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ABSTRACT 

 

Numerical modeling of direct hydrogen injection and in-cylinder mixture 

formation is performed in this paper. Numerical studies on direct-injection hydrogen 

engines are very limited due mainly to the complexity in modeling the physical 

phenomena associated with the high-velocity gas jet. The high injection pressure will 

result in a choked flow and develop an underexpanded jet at the nozzle exit, which 

consists of oblique and normal shock waves. A robust numerical model and a very 

fine computational mesh are required to model these phenomena. However, a very 

fine mesh may not be feasible in the practical engine application. Therefore, in this 

study a gas jet injection model is implemented into a multidimensional engine 

simulation code to simulate the hydrogen injection process, starting from the 

downstream of the nozzle. The fuel jet is modeled on a coarse mesh using an 

adaptive mesh refinement algorithm in order to accurately capture the gas jet 

structure. The model is validated using experimental and theoretical results on the 

penetrations of single and multiple jets. The model is able to successfully predict the 

gas jet penetration and structure using a coarse mesh with reasonable computer 

time. The model is further applied to simulate a direct-injection hydrogen engine to 

study the effects of injection parameters on the in-cylinder mixture characteristics. 

The effects of the start of fuel injection, orientation of the jets, and the injector 

location on the mixture quality are determined. Results show that the hydrogen jets 

impinge on the walls soon after injection due to the high velocity of the gas jet. The 

mixing of hydrogen and air takes place mainly after wall impingement. The optimal 
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injection parameters are selected based on the homogeneity of the in-cylinder 

mixture. It is found that early injection can result in more homogeneous mixture at 

the time of ignition. Results also indicate that it is more favorable to position the 

injector near the intake valve to take advantage of the interaction of hydrogen jets 

and the intake flow to create a more homogeneous mixture. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Fossil fuel has been the basis of today’s energy and transport system. 

However, it is depleting at a fast rate, and its demand increases rapidly with the 

growth of the world population and industries. Therefore, more reliable sources are 

required for the future energy needs. On the other hand, the pollution generated by 

fossil fuel combustion is a serious concern. The greenhouse effects of carbon dioxide 

are proven to affect the climate adversely [1]. In addition, for many countries, it is 

also necessary to reduce the dependence on imported oils to improve the nation’s 

economic security. Alternative fuels can be one of the solutions to the above 

problems. Hydrogen is one of the attractive candidates among the alternative fuels, 

and its advantages as an engine fuel has been reviewed [2–4]. The U.S. Department 

of Energy and Department of Transportation have taken initiatives to shift towards a 

hydrogen-based transportation system. Whether hydrogen will be used in 

combustion engines or fuel cells in the future depends decisively on the extent to 

which both concepts meet the existing customer requirements with regard to driving 

performance, procurement and operating costs. It is believed that the utilization of 

hydrogen as a fuel for transportation is more likely to be expected in internal 

combustion engines than in fuel cells at least for some decades [5]. 

The advantages of using hydrogen as the combustion fuel are many. In 

contrast to the carbon-based fuels, hydrogen combustion does not produce carbon 

dioxide or any hydrocarbons. Hydrogen combustion in air is relatively clean as it 
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results in only water vapor and traces of nitrogen oxides. Furthermore, hydrogen 

produced from renewable sources such as electrolysis using the off-peaked 

electricity generated by wind turbines can, in principle, avoid any carbon-related 

emissions.  The high flame speed and low spark energy can make hydrogen 

combustion more efficient than the conventional fuels. Besides, it has wide 

flammability limits and the combustion can occur even in very lean mixtures. Other 

advantages that help hydrogen as a fuel are the higher auto ignition temperature 

and high diffusivity. These advantages of hydrogen over other fuels can pave the way 

to hydrogen-fueled internal combustion engines.  

Hydrogen has been used extensively in the space vehicles. The high energy-

to-weight ratio makes hydrogen a favorite as a rocket propellant. Liquid hydrogen is 

the fuel of choice for rocket engines, and has been utilized in the upper stages of 

launch vehicles in many space missions including the Apollo missions to the moon, 

Skylab, the Viking missions to Mars and the Voyager mission to Saturn. The research 

on hydrogen engines on ground vehicles can be traced back to 1979 when BMW 

developed the first generation of hydrogen vehicles powered by a hydrogen engine 

with a liquid hydrogen tank [6]. In the early research, backfire and pre-ignition 

problems were found to be prominent and even caused doubts in hydrogen as a 

viable fuel [7]. Recently direct injection has been shown to significantly reduce or 

eliminate these combustion anomalies and is currently a primary focus in the 

development of the hydrogen engine [8]. 

Experimental research of hydrogen engine combustion has been performed 

in numerous studies. Das et al. [9] evaluated the potential of using hydrogen for 
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small horsepower spark-ignition (SI) engines and compared hydrogen fueling with 

compressed natural gas (CNG). Das [10] determined the performance, emissions, 

and combustion characteristics of hydrogen-fueled SI and compression-ignition (CI) 

engines. Li and Karim [11] investigated the onset of knock in a hydrogen-fueled SI 

engine. Effects of compression ratio, equivalence ratio, and engine speed on the 

performance and combustion characteristics of a direct-injection SI engine using 

hydrogen was also investigated by Mohammadi et al. [12]. Effects of the injector 

location and nozzle design on the efficiency and emissions of a direct-injection 

hydrogen engine were studied by Wallner et al. [13].  

It is critical to understand the physical process of mixing between the injected 

fuel and the air within the cylinder in order to optimize the overall performance of 

the direct-injection engine. The high pressure injector used for the direct-injection 

engines usually have multiple holes in the nozzle tip in order to provide an even 

distribution of fuel and promote proper mixing. This results in the formation of 

multiple underexpanded jets in the cylinder, which interact with each other and with 

the in-cylinder boundaries to form the fuel-air mixture before combustion. Mixture 

formation in a direct-injection hydrogen engine was studied recently using 

chemiluminescence imaging [14]. The mixture formation of hydrogen jet was also 

studied using Schlieren visualization by Peterson and Gandhi [15]. On the other 

hand, due to the difficulty in modeling the complex physical phenomena and the 

massive computational need, numerical simulations of direct-injection hydrogen 

engines are relatively rare.  
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The high-pressure hydrogen injection will result in an underexpanded 

supersonic jet at the nozzle exit. This underexpanded jet is characterized by the 

existence of a barrel-shaped shock and a normal shock, called the Mach disk [16]. It 

requires a very robust computational fluid dynamics (CFD) code and a very fine 

computational mesh to resolve these complex shock structures. However, a fine 

computational mesh is not desired in the practical engine simulation due to its high 

computational demand. Thus, it is preferable to make use of an underexpanded jet 

model on a coarse mesh without a significant loss in the physical reality and 

numerical accuracy.  

1.2 Objective 

The objective of this study is to use an underexpanded jet model to simulate 

hydrogen injection and compare the mixture formation inside an engine under 

different injection conditions.  The underexpanded jet model is used to model the 

supersonic region. The outlet conditions from the underexpanded jet model are used 

as the inlet for the computational domain. A coarse mesh with an adaptive mesh 

refinement algorithm is used to capture the hydrogen jet. The evolution of the 

hydrogen jet and fuel-air mixing process are modeled using a CFD code. In this study, 

the injection timing, orientation of gas jets, and injector location are varied, and the 

mixture distribution in the cylinder is analyzed. It is hope that an accurate and 

efficient computational model can be developed and used as a tool for the design 

and optimization of direct-injection hydrogen engine to reduce the use of 

hydrocarbon fuels. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Overview of Gas Jet Phenomena 

 Jet flow occurs when a stream of one fluid mixes with a surrounding medium, 

at rest or in motion. Such flows occur in a wide variety of situations, and the 

geometries, sizes, and flow conditions cover a large range. This section discusses 

about the details of jet structure and modeling of a jet. 

2.1.1 Steady Jets 

In a direct-injection engine, the fuel injector issues fuel jets which propagates 

across the combustion chamber. Understanding the physics of the gas jet is 

necessary to model the fuel jet injected into an engine cylinder. Although the main 

concern with automotive injection is the transient behavior, steady jets provide a 

basis for understanding the structure and scaling of the transient jet. The behaviors 

of steady state jets are discussed in this section.  

2.1.1.1 Incompressible Jets of Uniform Density 

The compressibility effects in a flow can be neglected if the maximum Mach 

number is below 0.3. Incompressible jets have been studied extensively in the past 

[17-19]. As one fluid is injected into another fluid with uniform pressure field, a 

mixing layer is formed between the two fluids. Mass from the surrounding fluid is 

entrained in the injected fluid. Experimental investigations by Ricou and Spalding 

[17] concluded that, the rate of entrainment is proportional to the distance from the 

nozzle and to the mass injection rate for incompressible air jets issued from the 

round nozzle into stagnant air. The mass flow rate  ̇ at the cross-section of the jet is 

found to be  
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 ̇

 ̇ 
     

 

  
                                                      (2.1) 

where  ̇  is the mass flow rate at the nozzle, z is the distance from the nozzle and 

  is the nozzle diameter. The mass entrainment rate was found to be independent 

of the nozzle Reynolds number for Reynolds number greater than 3x104.  

A steady-state jet can be divided into three regions [20]. In the initial region 

the velocity in the potential core of the jet remains constant and is equal to the 

initial velocity. The end of the initial region is marked by the disappearance of the 

potential core because of the thickening of jet boundary layer. The transition region 

may be defined as the region in which the jet viscosity distribution becomes fully 

developed. In the fully developed region, the velocity profile is self-similar. The 

linearity of the increase in jet thickness can be derived theoretically. In the fully 

developed region the radial velocity profile, U(r,z), normalized by the centerline 

velocity, UCL(z), is only a function of the dimensionless distance, η = r/R , where z is 

the axial distance from the nozzle exit, r is the radial position and R is the radius of 

the nozzle exit. These relations are represented in Eq. (2.2).  

