
Graduate Theses and Dissertations Graduate College

2010

The AugmenTable: markerless hand manipulation
of virtual objects in a tabletop augmented reality
environment
Michael Van Waardhuizen
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Van Waardhuizen, Michael, "The AugmenTable: markerless hand manipulation of virtual objects in a tabletop augmented reality
environment" (2010). Graduate Theses and Dissertations. 11525.
http://lib.dr.iastate.edu/etd/11525

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F11525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F11525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/11525?utm_source=lib.dr.iastate.edu%2Fetd%2F11525&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

The AugmenTable: markerless hand manipulation of virtual

objects in a tabletop augmented reality environment

by

Michael Van Waardhuizen

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Human Computer Interaction

Program of Study Committee:

Jim Oliver, Major Professor

Eliot Winer

Stephen Gilbert

Iowa State University

Ames, Iowa

2010

Copyright © Michael Van Waardhuizen, 2010. All rights reserved.

ii

Table of Contents

Table of Contents ...ii

List of Figures .. iv

Abstract .. v

Chapter One: Introduction .. 1

Direct Manipulation Interfaces ... 1

Augmented/Mixed Reality .. 2

Increased use of VR in design/manufacturing .. 3

User Needs .. 3

The AugmenTable ... 4

Chapter Two: Related Work.. 6

Augmented Reality.. 6

Gesture Interaction ... 6

Hand Tracking ... 7

Hand Interaction ... 10

Comparable Systems... 13

Chapter Three: Method .. 17

Apparatus .. 17

Software Libraries ... 19

Algorithm/Process .. 22

Initialization... 22

Background Segmentation .. 24

Skin Detection ... 26

Fingertip Detection ... 30

2D to 3D .. 33

Tracking and Filtering .. 36

Occlusions and the Illusion of Depth .. 39

Chapter Four: Application & Discussion ... 42

Object Manipulation Prototype .. 42

Discussion.. 45

Realized Benefits ... 46

iii

Research Contributions ... 46

Challenges ... 47

System Limitations .. 49

Future Work .. 49

Application .. 50

Apparatus .. 51

Concept ... 51

Chapter Six: Conclusion .. 54

Bibliography .. 55

Appendix: Project Source Code .. 62

Background.h .. 62

Background.cpp .. 62

Cam.h .. 64

Cam.cpp .. 67

Fingerpoint.h ... 76

Fingerpoint.cpp ... 77

IntersectionTester.h .. 85

IntersectionTester.cpp .. 87

ManipulatorWidget.h ... 95

ManipulatorWidget.cpp .. 96

PtFilter.h .. 101

Main.cpp ... 103

iv

List of Figures

FIGURE 1: AUGMENTABLE - FRONT ... 4

FIGURE 2: AUGMENTABLE - BACK ... 4

FIGURE 3: SIMPLIFIED HAND MODEL OF FINGARTIPS [13] .. 7

FIGURE 4: SPIDAR-8 HAPTIC AR [17] ... 8

FIGURE 5: IBID. .. 8

FIGURE 6: EXAMPLE RAY-CASTING SYSTEM SYTEM [33] ... 11

FIGURE 7: HANDAR SNAPSHOTS [43] ... 14

FIGURE 8: SIMILAR WORKSPACE CONCEPT [47] .. 15

FIGURE 9: AUGMENTABLE APPARATUS .. 17

FIGURE 10: THREADS/ALGORITHMS FLOWCHART ... 21

FIGURE 11: RELATIONSHIP OF CAMERA AND MARKER TRANSFORMATIONS ... 23

FIGURE 12: EXAMPLE INPUT FRAME .. 24

FIGURE 13: EXAMPLE FOREGROUND MASK ... 25

FIGURE 14: RAW SKIN DETECTION (HSV HISTOGRAM) .. 28

FIGURE 15: FILTERED SKIN DETECTION ... 30

FIGURE 16: FINGERTIP DETECTION [11] ... 31

FIGURE 17: POLYGON VERTEX APPROXIMATION .. 32

FIGURE 18: 2D CANDIDATE POINTS .. 32

FIGURE 19: RAY-CASTING FOR 3D POINT CALCULATION ... 33

FIGURE 20: CLOSEST DISTANCE BETWEEN 3D LINES [68] ... 34

FIGURE 21: STABLE, TRACKED POINTS 1 ... 37

FIGURE 22: STABLE TRACKED POINTS 2 .. 38

FIGURE 23: OVERLAPPING 3D FALSE POSITIVES ... 39

FIGURE 24: OCCLUSION OF VIRTUAL OBJECTS ... 40

FIGURE 25: OBJECT TRANSLATION AND ROTATION ... 42

FIGURE 26: VIRTUAL BUTTON PRESS ... 43

FIGURE 27: OBJECT SCALING .. 44

v

Abstract

The AugmenTable is an augmented reality workstation intended for conceptual design and

prototyping. It combines a thin form factor display, inexpensive web cameras, and a PC into

a unique apparatus that has advantages similar to a head mounted display. The system

operates on well-established computer vision algorithms to detect unmarked fingertips

within an augmented reality scene. An application was developed to allow a user to

manipulate virtual objects within the scene. This manipulation is possible through the use

of three-dimensional widgets and controls that allow the user to control objects with

natural fingertip motion. This thesis also documents similar previous work, the methods

used to create the AugmenTable, and a number of avenues for advancing the system and

the interactions it can offer users.

1

Chapter One: Introduction

The computing world of 2010 is noticeably affected by many trends. These trends include

the use of more natural, direct interfaces, the rise of consumer-grade mixed reality systems,

and the application of virtual reality to design and manufacturing processes. These trends

imply that users will soon need 3D interfaces to interact with technology. This paper

describes a new, unique project that attempts to unify these trends and results in an

augmented reality workstation that allows users to interact with 3D virtual objects directly

with their bare hands.

Direct Manipulation Interfaces

Direct manipulation interfaces, also known as natural interfaces, are those that require few

or no mediating controls for interaction [1]. For example, multitouch displays, like those

found in Apple iPads, allow the user to touch application content and controls directly with

his or her fingertip rather than using a mediating technology like a keyboard or mouse.

 Direct manipulation interaction has many benefits, most notably a decreased need for

training or practice in order for a user to expertly operate the interface – humans have

evolved to intuitively manipulate objects with their hands. These benefits often translate

into easier, more attractive, and more successful designs. Direct hand manipulation of

virtual objects was shown to be faster and more intuitive than using a keyboard/mouse

interface by [2]. These benefits have led entire research groups, such as MIT’s Tangible

Media Group, to dedicate more than 10 years to integrating manipulatable objects with

virtual objects and metadata.

A number of consumer technologies, both nascent and established, aim to increase the

prevalence of direct manipulation interfaces. Multitouch displays allow finger presses

directly to a screen and have become ubiquitous in smartphones and other displays. Other

technologies that have not seen the same market penetration include haptic response

2

devices, such as Phantom Falcon 3D pointers or haptic response gloves. These devices may

become more common and less expensive as user’s expectations for direct manipulation

interfaces rise.

Augmented/Mixed Reality

Another trend is the expansion of augmented reality systems. Broadly, augmented reality is

the (most frequently visual) superposition of real and virtual objects or information in one

environment. As a research area, augmented reality has been pursued for many years with

a number of wide-ranging applications. Many of these systems have never left the

laboratory due to cost or other constraints rendering them impractical. However, due to

the adoption of mobile devices with powerful processors, built-in cameras, and fast internet

connections, augmented reality is beginning to infiltrate the average individual’s life.

A number of augmented reality applications have appeared in the Apple and Google

application stores (see [3] or [4] for examples.) These applications range from spur-of-the-

moment information overlays, like location guides, reviews and ratings, to games that

observe the user’s motions to create virtual effects. One good example is Google's Goggle

program [5], an application that accepts photos of landmarks, books, artwork, and many

other object types and then returns a Google visual search on the object.

As the public uses of augmented reality are accelerating, so are the technologies that power

them. Many examples of improved augmented reality applications are here or on their

way. MIT's Sixth Sense demo combines an iPhone, video camera, and pico-projector to

allow a user to record and display on any surface [6]. The Skinput system creates a similar

effect using the user’s skin as an input device [7]. Other consumer technologies such as

Samsung's transparent OLED displays [8] will one day enable a generation of hands-off,

information-everywhere augmented reality. This trend has just begun.

3

Increased use of VR in design/manufacturing

The trend of using virtual and augmented reality to support design and manufacturing

processes is not one that receives significant attention from the general public, yet is a

source of new thinking about what problems VR/AR can solve. Though many systems are

proprietary, a number of design/manufacturing AR systems have been described in

academic papers. Kim & Dey, for example, discuss the use of augmented reality for design

prototyping activities [9]. Augmented and virtual reality provides the next extension to

current computer-aided design systems, providing a means to more in-depth conceptual

design, review, and prototyping.

Academic literature also provides several guidelines for industrial augmented reality

systems. Kim & Dey claim that immersive displays such as head mounted devices (HMDs)

are important to reach the full capability of an industrial AR system. Additionally, Bleser et

al state that the use of markers for hand tracking systems is not acceptable for industrial

applications [10]. These criteria create a necessity for a new industrial AR design.

User Needs

These trends have two co-dependent sources: technological innovation to create business

opportunities and the creativity of developers to meet real user needs with technology.

However, the ongoing growth of these trends is driven more by consumer and user

adoption. Users seek direct manipulation because it is quicker, easier, and more pleasant to

use. Users are using more augmented reality because it is becoming inexpensive and

requires less expertise or preparation. VR is becoming more important to design and

manufacturing because it is providing new means of studying and creating designs.

For a system to capitalize on the trends above it must have these same properties. It should

be simple to use – it should not require learning a gestural language or require the user to

wear or manipulate cumbersome equipment. It must provide a new way of approaching

4

virtual (or real) objects to enable new perspectives. Finally, it must be an inexpensive

system that can be assembled without great expertise. These are the requirements for a

system to effectively provide value to end users.

 The AugmenTable

The system described in this paper provides an immersive augmented reality environment

that enables a direct manipulation interface for a conceptual design process and enables

new human-computer interaction. The system, called the AugmenTable, is a desk-based

workstation that features inexpensive cameras, a thin display monitor to approximate a

transparent display, established computer vision algorithms to identify and track a user's

hands, and virtual affordances for a user to manipulate or interact with a virtual object

using his or her bare hands. Furthermore, the system interaction is intended to provide

direct manipulation with virtual objects that is inherently similar to the way that user's

Figure 2: AugmenTable - Back Figure 1: AugmenTable - Front

5

interact with real objects. This similarity enables a greater sense of immersion and suggests

a number of interaction metaphors that can be directly copied from everyday life. As a

result, this system is intended to provide a test-bed for future research into three-

dimensional hand-based interactions.

The apparatus provides this functionality without encumbering the user with wearable

equipment. The system uses cameras and computer vision to track the hands without

requiring gloves or ungainly makers. The display provides a view of the user’s hands and

virtual objects integrated together without necessitating a bulky HMD. The AugmenTable

system has also been designed to allow both casual and collaborative use through its size.

To be effective, the system was designed under a set of constraints: the system had to

account for the ergonomics of the human hand in its interaction design, it had to be real-

time and avoid noticeable lag (defined by von Hardenberg & Bérard as a maximum update

interval of 50ms, equating to a refresh rate of 20 Hz [11]), and had to be flexible to support

a variety of application designs including multi-person collaboration. An additional

requirement was for the system to be relatively inexpensive to encourage adoption.

This thesis describes the work previously done towards these goals, the methods used to

realize it now, the strengths and weaknesses of the AugmenTable, and the future work

implied.

6

Chapter Two: Related Work

The combination of augmented reality and gesture interaction is not a new goal. Many

systems over the past 15 or more years have aimed to provide more natural interaction in

virtual environments via gesture recognition. Each system that has been developed has its

own set of strengths and limitations. Here, I will review previous work that could be

considered as forming a significant branch of the larger tree that is hand tracking, gesture

interaction, and augmented reality. Emphasis is given to systems published within the last

ten years.

Augmented Reality

Augmented reality is the blending of sensory input from the “real world,” most typically

visual information acquired from cameras or the user’s own eyes, and virtual sensory input.

The virtual input can range from textual or visual information to 3D geometry such as

guiding arrows or virtual objects. Most augmented reality systems today are based on

computer vision techniques that identify preset markers (preregistered 2D images) in a

camera image, calculate the marker’s position and attitude, and then superimpose the

virtual inputs in the viewing stream.

This paper foregoes a thorough review of augmented/mixed reality literature in favor of

examining integrated systems. A definitive bibliography can be found in the ACM

SIGGRAPH Asia 2008 course documentation.

Gesture Interaction

Gesture interaction with computers also has a long history. Gesture interaction poses two

problems: how to observe or track the hands, and how to translate the hand’s position,

attitude, or motion into computer interaction.

7

Hand Tracking

Tracking of the hands is accomplished in one of two ways: applying some form of external

accessory to the hands that is easily tracked (also called instrumented hands), or using

computer vision algorithms and techniques to extract hand information from one or more

cameras.

One form of accessory is fiducial markers. Fiducial markers are preset images typical of

augmented reality systems such as those using HIT Lab’s ARToolkit [12]. An example system

using such markers is FingARTips [13]. This system requires users to wear a black glove

adorned with several markers at

important joints (see Figure 3.) The

markers are then detected in an AR

environment, allowing several direct

manipulation interactions such as

pressing, pointing, and grabbing. The

use of fiducial markers for tracking

reduces the complexity of the tracking

system. However, it also limits the range of motion of the hands such that the markers

must be visible at all times, restricting the angles and rotation of the hands in 3D. A similar

marker-based gestures system was used by Kato et al for collaborative interaction as well

[14].

Markers are not limited to fiducial markers for AR. Reifinger et al created a system using

small markers on a glove that were tracked by infrared cameras, with a scene displayed via

HMD [2]. This system is able to recognize both static and dynamic gestures (with help of a

hidden Markov model.) The system supported grasping and scaling manipulations similar to

Figure 3: Simplified Hand Model of FingARTips [13]

8

the AugmenTable, but required unwieldy IR markers and specialized cameras to do so.

These requirements imposed a high cost and reduced the immersiveness of the application.

Markers can provide useful information about the articulation of the hand, and so are often

used in systems that create a computational model of hand geometry. Such information

can also be gained from sensor equipped “datagloves.” An older review of glove based

inputs was performed by Sturman & Zeltzer [15]. More simply, colored gloves (as used by

Keskin et al [16]) are much less encumbering and have been used to address difficulties with

skin detection (discussed below.)

A unique tracking solution was established by

Walairacht et al [17]. They describe a system where a

user may manipulate a virtual object in a workspace

with very real, natural hand movements. The system

provides haptic feedback, enabling the user to touch

and manipulate objects as if they were real. The

system also tracks all of the user’s fingers individually,

allowing for geometric calculation of the user’s

perspective. This is accomplished through the use of a

unique system of strings, attached to the user’s hands

during operation, as shown in Figures 4 & 5. This

system, though enabling many capabilities, would not

be practical for casual use and could likely result in a

fair amount of user fatigue. Additionally, the system

required numerous calculations which resulted in a

lagged, slow system response.

Figure 5: SPIDAR-8 Haptic AR [17]

Figure 4: Ibid.

9

When all encumbrances are removed, hand tracking is the province of computer vision

techniques. The number of papers and techniques developed are many and myriad. Most

systems utilize skin detection and object tracking algorithms (dicussed in depth below under

Method.) Unfortunately, there is no “silver bullet” technique commonly accepted to detect

hands. Each technique addresses some difficulties at the expense of others.

Markerless tracking of hands is not a new idea. DigitEyes was one of the earliest markerless

hand tracking systems described in 1994 [18]. Four years later, Nölker and Ritter advocated

markerless realtime hand tracking without using a geometric model to improve speed [19].

Though markerless tracking has been suggested and used for more than 15 years, marked

tracking is still considered justifiable due to the difficulties of markerless hand recognition.

Erol et al describe the main difficulties hand tracking systems as follows [20]:

1. High-dimensionality. Counting all of the joints, the hand has more than 20 degrees

of freedom. Reducing this through approximate kinematic modeling still leaves at

least six dimensions of manipulation, not counting the hands’ positions and

orientations.

2. Self-occlusions. From a single camera perspective, the hand has many

configurations in which the nearest surfaces of the hand or fingers obscure how the

rest of the hand is positioned.

3. Processing Speed. Real-time computer vision systems have to process a significant

amount of data. Modern techniques of parallel programming and today’s hardware

make this less relevant and improve formerly marginal techniques.

4. Uncontrolled environments. Object tracking of any kind in computer vision is made

exponentially more difficult by unrestricted background and lighting conditions.

5. Rapid hand motion. The hand is capable of moving up to 5 m/s with 300 degree/s

wrist rotation. Given typical camera frame rates of 60 fps, and tracking algorithms

that typically run much slower, full tracking of the hand remains elusive.

10

The following systems all place restrictions on either the environment or the user’s gestures

in order to ameliorate the difficulties of hand tracking. The most common restrictions are

uniform background and limited gesture speeds [11]. Other restrictions may be on the

orientation of the hand to remove self-occlusions or to limit the tracking of the hand to two

dimensions, such as on a desk surface [21], [22] , [18], [23], and [24].

These restrictions are often necessary for the systems to function, or may be implicit in the

tasks the system supports. However, the more restrictions imposed on the user can render

the experience less immersive and less realistic, reducing the value to the end user. As a

result, most of these systems never leave the laboratory.

Hand Interaction

Erol et al categorize hand interactions into two types: gestures used for communication (in

this context, to command and control interfaces) and object manipulation gestures

(simulating life-like interactions, such as pointing or pinching) [20]. The former tends to

utilize static hand poses or motion patterns which are then interpreted as commands. The

latter may include poses and motion patterns, but also frequently include direct tracking of

the hand or fingertips.

Pose and motion pattern recognition is developed either in creating three dimensional

models of the hand through inverse kinematics, or in partial pose recognition based on 2D

appearance [20]. Model based/inverse kinematic reconstruction is not discussed in this

thesis. A useful review can be found in [20].

Pose recognition is separated into tasks of identifying the hand in one or more images,

extracting relevant features, and passing them to a gesture classification system. Such a

system uses statistical methods to determine the pose or gesture from a previously trained

11

library. The variants of this technique are very popular for hand interaction, and were used

by [11], [21], [25], [26], [27], [28], [29], and [30].

Pose estimation is inherently limited. As

pointed out by Petersen and Strieker

[31], a system can only identify poses for

which it has been trained. As a result,

pose estimation based systems put a lot

of focus and development on gesture

classification. Classification is a step

performed through neural networks,

hidden Markov models, support vector

machines, or other statistical/machine learning methods. A comparison of such systems is

provided by Corso and Hager [32].

Statistical methods are less useful in systems that have object manipulation goals. In this

case, systems must track the user with significant precision that typically isn’t available from

general recognition techniques. This is especially noticeable in one older technique of

object manipulation known as “ray-casting”. Ray-casting is the extrapolation of a finger or

arm direction onto a surface, e.g. the system by shown in Figure 6 [33]. Ray-casting

requires as precise measurement of finger orientation as possible through robust feature

tracking.

Ray casting is one of several interaction methods broadly aimed at providing virtual

pointers. Virtual pointers were found to be acceptable for selection tasks, but not for

further manipulative tasks [34]. Addtionally, Mine et al found several advantages of

working within arms’ reach: more direct mapping between motion and response, better

precision of movement, and better visual cues of parallax and stereopsis [35].

Figure 6: Example ray-casting system sytem [33]

12

For our goal of direct virtual object manipulation, a more natural form of interaction is

required. Poupyrev et al describe another broad category of 3D interactions in virtual

environments: virtual hands [36]. Virtual hands are a metaphor for interaction where the

user “touches” a virtual object for interaction. Similar taxonomies of hand interactions are

described in [37] and [38] which include at-a-distance interaction (like ray-casting) and local

selection (like touch), but also manipulation through grabbing, virtual manipulators,

scaling/zoom interactions, and virtual menus.

In either taxonomy, a number of interactions exist. Some mimic actions descending from

2D interactions a la point and click. Early systems, such as one developed by Rehg & Kanade

[18], tracked hands to develop a “3D mouse.” This led to general “picking,” or selection

interactions, such as one described in [39]. Picking is also used for application control in

place of gestures (through using real or virtual controls such as buttons) or viewpoint

manipulation [38].

Other interactions arise from the development of native 3D interactions. Natural, realistic

hand interactions such as grabbing, pinching, and bumping are new to 3D environments.

When these are not possible, another class of interactions use virtual controls or widgets

that are designed for 3D interaction. C. Hand found that well designed widgets can be less

damaging to the feeling of directness than more abstract or invasive interfaces like gestures

or physical controls [38].

Interactions in virtual or augmented spaces have to be designed to address the weaknesses

of hand detection. Mine et al describe the issues with object manipulation in virtual

environments as follows [35]:

1. Lack of haptic feedback: Humans depend on the sense of touch and weight for

precise interaction with the real world.

13

2. Limited input information: The multimodal inputs of object manipulation in the real

world (tools, spoken communication, measuring, etc.) are restricted or unavailable

in virtual/augmented environments.

3. Limited precision: Most hand interactions in virtual environments have “boxing

glove” precision; little or no fine motor control is available.

The interactions used for the AugmenTable attempt to address these shortcomings through

use of arms-length interactions using superimposed 3D widgets, as described in the

Applications section.

Comparable Systems

Several systems have previously been developed with the goal of virtual object

manipulation in an augmented reality environment using markerless hand tracking.

However, all do not entirely reach the goal of intuitive, unencumbered fingertip

manipulation of virtual objects.

The apparatus for such a system is fairly well agreed upon. Erol et al point out that multiple

cameras are necessary for object manipulation without using markers, or for allowing two

handed interactions [20]. They also mention that combining multiple views to establish

correspondences across cameras and 3D features has not been explored well. Abe et al

used vertical and horizontally oriented cameras to develop a 3D position of a single finger,

enabling 3D rotation and translation when combined with pose recognition based

commands [21]. A similar multi-camera system was developed by [40] several years prior.

These systems aren’t augmented reality, though, since they do not integrate real objects

with virtual objects.

An early tabletop AR system was developed by Oka et al called EnhanceDesk [41]. By using

a color camera and an infrared camera, they were able to track fingertips through a

14

combined approach of template matching and Kalman filtering. This system only tracked

the fingers on the surface of a desktop and today would be more effectively implemented

through multitouch surfaces. That said, this system’s apparatus and methods have been

applied to the 3D problem by subsequent systems, including the AugmenTable. A similar

system with similar restrictions was more recently suggested in [42].

