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ABSTRACT 

Chemical Mechanical Planarization (CMP) is a polishing process that 

planarizes a surface at both a local and global scale.  The multi scale planarization 

capabilities of CMP are used extensively in the fabrication of Integrated Circuits (IC).  

Though a relentless reduction of feature scales have driven a continual refinement of 

the CMP process, defectivity levels remain problematic in current CMP processes.   

Chemical Mechanical Paired Grinding is a new planarization method, 

developed at Iowa State University, designed to provide a marked defect reduction 

at feasible and economic operational conditions.  Proposed is a method of 

planarization that utilizes insights from the operational principals of polishing and 

grinding by combining the strengths of fixed abrasive grinding with those of free 

abrasive polishing while avoiding their drawbacks.  Key features of the proposed 

CMPG method includes: Defect Mitigation via Minimization of Maximum Force, 

Effective Planarization via Profile Driven Determination of Force Gradient, and 

Robustness via Homogenization. 

Presented in this thesis is a review of past and present CMP machines, the 

background and conceptual development of CMPG, and the construction and testing 

of a prototype CMPG machine.  The construction of the prototype CMPG machine, 

built as a proof of concept, is thoroughly documented as it exists at its current 

juncture of development.  A set of tests that parameterize the process parameters 

and consumables are analyzed.  The analysis provides a characterization of the 

planarization capabilities of the prototype CMPG machine. 
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CHAPTER 1 INTRODUCTION & LITERATURE REVIEW 

Chemical Mechanical Planarization (CMP) is a critical polishing technology 

used extensively throughout the semiconductor industry.  Over $3 billion was spent 

on CMP equipment and materials in 2008 alone (Moinpour, 2008).  The capital 

expenditures and critical status of CMP stem from the superior planarization it 

delivers at both a global and local scale.  At a local scale, features less than a tenth 

of a micron will be planarized by CMP with near atomic precision while maintaining a 

global within wafer uniformity of 6%.  Though CMP has known solutions for current 

and future flatness requirements as laid out by the International Technology 

Roadmap for Semiconductors (ITRS), surface defects including shattered and 

continuous scratches remains a problem and requires excessive and costly 

remedies to prevent abrasive particle agglomeration, excessive particle filtration and 

extreme operational conditions.  The ITRS states that research is required for new 

planarization methods and materials that reduce defects and overall cost of 

producing Integrated Circuits (IC) (INTERNATIONAL ROADMAP COMMITTEE, 

2010). 

Chemical Mechanical Paired Grinding is a new planarization method, 

developed at Iowa State University, designed to provide a marked defect reduction 

at feasible and economic operational conditions.  The proposed method utilizes 

insights from the operational principals of polishing and grinding by combining the 

strengths of fixed abrasive grinding with those of free abrasive polishing while 

avoiding their drawbacks.  Key features of the proposed CMPG method includes: 
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Defect Mitigation via Minimization of Maximum Force, Effective Planarization via 

Profile Driven Determination of Force Gradient, and Robustness via 

Homogenization. 

The objective of this thesis is to document the construction of a prototype 

CMPG machine and investigate its characteristics and performance. 

The thesis layout is as follows. A literature review of the current state of the 

art in CMP machine development is presented in this chapter.  An overview of the 

CMPG concept and background are presented in Chapter 2.  Construction of the 

prototype CMPG machine is presented in Chapter 3.  The experimental setup, 

procedure, and testing methodology are presented in Chapter 4.  Detailed 

examination of the testing results is presented in Chapter 5. 

1.1. CMP Machine Development 

CMP is a hybrid of chemical etching and free abrasive polishing that 

smoothes a surface by selectively removing material from the peaks of surface 

asperities faster than the valleys (Brown, 1987)(LANDIS H, 1992)(Steigerwald J. M., 

2000)(Steigerwald J., 1997)(Li, 2007)(Oliver, 2004).  The three most important 

components of this process are: polishing pads, slurry, and abrasive particles 

suspended in the slurry (though recently systems sans slurry or abrasives have 

been developed (Velden, 2000)(Kondo S., 2000)).  Figure 1-1 shows a standard 

layout of these components in a simple and familiar rotary design.  The pad rotates 

or translates across the surface of a wafer transporting fresh slurry via internal pores 

or grooves which also carry abraded surface material away from the work zone.  

Slurry is dispensed onto the polishing pad in a quantity sufficient to flood the pad so 
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slurry can spread across the contact interface of the pad and wafer.  The slurry is a 

chemical solution that is tailored to selectively passivate the upper layer of the wafer.  

Suspended in the slurry are abrasive particles that mechanically abrade material 

from the passivated layer of the wafer. 

CMP was used primarily by the optics industry until the 1980s when IBM 

optimized the process for use in IC (LANDIS H, 1992).  Once optimized, the 

continual miniaturization of line widths in IC justified the cost of CMP over cheaper 

alternatives used in semiconductor fabrication.  This resulted in a rapid expansion of 

the demand for CMP products and allowed equipment manufacturers to produce 

standalone polishers designed to the exacting standards of semiconductor 

fabrication (Zantye P., 2004). 

1.1.1 First Generation Polishers 

The first generation of polishers date back to the 60's (Regh J., 1971) and 

were simple rotary polishers that had a large pad and a single wafer carrier that 

each rotated about its respective axis.  Slurry was deposited near the center of the 

pad and upstream of the carrier to allow centrifugal force to spread it evenly across 

the pad.  An example of this design can be seen in Figure 1-1 Rotary  Polish er.  The 

primary advantage of these systems was their simplicity which provided a low barrier 

of entry into the nascent field of CMP.  Subsequent designs, and even alternative 

technologies at the time, would reveal that the simplicity of the first generation came 

with a high Cost Of Ownership (COO).  The pads used in the rotary design were 

relatively large and would generate inconsistent Material Removal Rates (MRR) 
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after moderate usage.  Confronted with an intolerable variation in process 

parameters, frequent replacement of the pad was required which carried with it 

additional downtime.  The large pads also required the deposition of substantial 

amounts of slurry to ensure flooding of the entire pad surface.  The flooded pad 

would provide adequate slurry flow to the wafer-pad interface, but would also cause 

slurry to build up on the leading edge of the carrier resulting in poor slurry utilization 

(Bibby T., 2000). 

