with that obtained from the original LD model (Figure 3.4). This

result establishes the validity of our modeling approach: namely, that calibrating the effect of

solvent on the average relative acceleration of solute particles, in conjunction with our semi-

analytical integration procedure that accounts for the statistical configuration of solute-solvent

and solute-solute pairs, is a successful route to mesoscale coarse-graining of MD potentials in

aggregating systems.

In summary, the comparison of aggregation statistics—the pair correlation function (gAA(r̂)),

the cluster size distribution (CSD), and the indirect average relative acceleration (〈∆AI |r〉)—

predicted by the improved LD model with MD indicates that the improved LD potential

developed in this work is successful in accurately modeling aggregation in a model system.
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3.8 DISCUSSION

In this section the broader implications of this new approach to modeling the potential

of mean force between solute particles in aggregating systems are now discussed. The CG

approach we have developed in this work is substantially different from existing approaches

in many ways. While existing CG approaches apply to structural properties such as RDF

of equilibrium systems our approach addresses the problem of non–equilibrium time evolution

of structure. Our approach of deriving the evolution equation for the second–order density

and identifying the conditional relative acceleration gives a sound physical basis for coarse–

graining because it relates the effective potential to the dynamics of the system (in contrast

to adjustment of equilibrium structure using model coefficients). Our method results in an

analytical form of the correction potential without fitting parameters that is based on physical

reasoning, and we can interpret the improved potential in terms of ratio of solute-solute to

solute-solvent interaction potential well depth. The model coefficient in our approach only

determines the relative strength of the correction but does not alter the shape of the correction

potential. In our approach the numerical integration of the probe particle over physical space

to determine the correction term to potential interaction needs to be performed only once (i.e.,

it is not an iterative method).

This new modeling approach establishes a connection between microscale simulation meth-

ods (such as MD) and mesoscale simulation methods (such as LD) based on the pair correlation

function and relative acceleration. This approach can be generalized to other mesoscale ap-

proaches (e.g., DPD), and to other aggregation statistics of interest. The improved LD model

can be applied to any MD potential (LJ is only chosen here as a standard example), and it

is not limited to isotropic potentials. The model can be used for both solvophilic and solvo-

phobic solute particles and is not intrinsically limited by the number of solute types in the

system. However, each of these generalizations will modify the specific form of the improved

LD potential of mean force and extension of the approach described here.

We now critically examine the improved model in terms of its level of complexity, the

underlying assumptions and associated limitations. The model requires as input
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1. the solute-solute MD potential UMD
AA ,

2. a form of the steady state solute-solvent pair correlation function gss
ABthat is used to

compute UAB , and

3. the relative acceleration of a single pair of solutes from MD in order to determine the

coefficient C2.

This model is more complicated than existing LD models, but the need for these inputs is

justified on the basis that the complex physico-chemical interactions in aggregation require

these minimal inputs to be predictive. It is well established that aggregation behavior depends

on whether the solute-solvent interactions are solvophobic or solvophilic [19, 39]. The key input

that is needed to model this effect is the steady state solute-solvent pair correlation function

gss
AB . The coefficient C2 is a scale factor that is needed to quantitatively match the relative

acceleration, and it arises from assumptions that are needed to derive this improved model.

Without it we anticipate the model will qualitatively predict the correct trends, but it would

not quantitatively match the MD data. The need for these inputs from two MD calculations is

a less desirable feature of this improved model, even though these computationally inexpensive

MD are for simple systems involving a single solute particle and pair of solutes. Later we discuss

some approaches to remedy this aspect by developing analytical expressions for the steady state

solute-solvent pair correlation function gss
ABand C2. First we review the assumptions underlying

this modeling approach.

The model is based on the assumption that the solute-solvent pair correlation attains a

steady state on time scales that are much shorter than aggregation timescales. In other words,

the arrangement of the solvent molecules relative to the solute does not significantly change

even when aggregation of solute particles occurs. Indeed this hypothesis is supported by MD

simulations as shown in Figure 3.6. It is conceivable that the interparticle interactions for

some systems may violate this assumption, and in those cases this model would be inapplica-

ble. The Kirkwood formula (cf. Eq. 3.18) that is used to infer the solute-solvent potential

from the steady state solute-solvent pair correlation is strictly valid only for dilute systems
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at equilibrium. For higher solvent molecule density, correction terms to the gss
AB(r′) need to

be introduced [41]. However, these would significantly complicate the proposed model. For

simplicity these are neglected. Another assumption is invoked when the mean force between

a pair of solute particles that is induced by the solute-solvent interaction potential UAB(r′) is

computed. Specifically, three-particle densities such as h(r′|r) and h(r′′|r) are approximated

by two-particle densities gss
AB(r′) and gss

AB(r′′), respectively (see Appendix B for details). This

assumption is strictly valid only for dilute systems. Since aggregation is a two–particle problem

at low solute densities, this approach is reasonable and going to higher-order closures is proba-

bly not warranted. The model coefficient C2 is a scale factor that accounts for the quantitative

errors introduced by these assumptions.

We now examine approaches to analytically specify the model inputs without resorting to

MD simulations for each specific system. One approach towards an analytical specification

of gss
AB is to propose a weighted form that reduces to appropriate limiting cases, such as: (a)

aggregating system with solvophilic particles with εAA > εAB > εBB ; (b) aggregating system

with solvophobic particles with εAA > εBB > εAB ; (c) non-aggregating system with solvophilic

particles with εAA ≈ εAB , and εAB > εBB ; (d) non-aggregating system with solvophobic

particles with εAA ≈ εAB , and εAB < εBB . It is worthwhile to examine if the C2 could also

be specified as an analytical function of the physical parameters of the problem for each of

the limiting cases described above. The modeling problem is to determine how this coefficient

depends on the pair–potential well depths εAA and εAB (or εAB/εAA), the solute number

density nA and the solvent number density nB. It is unclear if the dependence on the potential

well–depths is necessary because the effect of the potentials is already accounted for in the Ũ2

term. It is probably also important to characterize the dependence of C2 on the size ratio of

solute to solvent. If an analytical form of C2 can be developed for the limiting cases (a)–(d),

then the coefficient C2 for any problem could also be modeled as a weighted average. Finally,

the limit C2 → 0 should be imposed when εAB � εAA, which is the case when solute-solvent

interaction is negligible and the solvation correction should tend to zero.

Present work does not include the effect of hydrodynamic interactions (HI) since HI effect is
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not significant for equisize systems considered is this work. However, even if HI forces were to

be accounted for in a BD (Langevin dynamics) model, these would appear in the frictional term

(first term on the right hand side of Eq 3.5), that does not negate the contribution of present

work which concerns the improved specification of potential of mean force (second term on the

right hand side of Eq 3.5). Our estimates indicate that the correction force arising from our

improved BD potential that accounts for solvent interactions are important in aggregation,

even if HI forces are included in size–separated systems. This point is elaborated more in

Appendix G.

3.9 CONCLUSIONS

We simulated aggregation in a model system using both molecular dynamics and Langevin

dynamics in order to determine the accuracy of the LD model using the MD as a bench-

mark. The structure of the aggregates is inferred from the solute–particle pair–correlation

function. It is found that using the unmodified MD solute-solute pair potential in LD re-

sults in accurate prediction of the aggregate structure in the diffusion–limited regime, but

not in the reaction–limited regime. This finding motivates the development of an improved

LD model for the potential of mean force between solute particles. The transport equation

for the solute particle pair–correlation function (or second–order density) informs us that im-

proved modeling of the relative acceleration between a pair of solute particles in solvent is

necessary for accurate prediction of the aggregate structure. We propose an improved model

for the potential of mean force in LD by decomposing the relative acceleration between a

pair of solute particles into solute-solute and solute-solvent interactions. We exploit the fact

that the solute-solvent pair-correlation rapidly reaches a steady state (relative to aggregation

timescales), and we approximate the solute-solvent potential using the standard Kirkwood

formula. The effect of the solute-solvent interaction on solute relative acceleration is semi-

analytically computed by integrating the effect of a test solvent molecule on a pair of solute

particles. Incorporating the effect of the solvent in this manner leads us to an improved speci-

fication of the potential of mean force between solute particles in the LD model. The improved
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LD model dramatically improves results for the aggregate structure in both reaction–limited

and diffusion–limited regimes. Moreover, the proposed model allows microscale interactions to

be related to mesoscale interactions, thereby addressing a critical need in multiscale simulation.

This improved LD model also gives better prediction of the cluster size distribution in both

regimes. The model has the capability of representing the effect of solvent on aggregation in

both solvophilic and solvophobic systems.
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Figure 3.1: Comparison of gAA(r̂) predicted by the LD model with MD simulation data at

time t̂ = 86.5: a) DLA regime: εAA/εBB = 8.0; b) RLA regime: εAA/εBB = 4.0.
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Figure 3.2: Comparison of the cluster size distribution predicted by the LD model with cor-

responding MD simulation data at time t̂ = 86.5: a) DLA regime: εAA/εBB = 8.0; b) RLA

regime: εAA/εBB = 4.0
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Figure 3.3: Direct relative acceleration between solute particles (1) and (2) (solid arrow between

particles (1) and (2)) occurs due to their direct interaction. Indirect relative acceleration

between solute particles (1) and (2) (dashed arrow) occurs (a) in MD due to interaction of

particles (1) and (2) with probe solute particle and probe solvent molecule p; (b) in LD due to

interaction of particles (1) and (2) with probe solute particle only.
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Figure 3.4: Indirect average relative acceleration between A-A pairs resulting solely from other

A-type particle interactions. MD simulations (10,000 A-type solute particles and 813,218 B-

type solvent particles) compared with LD model predictions (10,000 A-type solute particles)

at time t̂ = 86.5: a) DLA regime: εAA/εBB = 8.0; b) RLA regime: εAA/εBB = 4.0. Indirect

average relative acceleration is scaled as 〈∆ÂI |r̂〉 = 〈∆AI |r〉 σAmA/εAA.
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Figure 3.5: Indirect average relative acceleration between A-A pairs resulting solely from B

particles. MD simulation of 10,000 A-type solute particles and 813,218 B-type solvent particles

at time t̂ = 86.5: a) DLA regime: εAA/εBB = 8.0; b) RLA regime: εAA/εBB = 4.0.
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Figure 3.6: Evolution of the pair correlation function gAB(r̂′, t) from MD simulation: a) DLA

regime: εAA/εBB = 8.0; b) RLA regime: εAA/εBB = 4.0. Scaled time t̂ = t D∞/σ2.
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Figure 3.7: Comparison of the improved LD potential ULD
AA,eff and the modeled solvation

potential Ũ2 with the Lennard-Jones potential ULJ
AA: a) DLA regime: εAA/εBB = 8.0, C2 =

0.51; b) RLA regime: εAA/εBB = 4.0, C2=3.15.
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Figure 3.8: Comparison of gAA(r̂) predicted by improved LD model with corresponding MD

result at time t̂ = 86.5: a) DLA regime: εAA/εBB = 8.0; b) RLA regime: εAA/εBB = 4.0.
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Figure 3.9: Comparison of the cluster size distribution predicted by improved LD model with

corresponding MD result at time t̂ = 86.5: a) DLA regime: εAA/εBB = 8.0; b) RLA regime:

εAA/εBB = 4.0.
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Figure 3.10: Normalized cluster size distributions in the RLA regime ε̂AA/ε̂BB = 4.0 [top

panel (a),(b) and (c)], and the DLA regime ε̂AA/ε̂BB = 8.0 [bottom panel (d), (e) and (f)] at

different times t̂ = tD∞/σ2 for MD simulations with LJ potential [left column (a) & (d)]; LD

simulations with LJ potential [middle column (b) & (e)]; LD with improved potential [right

column (c) & (f)].
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(d) MD and LD (improved potential): DLA

Figure 3.11: Comparison between MD and LD (unmodified LJ and improved potential) of

the extent of aggregation ξ for RLA regime: ε̂AA/ε̂BB = 4.0 [top panel: (a) and (b)], and

DLA regime: ε̂AA/ε̂BB = 8.0 [bottom panel: (c) and (d)]. LD simulations with unmodified LJ

potential are compared with MD in the left column [(a) & (c)], while LD with the improved

potential is compared with MD in the right column [(b) & (d)].
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Figure 3.12: Indirect average relative acceleration between A-A pairs resulting solely from

other A particle interactions. Improved LD model (10,000 A-type particles) compared with

MD simulation (10,000 A-type particles and 813,218 B-type particles) at time t̂ = 86.5: a)

DLA regime: εAA/εBB = 8.0; b) RLA regime: εAA/εBB = 4.0.
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Figure 3.13: Schematic showing a “probe” solvent molecule p which can occupy any point in

3-d space except volumes of solute particles 1 and 2, thus defining the domain of integration

for the relative acceleration calculation.
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Figure 3.14: Comparison of computed indirect average relative acceleration with the analytical

result at n̂ = 0.1: a) 1-d case, computations with 150,000 particles averaged over 3,000 multiple

independent trials, b) 2-d case, computations with 823,000 particles averaged over 240 multiple

independent trials.
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CHAPTER 4. EFFECT OF SHEAR ON COLLOIDAL AGGREGATION

OF A MODEL SYSTEM USING LANGEVIN DYNAMICS SIMULATION

This chapter is a manuscript in preparation titled “Effect of Shear on Solloidal Aggregation

of a Model System Using Langevin Dynamics Simulation” co–authored with S. Subramaniam.

4.1 Introduction

Aggregation of colloidal nanoparticles is a non-equilibrium multiscale problem that is char-

acterized by a wide range of length and time scales ranging from those associated with a

monomer to superaggregates comprising tens of thousands of monomers. Usually colloidal ag-

gregation in real physical systems occurs in the presence of external forces due to gravity [1, 2]

or shear flow [3, 4, 5, 6, 7, 8, 9, 10, 11]. In this work we focus on the effects of shear. Shear

flow affects the size and structure of aggregates, and the rate at which they are formed. A

rich variety of phenomena are observed depending on the shear rate, the initiation time [11]

(i.e., whether shear is applied after some aggregation has taken place, or right from the onset

of aggregation) and the duration of time over which the system is subjected to shear.

These phenomena have been investigated experimentally by studying the influence of ex-

ternally applied shear on the aggregation of latex nanoparticles [8, 11]. If shear is applied after

aggregates have already formed it can change aggregate structure. In experiments it has been

found that moderate shear flow (characterized by the Pèclet number based on the monomer

diameter Peσ = 1 ÷ 5) results in a more compact aggregate structure than that found in non-

sheared systems [3, 8, 11]. In these experiments, changes in aggregate structure are inferred

from the fractal dimension of the aggregates df that is obtained from light scattering analy-

sis. However, 2D LD simulations of Cerda et al. [12] report that shear weakens the effective
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interaction between particles by stretching the separation between primary particles in aggre-

gates, thereby forming less compact structures. These changes in structure are characterized

by computing a mean interaction energy attributed to the physical bonds that hold the cluster

together [12]. At this point it is not clear why in some cases shear results in the formation

of more compact aggregates with higher fractal dimension df , while in others it produces less

compact structures,.

