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Abstract 

The AugmenTable is an augmented reality workstation intended for conceptual design and 

prototyping.  It combines a thin form factor display, inexpensive web cameras, and a PC into 

a unique apparatus that has advantages similar to a head mounted display.  The system 

operates on well-established computer vision algorithms to detect unmarked fingertips 

within an augmented reality scene.  An application was developed to allow a user to 

manipulate virtual objects within the scene.  This manipulation is possible through the use 

of three-dimensional widgets and controls that allow the user to control objects with 

natural fingertip motion.  This thesis also documents similar previous work, the methods 

used to create the AugmenTable, and a number of avenues for advancing the system and 

the interactions it can offer users.
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Chapter One: Introduction 

The computing world of 2010 is noticeably affected by many trends.  These trends include 

the use of more natural, direct interfaces, the rise of consumer-grade mixed reality systems, 

and the application of virtual reality to design and manufacturing processes.  These trends 

imply that users will soon need 3D interfaces to interact with technology.  This paper 

describes a new, unique project that attempts to unify these trends and results in an 

augmented reality workstation that allows users to interact with 3D virtual objects directly 

with their bare hands. 

 

Direct Manipulation Interfaces 

Direct manipulation interfaces, also known as natural interfaces, are those that require few 

or no mediating controls for interaction [1].  For example, multitouch displays, like those 

found in Apple iPads, allow the user to touch application content and controls directly with 

his or her fingertip rather than using a mediating technology like a keyboard or mouse. 

 Direct manipulation interaction has many benefits, most notably a decreased need for 

training or practice in order for a user to expertly operate the interface – humans have 

evolved to intuitively manipulate objects with their hands.  These benefits often translate 

into easier, more attractive, and more successful designs. Direct hand manipulation of 

virtual objects was shown to be faster and more intuitive than using a keyboard/mouse 

interface by [2].  These benefits have led entire research groups, such as MIT’s Tangible 

Media Group, to dedicate more than 10 years to integrating manipulatable objects with 

virtual objects and metadata. 

 

A number of consumer technologies, both nascent and established, aim to increase the 

prevalence of direct manipulation interfaces.  Multitouch displays allow finger presses 

directly to a screen and have become ubiquitous in smartphones and other displays.  Other 

technologies that have not seen the same market penetration include haptic response 
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devices, such as Phantom Falcon 3D pointers or haptic response gloves.  These devices may 

become more common and less expensive as user’s expectations for direct manipulation 

interfaces rise. 

 

Augmented/Mixed Reality 

Another trend is the expansion of augmented reality systems.  Broadly, augmented reality is 

the (most frequently visual) superposition of real and virtual objects or information in one 

environment.  As a research area, augmented reality has been pursued for many years with 

a number of wide-ranging applications.  Many of these systems have never left the 

laboratory due to cost or other constraints rendering them impractical.  However, due to 

the adoption of mobile devices with powerful processors, built-in cameras, and fast internet 

connections, augmented reality is beginning to infiltrate the average individual’s life. 

 

A number of augmented reality applications have appeared in the Apple and Google 

application stores (see [3] or [4] for examples.)  These applications range from spur-of-the-

moment information overlays, like location guides, reviews and ratings, to games that 

observe the user’s motions to create virtual effects.  One good example is Google's Goggle 

program [5], an application that accepts photos of landmarks, books, artwork, and many 

other object types and then returns a Google visual search on the object. 

 

As the public uses of augmented reality are accelerating, so are the technologies that power 

them.  Many examples of improved augmented reality applications are here or on their 

way.  MIT's Sixth Sense demo combines an iPhone, video camera, and pico-projector to 

allow a user to record and display on any surface [6].  The Skinput system creates a similar 

effect using the user’s skin as an input device [7].   Other consumer technologies such as 

Samsung's transparent OLED displays [8] will one day enable a generation of hands-off, 

information-everywhere augmented reality.  This trend has just begun. 
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Increased use of VR in design/manufacturing 

The trend of using virtual and augmented reality to support design and manufacturing 

processes is not one that receives significant attention from the general public, yet is a 

source of new thinking about what problems VR/AR can solve.  Though many systems are 

proprietary, a number of design/manufacturing AR systems have been described in 

academic papers.  Kim & Dey, for example, discuss the use of augmented reality for design 

prototyping activities [9].  Augmented and virtual reality provides the next extension to 

current computer-aided design systems, providing a means to more in-depth conceptual 

design, review, and prototyping.    

 

Academic literature also provides several guidelines for industrial augmented reality 

systems.  Kim & Dey claim that immersive displays such as head mounted devices (HMDs) 

are important to reach the full capability of an industrial AR system.  Additionally, Bleser et 

al state that the use of markers for hand tracking systems is not acceptable for industrial 

applications [10].  These criteria create a necessity for a new industrial AR design. 

 

User Needs 

These trends have two co-dependent sources: technological innovation to create business 

opportunities and the creativity of developers to meet real user needs with technology.  

However, the ongoing growth of these trends is driven more by consumer and user 

adoption.  Users seek direct manipulation because it is quicker, easier, and more pleasant to 

use.  Users are using more augmented reality because it is becoming inexpensive and 

requires less expertise or preparation.  VR is becoming more important to design and 

manufacturing because it is providing new means of studying and creating designs. 

 

For a system to capitalize on the trends above it must have these same properties.  It should 

be simple to use – it should not require learning a gestural language or require the user to 

wear or manipulate cumbersome equipment.  It must provide a new way of approaching 
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virtual (or real) objects to enable new perspectives.  Finally, it must be an inexpensive 

system that can be assembled without great expertise.  These are the requirements for a 

system to effectively provide value to end users. 

 

 The AugmenTable 

 

The system described in this paper provides an immersive augmented reality environment 

that enables a direct manipulation interface for a conceptual design process and enables 

new human-computer interaction.   The system, called the AugmenTable, is a desk-based 

workstation that features inexpensive cameras, a thin display monitor to approximate a 

transparent display, established computer vision algorithms to identify and track a user's 

hands, and virtual affordances for a user to manipulate or interact with a virtual object 

using his or her bare hands.  Furthermore, the system interaction is intended to provide 

direct manipulation with virtual objects that is inherently similar to the way that user's 

Figure 2: AugmenTable - Back Figure 1: AugmenTable - Front 
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interact with real objects.  This similarity enables a greater sense of immersion and suggests 

a number of interaction metaphors that can be directly copied from everyday life.   As a 

result, this system is intended to provide a test-bed for future research into three-

dimensional hand-based interactions. 

 

The apparatus provides this functionality without encumbering the user with wearable 

equipment.  The system uses cameras and computer vision to track the hands without 

requiring gloves or ungainly makers.  The display provides a view of the user’s hands and 

virtual objects integrated together without necessitating a bulky HMD.  The AugmenTable 

system has also been designed to allow both casual and collaborative use through its size. 

 

To be effective, the system was designed under a set of constraints: the system had to 

account for the ergonomics of the human hand in its interaction design, it had to be real-

time and avoid noticeable lag (defined by von Hardenberg & Bérard as a maximum update 

interval of 50ms, equating to a refresh rate of 20 Hz [11]), and had to be flexible to support 

a variety of application designs including multi-person collaboration.  An additional 

requirement was for the system to be relatively inexpensive to encourage adoption. 

 

This thesis describes the work previously done towards these goals, the methods used to 

realize it now, the strengths and weaknesses of the AugmenTable, and the future work 

implied. 
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Chapter Two: Related Work 

The combination of augmented reality and gesture interaction is not a new goal.  Many 

systems over the past 15 or more years have aimed to provide more natural interaction in 

virtual environments via gesture recognition.  Each system that has been developed has its 

own set of strengths and limitations.  Here, I will review previous work that could be 

considered as forming a significant branch of the larger tree that is hand tracking, gesture 

interaction, and augmented reality.  Emphasis is given to systems published within the last 

ten years. 

 

Augmented Reality 

Augmented reality is the blending of sensory input from the “real world,” most typically 

visual information acquired from cameras or the user’s own eyes, and virtual sensory input.  

The virtual input can range from textual or visual information to 3D geometry such as 

guiding arrows or virtual objects.  Most augmented reality systems today are based on 

computer vision techniques that identify preset markers (preregistered 2D images) in a 

camera image, calculate the marker’s position and attitude, and then superimpose the 

virtual inputs in the viewing stream.   

 

This paper foregoes a thorough review of augmented/mixed reality literature in favor of 

examining integrated systems.  A definitive bibliography can be found in the ACM 

SIGGRAPH Asia 2008 course documentation.  

 

Gesture Interaction 

Gesture interaction with computers also has a long history.  Gesture interaction poses two 

problems: how to observe or track the hands, and how to translate the hand’s position, 

attitude, or motion into computer interaction. 
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Hand Tracking 

Tracking of the hands is accomplished in one of two ways: applying some form of external 

accessory to the hands that is easily tracked (also called instrumented hands), or using 

computer vision algorithms and techniques to extract hand information from one or more 

cameras. 

 

One form of accessory is fiducial markers.  Fiducial markers are preset images typical of 

augmented reality systems such as those using HIT Lab’s ARToolkit [12].  An example system 

using such markers is FingARTips [13].  This system requires users to wear a black glove 

adorned with several markers at 

important joints (see Figure 3.)  The 

markers are then detected in an AR 

environment, allowing several direct 

manipulation interactions such as 

pressing, pointing, and grabbing.  The 

use of fiducial markers for tracking 

reduces the complexity of the tracking 

system.  However, it also limits the range of motion of the hands such that the markers 

must be visible at all times, restricting the angles and rotation of the hands in 3D.  A similar 

marker-based gestures system was used by Kato et al for collaborative interaction as well 

[14]. 

 

Markers are not limited to fiducial markers for AR.  Reifinger et al created a system using 

small markers on a glove that were tracked by infrared cameras, with a scene displayed via 

HMD [2].  This system is able to recognize both static and dynamic gestures (with help of a 

hidden Markov model.)  The system supported grasping and scaling manipulations similar to 

Figure 3: Simplified Hand Model of FingARTips [13] 
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the AugmenTable, but required unwieldy IR markers and specialized cameras to do so.  

These requirements imposed a high cost and reduced the immersiveness of the application. 

 

Markers can provide useful information about the articulation of the hand, and so are often 

used in systems that create a computational model of hand geometry.    Such information 

can also be gained from sensor equipped “datagloves.” An older review of glove based 

inputs was performed by Sturman & Zeltzer [15].  More simply, colored gloves (as used by 

Keskin et al [16]) are much less encumbering and have been used to address difficulties with 

skin detection (discussed below.) 

 

A unique tracking solution was established by 

Walairacht et al [17].  They describe a system where a 

user may manipulate a virtual object in a workspace 

with very real, natural hand movements.  The system 

provides haptic feedback, enabling the user to touch 

and manipulate objects as if they were real.  The 

system also tracks all of the user’s fingers individually, 

allowing for geometric calculation of the user’s 

perspective.  This is accomplished through the use of a 

unique system of strings, attached to the user’s hands 

during operation, as shown in Figures 4 & 5.  This 

system, though enabling many capabilities, would not 

be practical for casual use and could likely result in a 

fair amount of user fatigue.  Additionally, the system 

required numerous calculations which resulted in a 

lagged, slow system response. 

  

Figure 5: SPIDAR-8 Haptic AR  [17] 

Figure 4: Ibid. 



9 

 

When all encumbrances are removed, hand tracking is the province of computer vision 

techniques.  The number of papers and techniques developed are many and myriad.  Most 

systems utilize skin detection and object tracking algorithms (dicussed in depth below under 

Method.)  Unfortunately, there is no “silver bullet” technique commonly accepted to detect 

hands.  Each technique addresses some difficulties at the expense of others. 

 

Markerless tracking of hands is not a new idea.  DigitEyes was one of the earliest markerless 

hand tracking systems described in 1994 [18].  Four years later, Nölker and Ritter advocated 

markerless realtime hand tracking without using a geometric model to improve speed [19].  

Though markerless tracking has been suggested and used for more than 15 years, marked 

tracking is still considered justifiable due to the difficulties of markerless hand recognition. 

 

Erol et al describe the main difficulties hand tracking systems as follows [20]: 

 

1. High-dimensionality.  Counting all of the joints, the hand has more than 20 degrees 

of freedom.  Reducing this through approximate kinematic modeling still leaves at 

least six dimensions of manipulation, not counting the hands’ positions and 

orientations. 

2. Self-occlusions.  From a single camera perspective, the hand has many 

configurations in which the nearest surfaces of the hand or fingers obscure how the 

rest of the hand is positioned. 

3. Processing Speed.  Real-time computer vision systems have to process a significant 

amount of data.  Modern techniques of parallel programming and today’s hardware 

make this less relevant and improve formerly marginal techniques. 

4. Uncontrolled environments.  Object tracking of any kind in computer vision is made 

exponentially more difficult by unrestricted background and lighting conditions. 

5. Rapid hand motion. The hand is capable of moving up to 5 m/s with 300 degree/s 

wrist rotation.  Given typical camera frame rates of 60 fps, and tracking algorithms 

that typically run much slower, full tracking of the hand remains elusive. 
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The following systems all place restrictions on either the environment or the user’s gestures 

in order to ameliorate the difficulties of hand tracking.  The most common restrictions are 

uniform background and limited gesture speeds [11].  Other restrictions may be on the 

orientation of the hand to remove self-occlusions or to limit the tracking of the hand to two 

dimensions, such as on a desk surface [21], [22] , [18], [23], and [24]. 

 

These restrictions are often necessary for the systems to function, or may be implicit in the 

tasks the system supports.  However, the more restrictions imposed on the user can render 

the experience less immersive and less realistic, reducing the value to the end user.  As a 

result, most of these systems never leave the laboratory. 

 

Hand Interaction 

Erol et al categorize hand interactions into two types: gestures used for communication (in 

this context, to command and control interfaces) and object manipulation gestures 

(simulating life-like interactions, such as pointing or pinching) [20].  The former tends to 

utilize static hand poses or motion patterns which are then interpreted as commands.  The 

latter may include poses and motion patterns, but also frequently include direct tracking of 

the hand or fingertips.   

 

Pose and motion pattern recognition is developed either in creating three dimensional 

models of the hand through inverse kinematics, or in partial pose recognition based on 2D 

appearance [20].  Model based/inverse kinematic reconstruction is not discussed in this 

thesis.  A useful review can be found in [20]. 

 

Pose recognition is separated into tasks of identifying the hand in one or more images, 

extracting relevant features, and passing them to a gesture classification system.  Such a 

system uses statistical methods to determine the pose or gesture from a previously trained 
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library.  The variants of this technique are very popular for hand interaction, and were used 

by [11], [21], [25], [26], [27], [28], [29], and [30]. 

 

Pose estimation is inherently limited.  As  

pointed out by Petersen and Strieker 

[31], a system can only identify poses for 

which it has been trained.  As a result, 

pose estimation based systems put a lot 

of focus and development on gesture 

classification.  Classification is a step 

performed through neural networks, 

hidden Markov models, support vector 

machines, or other statistical/machine learning methods.  A comparison of such systems is 

provided by Corso and Hager [32]. 

 

Statistical methods are less useful in systems that have object manipulation goals.  In this 

case, systems must track the user with significant precision that typically isn’t available from 

general recognition techniques.  This is especially noticeable in one older technique of 

object manipulation known as “ray-casting”.  Ray-casting is the extrapolation of a finger or 

arm direction onto a surface, e.g. the system by shown in Figure 6 [33].  Ray-casting 

requires as precise measurement of finger orientation as possible through robust feature 

tracking.   

 

Ray casting is one of several interaction methods broadly aimed at providing virtual 

pointers.  Virtual pointers were found to be acceptable for selection tasks, but not for 

further manipulative tasks [34].  Addtionally, Mine et al found several advantages of 

working within arms’ reach: more direct mapping between motion and response, better 

precision of movement, and better visual cues of parallax and stereopsis [35]. 

Figure 6: Example ray-casting system sytem [33] 
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For our goal of direct virtual object manipulation, a more natural form of interaction is 

required.   Poupyrev et al describe another broad category of 3D interactions in virtual 

environments: virtual hands [36].  Virtual hands are a metaphor for interaction where the 

user “touches” a virtual object for interaction.  Similar taxonomies of hand interactions are 

described in [37] and [38] which include at-a-distance interaction (like ray-casting) and local 

selection (like touch), but also manipulation through grabbing, virtual manipulators, 

scaling/zoom interactions, and virtual menus.   

 

In either taxonomy, a number of interactions exist.  Some mimic actions descending from 

2D interactions a la point and click.  Early systems, such as one developed by Rehg & Kanade 

[18], tracked hands to develop a “3D mouse.”  This led to general “picking,” or selection 

interactions, such as one described in [39].  Picking is also used for application control in 

place of gestures (through using real or virtual controls such as buttons) or viewpoint 

manipulation [38]. 

 

Other interactions arise from the development of native 3D interactions.  Natural, realistic 

hand interactions such as grabbing, pinching, and bumping are new to 3D environments.  

When these are not possible, another class of interactions use virtual controls or widgets 

that are designed for 3D interaction.  C. Hand found that well designed widgets can be less 

damaging to the feeling of directness than more abstract or invasive interfaces like gestures 

or physical controls [38]. 

 

Interactions in virtual or augmented spaces have to be designed to address the weaknesses 

of hand detection.  Mine et al describe the issues with object manipulation in virtual 

environments as follows [35]: 

 

1. Lack of haptic feedback: Humans depend on the sense of touch and weight for 

precise interaction with the real world. 
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2. Limited input information: The multimodal inputs of object manipulation in the real 

world (tools, spoken communication, measuring, etc.) are restricted or unavailable 

in virtual/augmented environments. 

3. Limited precision:  Most hand interactions in virtual environments have “boxing 

glove” precision; little or no fine motor control is available. 

 

The interactions used for the AugmenTable attempt to address these shortcomings through 

use of arms-length interactions using superimposed 3D widgets, as described in the 

Applications section.   

 

Comparable Systems 

Several systems have previously been developed with the goal of virtual object 

manipulation in an augmented reality environment using markerless hand tracking.  

However, all do not entirely reach the goal of intuitive, unencumbered fingertip 

manipulation of virtual objects. 

 

The apparatus for such a system is fairly well agreed upon.  Erol et al point out that multiple 

cameras are necessary for object manipulation without using markers, or for allowing two 

handed interactions [20].  They also mention that combining multiple views to establish 

correspondences across cameras and 3D features has not been explored well.  Abe et al 

used vertical and horizontally oriented cameras to develop a 3D position of a single finger, 

enabling 3D rotation and translation when combined with pose recognition based 

commands [21].  A similar multi-camera system was developed by [40] several years prior.  

These systems aren’t augmented reality, though, since they do not integrate real objects 

with virtual objects. 

 

An early tabletop AR system was developed by Oka et al called EnhanceDesk [41].  By using 

a color camera and an infrared camera, they were able to track fingertips through a 
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combined approach of template matching and Kalman filtering.  This system only tracked 

the fingers on the surface of a desktop and today would be more effectively implemented 

through multitouch surfaces.  That said, this system’s apparatus and methods have been 

applied to the 3D problem by subsequent systems, including the AugmenTable.  A similar 

system with similar restrictions was more recently suggested in [42].  

 

A more capable system described by Lee & 

Hollerer shares many of the same goals as 

this proposed system [43].  Based on 

previous “HandyAR” work [44]  and 

markerless AR research [45], Lee & Hollerer 

use an optical flow algorithm to track an 

outstretched open hand.  It determines the 

finger locations based on the thumb 

location, then uses pose estimation to 

determine the orientation of the hand (see 

Figure 7.)  The finger positions are 

established through an initial calibration, then tracked using Kalman filtering.  This enables a 

coordinate system or model to be matched to the user’s hand as though the hand were a 

2D fiducial AR marker.  The recent extension to this work enabled the tracking of desktop 

surfaces for an additional AR surface, as well as a “grabbing” gesture through breaking the 

tracking of the outstretched hand in favor of a closed fist.  This allows free manipulation of a 

virtual object with a user’s hands, but at the cost of losing natural gestures such as pointing, 

grabbing, or pinching that deform the hand.  This system is unable to track motion through 

self-occlusion as well.  Rotating a virtual object with the hand can only be done within a 

limited range of motion.  A model cannot be rotated to its side, for example. 

 

Figure 7: HandyAR Snapshots  [43] 
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A more effective system was described by Song et al [46].  This system tracked an individual 

finger in a 3D augmented reality environment.  The authors created a set of interaction 

methods, combined with a physics engine, to provide a unique object manipulation system.  

The authors also ran a user study finding bare hand interactions to be more intuitive and 

pleasant for users than keyboard and mouse interfaces.  Using a single finger, however, is 

pretty limiting and does not match natural human object manipulation. 

 

Of all the systems and prototypes reviewed, the 

one developed and described by Kolarić et al bears 

the most common ground with the proposed 

system [47].  Like the AugmenTable, theirs uses 

free, unmarked hand movements to manipulate 

virtual 3D objects.  They use a computer vision 

system that tracks the hands in a stereo camera 

setup and uses the Viola-Jones tracking method 

paired with skin color histograms for detection.  To 

manipulate objects, the authors define a set of 

hand poses for command communication: select, open, and closed, which are mapped to 

functions such as select, translate, and rotate.   

 

This system (shown in Figure 8) bears the same functional purpose as the proposed 

AugmenTable system.  However, the AugmenTable tracks fingertip points for higher 

controllability, does not use learned hand gestures in favor of developing intuitive 

manipulation widgets, and uses an apparatus that allows for the hands and virtual objects 

to inhabit the same perceptual space.  Additionally, the proposed system supports multiple 

hands, multiple fingertips as well as rotation of the hand through arbitrary angles – a rare 

combination in the field. 