1.1.2  Second Generations Polishers  

Though CMP was the premier planarization technique, it was also the 

bottleneck in most semiconductor production lines.  The second generation of 

polishers addressed this by evolving the design of CMP machines to accommodate 

greater throughputs.  One method of increasing throughput that had been 

investigated long before the advent of CMP (Cronkhite P., 1973) was the 

simultaneous polishing of numerous wafers on a single polishing pad.  Increasing 

the number of wafers per polishing pad drastically increases the throughput of a 

system with a negligible increase in consumable costs.  The drawing in Figure 1-2 

Multi-waf er Polish er(Torbert W., 1990) is of a multi-carrier planarizer equipped with 

four sub carriers (labeled '24' in the drawing) that each hold a wafer (labeled '26') 

which mount to one of the four carriers (labeled '18') and are lowered into position 

against the rotary platen (labeled '14').  The increased throughput of a multi-wafer 

per pad system does come with a few disadvantages however.  There is a chance 

that a wafer could shatter during the course of polishing, showering jagged 
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fragments onto the pad effectively destroying every other wafer along with it.  The 

multitude of carriers also complicates pad loading making a uniform pressure 

distribution difficult if not impossible to achieve if the carriers are loaded 

asymmetrically.  Both of these drawbacks will decrease the actual yield rate below 

the ideal yield rate of a production line, but will be more than offset by the increased 

throughput compared to a traditional, single headed polisher. 

Another implementation still common in systems today is the use of 

sequential polishers.  The design involves simultaneous processing of a single wafer 

at each platen of the machine.  This type of approach is a natural fit for multi-step 

CMP techniques.   An exploded view of one possible sequential rotational system is 

shown Figure 1-3 (Somekh, 1999).  A common multi-step process for a sequential 

system would first polish the wafer on a platen with high MRR that removes the bulk 

of the material, followed by a subsequent polish on a platen optimized for 

planarization, and finished on a platen with a gentle MRR designed to buff out any 

superficial defects the first two platens may have created.  Multi-step arrangements 

of this kind would require careful process control to ensure each step completes in 

approximately the same amount time or the slowest step will create a bottleneck the 

others.  There is also the concern that a defect in one of the pads would destroy 

multiple wafers before an outgoing wafer could be examined.  This adds the 

additional complication of figuring out which pad is defective once a defect has been 

identified.  Downtime may also be an issue in sequential systems that employ a 

multi-step process since a failure of any one tool will shut down operation across the 

entire machine. 
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1.1.3 Third Generation Polishers and Beyond 

The innovations made in previous generations focused on increasing 

throughput with slight progress made in process control.  However, increasingly 

stringent planarization goals began to tax the ability of process engineers to 

generate acceptable yield levels with existing equipment.  With a sufficient level of 

throughput achieved from previous advancements, the third generation of polishers 

focused on refining the more subtle aspects of the CMP process.  Various innovative 

implementations were devised that each provided their own unique advantage in 

controlling process parameters while maintaining or exceeding productivity levels 

established by previous generations. 

The linear polisher works like a belt sander by placing the pad in tension 

between two rollers and pressing the wafer against it.  A linear polisher uses novel 

pad architecture that allows CMP polishing pad materials to be used in the 

construction of a flexible belt that can be drawn linearly across the wafer at very high 

and uniform speeds.  Figure 1-4 is a representation of a continuous belt linear 

polisher.  In this system the slurry is applied upstream of the wafer.  The wafer is 

held against the pad above a rigid platen which may contain a fluid bearing capable 

of controlling the pressure distribution across the wafer face (Pant A., 1998).  

Superior MRR uniformity is achieved when the wafer is held with low down force and 

allowed to rotate gently within the carrier.  An alternate implementation of the linear 

polisher uses a reciprocating belt rather than a continuous belt in concert with lateral 

motion of the carrier that effectively creates orbital motion between the pad and the 

wafer (Krusell W., 2002).  Linear polishers are particularly useful at oxide CMP but 
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due to an incompatibility with multi platen systems lack the flexibility to perform multi 

step CMP process, like Cu CMP(Dyer, 2005). 

Orbital polishers are similar to traditional polishers except for the platen which 

has exchanged rotational motion for orbital motion about the carrier head. This 

subtle, but important, distinction allows the orbital polisher to polish at similar or 

higher relative speeds, with greater MRR uniformity, and with a smaller tool profile 

(occupies less factory floor space) than its traditional counterpart.  A platen that 

orbits the carrier has the advantages of reduced susceptibility to run-out, easier pad 

to replacement, and the unique ability to apply slurry directly to the wafer which 

greatly increases slurry utilization.  The slurry is fed up through holes in the platen 

that are aligned with holes in the pad that allow the slurry both ingress into the pad 

and access across the interface via a pattern of flow facilitating grooves in the pad.  

Care must be taken to prevent these grooves from creating helical wear patterns on 

the wafer (this is often accomplished by adding an arbitrary motion to the orbiter).  

Figure 1-5 is an example of an orbital polisher that orbits its platen about a rotating 

carrier head.  Alternate, but equally viable, implementations of an orbiting polisher 

have the carrier orbiting atop a large rotary platen (Shendon, 1999), have a carrier 

orbiting atop a linear polisher (Adams J., 2002), and have both the carrier and the 

platen performing orbiting motion (Lee K., 2001). 

Web polishers utilize a pad that is advanced from a roll..  Since the pad 

remains stationary relative motion is produced exclusively by the carrier which 

rotates and translates producing an orbital motion.  Greater control of the MRR is 

capable when carrier motion is carefully controlled to maintain equal velocities 
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across all points on the wafer.  This control can be further enhanced in systems that 

eschew rotational motion for a pneumatic interface that allows local pressure control 

of the wafer face (Tucker, 2004).  A drawing of a web polisher is shown in Figure 

1-6.  The significant advantage of web polishers comes from the incremental 

advancement of fresh pad material to the wafer face.  This is especially useful for 

pad materials that wear out quickly and would otherwise cause intolerable downtime 

from the pad replacements.  Though slurries are commonly used in this design, 

there are equally common variants of web polishers that contain an abrasive 

embedded within the pad itself (Goetz, 2001)(Shon-Roy, 2000). Web tools hold a 

distinct advantage over other designs in tool utilization claiming continuous 

production times of up to a week before it needs to be re-qualified (Bonner B., 2008). 