A more capable system described by Lee &

Hollerer shares many of the same goals as

this proposed system [43]. Based on

previous “HandyAR” work [44] and

markerless AR research [45], Lee & Hollerer

use an optical flow algorithm to track an

outstretched open hand. It determines the

finger locations based on the thumb

location, then uses pose estimation to

determine the orientation of the hand (see

Figure 7.) The finger positions are

established through an initial calibration, then tracked using Kalman filtering. This enables a

coordinate system or model to be matched to the user’s hand as though the hand were a

2D fiducial AR marker. The recent extension to this work enabled the tracking of desktop

surfaces for an additional AR surface, as well as a “grabbing” gesture through breaking the

tracking of the outstretched hand in favor of a closed fist. This allows free manipulation of a

virtual object with a user’s hands, but at the cost of losing natural gestures such as pointing,

grabbing, or pinching that deform the hand. This system is unable to track motion through

self-occlusion as well. Rotating a virtual object with the hand can only be done within a

limited range of motion. A model cannot be rotated to its side, for example.

Figure 7: HandyAR Snapshots [43]

15

A more effective system was described by Song et al [46]. This system tracked an individual

finger in a 3D augmented reality environment. The authors created a set of interaction

methods, combined with a physics engine, to provide a unique object manipulation system.

The authors also ran a user study finding bare hand interactions to be more intuitive and

pleasant for users than keyboard and mouse interfaces. Using a single finger, however, is

pretty limiting and does not match natural human object manipulation.

Of all the systems and prototypes reviewed, the

one developed and described by Kolarić et al bears

the most common ground with the proposed

system [47]. Like the AugmenTable, theirs uses

free, unmarked hand movements to manipulate

virtual 3D objects. They use a computer vision

system that tracks the hands in a stereo camera

setup and uses the Viola-Jones tracking method

paired with skin color histograms for detection. To

manipulate objects, the authors define a set of

hand poses for command communication: select, open, and closed, which are mapped to

functions such as select, translate, and rotate.

This system (shown in Figure 8) bears the same functional purpose as the proposed

AugmenTable system. However, the AugmenTable tracks fingertip points for higher

controllability, does not use learned hand gestures in favor of developing intuitive

manipulation widgets, and uses an apparatus that allows for the hands and virtual objects

to inhabit the same perceptual space. Additionally, the proposed system supports multiple

hands, multiple fingertips as well as rotation of the hand through arbitrary angles – a rare

combination in the field.

Figure 8: Similar Workspace Concept [47]

16

All of these comparable systems use either head mounted devices or regular desktop

displays. HMD systems limit the user’s field of view, can become uncomfortable, and often

feature a screen that is too dim [17]. Desktop displays are not immersive; in the case of

Kolarić et al, the user can see his or her hands in the workspace in front of the monitor.

Commercial equivalents of comparable systems also exist. OrganicMotion [48] offers real-

time, markerless tracking of human actors within a specific volume down to millimeter

accuracy. Microsoft’s impending Xbox Natal project offers similar tracking in anyone’s living

room. In the former case, however, it is unclear if the system provides tracking of finer

finger motions or is appropriate for integrating real and virtual objects in real time. In the

latter case, the technology has not been released and it is not known how capable the

system will be.

Suprisingly, the use of virtual widgets for manipulation does not seem to be well explored in

the tabletop AR literature. Song et al, as noted before, use a physics engine combined with

a virtual “fishing line” widget [46]. A user selects a virtual object with a finger touch, and

then a virtual line is extended from the object to the user’s fingertip, allowing for physical

control of the virtual object. No system was found through literature review, however, that

provided a virtual manipulator with affordances for hand manipulation of virtual objects. In

contrast, I believe this is a useful line of inquiry for tabletop AR applications and have

developed a direct manipulation interface based on widgets for the AugmenTable.

Furthermore, I hope that the AugmenTable will provide a means of prototyping and testing

further 3D interactions, both widget based and otherwise.

17

Chapter Three: Method

The proposed system combines a number of well established computer vision techniques

with a novel, inexpensive apparatus. This section details the apparatus and algorithms used

and how they integrate together.

Apparatus

Figure 9: AugmenTable Apparatus

A novel element of the AugmenTable system is its ability to provide a near immersive

augmented reality experience without requiring the user to wear or hold any devices. The

apparatus places a thin-form factor display raised at an angle to face the user (see Figure 1

& 2 above.) The user may sit or stand in front of the display (depending on the height of the

table on which it rests) and reach his or her hands underneath and behind the display. A

mirror is mounted to the reverse side of the display, reflecting an image of the user's hands

outwards towards a camera mounted on a tripod. The television, mirror, and additional

tracking cameras are all mounted to an adjustable, light weight aluminum frame. The frame

has been designed so as to allow adjustment to the height and angle of the television

18

relative to the user. The display and each camera are connected to a PC equipped with

multiple core processor(s). For this working prototype, a Samsung 40" LED

TV (UN40B6000VF), three Logitech Webcam Pro 9000 cameras, and a Dell workstation

featuring an Intel Xeon X5570 quad-core processor and a Nvidia Quadro FX 4500 graphics

card were used. Depending on display size and computer power, a similar functional

apparatus could be constructed for less than $4,000.

The AugmenTable provides an immersive experience by simultaneously hiding the user's

hands and displaying them in a scene with virtual objects. To be fully immersive,

augmented reality should provide visual-spatial, proprioceptive, and haptic cues. Haptic

feedback cannot currently be simulated without requiring the user to wear a device, such as

in those used in [17] or [13]. Proprioceptive feedback is the mind's self-awareness of the

body and is generally a very weak, easily fooled sense - research has shown that human’s

proprioception is dominated by the visual sense [49]. Visual-spatial cues are the visual

phenomenon the brain uses to identify where it is in space relative to other objects. These

cues include transparency, occlusion, size, shading gradients, and cross references such as

shadows among others [50]. Overall, this system is limited to providing relative size and

occlusion cues, masking proprioception, and very simplistic haptic cues when a virtual

object is placed against the tabletop surface.

This apparatus proves more immersive than many other current augmented reality

experiences. First, the experience of this system is more immersive than a traditional

desktop monitor. By hiding the hands from the user and showing a representation of the

hands within the virtual world, the user does not have to resolve seeing his or her hands in

front of him or herself with also seeing his or her hands in a different location. This

advantage may not be largely significant given human ability to map control of the body to

manipulation of distant objects, as typified by using steering wheels, game controllers, and

laser pointers for example.

19

More commonly, AR is provided through hand held devices such as mobile phones or tablet

computers. These systems do not typically include any part of the user within the

augmented reality "window", due to the user having to hold the device in place. In

research, the HMD is the most frequently used device for experiencing augmented reality.

The AugmenTable offers both pros and cons compared to these two standards. A mobile

phone/computer can provide augmented reality anywhere the user takes the device; the

apparatus described here is stationary. An HMD provides a direct angle of view for the user

to experience augmented reality; the apparatus described here will most likely display an

angle of view slightly different than the user's direct gaze due to the stationary camera.

 HMDs also provide stereo viewing capability that is currently lacking in the AugmenTable.

However, this apparatus does not require the user to carry a device, provides a large field of

view that can eclipse the user's peripheral vision, and does not require the user to wear

heavy equipment on his or her head. Finally, this system does not require any markers to

be worn on the user’s hands. This improves the illusion of direct manipulation for the user

and reduces the overhead of starting to use and learn the system.

This apparatus provides a good baseline immersive experience for an augmented reality

workstation. Improvements are described in the Future Work section that could improve

the experience even further.

Software Libraries

Most interesting software projects today would not be possible without having powerful

libraries to stand upon. The AugmenTable relies on three libraries for a significant number

of tasks; each was essential, and a significant effort was made to integrate them together.

First, as mentioned above, is the ARToolkit library [12]. ARToolkit is used here for a number

of important initialization steps: determining camera distortion parameters, searching a 2D

20

image for a stored 2D marker pattern, and calculating the inverse camera matrix based on

the size and orientation of the detected marker. ARToolkit does not perform all of these

steps perfectly, unfortunately. The 2D marker detection can be vulnerable to false

positives. In this case, the system requires a recalibration before use. Currently, the system

uses ARToolkit version 2.72.1. ARToolkit should be replaced with a more reliable

augmented reality library in the future.

Second is the ubiquitous computer vision library OpenCV. OpenCV provides access to the

raw camera image feeds, matrix calculation operators, and important 2D image processing

algorithms such as color histogram matching, morphology operations, and contour

detection. Each of these algorithms is discussed in depth below. The AugmenTable

currently uses OpenCV version 2.1.0.

The third and final library used in the creation of this system is OpenSceneGraph.

OpenSceneGraph is used to create and manage the 3D scene that comprises the augmented

reality environment. It handles all three dimensional models, lights, and events including

model intersections necessary for all interactions. OpenSceneGraph 2.7.2 is the current

version used in this system.

21

F
ig

u
re

 1
0

:
T

h
re

a
d

s/
A

lg
o

ri
th

m
s

F
lo

w
ch

a
rt

22

Algorithm/Process

Figure 10 shows the algorithmic steps for identifying and interacting with hands within a

virtual three-dimensional scene. The process broadly proceeds as follows:

1. The cameras and AR scene are initialized.

2. Input feeds from multiple cameras are reduced in size for processing.

3. The image backgrounds are segmented out of the frame.

4. Skin pixels in the foreground are detected and filtered.

5. Contours around the hand shapes are created, and then reduced to a polygonal

approximation.

6. The outermost (convex angle) points are identified as candidate fingertips.

7. The candidate points and transformed into 3D rays that intersect the scene.

8. Each ray is tested against all other camera’s rays for intersections.

9. Current frame intersections are tested against a set of stable, tracked 3D points to

update the scene.

10. Tracked points are tested for intersections with scene objects to create interactions.

11. Tracked points are used to determine where in space the contours identified in step

5 are, so that they may be used for occlusion.

All code for the above steps is included in the Appendix.

Initialization

The process is broken into multiple, parallel threads. This enables the system to function in

real time on modern multi-core processors. The process begins with initialization: in

addition to typical variable and memory initialization, each camera calculates its position in

space prior to starting image processing. Using ARToolkit, each camera searches for a

predefined marker in its field of view. Upon locating the marker, its size and orientation are

compared to the known marker parameters. This comparison enables ARToolkit to

calculate the distance and orientation of the marker compared to the camera in matrix

23

form. The inverse of this matrix results in the camera's position and orientation relative to

the marker (see Figure 11.) Each camera's viewport, projection, and model view matrices

are calculated in this way and stored for future reference.

After calibration, the ARToolkit marker is extraneous; the system currently does not

attempt to update the camera positions unless the user manually instigates a reset. This is

due in part to an attempt to reduce the computational complexity of each frame update,

but also because the basic ARToolkit is not capable of the parallel processing necessary to

operate across multiple threads. ARToolkitPlus and other subsequent AR libraries have

support for parallel processing, so if CPU bandwidth is available it may be possible to update

the camera position on the fly, making the system more robust to movement and vibration.

ARToolkit is valuable in that it provides camera calibration without depending on epipolar

geometry calculations. Epipolar geometry is comprises a series of calculations needed to

correspond a 3D point in several 2D views. For example, other systems may calibrate

through matching easily identified points like a torchlight [30]. Using ARToolkit for this

purpose is not uncommon; other systems such as [51] have used it in a similar fashion.

Figure 11: Relationship of Camera and Marker Transformations

24

Following the initialization of each camera, the scene (rendered through OpenSceneGraph)

is created and the processing threads are executed. A thread is created for each camera to

perform image processing in parallel with one additional thread to perform 3D calculations

and point tracking (see Figure 10 above.) The incremental steps for determining fingertip

positions in space are described in order.

Background Segmentation

When a processing thread receives a

new frame (example Figure 12) from

its camera, the first step is to separate

the background and foreground

elements. Background subtraction is

a very common operation in image

processing; a number of techniques

are described in [52]. The most basic

background subtraction technique is

frame differencing. Frame

differencing is performed by storing

an image of the static background and then comparing each incoming frame to the saved

background. If a pixel's color, as measured by the RGB values, differs from the saved

background's pixel color by a preset threshold, the pixel is labeled as a foreground pixel. If

not, the pixel is part of the background.

The frame differencing method of background subtraction has several weaknesses. It is

very susceptible to changes in lighting - even small changes to the ambient lighting

conditions can alter a pixel's color sufficiently to be a false positive. Similarly, this method is

vulnerable to camera noise, which can alter a pixel's color even with constant lighting.

Figure 12: Example Input Frame

25

 Finally, frame differencing does not perform well when a moving object (which would

normally be part of the foreground) has a color that very closely matches the background.

To address these shortcomings, a number of other methods have been developed. One

such method is background averaging. In background averaging, the system accumulates a

mean and a variance for each background pixel. When a foreground object moves into

frame, it is classified as such if its color falls sufficiently out of range of the median, often

between one or two standard deviations. This method is more resilient to regularly

changing backgrounds due to lighting or gradual movement. Another method is to develop

a "codebook" for background segmentation [53]. Similar to averaging, this method

determines a range of values for the background over time, but a codebook stores an

arbitrary number of ranges for a particular pixel. The codebook method is thus more

capable of recognizing backgrounds that have a low number of discrete states.

Despite the advantages offered by

other methods, basic frame

differencing was used for this system.

 The weaknesses of frame differencing

are attenuated because the system is

not intended for use "in the open"

where backgrounds fluctuate, and also

because the system relies on multiple

image processing steps later to further

refine the image. Frame differencing is

used because of it is the fastest, least

resource intensive background segmentation method. To be even quicker, the input image

from the camera is reduced by 75% in size through Gaussian pyramid reduction before

segmentation. Each camera has to perform a number of computationally intensive

processing steps; background segmentation is intended primarily to reduce the search

Figure 13: Example Foreground Mask

26

space for these subsequent steps. As a result, a lightweight implementation of frame

differencing was chosen over the more intensive codebook method. Background averaging

was tested, but discarded due to issues with ghosting as foreground objects were rolled into

the background averages. Codebooks were not pursued due to higher processing

requirements.

One possible improvement to the background segmentation would be to convert to HSV

color space (further discussed under Skin Detection) and segment based on difference only

within hue or saturation values. This approach was fundamental to finger tracking used in

[54]. This was attempted for the AugmenTable, but yielded worse results than RGB color

space.

Skin Detection

After the foreground has been identified (which may include some false positives), the

system must identify the user’s hands through skin detection. Skin detection is the

comparison of a particular pixel’s color to some preset value that matches the color of

human skin. As pointed out by [55] and [56], this has several problems: the colors seen by a

camera are affected by ambient light, movement, and other contextual factors; different

cameras produce different colors for the same object under identical conditions; and finally,

the color of skin can vary widely from person to person. As a result, a number of different

approaches have been developed for skin detection.

The most basic method of skin detection is color thresholding. In most images, individual

pixels are values from 0 to 255 in red, green, and blue channels (RGB.) Thresholding is

accomplished by finding the RGB levels common to shades of skin. For instance, the red

hue may be 30 to 50% of the color in skin with corresponding values for green and blue. If a

pixel matches this profile, it is included in the process output. Thresholding is very fast,

27

having O(n) calculations to identify skin pixels, but it is vulnerable to every issue identified in

the previous paragraph.

A common improvement to skin detection systems is to use a statistical distribution of skin

color. In a study of more than 1,000 images of people, skin color was found to have a

normal distribution in the RGB color space. Yang et al [55] were then able to track a variety

of skin hues through linearly adapting a Gaussian model based on the changing

environment. These Gaussian mixture models were also utilized by Kurata et al [57].

However, Jones & Rehg [58] found that simpler histograms performed better (in training

and operation) than Gaussian mixture models of skin color.

Histograms have been shown to be a reliable and powerful means of identifying skin pixels

within an image. Jones & Rehg conducted a thorough review of skin detection methods

built on a dataset of thousands of images from the internet and found histograms to be

optimal. They further determined that a bin count of 32 yielded optimal results. Based on

this data, a pretrained histogram of 32 bins was used for skin detection in the

AugmenTable.

Histograms are better at handling variations in color, but still have room for improvement.

Jones & Rehg also describe a modification to improve histogram detection. Instead of a

single skin histogram, they utilized two histograms: one for finding the probability that a

pixel was skin colored, and one for finding the probability that it was not. They then

determined whether a pixel was skin colored through the following equation:

����� |�	
�)

����� |�� �	
�)
≥ Θ

where P(RGB | Skin) is the probability a given pixel is skin colored based on the skin

histogram, P(RGB | Not Skin) is the probability the given pixel is not skin colored based on

28

the histogram of all not-skin colors, and theta is a cutoff threshold. This method was

attempted for this project but was found to yield less robust results than using the skin

color histogram alone. This may be due to a desktop environment that has many white and

gray hues that match Caucasian skin under fluorescent light.

Another possible reason for my difficulty with Jones & Rehg’s method is their use of the

RGB color space. A fair amount of literature is dedicated to the exploration of color spaces

used for skin detection. The default color space of most images is RGB, but images can be

converted to several other different color spaces though, most notably Hue, Saturation, and

Value (HSV).

HSV has been found in several studies,

[59] for example, as being preferable to

RGB color space for tracking skin in

hands and faces. Even the hue alone

has been suggested as being sufficient

and preferable for tracking skin [60].

However, using a static pre-trained

histogram in this project found better

skin detection results through

employing both hue and saturation

channels. Further analysis of color

spaces for skin detection can be found in [61] .

HSV has not always been found to be better than RGB in tracking systems. Kolsch & Turk

found worse performance from HSV with respect to RGB, partly because due to its CAMshift

algorithm’s reliance on RGB color space [62]. Dadgostar & Sarrafzadeh even developed a

hand tracking system that disregarded hue entirely and focused on gray levels [26].

Figure 14: Raw Skin Detection (HSV histogram)

29

Despite these reservations, hue-saturation histograms have been used successfully by a

number of systems, though, such as those described by [47] and [22]. A more thorough

description and analysis of color spaces for skin detection, as well as the methods that use

them, can be found in [56].

Static histograms like the AugmenTable’s are still vulnerable to lighting/background

changes. Adaptive histograms have been found to be more robust to lighting changes or

similarly colored backgrounds. One method of adaptive histogram use was described by

Dadgostar & Sarrafzadeh as follows:

1. Train an initial histogram with a priori color data.

2. Detect skin pixels in a current frame through motion detection and use of the initial

skin color histogram.

3. Calculate a histogram of the pixels detected in #2 and combine with the initial

histogram with some weighting assigned.

4. Calculate minimum and maximum thresholds for matching such that the thresholds

cover 90% of the new histogram.

An effort was made to provide this system with an adaptive histogram to reinforce

detection against illumination changes. This effort proved unsuccessful as the adaptation

included some colors outside of the original histogram range, resulting in runaway

detection of wood and desk surfaces until virtually all pixels were detected as skin. This

result is not an indictment of the method described above. With more time, this method

could prove more successful than a static histogram and ought to be pursued.

30

Following segmentation of skin color,

the mask is processed with

thresholding and morphological

filtering to reduce noise. This results in

the connected components pertaining

to the users hands. The results of

these processes are shown in Figure

15. The results of this process are not

perfect. In Figure 15, some of the

hand’s shadow reflected on the

tabletop surface is detected as skin.

This false positive is acceptable, however, because later correspondence of cameras is

unlikely to propagate the false positive into 3D.

Fingertip Detection

Detecting fingertips is a sub-problem of tracking hands overall, and so has a number of

approaches in literature. One popular method described by von Hardenberg & Bérard [11]

refined an early fingertip detection method by Fukumoto et al [33]. Von Hardenberg's

algorithm begins in a familiar way using background segmentation to identify a region of

interest containing the user's hands. The algorithm then processes the following steps:

1. Determine a set of candidate points (somewhat spaced out to avoid duplicate

matches for a finger).

2. Define a circle of radius r around the candidate point; if the circle is filled with skin

pixels, continue.

3. Define a square around the candidate point, slightly larger than the circle from Step

Two. Count the number of skin pixels that lay on the perimeter of the square.

Figure 15: Filtered Skin Detection

31

4. If the pixel count from step 3 is greater than a defined minimum threshold and less

than a defined maximum threshold, the candidate point identifies a fingertip (Figure

16.) If the count is below the minimum threshold, it may be noise or poorly

positioned; if the count is above the maximum, it may be the middle of a finger or

the palm.

This method has several advantages in that it

precludes an additional hand search step and it can

provide finger orientation information (depending on

which part of the square perimeter matched skin

pixels). The authors also claimed it to be one of very

few systems able to track several fingertips

simultaneously. As a result, this and similar methods

were used in a number of successful projects such as [54], [24], [42], and [46].

However, this method is not sufficient for the AugmenTable project. Von Hardenberg's

system required the user to keep his or her hands at a relatively constant distance from the

camera. This criterion is necessary for the various finger size thresholds to be accurate.

 However, the system described in this paper must support hands at a range of distances

from the camera, anywhere from a few inches to several feet. Burns & Mazzarino

suggested that the finger size could be calculated as proportionate to the overall size of the

hand [63]. However, this would require a relatively constant orientation of the hand to

provide accurate relative measurements. This requirement also renders this method

unusable for this particular system.

Other methods used to track fingers and fingertips include parallel edge detection with

smooth gradient shading [31], reference templates similar to von Hardenberg’s [64], Hough

circles [63], as well as subtracting the palm away from the hand through a series of

Figure 16: Fingertip detection [11]

32

morphological operations [28].Many of these methods have similar restrictions as von

Hardenberg’s.

Instead, this system relies on an older

method of contour detection. OpenCV

has a contour retrieval method based

on the work of Suzuki and Abe [65].

 Using the binary image resulting from

skin detection above, OpenCV

determines the edges of all the binary

shapes as a sequence of pixels. In this

particular case, the shape is assumed

to be solid with no contour holes, so

only the most extreme outer contours

of the shapes are calculated. After the outermost contours are detected, the pixel set is

reduced to a set of polygon vertexes using the Douglas-Peucker (DP) approximation [66].

 The result of this approximation is shown in the Figure 17. This method is similar to that

used by Chen et al [22] for a model-

based hand system.

As shown in Figure 18, the polygon

approximation of a hand contour

enables simple geometric

identification of the finger tips. To

handle multiple hands, every contour

above a size threshold is

approximated with a polygon. Each

point in the polygon is tested to

determine if the point is farther away from its polygon's centroid than the two points

Figure 17: Polygon Vertex Approximation

Figure 18: 2D Candidate Points

33

immediately next to it. The points that pass this test are identified as candidate points.