                                                                    
 (   )

   ( )
  ( )                                                    (2.2) 

 The centerline velocity in the jet can be obtained as a function of the distance 

from the nozzle. For example, the centerline velocity decay of a round jet can be 

expressed by 

                                                                      
   

  
 

  

(
 

  
)
                                                          (2.3) 

where Un is the flow velocity at the nozzle exit, and kd is a constant that has been 

experimentally been determined to be approximately 5.0 [19,21]. As seen in Eq. 
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(2.3), the centerline velocity scales with the inverse of distance from the exit plane. 

The velocity profile of the steady jet can be derived from the continuity and 

momentum conservation equations using the boundary layer simplifications [22]. 

The volume flow rate of fluid at a distance, z from the orifice can be calculated from 

the velocity profile as  

                                                                                    √                                           (2.4) 

where K is the kinematic momentum, which is given by  

                                                                         √                                                    (2.5) 

δ1/2 is the radial distance of the half-velocity point, 

                                                                                                                          (2.6) 

The above equations provide a complete description of the velocity profile in the 

fully developed part of turbulent jets.  

2.1.1.2 Incompressible Jets of Different Densities 

 When the densities of the injected fluid and surrounding fluid are different, 

the entrainment rate is different from that determined using Eq. (2.1). The centerline 

velocity is also different in this case. However, the similarity of the profiles in the jet 

is still preserved at some distance from the nozzle. It is confirmed experimentally 

[17] that jets of different densities can be scaled when an equivalent diameter as 

defined in Eq. (2.7) is used.   

                                                                                  (
  

   
)

 

 
                                         (2.7) 
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In the above equation,    and     are the injected fluid and surrounding fluid 

densities respectively, taken at the same pressure. Thus, incompressible jets of 

different densities can be modeled by replacing the nozzle diameter in Eq. (2.1) and 

(2.3) by the equivalent diameter. This modification is directly obtainable from 

momentum conservation and similarity arguments. The difference in density may be 

the result of different molecular weights or of different temperature, or both. 

2.1.1.3 Compressible Jets 

 As the pressure ratio across the nozzle is increased, the velocity at the nozzle 

increases. As the Mach number increases above 0.3, compressibility effects have to 

be taken into account in establishing nozzle exit conditions. The similarity of profiles 

is still valid in the fully developed region where the local Mach numbers are low. 

However, the effect of compressibility on the nozzle density and velocity must be 

incorporated in the scaling. A logical modification to the equivalent diameter 

proposed in the previous section can be used to incorporate these effects. The 

equivalent diameter is calculated as shown in Eq. (2.8) 

                                                                                  (
  

   
)

 

 
                                         (2.8) 

where    is the nozzle exit density. 

 When the upstream to the chamber pressure ratio is greater than the critical 

pressure ratio for hydrogen jet, the exit plane pressure of the nozzle becomes higher 

than the chamber pressure, and an underexpansion occurs.  An underexpanded jet 

consists of a complex structure of expansion waves and compression waves. The 

expansion waves reflect from the free boundary of the jet and become compression 

shocks that form a barrel shaped structure that is terminated by a normal shock also 
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called the Mach disk [16]. The Mach disk forms if the nozzle exit to chamber pressure 

ratio is above 2.1 [23]. Figure 2.1 shows a schematic of the expansion process 

outside the nozzle.  

 

Figure 2.1 Schematic of underexpanded jet 

 Ewan and Moodie [24] and Birch et al. [25] proposed a pseudo-diameter 

model similar to the classical jet model. The pseudo-diameter correction was found 

to scale the experimental data by these authors. Based on the assumption that no 

mixing takes place in the underexpansion region, mass conservation is used to 

provide an equivalent diameter.  

                                                                          
   

  
 
      

      
                                                  (2.9) 

where the subscript ps and n refer respectively to conditions at the pseudo-diameter 

exit plane and at the nozzle exit. Cd is the discharge coefficient. The nozzle conditions 

can be calculated from one-dimensional flow, which can include frictional effects 

and real gas behavior. As the nozzle is choked, the nozzle Mach number Mn is unity. 

Pseudo-diameter conditions are obtained by Ewan and Moodie [24] and Birch et al. 

Expansion waves Flow boundary

Reflection shockMach diskBarrel shock

M=1 M>1 M=1 M<1

1 2 3 4
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[25] by assuming that Mps is unity at the pseudo-diameter. Another assumption used 

in the analysis is that the temperatures at the pseudo-diameter exit and nozzle exit 

are the same. This assumption is supported by the previous assumptions that no 

mixing occurs in the expansion region and the Mach number at both the locations 

are same. The density at the equivalent exit plane is given at the temperature 

prescribed from the unity Mach number and from the exit plane pressure which 

must be the chamber pressure. If ideal gas law is assumed, and based on the above 

assumptions, the velocities Un and Ups are the same, and the pseudo-diameter 

becomes  

                                                                         
   

  
 √  (

  

   
)                                          (2.10) 

In Ewan and Moodie [24] and Birch et al. [25], the nozzle density is obtained from 

the upstream conditions assuming ideal gas law and isentropic one-dimensional flow 

through a choked nozzle, 

                                                                         
  

    
(
 

   
)
  (   )

                                 (2.11) 

The pseudo-diameter density is 

                                                                      
   

     
  

   

    
(
   

 
)                                 (2.12) 

where the assumption of constant stagnation temperature has been used. Thus, Eq. 

(2.8) can be written as  

                                                                   
   

  
 √  (

 

   
)

 

   
(
  

   
)                               (2.13) 

Both Ewan and Moodie [24] and Birch et al. [25] confirmed that the experimental 

data could be scaled well using the pseudo-diameter instead of the nozzle diameter. 
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Ewan and Moodie [24] included the correction of Eq. (2.7) for compressibility effects 

in the length scale, replacing ρn by ρps. The equivalent diameter used was then of the 

form, 

                                                         (
   

   
)    [  (

 

   
)

 

   
(
  

   
)]

   

                    (2.14) 

where the first nozzle diameter modifier takes into consideration, effects of 

compressibility and different densities, and the second modifier takes into account 

the underexpansion. The equivalent diameter of Eq. (2.14) should be applicable to all 

turbulent jets issued from converging round nozzles. The equivalent diameter can be 

used with Eq. (2.1) and (2.3) to model the jet flow in the case of an underexpanded 

jet. Ewan and Moodie [24] also provided a correlation between the barrel length, 

lbarrel, exit diameter, dn, and the nozzle exit to ambient pressure ratio, Np, given in Eq. 

(2.15). 

                                                                          
                                     (2.15) 

2.1.2 Transient Jets 

The structure and properties of incompressible transient jets or impulsively 

started jets have been studied for a wide range of applications. Turner [26] described 

the structure of plumes when studying atmospheric mixing in buoyant plumes. A 

plume was described as consisting of a spherical cap, called a spherical head vortex, 

which is supplied with additional buoyancy and momentum from a plume below. It 

was shown that the plume displays self-similarity characteristics throughout its 

evolution. Figure 2.2 illustrates this initial description of a jet or plume. The jet 

consists of a spherical vortex flow interacting with a steady-state jet. The vortex of 
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radius Rv moves away from the nozzle at a bulk velocity that decays with the distance 

z from the nozzle. The size of the vortex grows continuously due to the entrainment 

of mass from the steady-state jet which pushes it from behind. The jet behind the 

vortex is considered to be in a steady state, which is confirmed by the work of Kuo 

and Bracco [27]. 

 

Figure 2.2 Turbulent transient jet model 

Turner's plume was used as the basic structure of a transient starting jet by 

many subsequent authors. Abramovich and Solan [28] used this model to develop 

analytical expressions for the velocity of the spherical vortex in the near and far 

fields of a liquid jet under laminar conditions with low Reynolds number. It was 

observed that the velocity of the spherical vortex varies proportional to the distance 

similar to the axial velocity of a steady state jet only with differing constants. The 

velocity of the spherical vortex was found to be approximately half that of a fluid 

element in a steady jet. Abramovich and Solan [28] showed that the half width and 

maximum axial velocity show similarity characteristics, both making the jet appear to 

start from a virtual origin different from the geometric origin. The virtual origin was 

Steady-State 
Region

Transient 
Vortex Head

Potential Core

Jet Tip 
Penetration
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found to be proportional to the exit diameter and the square root of the Reynolds 

number. A previous study by Sato and Sakao [29] also found that an offset or virtual 

origin was needed to obtain agreement between experiment and theory with the 

origin moving downstream with increasing Reynolds number. 

Hill and Ouellette [30] reviewed the self-similar characteristics of transient 

turbulent jets and developed an analytical relationship for the penetration. From the 

transient jet visualization performed by Miyake et al. [31], it was found that the 

radius R of the vortex head is a constant function of the distance from the nozzle, z. 

                                                                                                                                   (2.16) 

K2 is approximately 0.28.  

In the case of transient jets issued from round nozzles, the total momentum 

of the vortex head can be taken as a fraction of the total momentum injected, 

                                                                        ̇        
                                            (2.17) 

where  ̇ is the momentum rate at the nozzle, k1 is a proportionality constant and ρ, 

R and    are average density, radius and velocity of the vortex head. 