Each CMP method has been developed for a specific issue.  The first 

generation CMP machines use a simple design to provide adequate process control, 

albeit at high cost of ownership.  The second generation CMP machines sacrifice 

efficiency and simplicity for greater productivity.  The third generation CMP 

machines regain some of the efficiency lost in the second generation as well as 

expanding process controls at the cost of greater complexity.  Though each 

generation has been a step forward for IC fabrication, none of the methods 

developed have focused on the reduction of defects.  CMPG is the first method 

designed specifically to reduce defects at economic operating conditions. 



9 

 

 

Figure 1-1 Rotary Polisher 

 

Figure 1-2 Multi-wafer Polisher 
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Figure 1-3 Sequential Rotational Polisher 

 

Figure 1-4 Linear Polisher 
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Figure 1-5 Orbital Polisher 

 

Figure 1-6 Web Polisher 
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CHAPTER 2 CMPG CONCEPT AND BACKGROUND 

CMP is expensive both in terms of upfront capital, costing millions of dollars 

for a single CMP machine, and cost of operation due to use of consumables like 

pads and slurry which occupied 11% of the budget for all materials related to 

semiconductor manufacturing in 2006 (Moinpour, 2008).  Due to progressively 

shrinking feature sizes which are currently as small as 16nm, CMP is also mired by 

defectivity concerns at a multiplicity of length scales.  Though reliability of the CMP 

process remains a primary goal, meeting the year over year goal of a 29% reduction 

of the cost-per-function has the semiconductor industry attempting to reduce 

defectivity levels from all possible angles (INTERNATIONAL ROADMAP 

COMMITTEE, 2010). 

CMPG utilizes insights from the operational principals of polishing and 

grinding by combining the strengths of fixed abrasive grinding with those of free 

abrasive polishing to provide a marked defect reduction at feasible and economic 

operational conditions.  Figure 2-1 outlines the goals of the synergistic combination 

of platforms into a single CMPG platform.  Key features of the proposed CMPG 

method includes: Defect Mitigation via Minimization of Maximum Force, Effective 

Planarization via Profile Driven Determination of Force Gradient, and Robustness 

via Homogenization.  These features are physically implemented via a counter-

gimbaled base and high frequency on-demand pulsation of paired grinding wheels. 
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2.1. Defect Mitigation via Minimization of Maximum Force 

Grinding has historically been a less expensive operation to implement than 

polishing.  Though there are examples grinders attempting to parlay this economic 

advantage into the CMP process (Yoshio, 2000), commercial CMP machines rely 

exclusively on polishing due to the pre-requisite levels of roughness and 

planarization expected in IC fabrication (Bastawros, 2003).  The primary distinction 

between polishing and grinding is the stiffness of the polishing media used (Li, 

2007).  Polishers use elastic media that sever bonds on a molecular level ejecting 

nanometer sized clusters (Steigerwald J., 1997).  Conversely, grinders have rigid 

media that propagate cracks through a work piece abrading micron sized particles 

from the lattice of the substrate.  The cracks created during grinding leave 

subsurface damage that can sap a surface of 70% of its strength.  Modeling efforts 

by Chandra et al (Chandra A., 2000)(Qu W., 2000) have identified the maximum 

force/grit as a key variable of subsurface damage and minimization of force/grit as a 

productive avenue of subsurface damage mitigation.  Processes like ductile regime 

grinding have long been known to induce plastic chip removal in brittle materials via 

low force/grit levels (Bifano T., 1991), but the high machine stiffness ductile machine 

grinders require makes them very expensive and still don’t limit subsurface damage 

to levels acceptable in IC fabrication. 

CMPG capitalizes on the insights gleaned from the investigation into 

minimization of force/grit by applying the insights to errant particles that plague 

polishing processes with surface damaging micro-scratches (Chandra, 2004).  This 

is accomplished by incorporating the wafer platen into a gimbal and replacing the 



14 

 

polishing pad with a pair of diametrically opposed polishing wheels.  Large particles 

that get trapped between the wafer and one of the polishing wheels will produce a 

net torque that rotates the gimbal away from the offending particle effectively 

minimizing the force it can transfer to the surface.  By optimizing the dynamics of the 

gimbal to respond to the acute forces created by errant particles, a defect-mitigating 

maximum-force-minimization is realized at low cost since implementing the gimbal 

does not require a stiff frame. 

2.2. Effective Planarization via Profile Driven Determination of Force Gradient 

A wide range of studies on the CMP process have been reported.  For 

example, previous work investigated MRR (Komanduri, 1996)(Evans C.J., 2003) and 

the effects of the pad and slurry properties (Bastawros A. F., 2002) on the process. 

Wang et al. (Wang, 2005) introduced the effects of pad wear and its evolution in an 

effort to extend the pad response model developed by Bastawros et al. (Bastawros 

A. F., 2002), and Luo and Dornfeld (Luo, 2003) to assess the propensity of 

scratching.  It is also well known that the slurry gradually evolves with time, with and 

even without continued processing, and that there is a strong correlation between 

slurry evolution and the generation of scratches on the finished wafers.  In the 

physics and colloidal chemistry communities a variety of modeling efforts as well as 

experimental investigations (Lin, , 1989,)(Lin, 1990) of slurry agglomeration have 

been reported.  There also exists a wide body of literature where the interactions 

between mechanical and chemical evolutions of slurry properties have been 

investigated (Komulski, 2001) (Che, 2005 ).  Recently, Saka et al (Saka, 2010) have 

also investigated the roles of pad hardness and friction coefficient on scratching.  
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Scratches are currently a major source of yield deterioration since current CMP 

processes can be expected to produce around 40 critical scratches per wafer 

(INTERNATIONAL ROADMAP COMMITTEE, 2010).  Understanding the root 

causes of scratches and eliminating them will provide a boost to yield. 

Utilizing insights from such modeling activities have to the development of 

control algorithms that predict the optimum process parameters to apply to a specific 

location on a wafer depending on the surface profile at that location.  The control 

algorithms can reduce variations in step height (Kadavasal M., 2005) or scratch 

propensity (Chandra A., 2008).  To employ these algorithms however, a process 

must be able to apply zonal control since the optimal parameters will vary depending 

on the surface profile located within a die.  Figure 2-2 Surf ace Prof ile Comp arison 

of  Control S trateg ies is a graph of the theoretical difference in step height an 

effective control strategy can have on step height.  The large polishing pads used in 

conventional CMP have very limited zonal control and are better suited to providing 

uniform conditions across an entire wafer.  CMPG however, calls for the use of 

polishing wheels, which are in contact with a fraction of the wafer at any time, that 

are capable of high frequency on-demand pulsation, which controls the force applied 

by the wheels to the wafer, enabling an unprecedented level of zonal control in a 

CMP process.  The zonal control combined with the control algorithm allows the 

CMPG to use profile driven determination of force gradient. 
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2.3. Robustness via Homogenization 

An advantage of conventional CMP is it can maintain a uniform set of process 

parameters across a large surface area.  Though this advantage can be seen as a 

disadvantage when optimal conditions vary across the surface of a wafer as is the 

case during over-polish, the resultant suboptimal surface profile created by the 

uniformity still falls within satisfactory limits of planarization.  However, when optimal 

conditions across an entire wafer are exactly the same , as is often the case after a 

film that is equal in thickness across the entirety of a wafer needs to be removed, 

uniformity must be maintained to planarize a surface down to its target profile. 