Computational approaches are well suited to answering such questions because one can

easily vary parameters such as dimensionless interaction well depth and the Pèclet number

to investigate their effect on aggregation outcomes. In earlier work we showed that although

molecular dynamics (MD) simulations of aggregation in dilute systems with full solvent inter-

actions are still too computationally expensive, mesoscale methods such as Langevin dynamics

(LD) with modeled solvent interactions scale favorably to larger systems while retaining the

capability of representing structure in aggregating systems [16]. A coarse–graining procedure

we recently developed to specify the potential of mean force in LD for aggregating systems

yields time–evolving structure in non–equilibrium aggregating systems that matches very well

with MD simulations in both diffusion–limited and reaction–limited regimes [13]. With this im-

proved potential of mean force, we have confidence that LD simulations of aggregation reliably

predict important aggregation statistics such as the extent of aggregation, time–evolving solute

pair correlation function, and dynamically scaled cluster size distribution when compared with

MD simulations of smaller model systems [13]. The essential features of this improved LD

model are described in Section 4.2. In this work we use this improved LD model to study

sheared aggregating systems.

The effect of shear on aggregate structure is not easy to characterize because shear affects

aggregates differently on smaller length scales (on the order of ten monomer diameters) as

compared to larger length scales (on the order of hundred monomer diameters). The reason

for this probably lies in the mechanism underlying the formation of aggregates at different

scales. As shown by Sorensen and co–workers [11], the small–scale structure of aggregates

arises from aggregation by monomer addition, while the large–scale structure corresponds to
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cluster-cluster aggregation. Here again mesoscale computational approaches are well suited

to addressing the influence of shear on aggregate structure at different scales because we can

easily control the relative magnitude of scales (length, time, velocity and force) by appropriately

choosing simulation parameters .

We present a scale analysis of the sheared aggregation problem in Section 4.3 where we

identify length, time and velocity scales corresponding to micro, meso and macroscales. Start-

ing from a set of physical parameters P that characterize the sheared aggregating system,

we use dimensional analysis to identify a (nonunique) set of dimensionless parameters Π. We

show that a subset of these dimensionless parameters that corresponds to length scale and

time scale ratios is useful in demarcating scale–separated and scale–overlap regimes. Lekkerk-

erker et al. [14] have proposed a phase diagram for aggregating systems. Also Chakrabarti

et al. [15] classified aggregation regimes into (a) system at equilibrium, (b) non–equilibrium

aggregation, and (c) gelation. Inspired by these works we seek to identify the most important

dimensionless parameters from the set Π that will enable us to construct a regime map for

sheared aggregation. We propose to use LD simulations to identify the metrics that charac-

terize aggregation outcomes so that we can distinguish different aggregation outcomes on this

regime map. Identifying the relevant metrics requires a fundamental understanding of how

shear affects aggregate structure.

Shear affects aggregation by providing additional kinetic energy to particles and aggregates,

thereby increasing the rate of aggregation [11, 12]. This motivates an energy analysis of the

LD simulation data for systems aggregating under shear to link aggregate restructuring to

energy transfer. The energy balance in sheared aggregating systems is analyzed in Section 4.4.

We characterize the changes in aggregate structure due to shear in Section 4.3, and describe

how the redistribution of energy corresponds to structural changes in the aggregates. Using

the insights gained from the energy budget analysis in Section 4.4, we propose new metrics in

Section 4.5.3 to characterize the compactness of anisotropic aggregates that are formed under

shear.

Aggregate breakage is observed [6, 9] when sufficiently high shear is imposed. Thus shear
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limits the maximum size of aggregates [3, 6, 7, 8, 9], with the maximum attainable size de-

creasing with increasing shear rate. This effect is qualitatively understood but a quantitative

prediction of the maximum size of aggregates has not yet been proposed to the best of our

knowledge. In Section 4.6 we propose a simple mechanistic model for shear–induced aggregate

breakage by computing the relative magnitude of shear force to interparticle attraction force.

This simple model gives good predictions for the maximum size of aggregates in sheared sys-

tems. In Section 4.7 we combine the dimensional analysis of Section 4.3 with metrics obtained

from LD simulations in Section 4.5.3 to propose a regime map for sheared aggregation that de-

marcates different aggregation regimes and enables us to classify sheared aggregating systems

based on their initial physical parameters.

4.2 Improved Langevin Dynamics Simulation

Langevin dynamics (LD) is a mesoscale simulation method that can capture the effect

of shear on aggregate restructuring [13]. The Langevin dynamics model is used to simulate

aggregation of solute particles immersed in liquid solvent that is subjected to uniform (spatially

homogeneous), steady shear flow. Langevin dynamics allows us to simulate the evolution of

larger systems of solute particles than MD [16] because in LD the solute-solvent interactions

are modeled through frictional and random terms, and through modification of the solute pair

interaction potential in the presence of solvent molecules [13]. For a model system we consider,

the relative magnitude of time scales corresponding to the frictional and pairwise interaction

force terms requires evolution of both position and velocity Langevin equations for accurate

LD simulations [16, 17, 18]. The LD equations for evolution of the position r
(i)
α and velocity

v
(i)
α of the i-th solute particle in a sheared solvent flow are

dr(i)
α = v(i)

α dt, α = 1, 2, 3, (4.1)

dv(i)
α = −γv(i)

α dt + γu(i)
α dt +

1

m(i)
Fα(r(i))dt +

√

2γσv∞dW (i)
α , i = 1, . . . , N, (4.2)

where α represents Cartesian coordinates, m(i) is the mass of i-th particle, u
(i)
α = Gr

(i)
β δ1αδ2β ,

(α, β = 1, 2, 3) is the mean fluid velocity (of solvent molecules) due to imposed shear flow,
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G is the uniform shear rate, γ = kBTref/m
(i)D∞ is the friction coefficient, D∞ is the self-

diffusion coefficient of the solute particles in solvent at infinite dilution, σ2
v∞ = kBTref/m

(i) is

the stationary velocity variance, dW
(i)
α is a Wiener process increment, N is the total number of

solute particles, and F (r)α = −∇rU
LD where ULD is the effective LD potential of mean force

between solute particles in the presence of solvent. This effective LD potential is calculated

according to a coarse–graining method developed by Markutsya and Subramaniam [13] as

ULD(rij) = ULJ(rij) + Ũ2(rij) =































4ε

[

(

σ

rij

)12

−
(

σ

rij

)6
]

+ Ũ2(rij), rij ≤ rcut

0 rij > rcut,

(4.3)

where σ is the particle diameter, rij is the scalar separation or distance between centers of

particles i and j, rcut is the cutoff distance chosen to be 2.5σ, Ũ2 is the correction term that

takes into account effect of solvent molecules on interparticle interaction potential [13], and ε

is the potential well-depth between particles. The self-diffusion coefficient at infinite dilution

D∞ and the correction to the interparticle potential Ũ2(rij) are required input parameters

for the improved LD model. The self-diffusion coefficient at infinite dilution D∞ is extracted

directly from MD simulation of the corresponding system, and the correction to the interparti-

cle potential Ũ2(rij) is obtained using the semi–analytical coarse–graining procedure described

previously [13].

The LD simulations are performed using the LAMMPS [19] software package. The initial

spatial configuration of the particles is specified to ensure non–overlapping particles. This is

accomplished by spatially distributing the solute particles according to a hard–core Matérn

point process [20]. The solute particles are assigned a Maxwellian velocity distribution corre-

sponding to their reference temperature Tref. From this configuration the system is allowed

to equilibrate to the initial condition for the aggregation simulations by allowing particles to

interact with a Lennard–Jones potential with dimensionless well–depth ε̂ = ε/kBTref = 1,

where kB is the Boltzmann constant, and Tref is the reference temperature.
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4.3 Analysis of Colloidal Aggregation Under Shear

Even though we do not represent the solvent molecules explicitly in LD simulations, the

aggregation of colloidal particles in the presence of shear is studied. Still introduces a wide

range of length scales from monomer size (tens of nanometers) to size of large aggregates

(order of micrometers). There is also a wide range of time scales ranging from Brownian

motion of particles (order of femtoseconds) and the fluid time scale associated with shear

(order of milliseconds).

A system of colloidal particles aggregating in the presence of shear can be characterized by

a set of physical parameters P that includes characteristic scales of length, time, velocity, and

interparticle force. Aggregation introduces clusters with characteristic length scale Rg which is

meso scale and shear flow introduces macro scales as represented in Table 4.1. A dimensional

analysis based on the Buckingham Π theorem allows us to reduce these physical parameters to

a non–unique set of dimensionless parameters Π. The dimensionless parametes that represent

length and time scale rations of macro (or meso) to meso (or micro) scales are useful in

characterizing scale–separated or scale–overlap regimes. However, it is not known a priori

which set of dimensionless parameters is most useful for characterizing aggregation outcomes.

While metrics such as the radius of gyration Rg, fractal dimension df , extent of aggregation ξ

are used for non–sheared systems, the appropriate metrics for sheared aggregating systems is

not yet established.

Table 4.1: Micro, meso, amd macro scales. Where τv is the characteristic time, Rg is the

aggregate radius of gyration, L is the box length, and G is the shear rate.

Micro Meso Macro

Length σ Rg L

Time σ/σv∞ τv G−1

Velocity σv∞ Rg/τv LG

Although the procedure of determining physical and dimensionless parameters for the

sheared aggregating systems is well known, an aggregation regime map that would uniqly
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identify aggregation outcome for such systems does not exist. In this paper we describe an

attempt to create an aggregation regime map that would identify the difference in aggregating

outcomes for the systems characterized by different input values of dimensionless characteris-

tics.

4.3.1 Scale–separated and Scale–overlap Regimes

For sheared aggregating systems, the dimensional physical parameters are scaled to cor-

responding non-dimensional counterparts in the manner described earlier for non-sheared ag-

gregating systems [16] (see Appendix A for details). However, because shear is added to the

aggregating system, an additional dimensionless parameter (Pèclet number Pe) related to the

shear rate G is introduced and defined as

Peσ =
1

4

Gσ2

D∞
, (4.4)

where σ is the particle diameter, and D∞ is the self–diffusion coefficient of particle. Superscript

(σ) identifies that Pèclet number is calculated for a monomer particle of size σ.

When shear flow is introduced into aggregation systems it creates an additional time scale

associated with the shear rate G and additional length scale Rmax
g . This additional length scale

arises because the shear flow limits the maximum size of aggregates. It should be clarified that

aggregating system may be characterized by different sets of parameters: set of the microscale

parameters such as velocity autocorrelation time scale for a single particle τ
(1)
v , and particle

size σ. Or set of mesoscale parameters such as velocity autocorrelation time scale for a cluster

containing k monomers τ
(k)
v , and a radius of gyration of aggregate Rg as described in Table 4.1.

In this paper the aggregation outcome is characterized by a set of microscale parameters. Since

in a sheared aggregating system two time scales such as shear time scale (represented by 1/G)

and diffusion time scale (represented by the velocity autocorrelation time scale τ
(1)
v ) the ratio

of these time scales Gτ
(1)
v corresponds to the Deborah number De and can be proposed as a

characteristics of aggregation outcome. This ratio is defined based on the diffusion time scale
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for a single particle as

Gτ (1)
v = 4Peσ

D∞

σ2
τ (1)
v = 4Peσ

τ
(1)
v

tref
, (4.5)

where tref = σ2/D∞ is the reference time. By analogy, aggregation outcome can be monitored

by the ratio of microcale length scale to mesoscale length scale as

√

D∞τ
(1)
v

Rmax
g

, (4.6)

where Rmax
g represents the maximum size of aggregates which is a mesoscale parameter, and

√

D∞τ
(1)
v represents the microscale length scale and corresponds to the distance a single par-

ticle will travel during time τ
(1)
v .

From these time and length scale ratios, the scale–separated regime can be determined as

Gτ (1)
v � 1;

√

D∞τ
(1)
v

Rmax
g

� 1, (4.7)

and scale–overlap regime is defined as

Gτ (1)
v ≥ 1;

√

D∞τ
(1)
v

Rmax
g

≥ 1. (4.8)

Based on this analysis an aggregating map can be represented as shown in Figure 4.1.

From this figure, different values for the time ratio Gτ
(1)
v should correspond to scale-separated

or scale-overlap regimes. A proposed aggregation map is constructed by analogy to the ag-

gregation map reported for non–sheared aggregating systems [16] with an additional axis for

the Pèclet number to represent shear. For the non–sheared case it can be concluded that: a)

aggregation in a system may occur only if the potential well–depth ε̂ will be greater than some

critical value of the well–depth ε̂cr; b) the diffusion coefficient does not control an aggregation

outcome, but only controls the speed of an aggregation process.

Based on these conclusions, the final aggregation map can be constructed by dropping the

diffusion axis for simplicity and systems with ε̂ > ε̂cr are chosen for the simulations. From

a practical design consideration and a fundamental scientific perspective, it is of interest to

relate aggregation outcomes to the physical parameters of the problem. However, it is very
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Figure 4.1: Space of dimensionless parameters in which we scale to characterize aggregation

outcomes for Gτ
(1)
v as a function of the dimensionless potential well depth ε̂, dimensionless

diffusion coefficient D̂∞, and Péclet number Pe.

difficult to simulate realistic physical systems because of their range in length and time scales.

Furthemore, a typical dilute colloidal system with volume fraction fv = 0.4% in a domain

volume of 1cm3 contains up to 1015 monomer particles . Therefore, for simulation purposes a

model systems are considered as reported in Table 4.2. Initially all of the systems are simulated

with no shear for dimensionless time t̂ = tD∞/σ2 = 3244 until good statistics of aggregate

Table 4.2: Parameters used in LD simulations to produce Figure 4.2.

ε̂ Pe N

8.0 2.1 300,000

8.0 8.0 300,000

50.0 2.1 300,000

50.0 8.0 300,000

structure is obtained. Then the uniform shear flow is applied for t̂ = tD∞/σ2 = 113. Such a

simulation strategy allows us to distinguish changes in the aggregate structure that may occur

when the uniform shear flow is applied.
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Figure 4.2: Gτ
(1)
v as a function of the dimensionless potential well depth ε̂ and Péclet number

Pe for LD simulations.

For all LD simulations of systems described in Table 4.2, a velocity autocorrelation time

scale for a single particle τ
(1)
v is computed and the regime map of Gτ

(1)
v as a function of

the dimensionless potential well depth ε̂ and Péclet number Pe is constructed as shown on

Figure 4.2.

From the regime map represented on Figure 4.2 it is possible to conclude that for all

simulated systems reported in Table 4.2, the scale–separated regime is observed and it is not

possible to attain scale–overlap regime. Moreover, application of shear flow does not change

Gτ
(1)
v parameter significantly since increase in the shear rate G causes a decrease in the velocity

autocorrelation time τ
(1)
v , and this phenomena requires more detailed explanation.