The velocity of the vortex head can be written as, 

                                                                             
  

  
                                                      (2.18) 

where k3 is a proportionality constant of the order of 1, and z, is the distance of the 

vortex head front from the nozzle. From Eq. (2.15), (2.16) and (2.17), it was derived 

that 

                                                                                                                                     (2.19) 

Hill and Ouellette [30] also employed the Turner model [26] to approximate 

the geometry of a gas jet. In their model the jet is constantly supplied with 
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momentum through the orifice, and the momentum is, in turn, passed between the 

quasi-steady jet and the head vortex. The entrainment of the low momentum 

ambient fluid was assumed to follow the relationship reported by Ricou and Spalding 

[17]. The jet penetration was assumed, based on dimensional grounds, to follow the 

form, 

                                                                        
  

   
  (

   

   
)
   

                                          (2.22) 

                                                                              (
 

 
)
   

                                              (2.21) 

The scaling constant   was found to be approximately equal to 3.0. Similar scaling 

approach was used for jet penetration by others [32-34]. The reported values of α 

differ in the literatures.  

2.2 CFD Modeling of Gas Jets 

CFD modeling of the transient injection of gaseous hydrogen and its 

combustion in a constant volume chamber was done by Johnson et al. [35]. The 

nozzle flow exit conditions were calculated using a pilot simulation of fluid dynamics 

in the neighborhood of nozzle. The model predictions were compared with 

experimental results on penetration. It was shown that the penetration of hydrogen 

under combustion conditions is comparable to the penetration without combustion.  

The flow structure of an underexpanded jet under high-pressure injection was 

studied and also modeled using a fine computational grid near the orifice by Li et al. 

[36]. The Mach disk structures were demonstrated in the experiment. Hill and 

Oulette [30] also developed a CFD model to approximate an underexpanded jet as a 

perfectly expanded jet with an enlarged initial diameter to match the mass flow rate. 
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It was also noted that by assuming the flow is isothermal near the nozzle exit, the 

momentum flux is conserved between the two jets. Their simulation showed fair 

agreement with data collected by Witze [19], especially at later times in the 

injection. A very fine grid size adjacent to the nozzle was suggested by Hill and 

Oulette [30].  

  Ra et al. (2005) [37] also performed numerical simulations of transient 

underexpanded jets. They first approximated properties of the underexpanded jet in 

the same manner, a larger sonic jet with the same mass flow at the location of the 

Mach disk. The flow was further approximated by integrating the centerline velocity 

equation of an incompressible jet given by Schlichting [22] to produce inflow 

boundary conditions for the simulation, reducing the massive change in length 

scales. This method was found to produce good results when compared to 

experimental data and theoretical relations. 

2.3 Adaptive Mesh Refinement 

In order to achieve accurate results for the numerical solution of Navier-

Stokes equations, the grid resolution needs to be fine enough to resolve the physical 

scales of the problem. However, a very fine mesh all over the domain is not a 

practical approach as it requires enormous computational time to solving such a 

mesh. A static mesh with a fine discretization at the regions where high gradient flow 

features are expected can be used for simple problem. But this method may not be 

applicable to most of the engineering problems, as the flow features are not known 

before the simulation is performed. Adaptive Mesh Refinement (AMR) techniques 

have proven helpful in such cases. AMR utilizes the solution on a coarse grid to 
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dynamically refine the mesh so that the subsequent iterations are performed on a 

grid with desirable mesh density. The mesh refinement methods are generally 

characterized as r-refinement, h-refinement and p-refinement. 

In r-refinement, the mesh is modified by clustering nodes at the regions of 

high activity. Enrichment indicators are used determine the mesh density required at 

each region. This enrichment criterion is a weighing function, which has a very large 

value where high grid resolution is required and a small value elsewhere. A standard 

weighing function could be a primitive variable, a derived quantity or any identifiable 

quantity of the solution which required high resolution. The increase in resolution is 

made by moving the grid points into regions of activity. Thus the r-refinement of a 

mesh does not vary the number of nodes or cells present in a mesh or the 

connectivity of a mesh. The movement of the nodes can be controlled in various 

ways. On common technique is to treat the mesh as if it is an elastic solid and solve a 

system of equations that deforms the original mesh subject to some force. The main 

advantage of this refinement is that the number of grid points remains constant and 

hence the required computational resources also will be constant. The disadvantage 

is that, as the nodes move the skewness of the cell might increase. Also the surface 

geometry is not preserved if the nodes on the surface are translated.  

In p-refinement the order of numerical approximation is varied locally. The 

initial mesh is kept the same, but the order or accuracy of the polynomial in each cell 

is varied based on the solution. One of the most important advantages of p-

refinement is the ability to produce the exponential decay of the discretization error 

for sufficiently smooth solutions. The effectiveness of p-refinement also depends on 
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the number of elements and its uniformity, the form of geometric singularities and 

the discontinuities in the boundary conditions. The fast convergence of p-refinement 

is achieved at the expense of significantly increased computational cost. This method 

is a very popular tool in Finite Element Modeling (FEM) rather than in Finite Volume 

Modeling (FVM). 

In h-refinement is the modification of mesh resolution by adding more nodes 

in the regions where a high accuracy is required. The simplest strategy for this type 

of refinement subdivides cells. In this case, every parent cell is divided into child 

cells. The advantage of such a procedure is that the overall mesh topology remains 

the same. An additional point to be noted is that this type of mesh adaptation can 

lead to what are called hanging nodes. In 2D, this happens when one of the cells 

sharing a face is divided and the other is not, as shown below. For two quad cells, 

one cell is divided into four quads and other remains as it is. The hanging node is 

depicted in Figure 2.3 as the highlighted node. 

 

Figure 2.3 Hanging Node in an h-refinement 

This leads to a node on the face between the two cells which do not belong 

(properly) to both of the cells. In the above case, the topology seemingly remains 

same, but the right (undivided) cell actually has five faces. Thus additional numerical 

procedures have to be implemented in the solution method in order to transfer flux 

between the divided and undivided cells.  
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One can decrease the error in the solution on a computational mesh by 

increasing the number of nodes in the mesh. It has been shown that the error 

decreases when the number of nodes is increased in a regular mesh. However, in the 

case of an irregular mesh, the addition of nodes must be selective, since the 

distribution is not less important than the number of nodes. The precision of the 

finite difference operators depends on the quality of the node clouds. In order to 

avoid ill conditioning clouds, a limit used for the minimum distance between nodes. 

New node should not be added if the distance between the new node and any 

existing node is less than this limit. The minimum limit is an important parameter for 

h-refinement and is given as the maximum distance between any two nodes of the 

mesh multiplied by a positive parameter. H-refinement does not have all the other 

disadvantages mentioned in the other types of refinement and is flexible to apply to 

a multi-dimensional CFD code. It is also less difficult to implement h-refinement and 

use it with sub-models in a multidimensional CFD code. 

The goal of adaptive mesh refinement is to refine the mesh at selected 

regions alone based on certain criterion. However, it is to be remarked that AMR 

does not only encompass division of cells into smaller ones (Refinement), but also 

the agglomeration of smaller cells into a larger one (De-refinement or coarsening), 

when the need arises. 
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CHAPTER 3 MODEL FORMULATION 

3.1 Base CFD Code with AMR Algorithm 

The collocated version of the KIVA-4 code [38] was used as the baseline 

computer code in this study. KIVA-4 [39] is an unstructured version of the KIVA code 

family. The new unstructured capability of the code allows the flexibility of mesh 

generation for more complicated geometries with high mesh quality. This new 

feature also provides a platform for implementations of other capabilities (such as 

Adaptive Mesh Refinement (AMR) and Multigrid). KIVA-4 solves the conservative 

equations closed by a Reynolds-Averaged Navier-Stokes (RANS) turbulence model for 

the gas phase. The spray injection and chemical reaction models are not used in this 

study. The conservation equations are written in the integral form as follows. 

Conservation of species: 
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Conservation of momentum: 
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Conservation of energy: 
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Temporal and spatial differencing is performed using the Arbitrary 

Lagrangian-Eulerian (ALE) technique, which is a semi-implicit quasi second-order 

upwind approach. An implicit discretization method was used to discretize the terms 
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of thermodynamic pressure, diffusion of mass, momentum, energy and turbulence. 

Each discretized equation was solved iteratively using the conjugate residual 

method. Velocity, temperature and pressure were solved by using the SIMPLE 

method in an outer iteration in which the pressure field is obtained by 

simultaneously solving the equations for the linearized equation of state, the cell 

volume and the face volume change. This code is specifically designed for 

investigating engine in-cylinder processes, as it is particularly suitable for using 

moving grids. In order to model the in-cylinder turbulence, a standard k-ε turbulence 

model is chosen as it is one of the most extensively used and validated turbulence 

models in engineering application. This model is also adequate in simulating the 

transient engine in-cylinder flows with reasonable computer time. Turbulent law-of-

the-wall velocity conditions with a fixed temperature are used for the wall boundary. 

In the meantime, the code has been modified by including the AMR algorithm in our 

previous studies to improve the computational efficiency [40].  

Adaptive mesh refinement has been used in liquid spray simulation to 

increase the spatial resolution and overcome the mesh dependence without 

incurring a significant computational cost [40, 41]. A similar approach is used in this 

paper to model the high-speed gas jet with an increased spatial resolution in the 

vicinity of the gas jet. The original KIVA-4 uses a staggered approach for solving the 

momentum and density-based equations for compressible flow. A collocated 

approach, in which velocity is solved at the cell center, is adopted in this study in 

order to simplify the numerical scheme and the implementation of AMR. Despite 

that experimental data are not available to verify the predicted in-cylinder flows in 
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this study, validations of this collocated version of KIVA-4 are reported by Torres 

[38]. In the above study, the in-cylinder flow results using the collocated version are 

compared with those using the staggered version. The collocation of pressure and 

velocity can cause unphysical pressure oscillations [42], but this problem is 

eliminated by using a pressure correction method [43].  