 

Figure 8: Similar Workspace Concept [47] 
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All of these comparable systems use either head mounted devices or regular desktop 

displays.  HMD systems limit the user’s field of view, can become uncomfortable, and often 

feature a screen that is too dim [17].  Desktop displays are not immersive; in the case of 

Kolarić et al, the user can see his or her hands in the workspace in front of the monitor. 

 

Commercial equivalents of comparable systems also exist.  OrganicMotion [48] offers real-

time, markerless tracking of human actors within a specific volume down to millimeter 

accuracy.  Microsoft’s impending Xbox Natal project offers similar tracking in anyone’s living 

room.  In the former case, however, it is unclear if the system provides tracking of finer 

finger motions or is appropriate for integrating real and virtual objects in real time.  In the 

latter case, the technology has not been released and it is not known how capable the 

system will be. 

 

Suprisingly, the use of virtual widgets for manipulation does not seem to be well explored in 

the tabletop AR literature.  Song et al, as noted before, use a physics engine combined with 

a virtual “fishing line” widget [46].  A user selects a virtual object with a finger touch, and 

then a virtual line is extended from the object to the user’s fingertip, allowing for physical 

control of the virtual object.  No system was found through literature review, however, that 

provided a virtual manipulator with affordances for hand manipulation of virtual objects.  In 

contrast, I believe this is a useful line of inquiry for tabletop AR applications and have 

developed a direct manipulation interface based on widgets for the AugmenTable.  

Furthermore, I hope that the AugmenTable will provide a means of prototyping and testing 

further 3D interactions, both widget based and otherwise. 
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Chapter Three: Method 

The proposed system combines a number of well established computer vision techniques 

with a novel, inexpensive apparatus.  This section details the apparatus and algorithms used 

and how they integrate together.   

 

Apparatus 

 

Figure 9: AugmenTable Apparatus 

 

A novel element of the AugmenTable system is its ability to provide a near immersive 

augmented reality experience without requiring the user to wear or hold any devices.  The 

apparatus places a thin-form factor display raised at an angle to face the user (see Figure 1 

& 2 above.)  The user may sit or stand in front of the display (depending on the height of the 

table on which it rests) and reach his or her hands underneath and behind the display.  A 

mirror is mounted to the reverse side of the display, reflecting an image of the user's hands 

outwards towards a camera mounted on a tripod.  The television, mirror, and additional 

tracking cameras are all mounted to an adjustable, light weight aluminum frame.  The frame 

has been designed so as to allow adjustment to the height and angle of the television 
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relative to the user.  The display and each camera are connected to a PC equipped with 

multiple core processor(s).  For this working prototype, a Samsung 40" LED 

TV (UN40B6000VF), three Logitech Webcam Pro 9000 cameras, and a Dell workstation 

featuring an Intel Xeon X5570 quad-core processor and a Nvidia Quadro FX 4500 graphics 

card were used.  Depending on display size and computer power, a similar functional 

apparatus could be constructed for less than $4,000.  

 

The AugmenTable provides an immersive experience by simultaneously hiding the user's 

hands and displaying them in a scene with virtual objects.  To be fully immersive, 

augmented reality should provide visual-spatial, proprioceptive, and haptic cues.  Haptic 

feedback cannot currently be simulated without requiring the user to wear a device, such as 

in those used in [17] or [13].  Proprioceptive feedback is the mind's self-awareness of the 

body and is generally a very weak, easily fooled sense - research has shown that human’s 

proprioception is dominated by the visual sense [49].  Visual-spatial cues are the visual 

phenomenon the brain uses to identify where it is in space relative to other objects.  These 

cues include transparency, occlusion, size, shading gradients, and cross references such as 

shadows among others [50].  Overall, this system is limited to providing relative size and 

occlusion cues, masking proprioception, and very simplistic haptic cues when a virtual 

object is placed against the tabletop surface. 

 

This apparatus proves more immersive than many other current augmented reality 

experiences.  First, the experience of this system is more immersive than a traditional 

desktop monitor.  By hiding the hands from the user and showing a representation of the 

hands within the virtual world, the user does not have to resolve seeing his or her hands in 

front of him or herself with also seeing his or her hands in a different location.  This 

advantage may not be largely significant given human ability to map control of the body to 

manipulation of distant objects, as typified by using steering wheels, game controllers, and 

laser pointers for example.  
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More commonly, AR is provided through hand held devices such as mobile phones or tablet 

computers.  These systems do not typically include any part of the user within the 

augmented reality "window", due to the user having to hold the device in place.  In 

research, the HMD is the most frequently used device for experiencing augmented reality.  

 

The AugmenTable offers both pros and cons compared to these two standards.  A mobile 

phone/computer can provide augmented reality anywhere the user takes the device; the 

apparatus described here is stationary.  An HMD provides a direct angle of view for the user 

to experience augmented reality; the apparatus described here will most likely display an 

angle of view slightly different than the user's direct gaze due to the stationary camera. 

 HMDs also provide stereo viewing capability that is currently lacking in the AugmenTable.  

However, this apparatus does not require the user to carry a device, provides a large field of 

view that can eclipse the user's peripheral vision, and does not require the user to wear 

heavy equipment on his or her head.  Finally, this system does not require any markers to 

be worn on the user’s hands.  This improves the illusion of direct manipulation for the user 

and reduces the overhead of starting to use and learn the system. 

 

This apparatus provides a good baseline immersive experience for an augmented reality 

workstation.  Improvements are described in the Future Work section that could improve 

the experience even further. 

 

Software Libraries 

Most interesting software projects today would not be possible without having powerful 

libraries to stand upon.  The AugmenTable relies on three libraries for a significant number 

of tasks; each was essential, and a significant effort was made to integrate them together. 

 

First, as mentioned above, is the ARToolkit library [12].  ARToolkit is used here for a number 

of important initialization steps: determining camera distortion parameters, searching a 2D 
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image for a stored 2D marker pattern, and calculating the inverse camera matrix based on 

the size and orientation of the detected marker.  ARToolkit does not perform all of these 

steps perfectly, unfortunately.  The 2D marker detection can be vulnerable to false 

positives.  In this case, the system requires a recalibration before use.  Currently, the system 

uses ARToolkit version 2.72.1.  ARToolkit should be replaced with a more reliable 

augmented reality library in the future. 

 

Second is the ubiquitous computer vision library OpenCV.  OpenCV provides access to the 

raw camera image feeds, matrix calculation operators, and important 2D image processing 

algorithms such as color histogram matching, morphology operations, and contour 

detection.  Each of these algorithms is discussed in depth below.  The AugmenTable 

currently uses OpenCV version 2.1.0. 

 

The third and final library used in the creation of this system is OpenSceneGraph. 

OpenSceneGraph is used to create and manage the 3D scene that comprises the augmented 

reality environment.  It handles all three dimensional models, lights, and events including 

model intersections necessary for all interactions.  OpenSceneGraph 2.7.2 is the current 

version used in this system. 
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Algorithm/Process 

Figure 10 shows the algorithmic steps for identifying and interacting with hands within a 

virtual three-dimensional scene.  The process broadly proceeds as follows:  

1. The cameras and AR scene are initialized. 

2. Input feeds from multiple cameras are reduced in size for processing. 

3. The image backgrounds are segmented out of the frame. 

4. Skin pixels in the foreground are detected and filtered. 

5. Contours around the hand shapes are created, and then reduced to a polygonal 

approximation. 

6. The outermost (convex angle) points are identified as candidate fingertips. 

7. The candidate points and transformed into 3D rays that intersect the scene. 

8. Each ray is tested against all other camera’s rays for intersections.  

9. Current frame intersections are tested against a set of stable, tracked 3D points to 

update the scene. 

10. Tracked points are tested for intersections with scene objects to create interactions. 

11. Tracked points are used to determine where in space the contours identified in step 

5 are, so that they may be used for occlusion. 

 

All code for the above steps is included in the Appendix. 

 

Initialization 

The process is broken into multiple, parallel threads.  This enables the system to function in 

real time on modern multi-core processors.  The process begins with initialization: in 

addition to typical variable and memory initialization, each camera calculates its position in 

space prior to starting image processing.  Using ARToolkit, each camera searches for a 

predefined marker in its field of view.  Upon locating the marker, its size and orientation are 

compared to the known marker parameters.  This comparison enables ARToolkit to 

calculate the distance and orientation of the marker compared to the camera in matrix 
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form.  The inverse of this matrix results in the camera's position and orientation relative to 

the marker (see Figure 11.)   Each camera's viewport, projection, and model view matrices 

are calculated in this way and stored for future reference.  

 

After calibration, the ARToolkit marker is extraneous; the system currently does not 

attempt to update the camera positions unless the user manually instigates a reset.  This is 

due in part to an attempt to reduce the computational complexity of each frame update, 

but also because the basic ARToolkit is not capable of the parallel processing necessary to 

operate across multiple threads.  ARToolkitPlus and other subsequent AR libraries have 

support for parallel processing, so if CPU bandwidth is available it may be possible to update 

the camera position on the fly, making the system more robust to movement and vibration.  

 

ARToolkit is valuable in that it provides camera calibration without depending on epipolar 

geometry calculations.  Epipolar geometry is comprises a series of calculations needed to 

correspond a 3D point in several 2D views.  For example, other systems may calibrate 

through matching easily identified points like a torchlight [30].  Using ARToolkit for this 

purpose is not uncommon; other systems such as [51] have used it in a similar fashion. 

Figure 11: Relationship of Camera and Marker Transformations 
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Following the initialization of each camera, the scene (rendered through OpenSceneGraph) 

is created and the processing threads are executed.  A thread is created for each camera to 

perform image processing in parallel with one additional thread to perform 3D calculations 

and point tracking (see Figure 10 above.)  The incremental steps for determining fingertip 

positions in space are described in order. 

 

Background Segmentation 

When a processing thread receives a 

new frame (example Figure 12) from 

its camera, the first step is to separate 

the background and foreground 

elements.  Background subtraction is 

a very common operation in image 

processing; a number of techniques 

are described in [52].   The most basic 

background subtraction technique is 

frame differencing.  Frame 

differencing is performed by storing 

an image of the static background and then comparing each incoming frame to the saved 

background.  If a pixel's color, as measured by the RGB values, differs from the saved 

background's pixel color by a preset threshold, the pixel is labeled as a foreground pixel.  If 

not, the pixel is part of the background. 

 

The frame differencing method of background subtraction has several weaknesses.  It is 

very susceptible to changes in lighting - even small changes to the ambient lighting 

conditions can alter a pixel's color sufficiently to be a false positive.  Similarly, this method is 

vulnerable to camera noise, which can alter a pixel's color even with constant lighting. 

Figure 12: Example Input Frame 
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 Finally, frame differencing does not perform well when a moving object (which would 

normally be part of the foreground) has a color that very closely matches the background. 

 

To address these shortcomings, a number of other methods have been developed.  One 

such method is background averaging.  In background averaging, the system accumulates a 

mean and a variance for each background pixel.  When a foreground object moves into 

frame, it is classified as such if its color falls sufficiently out of range of the median, often 

between one or two standard deviations.  This method is more resilient to regularly 

changing backgrounds due to lighting or gradual movement.  Another method is to develop 

a "codebook" for background segmentation [53].  Similar to averaging, this method 

determines a range of values for the background over time, but a codebook stores an 

arbitrary number of ranges for a particular pixel.  The codebook method is thus more 

capable of recognizing backgrounds that have a low number of discrete states. 

 

Despite the advantages offered by 

other methods, basic frame 

differencing was used for this system. 

 The weaknesses of frame differencing 

are attenuated because the system is 

not intended for use "in the open" 

where backgrounds fluctuate, and also 

because the system relies on multiple 

image processing steps later to further 

refine the image.  Frame differencing is 

used because of it is the fastest, least 

resource intensive background segmentation method.  To be even quicker, the input image 

from the camera is reduced by 75% in size through Gaussian pyramid reduction before 

segmentation.  Each camera has to perform a number of computationally intensive 

processing steps; background segmentation is intended primarily to reduce the search 

Figure 13: Example Foreground Mask 
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space for these subsequent steps.  As a result, a lightweight implementation of frame 

differencing was chosen over the more intensive codebook method.  Background averaging 

was tested, but discarded due to issues with ghosting as foreground objects were rolled into 

the background averages.  Codebooks were not pursued due to higher processing 

requirements. 

 

One possible improvement to the background segmentation would be to convert to HSV 

color space (further discussed under Skin Detection) and segment based on difference only 

within hue or saturation values.  This approach was fundamental to finger tracking used in 

[54].  This was attempted for the AugmenTable, but yielded worse results than RGB color 

space. 

 

Skin Detection 

After the foreground has been identified (which may include some false positives), the 

system must identify the user’s hands through skin detection.  Skin detection is the 

comparison of a particular pixel’s color to some preset value that matches the color of 

human skin.  As pointed out by [55] and [56], this has several problems: the colors seen by a 

camera are affected by ambient light, movement, and other contextual factors; different 

cameras produce different colors for the same object under identical conditions; and finally, 

the color of skin can vary widely from person to person.  As a result, a number of different 

approaches have been developed for skin detection. 

 

The most basic method of skin detection is color thresholding.  In most images, individual 

pixels are values from 0 to 255 in red, green, and blue channels (RGB.)  Thresholding is 

accomplished by finding the RGB levels common to shades of skin.  For instance, the red 

hue may be 30 to 50% of the color in skin with corresponding values for green and blue.  If a 

pixel matches this profile, it is included in the process output.  Thresholding is very fast, 
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having O(n) calculations to identify skin pixels, but it is vulnerable to every issue identified in 

the previous paragraph.   

 

A common improvement to skin detection systems is to use a statistical distribution of skin 

color.  In a study of more than 1,000 images of people, skin color was found to have a 

normal distribution in the RGB color space.  Yang et al [55] were then able to track a variety 

of skin hues through linearly adapting a Gaussian model based on the changing 

environment.  These Gaussian mixture models were also utilized by Kurata et al [57]. 

However, Jones & Rehg [58]  found that simpler histograms performed better (in training 

and operation) than Gaussian mixture models of skin color.   

 

Histograms have been shown to be a reliable and powerful means of identifying skin pixels 

within an image.  Jones & Rehg conducted a thorough review of skin detection methods 

built on a dataset of thousands of images from the internet and found histograms to be 

optimal.  They further determined that a bin count of 32 yielded optimal results.  Based on 

this data, a pretrained histogram of 32 bins was used for skin detection in the 

AugmenTable. 

 

Histograms are better at handling variations in color, but still have room for improvement. 

Jones & Rehg also describe a modification to improve histogram detection.  Instead of a 

single skin histogram, they utilized two histograms: one for finding the probability that a 

pixel was skin colored, and one for finding the probability that it was not.  They then 

determined whether a pixel was skin colored through the following equation: 
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where P(RGB | Skin) is the probability a given pixel is skin colored based on the skin 

histogram, P(RGB | Not Skin) is the probability the given pixel is not skin colored based on 
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the histogram of all not-skin colors, and theta is a cutoff threshold.  This method was 

attempted for this project but was found to yield less robust results than using the skin 

color histogram alone.  This may be due to a desktop environment that has many white and 

gray hues that match Caucasian skin under fluorescent light. 

 

Another possible reason for my difficulty with Jones & Rehg’s method is their use of the 

RGB color space.  A fair amount of literature is dedicated to the exploration of color spaces 

used for skin detection.  The default color space of most images is RGB, but images can be 

converted to several other different color spaces though, most notably Hue, Saturation, and 

Value (HSV). 

 

HSV has been found in several studies, 

[59] for example, as being preferable to 

RGB color space for tracking skin in 

hands and faces.  Even the hue alone 

has been suggested as being sufficient 

and preferable for tracking skin [60].  

However, using a static pre-trained 

histogram in this project found better 

skin detection results through 

employing both hue and saturation 

channels.  Further analysis of color 

spaces for skin detection can be found in [61] . 

 

HSV has not always been found to be better than RGB in tracking systems.  Kolsch & Turk 

found worse performance from HSV with respect to RGB, partly because due to its CAMshift 

algorithm’s reliance on RGB color space [62].  Dadgostar & Sarrafzadeh even developed a 

hand tracking system that disregarded hue entirely and focused on gray levels [26].   

 

Figure 14: Raw Skin Detection (HSV histogram) 
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Despite these reservations, hue-saturation histograms have been used successfully by a 

number of systems, though, such as those described by [47] and [22].  A more thorough 

description and analysis of color spaces for skin detection, as well as the methods that use 

them, can be found in [56].  

 

Static histograms like the AugmenTable’s are still vulnerable to lighting/background 

changes.  Adaptive histograms have been found to be more robust to lighting changes or 

similarly colored backgrounds.  One method of adaptive histogram use was described by 

Dadgostar & Sarrafzadeh as follows: 

 

1. Train an initial histogram with a priori color data. 

2. Detect skin pixels in a current frame through motion detection and use of the initial 

skin color histogram. 

3. Calculate a histogram of the pixels detected in #2 and combine with the initial 

histogram with some weighting assigned. 

4. Calculate minimum and maximum thresholds for matching such that the thresholds 

cover 90% of the new histogram. 

 

An effort was made to provide this system with an adaptive histogram to reinforce 

detection against illumination changes.  This effort proved unsuccessful as the adaptation 

included some colors outside of the original histogram range, resulting in runaway 

detection of wood and desk surfaces until virtually all pixels were detected as skin.  This 

result is not an indictment of the method described above.  With more time, this method 

could prove more successful than a static histogram and ought to be pursued.   
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Following segmentation of skin color, 

the mask is processed with 

thresholding and morphological 

filtering to reduce noise. This results in 

the connected components pertaining 

to the users hands.  The results of 

these processes are shown in Figure 

15.  The results of this process are not 

perfect.  In Figure 15, some of the 

hand’s shadow reflected on the 

tabletop surface is detected as skin.  

This false positive is acceptable, however, because later correspondence of cameras is 

unlikely to propagate the false positive into 3D. 

 

Fingertip Detection 

Detecting fingertips is a sub-problem of tracking hands overall, and so has a number of 

approaches in literature.  One popular method described by von Hardenberg & Bérard [11] 

refined an early fingertip detection method by Fukumoto et al [33].   Von Hardenberg's 

algorithm begins in a familiar way using background segmentation to identify a region of 

interest containing the user's hands.  The algorithm then processes the following steps: 

 

1. Determine a set of candidate points (somewhat spaced out to avoid duplicate 

matches for a finger). 

2. Define a circle of radius r around the candidate point; if the circle is filled with skin 

pixels, continue. 

3. Define a square around the candidate point, slightly larger than the circle from Step 

Two.  Count the number of skin pixels that lay on the perimeter of the square. 

Figure 15: Filtered Skin Detection 
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4. If the pixel count from step 3 is greater than a defined minimum threshold and less 

than a defined maximum threshold, the candidate point identifies a fingertip (Figure 

16.)  If the count is below the minimum threshold, it may be noise or poorly 

positioned; if the count is above the maximum, it may be the middle of a finger or 

the palm. 

 

This method has several advantages in that it 

precludes an additional hand search step and it can 

provide finger orientation information (depending on 

which part of the square perimeter matched skin 

pixels).  The authors also claimed it to be one of very 

few systems able to track several fingertips 

simultaneously.  As a result, this and similar methods 

were used in a number of successful projects such as [54], [24], [42], and [46]. 

 

However, this method is not sufficient for the AugmenTable project.  Von Hardenberg's 

system required the user to keep his or her hands at a relatively constant distance from the 

camera.  This criterion is necessary for the various finger size thresholds to be accurate. 

 However, the system described in this paper must support hands at a range of distances 

from the camera, anywhere from a few inches to several feet.  Burns & Mazzarino 

suggested that the finger size could be calculated as proportionate to the overall size of the 

hand [63].  However, this would require a relatively constant orientation of the hand to 

provide accurate relative measurements.  This requirement also renders this method 

unusable for this particular system. 

 

Other methods used to track fingers and fingertips include parallel edge detection with 

smooth gradient shading [31], reference templates similar to von Hardenberg’s [64], Hough 

circles [63], as well as subtracting the palm away from the hand through a series of 

Figure 16: Fingertip detection [11] 
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morphological operations [28].Many of these methods have similar restrictions as von 

Hardenberg’s. 

 

Instead, this system relies on an older 

method of contour detection.  OpenCV 

has a contour retrieval method based 

on the work of Suzuki and Abe [65]. 

 Using the binary image resulting from 

skin detection above, OpenCV 

determines the edges of all the binary 

shapes as a sequence of pixels.  In this 

particular case, the shape is assumed 

to be solid with no contour holes, so 

only the most extreme outer contours 

of the shapes are calculated.  After the outermost contours are detected, the pixel set is 

reduced to a set of polygon vertexes using the Douglas-Peucker (DP) approximation [66]. 

 The result of this approximation is shown in the Figure 17.  This method is similar to that 

used by Chen et al [22] for a model-

based hand system.   

 

As shown in Figure 18, the polygon 

approximation of a hand contour 

enables simple geometric 

identification of the finger tips.   To 

handle multiple hands, every contour 

above a size threshold is 

approximated with a polygon.  Each 

point in the polygon is tested to 

determine if the point is farther away from its polygon's centroid than the two points 

Figure 17: Polygon Vertex Approximation 

Figure 18: 2D Candidate Points 
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immediately next to it.  The points that pass this test are identified as candidate points. 

 

In other words, the process selects any convex points on the contour as a candidate 

fingertip.  Unfortunately, this can create false positives around the wrists and other knuckle 

bones.  These false positives are not unmanageable, though, due to the physical constraints 

of the apparatus used and the interaction design of the applications.  The user is not likely 

to attempt interacting with a virtual object with anything other than his or her fingertips. 

 False positives are not expected to cause undesired interactions. 