The process parameters on a rotary CMP machine aren't actually uniform at 

any instant during planarization since the relative velocity and pressure will vary 

depending on the location from the center of the wafer.  The wafer is rotated 

however, and the rotation will create a homogenizing effect on the average process 

parameters applied to any point on a wafer.  Linear polishers, for example, apply a 

true uniform velocity field across a wafer but they also have pressure variations at 

the leading and trailing edges.  This is ameliorated by rotating the wafer within its 

carrier which homogenizes the average conditions seen across the wafer.  It is 

essential to the robustness of a process that a specific set of process parameters 

can be selected from a large range of possible values and be applied with a 

repeatable and reliable uniformity to a wafer  

CMPG utilizes the insight that robustness via homogenization is the 

economical and effective method applying uniform conditions across the entirety of a 

wafer.  CMPG realizes this by inducing rotation about two orthogonal axes.  
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Figure 2-1 CMPG Platform 

 

 

Figure 2-2 Surface Profile Comparison of Control Strategies  

Fig. 6: Final surface profile comparison for different control

strategies. Note beneficial effect of “Curvature Subtraction”

due to Coupling of Pressure & Velocity.

Fig. 6: Final surface profile comparison for different control

strategies. Note beneficial effect of “Curvature Subtraction”

due to Coupling of Pressure & Velocity.
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CHAPTER 3 CONSTRUCTION OF PROTOTYPE CMPG MACHINE  

The three key features of CMPG require a unique combination of untested 

machine design.  To prove this design was feasible a prototype was constructed as 

a proof of concept.  This chapter documents the construction of the prototype with 

an explanation of critical assemblies and control systems.  The prototype and its 

CAD rendering can be seen in Figure 3-1 Ph y sical Prototy p e &  CAD Rendering .  

Figure 3-2 is an illustration of the motion of the core components of the CMPG 

machine.  Construction of the prototype CMPG machine began in 2007 and has 

taken place entirely within the laboratories at Black Engineering of Iowa State 

University. 

3.1. Framework & Supporting Assemblies 

3.1.1 Machine Frame 

Construction of the prototype began with the Machine Frame.  The Machine 

Frame provides a rigid base that supports all other components in the assembly.  

The use of 2x2 square steel tubing welded together to form a cube that provides a 

base of satisfactory stiffness.  In addition to the twelve segments that comprise the 

cube, there are four segments of cross bracing that provide additional stiffness but 

serve primarily as the mounting location of most other components.  Welded to the 

bottom two cross bracings are four legs that affix to the Mounting Table.  An 

engineering drawing of the Machine Frame can be seen in Figure 3-3 Mach ine 

F rame. 
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3.1.2 Upper Stage Frame 

The Upper Stage Frame is a sturdy mount for the Lateral Stage while 

facilitating smooth vertical translation.  It holds the Lateral Stage between the two 

squared tubes with a five inch gap and below the row of Stage Mounting Plates.  

The frame can be moved up and down via an Actuator Bolting Plate that is welded to 

the center Stage Mounting Plate.  The Actuator Bolting Plate bolts to a Vertical 

Actuator that lifts and lowers the Upper Stage Frame and everything mounted to it.  

The four Linear Bearings located at either end of the square tubes spaced 28.44" 

apart ensures a smooth vertical motion by coupling to four Vertical Guides. An 

engineering drawing of the Upper Stage Assembly can be seen in Figure 3-4. 

3.1.3 Vertical Guide Assembly 

The Vertical Guide Assembly is a guide for the Upper Stage Frame.  The 

guides ensure the Upper Stage Frame and all other parts mounted to it do not drift 

laterally when lifted or lowered or imparted with any lateral displacement force.  

There are four guides, each with a vertically oriented stainless steel rod that couple 

to the four linear bearings of the Upper Stage Frame.  Figure 3-5 is an engineering 

drawing of the Vertical Guide Assembly. 

3.1.4 Mounting Table 

The Mounting Table is itself mounted to the Machine Frame.  The Mounting 

Table has four legs welded to the bottom of it.  These four legs are inserted into the 

four receiving legs welded to the bottom of the Machine Frame.  Once inserted, a 

series of pre-drilled holes present in the legs of both the frame and the table allow a 
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mounting pin to be inserted through each matching leg set.  Once a pin has been 

inserted into all four sets the Mounting Table is securely fastened in place.  The 

Mounting Table is the mounting platform for the Gimbal Assembly.  A drawing of the 

Mounting Table can be seen in Figure 3-6.  The hole in the middle of the table allows 

the Table Motor to enter from beneath and couple to the Gimbal Table mounted 

above. 

3.2. Gimbal Assembly 

The Gimbal Assembly is mounted to the Mounting Table.  The Gimbal 

Assembly contains the gimbal mechanism which holds the wafer during polishing.  

The gimbal is designed to rotate when the polishing wheels apply a net torque, thus 

balancing the nominal load beneath each of the polishing wheels.  The assembly 

mounts to the Mounting Table via a Thrust Bearing.  The thrust bearing allows the 

entire assembly to rotate and is mounted to the bottom of the Gimbal Table.  The 

Gimbal Table has a broached keyway that couples to the Table Motor.  Bolted to the 

top the Gimbal Table are two Gimbal Legs.  The Gimbal Legs couple to the Gimbal 

Ring which is the first component of the actual gimbal mechanism.  The Gimbal Ring 

is coupled to the Gimbal legs via a Collared Bolt inserted through a Plastic Bushing.  