In other words, the process selects any convex points on the contour as a candidate

fingertip. Unfortunately, this can create false positives around the wrists and other knuckle

bones. These false positives are not unmanageable, though, due to the physical constraints

of the apparatus used and the interaction design of the applications. The user is not likely

to attempt interacting with a virtual object with anything other than his or her fingertips.

 False positives are not expected to cause undesired interactions.

2D to 3D

Once a set of two dimensional fingertip points have been identified, the next step is to

calculate the three dimensional position of the fingertip. The AugmenTable accomplishes

this task through ray intersection. During the initialization step described above, each

camera identifies its position in space relative to an augmented reality marker. With this

information, and information about the intrinsic camera characteristics, a modelview,

Figure 19: Ray-casting for 3D point calculation

34

projection, and viewport matrix are constructed for each camera.

Using the camera’s matrices, the 2D candidate points are calculated at the near and far

plane of the camera's view volume. These two points are the endpoints of a ray segment

that projects through the scene. A ray is developed for every candidate point for every

camera (see Figure 19.) The apparatus is designed in such a way that the camera view

volumes intersect to create the working volume behind the display.

Epipolar geometry is often required to find the correspondence among cameras with

different viewpoints (see [67] for a review). However, as described in Software Libraries,

the calibration of camera’s through ARToolkit provided an alternative means of acquiring

correspondence without additional calculations.

To calculate the 3D fingertip points, a separate

intersection testing thread calculates how close

each ray from each camera passes to all other

cameras’ rays. A mathematical explanation of the

algorithm can be found in [68]. If two rays pass

within a set threshold distance of each other, a 3D

fingertip point is determined to exist at the

midpoint of the shortest line segment between

the rays. Cross checking all rays has an algorithm

complexity of O(ny) where y is the number of

cameras, which is fairly poor performance. However, the number of candidate points, n, is

strictly limited to the number of convex skin points in the camera's view. This number could

be as much as forty, but in practice the number is typically less than 10. The number of

cameras is also expected to be low. As a result, these calculations do not consume

significant processing resources.

Figure 20: Closest distance between 3D lines [68]

35

Currently, this system uses a threshold of 4 mm to determine if a pair of rays intersects.

 Ideally, the system would only consider rays that intersect with a ray separation distance of

0. However, two factors limit the accuracy of the intersections and thus require a bit of an

error envelope. First, depending on the angle of the camera relative to the hand, cameras

may see the tip of a finger in a slightly different position than the others. At some angles,

the edge of the finger appears to be on the side of the finger; at others, it appears to be

directly on the finger tip. Second, camera calibration involves a series of matrix calculations

that can be prone to propagating minor errors (which unfortunately result from ARToolkit’s

tracking.) These errors can affect the precision of the camera measurements and result in

slightly inaccurate ray calculations. A threshold of 4 mm prevents an unacceptable number

of false negatives.

This threshold is minimized, though, to reduce the number of false positives. As the

number of rays crossing a limited volume increases, so does the likelihood of random

intersections. The system does not limit the number of points a single ray can identify to

account for the possibility of one finger occluding the other. However, this allowance

means that if a camera identifies a candidate point at or near the position of another

camera, it can create false positive 3D points. When made visible, these points can obscure

the view of the scene, but they do not have much of a significant effect on interaction.

 False positive points far from the actual fingertips are typically out of the way and fleeting

enough to not noticeably affect interaction with objects.

False positive points can and do occur, however, very close to the real fingertips. These

points are dealt with through a tracking system that coordinates how to remember which

fingertip is which frame to frame.

36

Tracking and Filtering

Tracking and filtering are topics as old as computer vision itself. Naturally, a number of

algorithms and techniques have been explored, each with strengths and weaknesses.

 Tracking is a difficult problem comprised of sub-problems including identification,

prediction, non-linear behavior, and interruption (through occlusion or other reasons). The

solutions to these problems often have to balance complexity and resource requirements

with robustness and accuracy.

Most AR+gesture systems track only the hand without attention to fingers. These systems

use a variety of established tracking algorithms such as optical flow in [60] and [43],

MeanShift and continuously adaptive MeanShift in [57] and [69], the Viola-Jones tracking

algorithm in [47] and [29],the KLT tracking algorithm in [62] and [51], and the more recent

SIFT/SURF techniques [43] or condensation algorithms [70]. These algorithms, though

powerful, are unable to track an arbitrary, changing number of objects – like the number of

fingertips visible to a camera.

Fingertip tracking as a topic does not attract the same interest as the broader problem of

hand tracking, though many of the same issues apply. Since this system is intended for

natural object manipulation, the only features necessary to track were individual fingertips.

Hand orientation information was not necessary. Two methods are popular in literature for

tracking individual points: Kalman filtering and particle filtering.

A Kalman filter creates a (typically linear) model of a point and its movements [71]. The

filter creates a prediction of the point’s movement based on the model and is iteratively

updated based on the measurement of the point’s actual movement. Kalman filters are

appropriate when the error in the measurements are Gaussian, but otherwise tend to make

erroneous predictions. This method has been proven to be useful for tracking a marked

finger in stereoscopic environment [72].

37

Kalman filters are considered “single hypothesis” filters, meaning the filter has only one

guess about where the tracked point could be. Multiple hypothesis filters exist, most

notably particle filters. Particle filters create recursive, Bayesian estimates of particles

based on measurements and are suitable for tracking points that may have multiple likely

positions at a given time. Particle filters have been used for hand tracking by [26], [27],

[73], [74], and [69].

At first glance, it would seem that particle filters are more appropriate for this system

because it has to track multiple fingertips through motion that is not linear and unlikely to

have Gaussian measurement errors. However, particle filters require significantly more

computing power to run. To ensure real-time or near real-time processing speeds and to

reduce complexity, this system employed a form of Kalman filtering.

Tracking is currently paired with

intersection calculation in an

independent thread. As

previously described, the

tracking system receives 3D

points representing fingertips

each update. These points may

include clusters of false positives

around the fingertips. To

eliminate as many false positives

as possible, all points within

three centimeters are merged

together into one average point. Three centimeters is acceptable because the system does

not currently support any interactions of fingers pressed together and three centimeters is

a distance of slightly spaced apart fingers on an average hand.

Figure 21: Stable, Tracked Points 1

38

The tracking algorithm maintains a vector of tracked points and velocities. Each iteration,

every point is updated with its linear velocity vector. The updated points are then paired

with candidate points based on shortest geometric distance. That is, the system determines

the closest pair of tracked and current points. The tracked point and velocity are updated

based on the new point using a moving average calculation. Thanks to a relatively small

number of points and the thread’s processing speed, a 20 frame moving average is

calculated without noticeable lag. The updated points are then removed from the lists.

This process continues until all tracked points or all detected points have been updated.

Tracked points that do not find a

candidate point for updating are

left as-is and allowed to persist

for up to 15 frames without an

update. If no update is found at

that point, the tracked point is

removed from the system.

Candidate points that are left

over without a corresponding

tracked point are added to the

vector of tracked points for

future iterations.

This system provides acceptable tracking of fingertip points. In parallel, a list of indices to

tracked points is maintained such that the main application thread can track individual

tracked points, enabling interactions like translation and rotation using the fingertips.

Figure 22: Stable Tracked Points 2

39

The tracking system is not

perfect, however. False

positives still remain and can

persist for 15 frames at a time.

Rapid movement can create

false positives which then

persist. Fortunately, the tracked

velocity of these points tends to

be high, removing them from

the area of interaction quickly.

Perhaps surprisingly, the

Gaussian noise sensitivity of

Kalman filters does not seem to be a problem. OpenCV has an implementation of Kalman

filters and was tested and found to be very jittery and noisy. In contrast, the system’s

current tracking system does not have significant difficulty with changes in momentum or

direction.

This Kalman-like tracking system is fundamentally similar to a method described by Argyros

and Lourakis [75]. Argyros & Lourakis developed a system using adaptive skin histograms

and blob tracking which used iteratively updated hand position hypotheses to follow the

hands. Their hypotheses in turn were robust against changes in momentum and even

occlusion. Further improvements to this system’s tracking could be to more fully

implement Argyros & Lourakis’ statistical tracking methods. Another avenue of

improvement would be to test the precision and computing requirements of particle filters.

Occlusions and the Illusion of Depth

As discussed under Previous Work, the occlusion of objects in space is an important sensory

cue for determining the depth of a scene. Given the AugmenTable’s current lack of haptic

Figure 23: Overlapping 3D False Positives

40

feedback or shadow cues, it was important to develop a means for the user to identify his

or her hand position relative to the virtual objects in the workspace. The method

developed works as follows.

In the contour detection step of identifying hands, the system creates a list of all contour

bounding rectangles for each camera. When a camera is selected as the active view, this list

of rectangles is imported into the main scene creation thread. Each frame, the 3D detected

points within the scene are transformed back into the 2D plane and tested to see if they fall

within any of the camera’s contour rectangles. If they do, their depth value is averaged and

applied to the contour rectangle image.

Figure 24: Occlusion of Virtual Objects

41

With the average depth value of the rectangle, the rectangle’s corner points undergo the

reverse transformation to render the 2D points in 3D. An OpenSceneGraph rectangle object

is then created in the scene. Finally, the skin color mask created in the camera’s image

processing is used to create a transparent texture that shows the user’s hand within the

rectangle but allows the scene behind the rectangle to be visible around and through the

user’s fingers (Figure 24.) The AugmenTable’s PC is fast enough to allow this to run at close

to real time speeds.

Close, though, is not fast enough. Additionally, there is some artifacting that results from

applying the 2D texture of a hand to a 3D dimensional rectangle. As a result, the occlusion

is functional but not optimal. Future refinement may yield a better occlusion rendering

system.

Since speed is critical, an alternative is to not render the hands as occluding planes, but to

instead display small spheres where fingerpoints are detected. These spheres are then

culled and positioned accurately within the scene and can be used to infer the depth of the

fingertips. This is not as intuitive as visual hand occlusion, but the simplicity of this method

results in a much faster update rate for the scene geometry. Further testing is necessary to

determine which method may be more preferable to users.

42

Chapter Four: Application & Discussion

Tracking unmarked fingertips in an augmented reality environment offers a number of

opportunities as well as challenges in developing interactions and applications. A number

of interactions have been explored in the cases of marked or similarly tracked hands and

when using an individual unmarked finger, as previously described. Many of these

interactions, such as 3D drawing using a fingertip, are interesting demonstrations of

technology, but this system has been designed with a more industrial usage in mind. I’ve

attempted to design the application described here to reflect this.

Object Manipulation Prototype

This prototype provides a means of manipulating a virtual object through selection,

translation, rotation, and scaling widgets. As shown at left, a virtual object exists within the

augmented reality workspace. This object can be any lightweight model supported by

OpenSceneGraph. A user may

reach into the space and select

the object by "touching" it with his

or her finger. Since the object is

not real, there is no haptic

response. Instead, when an

intersection of the object and

fingertip is detected, a

manipulation widget appears

(Figure 26.) This manipulation

widget expires after a set period

of time if the user does not

interact with it.

Figure 25: Object Translation and Rotation

43

After selection, the user modifies his or her hand posture to extend any two fingers into the

spherical ends of the manipulator widget. When a fingertip is within both spheres, the

spheres turn red and "lock" onto the user's fingertips. The widget supports translation and

rotation. The user can move his or her hand anywhere within the volume and the object

will track with it. This interaction can handle fairly rapid hand motions. If the user rotates

his or her fingers, the locked object is also rotated in kind. With only two points, the user

cannot rotate the object about the axis of the two points. However, this can be worked

around by an intermediate rotation to change the axis of the fingertips. To stop the

translation/rotation mode, the user can break the lock by moving his or her fingers in or out

along the two sphere axis.

The application features an additional

cube in the scene that functions as a

button. When the user “presses” the

button, it changes color to indicate the

engagement of scaling mode. Now, when

a user intersects a scene object, the

manipulator widget appears to provide a

scaling interaction. In this case, the user

locks his or her fingers into the

manipulator spheres as before. The user

can then move his or her fingers along the axis of the two spheres to enlarge or shrink the

object model. This interaction mode is broken by making a translation or rotation style

gesture, removing the fingers from the spheres.

As noted in the previous work section above, the use of 3D control widgets has not been

well explored in literature. 3D widgets were described fairly early by Mine [37], but the

only authors that used them in any way were Dachselt and Hinz [76]. As far as I am aware,

Figure 26: Virtual Button Press

44

the uses of 3D widgets in this application to translate, rotate, and scale an object through

direct superposition and control is unique.

The advantage of this application is

direct object manipulation. Though

there is an intermediate widget between

the user and the object, the user rotates

both the widget and object by rotating

his or her hand, moves with his or her

hand, and scales by spacing his or her

hands apart. This interaction is one step

closer to holding an object and playing

with it than previously seen. A user

study to evaluate the learnability of this

theoretically more "natural" gesture compared to learning the manipulation techniques

required in most CAD design packages would be illuminating.

This application also shows the limitations of the interaction design as well. Rotation with a

hand is very simple only within a certain range of motion. This is due to the kinematic

limitations of the wrist joint and the rotation of the forearm. In normal tool use, humans

work around these limitations by positioning their arm through the shoulder and even body

position. The apparatus for this system, however, expects a specific orientation of the user

(sitting or standing facing the screen) which limits the freedom of movement to the elbow

and above.

Other restrictions can be observed from the limitations of the system. For one, the space a

user can move objects around in is limited to the volume that is intersected by more than

one camera's field of view. Unfortunately, there currently are no cues to inform the user

Figure 27: Object Scaling

45

where the boundaries of this volume are. Another is that if the hand occludes itself in

certain angles of rotation, fingertip tracking can be lost. These problems are common to

nearly all hand tracking systems, and one credible solution is to increase the number of

cameras at various angles of view. As this incurs a resource cost on the operating PC, a

more common solution is to limit or otherwise design the interaction gestures around the

constraint.

One possible solution for dealing with this limitation is to provide a widget control for the

entire scene. This would enable the user to adjust the scale of the scene to enable him or

her to utilize the entire working volume as well as shrink too-large scenes. It would also

provide a means of changing the user’s perspective of the scene. This solution has not yet

been implemented.

Despite the limitations, this prototype application implies a number of interesting

interactions. Object manipulation can also be applied to virtual controls such as sliders,

knobs, or levers. The AugmenTable is designed to support exploring and researching

interaction through virtual widgets and without.

Discussion

Computer vision is a vast and complicated field. It's a field that is characterized by strong

imagination to envision the ways computers ought to see, myriad arcane techniques to

accomplish it, and results that are seldom as compelling as the original vision. In that

respect, this project was no different. This section will discuss some of the realized

benefits, some shortcomings, and the future work that could dramatically extend the

system's capabilities.

46

Realized Benefits

Originally, the vision for this project was for a person to reach out a hand and move and

inspect a virtual object in a work environment. The large majority of this vision has been

realized. A user can walk up to the apparatus, reach under and behind the display and

manipulate virtual objects and real objects side by side with only his or her bare hands. As

discussed above, this is a rare accomplishment yet today. Most interactions require some

mediating technology like colored gloves, accelerometers, fiducial markers, or other even

more conspicuous equipment. What’s more, the system can recognize an arbitrary number

of hands or fingers so long as occlusions are addressed with improved camera coverage.

This is also uncommon with the comparable systems.

The AugmenTable also proves successful in realizing a believable mixed reality environment.

Through the use of visual display, hand obfuscation, occlusion, and some quasi-haptic

feedback (as provided by the tabletop surface,) the system provides a suspension of

disbelief about the nature of the virtual objects within the workspace scene. This

suspension is not complete. A user still has to use a constructed interaction technique to

manipulate virtual objects, but it can be effective.

One benefit is the low price tag. All of the hardware used is commonly accessible and

inexpensive. Custom or expensive components (and the algorithms that rely on them) were

purposefully avoided. The largest expense in the project is the multi-core workstation PC.

 Similarly, all of the software libraries used are open source and freely available. Total

hardware costs are less than $4,000 today and the software only had personal time as an

expense.

Research Contributions

This system exemplifies a few novel ideas within the augmented reality research field. One

is a novel apparatus that expands the common mobile, hand-held window metaphor into a

47

large-scale desktop system. This scaling of the AR window begins to take on characteristics

of the more immersive HMD setup by expanding the view to encompass more of the user's

field of vision and allowing the placement of the user's body (in this case hands and arms)

within the AR environment. Like an HMD, this setup acts as an intermediary between

reality and the user's vision, enabling more rich mixed reality experiences, but without the

added steps of donning an uncomfortable head-mounted piece of hardware. This has

proven to be an advantage in demonstrating the system’s capabilities. The apparatus was

set up at a conference alongside a typical HMD system and received noticeably more

attention and use.

This AugmenTable also features minor innovations in creating interaction styles based on

the tracking of an arbitrary number of hands/fingertips in a specified volume. Though bare-

handed finger interactions have been developed and described above, only one other

system manipulates the virtual objects through use of intuitive 3D widgets. The barbell-

shaped widget used in the prototype application allows for comfortably controlling many

differently sized or shaped objects with whichever hand(s) and fingers the user prefers. The

scope of this project, however, was insufficient to provide a study of the interaction

techniques and compare their intuitiveness or learnability to other methods.

Challenges

The process of developing the system described here featured several surprises. First and

foremost was the plethora of computer vision techniques to accomplish a given task.

 Tracking of hands has been done in numerous ways (as shown in the Method section) with

algorithms of varying levels of complexity. In most cases, I selected methods for their

computational efficiency when possible. An important goal was to have real time

interaction that could follow human movements at speed. This required light weight

algorithms that would not slow processing down too much. Even with this intent the

application requires relatively powerful off-the-shelf hardware to run well in real time. In

48

the end, almost 20 variations of the system’s code were developed to test assorted

algorithms and techniques.

By far, the most challenging aspect of developing this system was the selection and fine-

tuning of a tracking algorithm. Originally, Kalman filtering was selected due to its relative

simplicity and for the built-in functionality for such tracking in OpenCV. Kalman filtering

was applied to the three-dimensional fingertip points, but several rounds of tweaking were

unable to result in tracked points stable enough to use for interaction. A second attempt

was made to simplify the information being tracked by creating a hand data structure that

stored all points relative to each identified hand's center of mass. This encoding did not

enable sufficient tracking accuracy as well. A third revision was attempted to move the

tracking of points upstream into the 2D processing. This had better results for accuracy but

dramatically reduced the operating speed of the processing threads.

As noted before, part of the difficulty lay with the managing OpenCV’s implementation of

Kalman filters. This implementation expects measurement updates to occur at set intervals.

 However, as the number of points being processed varies from zero to many, the amount

of time the intersection and merging process takes varies. This variability resulted in

fluctuating velocity of tracked points that rendered the output too jittery for interaction.

This problem was addressed by parsing out the steps of a Kalman filter into a more step-by-

step moving average process as described in Tracking and Filtering. In this way, the Kalman

filter is integrated directly into the calculation thread and is more adaptable to fluctuations

in update rates due to processing burdens. The tracking system was also made much less

susceptible to erroneous measurements by dramatically increasing the weighting of the

average measurement compared to the most recent update by a ratio of 20:1.

 Unfortunately, the tracking system is not perfect and can lose the fingertips in motion in

favor of false positives. This problem merits further work and examination.

49

Overall, the project was successful at realizing its goals, but time constraints prevented the

level of testing and exploration of alternative algorithms and techniques that would have

ensured the best possible product. The lessons learned throughout the development of this

system, though, have yielded a number of strong contending ideas to improve the system

significantly.

System Limitations

Many limitations implicit in the system have already been noted: a restricted actionable

volume, limited movement due to kinematic restrictions of the human hand and arm, and

others. The system’s occlusion is only an approximation of hand position and does not

calculate individual finger occlusions. Additionally, the angle of view provided to the user

can result in difficulty evaluating the position of the interface widgets when user rotation

causes it to be occluded by other virtual objects or itself. Finally, the tracking method is not

perfect and still results in false positives, some jitter, or missed fingertips.

In Comparable Systems, I discussed the limitations of several AR environments that had

similar goals to the AugmenTable’s. One limitation was the adaptability of pose recognition

systems: pose recognition systems require statistical training and do not allow arbitrary

gestures. Unfortunately, the current incarnation of the AugmenTable suffers the same

limitation through use of predefined 3D widgets. This limitation and others, however, can

be addressed through suggestions presented under Future Work.

Future Work

This section describes some of the improvements and future work that could extend the

capabilities of the AugmenTable. These improvements are divided into three general

categories of Applications, Apparatus, and Concept.

50

Application

First and foremost future work would be the refinement and improvement in the tracking

accuracy. More advanced detection and tracking methods such as adaptive histograms and

particle filters require greater computational resources, but offer statistical inference as a

tool to more accurately predict and update measurements of fingertips in stasis as well as in

motion. These methods merit further research to enable an interaction that reacts

consistently to user input across gestures, angles, and lighting conditions.

The intuitive aspects of the prototype applications can be improved upon by the addition

and extension of realistic (or at least intuitive) physics. Elements of gravity would add to

the immersiveness of the applications and enable both fun and practical interactions.

 Similarly, giving objects a level of mass or inertia (like that seen in the multitouch swipe

gestures of interfaces such as the iPad) can increase the power of gestures without reducing

the benefits of direct manipulation. Physics and mass would enable another set of

interactions such as pinch, bump, and momentum transfers. More broadly, physics could

possibly be extrapolated to creating shadows of objects that would provide an additional

depth cue and increase the melding of virtual and real within the workspace. Finally,

physics provides an overall expectation of interaction. Users are accustomed to the physical

world where objects behave in a reliable manner due to the laws of physics. With a

software physics engine, a similar expectation is created in a virtual environment. This

expectation allows users to more easily extrapolate real actions to virtual actions. Physics is

therefore a significant step to opening an augmented reality to arbitrary object

manipulation without intermediary widgets.

That said, it is important that the value of the current and future interactions is proven

against that of existing methods. To this end, a user based study of interactions of different

augmented reality systems should be conducted. This study could evaluate the practicality,

51

usability, learnability, and overall satisfaction of manipulating virtual and/or real objects

with a variety of tools and techniques.

The capabilities of the application could also be extended through using a gesture

classification system. The tracking of the finger points currently performed by the system

could be used as gestural inputs to a pose recognition system similar to those described

under Previous Work. This would provide both object manipulation and command/control

functionality to the user.