The possible explanation of this phenomena is based on the fact that as intensity of the

shear flow (Pe) increases, the maximum size of aggregates Rmax
g decreases [3, 6, 7, 8, 9]. This

decrease in the size of aggregates occur because particles are leaving the aggregate surface as

shear is applied. As result, those particles that leave aggregate lose their “memory” faster

than those left in aggregates, and overall, the average velocity autocorrelation time calculated

for a single particle τ
(1)
v decreases.
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The proposed regime map (Figure 4.2) represents similar values of time ratios for different

aggregating systems. Two conclusions may be drawn from this fact: different aggregating

systems chosen in Table 4.2 give a similar aggregation outcome, or the additional dimensionless

characteristics should be introduced to represent and classify aggregation outcome. In order

to determine which conclusion is correct, additional metrics M , that characterize aggregation

outcomes should be introduced for the systems described in Table 4.2.

4.4 Energy Balance in Sheared Aggregating System

Before analyzing aggregation outcome due to effect of shear, it is important to analyze the

redistribution of energy in the system when shear flow is applied. By applying shear into the

aggregating system, the kinetic energy of the system increase due to an increase in the kinetic

energy in mean velocity 〈Emean〉 = m/2〈u · u〉, and due to an increase in the kinetic energy

in fluctuating particle velocity 〈Efluct〉 = m/2〈v′ · v′〉, where u is the mean velocity and v′ is

the fluctuating particle velocity. Evolution of these kinetic energies is shown on Figure 4.3 for

a system with ε̂ = 8 and Pe = 2.1, where t̂ = 0 corresponds to the time when shear flow is

applied to the aggregating system. As can be seen from this figure, the kinetic energy in the

mean velocity rises to some steady value in a very short time t̂ ≈ 2/γ = 0.52 in σ2/D∞ units.

This time–scale is associated with the time needed for particles to attain the velocity of flow.

Then, after reaching a steady value the kinetic energy in mean velocity remains constant. The

kinetic energy in fluctuating particle velociti increases by picking up energy from the kinetic

energy in mean velocity, however, after particles attain the velocity of flow the kinetic energy

in fluctuating particle velocity dropped down to some steady value. Due to such significant

changes in kinetic energy of fluctuating particle velocity we focus on the kinetic energy in

fluctuating particle velocity 〈Efluct〉 = m/2〈v′ · v′〉. To identify this energy redistribution, the

evolution of average fluctuation particle velocity correlation function is considered

∂〈v′αv′β〉
∂t

= lim
∆t→0

∆〈v′αv′β〉
∆t

= lim
∆t→0

〈v′α(t + ∆t)v′β(t + ∆t) − v′α(t)v′β(t)〉
∆t

(4.9)

= lim
∆t→0

〈v′α(t)∆v′β(t)〉 + 〈v′β(t)∆v′α(t)〉 + 〈∆v′α(t)∆v′β(t)〉
∆t

, α, β = 1, 2, 3,
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Figure 4.3: Evolution of kinetic energy in mean velocity 〈Emean〉 and kinetic energy in

fluctuating particle velocity 〈Efluct〉 in kBTref units for system with ε̂ = 8 and Pe = 2.1.

where v′α = vα−〈u(f)
α 〉δ1α is the fluctuation velocity, vα is the instantaneous velocity, and 〈u(f)

α 〉

is the mean fluid velocity, α and β are Cartesian components. By substituting the expression

for the velocity increment from Eq. 4.2 the following equation is obtained

∂〈v′αv′β〉
∂t

= −2γ〈v′α(t)v′β(t)〉 + γG
[

〈v′α(t)r′k(t)〉δ1βδ2k + 〈v′β(t)r′l(t)〉δ1αδ2l

]

(4.10)

+
1

m

[

〈v′α(t)F ′
β(t)〉 + 〈v′β(t)F ′

α(t)〉
]

+ 2γσ2
v∞δαβ ,

or in symbolic terms

∂〈v′αv′β〉
∂t

= −2γCαβ + Pαβ + Sαβ + Rαβ. (4.11)

In this equation the first term in RHS is the dissipation term with

Cαβ = 〈v′α(t)v′β(t)〉, (4.12)

second term is production term due to imposed shear with

Pαβ = γG
[

〈v′α(t)r′k(t)〉δ1βδ2k + 〈v′β(t)r′l(t)〉δ1αδ2l

]

, (4.13)

third term is the vF term with

Sαβ =
1

m

[

〈v′α(t)F ′
β(t)〉 + 〈v′β(t)F ′

α(t)〉
]

, (4.14)
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Figure 4.4: Evolution of the trace of each component in Eq. 4.11 in σ3
v∞/σ units for system

with ε̂ = 8 and Pe = 2.1. Inset represents the same values at longer time when system reaches

a steady–state.

and the last one is the random source term with

Rαβ = 2γσ2
v∞δαβ . (4.15)

Evolution of the trace of each of these components is calculated for a system with ε̂ = 8 and

Pe = 2.1 as shown in Figure 4.4. The evolution of random term Rαα is not shown since it

remains unchanged. When shear is applied to the aggregating system then particles attain the

velocity of flow in a very short time ∼ 2/γ = 0.52 in σ2/D∞ units (Figure 4.3) that causes a

rapid and significant increase in dissipation term (fluctuating energy) observed in Figure 4.4. In

fact, fluctuating energy is pumping up the energy from the kinetic energy of the mean velocity

as shown on Figure 4.3. This redistribution of kinetic energy of the mean velocity into the

fluctuating energy is the driving force for the restructuring of aggregates since kinetic energy of

fluctuating particles in aggregates becomes so high that it overcomes interparticle interaction

energy. Then with time, particle energy dissipates to some steady value as shown on the insight

of Figure 4.3. The balance of all the components in Eq. 4.11 is calculated at t̂ = 140 in σ2/D∞

units and reported in Table 4.3 for the two representative systems where the last column
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Table 4.3: Energy budget for non–sheared and representative sheared aggregation systems.

Pe ε̂ −2γCαα Pαα Sαα Rαα Sum,%

0 8 -22.843 0 0.063 22.876 0.43

0 50 -30.475 0 0.292 30.501 1.04

2.1 8 -61.873 0.481 38.277 22.876 0.39

2.1 50 -155.64 0.640 125.664 30.501 0.75

represents the left hand side of Equation 4.11, reported in percents of dissipation term 2γCαα

and it is expected to be zero. This balance analysis satisfies the energy balance of canonical

systems and validates the computational code for the numerical simulation of aggregates in

the presence of shear flow.

Several important conclusions can be drawn from this energy analysis for canonical systems

at steady state. First, when aggregation is simulated with no shear (Pe = 0), production term

Pαα has zero value, and Sαα term is very small (represents velocity–force correlation) as can

be seen from Table 4.3. However, when shear is applied, production term slightly increased,

when Sαα term increased significantly that caused the rise of dissipation term Cαα. Also, from

Table 4.3 it can be observed that at the same shear rate (or the same Pe) the Sαα term increases

as potential well–depth ε̂ increases. Since Sαα can be considered as a work done on the system

per unit time and unit mass, it is observed that for stronger interparticle interaction between

pairs of particles, the work done on the aggregating system due to shear flow is larger when

comparing with systems with weaker interparticle interactions even if the same shear flow with

the same Pèclet number is applied.

From the energy analysis for the fluctuating particle velocities, it is possible to conclude

that for non-sheared aggregating systems, dissipation and random terms are the major terms

for the energy exchange process. When shear flow is applied, the production term Pαα is

non zero but remains very small when the work done on the aggregating system increases

significantly (Sαα term), and is larger for systems with larger potential well–depth ε̂. By

tracking the time evolution of each component in the energy balance equation (Figure 4.4), it
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is observed that as shear flow is applied to the aggregating system the dissipation term 2γCαα

rises rapidly and significantly and then dissipates to some steady value (Figure 4.4). This

effect promotes restructuring in aggregate structure since kinetic energy in fluctuating particle

velocity becomes much stronger than interparticle force even when it is observed for a short

initial time. Thus, analysis of energy balance allows us to conclude that the application of

shear flow into aggregating systems leads to the restructuring of already formed aggregates.

Restructuring of aggregates predicted by energy analysis should be appropriately captured

and analyzed. To capture those changes the results for sheared aggregating systems need to

be compared with the reference aggregating systems with no shear. Then, some new metrics

may be introduced to characterize and analyze the restructuring effect. In the next section a

comparison of non-sheared aggregating systems and sheared aggregating systems is performed

and the need for new metrics are discussed.

4.5 Effect of Shear on Aggregation Structure

In this section we analyze the aggregating results obtained with LD model for systems

described in Table 4.2 with and without shear. All LD simulations performed according to

the following simulation strategy: first, aggregation simulation with no shear is performed.

Then, the LD simulation with applied uniform shear flow continues for the same systems and

the aggregates structure changes due to the shear flow are quantified through the analysis of

characteristics parameters. The particle-particle interactions for these aggregating systems are

described by an effective potential introduced in Eq. 4.3.

4.5.1 Aggregation Without Shear

As a first step two aggregating systems described in Table 4.2 with volume fraction fv =

0.0169 are simulated with no shear. The dimensionless potential well–depths used in present

study (Table 4.2) satisfy the aggregation regime as reported in previous work [16]. This

choice of potential well–depths significantly reduce the effect of solvation potential Ũ2 in an

effective potential in Eq. 4.3. All the LD simulations are evolved to a dimensionless time
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t̂ = tD∞/σ2 = 3244, where σ2/D∞ is the diffusion time scale, since the continuation of

simulation has no significant influence onto the aggregation statistics since at this time systems

consist of mostly large significantly separated aggregates. Thus, further aggregation growth

is possible only due to cluster–cluster aggregation that requires a significantly long simulation

time.
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Figure 4.5: The fractal dimension Df from the LD with effective potential ULD
eff at time

t̂ = 3244: a) simulations are done with ε̂ = 8.0; b) simulations are done with ε̂ = 50.0.

The first step in the aggregate analysis is to determine aggregates in systems. Clusters are

determined based on the minimum neighbor distance criteria. With this method two particles

are assigned to the same cluster if the distance between their centers is less than some distance

rcl. This distance is typically chosen between 1.1σ < rcl < 1.5σ. In the present study rcl = 1.4σ

which is chosen based on the radial distribution function g(r) where r = 1.4σ corresponds to

the first minimum.

The fractal dimension parameter Df is the first most commonly used metric to describe the

structure of aggregates. The maximum value of fractal dimension depends on the dimension-

ality of space D as Dmax
f = D. Thus, for 3D solid material the fractal dimension is Df = 3.
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(a) (b)

Figure 4.6: Snapshots for two typical aggregates for ε̂ = 50.0 at time t̂ = 3244: a) aggregate

containing 150 monomers with the radius of gyration Rg = 2.8 σ; b) aggregate containing 966

monomers with the radius of gyration Rg = 7.1 σ.

Typically, when fractal structure is formed in D-space, its fractal dimension is lesser than the

space dimension. Thus, in 3D system a flat paper sheet has fractal dimension 2, stretched

linear polymer chain will have fractal dimension 1.

The fractal dimension Df is related to the number of monomers in a cluster k and to the

radius of gyration of the cluster Rg by the fundamental relation,

k = k0

(

Rg

a

)Df

, (4.16)

where a = σ/2 is the particle radius, σ is the particle diameter, and k0 is the constant. For

isotropic system the radius of gyration for each cluster can be calculated as

Rg =

(

k
∑

i=1

(

rcm − r(i)
)2
)1/2

, (4.17)

where rcm is the coordinate of the center of mass of cluster, and r(i) is the coordinate of i-th

particle in the cluster.

According to Eq. 4.16 fractal dimension for aggregates can be determined by plotting

the number of monomers in each cluster k versus the cluster radius of gyration Rg by using
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logarithmic scale. By extracting a slope from this logarithmic plot a fractal dimension value is

obtained as shown on Figure 4.5. From this figure two regions with larger and smaller fractal

dimensions separated by inflection point Rin
g ≈ 4 σ are observed for all systems with different

potential well–depths (Figure 4.5). All the aggregates with Rg < Rin
g are characterized with

high fractal dimension Df ≈ 2.4, when for the larger aggregates with Rg > Rin
g the fractal

dimension is much smaller (Df ≈ 1.5). Such a difference in fractal dimension for different sizes

of aggregates outline the difference in their structures. This difference in structures at different

length scales is attributed to the fact that the Lennard-Jones potential used in present study

is a long–range potential. Therefore, with very deep well–depth (large potential well–depth

ε̂) “fat fractals” are formed that are characterized by compact local structure and ramified

structure at largerl ength scale. In this case a fractal dimension df can be reliably extracted

only for very large aggregates containing more than 100, 000 monomer particles. To satisfy

this requirement very large systems with large number of particles should be simulated for a

very long computational time that may be not achieved. If short–range potential would be

used then much thinner aggregates would form on the local length scale and cluster structure

would be similar at different length scales.

To observe the structural difference two typical structures of aggregates are plotted for two

regions with different fractal dimensions Df for ε̂ = 50.0 as shown on Figure 4.6. For smaller

aggregates with Rg < Rin
g (Figure 4.6a) clusters with a very compact monomer packing are

observed. This suggests that the driving mechanism for the cluster formation is the monomer

addition. On the other hand, larger aggregates with Rg > Rin
g (Figure 4.6b) are characterized

by ramified structure which is formed due to aggregation of smaller clusters, thus the cluster–

cluster aggregation mechanism is suggested. Therefore, an inflection point Rin
g serves as the

critical size of aggregate when aggregation mechanism due to the particle addition changes to

cluster–cluster aggregation.
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4.5.2 Shear–induced Aggregation Mode

After characterizing structures of aggregates formed without shear flow, the aggregation

simulation is continued with application of moderate shear flow (Pe = 2.1) to the systems. Such

a shear–induced aggregations are evolved to a dimensionless time t̂ = 113 in σ2/D∞ units. For

these simulations a fractal dimension parameter Df is extracted in a similar manner as it is

described above as shown on Figure 4.7. However, shear flow introduces spatial anisotropy

into aggregates, therefore Eq. 4.17 can not be used for the radius of gyration calculation any

more. Instead, inertia ellipsoid with axes length dα = a, b, and c for α = 1, 2 and 3 for 3D

system is generated for each cluster according to the following procedure. The shape of any

aggregate containing k solute particles can be described by its moment of inertia tensor I with

components

Iαβ =
1

k

k
∑

n=1

(

r(n)
α − rcm

α

)(

r
(n)
β − rcm

β

)

, α, β = 1, 2, 3, (4.18)

where r
(n)
α is the α-th component of position of n-th solute particle in the cluster, and rcm

α is

the α-th component of the cluster center of mass. Then the singular–value decomposition of

inertia tensor I is performed as

I = USVT , (4.19)

where U is the unitary matrix, VT is the conjugate transpose of the unitary matrix V, and S

is the diagonal matrix of principal axes of inertia ellipsoid with components

Sαα = d2
α, α = 1, 2, 3. (4.20)

Then the squares of principal radii of gyration R2
α, for α = 1, 2, 3, are calculated as

R2
α =

1

3

(

d2
β + d2

γ

)

, α 6= β 6= γ, (4.21)

and the radius of gyration is calculated as [21]

Rg =

√

1

2

(

R2
1 + R2

2 + R2
3

)

. (4.22)
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Figure 4.7: The fractal dimension Df

from the LD with effective potential ULD
eff

under shear flow with Pe = 2.1 at time

t̂ = 113.