The Gimbal Ring is in turn coupled to the Platen, which is the disc the wafer is 

secured to during polishing.  A Collared Bolt and Plastic Bushing are also used to 

couple the Gimbal Ring to the Platen.  The Collared Bolt and Plastic Bushing are 

item 5 and 4 respectively as seen in Detail A and Detail B of Figure 3-7.  There are 

also four sets of shocks coupled to the Platen.  The shocks control the rotational 

dynamics of the gimbal mechanism. 
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3.3. Motorized Assemblies 

3.3.1 Actuator Assembly 

The Actuator Assembly contains the Vertical Actuator which is an in-line 

actuator with an 8" stroke and NEMA 23 stepper motor from Ultra Motion.  The 

Vertical Actuator lifts and lowers the Upper Stage Frame.  The assembly is located 

atop the Machine Frame.  It mounts to the frame via four U-Bolts that tighten against 

the Actuator Mounting Plate.  The Vertical Actuator is inserted through a Plastic 

Spacer.  Since the Vertical Actuator would sit too close to the Upper Stage Frame if 

mounted directly to the Actuator Mounting Plate, the Plastic Spacer allows the 

actuator to utilize its full range of motion by elevating it 10". 

The Vertical Actuator is driven by a 'PDO 5580 Step Motor Driver' from 

Applied Motion Products.  The driver receives control signals from a host computer 

running Labview.  Labview is used as a virtual instrument which has back end code, 

called a Block Diagram which can be seen in Figure 3-13, and a Front Panel which 

contains a graphical user interface an operator can use to send a specific set of 

command instructions.  The top left block of the Front Panel seen in Figure 3-14 is 

used to command the Vertical Actuator.  

3.3.2 Table Motor Assembly 

The Table Motor Assembly contains the Table Motor which is a 154W 

brushless motor from MCG.  The Table Motor couples to the Gimbal Table via a 

broached keyway.  The Table Motor is used to rotate the Gimbal Assembly at a 

specified velocity or to hold a commanded position.  The motor is secured in place 
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via a Table Motor Plate and two Table Motor Brackets.  The Table Motor Plate is 

secured to the four legs welded to the bottom of the Machine Frame.  The Table 

Motor Assembly can be seen in Figure 3-9.  Note that the Table Motor has a 5:1 

reducer mounted to it in its current configuration.  It's the reducer that protrudes up 

through the Mounting Table and couples to the Gimbal Table. 

The Table Motor is driven using a 'Xenus XTL' amplifier from Copley Controls.  

The amplifier is sent control signals from Labview which an operator can command 

using the bottom right block of the Front Panel in Figure 3-14. 

3.3.3 Stage Assembly 

The Stage Assembly mounts to the underside of the Upper Stage Frame.  

The Stage Assembly contains the Lateral Stage, Load Cells, Wheel Motors, and 

Polishing Wheels. 

The Lateral Stage is a 30" two carriage bi-slide powered by a NEMA 34 motor 

from Velmex.  The carriages, annotated as item 2 in Detail B of Figure 3-10, are 

located symmetrically about the middle of the rail and always move an equal and 

opposite distance when the rail rotates.  The Lateral Stage is driven by a 'VXM 

Stepping Motor Controller' from Velmex.  The controller is commanded via the 

bottom left block of the Front Panel in Figure 3-14. 

Mounted to the carriages of the Lateral Stage are the Load Cells which are 

single point bending beam 20 kg capacity load cells from Loadstar Sensors. The 

Load Cells and Load Cell Mounting Bracket are annotated as item 5 and 4 

respectively in Figure 3-10.  The Load Cells transduce the load applied to the 
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polishing wheels into a measureable signal recorded by the data acquisition system.  

Readings from the Load Cell are automatically saved though they can also be 

viewed in real time via the top right block of the Front Panel in Figure 3-14.   

Mounted to the Bottom of the Load Cell is the Wheel Motor Bracket and 

Wheel Motor.  The Wheel Motors are 481W brushless motors from MCG.  Attached 

to the shaft of each Wheel Motor is an Arbor that holds the Polishing Wheel.  The 

Arbor is designed to reduce the dead zone between the wheels as much as 

possible.  The dead zone is a consequence of a pair of wheels that meet in the 

center of a wafer but cannot actually polish directly at the center.  The Wheel motor 

is annotated as item 3 in Figure 3-10. 

3.4. Enclosure and Slurry Dispenser 

3.4.1 Slurry Dispenser Assembly 

The Slurry Dispenser Assembly mounts to the top cross bracing of the 

Machine Frame.  The Slurry Dispenser Assembly contains the Slurry Dispenser.  

The Slurry Dispenser reserves all necessary slurry required for polishing and 

dispenses it at an appropriately metered rate.  The dispenser is bolted to a 

Dispenser Mounting Plate.  The Dispenser Mounting Plate is connected to four U-

Bolts that are secured to the Machine Frame.  The Slurry Dispenser has a plastic 

tube that leads from the nozzle of the dispenser to the screw hole of the Motor 

Bracket that is positioned directly above the Polishing Wheels.  There are two Slurry 

Dispenser Assemblies, one for each Polishing Wheel.  The dispenser is metered via 
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a needle valve and a solenoid.  The Slurry Dispenser Assembly can be seen in 

Figure 3-11. 

3.4.2 Enclosure 

The Enclosure is not part of the CMPG machine but it is required to safely 

perform tests when using slurry.  Though slurry is a necessary part of CMPG, it is 

potentially hazardous if not disposed of properly.  The Enclosure has a floor made of 

HDPE and has channels that run down into the center of the Enclosure.  At the 

center of the floor is a floor drain that is attached to a tube that runs out the side of 

the enclosure and into a floor drain located within the Laboratory.  The Enclosure 

has two walls and two doors that allow access to the machine.  The walls and doors 

are made of Lexan.  The floor boards that run along the bottom of the Enclosure are 

also made of HDPE. 

3.5.  Future Components 

At the time of this thesis' writing, the prototype is lacking components that 

would fully utilize the three key features of CMPG.  Despite the absence of polishing 

wheels capable of high frequency pulsation and a gimbal with customizable 

dynamics, testing of the prototype in its current form has significant data to offer.  