Apparatus

In the introduction, I mentioned several technological trends which are rapidly being

shaped by the cutting edge of technology. This system apparatus also could benefit from a

number of additional advanced technologies. For instance, 3D displays are coming onto the

market in 2010. The thin display here could be replaced with a 3D capable display and

provide stereo perception to improve the immersiveness. Another possible display change

would be swapping the simple display with a multitouch display. This could enable a

mixture of 2D and 3D control of virtual objects and interfaces.

One possibility would be to add a forward facing camera that provides face tracking of the

user. Face tracking can enable changing the perspective of the display in order to provide

correct occlusion of objects relative to the user's perspective. This creates a much greater

three dimensionality effect than stereo display alone, and is much cheaper than the nascent

3D monitor technology.

Concept

All of the above ideas would add to the immersiveness or practical capabilities of the

system. A more compelling line of inquiry, though, is rethinking the entire method of

52

tracking fingertips in favor of creating a 3D representation of the entire hand. Such a

representation would render fingertip tracking unnecessary and enable a host of natural

interactions like grabbing, pinching, flicking, and more. A model of the hand in space would

also simplify and dramatically improve the rendering of hand/object occlusion in the

workspace. A 3D representation would thus solve the two thorniest problems of this

system.

A number of methods exist that could enable 3D structure of hands. The simplest (and

therefore least accurate) would be to extrapolate the contour detection method described

above to "carve" the entire contour out of space. As each camera carves out the negative

spaces between contours, the remainder is a blocky approximation of the hand. It would be

sensitive to hand occlusions, but with enough camera coverage it could provide better

sensing of the hand than the current method. This method was used with success by

Schlattman and Klein [39].

A number of other more powerful (and complicated) methods exist in literature. Structured

light has been used to identify 3D surfaces at a high resolution (for example, in [77]), though

at high computational cost. Inverse kinematics, the process of matching an approximation

of the human hand skeleton to a tracked hand image, is another well-researched method

for creating and positioning a hand model in space. Erol et al review a number of papers

that utilize inverse kinematics in a pose estimation context [20]. Finally, the present

method could be replicated in part with depth sensing webcams such as the 3DV ZCam (or

possibly the upcoming Xbox Natal camera). If the time-of-flight infrared cameras can

coexist within a viewing volume, the depth maps could be used to recreate the hand with

decent resolution. The resulting meshes could be combined into an articulated model using

methods described in [78].

Each of the alternatives described here may require significant computing power to enable

interactions in close to real time, but the simplification of hand positioning and interaction

53

in the scene would create a truly new augmented reality experience. Moreover, this list is

not exhaustive; new methods of inferring three dimensions from two are frequently

developed. I believe that an augmented reality environment such as the AugmenTable will

become much more valuable to end users when the hand is recognized and recreated in the

virtual space and can fully interact with the scene.

54

Chapter Six: Conclusion

This project successfully realized recognition of unmarked, unencumbered hands towards

integration with virtual objects in a novel augmented reality workspace. It combined a

number of well established computer vision algorithms with a new interaction metaphor of

superimposed, hand-sized widgets and unique apparatus. These interactions enable

manipulating virtual objects and controls and can provide an advanced experience for

conceptual design or play. Despite this success, the AugmenTable has not been perfected.

It has many avenues for advancement including 3D immersion, multitouch, and structured

hand models. These improvements can increase the accuracy, immersiveness, and

potential interactions of the system.

This research was funded through a grant from Rockwell-Collins Inc.

55

Bibliography

[1] B. Shneiderman, "Direct manipulation," Proceedings of the joint conference on

Easier and more productive use of computer systems. (Part - II) Human interface and

the user interface, 1981, p. 143.

[2] S. Reifinger, F. Wallhoff, M. Ablassmeier, T. Poitschke, and G. Rigoll, "Static and

dynamic hand-gesture recognition for augmented reality applications," Human-

Computer Interaction. HCI Intelligent Multimodal Interaction Environments, 2007, p.

728–737.

[3] A. Eliott, "10 Amazing Augmented Reality iPhone Apps,"

http://mashable.com/2009/12/05/augmented-reality-iphone/, 2010.

[4] O. Inbar, R. Nir, and T.K. Carpenter, "Games Alfresco," http://gamesalfresco.com/,

2010.

[5] Google, "Google Goggles," http://www.google.com/mobile/goggles/#landmark, 2010.

[6] P. Mistry and P. Maes, "Sixth sense: integrating information with the real world,"

http://www.pranavmistry.com/projects/sixthsense/, 2010.

[7] C. Harrison, D. Tan, and D. Morris, "Skinput: Appropriating the Body as an Input

Surface," Proceedings of the 28th Annual SIGCHI Conference on Human Factors in

Computing Systems, Atlanta, Georgia: 2010.

[8] D. Dumas and Wired.com, "CES 2010: Hands-On With Transparent Display of the

Future," http://www.wired.com/video/ces-2010-hands-on-with-transparent-display-of-

the-future/60826805001, 2010.

[9] S. Kim and A.K. Dey, "AR interfacing with prototype 3D applications based on user-

centered interactivity," Computer-Aided Design, vol. 42, 2010, pp. 373-386.

[10] G. Bleser, Y. Pastarmov, and D. Stricker, "Real-time 3d camera tracking for

industrial augmented reality applications," Journal of WSCG, 2005, p. 47–54.

[11] C. von Hardenberg and F. Bérard, "Bare-hand human-computer interaction,"

Proceedings of the 2001 workshop on Perceptive user interfaces, New York, New

York, USA: ACM New York, NY, USA, 2001, p. 1–8.

[12] P. Lamb, "ARToolkit," http://www.hitl.washington.edu/artoolkit/, 2007.

[13] V. Buchmann, "FingARtips – Gesture Based Direct Manipulation in Augmented

Reality," Virtual Reality, vol. 1, 2004, pp. 212-221.

56

[14] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana, "Virtual object

manipulation on a table-top AR environment," IEEE and ACM International

Symposium on Augmented Reality, 2000.(ISAR 2000). Proceedings, 2000, p. 111–119.

[15] D. Sturman and D. Zeltzer, "A survey of glove-based input," IEEE Computer

Graphics and Applications, 1994.

[16] C. Keskin, A. Erkan, and L. Akarun, "Real time hand tracking and 3D gesture

recognition for interactive interfaces using HMM," ICANN/ICONIPP, 2003, p. 26–29.

[17] S. Walairacht, K. Yamada, S. Hasegawa, Y. Koike, and M. Sato, "4+ 4 fingers

manipulating virtual objects in mixed-reality environment," Presence: Teleoperators

\& Virtual Environments, vol. 11, 2002, p. 134–143.

[18] J. Rehg and T. Kanade, "DigitEyes: vision-based hand tracking for human-computer

interaction," Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and

Articulated Objects, 1994, pp. 16-22.

[19] C. Nölker and H. Ritter, "Detection of fingertips in human hand movement

sequences," Gesture and Sign Language in Human-Computer Interaction, Springer,

1998, p. 209–218.

[20] A. Erol, G. Bebis, M. Nicolescu, R.D. Boyle, and X. Twombly, "Vision-based hand

pose estimation: A review," Computer Vision and Image Understanding, vol. 108,

2007, pp. 52-73.

[21] K. Abe, H. Saito, and S. Ozawa, "Virtual 3-D interface system via hand motion

recognition from two cameras," IEEE Transactions on Systems, Man, and Cybernetics

- Part A: Systems and Humans, vol. 32, 2002, pp. 536-540.

[22] W. Chen, R. Fujiki, D. Arita, and R. Taniguchi, "Real-time 3D Hand Shape

Estimation based on Image Feature Analysis and Inverse Kinematics," 14th

International Conference on Image Analysis and Processing (ICIAP 2007), 2007, pp.

247-252.

[23] K. Oka, Y. Sato, and H. Koike, "Real-time tracking of multiple fingertips and gesture

recognition for augmented desk interface systems," Proceedings of the fifth IEEE

international conference on automatic face and gesture recognition, IEEE Computer

Society Washington, DC, USA, 2002, p. 429.

[24] Y. Sato, Y. Kobayashi, and H. Koike, "Fast tracking of hands and fingertips in

infrared images for augmented desk interface," International conference on automatic

face and gesture recognition, Grenoble, France: 2000, pp. 462-467.

57

[25] L. Bonansea, "3D Hand gesture recognition using a ZCam and an SVM-SMO

classifier," Journal of empirical research on human research ethics : JERHRE, vol. 5,

2010.

[26] L. Bretzner, I. Laptev, and T. Lindeberg, "Hand gesture recognition using multi-scale

colour features, hierarchical models and particle filtering," Proceedings of Fifth IEEE

International Conference on Automatic Face Gesture Recognition, 2002, pp. 423-428.

[27] T. Gumpp, P. Azad, K. Welke, E. Oztop, R. Dillmann, and G. Cheng, "Unconstrained

Real-time Markerless Hand Tracking for Humanoid Interaction," 2006 6th IEEE-RAS

International Conference on Humanoid Robots, 2006, pp. 88-93.

[28] S. Kang, M. Nam, and P. Rhee, "Color Based Hand and Finger Detection Technology

for User Interaction," Convergence and Hybrid Information Technology, 2008.

ICHIT'08. International Conference on, 2008, p. 229–236.

[29] M. Kolsch and M. Turk, "Robust hand detection," Proc. of the Sixth IEEE Int. Conf.

on Automatic Face, vol. 17, 2004, pp. 614-619.

[30] C. Malerczyk and G. Darmstadt, "Dynamic Gestural Interaction with Immersive

Environments," Proceedings of the 16th International Conference in Central Europe

on Computer Graphics, Visualization and Computer Vision (WSCG), 2008.

[31] N. Petersen and D. Strieker, "Fast Hand Detection Using Posture Invariant

Constraints," KI 2009: Advances in Artificial Intelligence: 32nd Annual German

Conference on AI, Paderborn, Germany, September 15-18, 2009, Proceedings,

Springer, 2009, p. 106.

[32] J. Corso and G. Hager, "Gesture Recognition Using 3D Appearance and Motion

Features," 2004 Conference on Computer Vision and Pattern Recognition Workshop,

2004, pp. 160-160.

[33] M. Fukumoto, Y. Suenaga, and K. Mase, "“Finger-Pointer”: Pointing interface by

image processing," Computers & Graphics, vol. 18, 1994, pp. 633-642.

[34] D.A. Bowman and L.F. Hodges, "An Evaluation of Techniques for Grabbing and

Manipulating Objects in Immersive Virtual Environments," Proceedings of the 1997

symposium on Interactive 3D graphics, 1997, pp. 35-38.

[35] M. Mine, F. Brooks Jr, and C. Sequin, "Moving objects in space: exploiting

proprioception in virtual-environment interaction," Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, ACM Press/Addison-

Wesley Publishing Co., 1997, p. 19–26.

58

[36] I. Poupyrev, T. Ichikawa, S. Weghorst, and M. Billinghurst, "Egocentric Object

Manipulation in Virtual Environments: Empirical Evaluation of Interaction

Techniques," Computer Graphics Forum, vol. 17, 1998, pp. 41-52.

[37] M. Mine, "Virtual environment interaction techniques," UNC Chapel Hill Computer

Science Technical Report TR95-018, 1995, p. 507248–2.

[38] C. Hand, "A survey of 3D interaction techniques," Computer graphics forum, vol. 16,

1997, pp. 269-281.

[39] M. Schlattman and R. Klein, "Simultaneous 4 gestures 6 DOF real-time two-hand

tracking without any markers," Proceedings of the 2007 ACM symposium on Virtual

reality software and technology, ACM, 2007, p. 42.

[40] J. Segen and S. Kumar, "Gesture vr: vision-based 3d hand interace for spatial

interaction," Proceedings of the sixth ACM international conference on Multimedia,

ACM New York, NY, USA, 1998, p. 455–464.

[41] K. Oka, Y. Sato, and H. Koike, "Real-time fingertip tracking and gesture

recognition," IEEE Computer Graphics and Applications, vol. 22, 2002, pp. 64-71.

[42] P. Song, S. Winkler, S. Gilani, and Z. Zhou, "Vision-based projected tabletop

interface for finger interactions," Lecture Notes in Computer Science, vol. 4796, 2007,

p. 49.

[43] T. Lee and T. Hollerer, "Hybrid Feature Tracking and User Interaction for Markerless

Augmented Reality," 2008 IEEE Virtual Reality Conference, 2008, pp. 145-152.

[44] T. Lee and T. Höllerer, "Handy AR: Markerless inspection of augmented reality

objects using fingertip tracking," International Symposium on Wearable Computers,

Citeseer, 2007, pp. 83-90.

[45] A.I. Comport, E. Marchand, M. Pressigout, and F. Chaumette, "Real-time markerless

tracking for augmented reality: the virtual visual servoing framework.," IEEE

transactions on visualization and computer graphics, vol. 12, 2006, pp. 615-28.

[46] P. Song, H. Yu, and S. Winkler, "Vision-based 3D finger interactions for mixed

reality games with physics simulation," Proceedings of The 7th ACM SIGGRAPH

International Conference on Virtual-Reality Continuum and Its Applications in

Industry, ACM, 2008, p. 7.

[47] S. Kolarić, A. Raposo, and M. Gattass, "Direct 3D Manipulation Using Vision-Based

Recognition of Uninstrumented Hands," Symposium of Virtual and Augmented

Reality, 2008, pp. 212-220.

59

[48] A. Tschesnok, "Organic Motion," http://organicmotion.com/, 2010.

[49] M.S. Graziano, "Where is my arm? The relative role of vision and proprioception in

the neuronal representation of limb position," Proceedings of the National Academy of

Sciences of teh United States of America, vol. 96, 1999, pp. 10418-10421.

[50] C. Furmanski, R. Azuma, M. Daily, and H.R. Laboratories, "Augmented-reality

visualizations guided by cognition : Perceptual heuristics for combining visible and

obscured information," Symposium A Quarterly Journal In Modern Foreign

Literatures, 2002.

[51] Y. Pang, M.L. Yuan, A.Y. Nee, S.K. Ong, and K. Youcef-toumi, "A Markerless

Registration Method for Augmented Reality based on Affine Properties," Proceedings

of the 7th Australian User Interface Conference, Hobart, Australia: 2006, pp. 24-32.

[52] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, "Wallflower : Principles and

Practice of Background Maintenance," Seventh International Conference on

Computer Vision, Vol. 1, Corfu, Greece: 1999, p. 255.

[53] K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis, "Real-time foreground–

background segmentation using codebook model," Real-Time Imaging, vol. 11, 2005,

pp. 172-185.

[54] J. Letessier and F. Bérard, "Visual tracking of bare fingers for interactive surfaces,"

Symposium on User Interface Software and Technology, 2004.

[55] J. Yang, W. Lu, and A. Waibel, "Skin-color modeling and adaptation," Lecture Notes

in Computer Science, 1997, p. 687–694.

[56] P. Kakumanu, S. Makrogiannis, and N. Bourbakis, "A survey of skin-color modeling

and detection methods," Pattern Recognition, vol. 40, 2007, pp. 1106-1122.

[57] T. Kurata, T. Okuma, M. Kourogi, and K. Sakaue, "The Hand Mouse: GMM hand-

color classification and mean shift tracking," Proceedings IEEE ICCV Workshop on

Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems,

2009, pp. 119-124.

[58] M. Jones and J. Rehg, "Statistical color models with application to skin detection,"

International Journal of Computer Vision, vol. 46, 2002, p. 81–96.

[59] O. Ikeda, "Segmentation of faces in video footage using HSV color for face detection

and image retrieval," International Conference on Image Processing, 2003, p. 913–6.

60

[60] F. Dadgostar and a. Sarrafzadeh, "An adaptive real-time skin detector based on Hue

thresholding: A comparison on two motion tracking methods," Pattern Recognition

Letters, vol. 27, 2006, pp. 1342-1352.

[61] J. Terrillon and S. Akamatsu, "Comparative performance of different chrominance

spaces for color segmentation and detection of human faces in complex scene

images," Proc. of the 12th Conf. on Vision Interface, 1999, pp. 19-21.

[62] M. Kolsch and M. Turk, "Fast 2d hand tracking with flocks of features and multi-cue

integration," CVPRW’04: Proceedings of the 2004 Conference on Computer Vision

and Pattern Recognition Workshop (CVPRW’04, Citeseer, 2004, p. 158.

[63] A. Burns and B. Mazzarino, "Finger tracking methods using eyesweb," Lecture Notes

in Computer Science, vol. 3881, 2006, p. 156.

[64] J. Crowley, F. Berard, and J. Coutaz, "Finger tracking as an input device for

augmented reality," International Workshop on Gesture and Face Recognition,

Zurich, Citeseer, 1995, pp. 1-8.

[65] S. Suzuki and K. Abe, "Topological structural analysis of digitized binary images by

border following," Computer Vision, Graphics, and Image Processing, vol. 30, 1985,

pp. 32-46.

[66] D. Douglas and T. Peucker, "Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature," Communications of the

Association for Computing Machinery, vol. 15, 1972, pp. 11-15.

[67] Y. Piao and J. Sato, "Computing Epipolar Geometry from Unsynchronized Cameras,"

14th International Conference on Image Analysis and Processing (ICIAP 2007),

2007, pp. 475-480.

[68] P. Bourke, "The Shortest Line Between Two Lines in 3D,"

http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline3d/, 1998.

[69] C. Shan, T. Tan, and Y. Wei, "Real-time hand tracking using a mean shift embedded

particle filter," Pattern Recognition, vol. 40, 2007, pp. 1958-1970.

[70] E. Koller-Meier and F. Ade, "Tracking multiple objects using the condensation

algorithm," Robotics and Autonomous Systems, 2001, pp. 1-18.

[71] R. Kalman, "A new approach to linear filtering and prediction problems," Journal of

basic Engineering, vol. 82, 1960, pp. 35-45.

61

[72] K. Dorfmuller-Ulhaas and D. Schmalstieg, "Finger tracking for interaction in

augmented environments," Proceedings IEEE and ACM International Symposium on

Augmented Reality, IEEE Comput. Soc, 2001, pp. 55-64.

[73] I. Laptev and T. Lindeberg, "Tracking of Multi-state Hand Models Using Particle

Filtering and a Hierarchy of Multi-scale Image Features," Scale-Space and

Morphology in Computer Vision, Berlin: Springer Berlin/ Heidelberg, 2001, pp. 63-

74.

[74] J. MacCormick and M. Isard, "Partitioned sampling, articulated objects, and

interface-quality hand tracking," Lecture Notes in Computer Science, vol. 1843, 2000,

p. 3–19.

[75] A. Argyros and M. Lourakis, "Real-time tracking of multiple skin-colored objects

with a possibly moving camera," Lecture Notes in Computer Science, 2004, p. 368–

379.

[76] R. Dachselt and M. Hinz, "Three-dimensional widgets revisited-towards future

standardization," New directions in 3D user interfaces, Shaker Verlag, 2005, p. 89–

92.

[77] S. Zhang and S. Yau, "Three-dimensional shape measurement using a structured light

system with dual cameras," Optical Engineering, vol. 47, 2008, p. 013604.

[78] D. Anguelov, D. Koller, H. Pang, P. Srinivasan, and S. Thrun, "Recovering

articulated object models from 3D range data," Proceedings of the 20th conference on

Uncertainty in artificial intelligence, AUAI Press Arlington, Virginia, United States,

2004, p. 18–26.

62

Appendix: Project Source Code

Background.h

#ifndef __OPENCV200

 #include <opencv/cv.h>

 #include <opencv/cxcore.h>

 #include <opencv/highgui.h>

 #define __OPENCV200

#endif

#include <math.h>

#ifndef __BACKGROUNDSEGMENT

#define __BACKGROUNDSEGMENT

#define BACKGROUND_THRESHOLD 16

void getForegroundMask(IplImage*, IplImage*, IplImage*);

void getForegroundMask1(IplImage*, IplImage*, IplImage*);

void getForegroundMask2(IplImage*, IplImage*, IplImage*);

#endif

Background.cpp
#include "Background.h"

void getForegroundMask(IplImage *imgNew, IplImage *imgBackground,

IplImage* imgOut) {

 getForegroundMask1(imgNew, imgBackground, imgOut);

}

void getForegroundMask1(IplImage *imgNew, IplImage *imgBackground,

IplImage* imgOut) {

 // Manual background separation

 // Assume that imgNew and imgBackground are similarly sized

 // Tried HSV for segmentation, but BGR seems to work much

better...hmm.

 int width = imgNew->width;

 int height = imgNew->height;

 int widthStep = imgNew->widthStep;

63

 int channels = imgNew->nChannels;

 for(int i = 0; i < height ; i++) {

 for(int j = 0; j < width; j++) {

 // This is crap, see if you can improve it.

 int b = (int)((uchar *)(imgNew->imageData +

i*widthStep))[j*channels] - (int)((uchar *)(imgBackground->imageData +

i*widthStep))[j*channels];

 int g = (int)((uchar *)(imgNew->imageData +

i*widthStep))[j*channels+1] - (int)((uchar *)(imgBackground->imageData

+ i*widthStep))[j*channels+1];

 int r = (int)((uchar *)(imgNew->imageData +

i*widthStep))[j*channels+2] - (int)((uchar *)(imgBackground->imageData

+ i*widthStep))[j*channels+2];

 if((abs(r) > BACKGROUND_THRESHOLD) || (abs(g) >

BACKGROUND_THRESHOLD) || (abs(b) > BACKGROUND_THRESHOLD)) {

 cvSetReal2D(imgOut, i, j, 255);

 } else {

 cvSetReal2D(imgOut, i, j, 0);

 }

 }

 }

}

void getForegroundMask2(IplImage *imgNew, IplImage *imgBackground,

IplImage* imgOut) {

 // OpenCV differencing and thresholding

 IplImage* tmp = cvCreateImage(cvSize(imgNew->width, imgNew-

>height), imgNew->depth, imgNew->nChannels);

 // Find the differences between frames

 cvAbsDiff(imgNew, imgBackground, tmp);

 cvCvtColor(tmp,imgOut, CV_BGR2GRAY);

 cvThreshold(imgOut, imgOut, BACKGROUND_THRESHOLD, 255,

CV_THRESH_BINARY);

 //cvAdaptiveThreshold(imgOut, imgOut, 255,

CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, 3, 5);

 // Use morphology to reduce noise

 cvErode(imgOut, imgOut, NULL, 1);

 cvDilate(imgOut, imgOut, NULL, 1);

 cvReleaseImage(&tmp);

}

64

Cam.h

#include <stdio.h>

#include <process.h>

#include <windows.h>

#include <stdlib.h>

#include <vector>

#ifndef __OPENCV200

 #include <opencv/cv.h>

 #include <opencv/cxcore.h>

 #include <opencv/highgui.h>

 #define __OPENCV200

#endif

#ifndef __AR

 #include <GL/gl.h>

 #include <GL/glut.h>

 #include <AR/gsub.h>

 #include <AR/gsub_lite.h>

 #include <AR/video.h> // Needed?