Figure 4.8: Snapshots for typical aggregate for

ε̂ = 50.0 at time t̂ = 113 for aggregate contain-

ing 7144 monomers with the radius of gyration

Rg = 15 σ.

Therefore, Eq. 4.22 should be used when calculating the radius of gyration Rg for aggregates

in the sheared aggregating systems.

The fractal dimension parameter Df has two distinct values with inflection point Rin
g

(Figure 4.7) similarly to previously observed behavior (Figure 4.5). However, application of the

shear flow induces significant changes into aggregates structure (Figure 4.8) when comparing

with non–shear case (Figure 4.6b). Application of the shear flow increases the fractal dimension

for the local length scale from Df ≈ 2.4 to Df ≈ 3.0 which corresponds to the formation of

more compact structure in smaller aggregates. On the other hand, the fractal dimension for

the larger length scale decreases from Df ≈ 1.5 (Figure 4.5) to Df ≈ 1.1 (Figure 4.7) that can

be explained by formation of cigar–like shapes of aggregates instead of globular–like shapes

that increase the radius of gyration Rg (Figure 4.8). Thus, application of moderate shear

flow into aggregation system causes the compacting effect at the local length scale and spatial

rearrangement of aggregates by forming cigar–like shapes at the global length scale. Moreover,

in systems with uniform shear flow, the inflection point value Rin
g is found to be different

for different interparticle potential well–depths ε̂ (Figure 4.7), that results in different local
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length scales of aggregates for different ε̂. This effect may be explained by the fact that the

maximum size of aggregates in the direction perpendicular to the shear flow is controlled by the

strength of shear flow (controlled by Pèclet number) and by the strength of the interparticle

force (controlled by the dimensionless potential well–depth ε̂). Therefore, the relation between

these two forces will determine the maximum size of aggregates in the direction perpendicular

to the shear flow Rmax
g .

It is possible to conclude that as shear flow is applied to the aggregating system its struc-

ture on local and global length scale significantly changes. Those changes are observed through

changes in such metric as fractal dimension Df and visually when ramified structure of aggre-

gates changes to cigar–like structure on a global length scale. However, even fractal dimension

Df allows to determine aggregate structure changes due to shear it can not determine the

changes in local structure of a single aggregate since Df is extracted only from the set of

different sizes of aggregates. At this point the global structure of aggregates is characterized

with fractal dimension Df . Now, we would like to introduce metric that characterize the local

structure of individual aggregates.

4.5.3 Characterization of Local Structure

Some studies predict that the shear flow may compact the local structure of the aggregates

and so called “compactness effect” can be observed [12]. On the other hand if shear flow is

strong the aggregates with less dense local structure are formed. To investigate the isotropy of

aggregates and their interparticle local distribution the dimensionless local volumetric potential

energy density (LPED) Û/V̂cl is calculated for each aggregate as

Û

V̂cl

=
U

Vcl

σ3

ε
=

∣

∣

∣

∣

∣

∣

1

kVcl

k
∑

i=1

k
∑

j>i

σ3

ε
ULJ(rij)

∣

∣

∣

∣

∣

∣

, (4.23)

where σ is the solute particle diameter, ε̂ is the potential well–depth, k is the number of

monomer particles in cluster (does not include particles that lay on the surface of cluster)

to exclude size effect, Vcl = kVm is the volume of all the bulk particles in a cluster, Vm is

the volume of a single particle, ULJ(rij) is the Lennard–Jones interaction potential between
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particles i and j defined in Eq. 4.3, and rij is the separation distance between solute particles

i and j. The dimensionless LPED determines the potential energy in the system per unit

volume and it describes compactness of the aggregate structure. Compactness of aggregate

structures can be characterized by the average number of nearest neighbors in the aggregate.

Thus, for highly packed structure, when the number of nearest neighbors is higher the LPED

is higher than for a porous structure. However, the LPED is very sensitive to the presence of

structural anisotropy in aggregate structure (since anisotropy can limit the number of neighbors

in some direction). Therefore, the dimensionless LPED parameter Û/V̂cl should be represented

together with anisotropy parameter Aαβ .

The anisotropy parameter is calculated after determining the equivalent inertia ellipsoid

with principle axes for each cluster according with Eq. 4.18-Eq. 4.20, and is defined as

Aαβ =
dα

dβ
, (4.24)

where the principle axes are rearranged as d1 > d2 > d3. With such specification the anisotropy

factor value Aαβ is always greater than one while α < β. This specification of an anisotropy is

different to those proposed in literature [21] where the mean shape anisotropy for the ensemble

of cluster 〈Aαβ〉 is calculated. However, the mean shape anisotropy parameter does not fit the

needs of present work where anisotropy for every cluster in the system should be defined.

For isotropic aggregating systems the LPED as a function of the anisotropy factor Aαβ

is calculated first as shown on Figure 4.9. On these plots each point corresponds to a single

cluster and only clusters with k > 100 are shown. For both isotropic aggregating system with

ε̂ = 8 and ε̂ = 50, a similar pattern is observed for all anisotropy factors Aαβ . This result

supports that observed systems do not have preferential direction and validates statistically

isotropic assumption for non-sheared aggregating systems. However, even for isotropic systems

the maximum magnitude of anisotropy factors is as large as 5. Also, we can observe that the

smaller clusters with 100 < k < 400 are characterized by lower local volumetric potential energy

density (Figure 4.9), which is caused by poor statistics for small aggregates when calculating

the potential energy due to LJ interaction potential, since the number of particles at aggregate

surface is relatively large to the total number of particles in aggregate. Thus, by excluding the
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(b) results for ε̂ = 50.0
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(c) results for ε̂ = 8.0

A13

U
(r

)/
V

cl

0 5 10
8

9

10

11

12

13

14

Νcl
1400
1200
1000
800
600
400
200

∧
∧

(d) results for ε̂ = 50.0
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(e) results for ε̂ = 8.0
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(f) results for ε̂ = 50.0

Figure 4.9: For aggregation without shear the dimensionless local volumetric potential energy

density Û(r)/V̂cl in ε/σ3 units as a function of the anisotropy Aij, where i, j = 1, . . . , 3 for

ε̂ = 8.0 and ε̂ = 50.0. Color legend represents the number of monomers in each cluster.
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region with smaller aggregates the variation in the local volumetric potential energy density is

within 10%.

Based on these results we conclude that the formation of clusters with branch–like structure

through the coalescence of smaller aggregates explains the decrease of the fractal dimension

Df . Moreover, the local structure (at small length scale < Rin
g ) of the large aggregates is

very different to their global structure (at large length scale) as seen on Figure 4.6b. From

anisotropy analysis the anisotropy factors Aαβ are found to be identical with no preferential

direction that supports isotropy assumption. For non-sheared systems the average value for

the local volumetric potential energy density 〈Û/V̂cl〉 = 10.8 is similar for systems with the

interaction potential well–depth ε̂ = 8 and ε̂ = 50.

By applying shear flow with Pe = 2.1 to aggregating systems with different potential well–

depths ε̂ the figure of dimensionless LPED as a function of the anisotropy factors Aαβ is

generated as shown on Figure 4.10. On this figure only clusters with k > 100. By comparing

these data for systems with a uniform shear flow with non-shear case (Figure 4.9) several

important features can be distinguished. A significant asymmetry in anisotropy factors A12

and A13 is observed for all systems with different potential well–depths (Figure 4.10a,b,c,d)

which is explained by application of the shear flow along x direction (which corresponds to

α = 1 in Aαβ). At the same time the magnitude for the anisotropy factor A23 is in the

same range as for non-sheared systems (Figure 4.9e,f and Figure 4.10e,f). Application of the

moderate shear flow to the aggregate system significantly changes the magnitude of anisotropy

factors along shear flow direction (A12 and A13) from 5 for non-sheared systems to up to 40 for

ε̂ = 8 and up to 10 for ε̂ = 50. It is possible to conclude that shear flow introduces anisotropy

into the aggregating system by changing a globular aggregate structure to cigar–like structure.

Moreover, this “stretching” of aggregates due to shear flow changes their local structure

which is perfectly detected by the dimensionless LPED. For systems with weaker interparticle

interaction (ε̂=8) the shear force with Pe = 2.1 is strong enough to significantly separate par-

ticle pairs inside of aggregate and as result the average number of nearest neighbors decreases

(aggregates become less compact). As result the dimensionless LPED decreases to 9.2 from
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(b) results for ε̂ = 50.0
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(c) results for ε̂ = 8.0
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(d) results for ε̂ = 50.0
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(e) results for ε̂ = 8.0
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(f) results for ε̂ = 50.0

Figure 4.10: Local volumetric potential energy density Û(r)/V̂cl in ε/σ3 units as a function

of the anisotropy Aij, where i, j = 1, . . . , 3 for sheared abbregating systems with Pe = 2.1.

The color legend represents the number of monomers in each cluster. Dashed line represents

average LPED value for non-sheared case.
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10.8 for non-sheared systems as can be seen on Figure 4.10a,c,e. When interparticle interaction

is stronger (ε̂ = 50), the same shear flow with Pe = 2.1 is not able to stretch pair of particles

inside of aggregate to the same extent as in the case of ε̂ = 8. However, some displacements

of particles due to shear force occur that initiates their local rearrangement. This local re-

arrangement allows particles to occupy more energy stable locations than they could have due

to aggregation process with no shear. As result of these local rearrangements more compact

structures are formed that is supported by increasing value of the average dimensional LPED

to 12.1.

From these results it is possible to conclude that the presenting of shear flow in aggregation

systems may change local structure of aggregates in several ways. When the force due to shear

flow between pair of particles is significant by comparing with the force due to interparticle

potential interaction the aggregates with cigar–like structures are formed. These cigars are

very long along the shear flow direction with less compact local structure (when comparing

with non-sheared aggregates). In the cases where force due to shear flow is relatively small in

comparison with force due to interparticle potential interaction we still observe aggregates with

cigar–like structures. However, in this case “cigars” are shorter. Moreover, shear flow reduces

stresses in aggregates due to local rearrangement of particles and as result more compact local

structures of aggregates are formed. With this analysis we can extract the length to width

ratio for aggregates, however, to complete characterization of the aggregating structure the

method for prediction of the maximum size of aggregates Rmax
g in the direction perpendicular

to the shear flow needs to be introduced.

4.6 Prediction of Maximum Size of Aggregates Under Shear

Competition between interparticle attraction and shear is presented in sheared aggregation

systems. On one side present attraction forces between particles due to interparticle interaction

(represented by ε̂ in the present study) are driving forces for the aggregation process. On the

other side shear flow introduces the forces between particles and its intensity corresponds to

Péclet number Pe. The relative magnitude of these forces will determine the maximum size of
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aggregates in the direction perpendicular to the shear flow.

In this section the algorithm to determine maximum size of aggregates Rmax
g is proposed

based on the idea of a relative acceleration between pair of particles calculations reported

in previous work [13]. First, let us consider an aggregate and choose a pair of particles i

and j in this aggregate with condition that i-th particle is located at the center of mass of

the aggregate. These particles are separated by distance r(i),(j) = r(i) − r(j) and have relative

velocity w = v(i)−v(j). The relative acceleration between these particles ∆A(i),(j) then can be

calculated as a sum of the relative acceleration between particles due to interparticle potential

interaction ∆A
(i),(j)
pot and the relative acceleration between particles due to shear flow ∆A

(i),(j)
sh

as

(∆A(i),(j)|R = r(i),(j),W = w) = (∆A
(i),(j)
pot |R = r(i),(j)) + (∆A

(i),(j)
sh |R = r(i),(j),W = w).(4.25)

To improve statistics the calculations for all the jth particles in the cluster and for all the

clusters is performed and the average relative acceleration is obtained

〈∆A(i),(j)|R = r(i),(j),W = w〉 = 〈∆A
(i),(j)
pot |R = r(i),(j)〉 + 〈∆A

(i),(j)
sh |R = r(i),(j),W = w〉.(4.26)

Negative value for the mean relative acceleration corresponds to the particles acceleration

toward each other when positive value corresponds to the particle acceleration away from each

other.

The relative acceleration between a pair of particles due to potential interaction is calculated

by computing the force on each particle due to all other particles in the aggregate and by taking

the difference of these forces

〈∆A
(i),(j)
pot |R = r(i),(j)〉 =

1

m(i),(j)
〈∆F

(i),(j)
pot |R = r(i),(j)〉 = (4.27)

1

M

M
∑

n





k
∑

i6=j,j=1

1

m(i),(j)

[

−∇
r
(i),(j)ULD(|r(i),(j)|)

]

−
k
∑

j 6=i,i=1

1

m(i),(j)

[

−∇
r
(i),(j)ULD(|r(i),(j)|)

]



 ,

where m(i),(j) = (m(i) + m(j))/2 is the mean mass of particles i and j, k is the number of

monomer particles in the cluster, M is the number of clusters in the system at time t, and

ULD is the interparticle potential calculated from Eq. 4.3.
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The relative acceleration between a pair of particles due to shear and relative velocity

between those particles is calculated based on the following observations. A pair of particles

is characterized by the relative fluctuation velocity w′
α that is calculated as

w′
α = wα − ∆〈uα〉(i),(j)δ1α, α = 1, 2, 3 (4.28)

where wα is the relative instantaneous velocity, and ∆〈uα〉(i),(j)δ1α is the relative mean velocity

due to shear flow. When shear flow is applied to the colloidal system the particles in the system

attain a velocity of shear flow in a very short time ( t̂ = O(1/γ̂), where γ̂ is the dimensionless

friction coefficient defined in Eq. 4.2). Therefore, a final relative acceleration is calculated

as the difference of the relative acceleration due to instantaneous velocities and the relative

acceleration due to fluctuation velocity as

〈∆A
(i),(j)
sh α |Rα = r(i),(j)

α ,Wα = wα〉 =
1

M

M
∑

n

γ
[

GRβδ2β − w′
α

]

δ1α, (4.29)

where GRβδ2β is the relative instantaneous velocity, and M is the number of clusters in the

system at time t. By substituting calculated results from Eq. 4.27 and Eq. 4.29 into Eq. 4.26 the

distribution of the average relative acceleration between pair of particles separated by r(i),(j) is

created as shown on Figure 4.11. On these plots, the average relative acceleration is calculated

along the line connecting a center of particles pair, such that 〈∆Ar〉 = 〈∆A〉r/|r|. From these

figures the maximum size of aggregates in the direction perpendicular to the direction of the

shear flow can be found as the separation after which the average relative acceleration is always

greater than zero that can be represented mathematically as

Rmax
g {r : ∆Ar > 0 ∀ r > r∗}. (4.30)

This definition is valid even for the cases when some oscillations of the average relative

acceleration are observes (Figure 4.11b) since they are related to the local aggregate structure.