 

2D to 3D 

Once a set of two dimensional fingertip points have been identified, the next step is to 

calculate the three dimensional position of the fingertip.  The AugmenTable accomplishes 

this task through ray intersection.  During the initialization step described above, each 

camera identifies its position in space relative to an augmented reality marker.  With this 

information, and information about the intrinsic camera characteristics, a modelview, 

Figure 19: Ray-casting for 3D point calculation 
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projection, and viewport matrix are constructed for each camera. 

 

Using the camera’s matrices, the 2D candidate points are calculated at the near and far 

plane of the camera's view volume.  These two points are the endpoints of a ray segment 

that projects through the scene.  A ray is developed for every candidate point for every 

camera (see Figure 19.)   The apparatus is designed in such a way that the camera view 

volumes intersect to create the working volume behind the display. 

 

Epipolar geometry is often required to find the correspondence among cameras with 

different viewpoints (see [67] for a review).  However, as described in Software Libraries, 

the calibration of camera’s through ARToolkit provided an alternative means of acquiring 

correspondence without additional calculations.  

 

To calculate the 3D fingertip points, a separate 

intersection testing thread calculates how close 

each ray from each camera passes to all other 

cameras’ rays.  A mathematical explanation of the 

algorithm can be found in [68].   If two rays pass 

within a set threshold distance of each other, a 3D 

fingertip point is determined to exist at the 

midpoint of the shortest line segment between 

the rays.   Cross checking all rays has an algorithm 

complexity of O(ny) where y is the number of 

cameras, which is fairly poor performance.  However, the number of candidate points, n, is 

strictly limited to the number of convex skin points in the camera's view.  This number could 

be as much as forty, but in practice the number is typically less than 10.  The number of 

cameras is also expected to be low.  As a result, these calculations do not consume 

significant processing resources. 

Figure 20: Closest distance between 3D lines [68] 
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Currently, this system uses a threshold of 4 mm to determine if a pair of rays intersects. 

 Ideally, the system would only consider rays that intersect with a ray separation distance of 

0.  However, two factors limit the accuracy of the intersections and thus require a bit of an 

error envelope.  First, depending on the angle of the camera relative to the hand, cameras 

may see the tip of a finger in a slightly different position than the others.  At some angles, 

the edge of the finger appears to be on the side of the finger; at others, it appears to be 

directly on the finger tip.  Second, camera calibration involves a series of matrix calculations 

that can be prone to propagating minor errors (which unfortunately result from ARToolkit’s 

tracking.)  These errors can affect the precision of the camera measurements and result in 

slightly inaccurate ray calculations.   A threshold of 4 mm prevents an unacceptable number 

of false negatives. 

 

This threshold is minimized, though, to reduce the number of false positives.  As the 

number of rays crossing a limited volume increases, so does the likelihood of random 

intersections.  The system does not limit the number of points a single ray can identify to 

account for the possibility of one finger occluding the other.  However, this allowance 

means that if a camera identifies a candidate point at or near the position of another 

camera, it can create false positive 3D points.  When made visible, these points can obscure 

the view of the scene, but they do not have much of a significant effect on interaction. 

 False positive points far from the actual fingertips are typically out of the way and fleeting 

enough to not noticeably affect interaction with objects. 

 

False positive points can and do occur, however, very close to the real fingertips.  These 

points are dealt with through a tracking system that coordinates how to remember which 

fingertip is which frame to frame. 
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Tracking and Filtering 

Tracking and filtering are topics as old as computer vision itself.  Naturally, a number of 

algorithms and techniques have been explored, each with strengths and weaknesses. 

 Tracking is a difficult problem comprised of sub-problems including identification, 

prediction, non-linear behavior, and interruption (through occlusion or other reasons).  The 

solutions to these problems often have to balance complexity and resource requirements 

with robustness and accuracy.  

Most AR+gesture systems track only the hand without attention to fingers.  These systems 

use a variety of established tracking algorithms such as optical flow in [60] and [43], 

MeanShift and continuously adaptive MeanShift in [57] and [69], the Viola-Jones tracking 

algorithm in [47] and [29],the KLT tracking algorithm in [62] and [51], and the more recent 

SIFT/SURF techniques [43] or condensation algorithms [70].  These algorithms, though 

powerful, are unable to track an arbitrary, changing number of objects – like the number of 

fingertips visible to a camera. 

 

Fingertip tracking as a topic does not attract the same interest as the broader problem of 

hand tracking, though many of the same issues apply.  Since this system is intended for 

natural object manipulation, the only features necessary to track were individual fingertips.  

Hand orientation information was not necessary.  Two methods are popular in literature for 

tracking individual points: Kalman filtering and particle filtering. 

 

A Kalman filter creates a (typically linear) model of a point and its movements [71].  The 

filter creates a prediction of the point’s movement based on the model and is iteratively 

updated based on the measurement of the point’s actual movement.  Kalman filters are 

appropriate when the error in the measurements are Gaussian, but otherwise tend to make 

erroneous predictions.  This method has been proven to be useful for tracking a marked 

finger in stereoscopic environment [72].   
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Kalman filters are considered “single hypothesis” filters, meaning the filter has only one 

guess about where the tracked point could be.  Multiple hypothesis filters exist, most 

notably particle filters.  Particle filters create recursive, Bayesian estimates of particles 

based on measurements and are suitable for tracking points that may have multiple likely 

positions at a given time.  Particle filters have been used for hand tracking by [26], [27], 

[73], [74], and [69]. 

 

At first glance, it would seem that particle filters are more appropriate for this system 

because it has to track multiple fingertips through motion that is not linear and unlikely to 

have Gaussian measurement errors.  However, particle filters require significantly more 

computing power to run.  To ensure real-time or near real-time processing speeds and to 

reduce complexity, this system employed a form of Kalman filtering. 

 

Tracking is currently paired with 

intersection calculation in an 

independent thread.  As 

previously described, the 

tracking system receives 3D 

points representing fingertips 

each update.  These points may 

include clusters of false positives 

around the fingertips.  To 

eliminate as many false positives 

as possible, all points within 

three centimeters are merged 

together into one average point.  Three centimeters is acceptable because the system does 

not currently support any interactions of fingers pressed together and three centimeters is 

a distance of slightly spaced apart fingers on an average hand. 

Figure 21: Stable, Tracked Points 1 
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The tracking algorithm maintains a vector of tracked points and velocities.  Each iteration, 

every point is updated with its linear velocity vector.  The updated points are then paired 

with candidate points based on shortest geometric distance.  That is, the system determines 

the closest pair of tracked and current points.  The tracked point and velocity are updated 

based on the new point using a moving average calculation.  Thanks to a relatively small 

number of points and the thread’s processing speed, a 20 frame moving average is 

calculated without noticeable lag.  The updated points are then removed from the lists.  

This process continues until all tracked points or all detected points have been updated. 

 

Tracked points that do not find a 

candidate point for updating are 

left as-is and allowed to persist 

for up to 15 frames without an 

update.  If no update is found at 

that point, the tracked point is 

removed from the system.  

Candidate points that are left 

over without a corresponding 

tracked point are added to the 

vector of tracked points for 

future iterations. 

 

This system provides acceptable tracking of fingertip points.  In parallel, a list of indices to 

tracked points is maintained such that the main application thread can track individual 

tracked points, enabling interactions like translation and rotation using the fingertips. 

 

Figure 22: Stable Tracked Points 2 
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The tracking system is not 

perfect, however.  False 

positives still remain and can 

persist for 15 frames at a time.  

Rapid movement can create 

false positives which then 

persist.  Fortunately, the tracked 

velocity of these points tends to 

be high, removing them from 

the area of interaction quickly.  

Perhaps surprisingly, the 

Gaussian noise sensitivity of 

Kalman filters does not seem to be a problem.  OpenCV has an implementation of Kalman 

filters and was tested and found to be very jittery and noisy.  In contrast, the system’s 

current tracking system does not have significant difficulty with changes in momentum or 

direction. 

 

This Kalman-like tracking system is fundamentally similar to a method described by Argyros 

and Lourakis [75].  Argyros & Lourakis developed a system using adaptive skin histograms 

and blob tracking which used iteratively updated hand position hypotheses to follow the 

hands.  Their hypotheses in turn were robust against changes in momentum and even 

occlusion.  Further improvements to this system’s tracking could be to more fully 

implement Argyros & Lourakis’ statistical tracking methods.  Another avenue of 

improvement would be to test the precision and computing requirements of particle filters. 

 

Occlusions and the Illusion of Depth 

As discussed under Previous Work, the occlusion of objects in space is an important sensory 

cue for determining the depth of a scene.  Given the AugmenTable’s current lack of haptic 

Figure 23: Overlapping 3D False Positives 
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feedback or shadow cues, it was important to develop a means for the user to identify his 

or her hand position relative to the virtual objects in the workspace.  The method 

developed works as follows. 

 

In the contour detection step of identifying hands, the system creates a list of all contour 

bounding rectangles for each camera.  When a camera is selected as the active view, this list 

of rectangles is imported into the main scene creation thread.  Each frame, the 3D detected 

points within the scene are transformed back into the 2D plane and tested to see if they fall 

within any of the camera’s contour rectangles.  If they do, their depth value is averaged and 

applied to the contour rectangle image. 

Figure 24: Occlusion of Virtual Objects 
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With the average depth value of the rectangle, the rectangle’s corner points undergo the 

reverse transformation to render the 2D points in 3D.  An OpenSceneGraph rectangle object 

is then created in the scene.  Finally, the skin color mask created in the camera’s image 

processing is used to create a transparent texture that shows the user’s hand within the 

rectangle but allows the scene behind the rectangle to be visible around and through the 

user’s fingers (Figure 24.)  The AugmenTable’s PC is fast enough to allow this to run at close 

to real time speeds. 

 

Close, though, is not fast enough.  Additionally, there is some artifacting that results from 

applying the 2D texture of a hand to a 3D dimensional rectangle.  As a result, the occlusion 

is functional but not optimal.  Future refinement may yield a better occlusion rendering 

system.  

 

Since speed is critical, an alternative is to not render the hands as occluding planes, but to 

instead display small spheres where fingerpoints are detected.  These spheres are then 

culled and positioned accurately within the scene and can be used to infer the depth of the 

fingertips.  This is not as intuitive as visual hand occlusion, but the simplicity of this method 

results in a much faster update rate for the scene geometry.  Further testing is necessary to 

determine which method may be more preferable to users.
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Chapter Four: Application & Discussion 

Tracking unmarked fingertips in an augmented reality environment offers a number of 

opportunities as well as challenges in developing interactions and applications.  A number 

of interactions have been explored in the cases of marked or similarly tracked hands and 

when using an individual unmarked finger, as previously described.  Many of these 

interactions, such as 3D drawing using a fingertip, are interesting demonstrations of 

technology, but this system has been designed with a more industrial usage in mind.  I’ve 

attempted to design the application described here to reflect this. 

 

Object Manipulation Prototype  

This prototype provides a means of manipulating a virtual object through selection, 

translation, rotation, and scaling widgets.  As shown at left, a virtual object exists within the 

augmented reality workspace.  This object can be any lightweight model supported by 

OpenSceneGraph.  A user may 

reach into the space and select 

the object by "touching" it with his 

or her finger.  Since the object is 

not real, there is no haptic 

response.  Instead, when an 

intersection of the object and 

fingertip is detected, a 

manipulation widget appears 

(Figure 26.)  This manipulation 

widget expires after a set period 

of time if the user does not 

interact with it.   

 

Figure 25: Object Translation and Rotation 
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After selection, the user modifies his or her hand posture to extend any two fingers into the 

spherical ends of the manipulator widget.  When a fingertip is within both spheres, the 

spheres turn red and "lock" onto the user's fingertips.  The widget supports translation and 

rotation.  The user can move his or her hand anywhere within the volume and the object 

will track with it.  This interaction can handle fairly rapid hand motions.  If the user rotates 

his or her fingers, the locked object is also rotated in kind.  With only two points, the user 

cannot rotate the object about the axis of the two points.  However, this can be worked 

around by an intermediate rotation to change the axis of the fingertips.  To stop the 

translation/rotation mode, the user can break the lock by moving his or her fingers in or out 

along the two sphere axis. 

 

The application features an additional 

cube in the scene that functions as a 

button.  When the user “presses” the 

button, it changes color to indicate the 

engagement of scaling mode.  Now, when 

a user intersects a scene object, the 

manipulator widget appears to provide a 

scaling interaction.  In this case, the user 

locks his or her fingers into the 

manipulator spheres as before.  The user 

can then move his or her fingers along the axis of the two spheres to enlarge or shrink the 

object model.  This interaction mode is broken by making a translation or rotation style 

gesture, removing the fingers from the spheres. 

 

As noted in the previous work section above, the use of 3D control widgets has not been 

well explored in literature.  3D widgets were described fairly early by Mine [37], but the 

only authors that used them in any way were Dachselt and Hinz [76].  As far as I am aware, 

Figure 26: Virtual Button Press 
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the uses of 3D widgets in this application to translate, rotate, and scale an object through 

direct superposition and control is unique. 

 

 

The advantage of this application is 

direct object manipulation.  Though 

there is an intermediate widget between 

the user and the object, the user rotates 

both the widget and object by rotating 

his or her hand, moves with his or her 

hand, and scales by spacing his or her 

hands apart.  This interaction is one step 

closer to holding an object and playing 

with it than previously seen.  A user 

study to evaluate the learnability of this 

theoretically more "natural" gesture compared to learning the manipulation techniques 

required in most CAD design packages would be illuminating. 

 

This application also shows the limitations of the interaction design as well.  Rotation with a 

hand is very simple only within a certain range of motion.  This is due to the kinematic 

limitations of the wrist joint and the rotation of the forearm.  In normal tool use, humans 

work around these limitations by positioning their arm through the shoulder and even body 

position.  The apparatus for this system, however, expects a specific orientation of the user 

(sitting or standing facing the screen) which limits the freedom of movement to the elbow 

and above. 

 

Other restrictions can be observed from the limitations of the system.  For one, the space a 

user can move objects around in is limited to the volume that is intersected by more than 

one camera's field of view.  Unfortunately, there currently are no cues to inform the user 

Figure 27: Object Scaling 
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where the boundaries of this volume are.   Another is that if the hand occludes itself in 

certain angles of rotation, fingertip tracking can be lost.  These problems are common to 

nearly all hand tracking systems, and one credible solution is to increase the number of 

cameras at various angles of view.  As this incurs a resource cost on the operating PC, a 

more common solution is to limit or otherwise design the interaction gestures around the 

constraint. 

 

One possible solution for dealing with this limitation is to provide a widget control for the 

entire scene.  This would enable the user to adjust the scale of the scene to enable him or 

her to utilize the entire working volume as well as shrink too-large scenes.  It would also 

provide a means of changing the user’s perspective of the scene.  This solution has not yet 

been implemented. 

 

Despite the limitations, this prototype application implies a number of interesting 

interactions.  Object manipulation can also be applied to virtual controls such as sliders, 

knobs, or levers.  The AugmenTable is designed to support exploring and researching 

interaction through virtual widgets and without. 

 

Discussion 

Computer vision is a vast and complicated field.  It's a field that is characterized by strong 

imagination to envision the ways computers ought to see, myriad arcane techniques to 

accomplish it, and results that are seldom as compelling as the original vision.  In that 

respect, this project was no different.  This section will discuss some of the realized 

benefits, some shortcomings, and the future work that could dramatically extend the 

system's capabilities. 
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Realized Benefits 

Originally, the vision for this project was for a person to reach out a hand and move and 

inspect a virtual object in a work environment.  The large majority of this vision has been 

realized.  A user can walk up to the apparatus, reach under and behind the display and 

manipulate virtual objects and real objects side by side with only his or her bare hands.  As 

discussed above, this is a rare accomplishment yet today.  Most interactions require some 

mediating technology like colored gloves, accelerometers, fiducial markers, or other even 

more conspicuous equipment.  What’s more, the system can recognize an arbitrary number 

of hands or fingers so long as occlusions are addressed with improved camera coverage.  

This is also uncommon with the comparable systems. 

 

The AugmenTable also proves successful in realizing a believable mixed reality environment.  

Through the use of visual display, hand obfuscation, occlusion, and some quasi-haptic 

feedback (as provided by the tabletop surface,) the system provides a suspension of 

disbelief about the nature of the virtual objects within the workspace scene.  This 

suspension is not complete.  A user still has to use a constructed interaction technique to 

manipulate virtual objects, but it can be effective. 

 

One benefit is the low price tag.  All of the hardware used is commonly accessible and 

inexpensive.  Custom or expensive components (and the algorithms that rely on them) were 

purposefully avoided.  The largest expense in the project is the multi-core workstation PC. 

 Similarly, all of the software libraries used are open source and freely available.  Total 

hardware costs are less than $4,000 today and the software only had personal time as an 

expense. 

 

Research Contributions 

This system exemplifies a few novel ideas within the augmented reality research field.  One 

is a novel apparatus that expands the common mobile, hand-held window metaphor into a 
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large-scale desktop system.  This scaling of the AR window begins to take on characteristics 

of the more immersive HMD setup by expanding the view to encompass more of the user's 

field of vision and allowing the placement of the user's body (in this case hands and arms) 

within the AR environment.  Like an HMD, this setup acts as an intermediary between 

reality and the user's vision, enabling more rich mixed reality experiences, but without the 

added steps of donning an uncomfortable head-mounted piece of hardware.  This has 

proven to be an advantage in demonstrating the system’s capabilities.  The apparatus was 

set up at a conference alongside a typical HMD system and received noticeably more 

attention and use. 

 

This AugmenTable also features minor innovations in creating interaction styles based on 

the tracking of an arbitrary number of hands/fingertips in a specified volume.  Though bare-

handed finger interactions have been developed and described above, only one other 

system manipulates the virtual objects through use of intuitive 3D widgets.  The barbell-

shaped widget used in the prototype application allows for comfortably controlling many 

differently sized or shaped objects with whichever hand(s) and fingers the user prefers.  The 

scope of this project, however, was insufficient to provide a study of the interaction 

techniques and compare their intuitiveness or learnability to other methods. 

 

Challenges 

The process of developing the system described here featured several surprises.  First and 

foremost was the plethora of computer vision techniques to accomplish a given task. 

 Tracking of hands has been done in numerous ways (as shown in the Method section) with 

algorithms of varying levels of complexity.  In most cases, I selected methods for their 

computational efficiency when possible.  An important goal was to have real time 

interaction that could follow human movements at speed.  This required light weight 

algorithms that would not slow processing down too much.  Even with this intent the 

application requires relatively powerful off-the-shelf hardware to run well in real time.  In 
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the end, almost 20 variations of the system’s code were developed to test assorted 

algorithms and techniques. 

 

By far, the most challenging aspect of developing this system was the selection and fine-

tuning of a tracking algorithm.  Originally, Kalman filtering was selected due to its relative 

simplicity and for the built-in functionality for such tracking in OpenCV.  Kalman filtering 

was applied to the three-dimensional fingertip points, but several rounds of tweaking were 

unable to result in tracked points stable enough to use for interaction.  A second attempt 

was made to simplify the information being tracked by creating a hand data structure that 

stored all points relative to each identified hand's center of mass.  This encoding did not 

enable sufficient tracking accuracy as well.  A third revision was attempted to move the 

tracking of points upstream into the 2D processing.  This had better results for accuracy but 

dramatically reduced the operating speed of the processing threads. 

 

As noted before, part of the difficulty lay with the managing OpenCV’s implementation of 

Kalman filters.  This implementation expects measurement updates to occur at set intervals. 

 However, as the number of points being processed varies from zero to many, the amount 

of time the intersection and merging process takes varies.  This variability resulted in 

fluctuating velocity of tracked points that rendered the output too jittery for interaction. 

 

This problem was addressed by parsing out the steps of a Kalman filter into a more step-by-

step moving average process as described in Tracking and Filtering.  In this way, the Kalman 

filter is integrated directly into the calculation thread and is more adaptable to fluctuations 

in update rates due to processing burdens.  The tracking system was also made much less 

susceptible to erroneous measurements by dramatically increasing the weighting of the 

average measurement compared to the most recent update by a ratio of 20:1. 

 Unfortunately, the tracking system is not perfect and can lose the fingertips in motion in 

favor of false positives.  This problem merits further work and examination. 
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Overall, the project was successful at realizing its goals, but time constraints prevented the 

level of testing and exploration of alternative algorithms and techniques that would have 

ensured the best possible product.  The lessons learned throughout the development of this 

system, though, have yielded a number of strong contending ideas to improve the system 

significantly. 

 

System Limitations 

Many limitations implicit in the system have already been noted: a restricted actionable 

volume, limited movement due to kinematic restrictions of the human hand and arm, and 

others.  The system’s occlusion is only an approximation of hand position and does not 

calculate individual finger occlusions.  Additionally, the angle of view provided to the user 

can result in difficulty evaluating the position of the interface widgets when user rotation 

causes it to be occluded by other virtual objects or itself.   Finally, the tracking method is not 

perfect and still results in false positives, some jitter, or missed fingertips.   

 

In Comparable Systems, I discussed the limitations of several AR environments that had 

similar goals to the AugmenTable’s.  One limitation was the adaptability of pose recognition 

systems: pose recognition systems require statistical training and do not allow arbitrary 

gestures.  Unfortunately, the current incarnation of the AugmenTable suffers the same 

limitation through use of predefined 3D widgets.  This limitation and others, however, can 

be addressed through suggestions presented under Future Work. 

 

Future Work 

This section describes some of the improvements and future work that could extend the 

capabilities of the AugmenTable.  These improvements are divided into three general 

categories of Applications, Apparatus, and Concept. 