 #include <AR/param.h>

 #include <AR/ar.h>

 #include <AR/arMulti.h>

 #define __AR

#endif

#include <osg/Camera>

#include <osg/Matrix>

#include "Background.h"

#include "Fingerpoint.h"

#define M_PI 3.14159265358979323846

#ifndef __CAM

#define __CAM

class Cam : public osg::Camera {

 public:

 Cam();

 Cam(int);

 ~Cam();

65

 static unsigned __stdcall threadedEntry(void *pThis) {

 Cam * pCam = (Cam*)pThis;

 pCam->threadProcess();

 return 1;

 }

 void threadProcess();

 void resetBackground();

 void setKey(int key) {

 //EnterCriticalSection(&m_CriticalSection);

 intKey = key;

 //LeaveCriticalSection(&m_CriticalSection);

 }

 void resetCamMatrix() {

 initCamMatrix();

 }

 void getCrit() {

 EnterCriticalSection(&critCandidates);

 }

 void releaseCrit() {

 LeaveCriticalSection(&critCandidates);

 }

 IplImage *imgOutput;

 cv::Mat imgForeMask;

 std::vector<cv::Rect> vOutRects;

 std::vector<cv::Mat> vOutROI;

 std::vector<osg::Vec3> vNear;

 std::vector<osg::Vec3> vFar;

 osg::Matrix matView;

 osg::Matrix matInvView;

 osg::Matrix matProjection;

 osg::Matrix matViewport;

 private:

 CvCapture* vid;

 int intCamera;

 int intKey;

 void initialize();

 void initCamMatrix();

 void updateCamMatrix();

66

 // Working images

 IplImage *imgInput;

 IplImage *imgSmallInput;

 IplImage *imgBackground;

 IplImage *imgForeground;

 IplImage *imgMask;

 cv::Mat imgA, imgB, imgC;

 int intImageWidth;

 int intImageHeight;

 int intImageDepth;

 int intNear;

 int intFar;

 // Multithread via critical section

 CRITICAL_SECTION critCandidates;

 CRITICAL_SECTION critOutput;

 CRITICAL_SECTION critForeground;

 // AR Toolkit parameters - should rename to match my

convention

 int intTargetID;

 double dblTgtCenter[2];

 double dblTargetWidth;

 int intThreshold;

 ARMultiMarkerInfoT *config;

 double dblTransform[3][4];

 double dblProjection[16];

 std::vector<cv::Mat> vROI;

 std::vector<cv::Rect> rects;

 // Histogram variables

 int hbins, sbins; // Number of levels to

quantize to.

 int histSize[2];

 float hranges[2]; // hue varies from 0 to 179, see

cvtColor

 float sranges[2]; // saturation varies from 0

(black-gray-white) to 255 (pure spectrum color)

 const float* ranges[2];

 int channels[2]; // we compute the

histogram from the 0-th and 1-st channels (hue and saturation)

 cv::MatND histSkin, histNotSkin;

 double dMaxSkin, dMaxNotSkin;

 void initHist();

67

 void updateHist(cv::Mat *, cv::Mat *);

};

#endif

Cam.cpp
#include "Cam.h"

#include <time.h>

Cam::Cam() {

 intCamera = 0;

 initialize();

}

Cam::Cam(int value) {

 intCamera = value;

 initialize();

}

void Cam::initialize() {

 // Initialize crit section

 InitializeCriticalSection(&critCandidates);

 InitializeCriticalSection(&critOutput);

 InitializeCriticalSection(&critForeground);

 // Open camera feed

 vid = cvCaptureFromCAM(intCamera);

 if(!vid)

 {

 printf("Could not access camera %d.\n", intCamera);

 exit(0);

 }

 // Set resolution

 cvSetCaptureProperty(vid, CV_CAP_PROP_FRAME_WIDTH, 800);

 cvSetCaptureProperty(vid, CV_CAP_PROP_FRAME_HEIGHT, 600);

 cvSetCaptureProperty(vid, CV_CAP_PROP_FPS, 30);

 // Get frames from camera to allow for focus/aperture adjustment?

 imgInput = cvRetrieveFrame(vid);

 intImageWidth = imgInput->width;

 intImageHeight = imgInput->height;

 intImageDepth = imgInput->depth;

 // Set working images

 imgSmallInput = cvCreateImage(cvSize(imgInput->width/2, imgInput-

>height/2), imgInput->depth, imgInput->nChannels);

68

 cvPyrDown(imgInput, imgSmallInput, CV_GAUSSIAN_5x5);

 imgBackground = cvCreateImage(cvSize(intImageWidth/2,

intImageHeight/2), imgInput->depth, imgInput->nChannels);

 imgForeground = cvCreateImage(cvSize(intImageWidth/2,

intImageHeight/2), imgInput->depth, imgInput->nChannels);

 imgMask = cvCreateImage(cvSize(intImageWidth/2,

intImageHeight/2), imgInput->depth, 1);

 imgOutput = cvCreateImage(cvSize(intImageWidth, intImageHeight),

imgInput->depth, imgInput->nChannels);

 //imgForeOut = cvCreateImage(cvSize(intImageWidth,

intImageHeight), imgInput->depth, imgInput->nChannels+1);

 imgA = cv::Mat(intImageHeight/2,intImageWidth/2, CV_8U);

 imgB = cv::Mat(intImageHeight/2,intImageWidth/2, CV_8U);

 imgC = cv::Mat(intImageHeight/2,intImageWidth/2, CV_8U);

 initCamMatrix();

 //expose imgoutput for background initialization

 cvCopy(imgInput, imgOutput);

 // Set background image

 cvPyrDown(imgInput, imgBackground,CV_GAUSSIAN_5x5);

 //std::stringstream s;

 //s << "Cam" << intCamera;

 //cv::namedWindow(s.str(), 1);

 // Histogram setup

 hbins = 32, sbins = 32; //

Number of levels to quantize to.

 histSize[0] = hbins, histSize[1] = sbins;

 hranges[0] = 0, hranges[1] = 256;

 sranges[0] = 0, sranges[1] = 256;

 ranges[0] = hranges, ranges[1] = sranges;

 channels[0] = 0, channels[1] = 1; // we compute

the histogram from the 0-th and 1-st channels (hue and saturation)

 initHist();

}

Cam::~Cam() {

 // Release AR resources?

 argCleanup(); //close out gsub resources - not sure if

necessary????

69

 // Release images

 cvReleaseImage(&imgSmallInput);

 cvReleaseImage(&imgBackground);

 cvReleaseImage(&imgForeground);

 cvReleaseImage(&imgMask);

 cvReleaseImage(&imgOutput);

 // Release capture

 cvReleaseCapture(&vid);

 cvDestroyAllWindows();

 // Release crit section

 DeleteCriticalSection(&critCandidates);

 DeleteCriticalSection(&critOutput);

 DeleteCriticalSection(&critForeground);

}

void Cam::resetBackground() {

 cvPyrDown(imgInput, imgBackground,CV_GAUSSIAN_5x5);

}

void Cam::initCamMatrix() {

 // Uses AR toolkit to establish camera position matrix

 ARParam arpInitialParam;

 ARParam arpCameraParam;

 // initialize global ar vars

 intThreshold = 100;

 dblTgtCenter[0] = 0.0;

 dblTgtCenter[1] = 0.0;

 dblTargetWidth = 80.0;

 // Set the initial camera parameters

 if(arParamLoad("trial2-3.dat", 1, &arpInitialParam) < 0) {

 printf("Camera parameter load error !!\n");

 exit(0);

 }

 // Adjust parameters

 arParamChangeSize(&arpInitialParam, intImageWidth, intImageHeight,

&arpCameraParam);

 arInitCparam(&arpCameraParam);

 // Load pattern

 if((intTargetID = arLoadPatt("Patterns\\patt.kanji")) < 0) {

 printf("Target pattern load error!!\n");

 exit(0);

 }

70

 // Run the camera for 60 frames to gain an average position of

the marker

 for(int intFrame = 0; intFrame < 60; intFrame++) {

 // Get next input frame

 imgInput = cvRetrieveFrame(vid); // Should

check if there is a better method of retrieval

 ARUint8 *arImageData;

 ARMarkerInfo *armMarkerInfo;

 int intMarker;

 // This conversion works b/c I configured ARToolkit to

expect BGR images instead of BGRA

 arImageData = (ARUint8 *)imgInput->imageData;

 // detect the markers in the video frame

 if(arDetectMarkerLite(arImageData, 128, &armMarkerInfo,

&intMarker) < 0) {

 printf("Marker not detected!\n");

 }

 // Check for object visibility - sorts through all markers

and finds the best.

 // I need to find out if this accepts bad marker

matches...if so, determine a cf floor

 //int k = -1;

 //for(int j = 0; j < intMarker; j++) {

 // if(armMarkerInfo[j].id == intTargetID) {

 // if(k == -1) k = j;

 // else {

 // if(armMarkerInfo[k].cf <

armMarkerInfo[j].cf) k = j;

 // }

 // }

 //}

 // Get camera matrices

 if(intFrame == 0) {

 if(arGetTransMat(armMarkerInfo, dblTgtCenter,

dblTargetWidth, dblTransform) < 0) continue;

 } else {

 if(arGetTransMatCont(armMarkerInfo, dblTransform,

dblTgtCenter, dblTargetWidth, dblTransform) < 0) continue;

 } // or something like that.

 }

71

 //Set up Camera matrices

 // Projection Matrix...not sure about near an far planes

 intNear = 20; // in mm

 intFar = 1000; // in mm

 arglCameraFrustumRH(&arpCameraParam, (float)intNear,

(float)intFar, dblProjection);

 matProjection = osg::Matrix(dblProjection[0], dblProjection[1],

dblProjection[2], dblProjection[3],

 dblProjection[4],

dblProjection[5], dblProjection[6], dblProjection[7],

 dblProjection[8],

dblProjection[9], dblProjection[10], dblProjection[11],

 dblProjection[12],

dblProjection[13], dblProjection[14], dblProjection[15]);

 this->setProjectionMatrix(matProjection);

 // View Matrix

 double arr[16];

 argConvGlpara(dblTransform, arr);

 matView = osg::Matrix(arr[0], arr[1], arr[2], arr[3],

 arr[4], arr[5], arr[6], arr[7],

 arr[8], arr[9], arr[10], arr[11],

 arr[12], arr[13], arr[14], arr[15]

);

 // make an adjustment for OSG vs. ART camera orientation

expectations

 osg::Matrixd matCamRotation;

 matCamRotation.makeRotate(M_PI, osg::Vec3(1,0,0),

 0, osg::Vec3(0,1,0),

 0, osg::Vec3(0,0,1));

 matCamRotation = osg::Matrixd::inverse(matCamRotation);

 matView.postMult(matCamRotation);

 // Create inverse in case you need to position items???

 matInvView = osg::Matrixd::inverse(matView);

 this->setViewMatrix(matView);

 double dblInv[3][4];

 arUtilMatInv(dblTransform, dblInv);

 printf("Camera %d: X: %2.2f, Y: %2.2f, Z:%2.2f\n", intCamera,

dblInv[0][3], dblInv[1][3], dblInv[2][3]);

 // Viewport

 osg::ref_ptr<osg::Viewport> v = new osg::Viewport();

 v->setViewport(0,0,intImageWidth/2,intImageHeight/2);

 matViewport = v->computeWindowMatrix();

72

 argCleanup();

}

void Cam::threadProcess() {

 // Constantly process frames until escape is pressed in parent

loop

 while(intKey != 27) {

 // Get next input frame

 imgInput = cvRetrieveFrame(vid); // Should

check if there is a better method of retrieval

 // Shrink down to minimize processing

 cvPyrDown(imgInput, imgSmallInput, CV_GAUSSIAN_5x5);

 // Get background mask

 getForegroundMask(imgSmallInput, imgBackground, imgMask);

 // Get foreground

 cvZero(imgForeground);

 cvCopy(imgSmallInput, imgForeground, imgMask);

 // Get color masks - need mats instead of images here

 cv::Mat mtx(imgForeground);

 cv::Mat hsv;

 cv::cvtColor(mtx, hsv, CV_BGR2HSV);

 cv::calcBackProject(&hsv, 1, channels, histSkin, imgA,

ranges, 1.0, true);

 //cv::calcBackProject(&hsv, 1, channels, histNotSkin,

imgB, ranges, 1.0, true);

 // Find skin probability - P(pixel|skin) / P(pixel|notSkin)

>= theta

 //for(int i = 0; i < hsv.rows-1; i++) {

 // for(int j = 0; j < hsv.cols-1; j++) {

 // // Get current h pixel, s pixel

 // cv::Vec3b value = hsv.at<cv::Vec3b>(i,j);

 // // determine the bin for hPix & sPix via divide

by hbins and sbins

 // int hPix = value[0] / hbins;

 // int sPix = value[1] / sbins;

 // // look up skin hist value and sat hist value -

scale by cvRound(binVal*255/maxvalue)

73

 // double dSkin = histSkin.at<float>(hPix, sPix) *

255.0 / dMaxSkin;

 // double dNotSkin = histNotSkin.at<float>(hPix,

sPix) * 255.0 / dMaxNotSkin;

 // //double dNotSkin = 1.0;

 // // calc ratio of skin/nonskin value for this

pixel & compare to theta.

 // if((dSkin / dNotSkin) >= 1.0) {

 // imgC.at<uchar>(i,j) = 255;

 // } else {

 // imgC.at<uchar>(i,j) = 0;

 // }

 // }

 //}

 //for(int i = 0; i < imgA.rows-1; i++) {

 // for(int j = 0; j < imgB.cols-1; j++) {

 // double dRatio = ((double)(imgA.at<uchar>(i,j)) /

(double)(imgB.at<uchar>(i,j))) ;

 // if(dRatio > 1.0) {

 // imgC.at<uchar>(i,j) = 255;

 // } else {

 // imgC.at<uchar>(i,j) = 0;

 // }

 // }

 //}

 //std::stringstream s;

 //s << "Cam" << intCamera;

 //cv::imshow(s.str(), imgA);

 //Threshold & morph to filter

 cv::threshold(imgA, imgA, 250, 255, cv::THRESH_BINARY);

 cv::morphologyEx(imgA, imgA, cv::MORPH_OPEN,

cv::Mat(3,3,1,1.0), cvPoint(1,1), 1,0,0);

 cv::morphologyEx(imgA, imgA, cv::MORPH_CLOSE,

cv::Mat(3,3,1,1.0), cvPoint(1,1), 1,0,0);

 //std::stringstream s;

 //s << "Cam" << intCamera;

 //cv::imshow(s.str(), imgA);

 // Update histograms

 //updateHist(&(cv::Mat(imgSmallInput)), &imgA); - this

gets out of hand really quickly...false positives explode.

 // Get foreground

 //cv::Mat fore;

 //cv::Mat(imgInput).copyTo(fore, cv::Mat());

74

 // Copy input into output in case it is used for AR

 EnterCriticalSection(&critOutput);

 cvCopy(imgInput, imgOutput);

 imgA.copyTo(imgForeMask, cv::Mat());

 LeaveCriticalSection(&critOutput);

 // Get fingertip points

 std::vector<cv::Point2f> pt;

 rects.clear();

 findCandidates3(imgA, &pt, &rects);

 // Get rectangle ROIs of foreground

 //vROI.clear();

 //for(int i = 0; i < rects.size(); i++) {

 // cv::Mat tmp;

 // cv::getRectSubPix(fore, cv::Size(rects[i].width*2,

rects[i].height*2), cv::Point2f(rects[i].x*2 + rects[i].width,

rects[i].y*2 + rects[i].height),tmp,-1);

 // cv::Mat roi = cv::Mat(tmp.rows, tmp.cols, CV_8UC4,

cv::Scalar(0,0,0,0));

 // // changing channels,so can't use copyto op

 // for(int j = 0; j < tmp.rows; j++) {

 // for(int k = 0; k < tmp.cols; k++) {

 // if(imgA.at<uchar>(rects[i].y+(j/2),

rects[i].x+(k/2)) > 0) {

 // cv::Vec3b tmpPt =

tmp.at<cv::Vec3b>(j,k);

 // cv::Vec4b tmpPt2 =

cv::Vec4b(tmpPt[0], tmpPt[1], tmpPt[2], 255);

 // roi.at<cv::Vec4b>(j,k) = tmpPt2;

 // }

 // }

 // }

 // vROI.push_back(roi);

 //}

 //std::stringstream s;

 //s << "Cam" << intCamera;

 //cv::Mat ptOut = cv::Mat(imgSmallInput);

 //for(int j = 0; j < pt.size(); j++)

 // cv::rectangle(ptOut, cv::Point(pt[j].x-1, pt[j].y-1),

cv::Point(pt[j].x+1, pt[j].y+1),cv::Scalar(0,0,255,0),2,8,0);

 //cv::imshow(s.str(), ptOut);

75

 // Calculate points in 3D space - checked math.

 // very large z values gets you to the cam. z of 1 gets

you to the far plane; I don't know why it works...but it works.

 osg::Matrix mat;

 mat.invert(matView * matProjection * matViewport);

 // Get cam coords into world coords

 EnterCriticalSection(&critCandidates);

 vNear.clear();

 vFar.clear();

 for(int i = 0; i < pt.size(); i++) {

 // Get cam coords into world coords, then multiply by

matrices to create ray

 vNear.push_back(osg::Vec3(pt[i].x, (intImageHeight/2)

- pt[i].y, 1000) * mat);

 vFar.push_back(osg::Vec3(pt[i].x, (intImageHeight/2)

- pt[i].y, 1) * mat);

 }

 vOutRects.clear();

 //vOutROI.clear();

 for(int i = 0; i < rects.size(); i++) {

 vOutRects.push_back(rects[i]);

 //vOutROI.push_back(vROI[i]);

 }

 LeaveCriticalSection(&critCandidates);

 }

}

void Cam::initHist() {

 // Create histograms for further use

 cv::Mat src, hsv;

 // Create skin histogram

 if(!(src=cv::imread("skin2.jpg", 1)).data) //this will not

work if you mix release/debug libraries

 exit(-1);

 cv::cvtColor(src, hsv, CV_BGR2HSV);

 cv::calcHist(&hsv, 1, channels, cv::Mat(), // do not use mask

 histSkin, 2, histSize, ranges,

 true, // the histogram is uniform

 false);

 // Get max value for later use

 cv::minMaxLoc(histSkin, 0, &dMaxSkin, 0, 0);

 // Create non-skin histogram

76

 //if(!(src=cv::imread("notSkin.jpg", 1)).data) //this will

not work if you mix release/debug libraries

 // exit(-1);

 // cvtColor(src, hsv, CV_BGR2HSV);

 //cv::calcHist(&hsv, 1, channels, cv::Mat(), // do not use mask

 // histNotSkin, 2, histSize, ranges,

 // true, // the histogram is uniform

 // false);

 //// Get max value for later use

 //cv::minMaxLoc(histNotSkin, 0, &dMaxNotSkin, 0, 0);

}

void Cam::updateHist(cv::Mat *frame, cv::Mat *mask) {

 //Update histograms with found pixels

 cv::Mat notMask;

 cv::subtract(255, *mask, notMask, cv::Mat()); //Not

sure this is what I want exactly...I want cvNot. :p

 cv::calcHist(frame, 1, channels, *mask, histSkin, 2, histSize,

ranges, true, true);

 cv::minMaxLoc(histSkin, 0, &dMaxSkin, 0, 0);

 cv::calcHist(frame, 1, channels, notMask, histNotSkin, 2,

histSize, ranges, true, true);

 cv::minMaxLoc(histNotSkin, 0, &dMaxNotSkin, 0, 0);

}

Fingerpoint.h

#ifndef __OPENCV200

 #include <opencv/cv.h>

 #include <opencv/cxcore.h>

 #include <opencv/highgui.h>

 #define __OPENCV200

#endif

#include <math.h>

#ifndef __FINGERPOINTS

#define __FINGERPOINTS

void getDominantPoints(CvSeq*, IplImage*);

77

void getDominantPoints1(CvSeq*, IplImage*);

void getDominantPoints2(CvSeq*, IplImage*);

void findCandidates(IplImage* imgIn, CvPoint2D32f

arrCandidates[4][100], int intSize[4], int intMaxSize);

void findCandidates2(cv::Mat, std::vector<cv::Point2f> *);

void findCandidates3(cv::Mat, std::vector<cv::Point2f> *,

std::vector<cv::Rect> *);

#endif

Fingerpoint.cpp
#include "Fingerpoint.h"

void getDominantPoints(CvSeq* contour, IplImage *img) {

 getDominantPoints1(contour, img);

}

void getDominantPoints1(CvSeq* contour, IplImage* img) {

 // This method searches out points on the contour that are

farther from the center of mass than

 // the adjacent two points on the curve

 //cvDrawContours(img, contour, CV_RGB(0,0,255),

CV_RGB(0,0,0),2,1,8,cvPoint(0,0));

 while(contour != NULL) {

 // Only process large contours

 double dblContourArea =

fabs(cvContourArea(contour,CV_WHOLE_SEQ));

 if(dblContourArea > 200) {

 // Get a set of points around the contour perimeter

 CvMemStorage *storagePoints = cvCreateMemStorage(0);

 CvSeq *contourPoints = 0;

 contourPoints = cvApproxPoly(contour,

sizeof(CvContour), storagePoints, CV_POLY_APPROX_DP,

cvContourPerimeter(contour) * 0.01, 1);

 // Convert to an array for easy access - necessary or

fast?