This method has been applied to different aggregating systems with shear flow, and results of

analysis are represented in Table 4.4. In this table Rmax
g num is the maximum size of aggregates in

σ units calculated from simulation snapshot at time t, Rmax
g an is the maximum size of aggregates

in σ units calculated by using proposed algorithm. We note there is a relatively small difference
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Figure 4.11: Sum of the relative accelerations due to potential interaction and the relative

acceleration due to shear at time t̂ = 113: a) system with ε̂ = 8.0; b) system with ε̂ = 50.0.

Arrays show prediction of the maximum size of aggregates Rmax
g .

between calculated and predicted data (less than 10% for most of the systems). This allows us

conclude that proposed algorithm can be used for a reasonable prediction of aggregates sizes

in the direction perpendicular to the shear flow.

Table 4.4: Maximum size of aggregates calculation.

Pe ε̂ Rmax
g num Rmax

g an % difference

0.5 8 2.88 3.09 6.8

1.0 8 1.94 2.33 16.7

2.1 8 1.46 1.43 2.1

4.0 8 1.37 1.44 4.9

2.1 50 2.87 3.06 6.2

These results support the reasonable scientific prediction that when intensity of shear flow

increases (while interparticle interaction potential remains the same) the size of aggregates

decreases, and for a critical shear flow aggregation may not occur at all. By increasing the



121

potential well depth (while shear flow intensity remain unchanged) aggregates of larger sizes

are formed.

With the proposed method the influence of the shear flow onto aggregate structure can

be characterized quantitatively by using the relative acceleration approach and based on the

competition of the forces due to potential interaction and shear flow.

The proposed method for analytical prediction of the maximum size of aggregates Rmax
g in

shear flow is based on the consideration of only two forces between pair of particles: attraction

force due to interparticle interaction, and repulsion force due to shear. The fact that consider-

ation of only these two forces gives good prediction for Rmax
g suggests that the concurrency of

these two forces is controlling the aggregation outcome. However, this point will be discussed

with more details in the next section.

After analyzing LPED and anisotropy factor the sheared aggregating systems are com-

pletely described through the set of dimensionless parameters and through the introduced

metrics such as fractal dimension Df , radius of gyration Rg, local volumetric potential energy

density LPED, and anisotropy parameter Aαα. With all of these characteristics in hand it

would be beneficial to construct an aggregation map with clear identification of aggregation

outcomes based on input parameters such as Pèclet number and dimensionless potential well–

depth ε̂. In the next section development of such an regime map for aggregation is discussed.

4.7 A Regime Map for Aggregation Under Sheared

As described in Section 4.6 by introducing shear flow into aggregating system we are not

only introducing the new time scale 1/G, but also an additional shear force that occurs between

a pair of particles. When shear flow is applied to the aggregating system particles quickly attain

flow velocity (∼ 1/γ). Because of the presence of the velocity gradient in a shear flow a pair

of particles at different locations along the velocity gradient will attain different velocities.

This difference in velocity for a pair of particles is a source of an additional force due to shear

flow that tends to tear apart particles. Now, aggregation outcome does not solely depend on

the magnitude of pair–interaction force that arises from interaction potential, but instead it
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depends on relation of magnitudes of the pair–interaction force and the shear force. Based on

reasoning proposed above it is useful to introduce such characteristics as the relative force fi,sh

that is determined as

fpot,sh =
|Fpot(rmin)|max

Fsh(rmin)
, (4.31)

where |Fpot(rmin)|max is the maximum absolute interparticle force between pair of particles

separated by rmin, calculated as

|Fpot(rmin)|max =

∣

∣

∣

∣

∣

24
ε

σ

[

2

(

σ

rmin

)13

−
(

σ

rmin

)7
]∣

∣

∣

∣

∣

, (4.32)

where rmin is the pair separation that satisfies the maximum attraction force between pair of

particles. Fsh(rmin) is the force due to shear between a pair of particles separated by rmin,

calculated as

Fsh(rmin) = mγGrmin = mγ4PeD∞
rmin

σ2
. (4.33)

By substituting Eq. 4.32 and Eq. 4.33 into Eq. 4.31 and representing values in dimensionless

form we will get

fpot,sh =
6ε̂

P e

∣

∣

∣

∣

∣

[

2

(

σ

rmin

)14

−
(

σ

rmin

)8
]∣

∣

∣

∣

∣

, (4.34)

where dimensionless units are computed as ε̂ = ε/kBTref , γ̂ = γσ/σv∞ , D̂∞ = D∞/σσv∞ ,

σ2
v∞ = kBT/m, and by taking into account the fact that γ̂D̂∞ = 1.

By analyzing Eq. 4.31 and Eq. 4.34 it is possible to conclude that when fpot,sh < 1 the shear

force is stronger than an iterparticle interaction force and in such a system the breakage of

aggregates to monomers is expected. When fpot,sh > 1 formation of aggregates in a system is

expected (this can be achieved by increasing dimensionless potential well depth ε̂ or decreasing

shear flow intensity Pe as can be seen from Eq. 4.34). It should be noted that the relative

force is defined based on particle–particle interaction force which may not be an appropriate

one when cluster–cluster aggregation occur, however this should not disturb the aggregation

map but only may change the magnitude of the relative force fpot,sh.

By performing improved LD numerical simulations of the aggregation in the presence of

shear flow of different Pèclet numbers Pe and with different potential well–depth ε̂ such metric
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as the relative force fpot,sh is calculated and an aggregation map is constructed as shown on

Figure 4.12.

Table 4.5: (df , Rmax
g , LPED) Values as a function of Pèclet number Pe and potential well–

depth ε̂.

ε̂ Pe

2.1 8.0

8 1.08 1.5 9.2 0 0.5 NA

50 1.08 2.9 12.1 1.13 2.0 10.0

This map represents the relative force fpot,sh as a function of the dimensionless interparticle

potential well–depth ε̂, and Pèclet number Pe. On this map a color legend represents different

values for the relative force fpot,sh. Based on the value of the relative force fpot,sh three different

regions are identified: (a) no aggregation; (b) aggregaion with less dense local structure (when

compare with non–sheared system); (c) aggregation with compact local structure. The dashed

line represents the border between regions where aggregates do not form fpot,sh < 1 and the

region where formation of aggregates is observed fpot,sh > 1. Dotted line separates regions when

aggregates with less dense and compact local structure are formed. To validate the choice for

these regions such metrics as the fractal dimension df , the maximum size of aggregates in

the direction perpendicular to the shear flow Rmax
g , and the local volumetric potential energy

density LPED are calculated for systems at different regions and results are represented in

Table 4.5. Thus, for aggregating non dense region two systems with significantly different

initial conditions with (ε̂;Pe)=(8;2.1) and (50;8.0) are selected. Since these two systems are

in the same region on aggregating map their metrics should be of similar values even their

initial conditions are significantly different which is perfectly satisfied as shown in Table 4.5

and on Figure 4.12. An as it was predicted the LPED value for both systems is lesser than

for non–sheared aggregating system (LPED=10.8). System which initial conditions predict

formation of more compact aggregates with (ε̂;Pe)=(50;2.1) is characterized with LPED=12.1,

and system where no aggregation is predicted is fully supported by values of proposed metrics.

Thus, a proposed aggregation map (represented on Figure 4.12) is able to predict different



124

ε

P
e

10 20 30 40 50
0

2

4

6

8

10

fi,sh
5
4
3
2
1
0

∧

Aggregation

Compact

(df,Rg
max,LPED)

(1.08,1.5,9.2)

(0,0.5,-)

(1.08,2.9,12.1)

(1.13,2.0,10.0)

Figure 4.12: Relative forcefpot,sh as a function of the dimensionless interparticle potential

well–depth ε̂, and Pèclet number Pe. The dashed line represents the boundary between non–

aggregating and aggregating systems, and dotted line identifies region when a compactness of

the local structure is observed. Values in brackets for selected systems represent Df , Rmax
g ,

and LPED correspondently.
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outcomes for different aggregating regimes for sheared aggregating system that are confirmed

with the metrics calculated for some of the systems (Table 4.5).

Based on analysis of metrics for sheared aggregating systems it is possible to conclude that

such characteristic as a relative force fpot,sh is an adequate characteristics that is very useful

for predicting an aggregation outcome.

4.8 Discussion

In this section we would like to summarize all of the processes that are taking place when

shear flow is applied to the aggregating systems. At the beginning, when shear flow is applied

to the aggregating system all the particles in aggregates attain the flow velocity in a very short

time that is order of dissipation time scale ∼ 1/γ. During this period the magnitude of the

fluctuating particle velocity increases significantly because the kinetic energy of mean velocity

transfers to the kinetic energy of fluctuating particle velocity. Then fluctuating kinetic energy

dissipates to some smaller steady value. This rapid rise in fluctuating kinetic energy causes

aggregates restructure that causes different structure outcomes depending on the system’s

parameters. We have determined that aggregates structure outcome depends not only on the

shear intensity Pe but also on the magnitude of the interparticle force represented by the

potential well–depth ε̂. Therefore the sheared aggregation outcome depends on the ratio of the

interparticle force to the shear force, represented by fpot,sh. When shear intensity is dominant

(fpot,sh < 1) then energy that is transferred from kinetic energy of mean velocity into fluctuating

kinetic energy overcomes the interparticle interaction energy and aggregates break down to the

monomer–size aggregates, thus aggregate breakage is observed. When shear intensity is such

that shear force is of the same order of magnitude as the interparticle force and fpot,sh > 1

then aggregates which size is larger than the maximum allowable size of aggregate Rmax
g will

break to smaller ones that will satisfy Rg < Rmax
g . At the same time the local structure of

these aggregates is getting less compact since the shear is not able to break aggregates to

the monomer–size it still large enough to increase the average neighbor distance Rnn. And

finally, when shear intensity is weak relative to potential interaction (fpot,sh � 1) then all the
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aggregates with sizes Rg > Rmax
g will break to smaller clusters to satisfy Rg < Rmax

g and the

local structure of these aggregates is getting more compact. More compact structure is formed

because shear reduces internal stress within aggregates and particles in aggregates are able to

occupy more energetically preferable positions.

Our results determine that application of shear flow also changes the global structure of

aggregates by formation of cigar–like aggregates for fpot,sh < 1. In this case the reduction in

the fractal dimension df (which characterize the global structure of aggregate) is observed. Our

findings are consistent with experimental results for the moderate shear flow [11]. Although,

these authors are also reporting that the fractal dimension of aggregates increases when high

intensity shear flow is applied. However, this phenomena is observed for systems where very

large aggregates are able to form with sizes Rg > 50σ. We could not observe this phenomena

with our model systems because we could not achieve this size of aggregates in a reasonable

computation time and suitable number of particles for 3D system. On the other hand 2D

simulations of the sheared aggregating system may be useful that will allow to reach the size

when compactness effect for the global structure may be observed.

4.9 Conclusions

We have performed numerical simulation of sheared colloidal particles aggregation in model

systems by using Langevin dynamics model with improved interparticle interaction potential.

For these systems the set of dimensionless parameters that is able to distinguish scale–separated

and scale–overlap regimes was determined. However, this set of dimensionless parameters is

not the best for representation of aggregation outcomes and other metrics are used for this

purpose. To understand the aggregates restructuring process due to shear flow we propose the

method of the energy evolution analysis as such that allows to capture redistribution of the flow

energy into the fluctuating energy which is the source of the aggregates restructuring. With

this energy analysis we are able to gain a fundamental understanding of restructure and/or

breakage processes that caused by imposed shear flow. The effect of shear flow onto the local

and global structure of aggregates is studied with the local volumetric potential energy density
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LPED and the maximum radius of gyration Rmax
g correspondently. It is observed that shear

flow dramatically change the structure of aggregates on both local and global length scales.

On the local length scale shear flow cases the formation of more or less compact structures

depending on the shear flow intensity characterized by Pèclet number Pe. On the global length

scale the size of aggregates in the direction perpendicular to the shear flow is limited by Rmax
g

and its value depends on the Pe as well. We proposed a new method for Rmax
g prediction

that yields results consistent with those obtained from the direct size distribution calculations.

With full analysis of the sheared aggregating systems we propose the aggregating map based

on new metric fpot,sh which is the ratio of interparticle force to the shear force. This map

allows to determine different aggregating outcomes based on the initial parameters of the

sheared aggregating systems such as interparticle force and shear flow rate. This map can be

used when planning new aggregating experiments or when comparing outcomes from several

different aggregating systems.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Summary and conclusions

A mesoscale simulation method using Langevin dynamics (LD) method with an improved

potential of mean force that is capable of accurately capture aggregation simulation from dif-

fusion limited to reaction limited regimes is successfully used to accurately predict aggregation

outcomes for colloidal systems with and without shear. Based on these simulations, maps of ag-

gregating regime in sheared and non–sheared systems have been developed for Lennard–Jones

(LJ) dilute systems. The principal findings of this study are:

1. A novel coarse–graining approach of deriving an effective potential for LD simulations

is proposed. This effective potential takes into account both direct interaction between

solute particles (Lennard-Jones potential) and also interaction between solute particles

initiated by presence of solvent molecules. In aggregating systems if unmodified LJ

potential is used as the potential of mean force, then the aggregation structure predicted

by LD does not match with that observed in MD for equisize systems in the reaction

limited regime. Applying of this effective potential into LD model significantly improve

aggregate structure. As result a good matching is obtained for MD and improved LD

simulations from diffusion limited to reaction limited regimes.

2. Application of the principle of statistical/stochastic equivalence is proposed to match ag-

gregation statistics obtained from MD and LD simulations. In this method the evolution

of the second-order density for MD model is derived. The average relative acceleration

between nanoparticle pairs is identified as an important link between MD and mesoscale

models such as LD in both DLA and RLA regimes.



132

3. Aggregation outcomes are represented on regime maps for sheared and non–sheared sys-

tems. These maps identify the relevant dimensionless parameters that determine ag-

gregation for dilute system. For non–sheared case these are potential well–depth ε̂ that

controls aggregation outcome, and dimensionless diffusion D̂∞ that only controls the rate

at which this outcome is reached. For sheared case these are potential well–depth ε̂ and

dimensionless shear flow Pe. The aggregation outcome is characterized with the extent

of aggregation ξ for non–sheared systems and by the ratio of interparticle force to the

force due to shear fi,sh for sheared case.

4. The extent of aggregation ξ, cluster size distribution (CSD), radial distribution function

g(r), the average relative acceleration between pair of particles, the local volumetric

potential energy density (LPED), and the maximum size of aggregates in the presence

of shear flow Rmax
g are important statistics that are useful in analyzing and classifying

the structure of aggregates for sheared and non–sheared aggregating systems.

5.2 Secondary findings

1. Molecular dynamics approach is not feasible to simulate an aggregation of colloidal

nanoparticles for systems of physical sizes using existing computational algorithms and

resources due to presence of very large number of solvent particles in such systems.

2. The condition that allows for simplification of LD position and velocity–Langevin equa-

tions to BD position-Langevin namely, that relaxation timescales be much smaller than

configuration relaxation time scales is met by the physical system considered in the

present work when shear is not applied, but is not justified for the model system. How-

ever, when shear flow is applied this reduction to position–Langevin may be not allowed

even for physical systems, since shear flow introduces an additional time scale into the

aggregating system.