In order to capture the hydrogen jet, a very fine mesh is required in the 

region where the jet is present. This is achieved using an adaptive mesh refinement 

algorithm. The current AMR implementation utilizes the data structure and 

numerical methods based on the features of the KIVA-4 solver. The present 

approach adds new child cells to the existing cells and uses a hierarchical structure to 

establish the relationship between the parent cell and its child cells. The cell-

centered properties of the child cells are determined using the linear variation with 

local conservation. The refined cells will be coarsened to reduce the computational 

cost if a higher grid resolution is not required. These dynamic refinement routines 

are controlled by using an adaptation criterion based on the fuel mass fraction, Y 

and its gradients,  ̇   . The fuel mass fraction criterion could ensure the proper 

adaptation at region near the injector nozzle. The fuel mass fraction gradients were 

also chosen in order to provide adequate grid resolution at the jet periphery, where 

the mass fraction gradients were high. First derivatives were used to calculate the 

adaptation indicator from the mass fraction gradients as, 

                                                                    ̇    |(   )   |                                                  (3.4) 
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where (  )c,j is the gradient component of the variable   at a cell c in j coordinate 

direction. Δlj is the mesh size in j direction. Notice that the repeated index does not 

imply Eisenstein summation. The following conditions were used for the grid 

adaptation: 

(1) If   ̇    > αrτ in any coordinate direction j, or    > βr, the cell is flagged to be 

refined. 

(2) If   ̇     αrτ in all coordinate directions and     βr for all the cells refined from 

the same parent cell, these cells are to be coarsened. αr and βr are the control. τ is 

the standard deviation calculated as 

                                                                 (
 

  
∑ ∑  ̇   

  
   

 
   )

   

                                   (3.5) 

where N is the total number of the active cells. In addition, the difference in 

the refinement levels at the cell interface was limited to one to ensure a smooth 

transition in the refinement levels. 

3.2 Gas Injection Model 

The high pressure hydrogen injection creates a region of underexpanded jet 

near the injector exit. A schematic of the choked flow underexpansion process has 

been shown in Figure 2.1. This underexpanded jet is characterized by an oblique 

shock of a barrel shape, a vertical shock with a disk shape (called the Mach disk), and 

subsequent reflected shocks. The flow downstream of the Mach disk will become 

subsonic. A full CFD modeling would start from the nozzle exit and simulate the 

supersonic flow, shock waves, and subsequent subsonic flow downstream. However, 

in order to reduce the complexity of the flow simulation in an engine application, a 



23 
 

gas injection model is employed in this study to avoid the simulation of the 

supersonic flow and shock waves. Since the supersonic flow in the underexpanded 

region is not simulated in the engine cylinder, only the flow at the downstream of 

the Mach disk is modeled. The gas jet can be modeled starting from the Mach disk by 

using a proper inflow boundary to represent the conditions at that location. 

It is assumed that the process between the nozzle exit and the Mach disk is 

isothermal and there is no flow across the barrel shock [30]. Thus, the Mach disk 

conditions can be calculated as below. 

The conditions at each locations of an underexpanded jet are as follows. 

1: Upstream or reservoir, Po, To, ρo 

2: Nozzle exit, choked condition, Pn, Tn, ρn, vn (M=1) 

3: Mach disk, Peq, Teq, ρeq, veq (M=1) 

4: Downstream or chamber, Pch, Tch, ρch, vch (M<1) 

The assumptions are Tn = Teq , Peq=Pch . The mass flow rate, ̇ is calculated as 

                                                       ̇                   .                                       (3.6) 

From the assumption that the gas temperature at the nozzle exit is equal to that at 

the Mach disk, the gas velocities are same, which are the speed of sound, a, because 

the Mach number is equal to unity. 

                                                                              .                                            (3.7) 

The equivalent diameter of the Mach disk can be calculated as 
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The conditions at the nozzle exit are calculated from the reservoir conditions as 
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where γ is the specific heat ratio of the injected gas.  

The conditions at the Mach disk are calculated as 
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With the above conditions, the flow modeling can start from the downstream of the 

Mach disk. Nonetheless, this approach will still be computationally expensive as the 

size of the Mach disk is extremely small, and thus a very fine mesh is required to 

capture the jet structure.  Besides, the size of the Mach disk will change as the 

pressure inside the chamber changes. Therefore, a new approach is proposed in 

which the gas jet simulation will start from a location where the size of the jet is 

comparable to the local computational cell. The details of this approach are 

explained below. 

The downstream conditions at a certain distance from the Mach disk are 

calculated using appropriate similarity solutions and empirical relations. The size of 

the Mach disk is assigned as the new nozzle diameter for the similarity solution, and 

thus the velocity at the new nozzle exit is sonic. At the distance z from the Mach disk, 

where the jet width (2Rin) is equal to the size of the inflow boundary of the 
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computational grid, the flow rate (Q) is calculated from the similarity solution of a 

turbulent circular jet [22], 

                                                                        √   .                                                 (3.11) 

K is the kinematic momentum, which is given by  

                                                               √  = 1.59δ1/2Uc .                                               (3.12) 

δ1/2 is the radial distance of the half-velocity point and Uc is the centerline velocity. 

Calculation of δ1/2 and Uc is discussed in section 2.1.1.1. The average velocity can be 

calculated as 

                                                                  ̅ = Q/πRin
2 .                                                       (3.13) 

The mass flow rate of the jet is calculated using the empirical correlations by Ricou 

and Spalding [17], 

                                                                 ̇   ̇ (    )
 

  (     ⁄ )   
                            (3.14) 

where  ̇n is the mass flow rate at the nozzle exit, dn is the nozzle diameter, ρg is the 

density of injected gas, and ρch is the density of chamber gas. Since the correlation is 

used to link the flow conditions from the Mach disk to the computational inflow 

boundary, the conditions at the Mach disk is regarded as the starting conditions. In 

other words, dn is equal to the Mach disk size Deq, and ρg is the gas density at the 

Mach disk location, ρeq. The mass flow rate of the entrained air can then be obtained 

as  ̇air =   ̇ –  ̇n . The composition at inlet boundary is calculated using  ̇air and  ̇n. 
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In order to calculate the average density of the gas mixture at the 

downstream location, the assumption of complete mixing is used. The average 

density of the gas mixture is calculated from the mass flow rate and the size of the 

inflow boundary. 

                                                                         ̅   ̇ (    
  ̅)                                          (3.15) 

The average temperature of the gas mixture at the downstream location, which is 

the computational inflow boundary, is obtained using the internal energy balance 

equation. 

                                                     ̇  ̅ ̅    ̇    ̅    ̅    ̇     ̅     ̅                         (3.16)
                                                                                   

                                                                ̅   
 ̇    ̅    ̅    ̇     ̅     ̅   

 ̇  ̅
                             (3.17) 

Once the average density of the gas mixture at the downstream location is 

determined, the composition of the gas mixture is calculated using the flow rates of 

the injected hydrogen and the entrained air. From the similarity solution [37], the 

correlation between the axial location and the equivalent jet half width can be 

obtained as 

                                                                                                                                (3.18) 

Thus, the distance of the inflow boundary shift can be calculated using  

                                                                                                                          (3.19)   

The inlet boundary conditions for turbulence are also determined using the solution 

for circular jet. The virtual kinematic viscosity, Dτ, for a circular jet is a constant [21]. 
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From the k-ε turbulence model [44], the turbulent diffusivity or kinematic viscosity is 

given by  

                                                                    
                                               (3.20)   

where c is a model constant, k is the turbulent kinetic energy, and l is the turbulence 

length scale. Thus,  

                                                                
   
           

   
                                          (3.21) 

where the reference location, ref, is at the nozzle exit or at the Mach disk location in 

the case of the underexpanded jet. The subscript in refers to the inlet boundary. The 

turbulent kinetic energy at the inflow boundary location, kin, is thus calculated as  

                                                                                (
        

      
)
 

                                (3.22) 

Where c2 is a model constant, kn denotes the turbulent kinetic energy at nozzle exit, 

which is normally about 10 % of jet kinetic energy. For the case of underexpanded 

jets, ρref is the density Mach disk and lref is the Mach disk diameter. ρin and lin are 

calculated as the average density,  ̅ and the radius at the inlet boundary, Rin. The 

value of c2 is given by Eq. (3.23), determined using numerical calibration [37].  

                                                                           (
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)                                (3.23) 

where MWjet is molecular weight of the gas jet and ρcalib is chamber gas density at 

standard atmospheric pressure and temperature. The turbulent length scale at the 

inlet boundary is specified as the radius of inlet boundary Rin. 
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3.3 Integration of Gas Injection with AMR Algorithm 

A study on the grid dependence is first conducted in this study. A cylindrical 

domain of 5 cm in diameter and 10 cm in height is used for this purpose. Hydrogen is 

injected from the center of the top surface. The nozzle diameter is 250 μm. The 

injection pressure is 207 bar and the chamber pressure is 62 bar. The temperatures 

at the injector and chamber are 450 K and 1150 K, respectively. Three different 

computational grids used are labeled as R1 (15x15x30 cells), R2 (30x30x60 cells), and 

R3 (60x60x120 cells). As shown in Figure 3.1, it can be seen that the gas penetrations 

after 1 ms are similar for all the cases. However, the R1 grid results in a higher 

diffusion of the hydrogen jet compared to the other two cases. As a result, an 

unphysical jet shape is predicted using the coarse mesh. This will cause an 

underpredicted penetration at a later time. The computer time required for the 

above cases is 0.63 hours, 5.47 hours and 101.2 hours for R1, R2, and R3 grids, 

respectively, at 1 ms after the start of injection. While it is generally agreed that a 

finer mesh can potentially result in more accurate simulations and detailed flow 

structures, the long computer time associated with the fine mesh needs to be 

avoided. One approach is to use the AMR algorithm. By dynamically generating a fine 

mesh in the region of the gas jet, it is possible to accurately capture the jet structure 

without incurring significant computer time.  