 CvPoint* arrPoints = (CvPoint *)malloc(contourPoints-

>total * sizeof(CvPoint));

 cvCvtSeqToArray(contourPoints, arrPoints,

CV_WHOLE_SEQ);

 // Get center of contour

 CvPoint2D32f center;

 CvMoments* moments = new CvMoments();

78

 cvContourMoments(contour, moments);

 center.x = (float)(moments->m10/moments->m00);

 center.y = (float)(moments->m01/moments->m00);

 cvRectangle(img, cvPoint((int)center.x - 1,

(int)center.y - 1), cvPoint((int)center.x + 1, (int)center.y + 1),

CV_RGB(0,255,0),2,8,0);

 // select concave points

 for(int i = 0; i < contourPoints->total; i++) {

 double x1, x2, x3;

 double y1, y2, y3;

 double dist1, dist2, dist3;

 if(i == 0) {

 x1 = arrPoints[contourPoints->total-1].x -

center.x;

 x2 = arrPoints[i].x - center.x;

 x3 = arrPoints[i+1].x - center.x;

 y1 = arrPoints[contourPoints->total-1].y -

center.y;

 y2 = arrPoints[i].y - center.y;

 y3 = arrPoints[i+1].y - center.y;

 } else if (i < contourPoints->total - 1) {

 x1 = arrPoints[i-1].x - center.x;

 x2 = arrPoints[i].x - center.x;

 x3 = arrPoints[i+1].x - center.x;

 y1 = arrPoints[i-1].y - center.y;

 y2 = arrPoints[i].y - center.y;

 y3 = arrPoints[i+1].y - center.y;

 } else if (i == contourPoints->total - 1) {

 x1 = arrPoints[i-1].x - center.x;

 x2 = arrPoints[i].x - center.x;

 x3 = arrPoints[0].x - center.x;

 y1 = arrPoints[i-1].y - center.y;

 y2 = arrPoints[i].y - center.y;

 y3 = arrPoints[0].y - center.y;

 }

 dist1 = x1*x1 + y1*y1;

 dist2 = x2*x2 + y2*y2;

 dist3 = x3*x3 + y3*y3;

 if((dist2 >= dist1) && (dist2 >= dist3)) {

 cvRectangle(img, cvPoint(arrPoints[i].x-

1,arrPoints[i].y-1),

cvPoint(arrPoints[i].x+1,arrPoints[i].y+1),CV_RGB(255,0,0), 2, 8, 0);

 }

79

 }

 // Clean up

 cvReleaseMemStorage(&storagePoints);

 free(arrPoints);

 }

 // Increment to next contour

 if(contour->h_next) {

 contour = contour->h_next;

 }

 else {

 contour = NULL;

 }

 }

}

void getDominantPoints2(CvSeq* contour, IplImage* img) {

 // This method finds the convex hull; however, it has more points

than just the individual fingertips,

 // so I don't think I'll use this method.

 while(contour != NULL) {

 // Only process large contours

 double dblContourArea =

fabs(cvContourArea(contour,CV_WHOLE_SEQ));

 if(dblContourArea > 100) {

 // Get a set of points around the contour perimeter

 CvMemStorage *storagePoints = cvCreateMemStorage(0);

 CvSeq *contourPoints = 0;

 contourPoints = cvConvexHull2(contour, storagePoints,

CV_CLOCKWISE,1);

 // Convert to an array for easy access - necessary or

fast?

 CvPoint* arrPoints = (CvPoint *)malloc(contourPoints-

>total * sizeof(CvPoint));

 cvCvtSeqToArray(contourPoints, arrPoints,

CV_WHOLE_SEQ);

 // Get center of contour

 CvPoint2D32f center;

 CvMoments* moments = new CvMoments();

 cvContourMoments(contour, moments);

 center.x = (float)(moments->m10/moments->m00);

 center.y = (float)(moments->m01/moments->m00);

 // draw points

 cvRectangle(img, cvPoint((int)center.x - 1,

(int)center.y - 1), cvPoint((int)center.x + 1, (int)center.y + 1),

CV_RGB(0,255,0),2,8,0);

80

 for(int i = 0; i < contourPoints->total; i++) {

 cvRectangle(img, cvPoint(arrPoints[i].x-

1,arrPoints[i].y-1),

cvPoint(arrPoints[i].x+1,arrPoints[i].y+1),CV_RGB(255,0,0), 2, 8, 0);

 }

 // Clean up

 cvReleaseMemStorage(&storagePoints);

 free(arrPoints);

 }

 // Increment to next contour

 if(contour->h_next) {

 contour = contour->h_next;

 }

 else {

 contour = NULL;

 }

 }

}

void findCandidates(IplImage* imgIn, CvPoint2D32f

arrCandidates[4][100], int intSize[4], int intMaxSize=100) {

 // This method searches out points on the contour that are

farther from the center of mass than

 // the adjacent two points on the curve

 CvMemStorage *storage = cvCreateMemStorage(0);

 CvSeq * contour = 0;

 cvFindContours(imgIn, storage, &contour, sizeof(CvContour),

CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

 CvSeq * largestContour[4] = {0,0,0,0};;

 double fArea[4] = {0,0,0,0};

 while(contour != NULL) {

 // Only process largest contours

 double dblContourArea =

fabs(cvContourArea(contour,CV_WHOLE_SEQ));

 for(int i = 0; i < 4; i++) {

 if(dblContourArea > fArea[i]) {

 for(int j = i+1; j < 4; j++) {

 largestContour[j] = largestContour[j-1];

 fArea[j] = fArea[j-1];

 }

 largestContour[i] = contour;

 fArea[i] = dblContourArea;

81

 break;

 }

 }

 // Increment to next contour

 if(contour->h_next) {

 contour = contour->h_next;

 }

 else {

 contour = NULL;

 }

 }

 for(int i = 0; i < 4; i++) {

 intSize[i] = 0;

 if(fArea[i] > 200) {

 // Get a set of points around the contour perimeter

 CvMemStorage *storagePoints = cvCreateMemStorage(0);

 CvSeq *contourPoints = 0;

 contourPoints = cvApproxPoly(largestContour[i],

sizeof(CvContour), storagePoints, CV_POLY_APPROX_DP,

cvContourPerimeter(largestContour[i]) * 0.02, 1);

 // Convert to an array for easy access - necessary or

fast?

 CvPoint* arrPoints = (CvPoint *)malloc(contourPoints-

>total * sizeof(CvPoint));

 cvCvtSeqToArray(contourPoints, arrPoints,

CV_WHOLE_SEQ);

 // Get center of contour

 CvPoint2D32f center;

 CvMoments* moments = new CvMoments();

 cvContourMoments(largestContour[i], moments);

 center.x = (float)(moments->m10/moments->m00);

 center.y = (float)(moments->m01/moments->m00);

 arrCandidates[i][0] = center;

 intSize[i]++;

 // select concave points

 for(int k = 0; k < contourPoints->total; k++) {

 double x1, x2, x3;

 double y1, y2, y3;

 double dist1, dist2, dist3;

 if(k == 0) {

 x1 = arrPoints[contourPoints->total-1].x -

center.x;

82

 x2 = arrPoints[k].x - center.x;

 x3 = arrPoints[k+1].x - center.x;

 y1 = arrPoints[contourPoints->total-1].y -

center.y;

 y2 = arrPoints[k].y - center.y;

 y3 = arrPoints[k+1].y - center.y;

 } else if (k < contourPoints->total - 1) {

 x1 = arrPoints[k-1].x - center.x;

 x2 = arrPoints[k].x - center.x;

 x3 = arrPoints[k+1].x - center.x;

 y1 = arrPoints[k-1].y - center.y;

 y2 = arrPoints[k].y - center.y;

 y3 = arrPoints[k+1].y - center.y;

 } else if (k == contourPoints->total - 1) {

 x1 = arrPoints[k-1].x - center.x;

 x2 = arrPoints[k].x - center.x;

 x3 = arrPoints[0].x - center.x;

 y1 = arrPoints[k-1].y - center.y;

 y2 = arrPoints[k].y - center.y;

 y3 = arrPoints[0].y - center.y;

 }

 dist1 = x1*x1 + y1*y1;

 dist2 = x2*x2 + y2*y2;

 dist3 = x3*x3 + y3*y3;

 if((dist2 >= dist1) && (dist2 >= dist3) &&

(intSize[i] < intMaxSize)) {

 arrCandidates[i][intSize[i]].x =

arrPoints[k].x;

 arrCandidates[i][intSize[i]].y =

arrPoints[k].y;

 intSize[i]++;

 }

 }

 // Clean up

 delete moments;

 cvReleaseMemStorage(&storagePoints);

 contourPoints = NULL;

 free(arrPoints);

 arrPoints = NULL;

 }

 }

 cvReleaseMemStorage(&storage);

}

83

void findCandidates2(cv::Mat imgIn, std::vector<cv::Point2f> *pts) {

 // This method searches out points on the contour that are

farther from the center of mass than

 // the adjacent two points on the curve

 std::vector<std::vector<cv::Point>> contours;

 std::vector<cv::Point2f> tmp;

 cv::Moments mom;

 pts->clear();

 cv::findContours(imgIn, contours, cv::RETR_EXTERNAL ,

cv::CHAIN_APPROX_SIMPLE, cv::Point(0,0));

 double dAreaA = 100;

 for(int i = 0; i < contours.size(); i++) {

 std::vector< cv::Point2f > fContours;

 for(int j = 0; j < contours[i].size(); j++) {

 fContours.push_back(contours[i][j]);

 }

 cv::Mat mat = cv::Mat(fContours);

 double d = fabs(cv::contourArea(mat));

 if(d > dAreaA) {

 bool t = mat.isContinuous();

 bool u = (mat.depth() == CV_32F);

 bool v = ((mat.rows == 1 && mat.channels() == 2) ||

(mat.cols * mat.channels() == 2));

 cv::approxPolyDP(mat, tmp, cv::arcLength(mat,1)*0.02,

1);

 mom = cv::moments(cv::Mat(contours[i]), false);

 cv::Point2f center =

cv::Point2f((float)(mom.m10/mom.m00),(float)(mom.m01/mom.m00));

 for(int j = 0; j < tmp.size(); j++) {

 cv::Point2f t1, t2, t3;

 double dist1, dist2, dist3;

 if(j == 0) {

 t1 = tmp[tmp.size()-1] - center;

 t2 = tmp[j] - center;

 t3 = tmp[j+1] - center;

 } else if (j < tmp.size() - 1) {

 t1 = tmp[j-1] - center;

84

 t2 = tmp[j] - center;

 t3 = tmp[j+1] - center;

 } else if (j == tmp.size() - 1) {

 t1 = tmp[j-1] - center;

 t2 = tmp[j] - center;

 t3 = tmp[0] - center;

 }

 dist1 = t1.x*t1.x + t1.y*t1.y;

 dist2 = t2.x*t2.x + t2.y*t2.y;

 dist3 = t3.x*t3.x + t3.y*t3.y;

 if((dist2 >= dist1) && (dist2 >= dist3)) {

 pts->push_back(tmp[j]);

 }

 }

 }

 }

 contours.clear();

}

void findCandidates3(cv::Mat imgIn, std::vector<cv::Point2f> *pts,

std::vector<cv::Rect> *rects) {

 // This method searches out points on the contour that are

farther from the center of mass than

 // the adjacent two points on the curve

 std::vector<std::vector<cv::Point>> contours;

 std::vector<cv::Point2f> tmp;

 cv::Moments mom;

 pts->clear();

 cv::findContours(imgIn, contours, cv::RETR_EXTERNAL ,

cv::CHAIN_APPROX_SIMPLE, cv::Point(0,0));

 double dAreaA = 100;

 for(int i = 0; i < contours.size(); i++) {

 std::vector< cv::Point2f > fContours;

 for(int j = 0; j < contours[i].size(); j++) {

 fContours.push_back(contours[i][j]);

 }

 cv::Mat mat = cv::Mat(fContours);

 double d = fabs(cv::contourArea(mat));

 if(d > dAreaA) {

 cv::Rect tmpRect = cv::boundingRect(mat);

85

 rects->push_back(tmpRect);

 cv::approxPolyDP(mat, tmp, cv::arcLength(mat,1)*0.02,

1);

 mom = cv::moments(cv::Mat(contours[i]), false);

 cv::Point2f center =

cv::Point2f((float)(mom.m10/mom.m00),(float)(mom.m01/mom.m00));

 for(int j = 0; j < tmp.size(); j++) {

 cv::Point2f t1, t2, t3;

 double dist1, dist2, dist3;

 if(j == 0) {

 t1 = tmp[tmp.size()-1] - center;

 t2 = tmp[j] - center;

 t3 = tmp[j+1] - center;

 } else if (j < tmp.size() - 1) {

 t1 = tmp[j-1] - center;

 t2 = tmp[j] - center;

 t3 = tmp[j+1] - center;

 } else if (j == tmp.size() - 1) {

 t1 = tmp[j-1] - center;

 t2 = tmp[j] - center;

 t3 = tmp[0] - center;

 }

 dist1 = t1.x*t1.x + t1.y*t1.y;

 dist2 = t2.x*t2.x + t2.y*t2.y;

 dist3 = t3.x*t3.x + t3.y*t3.y;

 if((dist2 >= dist1) && (dist2 >= dist3)) {

 pts->push_back(tmp[j]);

 }

 }

 }

 }

 contours.clear();

}

IntersectionTester.h
#include <process.h>

#include <windows.h>

#include <stdlib.h>

#include <vector>

#include <osg/Matrix>

#include <osg/Vec3>

#include "PtFilter.h"

86

#define NUM_CAMS 3

#ifndef __INTERSECTIONTESTER

#define __INTERSECTIONTESTER

#define PERSIST_FRAMES 15 // 0.5 second

class IntersectionTester {

 public:

 IntersectionTester();

 ~IntersectionTester();

 static unsigned __stdcall threadedEntry(void *pThis) {

 IntersectionTester * pInt =

(IntersectionTester*)pThis;

 pInt->threadProcess();

 return 1;

 }

 void threadProcess();

 void setInputPts(std::vector< std::vector<osg::Vec3> >

vStart, std::vector< std::vector<osg::Vec3> > vEnd) {

 EnterCriticalSection(&critInput);

 vStartPts = vStart;

 vEndPts = vEnd;

 bNewInputs = true;

 LeaveCriticalSection(&critInput);

 }

 void setKey(int s) {

 intKey = s;

 }

 void setThreshold(int s) {

 intThreshold = s*s;

 }

 void getCrit() {

 EnterCriticalSection(&critOutput);

 }

 void leaveCrit() {

 LeaveCriticalSection(&critOutput);

 }

 std::vector<osg::Vec3> getOutput() {

87

 // Create a copy for output use; this may not work

with the widget manipulators,

 // may need to change to a pointer.

 std::vector<osg::Vec3> tmp;

 EnterCriticalSection(&critOutput);

 tmp = vOutputPts;

 LeaveCriticalSection(&critOutput);

 return tmp;

 }

 void getOutputs(std::vector<osg::Vec3> * pts,

std::vector<int> *indices) {

 EnterCriticalSection(&critOutput);

 *pts = vOutputPts;

 *indices = vDeletedIndices;

 vDeletedIndices.clear();

 LeaveCriticalSection(&critOutput);

 }

private:

 // Multithread via critical section

 CRITICAL_SECTION critInput;

 CRITICAL_SECTION critOutput;

 // input vectors

 std::vector< std::vector<osg::Vec3> > vStartPts;

 std::vector< std::vector<osg::Vec3> > vEndPts;

 bool bNewInputs;

 bool intersect(osg::Vec3, osg::Vec3, osg::Vec3, osg::Vec3,

osg::Vec3*, osg::Vec3*);

 int intKey;

 int intThreshold;

 double EPS;

 // output objects

 std::vector<osg::Vec3> vOutputPts;

 std::vector<int> vDeletedIndices;

};

#endif

IntersectionTester.cpp
#include "IntersectionTester.h"

IntersectionTester::IntersectionTester() {

 InitializeCriticalSection(&critInput);

88

 InitializeCriticalSection(&critOutput);

 for(int i = 0; i < NUM_CAMS; i++) {

 std::vector< osg::Vec3 > *tmp = new std::vector< osg::Vec3

>;

 vStartPts.push_back(*tmp);

 std::vector< osg::Vec3 > *tmp2 = new std::vector< osg::Vec3

>;

 vEndPts.push_back(*tmp2);

 }

 intKey = 0;

 intThreshold = 25; // initialized to a distance of 5 mm

 EPS = 1.0E-3;

}

IntersectionTester::~IntersectionTester() {

 // Release crit section

 DeleteCriticalSection(&critInput);

 DeleteCriticalSection(&critOutput);

}

void IntersectionTester::threadProcess() {

 // Test for intersections or near intersections of rays described

by vec3 arrays

 osg::Vec3 startA, startB, endA, endB;

 osg::Vec3 * startC = new osg::Vec3();

 osg::Vec3 * endC = new osg::Vec3();

 osg::Vec3 delta;

 int distance;

 // working vectors

 std::vector< std::vector< osg::Vec3 > > vTmpStPts, vTmpEndPts;

 std::vector< osg::Vec3 > vTmpOutPts, vStablePts;

 std::vector< osg::Vec3 > vPosPts, vVelPts;

 std::vector< int > vUpdateAttempts;

 std::vector<int> vTmpDelIndices;

 while(intKey != 27) {

 if(bNewInputs) {

 // clear old vector

 vTmpOutPts.clear();

 // Copy input vectors

 EnterCriticalSection(&critInput);

 vTmpStPts = vStartPts;

 vTmpEndPts = vEndPts;

89

 LeaveCriticalSection(&critInput);

 bNewInputs = false;

 // Find intersections between lines

 for(int i = 0; i < NUM_CAMS; i++) {

 for(int j = 0; j < vTmpStPts[i].size(); j++) {

 // Get first line

 startA = vTmpStPts[i][j];

 endA = vTmpEndPts[i][j];

 for(int x = i + 1; x < NUM_CAMS; x++) {

 // only test other camera's lines, no self-intersections please

 for(int y = 0; y <

vTmpStPts[x].size(); y++) {

 // Get second line

 startB = vTmpStPts[x][y];

 endB = vTmpEndPts[x][y];

 // Get shortest distance

between the rays

 intersect(startA, endA, startB,

endB, startC, endC);

 delta = osg::Vec3(startC->x()

- endC->x(), startC->y() - endC->y(), startC->z() - endC->z());

 distance = delta.x() *

delta.x() + delta.y() * delta.y() + delta.z() * delta.z();

 // If the distance is less than

the threshold we add a point

 if(distance <= intThreshold)

{

 vTmpOutPts.push_back(

osg::Vec3(startC->x() + 0.5*delta.x(),

 startC->y() + 0.5*delta.y(),

 startC->z() + 0.5*delta.z()));

 }

 }

 }

 }

 }

 // Test points for duplicates

 bool bMatchesExist = true;

 while(bMatchesExist) {

 int intMinDist = 500; // 2 cm squared

90

 int index1 = -1;

 int index2 = -1;

 // Find closest pair of points within the

minimum distance

 for(unsigned int i = 0; i < vTmpOutPts.size();

i++) {

 for(unsigned int j = 0; j <

vTmpOutPts.size(); j++) {

 if(i != j) {

 osg::Vec3 pt1 = vTmpOutPts[i];

 osg::Vec3 pt2 = vTmpOutPts[j];

 delta = osg::Vec3d(pt1.x() -

pt2.x(),

 pt1.y() - pt2.y(),

 pt1.z() - pt2.z());

 distance = delta.x() *

delta.x() + delta.y() * delta.y() + delta.z() * delta.z();

 // If closer than any other

match, update the indices and distance to test against

 if(distance < intMinDist) {

 intMinDist = distance;

 index1 = i;

 index2 = j;

 }

 }

 }

 }

 // If points found within the minimum distance,

merge them 50/50.

 if(index1 >= 0 && index2 >= 0) {

 osg::Vec3 pt1 = vTmpOutPts[index1];

 osg::Vec3 pt2 = vTmpOutPts[index2];

 vTmpOutPts[index1] = osg::Vec3((pt1.x() +

pt2.x()) / 2.0,

 (pt1.y() + pt2.y()) / 2.0,

 (pt1.z() + pt2.z()) / 2.0);

 vTmpOutPts.erase(vTmpOutPts.begin() +

index2);

 } else {

 bMatchesExist = false;

 }

91

 }

 // Tracking Section

 // Update positions

 for(int i = 0; i < vPosPts.size(); i++)

 vPosPts[i] = vPosPts[i] + vVelPts[i];

 // Match new points to old points

 bMatchesExist = true;

 std::vector<int> vOldIndices, vNewIndices;

 for(int i = 0; i < vPosPts.size(); i++)

 vOldIndices.push_back(i);

 for(int i = 0; i < vTmpOutPts.size(); i++)

 vNewIndices.push_back(i);

 while(bMatchesExist) {

 int intMinDist = 625; // 3 cm squared

 int index1 = -1;

 int index2 = -1;

 // Find closest pair of points within the

minimum distance

 for(unsigned int i = 0; i < vOldIndices.size();

i++) {

 for(unsigned int j = 0; j <

vNewIndices.size(); j++) {

 osg::Vec3 pt1 =

vPosPts[vOldIndices[i]];

 osg::Vec3 pt2 =

vTmpOutPts[vNewIndices[j]];

 delta = osg::Vec3d(pt1.x() -

pt2.x(),

 pt1.y()

- pt2.y(),

 pt1.z()

- pt2.z());

 distance = delta.x() * delta.x() +

delta.y() * delta.y() + delta.z() * delta.z();

 // If closer than any other match,

update the indices and distance to test against

 if(distance < intMinDist) {

 intMinDist = distance;

 index1 = i;

 index2 = j;

 }

 }

92

 }

 double coeff1 = 29.0;

 double coeff2 = 1.0;

 // If points found within the minimum distance,

merge them 3:2

 if(index1 >= 0 && index2 >= 0) {

 osg::Vec3 pt1 =

vPosPts[vOldIndices[index1]];

 osg::Vec3 pt2 =

vTmpOutPts[vNewIndices[index2]];

 // Update position

 vPosPts[vOldIndices[index1]] = osg::Vec3(

(coeff1*pt1.x() + coeff2*pt2.x()) / (coeff1 + coeff2),

 (coeff1*pt1.y() + coeff2*pt2.y()) / (coeff1 +

coeff2),

 (coeff1*pt1.z() + coeff2*pt2.z()) / (coeff1 +

coeff2));

 // Update velocity

 osg::Vec3 v1 =

vVelPts[vOldIndices[index1]];

 osg::Vec3 v2 = pt2 - pt1;

 vVelPts[vOldIndices[index1]] = osg::Vec3(

(coeff1*v1.x() + coeff2*v2.x()) / (coeff1 + coeff2),

 (coeff1*v1.y() + coeff2*v2.y()) / (coeff1 + coeff2),

 (coeff1*v1.z() + coeff2*v2.z()) / (coeff1 + coeff2)

);

 // Update attempts

 vUpdateAttempts[vOldIndices[index1]] = 0;

 // Update indices list

 vOldIndices.erase(vOldIndices.begin() +

index1);

 vNewIndices.erase(vNewIndices.begin() +

index2);

 } else {

 bMatchesExist = false;

 }

 }

 // Increment attempts for non-updated points

 for(int i = vOldIndices.size()-1; i >= 0 ; i--) {

 if(vUpdateAttempts[vOldIndices[i]] >

PERSIST_FRAMES) {

93

 vUpdateAttempts.erase(

vUpdateAttempts.begin() + vOldIndices[i]);

 vPosPts.erase(vPosPts.begin() +

vOldIndices[i]);

 vVelPts.erase(vVelPts.begin() +

vOldIndices[i]);

 vTmpDelIndices.push_back(vOldIndices[i]

);

 } else {

 vUpdateAttempts[vOldIndices[i]]++;

 }

 }

 // Add new points

 for(int i = 0; i < vNewIndices.size(); i++) {

 vPosPts.push_back(vTmpOutPts[vNewIndices[i]]);

 vVelPts.push_back(osg::Vec3(0,0,0));

 vUpdateAttempts.push_back(0);

 }

 EnterCriticalSection(&critOutput);

 vOutputPts = vPosPts; //probably need to change

this to keep persistance

 for(int i = 0; i < vTmpDelIndices.size(); i++)

 vDeletedIndices.push_back(vTmpDelIndices[i]);

 LeaveCriticalSection(&critOutput);

 vTmpDelIndices.clear();

 }

 }

 delete startC;

 delete endC;

}

bool IntersectionTester::intersect(osg::Vec3 p1, osg::Vec3 p2,

osg::Vec3 p3, osg::Vec3 p4, osg::Vec3* pa, osg::Vec3* pb) {

 /*

 Calculate the line segment PaPb that is the shortest route between

 two lines P1P2 and P3P4. Calculate also the values of mua and mub

where

 Pa = P1 + mua (P2 - P1)

 Pb = P3 + mub (P4 - P3)

 Return FALSE if no solution exists.