50 

 

 

Application 

First and foremost future work would be the refinement and improvement in the tracking 

accuracy.  More advanced detection and tracking methods such as adaptive histograms and 

particle filters require greater computational resources, but offer statistical inference as a 

tool to more accurately predict and update measurements of fingertips in stasis as well as in 

motion.  These methods merit further research to enable an interaction that reacts 

consistently to user input across gestures, angles, and lighting conditions. 

 

The intuitive aspects of the prototype applications can be improved upon by the addition 

and extension of realistic (or at least intuitive) physics.  Elements of gravity would add to 

the immersiveness of the applications and enable both fun and practical interactions. 

 Similarly, giving objects a level of mass or inertia (like that seen in the multitouch swipe 

gestures of interfaces such as the iPad) can increase the power of gestures without reducing 

the benefits of direct manipulation.  Physics and mass would enable another set of 

interactions such as pinch, bump, and momentum transfers.  More broadly, physics could 

possibly be extrapolated to creating shadows of objects that would provide an additional 

depth cue and increase the melding of virtual and real within the workspace.  Finally, 

physics provides an overall expectation of interaction.  Users are accustomed to the physical 

world where objects behave in a reliable manner due to the laws of physics.  With a 

software physics engine, a similar expectation is created in a virtual environment.  This 

expectation allows users to more easily extrapolate real actions to virtual actions.  Physics is 

therefore a significant step to opening an augmented reality to arbitrary object 

manipulation without intermediary widgets. 

 

That said, it is important that the value of the current and future interactions is proven 

against that of existing methods.  To this end, a user based study of interactions of different 

augmented reality systems should be conducted.  This study could evaluate the practicality, 
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usability, learnability, and overall satisfaction of manipulating virtual and/or real objects 

with a variety of tools and techniques.  

 

The capabilities of the application could also be extended through using a gesture 

classification system.  The tracking of the finger points currently performed by the system 

could be used as gestural inputs to a pose recognition system similar to those described 

under Previous Work.  This would provide both object manipulation and command/control 

functionality to the user. 

 

Apparatus 

In the introduction, I mentioned several technological trends which are rapidly being 

shaped by the cutting edge of technology.  This system apparatus also could benefit from a 

number of additional advanced technologies.  For instance, 3D displays are coming onto the 

market in 2010.  The thin display here could be replaced with a 3D capable display and 

provide stereo perception to improve the immersiveness.  Another possible display change 

would be swapping the simple display with a multitouch display.  This could enable a 

mixture of 2D and 3D control of virtual objects and interfaces.   

 

One possibility would be to add a forward facing camera that provides face tracking of the 

user.  Face tracking can enable changing the perspective of the display in order to provide 

correct occlusion of objects relative to the user's perspective.  This creates a much greater 

three dimensionality effect than stereo display alone, and is much cheaper than the nascent 

3D monitor technology. 

 

Concept 

All of the above ideas would add to the immersiveness or practical capabilities of the 

system.  A more compelling line of inquiry, though, is rethinking the entire method of 
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tracking fingertips in favor of creating a 3D representation of the entire hand.  Such a 

representation would render fingertip tracking unnecessary and enable a host of natural 

interactions like grabbing, pinching, flicking, and more.  A model of the hand in space would 

also simplify and dramatically improve the rendering of hand/object occlusion in the 

workspace.  A 3D representation would thus solve the two thorniest problems of this 

system. 

 

A number of methods exist that could enable 3D structure of hands.  The simplest (and 

therefore least accurate) would be to extrapolate the contour detection method described 

above to "carve" the entire contour out of space.  As each camera carves out the negative 

spaces between contours, the remainder is a blocky approximation of the hand.  It would be 

sensitive to hand occlusions, but with enough camera coverage it could provide better 

sensing of the hand than the current method.  This method was used with success by 

Schlattman and Klein [39]. 

 

A number of other more powerful (and complicated) methods exist in literature.  Structured 

light has been used to identify 3D surfaces at a high resolution (for example, in [77]), though 

at high computational cost.  Inverse kinematics, the process of matching an approximation 

of the human hand skeleton to a tracked hand image, is another well-researched method 

for creating and positioning a hand model in space.  Erol et al review a number of papers 

that utilize inverse kinematics in a pose estimation context [20].  Finally, the present 

method could be replicated in part with depth sensing webcams such as the 3DV ZCam (or 

possibly the upcoming Xbox Natal camera).  If the time-of-flight infrared cameras can 

coexist within a viewing volume, the depth maps could be used to recreate the hand with 

decent resolution.  The resulting meshes could be combined into an articulated model using 

methods described in [78].   

 

Each of the alternatives described here may require significant computing power to enable 

interactions in close to real time, but the simplification of hand positioning and interaction 
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in the scene would create a truly new augmented reality experience.  Moreover, this list is 

not exhaustive; new methods of inferring three dimensions from two are frequently 

developed.  I believe that an augmented reality environment such as the AugmenTable will 

become much more valuable to end users when the hand is recognized and recreated in the 

virtual space and can fully interact with the scene. 
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Chapter Six: Conclusion 

This project successfully realized recognition of unmarked, unencumbered hands towards 

integration with virtual objects in a novel augmented reality workspace.  It combined a 

number of well established computer vision algorithms with a new interaction metaphor of 

superimposed, hand-sized widgets and unique apparatus.  These interactions enable 

manipulating virtual objects and controls and can provide an advanced experience for 

conceptual design or play.  Despite this success, the AugmenTable has not been perfected.  

It has many avenues for advancement including 3D immersion, multitouch, and structured 

hand models.  These improvements can increase the accuracy, immersiveness, and 

potential interactions of the system. 

 

 

 

This research was funded through a grant from Rockwell-Collins Inc. 
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Appendix: Project Source Code 

 

Background.h 
 

#ifndef __OPENCV200 

 

 #include <opencv/cv.h> 

 #include <opencv/cxcore.h> 

 #include <opencv/highgui.h> 

 

 #define __OPENCV200 

 

#endif 

 

#include <math.h> 

 

#ifndef __BACKGROUNDSEGMENT 

 

#define __BACKGROUNDSEGMENT 

 

#define BACKGROUND_THRESHOLD 16 

 

void getForegroundMask(IplImage*, IplImage*, IplImage*); 

void getForegroundMask1(IplImage*, IplImage*, IplImage*); 

void getForegroundMask2(IplImage*, IplImage*, IplImage*); 

 

#endif 

 

Background.cpp 
#include "Background.h" 

 

void getForegroundMask(IplImage *imgNew, IplImage *imgBackground, 

IplImage* imgOut) { 

 getForegroundMask1(imgNew, imgBackground, imgOut); 

} 

 

void getForegroundMask1(IplImage *imgNew, IplImage *imgBackground, 

IplImage* imgOut) { 

 

 // Manual background separation 

 // Assume that imgNew and imgBackground are similarly sized 

 // Tried HSV for segmentation, but BGR seems to work much 

better...hmm. 

 

 

 int width = imgNew->width; 

 int height = imgNew->height; 

 int widthStep = imgNew->widthStep; 



63 

 

 int channels = imgNew->nChannels; 

 

 for(int i = 0; i < height ; i++) { 

  for(int j = 0; j < width; j++) { 

 

   // This is crap, see if you can improve it. 

   int b = (int)((uchar *)(imgNew->imageData + 

i*widthStep))[j*channels] - (int)((uchar *)(imgBackground->imageData + 

i*widthStep))[j*channels]; 

   int g = (int)((uchar *)(imgNew->imageData + 

i*widthStep))[j*channels+1] - (int)((uchar *)(imgBackground->imageData 

+ i*widthStep))[j*channels+1]; 

   int r = (int)((uchar *)(imgNew->imageData + 

i*widthStep))[j*channels+2] - (int)((uchar *)(imgBackground->imageData 

+ i*widthStep))[j*channels+2]; 

 

   if(  (abs(r) > BACKGROUND_THRESHOLD) || (abs(g) > 

BACKGROUND_THRESHOLD) || (abs(b) > BACKGROUND_THRESHOLD) ) { 

    cvSetReal2D(imgOut, i, j, 255); 

   } else { 

    cvSetReal2D(imgOut, i, j, 0); 

   } 

  } 

 } 

} 

 

void getForegroundMask2(IplImage *imgNew, IplImage *imgBackground, 

IplImage* imgOut) { 

 

 // OpenCV differencing and thresholding 

 

 IplImage* tmp = cvCreateImage(cvSize(imgNew->width, imgNew-

>height), imgNew->depth, imgNew->nChannels); 

 

 // Find the differences between frames 

 cvAbsDiff(imgNew, imgBackground, tmp); 

 cvCvtColor(tmp,imgOut, CV_BGR2GRAY); 

 cvThreshold(imgOut, imgOut, BACKGROUND_THRESHOLD, 255, 

CV_THRESH_BINARY); 

 //cvAdaptiveThreshold(imgOut, imgOut, 255, 

CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, 3, 5); 

 

 // Use morphology to reduce noise 

 cvErode(imgOut, imgOut, NULL, 1); 

 cvDilate(imgOut, imgOut, NULL, 1); 

 

 cvReleaseImage(&tmp); 

} 
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Cam.h 
 

#include <stdio.h> 

#include <process.h> 

#include <windows.h> 

#include <stdlib.h> 

#include <vector> 

 

#ifndef __OPENCV200 

 

 #include <opencv/cv.h> 

 #include <opencv/cxcore.h> 

 #include <opencv/highgui.h> 

 

 #define __OPENCV200 

 

#endif 

 

#ifndef __AR 

 #include <GL/gl.h> 

 #include <GL/glut.h> 

 

 #include <AR/gsub.h> 

 #include <AR/gsub_lite.h> 

 #include <AR/video.h>   // Needed? 

 #include <AR/param.h> 

 #include <AR/ar.h> 

 #include <AR/arMulti.h> 

 

 #define __AR 

#endif 

 

#include <osg/Camera> 

#include <osg/Matrix> 

 

 

#include "Background.h" 

#include "Fingerpoint.h" 

 

#define M_PI 3.14159265358979323846 

 

#ifndef __CAM 

 

#define __CAM 

 

class Cam : public osg::Camera { 

 

 public: 

  Cam(); 

  Cam(int); 

  ~Cam(); 
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  static unsigned __stdcall threadedEntry( void *pThis) { 

   Cam * pCam = (Cam*)pThis; 

   pCam->threadProcess(); 

   return 1; 

  } 

   

  void threadProcess(); 

   

  void resetBackground(); 

   

  void setKey(int key) { 

   //EnterCriticalSection( &m_CriticalSection ); 

   intKey = key; 

   //LeaveCriticalSection( &m_CriticalSection ); 

  } 

 

  void resetCamMatrix() { 

   initCamMatrix(); 

  } 

 

  void getCrit() { 

   EnterCriticalSection( &critCandidates ); 

  } 

 

  void releaseCrit() { 

   LeaveCriticalSection( &critCandidates ); 

  } 

 

  IplImage *imgOutput; 

  cv::Mat imgForeMask; 

 

  std::vector<cv::Rect> vOutRects; 

  std::vector<cv::Mat> vOutROI; 

 

  std::vector<osg::Vec3> vNear; 

  std::vector<osg::Vec3> vFar; 

 

  osg::Matrix matView; 

  osg::Matrix matInvView; 

  osg::Matrix matProjection; 

  osg::Matrix matViewport; 

 

 

 private: 

  CvCapture* vid; 

  int intCamera; 

  int intKey; 

   

  void initialize(); 

  void initCamMatrix(); 

  void updateCamMatrix(); 
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  // Working images 

  IplImage *imgInput; 

  IplImage *imgSmallInput; 

  IplImage *imgBackground; 

  IplImage *imgForeground; 

  IplImage *imgMask; 

 

  cv::Mat imgA, imgB, imgC; 

 

  int intImageWidth; 

  int intImageHeight; 

  int intImageDepth; 

  int intNear; 

  int intFar; 

 

  // Multithread via critical section 

  CRITICAL_SECTION critCandidates; 

  CRITICAL_SECTION critOutput; 

  CRITICAL_SECTION critForeground; 

 

  // AR Toolkit parameters - should rename to match my 

convention 

  int intTargetID; 

  double dblTgtCenter[2]; 

  double dblTargetWidth; 

  int intThreshold; 

 

  ARMultiMarkerInfoT  *config; 

 

  double dblTransform[3][4]; 

  double dblProjection[16]; 

 

  std::vector<cv::Mat> vROI; 

  std::vector<cv::Rect> rects; 

 

 

  // Histogram variables 

  int hbins, sbins;    // Number of levels to 

quantize to. 

  int histSize[2]; 

  float hranges[2];      // hue varies from 0 to 179, see 

cvtColor 

  float sranges[2];   // saturation varies from 0 

(black-gray-white) to 255 (pure spectrum color) 

  const float* ranges[2]; 

  int channels[2];    // we compute the 

histogram from the 0-th and 1-st channels (hue and saturation) 

 

  cv::MatND histSkin, histNotSkin; 

  double dMaxSkin, dMaxNotSkin; 

 

  void initHist(); 
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  void updateHist(cv::Mat *, cv::Mat *); 

 

}; 

 

 

 

#endif 

 

Cam.cpp 
#include "Cam.h" 

#include <time.h> 

 

Cam::Cam() { 

 intCamera = 0; 

 initialize(); 

} 

 

Cam::Cam(int value) { 

 intCamera = value; 

 initialize(); 

} 

 

void Cam::initialize() { 

  

 // Initialize crit section 

 InitializeCriticalSection(&critCandidates);  

 InitializeCriticalSection(&critOutput); 

 InitializeCriticalSection(&critForeground); 

 

 // Open camera feed 

 vid = cvCaptureFromCAM(intCamera); 

 if(!vid) 

    { 

  printf("Could not access camera %d.\n", intCamera); 

        exit(0); 

    } 

 

 // Set resolution 

 cvSetCaptureProperty( vid, CV_CAP_PROP_FRAME_WIDTH, 800); 

 cvSetCaptureProperty( vid, CV_CAP_PROP_FRAME_HEIGHT, 600); 

 cvSetCaptureProperty( vid, CV_CAP_PROP_FPS, 30); 

 

 // Get frames from camera to allow for focus/aperture adjustment? 

 imgInput = cvRetrieveFrame(vid); 

 intImageWidth = imgInput->width; 

 intImageHeight = imgInput->height; 

 intImageDepth = imgInput->depth; 

 

 // Set working images 

 imgSmallInput = cvCreateImage(cvSize(imgInput->width/2, imgInput-

>height/2), imgInput->depth, imgInput->nChannels); 
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 cvPyrDown(imgInput, imgSmallInput, CV_GAUSSIAN_5x5); 

 

 imgBackground = cvCreateImage(cvSize(intImageWidth/2, 

intImageHeight/2), imgInput->depth, imgInput->nChannels); 

 imgForeground = cvCreateImage(cvSize(intImageWidth/2, 

intImageHeight/2), imgInput->depth, imgInput->nChannels); 

 imgMask = cvCreateImage(cvSize(intImageWidth/2, 

intImageHeight/2), imgInput->depth, 1); 

 imgOutput = cvCreateImage(cvSize(intImageWidth, intImageHeight), 

imgInput->depth, imgInput->nChannels); 

 //imgForeOut = cvCreateImage(cvSize(intImageWidth, 

intImageHeight), imgInput->depth, imgInput->nChannels+1); 

 

 imgA = cv::Mat(intImageHeight/2,intImageWidth/2, CV_8U); 

 imgB = cv::Mat(intImageHeight/2,intImageWidth/2, CV_8U); 

 imgC = cv::Mat(intImageHeight/2,intImageWidth/2, CV_8U); 

 

 

 initCamMatrix(); 

 

 //expose imgoutput for background initialization 

 cvCopy(imgInput, imgOutput); 

 

 // Set background image 

 cvPyrDown(imgInput, imgBackground,CV_GAUSSIAN_5x5); 

 

 //std::stringstream s; 

 //s << "Cam" << intCamera; 

 //cv::namedWindow(s.str(), 1); 

 

 // Histogram setup 

 hbins = 32, sbins = 32;      // 

Number of levels to quantize to. 

 histSize[0] = hbins, histSize[1] = sbins; 

 hranges[0] = 0, hranges[1] = 256; 

 sranges[0] = 0, sranges[1] = 256; 

 ranges[0] = hranges, ranges[1] = sranges; 

 channels[0] = 0, channels[1] = 1;    // we compute 

the histogram from the 0-th and 1-st channels (hue and saturation) 

 

 initHist(); 

 

 

} 

 

Cam::~Cam() { 

  

 // Release AR resources? 

    argCleanup();   //close out gsub resources - not sure if 

necessary???? 
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 // Release images 

 cvReleaseImage(&imgSmallInput); 

 cvReleaseImage(&imgBackground); 

 cvReleaseImage(&imgForeground); 

 cvReleaseImage(&imgMask); 

 cvReleaseImage(&imgOutput); 

 

 // Release capture 

 cvReleaseCapture(&vid); 

 

 cvDestroyAllWindows(); 

 

 // Release crit section 

 DeleteCriticalSection(&critCandidates); 

 DeleteCriticalSection(&critOutput); 

 DeleteCriticalSection(&critForeground); 

 

} 

 

void Cam::resetBackground() { 

 cvPyrDown(imgInput, imgBackground,CV_GAUSSIAN_5x5); 

} 

 

void Cam::initCamMatrix() { 

 // Uses AR toolkit to establish camera position matrix 

  

 ARParam arpInitialParam; 

 ARParam arpCameraParam; 

 

 // initialize global ar vars 

 intThreshold = 100; 

 dblTgtCenter[0] = 0.0; 

 dblTgtCenter[1] = 0.0; 

 dblTargetWidth = 80.0; 

 

    // Set the initial camera parameters 

    if( arParamLoad("trial2-3.dat", 1, &arpInitialParam) < 0 ) { 

       printf("Camera parameter load error !!\n"); 

        exit(0); 

    } 

 

 // Adjust parameters 

    arParamChangeSize( &arpInitialParam, intImageWidth, intImageHeight, 

&arpCameraParam ); 

    arInitCparam( &arpCameraParam ); 

 

 // Load pattern 

    if( (intTargetID = arLoadPatt("Patterns\\patt.kanji")) < 0 ) { 

        printf("Target pattern load error!!\n"); 

        exit(0); 

    } 
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 // Run the camera for 60 frames to gain an average position of 

the marker 

 for( int intFrame = 0; intFrame < 60; intFrame++) { 

 

  // Get next input frame 

  imgInput = cvRetrieveFrame(vid);   // Should 

check if there is a better method of retrieval 

 

  ARUint8         *arImageData; 

  ARMarkerInfo    *armMarkerInfo; 

  int             intMarker; 

 

  // This conversion works b/c I configured ARToolkit to 

expect BGR images instead of BGRA 

  arImageData = (ARUint8 *)imgInput->imageData; 

 

  // detect the markers in the video frame     

  if( arDetectMarkerLite(arImageData, 128, &armMarkerInfo, 

&intMarker) < 0 ) { 

   printf("Marker not detected!\n"); 

  } 

 

 

 

  // Check for object visibility - sorts through all markers 

and finds the best. 

  // I need to find out if this accepts bad marker 

matches...if so, determine a cf floor 

  //int k = -1; 

  //for( int j = 0; j < intMarker; j++ ) { 

  // if( armMarkerInfo[j].id == intTargetID ) { 

  //  if( k == -1 ) k = j; 

  //  else { 

  //   if( armMarkerInfo[k].cf < 

armMarkerInfo[j].cf ) k = j; 

  //  } 

  // } 

  //} 

 

  // Get camera matrices 

  if( intFrame == 0 ) { 

   if( arGetTransMat(armMarkerInfo, dblTgtCenter, 

dblTargetWidth, dblTransform) < 0 ) continue; 

  } else { 

   if( arGetTransMatCont( armMarkerInfo, dblTransform, 

dblTgtCenter, dblTargetWidth, dblTransform) < 0) continue; 

  } // or something like that. 