A two-level AMR algorithm is used in this study to model the hydrogen jet. 

Both the hydrogen mass fraction and its mass fraction gradients are used as the 

refinement criteria. The cell is set to be refined if the mass fraction of hydrogen 

exceeds a certain threshold (βr) or the mass fraction gradient exceeds a certain 
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fraction (αr) of the standard deviation of the mass fraction gradient. The mass 

fraction criterion is used to adapt the cells in the core region of the hydrogen jet 

where the hydrogen jet convection is prominent due to the high velocity. The mass 

fraction gradient criterion is used to adapt the cells at the boundaries of the 

hydrogen jet where diffusion is prominent. In all the simulations described in this 

paper, αr and βr are set as 0.75 and 0.33, respectively. These values are chosen based 

on the sensitivity study and the consideration of the simulation accuracy and the 

computational cost. If a smaller value is used, a large number of cells will be refined, 

resulting in longer run time. If a larger value is used, less number of cells will be 

refined, which does not provide the benefits of grid refinement. The above values 

were selected after running the tests on single jet with different values for these 

criteria. These values are somewhat empirical and different numerical values have 

been used in different applications (e.g., liquid spray simulation [40]).  

 
                        R1                                    R2                                   R3                            R1 with AMR   

 
Figure 3.1 Hydrogen mass fraction contours in a constant volume chamber using R1, R2, R3 
grids, and R1 grid with AMR at 1 ms after injection.  
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Additionally, the difference in the refinement level of adjacent cells is limited 

to one such that the AMR mesh will have smooth transitions. In addition, the 

refinement is deactivated on cells neighboring the moving boundaries in order to 

prevent numerical difficulties in the present code. It is noted that further 

improvement in the present AMR algorithm is needed in order to capture mixture 

formation more accurately near the moving walls [45]. Nonetheless, the present 

AMR is mainly used to capture the hydrogen jet near the injector when the velocity 

and hydrogen concentration are high. When a cell is refined, it is first divided into 

eight sub cells in the first level refinement. Each sub cell is then divided into eight 

second level sub cells in the second level refinement. The AMR algorithm is called at 

regular intervals during the solution cycles. In this study, an interval of 10 time steps 

is used for adaptation. This interval was determined based on numerical 

investigations considering computational time and solution accuracy. Once a group 

of child cells no longer satisfy the refinement criteria, they are coarsened to restore 

to their parent cell.  

Figure 3.1 also shows the results using the R1 grid with AMR, and the 

predicted jet structure is similar to that using R3. It is worth noting that the 

computer time is 9.73 hours using the R1 grid with AMR. Thus, by using the 

proposed AMR algorithm it is possible to capture the hydrogen jet structure with 

reasonable computer time. 
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CHAPTER 4 MODEL VALIDATION 

 Validations on the hydrogen jet model developed in this study will be 

discussed in this chapter. The simulation results are validated against available 

experimental data. The jet penetration is chosen as the quantity to be compared, 

including single jet penetration and multiple jet penetrations. Johnson et al. [35] 

measured hydrogen penetration for single jet injection. Although the measured 

penetration data were obtained under combustion conditions, it was observed from 

previous experiments using methane injection that there is only a slight difference 

between penetrations with and without combustion. The multiple jet experiments 

were conducted by Peterson et al. [15], and the jet penetrations were measured 

using Schlieren visualization technique.  

3.1 Single Jet Validation 

The model was applied to simulate the experiments of hydrogen injection 

[35]. Hydrogen is injected at a pressure of 207 bar and temperature of 450 K to a 

constant volume chamber of air with pressure 62 bar and temperature 1150 K. The 

nozzle diameter is 250 μm. The computational domain used in the simulation 

consists of a constant volume cylindrical chamber with 10 cm in diameter and 20 cm 

in height. The domain is meshed using an O-grid scheme with the circular facing 

assumed as a logical square. The domain is divided into 30x30x60 cells. For an 

average cell size of 3.33 mm, the inflow boundary location is Zin = 7.24 mm. This 

mesh is used together with AMR with two-level refinement. The jet tip penetration is 

measured as the penetration of 3% mass fraction of hydrogen. The predicted 
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penetration is compared with the measured experimental penetration, as shown in 

Figure 4.1.  Results show that the jet penetrates at a higher rate initially. As the jet 

expands, the tip penetration gradually slows down. The model predicts the same 

trend and magnitude as in the experimental data. Overall, good agreement between 

simulation and experiment is obtained. Despite that the predicted penetration is 

slightly longer than the experimental data. The results are within 5% accuracy.  

 
Figure 4.1 Comparisons of experimental and numerical results of the hydrogen jet 

penetration.  
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The present model was also used to simulate helium injection. In this 

validation case, as there are no experimental data available for validation, the jet 

penetration obtained using a theoretical correlation is used for model validation. The 

theoretical equation for the jet penetration [30] can be written as a function of time 

as Eq. (4.1) 

                                                       √(       (      )    )                        (4.1) 

The variables have the same meaning as mentioned in Section 2.2. The nozzle 

diameter is 127 μm. The injection pressure and temperature are 6.73 bar and 296 K, 

respectively, and the pressure and temperature of air in the chamber are 1.013 bar 

and 296 K, respectively. The simulation was conducted on a cylindrical domain of 10 

cm in diameter and 10 cm in height, descretized into 30x30x30 cells. The Mach disk 

diameter and the sonic velocity at the Mach disk were calculated to be 0.23 mm and 

875 m/s, respectively. The predicted jet penetration is compared with the theoretical 

results, as shown in Figure 4.2. Good levels of agreement are obtained by using the 

present model with AMR.  

Note that from the empirical correlations of Ewan and Moodie [24], the 

length of the barrel shock from the injector nozzle in the above two cases is 227 μm 

and 123 μm, respectively.  Thus, the distance from the nozzle exit to the Mach disk 

can be neglected in the calculation of jet penetration. The above results indicate that 

using the present gas injection model with AMR, underexpanded gas jets can be 

predicted with a reasonable accuracy on a coarse mesh. 
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Figure 4.2 Comparisons of theoretical and numerical penetrations of a helium jet. 

 

3.2 Multiple Jets Validation 

The hydrogen jet penetration using a multiple-nozzle injector was measured 

using the Schlieren visualization technique [15]. Two cases were selected to validate 

the present model in simulating multiple jet injection. In the first case, hydrogen is 

injected using a three-nozzle injector at a pressure of 104 bar into a chamber with 

nitrogen at 3.36 bar. The temperature is kept at 298 K at the injector and in the 

chamber. The nozzle diameter is 0.8 mm. The numerical simulation was performed 

on a cylindrical geometry with 20 cm in diameter and 10 cm in height, descretized 
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into 60x60x30 cells. Figure 4.3 shows the contours of hydrogen mass fraction and the 

iso-surface of 0.3% hydrogen mass fraction compared with the experimental images. 

Results show good agreement between the numerical and experiment data, as 

shown in Figure 4.4.   

 

 
     (a)                                                                        (b)      

 

Figure 4.3 (a) Predicted iso-surface of 0.3% hydrogen mass fraction (top) and 
contours of hydrogen along the injection planes (bottom).  
                   (b) Top view and side view of the experimental Schlieren images [15]. 

 

In the second case, the chamber pressure is increased to 7.2 bar. The rest of 

the parameters are kept the same. The simulation results and experimental data are 

also compared in Figure 4.4. The present gas jet model with AMR is able to 
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accurately predict the injection of multiple jets using a coarse mesh. It can also be 

inferred from the results that as the pressure inside the chamber increases, the 

penetration length decreases.   

 
Figure 4.4 Comparisons of experimental and numerical hydrogen penetrations for  

the multiple jet injection. 
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CHAPTER 5 MIXTURE FORMATION IN IC ENGINES 

The objective of this work is to study the hydrogen mixture formation in IC 

engines. As described in the previous chapters, a hydrogen jet model is implemented 

in the multidimensional CFD code, KIVA-4, and the model is validated using the 

experimental data. In this chapter, the model is further applied to in-cylinder 

hydrogen injection and the transient engine cycle is simulated. The injection 

parameters are varied and a parametric study is performed to determine the effects 

of injection parameters on the mixture formation inside the engine. 