*/

 // Found at

http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline3d/

94

 osg::Vec3 p13, p43, p21;

 double d1343, d4321, d1321, d4343, d2121;

 double mua, mub;

 double numer, denom;

 p13.x() = p1.x() - p3.x();

 p13.y() = p1.y() - p3.y();

 p13.z() = p1.z() - p3.z();

 p43.x() = p4.x() - p3.x();

 p43.y() = p4.y() - p3.y();

 p43.z() = p4.z() - p3.z();

 if (abs(p43.x()) < EPS && abs(p43.y()) < EPS && abs(p43.z()) <

EPS)

 return(false);

 p21.x() = p2.x() - p1.x();

 p21.y() = p2.y() - p1.y();

 p21.z() = p2.z() - p1.z();

 if (abs(p21.x()) < EPS && abs(p21.y()) < EPS && abs(p21.z()) <

EPS)

 return(false);

 d1343 = p13.x() * p43.x() + p13.y() * p43.y() + p13.z() * p43.z();

 d4321 = p43.x() * p21.x() + p43.y() * p21.y() + p43.z() * p21.z();

 d1321 = p13.x() * p21.x() + p13.y() * p21.y() + p13.z() * p21.z();

 d4343 = p43.x() * p43.x() + p43.y() * p43.y() + p43.z() * p43.z();

 d2121 = p21.x() * p21.x() + p21.y() * p21.y() + p21.z() * p21.z();

 denom = d2121 * d4343 - d4321 * d4321;

 if (abs(denom) < EPS)

 return(false);

 numer = d1343 * d4321 - d1321 * d4343;

 mua = numer / denom;

 mub = (d1343 + d4321 * mua) / d4343;

 // Need to test if pa and pb are allocated memory??

 pa->x() = p1.x() + mua * p21.x();

 pa->y() = p1.y() + mua * p21.y();

 pa->z() = p1.z() + mua * p21.z();

 pb->x() = p3.x() + mub * p43.x();

 pb->y() = p3.y() + mub * p43.y();

 pb->z() = p3.z() + mub * p43.z();

95

 return(true);

}

ManipulatorWidget.h
#include <windows.h>

#include <time.h>

#include <osg/Geometry>

#include <osg/Geode>

#include <osg/Shape>

#include <osg/ShapeDrawable>

#include <osg/MatrixTransform>

#include <osg/LineWidth>

#include <osg/BoundingBox>

#ifndef __MANIPULATORWIDGET

#define __MANIPULATORWIDGET

class ManipulatorWidget {

public:

 // Eponymous func's

 ManipulatorWidget(bool);

 ~ManipulatorWidget();

 // Update func's

 void updatePosition(osg::Vec3, osg::Vec3);

 void updateScale();

 void updateTR();

 void update();

 // Type

 bool bType; //true for scale, false for trans/rot

 // Geometry access

 osg::ref_ptr<osg::Geode> geoSphereA;

 osg::ref_ptr<osg::ShapeDrawable> shapeA;

 osg::ref_ptr<osg::Geode> geoSphereB;

 osg::ref_ptr<osg::ShapeDrawable> shapeB;

 osg::ref_ptr<osg::Geode> geoLine;

 osg::ref_ptr<osg::MatrixTransform> matTransform;

 // Parent object

 osg::MatrixTransform * matParent;

96

 // Timer item

 time_t tUpdate;

 // Lock items

 bool bLock;

 osg::Vec3 vLockedA;

 osg::Vec3 vLockedB;

 // History items

 osg::Vec3 vOldA;

 osg::Vec3 vOldB;

};

#endif

ManipulatorWidget.cpp
#include "ManipulatorWidget.h"

ManipulatorWidget::ManipulatorWidget(bool bScale) {

 // Create widget endpoints - all units in mm

 osg::Vec3 ptA;

 osg::Vec3 ptB;

 osg::ref_ptr<osg::Sphere> unitSphereA, unitSphereB;

 //if(bScale) {

 ptA = osg::Vec3(30,0,0);

 ptB = osg::Vec3(-30,0,0);

 unitSphereA = new osg::Sphere(ptA, 15);

 unitSphereB = new osg::Sphere(ptB, 15);

 //} else {

 // ptA = osg::Vec3(0,0,30);

 // ptB = osg::Vec3(0,0,-30);

 // unitSphereA = new osg::Sphere(ptA, 10);

 // unitSphereB = new osg::Sphere(ptB, 10);

 //}

 // Create sphere A

 shapeA = new osg::ShapeDrawable(unitSphereA.get());

 geoSphereA = new osg::Geode();

 geoSphereA->addDrawable(shapeA.get());

 // Create sphere B

 shapeB = new osg::ShapeDrawable(unitSphereB.get());

 geoSphereB = new osg::Geode();

 geoSphereB->addDrawable(shapeB.get());

97

 // Create interstitial line

 osg::ref_ptr<osg::Geometry> geomLine = new osg::Geometry();

 geoLine = new osg::Geode();

 osg::ref_ptr<osg::Vec3Array> vecCoords = new osg::Vec3Array(2);

 (*(vecCoords.get()))[0] = ptA;

 (*(vecCoords.get()))[1] = ptB;

 osg::ref_ptr<osg::Vec4Array> color = new osg::Vec4Array(1);

 (*(color.get()))[0] = osg::Vec4(1.f, 1.f, 0.f, 1.f);

 osg::ref_ptr<osg::StateSet> stateset = new osg::StateSet;

 osg::ref_ptr<osg::LineWidth> linewidth = new osg::LineWidth();

 linewidth->setWidth(5.0f);

 stateset->setAttributeAndModes(linewidth.get(),

osg::StateAttribute::ON);

 stateset->setMode(GL_LIGHTING,osg::StateAttribute::OFF);

 geomLine->setColorArray(color.get());

 geomLine->setColorBinding(osg::Geometry::BIND_OVERALL);

 geomLine->setVertexArray(vecCoords.get());

 geomLine->addPrimitiveSet(new

osg::DrawArrays(osg::PrimitiveSet::LINES, 0, 2));

 geomLine->setStateSet(stateset.get());

 geomLine->setUseDisplayList(false);

 geoLine->addDrawable(geomLine.get());

 // Create parent matrix

 matTransform = new osg::MatrixTransform();

 matTransform->addChild(geoSphereA.get());

 matTransform->addChild(geoSphereB.get());

 matTransform->addChild(geoLine.get());

 matTransform->getOrCreateStateSet()->setRenderBinDetails(60,

"RenderBin");

 // Set update time

 time(&tUpdate);

 // Initially not locked

 bLock = false;

 // Set type

 bType = bScale;

}

ManipulatorWidget::~ManipulatorWidget() {

 matParent = NULL;

}

98

void ManipulatorWidget::updatePosition(osg::Vec3 pos, osg::Vec3 orient)

{

 osg::Matrixd tmp;

 tmp.setTrans(pos);

 //tmp.preMult(tmp.rotate(osg::Vec3(0,0,1), orient));

 matTransform->setMatrix(tmp);

}

void ManipulatorWidget::update() {

 if(bType) {

 updateScale();

 } else {

 updateTR();

 }

}

void ManipulatorWidget::updateScale() {

 // Update the widget & parent object scale upon lock

 if(bLock) {

 // Update locking

 osg::BoundingSphere ba = geoSphereA->getBound();

 ba.set(ba.center() * matTransform->getMatrix(),

ba.radius());

 osg::BoundingSphere bb = geoSphereA->getBound();

 bb.set(bb.center() * matTransform->getMatrix(),

bb.radius());

 if(ba.contains(vLockedA) && bb.contains(vLockedB)) {

 bLock = true;

 } else {

 bLock = false;

 }

 // Get old scaling based on finger distance

 osg::Vec3 v = vOldA - vOldB;

 double dOldDist = v.length();

 // Get new scaling based on finger distance

 v = vLockedA - vLockedB;

 double dNewDist = v.length();

 // Update matrices with new scaling

 double dScale = dNewDist / dOldDist;

 osg::Matrixd tmp = matTransform->getMatrix();

 tmp.preMultScale(osg::Vec3(dScale, dScale, dScale));

 matTransform->setMatrix(tmp);

 osg::Matrix s;

99

 s.postMultScale(osg::Vec3(dScale, dScale, dScale));

 matParent->preMult(s);

 // Update history

 vOldA = vLockedA;

 vOldB = vLockedB;

 // Update clock

 time(&tUpdate);

 }

}

void ManipulatorWidget::updateTR() {

 // Update the widget & parent object translation & rotation upon

lock

 if(bLock) {

 // Get rotation

 osg::Vec3 a = vOldA - vOldB;

 a.normalize();

 osg::Vec3 b = vLockedA - vLockedB;

 b.normalize();

 osg::Matrixd matRotate = osg::Matrix::rotate(a, b);

 // Apply rotation - unwind translation then apply rotation?

 osg::Matrixd tmp = matTransform->getMatrix();

 osg::Vec3 transWidget = tmp.getTrans();

 tmp.postMultTranslate(-transWidget);

 tmp.postMult(matRotate);

 tmp.postMultTranslate(transWidget);

 matTransform->setMatrix(tmp);

 tmp = matParent->getMatrix();

 osg::Vec3 transModel = tmp.getTrans();

 tmp.postMultTranslate(-transWidget); //used transWidget

to keep relative rotation between model and widget

 tmp.postMult(matRotate);

 tmp.postMultTranslate(transWidget);

 matParent->setMatrix(tmp);

 // Get translation

 a = vOldA - vOldB;

 a = a * 0.5;

 osg::Vec3 vOldPosition = vOldB + a;

100

 a = vLockedA - vLockedB;

 a = a * 0.5;

 osg::Vec3 vLockedPosition = vLockedB + a;

 osg::Vec3 vTrans = vLockedPosition - vOldPosition;

 osg::Matrixd matTranslate = osg::Matrixd::translate(vTrans

);

 // Apply translation

 tmp = matTransform->getMatrix();

 tmp.postMult(matTranslate); // using postmult to

apply translation after rotations/scales/etc.

 matTransform->setMatrix(tmp);

 matParent->postMult(matTranslate);

 // Update history

 vOldA = vLockedA;

 vOldB = vLockedB;

 // Update locking

 osg::BoundingSphere ba = geoSphereA->getBound();

 ba.set(ba.center() * matTransform->getMatrix(),

ba.radius());

 osg::BoundingSphere bb = geoSphereB->getBound();

 bb.set(bb.center() * matTransform->getMatrix(),

bb.radius());

 bool testA = ba.contains(vLockedA);

 bool testB = bb.contains(vLockedB);

 if(testA && testB) {

 bLock = true;

 } else {

 bLock = false;

 }

 // Update clock

 time(&tUpdate);

 }

}

//int main() {

//

// osg::Vec3 a(1,0,0);

// osg::Vec3 b(0,1,0);

//

// osg::Vec3 c = a^b;

//

101

// osg::Matrix t;

// t.setTrans(5, 1, 0);

// t.postMult(osg::Matrixd::rotate(osg::Vec3(1,0,0),

osg::Vec3(0,1,0)));

//

// int q = 4;

//

//}

PtFilter.h
#ifndef __OPENCV200

 #include <opencv/cv.h>

 #include <opencv/cxcore.h>

 #include <opencv/highgui.h>

 #define __OPENCV200

#endif

class PtFilter {

public:

 PtFilter(double fps) {

 // initialize kalman variables

 kalman = cvCreateKalman(6,3,0); //dynamic: x, y,z,

dx, dy, dz; measure: x,y,z; no control;

 state = cvCreateMat(6, 3, CV_32FC1);

 measurement = cvCreateMat(3, 1, CV_32FC1);

 const float A[] = { 1,0,0,1000.0/fps,0,0,

 0,1,0,0,1000.0/fps,0,

 0,0,1,0,0,1000.0/fps,

 0,0,0,1,0,0,

 0,0,0,0,1,0,

 0,0,0,0,0,1 }; //

transition matrix

 memcpy(kalman->transition_matrix->data.fl, A, sizeof(A));

 // set kalman's transition matrix to A

 // Set process variables...not sure what's optimal here. :|

 cvSetIdentity(kalman->measurement_matrix, cvRealScalar(1)

);

 cvSetIdentity(kalman->process_noise_cov, cvRealScalar(1e-

5));

 cvSetIdentity(kalman->measurement_noise_cov,

cvRealScalar(0.5));

 cvSetIdentity(kalman->error_cov_post, cvRealScalar(1));

102

 // initialize state to random

 CvRNG rand = cvRNG(-1);

 cvRandArr(&rand, kalman->state_post, CV_RAND_NORMAL,

cvRealScalar(0), cvRealScalar(0.1));

 count = 0;

 isAccurate = false;

 }

 ~PtFilter() {

 cvReleaseKalman(&kalman);

 }

 osg::Vec3f getPrediction() {

 // Return the predicted position of the tracked point

 const CvMat *prediction = cvKalmanPredict(kalman, 0);

 pPredict.x() = prediction->data.fl[0];

 pPredict.y() = prediction->data.fl[1];

 pPredict.z() = prediction->data.fl[2];

 return pPredict;

 }

 void update(osg::Vec3f pIn) {

 // Update the tracking with a measurement

 measurement->data.fl[0] = pIn.x();

 measurement->data.fl[1] = pIn.y();

 measurement->data.fl[2] = pIn.z();

 cvKalmanCorrect(kalman, measurement);

 }

 void update() {

 // Update the tracking based on internal state (no

measurement)

 state = kalman->state_post;

 cvMatMul(kalman->transition_matrix, state, state);

 CvMat *predict = cvCreateMat(3,1,CV_32FC1);

 predict->data.fl[0] = state->data.fl[0];

 predict->data.fl[1] = state->data.fl[1];

 predict->data.fl[2] = state->data.fl[2];

 cvKalmanCorrect(kalman, predict);

 cvReleaseMat(&predict);

 count++;

 }

103

 int getCount() {

 return count;

 }

 void resetCount() {

 count = 0;

 }

 bool isAccurate;

 osg::Vec3f pPredict;

private:

 CvKalman *kalman; // kalman filter

data structure

 CvMat *state; // state

variable

 CvMat *measurement; // measurement

variable

 int count;

};

Main.cpp
#define NUM_CAMS 3

#include "Cam.h"

#include "IntersectionTester.h"

#include "ManipulatorWidget.h"

#include <sstream>

#include <osgViewer/Viewer>

#include <osgViewer/ViewerEventHandlers>

#include <osgGA/TrackballManipulator>

#include <osg/Geometry>

#include <osg/Node>

#include <osg/LineWidth>

#include <osg/TextureRectangle>

#include <osg/TexMat>

#include <osg/Shape>

#include <osg/ShapeDrawable>

#include <osg/PositionAttitudeTransform>

#include <osg/MatrixTransform>

#include <osgDB/ReadFile>

// Function declarations

osg::ref_ptr<osg::Camera> getVideoBackground(int, osg::Group *,

osg::Image *);

104

osg::ref_ptr<osg::Geode> getForegroundRect(cv::Mat *, osg::Vec3,

osg::Vec3, osg::Vec3, osg::Vec3);

// Global Variables

Cam * arrCams[NUM_CAMS];

HANDLE hth[NUM_CAMS];

unsigned uiThreadID[NUM_CAMS];

int intCurrentCam;

// Event handlers

class KeyHandler : public osgGA::GUIEventHandler

{

public:

 KeyHandler() {}

 ~KeyHandler() {}

 bool handle(const osgGA::GUIEventAdapter& ea,

osgGA::GUIActionAdapter& aa)

 {

 osgViewer::Viewer* viewer =

dynamic_cast<osgViewer::Viewer*>(&aa);

 if (!viewer) return false;

 switch(ea.getEventType())

 {

 case(osgGA::GUIEventAdapter::KEYUP):

 {

 if (ea.getKey()=='b')

 {

 // suspend threads

 for(int i = 0; i < NUM_CAMS; i++) {

 SuspendThread(hth[i]);

 }

 // reinit background

 for(int i = 0; i < NUM_CAMS; i++) {

 arrCams[i]->resetBackground();

 }

 for(int i = 0; i < NUM_CAMS; i++) {

 ResumeThread(hth[i]);

 }

 }

 else if (ea.getKey()=='r')

 {

 // suspend threads

 for(int i = 0; i < NUM_CAMS; i++) {

 SuspendThread(hth[i]);

 }

 // reinit matrices

105

 for(int i = 0; i < NUM_CAMS; i++) {

 arrCams[i]->resetCamMatrix();

 arrCams[i]->resetBackground();

 }

 for(int i = 0; i < NUM_CAMS; i++) {

 ResumeThread(hth[i]);

 }

 }

 else if (ea.getKey() == ']')

 {

 // Reset view to the next camera

 intCurrentCam = (intCurrentCam + 1) %

NUM_CAMS;

 viewer->getCamera()->setProjectionMatrix(

arrCams[intCurrentCam]->getProjectionMatrix());

 viewer->getCamera()->setViewMatrix(

arrCams[intCurrentCam]->getViewMatrix());

 }

 else if (ea.getKey() == '[')

 {

 // Reset view to previous camera

 intCurrentCam = (NUM_CAMS + intCurrentCam

- 1) % NUM_CAMS;

 viewer->getCamera()->setProjectionMatrix(

arrCams[intCurrentCam]->getProjectionMatrix());

 viewer->getCamera()->setViewMatrix(

arrCams[intCurrentCam]->getViewMatrix());

 }

 return false;

 }

 case(osgGA::GUIEventAdapter::PUSH):

 case(osgGA::GUIEventAdapter::MOVE):

 case(osgGA::GUIEventAdapter::RELEASE):

 default:

 return false;

 }

 viewer = NULL;

 }

};

int main() {

 // Set up OSG viewer

 osg::ref_ptr<osg::Group> root = new osg::Group();

 osgViewer::Viewer viewer;

 viewer.setThreadingModel(osgViewer::Viewer::SingleThreaded);

 viewer.setUpViewInWindow(500,100,800,600,0);

 viewer.setSceneData(root.get());

106

 viewer.addEventHandler(new osgViewer::StatsHandler);

 viewer.addEventHandler(new osgViewer::WindowSizeHandler);

 viewer.addEventHandler(new osgViewer::ThreadingHandler);

 viewer.addEventHandler(new osgViewer::HelpHandler);

 // Tracking vectors

 std::vector<osg::MatrixTransform *> vecModels;

 std::vector<bool> vecHasWidget;

 std::vector<ManipulatorWidget *> vecWidgets;

 // Create object interface

 //osg::ref_ptr<osg::Node> bigboxGeode =

osgDB::readNodeFile("Models/827_3389_200.3ds");

 osg::ref_ptr<osg::Box> bigbox = new osg::Box(osg::Vec3(0,0,0),

35);

 osg::ref_ptr<osg::ShapeDrawable> bigboxDrawable = new

osg::ShapeDrawable(bigbox.get());

 osg::ref_ptr<osg::Geode> bigboxGeode = new osg::Geode();

 bigboxGeode->addDrawable(bigboxDrawable.get());

 bigboxGeode->getOrCreateStateSet()->setRenderBinDetails(50,

"RenderBin");

 osg::ref_ptr<osg::MatrixTransform> matModel1 = new

osg::MatrixTransform(osg::Matrix::translate(0,0,100));

 matModel1->addChild(bigboxGeode.get());

 root->addChild(matModel1.get());

 // Add objects' transforms to tracking vector

 vecModels.push_back(matModel1.get());

 vecHasWidget.push_back(false);

 // Create scale button

 osg::ref_ptr<osg::Box> boxButton = new

osg::Box(osg::Vec3(0,0,0),25,20,10);

 osg::ref_ptr<osg::ShapeDrawable> boxButtonDraw = new

osg::ShapeDrawable(boxButton.get());

 osg::ref_ptr<osg::Geode> boxButtonGeo = new osg::Geode();

 boxButtonGeo->addDrawable(boxButtonDraw.get());

 boxButtonGeo->getOrCreateStateSet()->setRenderBinDetails(50,

"RenderBin");

 osg::ref_ptr<osg::MatrixTransform> matButton1 = new

osg::MatrixTransform(osg::Matrix::translate(200,-50,5));

 matButton1->addChild(boxButtonGeo.get());

 root->addChild(matButton1.get());

 // Set up intersection calculation thread

 IntersectionTester * IntTest = new IntersectionTester();

 HANDLE hthIntersect;

 unsigned uiThreadIDIntersect;

107

 hthIntersect = (HANDLE)_beginthreadex(NULL, // security

 0,

// stack size

IntersectionTester::threadedEntry,

 IntTest,

// arg list

CREATE_SUSPENDED,

&uiThreadIDIntersect);