 

 } 
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 //Set up Camera matrices 

 

 // Projection Matrix...not sure about near an far planes 

 intNear = 20;  // in mm 

 intFar = 1000;  // in mm 

 arglCameraFrustumRH(&arpCameraParam, (float)intNear, 

(float)intFar, dblProjection ); 

  

 matProjection = osg::Matrix(dblProjection[0], dblProjection[1], 

dblProjection[2], dblProjection[3], 

             dblProjection[4], 

dblProjection[5], dblProjection[6], dblProjection[7], 

        dblProjection[8], 

dblProjection[9], dblProjection[10], dblProjection[11], 

        dblProjection[12], 

dblProjection[13], dblProjection[14], dblProjection[15] ); 

 this->setProjectionMatrix( matProjection ); 

 

  

 // View Matrix 

 double arr[16]; 

 argConvGlpara(dblTransform, arr); 

 matView = osg::Matrix(arr[0], arr[1], arr[2], arr[3], 

        arr[4], arr[5], arr[6], arr[7], 

        arr[8], arr[9], arr[10], arr[11], 

        arr[12], arr[13], arr[14], arr[15] 

); 

  

 // make an adjustment for OSG vs. ART camera orientation 

expectations 

 osg::Matrixd matCamRotation; 

 matCamRotation.makeRotate( M_PI, osg::Vec3(1,0,0),  

        0, osg::Vec3(0,1,0),  

        0, osg::Vec3(0,0,1) );  

 

 matCamRotation = osg::Matrixd::inverse( matCamRotation ); 

 matView.postMult( matCamRotation ); 

 

 // Create inverse in case you need to position items??? 

 matInvView = osg::Matrixd::inverse( matView ); 

 this->setViewMatrix( matView ); 

 

 double dblInv[3][4]; 

 arUtilMatInv(dblTransform, dblInv); 

 

 printf("Camera %d: X: %2.2f, Y: %2.2f, Z:%2.2f\n", intCamera, 

dblInv[0][3], dblInv[1][3], dblInv[2][3]); 

 

 // Viewport 

 osg::ref_ptr<osg::Viewport> v = new osg::Viewport(); 

 v->setViewport(0,0,intImageWidth/2,intImageHeight/2);  

 matViewport = v->computeWindowMatrix(); 
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 argCleanup(); 

 

} 

 

void Cam::threadProcess() { 

 

 

 // Constantly process frames until escape is pressed in parent 

loop 

 while(intKey != 27) { 

 

  // Get next input frame 

  imgInput = cvRetrieveFrame(vid);   // Should 

check if there is a better method of retrieval 

   

  // Shrink down to minimize processing 

  cvPyrDown(imgInput, imgSmallInput, CV_GAUSSIAN_5x5); 

 

 

  // Get background mask 

  getForegroundMask(imgSmallInput, imgBackground, imgMask); 

 

  // Get foreground 

  cvZero( imgForeground ); 

  cvCopy(imgSmallInput, imgForeground, imgMask); 

 

 

  // Get color masks - need mats instead of images here 

  cv::Mat mtx(imgForeground); 

  cv::Mat hsv; 

 

  cv::cvtColor(mtx, hsv, CV_BGR2HSV); 

  cv::calcBackProject( &hsv, 1, channels, histSkin, imgA, 

ranges, 1.0, true);  

  //cv::calcBackProject( &hsv, 1, channels, histNotSkin, 

imgB, ranges, 1.0, true);  

 

  // Find skin probability - P(pixel|skin) / P(pixel|notSkin) 

>= theta 

  //for(int i = 0; i < hsv.rows-1; i++) { 

  // for(int j = 0; j < hsv.cols-1; j++) { 

  //  // Get current h pixel, s pixel 

  //  cv::Vec3b value = hsv.at<cv::Vec3b>(i,j); 

 

  //  // determine the bin for hPix & sPix via divide 

by hbins and sbins 

  //  int hPix = value[0] / hbins; 

  //  int sPix = value[1] / sbins; 

 

  //  // look up skin hist value and sat hist value - 

scale by cvRound(binVal*255/maxvalue) 
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  //  double dSkin = histSkin.at<float>(hPix, sPix) * 

255.0 / dMaxSkin; 

  //  double dNotSkin = histNotSkin.at<float>(hPix, 

sPix) * 255.0 / dMaxNotSkin; 

  //  //double dNotSkin = 1.0; 

 

  //  // calc ratio of skin/nonskin value for this 

pixel & compare to theta. 

  //  if( (dSkin / dNotSkin) >= 1.0 ) { 

  //   imgC.at<uchar>(i,j) = 255; 

  //  } else { 

  //   imgC.at<uchar>(i,j) = 0; 

  //  } 

  // } 

  //} 

 

  //for(int i = 0; i < imgA.rows-1; i++) { 

  // for(int j = 0; j < imgB.cols-1; j++) { 

  //  double dRatio = ((double)(imgA.at<uchar>(i,j)) / 

(double)(imgB.at<uchar>(i,j))) ; 

  //  if( dRatio > 1.0 ) { 

  //   imgC.at<uchar>(i,j) = 255; 

  //  } else { 

  //   imgC.at<uchar>(i,j) = 0; 

  //  } 

  // } 

  //} 

 

  //std::stringstream s; 

  //s << "Cam" << intCamera; 

  //cv::imshow( s.str(), imgA); 

 

 

  //Threshold & morph to filter 

  cv::threshold(imgA, imgA, 250, 255, cv::THRESH_BINARY); 

  cv::morphologyEx(imgA, imgA, cv::MORPH_OPEN, 

cv::Mat(3,3,1,1.0), cvPoint(1,1), 1,0,0); 

  cv::morphologyEx(imgA, imgA, cv::MORPH_CLOSE, 

cv::Mat(3,3,1,1.0), cvPoint(1,1), 1,0,0); 

 

 

  //std::stringstream s; 

  //s << "Cam" << intCamera; 

  //cv::imshow( s.str(), imgA); 

 

  // Update histograms 

  //updateHist( &(cv::Mat(imgSmallInput)), &imgA); - this 

gets out of hand really quickly...false positives explode. 

 

  // Get foreground 

  //cv::Mat fore; 

  //cv::Mat(imgInput).copyTo(fore, cv::Mat()); 
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  // Copy input into output in case it is used for AR 

  EnterCriticalSection( &critOutput ); 

  cvCopy(imgInput, imgOutput); 

  imgA.copyTo(imgForeMask, cv::Mat() ); 

  LeaveCriticalSection( &critOutput ); 

 

 

 

 

  // Get fingertip points 

  std::vector<cv::Point2f> pt; 

  rects.clear(); 

  findCandidates3(imgA, &pt, &rects); 

 

  // Get rectangle ROIs of foreground 

  //vROI.clear(); 

  //for(int i = 0; i < rects.size(); i++) { 

  // cv::Mat tmp; 

  // cv::getRectSubPix(fore, cv::Size(rects[i].width*2, 

rects[i].height*2), cv::Point2f(rects[i].x*2 + rects[i].width, 

rects[i].y*2 + rects[i].height),tmp,-1); 

 

  // cv::Mat roi = cv::Mat(tmp.rows, tmp.cols, CV_8UC4, 

cv::Scalar(0,0,0,0)); 

  // // changing channels,so can't use copyto op 

  // for(int j = 0; j < tmp.rows; j++) { 

  //  for(int k = 0; k < tmp.cols; k++) {  

  //   if( imgA.at<uchar>(rects[i].y+(j/2), 

rects[i].x+(k/2)) > 0 ) { 

  //    cv::Vec3b tmpPt = 

tmp.at<cv::Vec3b>(j,k); 

  //    cv::Vec4b tmpPt2 = 

cv::Vec4b(tmpPt[0], tmpPt[1], tmpPt[2], 255); 

  //    roi.at<cv::Vec4b>(j,k) = tmpPt2; 

  //   } 

  //  } 

  // } 

 

  // vROI.push_back( roi ); 

  //} 

 

 

 

  //std::stringstream s; 

  //s << "Cam" << intCamera; 

  //cv::Mat ptOut = cv::Mat(imgSmallInput); 

  //for(int j = 0; j < pt.size(); j++) 

  // cv::rectangle( ptOut, cv::Point(pt[j].x-1, pt[j].y-1), 

cv::Point(pt[j].x+1, pt[j].y+1),cv::Scalar(0,0,255,0),2,8,0); 

 

  //cv::imshow( s.str(),  ptOut); 
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  // Calculate points in 3D space - checked math. 

  // very large z values gets you to the cam.  z of 1 gets 

you to the far plane; I don't know why it works...but it works. 

  osg::Matrix mat; 

  mat.invert(matView * matProjection * matViewport); 

 

  // Get cam coords into world coords 

  EnterCriticalSection( &critCandidates ); 

  vNear.clear(); 

  vFar.clear(); 

  for(int i = 0; i < pt.size(); i++) { 

   // Get cam coords into world coords, then multiply by 

matrices to create ray 

   vNear.push_back( osg::Vec3(pt[i].x, (intImageHeight/2) 

- pt[i].y, 1000) * mat ); 

   vFar.push_back( osg::Vec3(pt[i].x, (intImageHeight/2) 

- pt[i].y, 1) * mat ); 

  } 

  vOutRects.clear(); 

  //vOutROI.clear(); 

  for(int i = 0; i < rects.size(); i++) { 

   vOutRects.push_back( rects[i]); 

   //vOutROI.push_back( vROI[i] ); 

  } 

  LeaveCriticalSection( &critCandidates ); 

 

 } 

} 

 

void Cam::initHist() { 

 // Create histograms for further use 

  

 cv::Mat src, hsv; 

 

 // Create skin histogram 

 if( !(src=cv::imread("skin2.jpg", 1)).data ) //this will not 

work if you mix release/debug libraries 

        exit(-1); 

 cv::cvtColor(src, hsv, CV_BGR2HSV); 

 

 

 cv::calcHist( &hsv, 1, channels, cv::Mat(), // do not use mask 

        histSkin, 2, histSize, ranges, 

        true, // the histogram is uniform 

        false ); 

 

 // Get max value for later use 

 cv::minMaxLoc(histSkin, 0, &dMaxSkin, 0, 0); 

 

 

 // Create non-skin histogram 
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 //if( !(src=cv::imread("notSkin.jpg", 1)).data ) //this will 

not work if you mix release/debug libraries 

 //       exit(-1); 

 //   cvtColor(src, hsv, CV_BGR2HSV); 

 

 //cv::calcHist( &hsv, 1, channels, cv::Mat(), // do not use mask 

 //       histNotSkin, 2, histSize, ranges, 

 //       true, // the histogram is uniform 

 //       false ); 

 

 //// Get max value for later use 

 //cv::minMaxLoc(histNotSkin, 0, &dMaxNotSkin, 0, 0); 

 

} 

 

void Cam::updateHist(cv::Mat *frame, cv::Mat *mask) { 

 

 //Update histograms with found pixels 

 cv::Mat notMask; 

 cv::subtract( 255, *mask, notMask, cv::Mat() );  //Not 

sure this is what I want exactly...I want cvNot. :p 

 

 cv::calcHist( frame, 1, channels, *mask, histSkin, 2, histSize, 

ranges, true, true ); 

 cv::minMaxLoc(histSkin, 0, &dMaxSkin, 0, 0); 

 

 cv::calcHist( frame, 1, channels, notMask, histNotSkin, 2, 

histSize, ranges, true, true ); 

 cv::minMaxLoc(histNotSkin, 0, &dMaxNotSkin, 0, 0); 

 

} 

 

Fingerpoint.h 
 

#ifndef __OPENCV200 

 

 #include <opencv/cv.h> 

 #include <opencv/cxcore.h> 

 #include <opencv/highgui.h> 

 

 #define __OPENCV200 

 

#endif 

 

#include <math.h> 

 

#ifndef __FINGERPOINTS 

 

#define __FINGERPOINTS 

 

void getDominantPoints(CvSeq*, IplImage*); 
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void getDominantPoints1(CvSeq*, IplImage*); 

void getDominantPoints2(CvSeq*, IplImage*); 

void findCandidates(IplImage* imgIn, CvPoint2D32f 

arrCandidates[4][100], int intSize[4], int intMaxSize); 

 

void findCandidates2(cv::Mat, std::vector<cv::Point2f> *); 

void findCandidates3(cv::Mat, std::vector<cv::Point2f> *, 

std::vector<cv::Rect> *); 

 

#endif 

 

Fingerpoint.cpp 
#include "Fingerpoint.h" 

 

void getDominantPoints(CvSeq* contour, IplImage *img) { 

 getDominantPoints1(contour, img); 

} 

 

void getDominantPoints1(CvSeq* contour, IplImage* img) { 

  

 // This method searches out points on the contour that are 

farther from the center of mass than 

 // the adjacent two points on the curve 

 

 //cvDrawContours(img, contour, CV_RGB(0,0,255), 

CV_RGB(0,0,0),2,1,8,cvPoint(0,0)); 

 

 while(contour != NULL) { 

  // Only process large contours 

  double dblContourArea = 

fabs(cvContourArea(contour,CV_WHOLE_SEQ)); 

 

  if( dblContourArea > 200 ) { 

 

   // Get a set of points around the contour perimeter 

   CvMemStorage *storagePoints = cvCreateMemStorage(0); 

   CvSeq *contourPoints = 0; 

   contourPoints = cvApproxPoly(contour, 

sizeof(CvContour), storagePoints, CV_POLY_APPROX_DP, 

cvContourPerimeter(contour) * 0.01, 1); 

    

   // Convert to an array for easy access - necessary or 

fast? 

   CvPoint* arrPoints = (CvPoint *)malloc(contourPoints-

>total * sizeof(CvPoint)); 

   cvCvtSeqToArray(contourPoints, arrPoints, 

CV_WHOLE_SEQ); 

 

   // Get center of contour 

   CvPoint2D32f center; 

   CvMoments* moments = new CvMoments(); 
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   cvContourMoments(contour, moments); 

   center.x = (float)(moments->m10/moments->m00); 

   center.y = (float)(moments->m01/moments->m00); 

 

   cvRectangle(img, cvPoint((int)center.x - 1, 

(int)center.y - 1), cvPoint((int)center.x + 1, (int)center.y + 1), 

CV_RGB(0,255,0),2,8,0); 

 

   // select concave points 

   for(int i = 0; i < contourPoints->total; i++) { 

 

    double x1, x2, x3; 

    double y1, y2, y3; 

    double dist1, dist2, dist3; 

 

    if( i == 0 ) { 

     x1 = arrPoints[contourPoints->total-1].x - 

center.x; 

     x2 = arrPoints[i].x - center.x; 

     x3 = arrPoints[i+1].x - center.x; 

 

     y1 = arrPoints[contourPoints->total-1].y - 

center.y; 

     y2 = arrPoints[i].y - center.y; 

     y3 = arrPoints[i+1].y - center.y; 

    } else if (i < contourPoints->total - 1 ) { 

     x1 = arrPoints[i-1].x - center.x; 

     x2 = arrPoints[i].x - center.x; 

     x3 = arrPoints[i+1].x - center.x; 

 

     y1 = arrPoints[i-1].y - center.y; 

     y2 = arrPoints[i].y - center.y; 

     y3 = arrPoints[i+1].y - center.y; 

    } else if (i == contourPoints->total - 1) { 

     x1 = arrPoints[i-1].x - center.x; 

     x2 = arrPoints[i].x - center.x; 

     x3 = arrPoints[0].x - center.x; 

 

     y1 = arrPoints[i-1].y - center.y; 

     y2 = arrPoints[i].y - center.y; 

     y3 = arrPoints[0].y - center.y; 

    } 

     

    dist1 = x1*x1 + y1*y1; 

    dist2 = x2*x2 + y2*y2; 

    dist3 = x3*x3 + y3*y3; 

 

    if( (dist2 >= dist1) && (dist2 >= dist3) ) { 

     cvRectangle(img, cvPoint(arrPoints[i].x-

1,arrPoints[i].y-1), 

cvPoint(arrPoints[i].x+1,arrPoints[i].y+1),CV_RGB(255,0,0), 2, 8, 0); 

    } 
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   } 

 

   // Clean up 

   cvReleaseMemStorage(&storagePoints); 

   free(arrPoints); 

  } 

   

  // Increment to next contour 

  if(contour->h_next) { 

   contour = contour->h_next; 

  } 

  else { 

   contour = NULL; 

  } 

 } 

} 

void getDominantPoints2(CvSeq* contour, IplImage* img) { 

  

 // This method finds the convex hull; however, it has more points 

than just the individual fingertips, 

 // so I don't think I'll use this method. 

 

 while(contour != NULL) { 

  // Only process large contours 

  double dblContourArea = 

fabs(cvContourArea(contour,CV_WHOLE_SEQ)); 

 

  if( dblContourArea > 100 ) { 

   // Get a set of points around the contour perimeter 

   CvMemStorage *storagePoints = cvCreateMemStorage(0); 

   CvSeq *contourPoints = 0; 

   contourPoints = cvConvexHull2(contour, storagePoints, 

CV_CLOCKWISE,1); 

    

   // Convert to an array for easy access - necessary or 

fast? 

   CvPoint* arrPoints = (CvPoint *)malloc(contourPoints-

>total * sizeof(CvPoint)); 

   cvCvtSeqToArray(contourPoints, arrPoints, 

CV_WHOLE_SEQ); 

 

   // Get center of contour 

   CvPoint2D32f center; 

   CvMoments* moments = new CvMoments(); 

   cvContourMoments(contour, moments); 

   center.x = (float)(moments->m10/moments->m00); 

   center.y = (float)(moments->m01/moments->m00); 

 

   // draw points 

   cvRectangle(img, cvPoint((int)center.x - 1, 

(int)center.y - 1), cvPoint((int)center.x + 1, (int)center.y + 1), 

CV_RGB(0,255,0),2,8,0); 
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   for(int i = 0; i < contourPoints->total; i++) { 

    cvRectangle(img, cvPoint(arrPoints[i].x-

1,arrPoints[i].y-1), 

cvPoint(arrPoints[i].x+1,arrPoints[i].y+1),CV_RGB(255,0,0), 2, 8, 0); 

   } 

 

   // Clean up 

   cvReleaseMemStorage(&storagePoints); 

   free(arrPoints); 

  } 

   

  // Increment to next contour 

  if(contour->h_next) { 

   contour = contour->h_next; 

  } 

  else { 

   contour = NULL; 

  } 

 } 

} 

 

 

void findCandidates(IplImage* imgIn, CvPoint2D32f 

arrCandidates[4][100], int intSize[4], int intMaxSize=100) { 

  

 // This method searches out points on the contour that are 

farther from the center of mass than 

 // the adjacent two points on the curve 

 

 CvMemStorage *storage = cvCreateMemStorage(0); 

 CvSeq * contour = 0; 

 cvFindContours(imgIn, storage, &contour, sizeof(CvContour), 

CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));   

 

 CvSeq * largestContour[4] = {0,0,0,0};; 

 double fArea[4] = {0,0,0,0}; 

 

 while(contour != NULL) { 

  // Only process largest contours 

  double dblContourArea = 

fabs(cvContourArea(contour,CV_WHOLE_SEQ)); 

   

  for(int i = 0; i < 4; i++) { 

   if( dblContourArea > fArea[i] ) { 

     

    for(int j = i+1; j < 4; j++) { 

     largestContour[j] = largestContour[j-1]; 

     fArea[j] = fArea[j-1]; 

    } 

     

    largestContour[i] = contour; 

    fArea[i] = dblContourArea; 
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    break; 

   } 

  } 

 

  // Increment to next contour 

  if(contour->h_next) { 

   contour = contour->h_next; 

  } 

  else { 

   contour = NULL; 

  } 

 

 } 

 

 for(int i = 0; i < 4; i++ ) { 

  intSize[i] = 0; 

   

  if( fArea[i] > 200 ) { 

 

   // Get a set of points around the contour perimeter 

   CvMemStorage *storagePoints = cvCreateMemStorage(0); 

   CvSeq *contourPoints = 0; 

   contourPoints = cvApproxPoly(largestContour[i], 

sizeof(CvContour), storagePoints, CV_POLY_APPROX_DP, 

cvContourPerimeter(largestContour[i]) * 0.02, 1); 

    

   // Convert to an array for easy access - necessary or 

fast? 

   CvPoint* arrPoints = (CvPoint *)malloc(contourPoints-

>total * sizeof(CvPoint)); 

   cvCvtSeqToArray(contourPoints, arrPoints, 

CV_WHOLE_SEQ); 

 

   // Get center of contour 

   CvPoint2D32f center; 

   CvMoments* moments = new CvMoments(); 

   cvContourMoments(largestContour[i], moments); 

   center.x = (float)(moments->m10/moments->m00); 

   center.y = (float)(moments->m01/moments->m00); 

   arrCandidates[i][0] = center; 

   intSize[i]++; 

 

   // select concave points 

   for(int k = 0; k < contourPoints->total; k++) { 

 

    double x1, x2, x3; 

    double y1, y2, y3; 

    double dist1, dist2, dist3; 

 

    if( k == 0 ) { 

     x1 = arrPoints[contourPoints->total-1].x - 

center.x; 
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     x2 = arrPoints[k].x - center.x; 

     x3 = arrPoints[k+1].x - center.x; 

 

     y1 = arrPoints[contourPoints->total-1].y - 

center.y; 

     y2 = arrPoints[k].y - center.y; 

     y3 = arrPoints[k+1].y - center.y; 

    } else if (k < contourPoints->total - 1 ) { 

     x1 = arrPoints[k-1].x - center.x; 

     x2 = arrPoints[k].x - center.x; 

     x3 = arrPoints[k+1].x - center.x; 

 

     y1 = arrPoints[k-1].y - center.y; 

     y2 = arrPoints[k].y - center.y; 

     y3 = arrPoints[k+1].y - center.y; 

    } else if (k == contourPoints->total - 1) { 

     x1 = arrPoints[k-1].x - center.x; 

     x2 = arrPoints[k].x - center.x; 

     x3 = arrPoints[0].x - center.x; 

 

     y1 = arrPoints[k-1].y - center.y; 

     y2 = arrPoints[k].y - center.y; 

     y3 = arrPoints[0].y - center.y; 

    } 

     

    dist1 = x1*x1 + y1*y1; 

    dist2 = x2*x2 + y2*y2; 

    dist3 = x3*x3 + y3*y3; 

 

    if( (dist2 >= dist1) && (dist2 >= dist3) && 

(intSize[i] < intMaxSize)) { 

     arrCandidates[i][intSize[i]].x = 

arrPoints[k].x; 

     arrCandidates[i][intSize[i]].y = 

arrPoints[k].y; 

     intSize[i]++; 

    } 

 

   } 

 

   // Clean up 

   delete moments; 

   cvReleaseMemStorage(&storagePoints); 

   contourPoints = NULL; 

   free(arrPoints); 

   arrPoints = NULL; 

 

  }   

 } 

 

 cvReleaseMemStorage( &storage ); 

} 
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void findCandidates2(cv::Mat imgIn, std::vector<cv::Point2f> *pts) { 

  

 // This method searches out points on the contour that are 

farther from the center of mass than 

 // the adjacent two points on the curve 

 

 std::vector<std::vector<cv::Point>> contours; 

 std::vector<cv::Point2f> tmp; 

 cv::Moments mom; 

  

 pts->clear(); 

 cv::findContours( imgIn, contours, cv::RETR_EXTERNAL , 

cv::CHAIN_APPROX_SIMPLE, cv::Point(0,0));  

 

 

 double dAreaA = 100; 

 for(int i = 0; i < contours.size(); i++) { 

 

  std::vector< cv::Point2f > fContours; 

  for(int j = 0; j < contours[i].size(); j++) { 

   fContours.push_back( contours[i][j] ); 