5.1 In-Cylinder Mixture Formation 

The model was applied to simulate the in-cylinder mixture formation of a 

two-valve, direct-injection spark-ignition engine. The details of the engine are listed 

in Table 5.1. The parameters to be studied include the injection timing, the injector 

location, and the included angle of injection (i.e., orientation of nozzle). In this study, 

the quality of the air-fuel mixture is evaluated based on the equivalence ratio 

distribution in the engine cylinder. Although it is ideal to create a stratified mixture 

around the spark plug [6] it may be difficult to have quantitative criteria to describe 

the stratification. Therefore, in the present study, mixture homogeneity was chosen 

as the criterion to assess the injection parameters since basically an SI engine 

requires a homogeneous mixture. Particularly, under direct-injection conditions, 

there is limited time for mixture preparation. Thus, mixture homogeneity appears to 

be an appropriate criterion. 
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Table 5.1 Engine specifications 

Number of Valves 2 

Piston type Flat Piston 

Bore (cm) 14 

Stroke (cm) 17.5 

Squish (cm) 2.5 

Intake Valve Timing IVO = 20 BTDC,  IVC = 215 ATDC 

Exhaust Valve Timing EVO = 495 ATDC, EVC = 10 ATDC 

Speed (RPM) 1000 

Injector 3-hole injector 

Compression Ratio 8:1 

 

Hydrogen is injected at a pressure of 413 bar and temperature of 298 K. The 

pressure inside the engine is used as the chamber pressure in the gas injection 

model, e.g. Eq. (3). The injector has three nozzle holes and each nozzle has a 

diameter of 200 μm. The computational mesh is shown in Figure 5.1. The mesh 

consists of approximately 30,000 cells at the bottom-dead-center (BDC). The 

simulation starts from 20 degrees before top-dead-center (BTDC) and ends at 360 

degrees after top-dead-center (ATDC), which is an appropriate timing to assess the 

mixture homogeneity. In the present engine, the intake valve opens at 20 BTDC and 

the exhaust valve closes at 10 ATDC. Thus, the simulation includes the entire intake 

process together with part of the exhaust process. This study is focused on the 

mixture formation before combustion occurs. Because combustion is not modeled, 

the simulation of the entire exhaust process may not be of significance since the 

exhaust of combustion products and the mixing of residuals and fresh air are not 
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considered. Hydrogen is injected after both valves are closed to prevent the leakage 

of fuel through the valve opening. The mass of hydrogen injected corresponds to an 

overall equivalence ratio (ER) of 0.45. The effect of natural convection can be 

neglected as the ration Gr/Re2 was found to be of the order of 1.0e-5. 

 

Figure 5.1 Computational grid of the engine used for parametric study 

 

The start of injection (SOI) timings used for the present parametric study are 

220, 240, and 260 ATDC. Three injector locations are studied, including one near the 

intake valve, one near the exhaust valve, and one in between the valves. At each of 

these locations, three different included angles of injection are tested, including 30, 

45, and 60 degrees as shown in Figure 5.2. The above conditions are listed in Table 

5.2 and the schematic of the injector locations are also shown in Figure 5.2. These 
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conditions are chosen based on the experimental conditions in a previous study [13]. 

The average run time of the entire simulation is 28 hours on a single processor. 

 
   (a) (b) 

Figure 5.2 (a) Top view and side view of the injection angle. Three different included angles    
are studied, θ = 300, 450, 600.  

    (b)Three different injector locations and the corresponding orientation of the 
injector axis at each location. 

 

The in-cylinder flow field prior to and during hydrogen injection for Case 1 is 

shown in Figure 5.3. The flow field prior to injection will be same for all the cases 

where the start of injection is maintained the same, as only the injection parameters 

are different in each case. The hydrogen jet has a relatively high velocity entering the 

combustion chamber. Note that a gas injection model is used in this study to prevent 

the modeling of the supersonic jet. Thus, the entrance velocity to the computational 

θ

1200

Intake Exhaust
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domain is subsonic and is diffused rapidly. Nonetheless, the disturbance to the flow 

field due to the high gas jet velocity can be observed from these images. 

Table 5.2 Conditions and results of the parametric study cases 

Case  
Included angle 

of injection 
(degrees) 

SOI 
(ATDC) 

Injector location 
Equivalence ratio 
range at 360ATDC 

 

Cylinder volume 
fraction for 
equivalence 

ratio from 0.4 to 
0.5 

Case 1 45 220 Between valves 0.20-0.60 

00. 

28% 

Case 2 45 240 Between valves 0.15-0.90 

 

20% 

Case 3 45 260 Between valves 0.15-0.90 15% 

Case 4 30 220 Between valves 0.15-0.75 20% 

Case 5 60 220 Between valves 0.10-0.75 22% 

Case 6 30 220 Near intake 0.25-0.65 30% 

Case 7 45 220 Near intake 0.25-0.65 36% 

Case 8 60 220 Near intake 0.25-0.62 50% 

Case 9 30 220 Near exhaust 0.20-0.62 41% 

Case 10 45 220 Near exhaust 0.15-0.75 30% 

Case 11 60 220 Near exhaust 0.25-0.75 30% 

 

 
Figure 5.3 Flow field prior to and during hydrogen injection. Velocity vectors are colored by 

the velocity magnitude (cm/s). 

 

215 ATDC 225 ATDC 235 ATDC
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5.2 Qualitative Analysis of Mixture Formation 

A qualitative evaluation of each case can be obtained by assessing the 

hydrogen mass fraction contours at different times. The solution is visualized using 

EnSight visualization software. The solution variables from KIVA-4 are exported in 

EnSight format at regular intervals. The hydrogen mass fraction contours are 

visualized on different cut planes to analyze the propagation of the fuel from the 

injector to the engine cylinder. The regions of high fuel content and low fuel content 

can be identified through the mass fraction contours. In the following sections the 

mixture formation in each case is analyzed qualitatively using hydrogen mass 

fraction contours. 

5.2.1 Case 1 

The detailed mixture formation process for Case 1 with center injection is 

shown in Figure 5.4. The included angle of injection is 45 degrees. The mixing 

process can be seen from the evolution of the contour of hydrogen mass fraction. 

Note that these images are plotted on the cut planes aligned with the two gas jet 

directions, i.e., 120 degrees included angle. The interactions of fuel jets with walls 

and the in-cylinder flow can be seen from these images. Two fuel jets evolve 

differently as the cycle progresses because the intake and exhaust valves are located 

at different sides. After wall impingement, one of the fuel jets moves along the 

cylinder wall towards the piston. The other jet spreads transverse to the cut plane 

and towards the cylinder head along the cylinder walls. This difference can be 

explained using the in-cylinder flow field. The air intake through the intake valves 
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and the motion of the piston creates swirl and tumble inside the cylinder. The swirl 

creates circulating currents perpendicular to the piston surface and the tumble 

creates circulating currents perpendicular to swirl. The tumble inside the engine can 

be observed in Figure 5.3. The difference in evolution of the fuel jets is due to the 

effects of this swirl and tumble inside the cylinder. Overall, the final mixture 

distribution is determined by the interactions of the fuel jet, cylinder walls, and in-

cylinder flows.  

 

 

 
 

 
 

Figure 5.4 Hydrogen mass fraction on the injection planes at different times for Case 1.  

222 ATDC 230 ATDC

235 ATDC 245 ATDC
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Figure 5.4 (Continued).  

 

250 ATDC 260 ATDC

265 ATDC 275 ATDC

290 ATDC 305 ATDC
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Figure 5.4 (Continued). 

 

 

The detailed mixture formation process of the rest of the cases is not shown. 

However the hydrogen mass fraction contour during the injection and at 360 ATDC is 

shown for each case below. The contours are plotted on vertical and horizontal 

planes in order to visualize the fuel distribution inside the cylinder. Two injection 

planes are selected as the vertical planes, for Case 2 and Case 3, where the SOI is 

varied. From Case 4 to Case 11, where the injection location and included angle of 

injection are varied, the geometric symmetry plane is selected as the vertical plane. 

320 ATDC 335 ATDC

345 ATDC 360 ATDC
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The horizontal plane is selected as a plane 0.5 cm below the cylinder head. The valve 

regions can be seen in this plane.  

5.2.2 Case 2 

 

Figure 5.5 Hydrogen mass fraction on the injection planes during injection and at 360 ATDC 
for Case 2 

 

The hydrogen mass fraction contours at 250 ATDC and 360 ATDC of Case 2 

along the injection planes and at a horizontal plane 0.5 cm below the cylinder head 

are shown in Figure 5.5. In this case, the three fuel jets are oriented at 120 degrees 

apart and at an angle of 45 degrees from vertical. In Figure 5.5, the top view of the 

mass fraction contours clearly shows the injection locations of the three hydrogen 

jets. From the side view of fuel mass fraction contours, the angle of fuel jets can be 

seen. It can be observed that the hydrogen jets hit the cylinder wall. The mixture 

250 ATDC 360 ATDC
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formation process is similar to the case 1. However, the residence time of the fuel 

inside the cylinder is less and hence the final mixture in this case has regions of high 

and low fuel concentration. The pockets of fuel rich regions were found inside the 

cylinder close to the cylinder head. The boundaries of these pockets are visible in the 

top view at 360 ATDC. There are regions of low fuel content near the cylinder head, 

which can be seen in the contour image shown and also near the piston surface, a 

portion of which is visible in the vertical plane at 360 ATDC. The highest fuel mass 

fraction in the cylinder can be determined from the maximum value of the hydrogen 

mass fraction contour legend. In this case, the highest mass fraction was found close 

to the cylinder head and has a value of 0.0275. The corresponding equivalence ratio 

can be calculated as 0.98.  The ideal homogeneous mixture should have a mass 

fraction of 0.0128 which corresponds to the overall equivalence ratio of 0.45 

homogeneous mixture should have a mass fraction of 0.0128 which corresponds to 

the overall equivalence ratio of 0.45 

5.2.3 Case 3 

The initial and final hydrogen mass fraction contours on two injection planes 

for Case 3 are shown in Figure 5.6. The start of injection is at 260 ATDC. The piston is 

under compression stroke at this crank angle and has completed nearly half of the 

stroke length. As a result, the chamber pressure during injection is higher than the 

previous cases. This resulted in a slower penetration of the jet. However, the upward 

motion of the piston makes the jet to impinge on the piston surface at 270 ATDC. It 

was also observed that the included angle of fuel jets was reduced as the jet 

progress through the in-cylinder. Although the injection angle if 45 degrees, the fuel 
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jets do not spread as observed in the previous cases. After impinging the piston 

surface, the fuel spreads along the piston towards the cylinder wall. The fuel then 

moves along the cylinder wall upwards. The final mixture contains very rich and lean 

regions. The fuel rich region, which is not visible in Figure 5.6, was observed near the 

exhaust valve and near the piston surface closer to the cylinder walls. There are 

regions with fuel mass fraction as high as 0.03512 near the piston surface.  Also 

there are regions inside the cylinder with virtually no fuel present which can be 

noticed in Figure 5.6.   