 // Set up loop

 for(int i = 0; i < NUM_CAMS; i++) {

 arrCams[i] = new Cam(i);

 hth[i] = (HANDLE)_beginthreadex(NULL, //

security

 0,

 // stack size

 Cam::threadedEntry,

 arrCams[i],

 // arg list

 CREATE_SUSPENDED,

 &uiThreadID[i]);

 if (hth[i] == 0)

 printf("Failed to create thread %d\n", i);

 }

 // set start cam position

 intCurrentCam = 0;

 viewer.getCamera()->setProjectionMatrix(arrCams[intCurrentCam]-

>getProjectionMatrix());

 viewer.getCamera()->setViewMatrix(arrCams[intCurrentCam]-

>getViewMatrix());

 // Set up video background

 osg::ref_ptr<osg::Image> imgBackground = new osg::Image();

 osg::ref_ptr<osg::Camera> bckgnd =

getVideoBackground(intCurrentCam, root.get(), imgBackground.get());

 // Create finger sphere

 osg::ref_ptr<osg::Sphere> unitSphere = new

osg::Sphere(osg::Vec3(0,0,0), 5);

 osg::ref_ptr<osg::ShapeDrawable> unitSphereDrawableA = new

osg::ShapeDrawable(unitSphere.get());

 unitSphereDrawableA->setColor(osg::Vec4(0.0,0.0,1.0,1.0));

 osg::ref_ptr<osg::Geode> geoSphereA = new osg::Geode();

108

 geoSphereA->addDrawable(unitSphereDrawableA.get());

 geoSphereA->getOrCreateStateSet()->setRenderBinDetails(50,

"RenderBin");

 // Vector to contain position transforms for the spheres

 std::vector< osg::ref_ptr<osg::PositionAttitudeTransform> >

vSpheres;

 // Execute threads

 for(int i = 0; i < NUM_CAMS; i++) {

 ResumeThread(hth[i]);

 }

 ResumeThread(hthIntersect);

 std::vector< std::vector< osg::Vec3 > > vStart, vEnd;

 IntTest->setThreshold(4);

 std::vector< osg::Vec3 > vPts;

 std::vector< int > vDelPts, vAInd, vBInd;

 osg::ref_ptr<osg::Geode> arrForegrounds[] = {NULL, NULL, NULL,

NULL};

 // Display loop

 viewer.addEventHandler(new KeyHandler());

 viewer.realize();

 std::vector<cv::Mat> vOutROI;

 std::vector<cv::Rect> vOutRects;

 cv::Mat tmpMat;

 bool bScaleFlag = false, isIntersected = false;

 double dErrorTerm = 5;

 while(!viewer.done()) {

 // update video background

 cv::Mat tmpImg = cv::Mat(arrCams[intCurrentCam]-

>imgOutput);

 cv::Mat tmpMask = arrCams[intCurrentCam]->imgForeMask;

 imgBackground->setImage(arrCams[intCurrentCam]->imgOutput-

>width,

 arrCams[intCurrentCam]-

>imgOutput->height,

 arrCams[intCurrentCam]-

>imgOutput->depth,

 3,

 GL_BGR,

 GL_UNSIGNED_BYTE,

109

 (unsigned

char*)arrCams[intCurrentCam]->imgOutput->imageData,

 osg::Image::NO_DELETE,

 1);

 // Get intersection output

 IntTest->getOutputs(&vPts, &vDelPts);

 // Get foreground rects

 vOutROI.clear();

 vOutRects.clear();

 arrCams[intCurrentCam]->getCrit();

 //vOutROI = arrCams[intCurrentCam]->vOutROI;

 vOutRects = arrCams[intCurrentCam]->vOutRects;

 arrCams[intCurrentCam]->releaseCrit();

 // Get 2D transforms of points

 std::vector< osg::Vec3 > vPts2D;

 //std::vector< osg::Vec3 > vPtsPartialTransform;

 for(int i = 0; i < vPts.size(); i++) {

 osg::Vec3 pt2D;

 osg::Matrix mat = arrCams[intCurrentCam]->matView

*arrCams[intCurrentCam]->matProjection * arrCams[intCurrentCam]-

>matViewport ;

 pt2D = vPts[i] * mat;

 //vPts2D.push_back(osg::Vec2(pt2D.x(), pt2D.y()));

 vPts2D.push_back(pt2D);

 //pt2D = vPts[i] * arrCams[intCurrentCam]->matView;

 //vPtsPartialTransform.push_back(pt2D);

 }

 // Process foreground rectangles

 std::vector<float> fZvalues;

 for(int i = 0; i < vOutRects.size(); i++) {

 float zCount = 0;

 fZvalues.push_back(0);

 cv::Rect tmpRect = vOutRects[i];

 // Get average z value of rectangle

 for(int j = 0; j < vPts2D.size(); j++) {

 // see if point lies within rectangle on 2D

plane

 if(vPts2D[j].x() >= tmpRect.x - dErrorTerm &&

vPts2D[j].x() <= (tmpRect.x + tmpRect.width+dErrorTerm) &&

 vPts2D[j].y() >= tmpRect.y - dErrorTerm &&

vPts2D[j].y() <= (tmpRect.y + tmpRect.height + dErrorTerm)){

 //Average in points z value

 fZvalues[i] = (fZvalues[i] * zCount +

vPts2D[j].z()) / (zCount+1.0);

110

 zCount++;

 }

 }

 // Create ROI images

 cv::Mat tmp;

 cv::getRectSubPix(tmpImg, cv::Size(tmpRect.width*2,

tmpRect.height*2), cv::Point2f(tmpRect.x*2 + tmpRect.width, tmpRect.y*2

+ tmpRect.height),tmp,-1);

 cv::Mat roi = cv::Mat(tmp.rows, tmp.cols, CV_8UC4,

cv::Scalar(0,0,0,0));

 // changing channels,so can't use copyto op

 for(int j = 0; j < tmp.rows; j++) {

 for(int k = 0; k < tmp.cols; k++) {

 if(tmpMask.at<uchar>(tmpRect.y+(j/2),

tmpRect.x+(k/2)) > 0) {

 cv::Vec3b tmpPt =

tmp.at<cv::Vec3b>(j,k);

 cv::Vec4b tmpPt2 =

cv::Vec4b(tmpPt[0], tmpPt[1], tmpPt[2], 255);

 roi.at<cv::Vec4b>(j,k) = tmpPt2;

 }

 }

 }

 vOutROI.push_back(roi);

 }

 // Draw ROI rectangles

 for(int i = 0; i < 4; i++) {

 if(i < fZvalues.size()) {

 if(fZvalues[i] != 0) {

 tmpMat = vOutROI[i];

 cv::Rect tmpRect = vOutRects[i];

 //Update size/position

 osg::Matrix mat;

 mat.invert(arrCams[intCurrentCam]-

>matView * arrCams[intCurrentCam]->matProjection *

arrCams[intCurrentCam]->matViewport);

 // Get rect corners

 osg::Vec3 UL = osg::Vec3(tmpRect.x,

(tmpImg.rows/2)-(tmpRect.y), fZvalues[i]) * mat;

 osg::Vec3 UR =

osg::Vec3(tmpRect.x+tmpRect.width, (tmpImg.rows/2)-(tmpRect.y),

fZvalues[i]) * mat;

 osg::Vec3 LR =

osg::Vec3(tmpRect.x+tmpRect.width, (tmpImg.rows/2)-

(tmpRect.y+tmpRect.height), fZvalues[i]) * mat;

111

 osg::Vec3 LL = osg::Vec3(tmpRect.x,

(tmpImg.rows/2)-(tmpRect.y+tmpRect.height), fZvalues[i]) * mat;

 // Create rectangle

 if(arrForegrounds[i] != NULL) {

 root->removeChild(

arrForegrounds[i].get());

 arrForegrounds[i] = NULL;

 }

 arrForegrounds[i] = getForegroundRect(

&tmpMat, UL, UR, LR, LL);

 root->addChild(arrForegrounds[i].get());

 }

 } else {

 if(arrForegrounds[i] != NULL) {

 root->removeChild(arrForegrounds[i].get()

);

 arrForegrounds[i] = NULL;

 }

 }

 }

 // Draw spheres

 for(unsigned int i = 0; i < vPts.size(); i++) {

 if(vSpheres.size() <= i) {

 osg::ref_ptr<osg::PositionAttitudeTransform>

tmp;

 tmp = new osg::PositionAttitudeTransform();

 tmp->setPosition(vPts[i]);

 tmp->addChild(geoSphereA.get());

 tmp->setDataVariance(osg::Object::DYNAMIC);

 vSpheres.push_back(tmp);

 root->addChild(vSpheres[i].get());

 } else {

 vSpheres[i]->setPosition(vPts[i]);

 }

 }

 //Remove remaining spheres

 for(int i = vSpheres.size()-1; i > vPts.size()-1; i--) {

 root->removeChild(vSpheres[i].get());

 vSpheres.erase(vSpheres.begin() + i);

 }

 // update intersection test

 vStart.clear();

 vEnd.clear();

 for(int i = 0; i < NUM_CAMS; i++) {

112

 arrCams[i]->getCrit();

 if(arrCams[i]->vNear.size() > 0) {

 std::vector< osg::Vec3 > tmp = arrCams[i]-

>vNear;

 vStart.push_back(tmp);

 std::vector< osg::Vec3 > tmp2 = arrCams[i]-

>vFar;

 vEnd.push_back(tmp2);

 } else {

 std::vector< osg::Vec3 > *tmp1 = new

std::vector<osg::Vec3>;

 std::vector< osg::Vec3 > *tmp2 = new

std::vector<osg::Vec3>;

 vStart.push_back(*tmp1);

 vEnd.push_back(*tmp2);

 }

 arrCams[i]->releaseCrit();

 }

 IntTest->setInputPts(vStart, vEnd);

 // Update widget index lists

 for(int i = 0; i < vDelPts.size(); i++) {

 for(int j = 0; j < vAInd.size(); j++) {

 if(vAInd[j] > vDelPts[i]) {

 vAInd[j] = vAInd[j] - 1;

 } else if(vAInd[j] == vDelPts[i]) {

 vAInd[j] = -1;

 }

 if(vBInd[j] > vDelPts[i]) {

 vBInd[j] = vBInd[j] - 1;

 } else if(vBInd[j] == vDelPts[i]) {

 vBInd[j] = -1;

 }

 }

 }

 // Update & Check widgets for expiration

 for(int i = 0; i < vecWidgets.size(); i++) {

 // Update widget lock values ->if gone, remove lock

condition

 if(vecWidgets[i]->bLock == true) {

 if(vAInd[i] < 0 || vBInd[i] < 0) {

 vecWidgets[i]->bLock = false;

 } else {

 vecWidgets[i]->vLockedA = vPts[vAInd[i]];

 vecWidgets[i]->vLockedB = vPts[vBInd[i]];

 }

113

 }

 vecWidgets[i]->update();

 time_t now;

 time(&now);

 double t = difftime(now, vecWidgets[i]->tUpdate);

 if(t > 5) { // expiration time in s

 // clear parent's widget

 for(int j = 0; j < vecModels.size(); j++) {

 if(vecModels[j] == vecWidgets[i]-

>matParent) {

 vecHasWidget[j] = false;

 }

 }

 // suicide

 root->removeChild(vecWidgets[i]-

>matTransform.get());

 delete vecWidgets[i];

 vecWidgets.erase(vecWidgets.begin() + i);

 vAInd.erase(vAInd.begin() + i);

 vBInd.erase(vBInd.begin() + i);

 }

 }

 // Check for model intersections

 for(int k = 0; k < vecModels.size(); k++) {

 for(int j = 0; j < vPts.size(); j++) {

 if(vecModels[k]->getBound().contains(vPts[j])

&& !(vecHasWidget[k])) {

 // intersected, create a widget -

currently trans/rot

 ManipulatorWidget * mwNew1 = new

ManipulatorWidget(bScaleFlag);

 mwNew1->updatePosition(vPts[j],

osg::Vec3());

 mwNew1->matParent = vecModels[k];

 root->addChild(mwNew1->matTransform.get()

);

 vecWidgets.push_back(mwNew1);

 vecHasWidget[k] = true;

 // push back indices as well

 vAInd.push_back(-1);

 vBInd.push_back(-1);

114

 }

 }

 }

 // Check widgets for entering lock condition

 for(int i = 0; i < vecWidgets.size(); i++) {

 if(vecWidgets[i]->bLock == false) {

 bool bA = false;

 bool bB = false;

 // Check for intersections with ptA

 osg::BoundingSphere boundSphere = vecWidgets[i]-

>geoSphereA->getBound();

 boundSphere.set(boundSphere.center() *

vecWidgets[i]->matTransform->getMatrix(), boundSphere.radius());

 for(int j = 0; j < vPts.size(); j++) {

 if(boundSphere.contains(vPts[j])) {

 bA = true;

 //vecWidgets[i]->vLockedA = &vPts[j];

 vAInd[i] = j;

 vecWidgets[i]->vOldA =

boundSphere.center();

 break;

 }

 }

 boundSphere = vecWidgets[i]->geoSphereB-

>getBound();

 boundSphere.set(boundSphere.center() *

vecWidgets[i]->matTransform->getMatrix(), boundSphere.radius());

 for(int j = 0; j < vPts.size(); j++) {

 if(boundSphere.contains(vPts[j])) {

 bB = true;

 //vecWidgets[i]->vLockedB = &vPts[j];

 vBInd[i] = j;

 vecWidgets[i]->vOldB =

boundSphere.center();

 break;

 }

 }

 //Set color to know if you're intersecting

 if(bA) {

 osg::Vec4 color = osg::Vec4(1.f, 0.f, 0.f,

1.f);

 vecWidgets[i]->shapeA->setColor(color);

 } else {

115

 osg::Vec4 color = osg::Vec4(1.f, 1.f, 1.f,

1.f);

 vecWidgets[i]->shapeA->setColor(color);

 }

 // Set color to know if you're intersecting

 if(bB) {

 osg::Vec4 color = osg::Vec4(1.f, 0.f, 0.f,

1.f);

 vecWidgets[i]->shapeB->setColor(color);

 } else {

 osg::Vec4 color = osg::Vec4(1.f, 1.f, 1.f,

1.f);

 vecWidgets[i]->shapeB->setColor(color);

 }

 // Set lock condition

 if(bA && bB) {

 vecWidgets[i]->bLock = true;

 }

 }

 }

 // Check for button intersections - need to modify so that

the intersection doesn't flip constantly

 bool isIntersectedFrame = false;

 osg::BoundingBox boundBox = boxButtonGeo->getBoundingBox();

 boundBox.set(osg::Vec3(boundBox.xMin(), boundBox.yMin(),

boundBox.zMin()) * matButton1->getMatrix(),

 osg::Vec3(boundBox.xMax(), boundBox.yMax(),

boundBox.zMax()) * matButton1->getMatrix());

 for(int j = 0; j < vPts.size(); j++) {

 if(boundBox.contains(vPts[j])) {

 isIntersectedFrame = true;

 }

 }

 if(isIntersectedFrame == true) {

 if(isIntersectedFrame != isIntersected) {

 bScaleFlag = !bScaleFlag;

 isIntersected = true;

 //change color

 if(bScaleFlag)

 boxButtonDraw->setColor(

osg::Vec4(1.f, 0.f, 0.f, 1.f));

 else

116

 boxButtonDraw-

>setColor(osg::Vec4(1.f, 1.f, 1.f, 1.f));

 }

 } else {

 isIntersected = false;

 }

 // Render

 viewer.frame();

 }

 // Wait for threads to resolve to close out.

 for(int i = 0; i < NUM_CAMS; i++) {

 arrCams[i]->setKey(27);

 WaitForSingleObject(hth[i], INFINITE);

 }

 for(int i = 0; i < NUM_CAMS; i++) {

 CloseHandle(hth[i]);

 delete arrCams[i];

 arrCams[i] = NULL;

 }

 // Close out intersector

 IntTest->setKey(27);

 WaitForSingleObject(hthIntersect, INFINITE);

 CloseHandle(hthIntersect);

 delete IntTest;

 IntTest = NULL;

 }

 osg::ref_ptr<osg::Camera> getVideoBackground(int intCam, osg::Group *

root, osg::Image * imgBackground) {

 Cam * cam = arrCams[intCam];

 int w = cam->imgOutput->width;

 int h = cam->imgOutput->height;

 int d = cam->imgOutput->depth;

 imgBackground->setImage(w,

 h,

 d,

 3,

 GL_BGR,

 GL_UNSIGNED_BYTE,

 (unsigned char*)cam->imgOutput-

>imageData,

 osg::Image::NO_DELETE,

117

 1);

 // set up camera params for the vid background

 osg::ref_ptr<osg::Camera> videoBackground = new osg::Camera();

 videoBackground->setViewMatrix(osg::Matrix::identity());

 videoBackground->setRenderOrder(osg::Camera::NESTED_RENDER);

 videoBackground->setClearMask(GL_DEPTH_BUFFER_BIT);

 videoBackground->getOrCreateStateSet()->setMode(GL_LIGHTING,

GL_FALSE);

 videoBackground->getOrCreateStateSet()->setMode(GL_DEPTH_TEST,

GL_FALSE);

 videoBackground->setReferenceFrame(osg::Transform::ABSOLUTE_RF);

 videoBackground->setProjectionMatrixAsOrtho2D(0.0f, (float)w,

0.0f, (float)h);

 // create texture

 osg::ref_ptr<osg::TextureRectangle> txtImage = new

osg::TextureRectangle(imgBackground);

 osg::ref_ptr<osg::TexMat> texmat = new osg::TexMat;

 texmat->setScaleByTextureRectangleSize(true);

 // create some geometry

 osg::ref_ptr<osg::Geode> vidGeode = new osg::Geode();

 osg::ref_ptr<osg::Geometry> geometry = new osg::Geometry();

 osg::ref_ptr<osg::Vec3Array> vcoords = new osg::Vec3Array();

 geometry->setVertexArray(vcoords.get());

 osg::ref_ptr<osg::Vec2Array> tcoords = new osg::Vec2Array();

 geometry->setTexCoordArray(0, tcoords.get());

 vcoords->push_back(osg::Vec3(0.0f, 0.0f, 0.0f));

 vcoords->push_back(osg::Vec3((float)w, 0.0f, 0.0f));

 vcoords->push_back(osg::Vec3((float)w, (float)h, 0.0f));

 vcoords->push_back(osg::Vec3(0.0f, (float)h, 0.0f));

 tcoords->push_back(osg::Vec2(0.0f, 1.0f));

 tcoords->push_back(osg::Vec2(1.0f, 1.0f));

 tcoords->push_back(osg::Vec2(1.0f, 0.0f));

 tcoords->push_back(osg::Vec2(0.0f, 0.0f));

 geometry->addPrimitiveSet(new

osg::DrawArrays(osg::PrimitiveSet::QUADS, 0, 4));

 vidGeode->addDrawable(geometry.get());

 videoBackground->addChild(vidGeode.get());

 // set dynamic data variance

 videoBackground->setDataVariance(osg::Object::DYNAMIC);

 txtImage->setDataVariance(osg::Object::DYNAMIC);

118

 videoBackground->getOrCreateStateSet()->setMode(GL_LIGHTING,

 osg::StateAttribute::OFF |

osg::StateAttribute::PROTECTED);

 videoBackground->getOrCreateStateSet()-

>setTextureAttributeAndModes(0, txtImage.get(),

osg::StateAttribute::ON);

 videoBackground->getOrCreateStateSet()-

>setTextureAttributeAndModes(0, texmat.get(), osg::StateAttribute::ON);

 videoBackground->getOrCreateStateSet()->setRenderBinDetails(25,

"RenderBin");

 root->addChild(videoBackground.get());

 return videoBackground;

 }

 osg::ref_ptr<osg::Geode> getForegroundRect(cv::Mat * roi, osg::Vec3

UL, osg::Vec3 UR, osg::Vec3 LR, osg::Vec3 LL) {

 int w = roi->cols;

 int h = roi->rows;

 int d = 8; //roi->depth returns 0...

 int c = roi->channels();

 osg::ref_ptr<osg::Image> img = new osg::Image();

 img->setImage(w,h,d,c,

 GL_BGRA,

 GL_UNSIGNED_BYTE,

 (unsigned char*)roi->data,

 osg::Image::NO_DELETE,

 1);

 // create texture

 osg::ref_ptr<osg::TextureRectangle> txtImage = new

osg::TextureRectangle(img);

 osg::ref_ptr<osg::TexMat> texmat = new osg::TexMat;

 texmat->setScaleByTextureRectangleSize(true);

 // create some geometry

 osg::ref_ptr<osg::Geode> vidGeode = new osg::Geode();

 osg::ref_ptr<osg::Geometry> geometry = new osg::Geometry();

 osg::ref_ptr<osg::Vec3Array> vcoords = new osg::Vec3Array();

 geometry->setVertexArray(vcoords.get());

 osg::ref_ptr<osg::Vec2Array> tcoords = new osg::Vec2Array();

 geometry->setTexCoordArray(0, tcoords.get());

119

 vcoords->push_back(LL);

 vcoords->push_back(LR);

 vcoords->push_back(UR);

 vcoords->push_back(UL);

 tcoords->push_back(osg::Vec2(0.0f, 1.0f));

 tcoords->push_back(osg::Vec2(1.0f, 1.0f));

 tcoords->push_back(osg::Vec2(1.0f, 0.0f));

 tcoords->push_back(osg::Vec2(0.0f, 0.0f));

 geometry->addPrimitiveSet(new

osg::DrawArrays(osg::PrimitiveSet::QUADS, 0, 4));

 vidGeode->addDrawable(geometry.get());

 osg::StateSet * ss = vidGeode->getOrCreateStateSet();

 ss->setTextureAttributeAndModes(0, txtImage.get(),

osg::StateAttribute::ON);

 ss->setTextureAttributeAndModes(0, texmat.get(),

osg::StateAttribute::ON);

 ss->setRenderBinDetails(50, "RenderBin");

 ss->setMode(GL_LIGHTING, osg::StateAttribute::OFF |

osg::StateAttribute::PROTECTED);

 ss->setMode(GL_BLEND, osg::StateAttribute::ON);

 ss->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);

 ss->setMode(GL_DEPTH_TEST, osg::StateAttribute::ON);

 txtImage->setDataVariance(osg::Object::DYNAMIC);

 return vidGeode;

 }

	2010
	The AugmenTable: markerless hand manipulation of virtual objects in a tabletop augmented reality environment
	Michael Van Waardhuizen
	Recommended Citation

	Microsoft Word - mvw-thesis-final-final.doc