Though testing has been performed constantly throughout the development cycle to 

ensure functionality of components as they are added, the tests evaluated in this 

thesis represent a thorough evaluation of the prototype and its capabilities at its 

current development juncture.  Results will be used directly in the future 

development of prototype construction and modeling efforts.  
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Figure 3-1 Physical Prototype & CAD Rendering of CMPG Machine 

 

Figure 3-2 Motion of CMPG Machine 
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Figure 3-3 Machine Frame 

 

Figure 3-4 Upper Stage Frame 
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Figure 3-5 Vertical Guide Assembly 

 

Figure 3-6 Mounting Table 
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Figure 3-7 Gimbal Assembly 

 

Figure 3-8 Actuator Assembly 
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Figure 3-9 Table Motor Assembly 

 

Figure 3-10 Stage Assembly 
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Figure 3-11 Slurry Dispenser Assembly 

 

Figure 3-12 Enclosure 
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Figure 3-13 Block Diagram of Labview Program Used To Control The 

Prototype 

 

Figure 3-14 Front Panel of Labview Program Used To Control The Prototype 
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CHAPTER 4 EXPERIMENTAL SETUP, PROCEDURE, & TESTING 

METHODOLOGY 

4.1. Experimental Setup 

An experimental parameterization of consumables and process parameters is 

performed to determine the capabilities of the prototype.  The consumables used are 

aluminum wafers, soft and hard polishing wheels, and high and low MRR slurries.  

The process parameters varied across tests are the relative velocity between the 

wheel and the wafer, the nominal load between the wheel and the wafer, the dwell 

time of a wheel on the testing region of a wafer.  An additional test evaluating the 

effect of previously used polishing wheels is also performed. 

4.1.1 Consumables 

4.1.1.1 Wafers 

The wafers are made of 6061 aluminum that has been machined into either 

1.5” or 6” diameter discs.  The aluminum wafers have been pre-polished on one side 

by the supplier.  All test polishing is performed on the side that has been pre-

polished.  The pre-polished aluminum has very low surface roughness at short 

wavelengths.  The global planarity of the pre-polished surface is poor, showing a 

significantly high level of waviness at longer wavelengths.  The waviness and 

roughness of the pre-polish is quantified in Section 4.4.3.  In the tests examined in 

this thesis there is only one test that uses a 6” wafer.  All other tests use a pair of 

1.5” wafers.  Figure 4-1 I llustration of  6 "  Waf er Setup  is an illustration of the setup 
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for a 6" wafer.  In this configuration the wheels may start at the outer edge or the 

middle of the wafer and slowly move laterally towards or away from each other.  The 

platen rotates in the 6” configuration.  The polish is completed when the wheels 

meet at the center or reach the edge of the wafer.  The entire wafer is polished in 

this configuration.  Figure 4-2 is the setup for 1.5" wafers.  Two wafers are polished 

in this configuration.  The left wheel would start at the inner or outer edge of the left 

wafer and the right wheel would start at the inner or outer edge of the right wafer.  

The wheels would then move laterally toward or away from each other while the 

polishing wheels rotate but the platen remains stationary.  The polish is complete 

when each wheel meets the other side of its respective wafer.  Only a channel 

through the middle of the wafer is polished in this configuration.  In either 

configuration the wafers are secured to the platen using a high stiffness double 

sided tape. 

4.1.1.2  Slurry 

Most test runs use highly aggressive slurry that contains alumina particles 

one micron in diameter.  The high Material Removal Rate (MRR) of the alumina 

slurry produces a surface topography that can be interpreted through the 

background noise inherent in every test.  In all tests using the alumina slurry the 

slurry is diluted from with DI in an 8:1 ratio of DI to slurry.  Low MRR slurry 

containing .05 micron diameter silica particles is used as a point of comparison in a 

few of the test runs.  The silica slurry is used is not diluted.  All slurries are mixed 

vigorously before use to ensure a homogenous mixture.  All slurries used are 

purchased from Eminess. 
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4.1.1.3 Polishing Wheels 

The polishing wheels are made of an impregnated felt and are purchased 

from Spartan Felts.  The wheels are 5" in diameter and of either a low or medium 

density.  The wheels have a .5" arbor hole in the center of the wheel for mounting of 

the wheel to the arbor.  Most tests use the low density polishing wheels, though a 

run of tests are made using the medium density wheels as a point of comparison.  

The wheels are always soaked in DI water for 24 hours before a test.  All test runs 

begin with fresh polishing wheels with the exception of the test run that purposely 

uses ‘worn’ polishing wheels as a point of comparison. 

4.2. Calibration 

4.2.1 Load Cell Calibration  

Calibration of the load cells is twofold.  First a base level of electrical noise is 

established to determine the minimum resolution a reading can be taken at.  The 

second aspect of calibration uses a 200 gram weight to establish overall accuracy of 

the load cells. 

The yellow and green lines running through each of the load cell charts are 

running averages of the data points for cell 1 and 2 respectively.  A running average 

of 100 data points is used in all instances a running average is presented.  All tests 

had a sampling rate of 400 Hertz so the running average would reflect all data 

gathered in the last quarter second. 
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4.2.1.1 Resolution 

The active component of the load cells transduce load via a resistive 

mechanism, essentially a strain gauge mounted to the top of the load cell.  The 

active component is not completely shielded from electrical interference and 

components like the polishing motors will alter the resolution of the load cells when 

power is flowing through them.  Figure 4-3 shows a chart of the readings collected 

from the load cells when none of electrical components are powered on.  Figure 4-4 

is a chart of the load cells after all electrical components are powered on but not 

engaged (meaning they have power flowing through them but have not been 

commanded to move).  It is clear from visual inspection that load cell readings are 

noticeably less precise when other compnents are active.  Specifically the data from 

Figure 4-3 has a standard deviation of 0.079 and 0.096 for load cell 1 and 2 

respectively while the data from Figure 4-4 has a standard deviation 1.733 and 

0.698 for load cell 1 and 2 respectively.  It's unclear why load cell 1 is noisier than 2 

but the effect on resolution is drastic.  Figure 4-5 is a chart of load cell 1 and 2 when 

the power is turned off halfway through the test. 

4.2.1.2 Accuracy 

The accuracy of the load cells are gauged using a 200 gram weight placed on 

top of each polishing wheel after the wheels have been mounted to the motor.  The 

weight is placed on the wheel to simulate the loading that would occur during a test.  

Figure 4-6 shows a chart of the load cells when the 200 gram weight was placed first 

on the wheel connected to cell 2 then removed and placed on wheel of cell 1.  The 

test was performed while all other electrical components were off.  The mean value 
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recorded by the load cells while the weight was on the wheel compared to the values 

when it was off shows a difference of 1.92N and 1.90N for cell 1 and 2 respectively.  

Since a 200 gram weight is the equivalent of 1.96N load cells 1 and 2 appear to be 

off by 2% and 3% respectively.  