 

Figure 5.6 Hydrogen mass fraction contours on a horizontal plane 0.5 cm below the cylinder 
head and the injection planes for Case 3 

 

 

270 ATDC 360 ATDC
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5.2.4 Case 4 

 

Figure 5.7 Hydrogen mass fraction contours on a horizontal plane 0.5 cm below the cylinder 
head and at the vertical symmetric plane for Case 4 

 

Figure 5.7 is the side view and top view of Case 4 at 230 ATDC and 360 ATDC. 

Hydrogen is injected at 220 ATDC at an included angle of 30 degrees. The fuel jets 

impinge on the piston surface. After impingement, the fuel spreads along the piston 

surface towards the cylinder wall. As the cycle progresses, the fuel crawls up along 

the cylinder wall. It can be seen from the contours at 360 ATDC that there are 

regions inside the cylinder with high fuel content near the piston surface and some 

regions of low fuel content near by the cylinder wall.  

 

230 ATDC 360 ATDC
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5.2.5 Case 5 

 

Figure 5.8 Hydrogen mass fraction contours on a horizontal plane 0.5 cm below the cylinder 
head and at the vertical symmetric plane for Case 5 

 

The initial and final hydrogen mass fraction contours for Case 5 are shown in 

Figure 5.8. The fuel jet is injected at an angle of 60 degrees. As a result the entire 

fuel penetration is not visible in the vertical plane. It was observed that the fuel jets 

hit the cylinder wall at 232 ATDC. The fuel jets then moves along the cylinder walls 

towards piston. In the final mixture, a fuel rich region was found near the cylinder 

head which can be observed in the top view at 360 ATDC. Lean regions were found 

near the cylinder head and piston surface.  

 

230 ATDC 360 ATDC
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5.2.6 Case 6 

 

Figure 5.9 Hydrogen mass fraction contours on a horizontal plane 0.5 cm below the cylinder 
head and at the vertical symmetric plane for Case 6 

 

Hydrogen mass fraction contours for the case 6 are shown in Figure 5.9. The 

injector location is near the intake valve and the included angle of injection is 30 

degrees. The three inlet boundaries used for injection can be seen in the top view at 

230 ATDC. A section of one of the fuel jet can be seen in the vertical plane at 230 

ATDC. The fuel jets hits the cylinder wall at different times. The last fuel jet 

impingement occurs at 245 ATDC. After wall impingement, two of the fuel streams 

crawl down towards the piston. The third one spreads along the cylinder wall. The 

final mixture has fuel rich regions nearby the cylinder wall at the intake valve side. 

There was no region of very low fuel content. 

230 ATDC 360 ATDC
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5.2.7 Case 7 

 

Figure 5.10 Hydrogen mass fraction contours on a horizontal plane 0.5 cm below the cylinder 
head and at the vertical symmetric plane for Case 7 

 

Figure 5.10 shows the hydrogen mass fraction contours of Case 7. The 

injector location is near the intake valve and included angle of injection is 45 

degrees. Similar to the previous case, the fuel jets hits the cylinder wall at different 

times. However the locations of jet impingements are different. The last fuel jet 

impingement occurs at 250 ATDC. Two of the fuel streams crawl down along the 

cylinder wall towards the piston. The third one spread along the cylinder wall. The 

final mixture has fuel rich regions nearby both the valves. There was a region of low 

fuel content near the cylinder wall, away from the injection side. 

 

230 ATDC 360 ATDC
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5.2.8 Case 8 

 

Figure 5.11 Hydrogen mass fraction contours on a horizontal plane 0.5 cm below the cylinder 
head and at the vertical symmetric plane for Case 8 

 

Figure 5.11 is the side view and top view for Case 8 at 230 ATDC and 360 

ATDC. The locations of the three nozzle holes can be easily recognized by the high 

local equivalence ratio in the figure. The injector is oriented towards the center of 

the cylinder. The three fuel jets are oriented at an angle of 60 degrees from the 

center line of injector. Hydrogen is injected at 220 ATDC. It is observed from the 

contours that, by 235 ATDC, the fuel jets have already impinged on the cylinder walls 

and have started mixing with the air. Small pockets of rich mixtures were observed 

near the intake valve and near the piston surface. There was no region of very low 

fuel content. 

230 ATDC 360 ATDC
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5.2.9 Case 9 

 

Figure 5.12 Hydrogen mass fraction contours on a horizontal plane 0.5 cm below the cylinder 
head and at the vertical symmetric plane for Case 9 

 

Figure 5.12 shows the hydrogen mass fraction contours of Case 9. The 

injector location is near the exhaust valve and the injection boundaries can be 

observed from the top view at 230 ATDC. Included angle of injection is 30 degrees. 

By 240 ATDC all the fuel jets reaches the cylinder wall. After hitting the wall, one of 

the fuel streams crawls down along the cylinder wall towards the piston. The other 

two spread along the cylinder wall. It is observed from the mass fraction contour 

that the final mixture has a fuel rich region below the intake valve. There was no 

region of very low fuel content. 

 

230 ATDC 360 ATDC
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5.2.10 Case 10 

 

Figure 5.13 Hydrogen mass fraction contours on a horizontal plane 0.5 cm below the cylinder 
head and at the vertical symmetric plane for Case 10 

 

 Hydrogen mass fraction contours of Case 10 are shown in Figure 5.13. The 

included angle of injection is 45 degrees. The fuel jets hits the cylinder wall at 

different times. The last fuel jet impingement occurs at 232 ATDC. After wall 

impingement, two of the fuel streams move along the walls, towards the piston, 

while the third one spread along the cylinder wall. The final mixture has very rich 

regions nearby the cylinder wall, away from the injection side. It is noticeable that 

there are regions with hydrogen mass fraction as high as 0.0233. There are pockets 

of lean mixture regions below the exhaust valve and near the piston surface.  

 

230 ATDC 360 ATDC
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5.2.11 Case 11 

 

Figure 5.14 Hydrogen mass fraction contours on a horizontal plane 0.5 cm below the cylinder 
head and at the vertical symmetric plane for Case 11 

 

Figure 5.14 shows the hydrogen mass fraction contours of Case 11. The 

included angle of injection is 60 degrees. Wall impingement of fuel jets occurs at 

about 232 ATDC. All the three jets hit the cylinder wall at the upper half. After that 

most of the fuel is spread along the cylinder walls. At 360 ATDC, very rich regions are 

found near the cylinder head close to intake valve and in between the valves. There 

was not any region with very low fuel content.  

Based on the observation of the present simulation results, speaking overall, 

the hydrogen jets impinge on the cylinder wall or piston surface very quickly due to 

their high velocities. Before the wall impingement, the fuel-air mixing takes place 

230 ATDC 360 ATDC
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only in the narrow regions of fuel jets due to air entrainment. A majority of the fuel-

air mixing occurs after wall impingement. Note that the present injection timing is 

relatively early, similar to those used in the previous experimental study [12]. As the 

injection timing is retarded, the in-cylinder density is higher, thus delaying the wall 

impingement. The effects of late injection needs to be further studied.  

5.3 Quantitative Analysis of Mixture Distribution  

The above equivalence ratio contours indicate the qualitative mixture 

distribution. In the following discussion, a quantitative measure is used for assessing 

the mixture distribution resulting from different injection conditions. During 

simulation, the equivalence ratio in each cell and the volume of the cell are exported 

from the computational results at regular time intervals. The cell volume is 

normalized by the total cylinder volume. The data of the computational cells are 

sorted in the ascending order of the equivalence ratio. Then, the normalized cell 

volumes below a specific equivalence ratio are added. As a result, the cumulative 

volume of the in-cylinder mixture below a specific equivalence ratio can be found. In 

other words, the percentage of the total volume in the cylinder that has equivalence 

ratios between two specific values can be obtained, i.e. the difference between the 

two cumulative volume fractions. Figure 5.15 shows examples of such equivalence 

ratio distribution curves at a specific crank angle. For instance Figure 5.15 (a) 

indicates that 49% of the total in-cylinder volume has an equivalence ratio lower 

than 0.2. Additionally, the mixture with an equivalence ratio between 0.2 and 0.5 

occupies 22% of the cylinder (i.e., the difference of 0.49 and 0.71 cumulative 

volume). The figure also implies that 10% of the cylinder volume contains a rich 
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mixture with an equivalence ratio higher than 1.2. On the other hand, Figure 5.15 (b) 

shows an ideal case that has a homogeneous mixture of equivalence ratio 0.45. 

Therefore, if the purpose is to obtain a homogeneous mixture for premixed 

combustion, the goal will be to choose the injection conditions that can result in an 

equivalence ratio distribution curve as shown in Figure 5.15 (b). In the following 

discussion, the homogeneity of the in-cylinder mixture will be assessed based on the 

equivalence ratio distributions at different crank angle degrees. 