  } 

  cv::Mat mat = cv::Mat( fContours ); 

 

 

  double d = fabs(cv::contourArea( mat )); 

  if( d > dAreaA) { 

    

   bool t = mat.isContinuous(); 

   bool u = (mat.depth() == CV_32F); 

            bool v = ((mat.rows == 1 && mat.channels() == 2) || 

(mat.cols * mat.channels() == 2)); 

 

   cv::approxPolyDP(mat, tmp, cv::arcLength(mat,1)*0.02, 

1); 

 

   mom = cv::moments( cv::Mat(contours[i]), false ); 

   cv::Point2f center =  

cv::Point2f((float)(mom.m10/mom.m00),(float)(mom.m01/mom.m00));  

 

   for(int j = 0; j < tmp.size(); j++) { 

    cv::Point2f t1, t2, t3; 

     

    double dist1, dist2, dist3; 

 

    if( j == 0 ) { 

     t1 = tmp[tmp.size()-1] - center; 

     t2 = tmp[j] - center; 

     t3 = tmp[j+1] - center; 

    } else if (j < tmp.size() - 1 ) { 

     t1 = tmp[j-1] - center; 
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     t2 = tmp[j] - center; 

     t3 = tmp[j+1] - center; 

    } else if (j == tmp.size() - 1) { 

     t1 = tmp[j-1] - center; 

     t2 = tmp[j] - center; 

     t3 = tmp[0] - center; 

    } 

     

    dist1 = t1.x*t1.x + t1.y*t1.y; 

    dist2 = t2.x*t2.x + t2.y*t2.y; 

    dist3 = t3.x*t3.x + t3.y*t3.y; 

 

    if( (dist2 >= dist1) && (dist2 >= dist3) ) { 

     pts->push_back( tmp[j] ); 

    } 

   } 

  } 

 } 

 contours.clear(); 

 

} 

 

void findCandidates3(cv::Mat imgIn, std::vector<cv::Point2f> *pts, 

std::vector<cv::Rect> *rects) { 

  

 // This method searches out points on the contour that are 

farther from the center of mass than 

 // the adjacent two points on the curve 

 

 std::vector<std::vector<cv::Point>> contours; 

 std::vector<cv::Point2f> tmp; 

 cv::Moments mom; 

  

 pts->clear(); 

 cv::findContours( imgIn, contours, cv::RETR_EXTERNAL , 

cv::CHAIN_APPROX_SIMPLE, cv::Point(0,0));  

 

 

 double dAreaA = 100; 

 for(int i = 0; i < contours.size(); i++) { 

 

  std::vector< cv::Point2f > fContours; 

  for(int j = 0; j < contours[i].size(); j++) { 

   fContours.push_back( contours[i][j] ); 

  } 

  cv::Mat mat = cv::Mat( fContours ); 

 

 

  double d = fabs(cv::contourArea( mat )); 

  if( d > dAreaA) { 

 

   cv::Rect tmpRect = cv::boundingRect( mat ); 
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   rects->push_back( tmpRect ); 

 

   cv::approxPolyDP(mat, tmp, cv::arcLength(mat,1)*0.02, 

1); 

 

   mom = cv::moments( cv::Mat(contours[i]), false ); 

   cv::Point2f center =  

cv::Point2f((float)(mom.m10/mom.m00),(float)(mom.m01/mom.m00));  

 

   for(int j = 0; j < tmp.size(); j++) { 

    cv::Point2f t1, t2, t3; 

     

    double dist1, dist2, dist3; 

 

    if( j == 0 ) { 

     t1 = tmp[tmp.size()-1] - center; 

     t2 = tmp[j] - center; 

     t3 = tmp[j+1] - center; 

    } else if (j < tmp.size() - 1 ) { 

     t1 = tmp[j-1] - center; 

     t2 = tmp[j] - center; 

     t3 = tmp[j+1] - center; 

    } else if (j == tmp.size() - 1) { 

     t1 = tmp[j-1] - center; 

     t2 = tmp[j] - center; 

     t3 = tmp[0] - center; 

    } 

     

    dist1 = t1.x*t1.x + t1.y*t1.y; 

    dist2 = t2.x*t2.x + t2.y*t2.y; 

    dist3 = t3.x*t3.x + t3.y*t3.y; 

 

    if( (dist2 >= dist1) && (dist2 >= dist3) ) { 

     pts->push_back( tmp[j] ); 

    } 

   } 

  } 

 } 

 contours.clear(); 

 

} 

 

IntersectionTester.h 
#include <process.h> 

#include <windows.h> 

#include <stdlib.h> 

#include <vector> 

 

#include <osg/Matrix> 

#include <osg/Vec3> 

#include "PtFilter.h" 
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#define NUM_CAMS 3 

 

 

#ifndef __INTERSECTIONTESTER 

 

#define __INTERSECTIONTESTER 

#define PERSIST_FRAMES 15  // 0.5 second 

 

 

class IntersectionTester { 

 

 public: 

  IntersectionTester(); 

  ~IntersectionTester(); 

   

  static unsigned __stdcall threadedEntry( void *pThis) { 

   IntersectionTester * pInt = 

(IntersectionTester*)pThis; 

   pInt->threadProcess(); 

   return 1; 

  } 

 

  void threadProcess(); 

 

  void setInputPts(std::vector< std::vector<osg::Vec3> > 

vStart, std::vector< std::vector<osg::Vec3> > vEnd) { 

   EnterCriticalSection( &critInput ); 

   vStartPts = vStart; 

   vEndPts = vEnd; 

   bNewInputs = true; 

   LeaveCriticalSection( &critInput ); 

  } 

 

  void setKey( int s ) { 

   intKey = s; 

  } 

 

  void setThreshold( int s ) { 

   intThreshold = s*s; 

  } 

 

  void getCrit() { 

   EnterCriticalSection( &critOutput ); 

  } 

 

  void leaveCrit() { 

   LeaveCriticalSection( &critOutput ); 

  } 

 

  std::vector<osg::Vec3> getOutput() { 
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   // Create a copy for output use; this may not work 

with the widget manipulators, 

   // may need to change to a pointer. 

   std::vector<osg::Vec3> tmp; 

   EnterCriticalSection( &critOutput ); 

   tmp = vOutputPts; 

   LeaveCriticalSection( &critOutput ); 

 

   return tmp; 

  } 

 

  void getOutputs(std::vector<osg::Vec3> * pts, 

std::vector<int> *indices) { 

   EnterCriticalSection( &critOutput ); 

   *pts = vOutputPts; 

   *indices = vDeletedIndices; 

   vDeletedIndices.clear(); 

   LeaveCriticalSection( &critOutput ); 

 

  } 

   

private: 

  // Multithread via critical section 

  CRITICAL_SECTION critInput;  

  CRITICAL_SECTION critOutput; 

 

  // input vectors 

  std::vector< std::vector<osg::Vec3> > vStartPts; 

  std::vector< std::vector<osg::Vec3> > vEndPts; 

  bool bNewInputs; 

 

  bool intersect(osg::Vec3, osg::Vec3, osg::Vec3, osg::Vec3, 

osg::Vec3*, osg::Vec3*); 

  int intKey; 

  int intThreshold; 

  double EPS; 

 

  // output objects 

  std::vector<osg::Vec3> vOutputPts; 

  std::vector<int> vDeletedIndices; 

 

}; 

 

#endif 

 

IntersectionTester.cpp 
#include "IntersectionTester.h" 

 

IntersectionTester::IntersectionTester() { 

  

 InitializeCriticalSection( &critInput ); 
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 InitializeCriticalSection( &critOutput ); 

 

 for(int i = 0; i < NUM_CAMS; i++) { 

  std::vector< osg::Vec3 > *tmp = new std::vector< osg::Vec3 

>; 

  vStartPts.push_back( *tmp ); 

 

  std::vector< osg::Vec3 > *tmp2 = new std::vector< osg::Vec3 

>; 

  vEndPts.push_back( *tmp2 ); 

 } 

 

 intKey = 0; 

 intThreshold = 25; // initialized to a distance of 5 mm 

 EPS = 1.0E-3; 

} 

 

IntersectionTester::~IntersectionTester() { 

 // Release crit section 

 DeleteCriticalSection( &critInput ); 

 DeleteCriticalSection( &critOutput ); 

} 

 

void IntersectionTester::threadProcess() { 

 

 // Test for intersections or near intersections of rays described 

by vec3 arrays 

 osg::Vec3 startA, startB, endA, endB; 

 osg::Vec3 * startC = new osg::Vec3(); 

 osg::Vec3 * endC = new osg::Vec3(); 

 osg::Vec3 delta; 

 int distance; 

  

 // working vectors 

 std::vector< std::vector< osg::Vec3 > > vTmpStPts, vTmpEndPts; 

 std::vector< osg::Vec3 > vTmpOutPts, vStablePts; 

 

 std::vector< osg::Vec3 > vPosPts, vVelPts; 

 std::vector< int > vUpdateAttempts; 

 std::vector<int> vTmpDelIndices; 

  

 while(intKey != 27 ) { 

 

  if( bNewInputs ) { 

 

   // clear old vector 

   vTmpOutPts.clear(); 

 

   // Copy input vectors 

   EnterCriticalSection( &critInput ); 

   vTmpStPts = vStartPts; 

   vTmpEndPts = vEndPts; 
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   LeaveCriticalSection( &critInput ); 

 

   bNewInputs = false; 

 

   // Find intersections between lines 

   for( int i = 0; i < NUM_CAMS; i++ ) { 

    for( int j = 0; j < vTmpStPts[i].size(); j++ ) { 

      

     // Get first line 

     startA = vTmpStPts[i][j]; 

     endA = vTmpEndPts[i][j]; 

 

     for( int x = i + 1; x < NUM_CAMS; x++ ) {

 // only test other camera's lines, no self-intersections please 

      for( int y = 0; y < 

vTmpStPts[x].size(); y++ ) { 

 

       // Get second line 

       startB = vTmpStPts[x][y]; 

       endB = vTmpEndPts[x][y]; 

 

       // Get shortest distance 

between the rays 

       intersect(startA, endA, startB, 

endB, startC, endC); 

       delta = osg::Vec3( startC->x() 

- endC->x(), startC->y() - endC->y(), startC->z() - endC->z() ); 

       distance = delta.x() * 

delta.x() + delta.y() * delta.y() + delta.z() * delta.z(); 

 

       // If the distance is less than 

the threshold we add a point 

       if( distance <= intThreshold ) 

{ 

        vTmpOutPts.push_back( 

osg::Vec3( startC->x() + 0.5*delta.x(), 

            

     startC->y() + 0.5*delta.y(), 

            

     startC->z() + 0.5*delta.z() ) ); 

       } 

      } 

     } 

    } 

   } 

 

   // Test points for duplicates 

   bool bMatchesExist = true; 

 

   while( bMatchesExist ) { 

    

    int intMinDist = 500; // 2 cm squared 
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    int index1 = -1; 

    int index2 = -1; 

 

    // Find closest pair of points within the 

minimum distance 

    for(unsigned int i = 0; i < vTmpOutPts.size(); 

i++ ) { 

     for(unsigned int j = 0; j < 

vTmpOutPts.size(); j++ ) { 

      if( i != j ) { 

       osg::Vec3 pt1 = vTmpOutPts[i]; 

       osg::Vec3 pt2 = vTmpOutPts[j]; 

 

       delta = osg::Vec3d( pt1.x() - 

pt2.x(),  

           

 pt1.y() - pt2.y(),  

           

 pt1.z() - pt2.z() ); 

       distance = delta.x() * 

delta.x() + delta.y() * delta.y() + delta.z() * delta.z(); 

 

       // If closer than any other 

match, update the indices and distance to test against 

       if( distance < intMinDist ) { 

        intMinDist = distance; 

        index1 = i; 

        index2 = j; 

       } 

      } 

     } 

    } 

 

    // If points found within the minimum distance, 

merge them 50/50. 

    if( index1 >= 0 && index2 >= 0 ) { 

     osg::Vec3 pt1 = vTmpOutPts[index1]; 

     osg::Vec3 pt2 = vTmpOutPts[index2]; 

 

     vTmpOutPts[index1] = osg::Vec3( (pt1.x() + 

pt2.x()) / 2.0, 

            

 (pt1.y() + pt2.y()) / 2.0, 

            

 (pt1.z() + pt2.z()) / 2.0 ); 

      

     vTmpOutPts.erase(vTmpOutPts.begin() + 

index2); 

    } else { 

     bMatchesExist = false; 

    } 
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   } 

 

   // Tracking Section 

 

   // Update positions 

   for(int i = 0; i < vPosPts.size(); i++)  

    vPosPts[i] = vPosPts[i] + vVelPts[i]; 

 

   // Match new points to old points 

   bMatchesExist = true; 

   std::vector<int> vOldIndices, vNewIndices; 

 

   for(int i = 0; i < vPosPts.size(); i++) 

    vOldIndices.push_back( i ); 

 

   for(int i = 0; i < vTmpOutPts.size(); i++) 

    vNewIndices.push_back( i ); 

 

   while( bMatchesExist ) { 

    

    int intMinDist = 625; // 3 cm squared 

    int index1 = -1; 

    int index2 = -1; 

 

    // Find closest pair of points within the 

minimum distance 

    for(unsigned int i = 0; i < vOldIndices.size(); 

i++ ) { 

     for(unsigned int j = 0; j < 

vNewIndices.size(); j++ ) { 

      osg::Vec3 pt1 = 

vPosPts[vOldIndices[i]]; 

      osg::Vec3 pt2 = 

vTmpOutPts[vNewIndices[j]]; 

 

      delta = osg::Vec3d( pt1.x() - 

pt2.x(),  

           pt1.y() 

- pt2.y(),  

           pt1.z() 

- pt2.z() ); 

      distance = delta.x() * delta.x() + 

delta.y() * delta.y() + delta.z() * delta.z(); 

 

      // If closer than any other match, 

update the indices and distance to test against 

      if( distance < intMinDist ) { 

       intMinDist = distance; 

       index1 = i; 

       index2 = j; 

      } 

     } 
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    } 

 

    double coeff1 = 29.0; 

    double coeff2 = 1.0; 

 

    // If points found within the minimum distance, 

merge them 3:2 

    if( index1 >= 0 && index2 >= 0 ) { 

     osg::Vec3 pt1 = 

vPosPts[vOldIndices[index1]]; 

     osg::Vec3 pt2 = 

vTmpOutPts[vNewIndices[index2]]; 

 

     // Update position 

     vPosPts[vOldIndices[index1]] = osg::Vec3( 

(coeff1*pt1.x() + coeff2*pt2.x()) / (coeff1 + coeff2), 

            

     (coeff1*pt1.y() + coeff2*pt2.y()) / (coeff1 + 

coeff2), 

            

     (coeff1*pt1.z() + coeff2*pt2.z()) / (coeff1 + 

coeff2) ); 

     // Update velocity 

     osg::Vec3 v1 = 

vVelPts[vOldIndices[index1]]; 

     osg::Vec3 v2 = pt2 - pt1; 

 

     vVelPts[vOldIndices[index1]] = osg::Vec3( 

(coeff1*v1.x() + coeff2*v2.x()) / (coeff1 + coeff2), 

            

     (coeff1*v1.y() + coeff2*v2.y()) / (coeff1 + coeff2), 

            

     (coeff1*v1.z() + coeff2*v2.z()) / (coeff1 + coeff2) 

); 

     // Update attempts 

     vUpdateAttempts[vOldIndices[index1]] = 0; 

 

     // Update indices list 

     vOldIndices.erase( vOldIndices.begin() + 

index1 ); 

     vNewIndices.erase( vNewIndices.begin() + 

index2 ); 

    } else { 

     bMatchesExist = false; 

    } 

 

   } 

 

   // Increment attempts for non-updated points 

   for(int i = vOldIndices.size()-1; i >= 0 ; i--) { 

    if( vUpdateAttempts[vOldIndices[i]] > 

PERSIST_FRAMES ) { 
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     vUpdateAttempts.erase( 

vUpdateAttempts.begin() + vOldIndices[i] ); 

     vPosPts.erase( vPosPts.begin() + 

vOldIndices[i] ); 

     vVelPts.erase( vVelPts.begin() + 

vOldIndices[i] ); 

 

     vTmpDelIndices.push_back( vOldIndices[i] 

); 

    } else { 

     vUpdateAttempts[vOldIndices[i]]++; 

    } 

   } 

 

   // Add new points 

   for(int i = 0; i < vNewIndices.size(); i++) { 

    vPosPts.push_back( vTmpOutPts[vNewIndices[i]] ); 

    vVelPts.push_back( osg::Vec3(0,0,0) ); 

    vUpdateAttempts.push_back( 0 ); 

   } 

 

   EnterCriticalSection( &critOutput ); 

    

   vOutputPts = vPosPts;  //probably need to change 

this to keep persistance 

   for(int i = 0; i < vTmpDelIndices.size(); i++)  

    vDeletedIndices.push_back( vTmpDelIndices[i] ); 

    

   LeaveCriticalSection( &critOutput );   

 

   vTmpDelIndices.clear(); 

  } 

 

 } 

 delete startC; 

 delete endC; 

 

} 

 

bool IntersectionTester::intersect(osg::Vec3 p1, osg::Vec3 p2, 

osg::Vec3 p3, osg::Vec3 p4, osg::Vec3* pa, osg::Vec3* pb) { 

   /* 

   Calculate the line segment PaPb that is the shortest route between 

   two lines P1P2 and P3P4. Calculate also the values of mua and mub 

where 

      Pa = P1 + mua (P2 - P1) 

      Pb = P3 + mub (P4 - P3) 

   Return FALSE if no solution exists. 

*/ 

 

 // Found at 

http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline3d/ 
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   osg::Vec3 p13, p43, p21; 

   double d1343, d4321, d1321, d4343, d2121; 

   double mua, mub; 

   double numer, denom; 

 

   p13.x() = p1.x() - p3.x(); 

   p13.y() = p1.y() - p3.y(); 

   p13.z() = p1.z() - p3.z(); 

   p43.x() = p4.x() - p3.x(); 

   p43.y() = p4.y() - p3.y(); 

   p43.z() = p4.z() - p3.z(); 

    

 

   if (abs(p43.x())  < EPS && abs(p43.y())  < EPS && abs(p43.z())  < 

EPS) 

      return(false); 

    

   p21.x() = p2.x() - p1.x(); 

   p21.y() = p2.y() - p1.y(); 

   p21.z() = p2.z() - p1.z(); 

    

   if (abs(p21.x())  < EPS && abs(p21.y())  < EPS && abs(p21.z())  < 

EPS) 

      return(false); 

 

   d1343 = p13.x() * p43.x() + p13.y() * p43.y() + p13.z() * p43.z(); 

   d4321 = p43.x() * p21.x() + p43.y() * p21.y() + p43.z() * p21.z(); 

   d1321 = p13.x() * p21.x() + p13.y() * p21.y() + p13.z() * p21.z(); 

   d4343 = p43.x() * p43.x() + p43.y() * p43.y() + p43.z() * p43.z(); 

   d2121 = p21.x() * p21.x() + p21.y() * p21.y() + p21.z() * p21.z(); 

 

   denom = d2121 * d4343 - d4321 * d4321; 

    

   if (abs(denom) < EPS) 

      return(false); 

    

   numer = d1343 * d4321 - d1321 * d4343; 

 

   mua = numer / denom; 

   mub = (d1343 + d4321 * mua) / d4343; 

 

   // Need to test if pa and pb are allocated memory?? 