3. To satisfy accuracy requirements when simulating aggregation processes, a significant

number of multiple independent simulations (MIS) is needed. The reason for this is that
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the aggregation process is evolving in time and it is impossible to improve statistics by

performing time averaging as can be done for equilibrium systems. Therefore, accurate

simulation of the aggregation process is computationally demanding.

4. Light scattering analysis (LSA) is a powerful tool for analyzing the aggregate structure

from experiment. It allows us to extract such aggregation characteristics as the fractal

dimension Df for a range of aggregate length scales. The same analysis can be applied

to simulation data, thereby enabling a direct comparison of experiments and computer

simulation. The application of this tool is limited by requirements of a large dynamic

range for precise measurements of Df . This leads to requirements of large cluster sizes

and small nanoparticles volume fraction (in order to shift the ideal gel point radius of

gyration). Thus, meaningful comparison of LSA applied to computer system requires a

significant speed up of LD simulations.

In summary, new method of deriving an effective potential for LD mesoscale simulations

is proposed. With this improved potential, both aggregate structure (described by the radial

distribution function g(r) and cluster size distribution) and force field (relative acceleration) are

accurately captured. In addition, detailed characterization of aggregation outcome is performed

for colloidal systems with and without shear.

5.3 Future work

Recently, a simulation of protein molecules in solvent is of a great interest for the biolog-

ical applications. Typical proteins are the linear polymers build from series of amino acids

characterized by different physical and chemical properties. Simulation of such complicated

structures in solvent bath is a very hard problem. Applicability of microscale methods (such

as MD) or its modification such as accelerated MD for solving this problem is very limited,

due to very large number of solvent molecules presented in the system. From this perspective

mesoscale methods (such as BD/LD) with an effective potential that would account for the

effect of solvent molecules could be more appropriate to solve this kind of problems.
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Before applying mesoscale methods to solve for protein problems it is important to develop

a general approach for aggregating phenomenon. For this we need to answer the following

questions: (a) How aggregating outcome depends on the solute–solvent interaction (systems

with solvophobic/solvophilic particles)? (b) When introducing solute/solvent size separation

how aggregating outcome would change? (c) How aggregating map will change for the different

interparticle potentials? With mesoscale BD/LD method we would be able to answer to

all these questions: questions (a) and (b) can be answered through deriving correspondent

effective potential using methodology described in this dissertation; to get answer for question

(c) different interparticle potentials can be easily implemented into the BD/LD approach.

In current work the hydrodynamic interactions (HI) are neglected because particle size

is very small. However, when size–separated systems are considered the HI effect might be

significant and effect of HI should be included in LD model. Implementation of effective

algorithm for HI into mesoscale LD method is one of the important step that needs to be done

for accurate representation of large particle aggregating phenomenon in liquid bath.

Some additional thoughts about sheared aggregating process are needed such as when

shear flow is introduced to the aggregating system we observe formation of long cigar–like

aggregates that are aligned along the shear flow direction. However, other studies observe

rotation of aggregates when shear flow is applied. This point must be clarified by increasing

simulation box size and increasing observation time. It is possible that tumbling of aggregates

can not occur when aggregates length is comparable with the simulation box size. And longer

simulation time would allow to observe aggregating process far from initial unsteady point.

The effect of aggregates structure on their diffusion coefficient needs some further inves-

tigation. It is possible to predict the diffusion coefficient for spherical aggregates of different

sizes, however the diffusion coefficient for the fractal aggregates with ramified structure is un-

known. Further study should be done to understand dependence of the diffusion coefficient on

the fractal dimension of aggregates df and on the aggregate radius of gyration Rg.

The numerical accuracy of mesoscale approaches may be improved by implementing more

accurate numerical integration of stochastic differential equations (SDE). Currently explicit
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Euler method is used, however, implementation of higher stochastic integration schemes such

as Milstein scheme, implicit Euler and Milstein schemes, balanced methods etc. would be

beneficial.
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APPENDIX A. BUCKINGHAM PI ANALYSIS

Buckingham Pi Theory relies on the identification of variables involved in a process. Several

steps shoul be procedeed to perform a nondimensional analysis.

1. List all the variables that govern the process.

In our case we have: potential well depth ε, nanoparticle diameter σ, nanoparticle po-

sition r, nanoparticle velocity v, nanoparticle mass m, nanoparticle diffusion coefficient

D∞, kBTref where kB is Boltzmann constant, reference temperature Tref , time t, and

particle number density λ. Thus all together there are n = 9 variables.

2. Between all variables in the system mark a few of them as “Repeating Variables”. This

step is most difficult in a dimensional analysis.

In our case these are: σ, m, kBTref and k = 3

3. Define how many non-dimensional numbers is in system. In this case it is n − k = 6.

Our problem has four non-dimensional numbers: Π1, Π2, Π3, Π4, Π5, and Π6.

4. Define the non-dimensional numbers by grouping the variables into n−k groups. So each

group has all the repeating variables and one non-repeating variable. For our problem

we have:
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Π1 = Π1(σ,m, kBTref , ε) (A.1)

Π2 = Π2(σ,m, kBTref ,D∞) (A.2)

Π3 = Π3(σ,m, kBTref , t) (A.3)

Π4 = Π4(σ,m, kBTref , λ) (A.4)

Π5 = Π5(σ,m, kBTref , r) (A.5)

Π6 = Π6(σ,m, kBTref ,v) (A.6)

Let

Π1 = σamb(kBTref )cε (A.7)

Π2 = σdme(kBTref )fD∞ (A.8)

Π3 = σgmh(kBTref )it (A.9)

Π4 = σjmk(kBTref )lλ (A.10)

Π5 = σmmn(kBTref )or (A.11)

Π6 = σpmq(kBTref )rv (A.12)

5. Express each variable in terms of its dimensions.

Variable ε σ r v m D∞ kBTref t λ

Dimension ML2/T 2 L L L/T M L2/T ML2/T 2 T 1/L3
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Substituting these dimensions into Π1−6 at the previous step:

Π1 = (L)a(M)b(ML2/T 2)c(ML2/T 2) (A.13)

Π2 = (L)d(M)e(ML2/T 2)f (L2/T ) (A.14)

Π3 = (L)g(M)h(ML2/T 2)i(T ) (A.15)

Π4 = (L)j(M)k(ML2/T 2)l(1/L3) (A.16)

Π5 = (L)m(M)n(ML2/T 2)o(L) (A.17)

Π6 = (L)p(M)q(ML2/T 2)r(L/T ) (A.18)

or

a + 2c + 2 = 0; b + c + 1 = 0; −2c − 2 = 0

d + 2f + 2 = 0; e + f = 0; −2f − 1 = 0

g + 2i = 0; h + i = 0; −2i + 1 = 0

j + 2l − 3 = 0; k + l = 0; −2l = 0

m + 2o + 1 = 0; n + o = 0; −2o = 0

p + 2r + 1 = 0; q + r = 0; −2r − 1 = 0

Solving these equations yields,

a = 0; b = 0; c = −1

d = −1; e = 1/2; f = −1/2

g = −1; h = −1/2; i = 1/2

j = 3; k = 0; l = 0

m = −1; n = 0; o = 0

p = 0; q = 0.5; r = −0.5
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Non-dimensional numbers become:

ε̂ =
ε

kBTref
(A.19)

D̂∞ =
D∞

σ

√

m

kBTref
(A.20)

t̂ =
t

σ

√

kBTref

m
(A.21)

λ̂ = λσ3 (A.22)

r̂ =
r

σ
(A.23)

v̂ = v

√

m

kBTref
(A.24)

By introducing the velocity variance σ2
v∞ = kBTref/m these equations reduce to

ε̂ =
ε

kBTref
(A.25)

D̂∞ =
D∞

σσv∞

(A.26)

t̂ = t
σ

σv∞

(A.27)

λ̂ = λσ3 (A.28)

r̂ =
r

σ
(A.29)

v̂ =
v

σv∞

(A.30)

It is clear that there are only three parameters that characterise the system (except position,

velocity, and time), such as scaled particle number density λ̂ (a particle volume fraction α can

be used instead), a scaled nanoparticle diffusion coefficient D̂∞, and a scaled potential well

depth ε̂.
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APPENDIX B. RELATIVE ACCELERATION CALCULATION

The average relative acceleration between two particles conditional on their separation

r is decomposed into direct and indirect contributions (cf. Eq. 3.13). Assuming pairwise

interactions, an expression for the average indirect relative acceleration is derived in terms of

three-particle statistics. An approximation for dilute systems is used to derive a closed–form

expression for the indirect relative acceleration conditional on pair separation as a function

of two-particle statistics (pair correlation function) and the pair potential. Simple 1-D and

2-D test systems are constructed to compare and verify numerical simulation results with this

closed–form analytical expression. The results show an excellent match between the numerical

simulation and the analytical expression, thereby verifying our numerical simulation. The

tests give insight into the nature of the indirect relative acceleration, and also draw attention

to special numerical accuracy requirements for calculating the same.

We first consider a system of identical particles experiencing pairwise additive interactions

through an isotropic pair potential U(r) . The direct relative acceleration between particles

(1) and (2) (see Figure 3.3), each with mass m and separated by r = |r|, is simply

〈∆AD|r〉 =
2F(2)(1)

m
= − 2

m
∇U(r).

Here we drop the time dependence in the relative acceleration expressions for simplicity. We

seek to derive a similar expression for the indirect relative acceleration between particles (1)

and (2) conditional on their separation r. Toward this end, we first write out the unconditional

average indirect relative acceleration between particles (1) and (2) in terms of the conditional

average indirect relative acceleration as

〈∆AI〉 =
1

n2

∫

〈∆AI |r〉ρ(2)(r)dr =

∫

〈∆AI |r〉g(r)dr. (B.1)
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The same unconditional average indirect relative acceleration can be written in terms of the

acceleration induced by a probe particle p located at xp on each particle (1) and (2) as

〈∆AI〉 =
1

n3

∫

AI:(2)(r′′, r)ρ(3)(r′′, r)dr′′dr − 1

n3

∫

AI:(1)(r′, r)ρ(3)(r′, r)dr′dr (B.2)

where r′′ = x2 − xp and r′ = x1 − xp as shown in Fig. 3.3. While this expression is exact for

pairwise interacting systems, it requires knowledge of the three-particle density term ρ(3)(r′, r),

which is unknown in general. Also, in order to extract the conditional average indirect relative

acceleration from Eq. B.2, we need to define appropriate conditional third–order statistics.

The three-particle density ρ(3)(r′, r) can normalized to a three-particle correlation h(r′, r)

as ρ(3)(r′, r) = n3h(r′, r), analogous to the normalization of the two-particle density to obtain

the pair correlation ρ(2)(r) = n2g(r). The three-particle correlation function h(r′, r) can be ex-

pressed in terms of conditional three-particle statistics h(r′|r) and the pair correlation function

as

h(r′, r) = h(r′|r)g(r). (B.3)

Substituting all these expressions into Eq. B.2, the following expression for the average indirect

relative acceleration conditional on pair separation results:

〈∆AI |r〉 =

∫

AI:(2)(r′′, r)h(r′′|r)dr′′ −
∫

AI:(1)(r′, r)h(r′|r)dr′. (B.4)

This equation gives the average indirect relative acceleration conditional on pair separation in

terms of conditional three–particle statistics.

In Eq. B.4 for the average indirect relative acceleration conditional on pair separation r, the

integrals are taken over all possible separation distances r′ between particle (1) and the probe

particle p, and r′′ between particle (2) and probe particle p, as shown in Fig. 3.13. The limits of

integration for r′′ and r′ in Eq. B.4 need to respect the geometrical constraint r′ + r = r′′, and

to avoid overlaps of the probe particle with (1) and (2) we must satisfy |r′′| > (σ2 +σp)/2, and

|r′| > (σ1 + σp)/2 (see Fig. 3.13). We see from Eq. B.4 that for pairwise interactions (assumed

in MD and BD) the presence of the third particle only affects the limits of integration. In

general, the conditional three-particle statistics of systems are unknown.
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In order to verify our numerical calculation of relative acceleration, we consider dilute

systems where the conditional three particle statistics can be approximated such that the

conditional average indirect relative acceleration can be analytically calculated from the pair

correlation function and pair potential. Assuming a dilute system where h(r′|r) and h(r′|r)

are approximated by

h(r′|r) ∼= g(r′), (B.5)

h(r′′|r) ∼= g(r′′), (B.6)

Eq. B.4 simplifies to

〈∆AI |r〉 =

∫

AI:(2)(r′′, r)g(r′′)dr′′ −
∫

AI:(1)(r′, r)g(r′)dr′, (B.7)

where AI:(k)(r′, r) can be computed as

A(k)(r′, r) =
F(k)(r′)

m
= − 1

m
∇U(r′), (B.8)

where k is 1 or 2, and m is the mass of particles. Now Eq. B.7 for the conditional average

indirect relative acceleration can be calculated analytically for a specified pair correlation and

pair potential.

A dilute system with dimensionless number density n̂ = nσ3 = 0.1 is considered with spher-

ical particles whose centers are distributed according to a Matérn hard-core point process [30],

which has an analytic form for the pair correlation function g(r). Since the analytical calcu-

lations of the average relative acceleration in 3-D (dimension of the space in which the sphere

centers are distributed) is very challenging, we consider simpler 1-D and 2-D systems. In the

1-D system sphere centers are distributed on a line, and in the 2-D system the sphere centers

are distributed in a plane. Particles undergo pairwise interactions governed by the Lennard-

Jones potential (Eq. 3.2) with potential well depth ε̂ = 1.0. The solid lines in both panels of

Figure 3.14 show the analytical result for the conditional average indirect relative acceleration.

Positive values of relative acceleration indicate that the other particles induce an effective re-

pulsive force between the pair, while negative values indicate effective attraction. The effect of

dimensionality is seen by comparing panels (a) and (b) of Figure 3.14 in the range 1 < r̂ < 2.
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The slightly attractive behavior in the 1-D case for 1 < r̂ < 2 is a consequence of the restricted

geometric arrangements that are possible when all three particle centers are distributed on a

line (the probe particle cannot be inserted between particles (1) and (2) below the minimum

separation of r̂ = 2). On the other hand, if particles are distributed in a plane (or in 3-D) this

restriction is absent and the effective force is always repulsive.

For the computations a system of 150,000 identical particles in the 1-D case and 823,000

identical particles in the 2-D case were generated according to the Matérn process with hardcore

distance h = σ, and reduced number density n̂ = 0.1. For each of the N(N − 1)/2 solute

particle pairs separated by r, the indirect relative acceleration for this pair due to all other

N − 2 particles is calculated (the direct interaction between particles in the pair is excluded).