 
         (a) 

 
  (b) 

Figure 5.15 Examples of an equivalence ratio distribution curve 
(a) 22% of the in-cylinder volume contains the mixture with an equivalence ratio from 0.2 to 
0.5 
(b) Ideal homogeneous mixture with an equivalence ratio of 0.45 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

Equivalence Ratio

N
o
rm

a
liz

e
d
 C

u
m

u
la

ti
v
e
 V

o
lu

m
e

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

N
o
rm

a
liz

e
d
 C

u
m

u
la

ti
v
e
 V

o
lu

m
e

Equivalence Ratio



59 
 

Notice that the final assessment on the mixture homogeneity is based on the 

equivalence ratio distribution at 360 ATDC when the piston reaches top-dead-center. 

Despite that spark-ignition generally takes place before top-dead-center, flame 

propagation takes time and the combustion duration is usually 40 to 60 crank angle 

degrees. Thus, the overall combustion characteristics are closely related to the 

mixture distribution at top-dead-center since combustion is not modeled in this 

study.  

5.3.1 Mixture Formation Characteristics with Different SOI 

The engine is in the compression stroke when the fuel is injected. As the SOI 

is delayed, the volume of air to which the fuel is injected reduces and the residence 

time of fuel before the start of combustion decreases. A parametric study was 

conducted to analyze the dependence of fuel-air mixing on the SOI, i.e., Cases 1 to 3 

in Table 5.2. The included angle of injection is fixed to 45 degrees and the injector is 

located between the valves as shown in Figure 5.5. The equivalence ratio distribution 

curves are plotted in Figure 5.16. For each case the equivalence ratio distribution at 

different times are shown. It is seen that the mixing is better for the early SOI case. 

The injected fuel has less time to mix with air in the cylinder as the SOI is retarded. 

As can be seen in Figure 5.16 (a) for Case 1 (SOI = 220 ATDC), the equivalence ratio 

ranges from 0.20 to 0.60 at 360 ATDC, compared to 0.15 to 0.90 for the other two 

cases. Note that the overall equivalence ratio is 0.45. For comparison, the 

percentage of volume with the equivalence ratio between 0.4 and 0.5 is 

approximately 28%, 20%, and 15% for Case 1, Case 2, and Case 3, respectively. Thus, 

220 ATDC is used as the SOI for the rest of the remaining parametric study. It is also 
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observed that the fuel jet impinges on the side wall when the SOI is 220 ATDC and 

240 ATDC, whereas it impinges on the piston when injected at 260 ATDC. 

   
                                            (a)                                                                               (b) 

 
 

 
                    (c) 

 
Figure 5.16 Equivalence ratio distributions at different crank angles for cases with  

45 degrees injection angle and variable SOI 
(a) Case 1: SOI = 220 ATDC (b) Case 2: SOI = 240 ATDC (c) Case 3: SOI = 260 ATDC 

 

5.3.2 Mixture Formation Characteristics with Different Injection Angles and 

Injector Locations 

The orientation of the fuel jets and the location of the fuel injector will have a 

prominent effect on the fuel-air mixing as the interactions of the fuel jets with the 
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cylinder walls and piston vary in each case. In this parametric study three injector 

locations are tested. At each injector location, the included angle of injection is 

varied as 30, 45, and 60 degrees from the centerline of the injector. For all the cases 

SOI is fixed at 220 ATDC, as listed in Table 5.2.  

 
(a)                                                                              (b) 

 
Figure 5.17 Equivalence ratio distribution at different crank angles when 

the injector is located between the valves 
(a) Case 4: θ = 30 degrees (b) Case 5: θ = 60 degrees 

 

When the injector is located in between the valves, results show that the jets 

injected at 30 degrees angle hit the piston (Case 4) whereas in the other two cases, 

Case 1 and Case 5, the jets impinge on the cylinder walls. The equivalence ratio 

distribution curves are shown in Figure 5.16 (a) and Figure 5.17. By comparing the 

curves of 360 ATDC for the above cases, the range of equivalence ratio is from 0.2 to 

0.62 for Case 1, 0.15 to 0.75 for Case 4 and 0.10 to 0.75 for Case 5. It is seen that 

Case 1 has an overall steeper slope, thus indicating mixture is more homogeneous. It 

can also be observed that for Case 1, the percentage of the volume with equivalence 

ratio between 0.4 and 0.5 is approximately 28%, which is comparatively higher than 
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that of Case 4 (20%) and Case 5 (22%). Thus, a 45 degrees included angle of injection 

can result in a better fuel-air mixing when the injector is located in between the 

valves.   

                              
                                            (a)                                                                               (b) 

 

 
         (c) 

Figure 5.18 Equivalence ratio distribution at different crank angles when  
the injector is located near the intake valve 

(a) Case 6: θ = 30 degrees (b) Case 7: θ = 45 degrees (c) Case 8: θ = 60 degrees  
 

When the injector is located near the intake valve, the fuel jets are directed 

towards the center of the chamber in order to achieve a better spread of the fuel. 

The equivalence ratio distribution curves are shown in Figure 5.18. Results show that 
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the ranges of the equivalence ratio at 360 ATDC are approximately the same for all 

cases, but Case 8 with 60 degrees included angle can produce somewhat better 

mixing. With an included angle of 60 degrees, about 50% of the cylinder volume 

contains fuel-air mixture of equivalence ratio between 0.4 and 0.5. The 

corresponding percentage for 30 degrees and 45 degrees injection are 30% and 36%, 

respectively. Thus, a 60 degrees included angle of injection is able to render better 

homogeneity of fuel-air mixture when the injector is located near the intake valve.  

In the third series of tests, the injector is located near the exhaust valve, 

symmetrically opposite to the location of the injector near the intake valve in the 

above cases. The injector is also directed towards the center of the chamber. It is 

observed that fuel jets injected at an included angle of 30 degrees are able to 

provide better mixing. The equivalence ratio distribution curves are shown in Figure 

5.19. With an included angle of 30 degrees, about 41% of the cylinder volume 

contains fuel-air mixture of equivalence ratio between 0.4 and 0.5. 30% of the 

cylinder volume has the local equivalence ratio close to 0.45 for the injection angles 

of 45 degrees and 60 degrees.  

In the third series of tests, the injector is located near the exhaust valve, 

symmetrically opposite to the location of the injector near the intake valve in the 

above cases. The injector is also directed towards the center of the chamber. It is 

observed that fuel jets injected at an included angle of 30 degrees are able to 

provide better mixing. The equivalence ratio distribution curves are shown in Figure 

5.19. With an included angle of 30 degrees, about 41% of the cylinder volume 

contains fuel-air mixture of equivalence ratio between 0.4 and 0.5. 30% of the 
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cylinder volume has the local equivalence ratio close to 0.45 for the injection angles 

of 45 degrees and 60 degrees.  

        
                                             (a)                                                                              (b)        

 

 
          (c) 

 
Figure 5.19 Equivalence ratio distribution at different crank angles when  

the injector is located near the exhaust valve 
(a) Case 9: θ = 30 degrees (b) Case 10: θ = 45 degrees (c) Case 11: θ = 60 degrees  

 

In summary, the quantitative results of the in-cylinder mixture equivalence 

ratio under different injection conditions are listed in Table 5.2. It is found that an 

early injection results in more homogeneous mixture by allowing more time for fuel-

air mixing. Different injector locations require different injection angles for achieving 
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more homogeneous mixture since the fuel-air mixing is a result of the interaction 

between fuel jets and the in-cylinder flow. The favorable included injection angle is 

45 degrees for the injector located between the valves, 60 degrees for the injector 

near the intake valve, and 30 degree for the injector near the exhaust valve. 

Speaking overall it is most favorable to locate the injector near the intake valve and 

aim towards the center of the cylinder under the present engine geometry. It is 

worth noting that different engine geometries will require different injection 

conditions to achieve desirable mixture conditions. 
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CHAPTER 6 CONCLUSIONS 

6.1 Conclusions 

A hybrid gas jet injection model was developed to simulate the high velocity 

gaseous hydrogen injection and mixing with air. Adaptive mesh refinement was used 

to provide adequate grid resolution to help capture the flow structure induced by 

the gas jet. The use of adaptive mesh refinement helps reduce the computer time 

without the loss of accuracy. The model was validated by comparing the predicted 

hydrogen penetrations with the experimental and theoretical data. Good levels of 

agreement between numerical and experimental results are obtained for single jet 

and multi-jet penetrations. The effect of ambient pressure is also predicted correctly. 

A parametric study was also conducted to explore the mixture formation 

characteristics inside the engine cylinder at various injection timings, injector 

locations, and injection angles. 

The parametric study results show that the mixture distribution in the 

cylinder varies widely with the above three injection parameters. Results indicate 

that it is best to inject hydrogen soon after the intake valve closes. Such early 

injection can result in better homogeneity by providing more time for fuel-air mixing. 

Under the conditions studied, the hydrogen jets impinge on the piston surface or the 

cylinder wall shortly after injection. Major mixing appears to take place after the wall 

impingement. When the injector is located at different positions, different nozzle 

orientations are required to produce favorable mixture. Among all the cases studied, 

the injector located near the intake valve with an included injection angle of 60 
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degrees is able to produce the most homogeneous hydrogen-air mixture under the 

present engine configuration. It is anticipated that present numerical model can be 

used as a tool for the design of direct-injection hydrogen engines. 

 Recommended future study will include the implementation of premixed 

engine combustion models into KIVA-4 in order to simulate the entire in-cylinder 

process including hydrogen injection, mixing, combustion, and emissions formation. 

The results of combustion simulation can be compared with the experimental data 

on hydrogen engines. Additionally, the AMR capability of the solver will need to be 

enhanced in order to refine the mesh near moving surfaces. The overall numerical 

model can then be used as a tool to design and optimize hydrogen engines. 
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