 

   pa->x() = p1.x() + mua * p21.x(); 

   pa->y() = p1.y() + mua * p21.y(); 

   pa->z() = p1.z() + mua * p21.z(); 

    

   pb->x() = p3.x() + mub * p43.x(); 

   pb->y() = p3.y() + mub * p43.y(); 

   pb->z() = p3.z() + mub * p43.z(); 
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   return(true); 

} 

 

 

 

 

ManipulatorWidget.h 
#include <windows.h> 

#include <time.h> 

 

#include <osg/Geometry> 

#include <osg/Geode> 

#include <osg/Shape> 

#include <osg/ShapeDrawable> 

#include <osg/MatrixTransform> 

#include <osg/LineWidth> 

#include <osg/BoundingBox> 

 

#ifndef __MANIPULATORWIDGET 

 

 

#define __MANIPULATORWIDGET 

 

class ManipulatorWidget { 

 

public: 

 // Eponymous func's 

 ManipulatorWidget(bool); 

 ~ManipulatorWidget(); 

 

 // Update func's 

 void updatePosition(osg::Vec3, osg::Vec3); 

 void updateScale(); 

 void updateTR(); 

 void update(); 

  

 

 // Type 

 bool bType;  //true for scale, false for trans/rot 

 

 // Geometry access 

 osg::ref_ptr<osg::Geode> geoSphereA; 

 osg::ref_ptr<osg::ShapeDrawable> shapeA; 

 osg::ref_ptr<osg::Geode> geoSphereB; 

 osg::ref_ptr<osg::ShapeDrawable> shapeB; 

 osg::ref_ptr<osg::Geode> geoLine; 

 osg::ref_ptr<osg::MatrixTransform> matTransform; 

 

 // Parent object 

 osg::MatrixTransform * matParent; 
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 // Timer item 

 time_t tUpdate; 

 

 // Lock items 

 bool bLock; 

 osg::Vec3 vLockedA; 

 osg::Vec3 vLockedB; 

 

 // History items 

 osg::Vec3 vOldA; 

 osg::Vec3 vOldB; 

 

}; 

 

#endif 

 

 

ManipulatorWidget.cpp 
#include "ManipulatorWidget.h" 

 

 

ManipulatorWidget::ManipulatorWidget(bool bScale) { 

  

 // Create widget endpoints - all units in mm 

 osg::Vec3 ptA; 

 osg::Vec3 ptB; 

 osg::ref_ptr<osg::Sphere> unitSphereA, unitSphereB; 

 //if( bScale ) { 

  ptA = osg::Vec3(30,0,0); 

  ptB = osg::Vec3(-30,0,0); 

  unitSphereA = new osg::Sphere(ptA, 15); 

  unitSphereB = new osg::Sphere(ptB, 15); 

 //} else { 

 // ptA = osg::Vec3(0,0,30); 

 // ptB = osg::Vec3(0,0,-30); 

 // unitSphereA = new osg::Sphere(ptA, 10); 

 // unitSphereB = new osg::Sphere(ptB, 10); 

 

 //} 

 

 // Create sphere A 

 shapeA = new osg::ShapeDrawable( unitSphereA.get() ); 

 geoSphereA = new osg::Geode(); 

 geoSphereA->addDrawable( shapeA.get() ); 

 

 // Create sphere B 

 shapeB = new osg::ShapeDrawable( unitSphereB.get() ); 

 geoSphereB = new osg::Geode(); 

 geoSphereB->addDrawable( shapeB.get() ); 
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 // Create interstitial line 

 osg::ref_ptr<osg::Geometry> geomLine = new osg::Geometry(); 

 geoLine = new osg::Geode(); 

  

 osg::ref_ptr<osg::Vec3Array> vecCoords = new osg::Vec3Array( 2 );

   

 (*(vecCoords.get()))[0] = ptA; 

 (*(vecCoords.get()))[1] = ptB; 

   

 osg::ref_ptr<osg::Vec4Array> color = new osg::Vec4Array( 1 ); 

 (*(color.get()))[0] = osg::Vec4(1.f, 1.f, 0.f, 1.f); 

 

 osg::ref_ptr<osg::StateSet> stateset = new osg::StateSet; 

 osg::ref_ptr<osg::LineWidth> linewidth = new osg::LineWidth();  

 linewidth->setWidth(5.0f); 

 stateset->setAttributeAndModes( linewidth.get(), 

osg::StateAttribute::ON ); 

 stateset->setMode(GL_LIGHTING,osg::StateAttribute::OFF); 

 

 geomLine->setColorArray( color.get() ); 

 geomLine->setColorBinding(osg::Geometry::BIND_OVERALL); 

 geomLine->setVertexArray( vecCoords.get() ); 

 geomLine->addPrimitiveSet(new 

osg::DrawArrays(osg::PrimitiveSet::LINES, 0, 2)); 

 geomLine->setStateSet(stateset.get()); 

 geomLine->setUseDisplayList(false); 

 

 geoLine->addDrawable( geomLine.get() ); 

 

 // Create parent matrix 

 matTransform = new osg::MatrixTransform(); 

 matTransform->addChild( geoSphereA.get() ); 

 matTransform->addChild( geoSphereB.get() ); 

 matTransform->addChild( geoLine.get() ); 

    matTransform->getOrCreateStateSet()->setRenderBinDetails(60, 

"RenderBin"); 

 

 // Set update time 

 time( &tUpdate ); 

 

 // Initially not locked 

 bLock = false; 

 

 // Set type 

 bType = bScale; 

 

} 

 

ManipulatorWidget::~ManipulatorWidget() { 

 matParent = NULL; 

} 
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void ManipulatorWidget::updatePosition(osg::Vec3 pos, osg::Vec3 orient) 

{ 

 osg::Matrixd tmp; 

 tmp.setTrans( pos ); 

 //tmp.preMult( tmp.rotate( osg::Vec3(0,0,1), orient ) ); 

 matTransform->setMatrix( tmp ); 

} 

 

void ManipulatorWidget::update() { 

 if( bType ) { 

  updateScale(); 

 } else { 

  updateTR(); 

 } 

} 

 

void ManipulatorWidget::updateScale() { 

  

 

 // Update the widget & parent object scale upon lock 

 if( bLock ) { 

  // Update locking 

  osg::BoundingSphere ba = geoSphereA->getBound(); 

  ba.set(ba.center() * matTransform->getMatrix(), 

ba.radius()); 

  osg::BoundingSphere bb = geoSphereA->getBound(); 

  bb.set(bb.center() * matTransform->getMatrix(), 

bb.radius()); 

 

  if( ba.contains( vLockedA ) && bb.contains( vLockedB ) ) { 

   bLock = true; 

    

  } else { 

   bLock = false; 

 

  } 

 

  // Get old scaling based on finger distance 

  osg::Vec3 v = vOldA - vOldB; 

  double dOldDist = v.length(); 

 

  // Get new scaling based on finger distance 

  v = vLockedA - vLockedB; 

  double dNewDist = v.length(); 

 

  // Update matrices with new scaling 

  double dScale = dNewDist / dOldDist; 

  osg::Matrixd tmp = matTransform->getMatrix(); 

  tmp.preMultScale( osg::Vec3( dScale, dScale, dScale ) ); 

  matTransform->setMatrix( tmp ); 

 

  osg::Matrix s; 
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  s.postMultScale(osg::Vec3( dScale, dScale, dScale )); 

  matParent->preMult( s ); 

 

  // Update history 

  vOldA = vLockedA; 

  vOldB = vLockedB; 

 

  // Update clock 

  time( &tUpdate ); 

 

 } 

} 

 

void ManipulatorWidget::updateTR() { 

 

 // Update the widget & parent object translation & rotation upon 

lock 

 if( bLock ) { 

 

  // Get rotation 

  osg::Vec3 a = vOldA - vOldB; 

  a.normalize(); 

 

  osg::Vec3 b = vLockedA - vLockedB; 

  b.normalize(); 

 

 

  osg::Matrixd matRotate = osg::Matrix::rotate( a, b ); 

 

  // Apply rotation - unwind translation then apply rotation? 

  osg::Matrixd tmp = matTransform->getMatrix(); 

  osg::Vec3 transWidget = tmp.getTrans(); 

   

  tmp.postMultTranslate( -transWidget ); 

  tmp.postMult( matRotate ); 

  tmp.postMultTranslate( transWidget ); 

  matTransform->setMatrix( tmp ); 

 

  tmp = matParent->getMatrix(); 

  osg::Vec3 transModel = tmp.getTrans(); 

   

  tmp.postMultTranslate( -transWidget ); //used transWidget 

to keep relative rotation between model and widget 

  tmp.postMult( matRotate ); 

  tmp.postMultTranslate( transWidget ); 

  matParent->setMatrix( tmp ); 

 

  // Get translation 

  a = vOldA - vOldB; 

  a = a * 0.5; 

  osg::Vec3 vOldPosition = vOldB + a; 
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  a = vLockedA - vLockedB; 

  a = a * 0.5; 

  osg::Vec3 vLockedPosition = vLockedB + a; 

  osg::Vec3 vTrans = vLockedPosition - vOldPosition; 

 

  osg::Matrixd matTranslate = osg::Matrixd::translate( vTrans 

); 

 

  // Apply translation 

  tmp = matTransform->getMatrix(); 

  tmp.postMult( matTranslate ); // using postmult to 

apply translation after rotations/scales/etc. 

  matTransform->setMatrix( tmp ); 

 

  matParent->postMult( matTranslate ); 

 

  // Update history 

  vOldA = vLockedA; 

  vOldB = vLockedB; 

 

  // Update locking 

  osg::BoundingSphere ba = geoSphereA->getBound(); 

  ba.set(ba.center() * matTransform->getMatrix(), 

ba.radius()); 

  osg::BoundingSphere bb = geoSphereB->getBound(); 

  bb.set(bb.center() * matTransform->getMatrix(), 

bb.radius()); 

   

  bool testA = ba.contains( vLockedA ); 

  bool testB = bb.contains( vLockedB ); 

 

  if( testA && testB ) { 

   bLock = true; 

    

  } else { 

   bLock = false; 

  } 

 

  // Update clock 

  time( &tUpdate ); 

 

 } 

} 

 

 

//int main() { 

// 

// osg::Vec3 a(1,0,0); 

// osg::Vec3 b(0,1,0); 

// 

// osg::Vec3 c = a^b; 

// 
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// osg::Matrix t; 

// t.setTrans(5, 1, 0); 

// t.postMult( osg::Matrixd::rotate(osg::Vec3(1,0,0), 

osg::Vec3(0,1,0)) ); 

// 

// int q = 4; 

// 

//} 

 

 

PtFilter.h 
#ifndef __OPENCV200 

 

 #include <opencv/cv.h> 

 #include <opencv/cxcore.h> 

 #include <opencv/highgui.h> 

 

 #define __OPENCV200 

 

#endif 

 

class PtFilter { 

 

public: 

 PtFilter(double fps) { 

  // initialize kalman variables 

  kalman = cvCreateKalman(6,3,0);  //dynamic: x, y,z, 

dx, dy, dz; measure: x,y,z; no control; 

  state = cvCreateMat(6, 3, CV_32FC1); 

  measurement = cvCreateMat(3, 1, CV_32FC1); 

   

  const float A[] = { 1,0,0,1000.0/fps,0,0, 

       0,1,0,0,1000.0/fps,0, 

       0,0,1,0,0,1000.0/fps, 

       0,0,0,1,0,0, 

       0,0,0,0,1,0, 

       0,0,0,0,0,1 };   // 

transition matrix 

 

  memcpy( kalman->transition_matrix->data.fl, A, sizeof(A) );

 // set kalman's transition matrix to A 

 

  // Set process variables...not sure what's optimal here. :| 

  cvSetIdentity( kalman->measurement_matrix, cvRealScalar(1) 

); 

  cvSetIdentity( kalman->process_noise_cov, cvRealScalar(1e-

5) ); 

  cvSetIdentity( kalman->measurement_noise_cov, 

cvRealScalar(0.5) ); 

  cvSetIdentity( kalman->error_cov_post, cvRealScalar(1) ); 
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  // initialize state to random 

     CvRNG rand = cvRNG(-1); 

  cvRandArr( &rand, kalman->state_post, CV_RAND_NORMAL, 

cvRealScalar(0), cvRealScalar(0.1) ); 

 

  count = 0; 

  isAccurate = false; 

 } 

 

 ~PtFilter() { 

  cvReleaseKalman( &kalman ); 

 } 

 

 osg::Vec3f getPrediction() { 

  // Return the predicted position of the tracked point 

 

  const CvMat *prediction = cvKalmanPredict( kalman, 0 ); 

  pPredict.x() = prediction->data.fl[0]; 

  pPredict.y() = prediction->data.fl[1]; 

  pPredict.z() = prediction->data.fl[2]; 

  return pPredict; 

 } 

 

 void update( osg::Vec3f pIn ) { 

  // Update the tracking with a measurement 

 

  measurement->data.fl[0] = pIn.x(); 

  measurement->data.fl[1] = pIn.y(); 

  measurement->data.fl[2] = pIn.z(); 

 

  cvKalmanCorrect( kalman, measurement ); 

 } 

 

 void update() { 

  // Update the tracking based on internal state (no 

measurement) 

 

  state = kalman->state_post; 

  cvMatMul( kalman->transition_matrix, state, state); 

 

  CvMat *predict = cvCreateMat(3,1,CV_32FC1); 

  predict->data.fl[0] = state->data.fl[0]; 

  predict->data.fl[1] = state->data.fl[1]; 

  predict->data.fl[2] = state->data.fl[2]; 

 

  cvKalmanCorrect( kalman, predict );  

 

  cvReleaseMat( &predict ); 

 

  count++; 

 } 
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 int getCount() { 

  return count; 

 } 

 

 void resetCount() { 

  count = 0; 

 } 

 

 bool isAccurate; 

 osg::Vec3f pPredict; 

 

 

private: 

 CvKalman *kalman;      // kalman filter 

data structure 

 CvMat *state;       // state 

variable 

 CvMat *measurement;      // measurement 

variable 

 int count; 

}; 

 

 

Main.cpp 
#define NUM_CAMS 3 

 

#include "Cam.h" 

#include "IntersectionTester.h" 

#include "ManipulatorWidget.h" 

#include <sstream> 

 

#include <osgViewer/Viewer> 

#include <osgViewer/ViewerEventHandlers> 

#include <osgGA/TrackballManipulator> 

#include <osg/Geometry> 

#include <osg/Node> 

#include <osg/LineWidth> 

#include <osg/TextureRectangle> 

#include <osg/TexMat> 

#include <osg/Shape> 

#include <osg/ShapeDrawable> 

#include <osg/PositionAttitudeTransform> 

#include <osg/MatrixTransform> 

 

#include <osgDB/ReadFile> 

 

// Function declarations 

osg::ref_ptr<osg::Camera> getVideoBackground(int, osg::Group *, 

osg::Image *); 
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osg::ref_ptr<osg::Geode> getForegroundRect(cv::Mat *, osg::Vec3, 

osg::Vec3, osg::Vec3, osg::Vec3); 

 

// Global Variables 

Cam * arrCams[NUM_CAMS]; 

HANDLE hth[NUM_CAMS]; 

unsigned uiThreadID[NUM_CAMS]; 

int intCurrentCam; 

 

// Event handlers 

class KeyHandler : public osgGA::GUIEventHandler  

{ 

public:  

 

 KeyHandler() {} 

    ~KeyHandler() {} 

 

    bool handle(const osgGA::GUIEventAdapter& ea, 

osgGA::GUIActionAdapter& aa) 

    { 

        osgViewer::Viewer* viewer = 

dynamic_cast<osgViewer::Viewer*>(&aa); 

        if (!viewer) return false; 

 

        switch(ea.getEventType()) 

        { 

            case(osgGA::GUIEventAdapter::KEYUP): 

            { 

                if (ea.getKey()=='b') 

                { 

     // suspend threads 

     for(int i = 0; i < NUM_CAMS; i++) { 

      SuspendThread( hth[i] ); 

     } 

 

     // reinit background 

     for(int i = 0; i < NUM_CAMS; i++) { 

      arrCams[i]->resetBackground(); 

     } 

 

     for(int i = 0; i < NUM_CAMS; i++) { 

      ResumeThread( hth[i] ); 

     } 

    }                 

                else if (ea.getKey()=='r') 

                { 

     // suspend threads 

     for(int i = 0; i < NUM_CAMS; i++) { 

      SuspendThread( hth[i] ); 

     } 

 

     // reinit matrices 
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     for(int i = 0; i < NUM_CAMS; i++) { 

      arrCams[i]->resetCamMatrix(); 

      arrCams[i]->resetBackground(); 

     } 

 

     for(int i = 0; i < NUM_CAMS; i++) { 

      ResumeThread( hth[i] ); 

     } 

    } 

    else if (ea.getKey() == ']') 

    { 

     // Reset view to the next camera 

     intCurrentCam = (intCurrentCam + 1) % 

NUM_CAMS; 

     viewer->getCamera()->setProjectionMatrix( 

arrCams[intCurrentCam]->getProjectionMatrix() ); 

     viewer->getCamera()->setViewMatrix( 

arrCams[intCurrentCam]->getViewMatrix() ); 

    } 

    else if (ea.getKey() == '[') 

    { 

     // Reset view to previous camera 

     intCurrentCam = (NUM_CAMS + intCurrentCam 

- 1) % NUM_CAMS; 

     viewer->getCamera()->setProjectionMatrix( 

arrCams[intCurrentCam]->getProjectionMatrix() ); 

     viewer->getCamera()->setViewMatrix( 

arrCams[intCurrentCam]->getViewMatrix() ); 

    } 

                return false; 

            } 

            case(osgGA::GUIEventAdapter::PUSH): 

            case(osgGA::GUIEventAdapter::MOVE): 

            case(osgGA::GUIEventAdapter::RELEASE): 

 

            default: 

                return false; 

        } 

 

  viewer = NULL; 

    } 

}; 

 

int main() { 

 

 // Set up OSG viewer 

 osg::ref_ptr<osg::Group> root = new osg::Group(); 

 

 osgViewer::Viewer viewer; 

    viewer.setThreadingModel(osgViewer::Viewer::SingleThreaded); 

 viewer.setUpViewInWindow(500,100,800,600,0); 

 viewer.setSceneData( root.get() ); 
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    viewer.addEventHandler(new osgViewer::StatsHandler); 

    viewer.addEventHandler(new osgViewer::WindowSizeHandler); 

    viewer.addEventHandler(new osgViewer::ThreadingHandler); 

    viewer.addEventHandler(new osgViewer::HelpHandler); 

 

 // Tracking vectors 

 std::vector<osg::MatrixTransform *> vecModels; 

 std::vector<bool> vecHasWidget; 

 std::vector<ManipulatorWidget *> vecWidgets; 

 

 

 // Create object interface 

 //osg::ref_ptr<osg::Node> bigboxGeode = 

osgDB::readNodeFile("Models/827_3389_200.3ds"); 

 osg::ref_ptr<osg::Box> bigbox = new osg::Box(osg::Vec3(0,0,0), 

35); 

 osg::ref_ptr<osg::ShapeDrawable> bigboxDrawable = new 

osg::ShapeDrawable( bigbox.get() ); 

 osg::ref_ptr<osg::Geode> bigboxGeode = new osg::Geode(); 

 bigboxGeode->addDrawable( bigboxDrawable.get() ); 

    bigboxGeode->getOrCreateStateSet()->setRenderBinDetails(50, 

"RenderBin"); 

 

 osg::ref_ptr<osg::MatrixTransform> matModel1 = new 

osg::MatrixTransform( osg::Matrix::translate(0,0,100) ); 

 matModel1->addChild( bigboxGeode.get() ); 

 root->addChild( matModel1.get() ); 

 

 // Add objects' transforms to tracking vector 

 vecModels.push_back( matModel1.get() ); 

 vecHasWidget.push_back( false ); 

 

 // Create scale button 

 osg::ref_ptr<osg::Box> boxButton = new 

osg::Box(osg::Vec3(0,0,0),25,20,10); 

 osg::ref_ptr<osg::ShapeDrawable> boxButtonDraw = new 

osg::ShapeDrawable( boxButton.get() ); 

 osg::ref_ptr<osg::Geode> boxButtonGeo = new osg::Geode(); 

 boxButtonGeo->addDrawable( boxButtonDraw.get() ); 

 boxButtonGeo->getOrCreateStateSet()->setRenderBinDetails(50, 

"RenderBin"); 

 

 osg::ref_ptr<osg::MatrixTransform> matButton1 = new 

osg::MatrixTransform( osg::Matrix::translate(200,-50,5) ); 

 matButton1->addChild( boxButtonGeo.get() ); 

 root->addChild( matButton1.get() ); 

 

 // Set up intersection calculation thread 

 IntersectionTester * IntTest = new IntersectionTester(); 

 HANDLE hthIntersect; 

 unsigned uiThreadIDIntersect; 
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 hthIntersect = (HANDLE)_beginthreadex( NULL,         // security 

             0,            

// stack size 

             

IntersectionTester::threadedEntry, 

             IntTest,           

// arg list 

             

CREATE_SUSPENDED, 

             

&uiThreadIDIntersect ); 

 

 // Set up loop 

 for(int i = 0; i < NUM_CAMS; i++) { 

  arrCams[i] = new Cam(i); 

   

  hth[i] = (HANDLE)_beginthreadex( NULL,    // 

security 

           0,    

  // stack size 

           Cam::threadedEntry, 

           arrCams[i],  

  // arg list 

           CREATE_SUSPENDED, 

           &uiThreadID[i] ); 

  if ( hth[i] == 0 ) 

   printf("Failed to create thread %d\n", i); 

 

 } 

 

 

 // set start cam position 

 intCurrentCam = 0; 

 viewer.getCamera()->setProjectionMatrix( arrCams[intCurrentCam]-

>getProjectionMatrix() ); 

 viewer.getCamera()->setViewMatrix( arrCams[intCurrentCam]-

>getViewMatrix() ); 

 

 

 // Set up video background 

 osg::ref_ptr<osg::Image> imgBackground = new osg::Image(); 

 osg::ref_ptr<osg::Camera> bckgnd = 

getVideoBackground(intCurrentCam, root.get(), imgBackground.get() );  

 

 

 // Create finger sphere 

 osg::ref_ptr<osg::Sphere> unitSphere = new 

osg::Sphere(osg::Vec3(0,0,0), 5); 

 osg::ref_ptr<osg::ShapeDrawable> unitSphereDrawableA = new 

osg::ShapeDrawable( unitSphere.get() ); 

 unitSphereDrawableA->setColor( osg::Vec4(0.0,0.0,1.0,1.0)); 

 osg::ref_ptr<osg::Geode> geoSphereA = new osg::Geode(); 
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 geoSphereA->addDrawable( unitSphereDrawableA.get() ); 

 geoSphereA->getOrCreateStateSet()->setRenderBinDetails(50, 

"RenderBin"); 

 

 // Vector to contain position transforms for the spheres 

 std::vector< osg::ref_ptr<osg::PositionAttitudeTransform> > 

vSpheres; 

 

 // Execute threads 

 for(int i = 0; i < NUM_CAMS; i++) { 

  ResumeThread( hth[i] ); 

 } 

 ResumeThread( hthIntersect ); 

 

 

 std::vector< std::vector< osg::Vec3 > > vStart, vEnd; 

 

 IntTest->setThreshold(4); 

 std::vector< osg::Vec3 > vPts; 

 std::vector< int > vDelPts, vAInd, vBInd; 

 

 osg::ref_ptr<osg::Geode> arrForegrounds[] = {NULL, NULL, NULL, 

NULL}; 

 

 

 // Display loop 

 viewer.addEventHandler( new KeyHandler() ); 

    viewer.realize(); 

 

 std::vector<cv::Mat> vOutROI; 

 std::vector<cv::Rect> vOutRects; 

 cv::Mat tmpMat; 

 bool bScaleFlag = false, isIntersected = false; 

 

 double dErrorTerm = 5; 

 

 while( !viewer.done() ) { 

  