Subsequently this data is binned in separation space r, and the conditional average indirect

relative acceleration 〈∆AI |r〉 is computed. Multiple independent simulations corresponding to

different particle configurations are performed to reduce statistical error. The results of these

computations are shown in Figure 3.14, where 〈∆ÂI |̂r〉 = 〈∆AI |r〉σm/ε and r̂ = r/σ. The

range of interaction r̂ for these computations is larger than the cutoff distance typically used

for the potential calculations as shown in Figure 3.14. Excellent agreement is found between

〈∆AI |r〉 calculated analytically using Eq. B.7 and computed data for 1-D and 2-D cases. These

results verify our computation of the indirect average relative acceleration.

In aggregation problems the relative acceleration needs to be computed for a mixture of

at least of two types of particles. To verify the computations for a mixture of particles we

randomly tagged a specified fraction (29.5% in our test) of particles as type A particles and

the rest as type B particles. The potential well depth for A-A interactions was varied from

that of B-B interactions such that εAA/εBB = 8. We then computed the indirect average

relative acceleration between A type particles due to all other particles. We obtained a good

match between our computed results and the analytical expression but these results are not

shown here for brevity. However, we do observe wider spread in the computational data than

in the previous case which is attributed to a significant reduction of the number of pairs that

are involved in the relative acceleration computation.
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These test runs for the indirect average relative acceleration verify our computations for

the pure solvent system of identical particles as well as for the mixture of different types of

particles. Good agreement between computations and the analytical expression is observed for

both 1-D and 2-D cases. When the relative acceleration is extracted from a mixture, additional

independent simulations are needed to compensate for fewer samples.
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APPENDIX C. DERIVATION OF PAIR CORRELATION

EXPRESSION FOR A BINARY MIXTURE

Here we derive the expression for the pair–correlation function gαβ(r), α, β ∈ (A,B) in a

binary system that contains two types of particles A and B whose centers are distributed as

statistically homogeneous and isotropic point fields. The second factorial moment measure of

a point field (see Stoyan and Stoyan [30]) is generalized to a binary system with two particle

types as

µ
(2)
αβ(V1 × V2) = 〈Nα(V1) [Nβ(V2) − 1]〉 , (C.1)

where V1 and V2 are sets in physical space, Nα(V1) is the number of α particles in region V1,

and Nβ(V2) is the number of β particles in region V2. The second factorial moment measure

µ
(2)
αβ(V1 × V2) has a density ρ

(2)
αβ(x1,x2) such that it can be written as an integral

µ
(2)
αβ(V1 × V2) =

∫

V1

∫

V2

ρ
(2)
αβ(x1,x2)dx1dx2. (C.2)

This second-order product density ρ
(2)
αβ(x1,x2) is the unnormalized pair correlation function.

For a statistically homogeneous point field the second-order product density ρ
(2)
αβ(x1,x2)

depends only on the pair separation r = x2 − x1. It is then convenient to transform V1 × V2

to VR × Vr in (R, r) space with R = (x1 + x2)/2 and ρ
(2)
αβ(R, r)J = ρ

(2)
αβ(x1,x2), where the

Jacobian of the transformation J = |∂(x1,x2)/∂(R, r)| is unity, leading to

µ
(2)
αβ(V1 × V2) = µ

(2)
αβ(VR × Vr) =

∫

VR

∫

Vr

ρ
(2)
αβ(R, r)dRdr. (C.3)

For homogeneous and isotropic point fields, the second-order product density ρ
(2)
αβ depends

only on the scalar separation distance r = |r|, and can be written as

ρ
(2)
αβ(r) = nαnβgαβ(r), (C.4)



146

where nα and nβ are the number densities of the α-type and β-type particles, respectively.

Substituting this expression into Eq. C.3, we obtain

µ
(2)
αβ(VR × Vr) =

∫

VR

∫

r
nαnβgαβ(r)4πr2dR dr, (C.5)

where the integral over Vr has been simplified using a spherical volume element 4πr2dr. Noting

that

〈Nα(VR)〉 =

∫

VR

nαdR, (C.6)

and considering the case where Vr is a spherical shell with volume V (r,∆r) = 4πr2∆r we

obtain

µ
(2)
αβ(VR × Vr) = 〈Nα(VR)〉nβgαβ(r)4πr2∆r, (C.7)

provided ∆r is smaller than the scale of variation of gαβ(r).

Noting that the equivalent expression for 〈Nα(V1) [Nβ(V2) − 1]〉 in Eq. C.1 is

µ
(2)
αβ(VR × Vr) = 〈Nα(VR) [Nβ(Vr) − 1]〉 ,

leads to the following estimate for the pair correlation from particle data

gαβ(r) =
〈Nαβ(r,∆r)〉

〈Nα〉nβV (r,∆r)
(C.8)

where 〈Nαβ(r,∆r)〉 is the average number of α–β pairs with a β particle in a shell (r,∆r)

separated by r from an α particle. For the NVT ensemble considered in these simulations the

total number of α and β particles is a constant, so it is appropriate to replace 〈Nα〉 in Eq. C.8

by the total number of α particles Nα in the domain, leading to

gαβ(r) =
〈Nαβ(r,∆r)〉

NαnβV (r,∆r)
(C.9)

In the computations, we estimate 〈Nαβ(r,∆r)〉 as follows. For the ith α-particle we compute

the number of β-particles N
(i)
αβ(r,∆r) whose centers r(j) relative to the α particle are located

at a distance |r(j)| ∈ (r,∆r). The average number of such pairs 〈N(r,∆r)〉 is estimated by

averaging over all the α particles

1

Nα

Nα
∑

i=1

N
(i)
αβ(r,∆r)
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Substituting this estimate into Eq. C.9 leads to

gαβ(r) ≈ 1

NαnβV (r,∆r)

(

1

Nα

Nα
∑

i=1

N
(i)
αβ(r,∆r)

)

(C.10)

The remaining factor nβV (r,∆r) in the denominator is simply the expected number of β

particles in the shell (r,∆r).
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APPENDIX D. DERIVATION OF THE TRANSPORT EQUATION FOR

THE TWO–PARTICLE DENSITY ρ
(2)

In the Klimontovich approach [31, 32], the ensemble of particles is characterized by a fine–

grained density function f ′
1 that is defined in a six-dimensional position-velocity space [x,v]

as

f ′
1(x,v, t) ≡

N
∑

i=1

f
′(i)
1 =

N
∑

i=1

δ(x − X(i)(t))δ(v − V(i)(t)), (D.1)

where the shortened notation

f
′(i)
1 = δ(x − X(i)(t))δ(v − V(i)(t))

is used to represent the delta function associated with the ith particle. The number of particles

in any region B in [x,v] space can be obtained by integrating the fine–grained density f ′
1 as

follows:

N(B) =

∫

B

f ′
1dx dv. (D.2)

The ensemble average of the Klimontovich fine–grained density function f ′
1 is the one–particle

density function f , which is written as

f(x,v, t) = 〈f ′
1〉 =

〈

N
∑

i=1

f
′(i)
1

〉

=
〈

δ(x −X(i)(t))δ(v − V(i)(t))
〉

. (D.3)

Integrating the one–particle density over velocity space results in the number density n(x, t)

that forms the basis for the continuum hydrodynamic description

n(x, t) =

∫

f(x,v, t) dv, (D.4)

which in turn can be integrated over physical space to obtain the expected number of particles:

〈N〉 =

∫

n(x, t) dx. (D.5)
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In order to characterize structural properties such as the pair correlation function, we need

to consider the two–particle density. The one–point fine–grained density in the Klimontovich

approach can be extended to its two–particle counterpart as follows [33]:

f ′
1f

′
2 =

N
∑

i=1

f
′(i)
1

N
∑

j=1
j 6=i

f
′(j)
2 =

N
∑

i=1

δ(x1 − X(i)(t))δ(v1 − V(i)(t))

N
∑

j=1
j 6=i

δ(x2 −X(j)(t))δ(v2 − V(j)(t))

(D.6)

where [xk,vk, k = 1, 2] are the Eulerian coordinates of the position–velocity phase space for

the particle pair. (The summation over distinct pairs j 6= i is necessary for the definition

of the two–particle density, whose integral is the second factorial measure. If all pairs are

included, an atomic contribution arises in the second moment measure that does not have a

density [30, 34].) The ensemble average of the two–particle fine–grained density function f ′
1f

′
2

is the two–particle density ρ(2)(x1,x2,v1,v2, t), which is defined as

ρ(2)(x1,x2,v1,v2, t) ≡ 〈f ′
1f

′
2〉. (D.7)

Integrating the two–particle density over the velocity spaces results in the unnormalized pair–

correlation function

ρ(2)(x1,x2, t) =

∫

ρ(2)(x1,x2,v1,v2, t) dv1dv2, (D.8)

which in turn can be integrated over a region B in physical space to obtain the second factorial

moment measure:

〈N(B) [N(B) − 1]〉 =

∫

ρ(2)(x1,x2, t)dx1dx2. (D.9)

Substituting Eq. D.6 into Eq. D.7, and differentiating Eq. D.7 with respect to time results

in the evolution equation for the two–particle density ρ(2)(x1,x2,v1,v2, t):
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∂ρ(2)

∂t
=

〈

N
∑

i=1

N
∑

j=1
j 6=i

(

−V(i)(t)
∂

∂x1

[

δ(x1 −X(i)(t))δ(v1 − V(i)(t))δ(x2 − X(j))δ(v2 −V(j)(t))
]

−V(j) ∂

∂x2

[

δ(x1 − X(i)(t))δ(v1 − V(i)(t))δ(x2 − X(j)(t))δ(v2 −V(j)(t))
]

−A(i) ∂

∂v1

[

δ(x1 − X(i)(t))δ(v1 − V(i)(t))δ(x2 − X(j)(t))δ(v2 −V(j)(t))
]

−A(j) ∂

∂v2

[

δ(x1 −X(i)(t))δ(v1 − V(i)(t))δ(x2 − X(j)(t))δ(v2 − V(j)(t))
]

)〉

, (D.10)

where V(i) = ∂X(i)/∂t represents the velocity of the ith particle, and ∂V(i)/∂t = A(i) = F(i)/m

represents the acceleration of the ith particle. Here we have used the chain rule and the

following identity:

∂

∂a
f(a − b) = − ∂

∂b
f(a − b). (D.11)

Now substituting the relation

a · δ(a − b) = b · δ(a − b), (D.12)

in Eq. D.10 leads to

∂ρ(2)

∂t
= −

〈

∂

∂x1

[

v1f
′
1f

′
2

]

〉

−
〈

∂

∂x2

[

v2f
′
1f

′
2

]

〉

− ∂

∂v1

〈

N
∑

i=1

N
∑

j=1
j 6=i

A(i)f
′(i)
1 f

′(j)
2

〉

− ∂

∂v2

〈

N
∑

i=1

N
∑

j=1
j 6=i

A(j)f
′(i)
1 f

′(j)
2

〉

. (D.13)

We now define the following functions in phase spase:

〈A(1)|x1,x2,v1,v2, t〉 ≡ 1

ρ(2)(x1,x2,v1,v2, t)









〈

N
∑

i=1

N
∑

j=1
j 6=i

A(i)f
′(i)
1 (x1,v1, t)f

′(j)
2 (x2,v2, t)

〉









〈A(2)|x1,x2,v1,v2, t〉 ≡ 1

ρ(2)(x1,x2,v1,v2, t)









〈

N
∑

i=1

N
∑

j=1
j 6=i

A(j)f
′(i)
1 (x1,v1, t)f

′(j)
2 (x2,v2, t)

〉
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if ρ(2)(x1,x2,v1,v2, t) > 0, and substituting these definitions into Eq. D.13 results in the

following evolution equation for ρ(2):

∂ρ(2)

∂t
= − ∂

∂x1

(

v1ρ
(2)
)

− ∂

∂x2

(

v2ρ
(2)
)

− ∂

∂v1

(

〈A(1)|x1,x2,v1,v2, t〉ρ(2)
)

− ∂

∂v2

(

〈A(2)|x1,x2,v1,v2, t〉ρ(2)
)

. (D.14)

Introducing the pair relative separation r = x2 − x1 and the pair relative velocity w =

v2 − v1, and assuming statistical homogeneity in physical space and velocity space, leads to

the following form for the evolution of the two–particle density

∂ρ(2)

∂t
+

∂

∂r

[

wρ(2)
]

+
∂

∂w

[

〈∆A(2)(1)|r,w; t〉ρ(2)
]

= 0, (D.15)

where

〈∆A(2)(1)|r,w; t〉 = 〈A(2)|x1,x2,v1,v2, t〉 − 〈A(1)|x1,x2,v1,v2, t〉

is the average relative acceleration between particles 1 and 2. The angle brackets represent

averaging over all three–particle (and higher multiparticle) statistics.
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APPENDIX E. LIGHT SCATTERING ANALYSIS

Light scattering analysis (LS) is proposed as a direct method for investigation of aggregate

structure [35, 36, 37, 38]. This method allows measurement of Df even for a single cluster. In

addition, the light scattering technique gives cluster structure information for the wide range

of scales: from monomer size to the geometric size of a cluster. This feature provides for

the discovery of any possible structure changes at different length scales, especially for the

relatively large clusters. This gives the most complete description of the aggregate structure.

For the system of N nanoparticles, the intensity of elastically scattered light can be repre-

sented as

I(q) = NF (q)S(q) (E.1)

where q is the scattering wave vector, which is defined as

q = |q| =
4π

λl
sin(θ/2) (E.2)

where θ is the scattering angle, λl is the wavelength of light, S(q) is the static structure factor,

where

S(q) =
1

N

N
∑

k

N
∑

l

exp[iq · (rk − rl)] (E.3)

Due to a spherical shape of nanoparticles with uniform density, Eq. E.3 can be reduced to

S(q) =
1

N

∣

∣

∣

∣

∣

N
∑

k

exp[iq · rk]

∣

∣

∣

∣

∣

2

=
1

N

∣

∣

∣

∣

∣

N
∑

k

[cos(q · rk) + i sin(q · rk))]

∣

∣

∣

∣

∣

2

(E.4)

and F (q) → F (q) is the form factor for a sphere,

F (q) =

[

3
sin(qa) − qa cos(qa)

(qa)3

]2

(E.5)
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Because all modeled systems are isotropic in cluster position and orientation it is valid to

perform a spherical averaging by selecting over 200 different q values of constant magnitude,

so S(q) → S(q). This was done by creating the set of angles (θ, φ) according to a uniform

differential solid angle dΩ, and q is calculated from:

q = |q|(sin(θ)cos(φ)e1 + sin(θ)sin(φ)e2 + cos(θ)e3) (E.6)

where ei is the i-th Cartesian unit vector.

In case of a self-similar fractal aggregate with a fractal dimension Df , I(q) has the following

three regimes: the first regime is for small values of q (the so-called Rayleigh regime), where

I(q) = N the number of monomers per cluster. The second regime is for intermediate values

of q, where I(q) ∼ q−Df . The third regime is for very large q when Porod’s law can be applied,

so I(q) ∼ q−4 [39].