4.2.2 Vertical Actuator 

Before a test could begin the Vertical Actuator needs calibration.  This is 

required since the displacement of the Vertical Actuator determines the nominal load 

applied to the wafer by the polishing wheels.  To ensure the correct load is applied 

during a test the wheels are positioned over the center of the wafers and lowered 

slowly down until the load cells indicate the wheels are pressing against the wafer 

with the desired load.  Once the desired load is reached the Vertical Actuator is 

raised a standard number of counts (an encoder attached to the Vertical Actuator is 

wired into the host computer and displayed on the Front Panel), usually 100 counts, 

and then held there until the test starts.  Once the test starts the Vertical Actuator 

can be lowered back down the pre-determined number of counts to return to the 

desired load.  Figure 4-7 is a chart of the Vertical Actuator being calibrated by 

moving it in increments to see what load will occur at a specific displacement.  The 

Vertical Actuator needs to be calibrated every time the wheels are taken off and put 

back on. 

4.3. Experimental Procedure 

Step 1: Soak the Wheels 
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Every test used either low or medium density polishing wheels.  Regardless 

of the wheel type used, all wheels were soaked for a minimum of 24 hours in DI 

water before a test. 

Step 2: Prepare Consumables 

The consumables used in each test were a pair of polishing wheels, 

aluminum wafers, and a polishing slurry.  First the aluminum wafers would be placed 

on the platen in the arrangement shown in Figure 4-2.  Then the wheels would be 

removed from the DI water, placed in the arbors, and mounted to the wheel motors.  

The wheels were then spun for five minutes to expel the excess water. Once the 

wheels are in place the slurry can be deposited into the slurry dispensers.  The 

slurry must be first diluted if so required, then stirred before depositing into the 

dispensers.  Once the slurry is in, the wheels are given a run in time before polishing 

begins, meaning the wheels are spun at a low speed while the slurry is fed to them 

so they become saturated with slurry. 

Step 3: Process Parameters Initialized 

Labview and Pro Motion (the program that runs the polishing motors) are 

opened and the values the specific tests calls for are uploaded before the test is 

begun.  The Lateral Stage moves the wheels to the edge of their respective wafers.  

The Vertical Actuator would be calibrated in this step if not already done in a 

previous test. 

Step 4: Initiate Polish 

The wheels are commanded to begin spinning at the specified speed and the 

slurry dispensers are activated.  Once the wheels and slurry are active Labview is 
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activated and Load Cell data is collected for the remainder of the test.  Once 

Labview is active the Vertical Actuator is lowered into position.  Once the Vertical 

Actuator is in position the Lateral Stage is commanded to move the wheels 2" across 

the wafers at a specified speed. 

Step 5: End Polish 

Once the Lateral Stage has moved 2" the Vertical Actuator is raised back up 

into its initial position.  Once raised back up a minimum of fifteen seconds are 

allowed to transpire before the Labview program is deactivated which concludes the 

gathering of Load Cell data.  After Labview is deactivated the slurry dispensers and 

wheels are turned off. 

Step 6: Clean Wafers 

Once the polish has concluded the aluminum wafers are removed from the 

Platen.  Care is taken to preserve the side and direction the wafer is mounted in.  

The wafers are washed with DI water and wiped gently with latex gloves to remove 

abraded material and slurry.  Once clean the wafers are placed in wafer holders 

which have the details of the testing conditions written on the back to preserve the 

testing parameters experienced by the wafer. 

4.4. Data Analysis Procedure 

Analyzing the results of a test occurs in two discrete segments.  First the load 

cell data is analyzed to determine what load was actually applied to the wafer during 

testing.  The other portion of data analysis uses an interferometer to create a profile 
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of the surface to determine the depth of the channel that has been polished into the 

wafer.  The interferometer is also used to determine the roughness of the wafer. 

4.4.1 Load Cell Analysis  

Once polishing has completed the txt file created by Labview is renamed 

using a naming convention that allows wafers and data files to be correlated with 

one another.  After the file is renamed, the file is loaded into Matlab.  Matlab 

converts the text file into a series of charts that can be visually inspected.  Figure 4-8 

is a chart of load cell data from a test.  There are a few aspects of this chart common 

among all other tests.  The upward slope that occurs from around 30 second to 100 

comes from the wheels not yet being completely on the wafers.  This is because the 

wheels start at the edge of the wafer and are slowly dragged laterally across the 

wafer by the Lateral Stage.  From about 120 to 170 seconds the wheel is completely 

on top of the wafer.  From about 170 to 250 seconds the wheels begin to fall off the 

other wide of the wafer thus the load decreases.  When the wheels have translated 

completely the side of the wafer the Vertical Actuator is raised back up as indicated 

by the green line in Figure 4-8.  Once the actuator is back in its initial position the 

wheels are allowed to rotate for an minimum of fifteen seconds so a zero load 

reading can be ascertained.  An average value of the zero load reference section is 

compared to the average value of the 120-170 second portion of the test.  The 

difference between the zero load section and the section with the wheels entirely on 

top of the wafer is used as the nominal load value for that test.  The data shown in 

Figure 4-8 gives a difference of 14.21N and 20.55N for load cell 1 and 2 

respectively. 
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4.4.1.1 Nominal Load Error Bar 

Graphs are presented in Chapter 5 that plot the nominal load from a test run 

against a relevant variable.  The nominal load for each individual test has a margin 

of error.  The error is represented by the error bars.  The span of the error bars for 

load is based on the standard deviation of the running average of the load.  Only the 

load cell data gathered during the period when the wheels are completely on the 

wafer are used to calculate the standard deviation.  This corresponds to 

approximately the middle third of the polishing time starting when the vertical 

actuator is completely down and ending when the actuator is lifted up.  The standard 

deviation of the moving average from 120 to 170 seconds as shown in Figure 4-8 is 

1.75 and .95 for cell 1 and 2 respectively.  The span of the error bars is equal to two 

standard deviations of the running average of the load.   

4.4.2  Material Removal Height 

The polishing wheels leave a channel in the wafers.  The channels are 

deeper at their center and shallow at their edge.  Often the edge has little to no 

discernable amount of material removed and is at the same level as the un-polished 

portions of the wafer.  To determine the depth of the channels a profilometer is used.  