  // update video background 

  cv::Mat tmpImg = cv::Mat(arrCams[intCurrentCam]-

>imgOutput); 

  cv::Mat tmpMask = arrCams[intCurrentCam]->imgForeMask; 

 

  imgBackground->setImage(arrCams[intCurrentCam]->imgOutput-

>width, 

        arrCams[intCurrentCam]-

>imgOutput->height, 

        arrCams[intCurrentCam]-

>imgOutput->depth, 

        3, 

        GL_BGR, 

        GL_UNSIGNED_BYTE, 
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        (unsigned 

char*)arrCams[intCurrentCam]->imgOutput->imageData, 

        osg::Image::NO_DELETE, 

        1 );   

 

  // Get intersection output 

  IntTest->getOutputs(&vPts, &vDelPts); 

 

  // Get foreground rects 

  vOutROI.clear(); 

  vOutRects.clear(); 

  arrCams[intCurrentCam]->getCrit(); 

  //vOutROI = arrCams[intCurrentCam]->vOutROI; 

  vOutRects = arrCams[intCurrentCam]->vOutRects; 

  arrCams[intCurrentCam]->releaseCrit(); 

 

  // Get 2D transforms of points 

  std::vector< osg::Vec3 > vPts2D; 

  //std::vector< osg::Vec3 > vPtsPartialTransform; 

  for(int i = 0; i < vPts.size(); i++) { 

   osg::Vec3 pt2D; 

   osg::Matrix mat = arrCams[intCurrentCam]->matView 

*arrCams[intCurrentCam]->matProjection * arrCams[intCurrentCam]-

>matViewport ; 

   pt2D = vPts[i] * mat; 

   //vPts2D.push_back( osg::Vec2( pt2D.x(), pt2D.y())); 

   vPts2D.push_back( pt2D ); 

 

   //pt2D = vPts[i] * arrCams[intCurrentCam]->matView; 

   //vPtsPartialTransform.push_back( pt2D ); 

  } 

 

  // Process foreground rectangles 

  std::vector<float> fZvalues; 

  for(int i = 0; i < vOutRects.size(); i++) { 

  

   float zCount = 0; 

   fZvalues.push_back( 0 ); 

   cv::Rect tmpRect = vOutRects[i]; 

 

   // Get average z value of rectangle 

   for(int j = 0; j < vPts2D.size(); j++) { 

    // see if point lies within rectangle on 2D 

plane 

    if( vPts2D[j].x() >= tmpRect.x - dErrorTerm && 

vPts2D[j].x() <= (tmpRect.x + tmpRect.width+dErrorTerm) && 

     vPts2D[j].y() >= tmpRect.y - dErrorTerm && 

vPts2D[j].y() <= (tmpRect.y + tmpRect.height + dErrorTerm) ){ 

   

      //Average in points z value 

      fZvalues[i] = (fZvalues[i] * zCount + 

vPts2D[j].z())  / (zCount+1.0); 
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      zCount++; 

 

    } 

   } 

 

   // Create ROI images 

   cv::Mat tmp; 

   cv::getRectSubPix(tmpImg, cv::Size(tmpRect.width*2, 

tmpRect.height*2), cv::Point2f(tmpRect.x*2 + tmpRect.width, tmpRect.y*2 

+ tmpRect.height),tmp,-1); 

 

   cv::Mat roi = cv::Mat(tmp.rows, tmp.cols, CV_8UC4, 

cv::Scalar(0,0,0,0)); 

   // changing channels,so can't use copyto op 

   for(int j = 0; j < tmp.rows; j++) { 

    for(int k = 0; k < tmp.cols; k++) {  

     if( tmpMask.at<uchar>(tmpRect.y+(j/2), 

tmpRect.x+(k/2)) > 0 ) { 

      cv::Vec3b tmpPt = 

tmp.at<cv::Vec3b>(j,k); 

      cv::Vec4b tmpPt2 = 

cv::Vec4b(tmpPt[0], tmpPt[1], tmpPt[2], 255); 

      roi.at<cv::Vec4b>(j,k) = tmpPt2; 

     } 

    } 

   } 

 

   vOutROI.push_back( roi ); 

  } 

 

  // Draw ROI rectangles 

  for(int i = 0; i < 4; i++) { 

   if( i < fZvalues.size() ) { 

    if( fZvalues[i] != 0) { 

     tmpMat = vOutROI[i]; 

     cv::Rect tmpRect = vOutRects[i]; 

 

     //Update size/position 

     osg::Matrix mat; 

     mat.invert( arrCams[intCurrentCam]-

>matView * arrCams[intCurrentCam]->matProjection * 

arrCams[intCurrentCam]->matViewport);  

 

     // Get rect corners 

     osg::Vec3 UL = osg::Vec3(tmpRect.x, 

(tmpImg.rows/2)-(tmpRect.y), fZvalues[i]) * mat; 

     osg::Vec3 UR = 

osg::Vec3(tmpRect.x+tmpRect.width, (tmpImg.rows/2)-(tmpRect.y), 

fZvalues[i]) * mat; 

     osg::Vec3 LR = 

osg::Vec3(tmpRect.x+tmpRect.width, (tmpImg.rows/2)-

(tmpRect.y+tmpRect.height), fZvalues[i]) * mat; 
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     osg::Vec3 LL = osg::Vec3(tmpRect.x, 

(tmpImg.rows/2)-(tmpRect.y+tmpRect.height), fZvalues[i]) * mat; 

 

 

     // Create rectangle 

     if( arrForegrounds[i] != NULL ) { 

      root->removeChild( 

arrForegrounds[i].get() ); 

      arrForegrounds[i] = NULL; 

     } 

     arrForegrounds[i] = getForegroundRect( 

&tmpMat, UL, UR, LR, LL ); 

 

     root->addChild( arrForegrounds[i].get() ); 

    } 

   } else { 

    if( arrForegrounds[i] != NULL ) { 

     root->removeChild( arrForegrounds[i].get() 

); 

     arrForegrounds[i] = NULL; 

    } 

   }     

  } 

 

 

  // Draw spheres 

  for(unsigned int i = 0; i < vPts.size(); i++) { 

   if( vSpheres.size() <= i ) { 

    osg::ref_ptr<osg::PositionAttitudeTransform> 

tmp; 

    tmp = new osg::PositionAttitudeTransform(); 

    tmp->setPosition( vPts[i] ); 

    tmp->addChild( geoSphereA.get() ); 

    tmp->setDataVariance(osg::Object::DYNAMIC); 

 

    vSpheres.push_back( tmp ); 

    root->addChild( vSpheres[i].get() ); 

   } else { 

    vSpheres[i]->setPosition( vPts[i] ); 

   } 

  } 

   

  //Remove remaining spheres 

  for(int i = vSpheres.size()-1; i > vPts.size()-1; i--) { 

   root->removeChild( vSpheres[i].get() ); 

   vSpheres.erase( vSpheres.begin() + i ); 

  } 

   

  // update intersection test 

  vStart.clear(); 

  vEnd.clear(); 

  for( int i = 0; i < NUM_CAMS; i++ ) { 
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   arrCams[i]->getCrit(); 

   if( arrCams[i]->vNear.size() > 0 ) { 

    std::vector< osg::Vec3 > tmp = arrCams[i]-

>vNear; 

    vStart.push_back( tmp ); 

 

    std::vector< osg::Vec3 > tmp2 = arrCams[i]-

>vFar; 

    vEnd.push_back( tmp2 ); 

   } else { 

    std::vector< osg::Vec3 > *tmp1 = new 

std::vector<osg::Vec3>; 

    std::vector< osg::Vec3 > *tmp2 = new 

std::vector<osg::Vec3>; 

    vStart.push_back( *tmp1 ); 

    vEnd.push_back( *tmp2 ); 

   } 

   arrCams[i]->releaseCrit(); 

  } 

  IntTest->setInputPts( vStart, vEnd ); 

 

  // Update widget index lists 

  for(int i = 0; i < vDelPts.size(); i++) { 

   for(int j = 0; j < vAInd.size(); j++) { 

    if( vAInd[j] > vDelPts[i]) { 

     vAInd[j] = vAInd[j] - 1; 

    } else if( vAInd[j] == vDelPts[i]) { 

     vAInd[j] = -1; 

    } 

 

    if( vBInd[j] > vDelPts[i]) { 

     vBInd[j] = vBInd[j] - 1; 

    } else if( vBInd[j] == vDelPts[i]) { 

     vBInd[j] = -1; 

    } 

   } 

  } 

 

 

  // Update & Check widgets for expiration 

  for(int i = 0; i < vecWidgets.size(); i++ ) { 

    

   // Update widget lock values ->if gone, remove lock 

condition 

    

   if( vecWidgets[i]->bLock == true) { 

    if( vAInd[i] < 0 || vBInd[i] < 0 ) { 

     vecWidgets[i]->bLock = false; 

    } else { 

     vecWidgets[i]->vLockedA = vPts[vAInd[i]]; 

     vecWidgets[i]->vLockedB = vPts[vBInd[i]]; 

    } 
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   } 

 

   vecWidgets[i]->update(); 

 

   time_t now; 

   time( &now ); 

   double t = difftime(now, vecWidgets[i]->tUpdate ); 

 

   if( t > 5 ) { // expiration time in s 

    // clear parent's widget 

    for(int j = 0; j < vecModels.size(); j++ ) { 

     if( vecModels[j] == vecWidgets[i]-

>matParent ) { 

      vecHasWidget[j] = false; 

     } 

    } 

     

    // suicide 

    root->removeChild( vecWidgets[i]-

>matTransform.get() ); 

    delete vecWidgets[i]; 

    vecWidgets.erase( vecWidgets.begin() + i); 

 

    vAInd.erase( vAInd.begin() + i); 

    vBInd.erase( vBInd.begin() + i); 

   } 

  } 

 

 

 

  // Check for model intersections 

  for(int k = 0; k < vecModels.size(); k++) { 

   for(int j = 0; j < vPts.size(); j++) { 

 

    if( vecModels[k]->getBound().contains( vPts[j] ) 

&& !(vecHasWidget[k]) ) { 

     // intersected, create a widget - 

currently trans/rot 

     ManipulatorWidget * mwNew1 = new 

ManipulatorWidget(bScaleFlag); 

     mwNew1->updatePosition(vPts[j], 

osg::Vec3()); 

     mwNew1->matParent = vecModels[k]; 

     root->addChild( mwNew1->matTransform.get() 

); 

     vecWidgets.push_back(mwNew1); 

 

     vecHasWidget[k] = true; 

 

     // push back indices as well 

     vAInd.push_back( -1 ); 

     vBInd.push_back( -1 ); 
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    } 

   } 

  } 

 

 

  // Check widgets for entering lock condition 

  for(int i = 0; i < vecWidgets.size(); i++ ) { 

   if( vecWidgets[i]->bLock == false ) { 

    bool bA = false; 

    bool bB = false; 

 

    // Check for intersections with ptA 

    osg::BoundingSphere boundSphere = vecWidgets[i]-

>geoSphereA->getBound(); 

    boundSphere.set(boundSphere.center() * 

vecWidgets[i]->matTransform->getMatrix(), boundSphere.radius()); 

 

    for(int j = 0; j < vPts.size(); j++) { 

     if( boundSphere.contains( vPts[j] ) ) { 

      bA = true; 

      //vecWidgets[i]->vLockedA = &vPts[j]; 

      vAInd[i] = j; 

      vecWidgets[i]->vOldA = 

boundSphere.center(); 

      break; 

     } 

    } 

 

    boundSphere = vecWidgets[i]->geoSphereB-

>getBound(); 

    boundSphere.set(boundSphere.center() * 

vecWidgets[i]->matTransform->getMatrix(), boundSphere.radius()); 

     

    for(int j = 0; j < vPts.size(); j++) { 

     if( boundSphere.contains( vPts[j] ) ) { 

      bB = true; 

      //vecWidgets[i]->vLockedB = &vPts[j];

  

      vBInd[i] = j; 

      vecWidgets[i]->vOldB = 

boundSphere.center(); 

      break; 

     }  

    } 

 

    //Set color to know if you're intersecting 

    if( bA ) { 

     osg::Vec4 color = osg::Vec4(1.f, 0.f, 0.f, 

1.f); 

     vecWidgets[i]->shapeA->setColor( color ); 

    } else { 
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     osg::Vec4 color = osg::Vec4(1.f, 1.f, 1.f, 

1.f); 

     vecWidgets[i]->shapeA->setColor( color ); 

    } 

 

    // Set color to know if you're intersecting 

    if( bB ) { 

     osg::Vec4 color = osg::Vec4(1.f, 0.f, 0.f, 

1.f); 

     vecWidgets[i]->shapeB->setColor( color ); 

    } else { 

     osg::Vec4 color = osg::Vec4(1.f, 1.f, 1.f, 

1.f); 

     vecWidgets[i]->shapeB->setColor( color ); 

    } 

 

    // Set lock condition 

    if( bA && bB ) { 

     vecWidgets[i]->bLock = true; 

    } 

   } 

  } 

 

  // Check for button intersections - need to modify so that 

the intersection doesn't flip constantly 

  bool isIntersectedFrame = false; 

 

  osg::BoundingBox boundBox = boxButtonGeo->getBoundingBox(); 

  boundBox.set(osg::Vec3(boundBox.xMin(), boundBox.yMin(), 

boundBox.zMin()) * matButton1->getMatrix(),  

   osg::Vec3(boundBox.xMax(), boundBox.yMax(), 

boundBox.zMax()) * matButton1->getMatrix()); 

 

  for(int j = 0; j < vPts.size(); j++) { 

 

   if( boundBox.contains( vPts[j] )) { 

    isIntersectedFrame = true; 

   } 

  } 

 

  if( isIntersectedFrame == true) { 

   if( isIntersectedFrame != isIntersected ) { 

 

     bScaleFlag = !bScaleFlag; 

     isIntersected = true; 

 

     //change color 

     if( bScaleFlag ) 

      boxButtonDraw->setColor( 

osg::Vec4(1.f, 0.f, 0.f, 1.f) ); 

     else 
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      boxButtonDraw-

>setColor(osg::Vec4(1.f, 1.f, 1.f, 1.f) ); 

   } 

  } else { 

   isIntersected = false; 

  } 

 

  // Render 

  viewer.frame(); 

 } 

 

 

 // Wait for threads to resolve to close out. 

 for(int i = 0; i < NUM_CAMS; i++) { 

  arrCams[i]->setKey(27); 

  WaitForSingleObject( hth[i], INFINITE ); 

 } 

 

 for(int i = 0; i < NUM_CAMS; i++) { 

  CloseHandle( hth[i] ); 

  delete arrCams[i]; 

  arrCams[i] = NULL; 

 } 

 

 // Close out intersector 

 IntTest->setKey( 27 ); 

 WaitForSingleObject( hthIntersect, INFINITE ); 

 CloseHandle( hthIntersect ); 

 delete IntTest; 

 IntTest = NULL; 

 

 } 

 

 

 osg::ref_ptr<osg::Camera> getVideoBackground(int intCam, osg::Group * 

root, osg::Image * imgBackground) { 

 

 Cam * cam = arrCams[intCam]; 

 

 int w = cam->imgOutput->width; 

 int h = cam->imgOutput->height; 

 int d = cam->imgOutput->depth; 

 

 imgBackground->setImage(w, 

       h, 

       d, 

       3, 

       GL_BGR, 

       GL_UNSIGNED_BYTE, 

       (unsigned char*)cam->imgOutput-

>imageData, 

       osg::Image::NO_DELETE, 
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       1 );     

 

 // set up camera params for the vid background 

 osg::ref_ptr<osg::Camera> videoBackground = new osg::Camera(); 

 videoBackground->setViewMatrix(osg::Matrix::identity()); 

 videoBackground->setRenderOrder(osg::Camera::NESTED_RENDER); 

 videoBackground->setClearMask(GL_DEPTH_BUFFER_BIT); 

 videoBackground->getOrCreateStateSet()->setMode(GL_LIGHTING, 

GL_FALSE); 

 videoBackground->getOrCreateStateSet()->setMode(GL_DEPTH_TEST, 

GL_FALSE); 

 videoBackground->setReferenceFrame(osg::Transform::ABSOLUTE_RF); 

 videoBackground->setProjectionMatrixAsOrtho2D(0.0f, (float)w, 

0.0f, (float)h); 

 

 // create texture 

 osg::ref_ptr<osg::TextureRectangle> txtImage = new 

osg::TextureRectangle( imgBackground ); 

 osg::ref_ptr<osg::TexMat> texmat = new osg::TexMat; 

    texmat->setScaleByTextureRectangleSize(true); 

  

 

 // create some geometry 

 osg::ref_ptr<osg::Geode> vidGeode = new osg::Geode(); 

 osg::ref_ptr<osg::Geometry> geometry = new osg::Geometry(); 

   

 osg::ref_ptr<osg::Vec3Array> vcoords = new osg::Vec3Array(); 

 geometry->setVertexArray(vcoords.get()); 

 

 osg::ref_ptr<osg::Vec2Array> tcoords = new osg::Vec2Array(); 

 geometry->setTexCoordArray(0, tcoords.get()); 

 

 vcoords->push_back(osg::Vec3(0.0f, 0.0f, 0.0f)); 

 vcoords->push_back(osg::Vec3((float)w, 0.0f, 0.0f)); 

 vcoords->push_back(osg::Vec3((float)w, (float)h, 0.0f)); 

 vcoords->push_back(osg::Vec3(0.0f,  (float)h, 0.0f)); 

 

 tcoords->push_back(osg::Vec2(0.0f, 1.0f)); 

 tcoords->push_back(osg::Vec2(1.0f, 1.0f)); 

 tcoords->push_back(osg::Vec2(1.0f, 0.0f)); 

 tcoords->push_back(osg::Vec2(0.0f, 0.0f)); 

 

 geometry->addPrimitiveSet(new 

osg::DrawArrays(osg::PrimitiveSet::QUADS, 0, 4)); 

 

 vidGeode->addDrawable(geometry.get()); 

 

 videoBackground->addChild( vidGeode.get() ); 

 

 // set dynamic data variance 

 videoBackground->setDataVariance(osg::Object::DYNAMIC); 

 txtImage->setDataVariance(osg::Object::DYNAMIC); 
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 videoBackground->getOrCreateStateSet()->setMode(GL_LIGHTING,  

    osg::StateAttribute::OFF | 

osg::StateAttribute::PROTECTED);  

 

 videoBackground->getOrCreateStateSet()-

>setTextureAttributeAndModes(0, txtImage.get(), 

osg::StateAttribute::ON); 

    videoBackground->getOrCreateStateSet()-

>setTextureAttributeAndModes(0, texmat.get(), osg::StateAttribute::ON); 

    videoBackground->getOrCreateStateSet()->setRenderBinDetails(25, 

"RenderBin"); 

 

 root->addChild( videoBackground.get()); 

 

 return videoBackground; 

 } 

 

 

 

 osg::ref_ptr<osg::Geode> getForegroundRect(cv::Mat * roi, osg::Vec3 

UL, osg::Vec3 UR, osg::Vec3 LR, osg::Vec3 LL) { 

 

 int w = roi->cols; 

 int h = roi->rows; 

 int d = 8;  //roi->depth returns 0... 

 int c = roi->channels(); 

 

 osg::ref_ptr<osg::Image> img = new osg::Image(); 

 img->setImage(w,h,d,c, 

      GL_BGRA, 

      GL_UNSIGNED_BYTE, 

      (unsigned char*)roi->data, 

      osg::Image::NO_DELETE, 

      1 );     

 

 // create texture 

 osg::ref_ptr<osg::TextureRectangle> txtImage = new 

osg::TextureRectangle( img ); 

 osg::ref_ptr<osg::TexMat> texmat = new osg::TexMat; 

    texmat->setScaleByTextureRectangleSize(true); 

  

 

 // create some geometry 

 osg::ref_ptr<osg::Geode> vidGeode = new osg::Geode(); 

 osg::ref_ptr<osg::Geometry> geometry = new osg::Geometry(); 

   

 osg::ref_ptr<osg::Vec3Array> vcoords = new osg::Vec3Array(); 

 geometry->setVertexArray(vcoords.get()); 

 

 osg::ref_ptr<osg::Vec2Array> tcoords = new osg::Vec2Array(); 

 geometry->setTexCoordArray(0, tcoords.get()); 
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 vcoords->push_back(LL); 

 vcoords->push_back(LR); 

 vcoords->push_back(UR); 

 vcoords->push_back(UL); 

 

 tcoords->push_back(osg::Vec2(0.0f, 1.0f)); 

 tcoords->push_back(osg::Vec2(1.0f, 1.0f)); 

 tcoords->push_back(osg::Vec2(1.0f, 0.0f)); 

 tcoords->push_back(osg::Vec2(0.0f, 0.0f)); 

 

 geometry->addPrimitiveSet(new 

osg::DrawArrays(osg::PrimitiveSet::QUADS, 0, 4)); 

 

 vidGeode->addDrawable(geometry.get()); 

  

 osg::StateSet * ss = vidGeode->getOrCreateStateSet(); 

 ss->setTextureAttributeAndModes(0, txtImage.get(), 

osg::StateAttribute::ON); 

    ss->setTextureAttributeAndModes(0, texmat.get(), 

osg::StateAttribute::ON); 

    ss->setRenderBinDetails(50, "RenderBin"); 

 ss->setMode(GL_LIGHTING, osg::StateAttribute::OFF | 

osg::StateAttribute::PROTECTED); 

 ss->setMode( GL_BLEND, osg::StateAttribute::ON ); 

 ss->setRenderingHint( osg::StateSet::TRANSPARENT_BIN ); 

 ss->setMode( GL_DEPTH_TEST, osg::StateAttribute::ON ); 

  

 txtImage->setDataVariance(osg::Object::DYNAMIC); 

 

 return vidGeode; 

 

 } 
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