To validate the in-house LS code, a system of 100,000 nanoparticles where distributed in

a 3-d square lattice with period dl = 2. Positions of the light scattering peaks in the crystal

lattice must be distributed according to Bragg’s law

2dl sin(θ/2) = nλl (E.7)

where λl is the wavelength of an incident light, n is the integer corresponding to the order of

intensity peak, and θ is the angle between incident light and the scattering panels. The value

for the wavelength is chosen arbitrarily to be λl = 0.251.

Table E.1: Validation of LS code

n 1 2 3 4

θ 7.201 14.431 21.719 29.097

(Bragg’s law)

θ 7.197 14.435 21.719 29.094

(LS code)
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For such a system, an LS analysis is performed and correspondent positions of peaks are

computed and compared with analytically expected ones(Table E.1). The excellent match

of computational data with analytical values verifies the LS code and allows us to use it for

systems with unknown structures.

In BD (as well as in MD) the conservative force is not calculated for all the possible pair

separations between nanoparticles. Instead, such parameter as a cut-off distance rc is intro-

duced. In this way, force is calculated for the particles separated by a cut-off distance or

smaller. All other separations do not influence the force calculations. This approach signif-

icantly decreases simulation time without interfering with computational accuracy. Such an

approach is applicable for a monotonically decaying interaction potential which is very close

to zero value at r > rc. Therefore, it would be interesting to see how LS results depend

on the rc value. For this purpose BD simulations of the aggregation of colloid nanoparticles

which interact through the Lennard-Jones potential were performed for rc = 2.5σ = 5a and

rc = 1.5σ = 3a, where a is the nanopartile radius. All the parameters for these simulations

are described in Table E.2. Figure E.1 represents LS analysis of the largest clusters obtained

from these BD simulations. The largest clusters consist of N = 8, 900 and N = 8, 717

nanoparticles for rc = 3a and rc = 5a correspondingly. The positions of cut-off distances are

marked by a dashed line and labeled correspondently. According to the previous work [36], in

the interval a/Rg,G < qa < 2 structure factor S(q) should be ∼ q−Df , where Df = 1.78 is the

fractal dimension, and Rg,G is the ideal



155

Table E.2: Simulation parameters used to produce Figure E.1. Particle interactions are

modeled using Lennard-Jones potentials.

Parameter Description Value

Np Number of Nanoparticles 108,882

ε/kBT∞ Reduced Well Depth 4

fv,nanop Solute Volume Fraction 0.035

σ Particle Diameter 3.4 × 10−10 m.

D∞/σσv∞ Dimensionless Diffusion Coefficient 0.524

tstopD∞/σ2 Dimensionless Simulation Time 8.65

σ∆t/σv∞ Dimensionless Computational Time Step 0.0025

gel point radius of gyration, and its defined as

Rg,G = a

[

k−1
0

(

Df + 2

Df

)d/2

α

]1/(Df−d)

(E.8)

where k0 ' 1.3, d is the space dimension, and α is the nanoparticle volume fraction. However,

in this case Df ' 3 for the range (a/rc < qa < 2) for both cut-off distances. Such behavior

can be explained that by implementing Lennard-Jones potential into BD, the structure of the

aggregate cannot be described correctly for the scale of a potential’s range. At the same time,

by setting up the cut-off distance rc → ∞ the LS results should be similar to those obtained for

rc = 5a, because for LJ potential as r > 5a, the interaction potential U → 0. Thus, the only

part of the LS curve with qa < a/rc can be taken into account for further analysis. In the LS

plot there are two ranges for qa that can be clearly defined. In the range (Rg,G < qa < a/rc),

results are similar with the well-known results for DCLA where Df ∼ 1.8, when for (qa < Rg,G)

the results are close to the DLA, where Df ∼ 2.5 [39]. However, it is hard to make a final

decision about fractal dimension values because of a very short dynamic range where Df can
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Figure E.1: Structure of the largest cluster for 3-D BD simulation

with implemented LJ potential for rc = 5.0a and rc = 3.0a.

be measured. An increase of dynamic range can be reached in a different ways. The first is

to decrease the cut-off distance rc. In this case, the dynamic range will increase, however the

simulation accuracy reduces significantly due to a loss of accuracy during force calculations

(even LS results look similar for both values of rc in Figure E.1). Therefore, the first approach

cannot be accepted. The second way is to shift the ideal gel point radius of gyration to the left.

This can be done by decreasing the nanoparticle volume fraction. However, the aggregation

process takes longer for systems with a lower volume fraction. Moreover, the number of

nanoparticles in the system should be increased to maintain a high possibility of large cluster

formation. For example, by reducing the nanoparticle volume fraction to α = 0.015, and

increasing the number of nanoparticles in a system to N = 500, 000, the computational time

for BD simulation would be 50-70 hours on a single processor in order to obtain the maximum

cluster containing up to 50, 000 nanoparticles. For even larger systems, a single processor BD

simulation cannot be done in a reasonable computational time and some additional steps to

speed up BD calculations are required. Thus, to speed up BD simulations the BD code must

be parallelized.
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APPENDIX F. EVOLUTION OF THE SECOND-ORDER DENSITY

FOR MD MODEL

Differentiating Eq. 3.10 with respect to time results in

∂ρ(2)(x1, x2, v1, v2, t)

∂t
=

〈−
N
∑

i=1

N
∑

j=1

V
(i)
k

∂

∂x1k
δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j))

−
N
∑

i=1

N
∑

j=1

A
(i)
k

∂

∂v1k
δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j)) (F.1)

−
N
∑

i=1

N
∑

j=1

V
(j)
k

∂

∂x2k
δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j))

−
N
∑

i=1

N
∑

j=1

A
(j)
k

∂

∂v2k
δ(v1 − V(i))δ(x1 − X(i))δ(v2 −V(j))δ(x2 − X(j))〉

where V
(i)
k and V

(j)
k represent the velocity of i-th and j-th nanoparticles correspondently

along Cartesian coordinate k, and A
(i)
k and A

(j)
k represent the acceleration of i-th and j-th

nanoparticles correspondently along Cartesian coordinate k. By substituting the relation

a · δ(a − b) = b · δ(a − b), (F.2)

an expression is changing to

∂ρ(2)(x1, x2, v1, v2, t)

∂t
= (F.3)

〈− ∂

∂x1k
(v1k〈f ′

1f
′
2〉) −

∂

∂v1k

N
∑

i=1

N
∑

j=1

(A
(i)
k δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j)))

− ∂

∂x2k
(v2k〈f ′

1f
′
2〉) −

∂

∂v2k

N
∑

i=1

N
∑

j=1

(A
(j)
k δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j)))〉
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By defining the following function in phase space:

〈A(i)
k |x1, x2, v1, v2, t〉ρ(2)(x1, x2, v1, v2, t) = (F.4)

N
∑

i=1

N
∑

j=1

(A
(i)
k δ(v1 − V(i))δ(x1 − X(i))δ(v2 − V(j))δ(x2 − X(j)))

An expression for the second-order density is

∂ρ(2)(x1, x2, v1, v2, t)

∂t
= − ∂

∂x1k

(

v1kρ
(2)(x1, x2, v1, v2, t)

)

(F.5)

− ∂

∂x2k

(

v2kρ
(2)(x1, x2, v1, v2, t)

)

− ∂

∂v1k

(

〈A(i)
k |x1, x2, v1, v2, t〉ρ(2)(x1, x2, v1, v2, t)

)

− ∂

∂v2k

(

〈A(j)
k |x1, x2, v1, v2, t〉ρ(2)(x1, x2, v1, v2, t)

)

Now, by changing variables in the following way r = x2 − x1 and w = v2 − v1, the final

expression can be written in the vector form as

∂ρ(2)(r,w, t)

∂t
+

∂

∂r

(

wρ(2)(r,w, t)
)

(F.6)

− ∂

∂w

(

〈A(i)|r,w, t〉ρ(2)(r,w, t)
)

+
∂

∂w

(

〈A(j)|r,w, t〉ρ(2)(r,w, t)
)

= 0

And finally,

∂ρ(2)(r,w, t)

∂t
+ ∇r ·

(

wρ(2)(r,w, t)
)

+ ∇w ·
(

〈∆A|r,w, t〉ρ(2)(r,w, t)
)

= 0 (F.7)

where r represents the pair separation vector, w represents the relative velocity vector, and

〈∆A|r,w, t〉 represents the expected relative acceleration ∆A = A(j) − A(i) conditional on

relative velocity and pair separation.

In Molecular Dynamics case, an acceleration, experienced by i-th particle is

A
(i)
MD =

dV(i)

dt
=

F
(i)
MD

m
(F.8)

where F
(i)
MD is the force that i-th particle experienced due to an interaction with all other

particles.

Thus, in MD case an expression for the evolution of the second order density is

∂ρ
(2)
MD(r,w, t)

∂t
+ ∇r ·

(

wρ
(2)
MD(r,w, t)

)

+ ∇w ·
(

〈∆AMD|r,w, t〉ρ(2)
MD(r,w, t)

)

= 0 (F.9)

where ∆AMD = A
(j)
MD − A

(i)
MD.
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APPENDIX G. HYDRODYNAMIC EFFECT

Here we provide estimates of the HI forces relative to the correction force from improved

potential. In order to determine the importance of hydrodynamic interaction (HI) forces on

aggregation, it is useful to split the HI into short-range (lubrication) HI and long range HI.

Based on rough scaling arguments it appears that it is only meaningful to compare the short-

ranged HI effect on aggregation to the effect of modifying the BD potential of mean force to

account for solvation forces. While the long-range HI will affect the aggregate structure on

large scales, the small-scale aggregate structure will be strongly influenced by solvation forces

that are modeled by the improved potential of mean force in BD that we propose.

G.1 Short-range lubrication forces

We estimate the lubrication force correction to the BD equations and compare this to the

correction force arising from our improved potential that accounts for solvent effects. We show

that for the equi-sized case the correction force from our improved potential is larger than, or

comparable to, the short-ranged lubrication force (see Fig. G.1) (details are given below). For

size-separated systems, such a direct comparison is not possible because the lubrication force

applies to a pair of nanoparticle aggregates, each composed of several monomers, whereas the

correction force from our improved potential applies to each monomer in these aggregates. The

net effect of the correction to monomer interactions from our improved potential on the relative

acceleration between a pair of stationary nanoparticle aggregates is known to be comparable

to the van der Waals force from the work of Fichthorn’s group [40]. Precise estimates of

the scaling (with solute/solvent size ratio) of relative magnitude and range (in dimensionless

separation) of the solvation force to lubrication force between nanoparticle aggregates requires
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larger MD calculations than are currently available in the literature.

The lubrication force between two equi-sized solute particles is computed as [41, 42, 43]

FL = 6πµanpW

[

1

8ε
− 9

40
ln(2ε) + 0.99

]

. (G.1)

In this equation µ is the dynamic viscosity of the solvent, anp is the solute particle radius, W

is the relative velocity between the solute particles, ε = h/σnp is a dimensionless interparticle

separation where h is the minimum distance between the clear surfaces of the two solute

particles, and σnp = 2anp is the diameter of the solute particle. This equation is valid for

ε < 1, but it breaks down when the separation distance h becomes comparable to surface

asperities, as seen from the singularity in the lubrication force at zero ε [44]. The unbounded

growth of the repulsive lubrication force with decreasing separation is unphysical because it

predicts an infinite initial relative momentum (or attraction force) to overcome the lubrication

force in order for particles to collide. In reality particles do collide with finite initial relative

momentum (or attraction force) and this reflects the breakdown of the lubrication theory due to

non-continuum effects [45]. Therefore, theoretical corrections truncate the lubrication force [46]

for ε < εcrit and predict a constant value of FL for ε < εcrit. The truncated lubrication force

FTL is calculated as

FTL = 2.2µW
a2

np

∆
, (G.2)

where ∆ is the characteristic size of solute particle asperities, which we estimate as 0.1anp for

calculations.

In the BD model with no HI that we use in our work, the hydrodynamic force between

two solute particles depends only on the relative velocity W (corresponding to the last term

inside the square brackets on the right hand side of the expression for the lubrication force FL

in Eq. G.1) and does not depend on the relative separation r (accounted for by the first two

terms inside square brackets on the right hand side of Eq. G.1). Including short-range HI into

our BD model would correct the force between two solute particles by the contribution to the
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lubrication force that accounts for particle separation only Fh
TL, which is

Fh
TL =















3πµσnpW

[

1

8ε
− 9

40
ln(2ε)

]

, ε > εcrit;

2.2µW
a2

np

∆
− 3πµσnpW, ε < εcrit,

(G.3)

or in the dimensionless form

F̂h
TL = Fh

TL

σnp

kBTref
=















3πµσ2
np

W

kBTref

[

1

8ε
− 9

40
ln(2ε)

]

, ε > εcrit;

2.2µσnp
W

kBTref

a2
np

∆
− 3πµσ2

np

W

kBTref
, ε < εcrit,

(G.4)

where kB is the Boltzmann constant, and Tref is the reference temperature.

Now we compare the correction Fh
TL to solute interparticle force in our BD model arising

from short-range HI using the lubrication theory with the correction to force F2 arising from

the improved BD potential described in the original MS. Figure G.1 shows the comparison

ε= h/σnp

F
(r

)=
F

(r
)σ

/k
B
T

re
f

0 1 2 3 4-2
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∧
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∧

Figure G.1: Truncated dimensionless lubrication force F̂h
TL and correction force F̂2 as function

of ε for equisize particles.

of dimensionless lubrication force and dimensionless correction force for equi-size particles.

For equi-size particles the magnitude of the dimensionless correction force F̂2 from improved

potential is larger than the magnitude of the dimensionless lubrication force F̂h
TL for ε > 0.2.

Therefore, short-range HI do not overwhelm the potential correction we propose for equi-sized
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particles. Colloidal systems of nanoparticles in hydrocarbon solvents such as n-decane have

solvent molecules comparable in size to solute particles [47, 48]. For size-separated systems, one

could form rough estimates based on the scaling of lubrication and solvation forces. However,

the estimates for the lubrication force correction depend on assumptions regarding the scale of

surface asperities. Estimates for scaling of the solvation force must rely on only two size ratios

that are available from the work of Fichthorn and co-workers. Therefore, more simulation

data on the scaling of both these forces in size-separated systems are needed for a definitive

conclusion.

G.2 Long-range hydrodynamic interactions

The effect of large range HI on the structure in colloidal systems is studied by Heyes [49]

where he compared characteristics of systems simulated by BD with and without many-body

hydrodynamics. In his work he shows that the structure of colloidal system that is charac-

terized by pair correlation function g(r) remains statistically the same for systems with and

without long-range HI (see Fig. G.2). Although the long term self-diffusion coefficient DL

changes when HI is introduced, the pair correlation and structure are unaffected. Although

it is possible that in aggregating systems long-range HI might change the structure of large-

scale aggregates, these results indicate that they will not affect the structure of small-scale

aggregates significantly.



163

Figure G.2: The radial distribution function for the state point N = 256 and φ = 0.3403

using the three equations of motion/algorithms: I, no many-body hydrodynamics; II, with

many-body hydrodynamics; and III, many-body hydrodynamics with an incomplete algorithm.

Figure is taken from Heyes work [49].
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