The profilometer is an interferometer produced by the ZYGO Corporation.  Figure 

4-9 is an example of the results from the interferometer which has profiled a wafer 

after testing.  The top left portion of Figure 4-9 is the Back Plot and is a false color 

top view of the wafer that alters the color of the pixel to show its relative depth.  The 

bottom left portion of Figure 4-9 is the Surface Profile.  The Surface Profile shows 
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the cross sectional view of the lines cut across the back plot.  In Figure 4-9 there are 

two lines that cut across each other perpendicularly.  The green line on the Surface 

Profile shows the cross section of the line that cuts horizontally across the back plot 

and the blue line is the vertical line.  By placing the vertical line across a point of the 

wafer that was polished when the wheels were exclusively on top of the wafer and 

not hanging off the sides an accurate depth reading can be taken from the deepest 

point of the channel.  Using tools within the program the vertical slice on the Back 

Plot seen as the blue line in the Surface Profile of Figure 4-9 can be seen to read 27 

micrometers from the upper edges of the channel to the bottom of the channel. 

4.4.2.1 Removal Depth Error Bars 

The error bars for the removal depth are based on data range rather than 

standard deviation.  The data point for removal depth of any test is the average of 

three cross sectional slices taken perpendicular to the channel.  The three slices are 

taken at different points in the region of the channel where the polishing wheel was 

not hanging off the edge of the wafer.  This region is the middle third of the wafer, 

approximately 12mm wide.  The error bar reflects the variation in depth within this 

region.  The variation is quantified by taking the difference of the max and min of the 

center 10 mm (reducing the sampling width by 2mm ensures data outside of the 

intended region is not unintentionally included)  of Surface Profile that corresponds 

to the horizontal slice through center of the channel in the Back Plot.  This is seen as 

the green line in the Surface Profile of Figure 4-9 which has a 10mm center region 
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with a max of -19.4µm and a min of -23.1µm producing a data range of 3.7µm.  The 

removal depth error bar for this data point would have a span of 3.7µm. 

4.4.3 Surface Waviness & Roughness 

The waviness and roughness of the wafers is determined using the same 

interferometer used to determine removal depth.   

Waviness is defined as the Root Mean Square (RMS) of the surface when 

filtered using a low pass Fast Fourier Transformation (FFT) with a cutoff wavelength 

of 100µm.  The low pass waviness of an unpolished 1.5” wafer can be seen in 

Figure 4-10.  All low pass waviness data presented in this thesis is produced from a 

4mm x 1mm area with a pixel resolution of 35.34µm. The same unpolished wafer 

shown in Figure 4-10 is analyzed over a 4mmx1mm area in Figure 4-11.  When 

analyzing polished wafers the 4mmx1mm area always places the 4mm dimension 

within the middle 10mm of the lateral length and the 1mm dimension in the center of 

the channel vertically.  Figure 4-12 is the Back Plot of Figure 4-9 if a 4mmx1mm 

area were removed from portion of the channel that is sampled for low pass 

waviness.   

Roughness is defined as the RMS of the surface when filtered using a high 

pass FFT with a cutoff wavelength of 500µm.  All high pass roughness is taken over 

a 1.41mm x 1.06mm area with a pixel resolution of 2.207µm.  Figure 4-13 shows the 

high pass roughness of an unpolished wafer. 
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4.4.4 Surface Profile Comparison 

In addition to analyzing the depth of the profiles created by the polished 

channels the shape of the profiles are analyzed as well.  The shape of the profile is 

analyzed using the Surface Profile produced by the ZYGO interferometer.  Once an 

appropriate sample has been selected a single vertical slice is made on the Back 

Plot.  The single vertical slice shows up on the Surface Profile as a cross sectional 

profile of the wafer through the slice.  Figure 4-14 is an example of the Surface 

Profile of Figure 4-9 if only a single vertical slice were made through the Back Plot.  

The process is repeated on two different samples ensuring that the distance and 

height scale are exactly the same when saving the data from a Surface Profile.  

Once gathered, the three profiles are overlaid on one another.  A direct comparison 

of the profiles can then be made to determine the affect of the test variable on the 

shape of the profile. 
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Figure 4-1 Illustration of 6" Wafer Setup 

 

Figure 4-2 Illustration of 1.5" Wafer Setup 
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Figure 4-3 Electrical Noise With Equipment Power Off 

 

Figure 4-4 Electrical Noise With Equipment Power On 
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Figure 4-5 Electrical Noise With Equipment Power On Then Off 

 

Figure 4-6 Load Cell Calibration 
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Figure 4-7 Vertical Actuator Calibration 

 

Figure 4-8 Example Of Load Cell Data From A Test 
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Figure 4-9 Results of Wafer Analyzed using ZYGO 

 

Figure 4-10 Low Pass Waviness: Un-Polished Wafer 
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Figure 4-11 Low Pass Waviness: 4mmx1mm Un-Polished Wafer 

 

Figure 4-12 Back Plot with 4mmx1mm Area Removed to Demonstrate Area 

Analyzed for Low Pass Waviness 
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Figure 4-13 High Pass Roughness: 1.41mmx1.06mm Un-Polished Wafer 

 

Figure 4-14 Profile of a Vertical Cross Section 
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CHAPTER 5 TESTING RESULTS 

Testing of the prototype CMPG machine is conducted to determine the 

capabilities of the machine at its current juncture of development.  The objective of 

the testing is to determine the effect consumables and process parameters have on 

the Material Removal Rate (MRR) and planarization.  To determine the effects, 

consumables and process parameters are parameterized from test to test.  Contrary 

to a typical CMP process which would polish an entire wafer, the tests are performed 

primarily on 1.5" wafers as described in Section 4.1.1.1.  The resulting channel that 

is polished into the 1.5" wafers has a depth which is used as a proxy for MRR.  

Results will use the material removal depth or surface RMS as the dependent 

variable for all the charts examined in this chapter.  All data presented in the charts 

can be found in Table 1 Results Data in the Appendix.  

5.1. Load vs Material Removal Depth 

The first test run varies the load applied to the polishing wheels.  The process 

parameters and consumables used in this test run and the results they generate are 

used as the standard against which other tests are compared. 

A relative velocity of 3.32 m/s and a dwell time 60.5 seconds are maintained 

through the test run.  The 1µm alumina slurry and low density polishing wheels are 

used.  The wafers used are pre-polished 1.5" aluminum wafers.  Eight wafers were 

polished at eight different loads ranging from 4.6 N to 20.1 N.  The results from the 

eight wafers are charted in Figure 5-1.  A linear trend line has been overlayed on the 
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chart as a visual guide, but should not be interpreted as an inferred linear 

relationship. 

Load is used as a corrollary of pressure and pressure been shown to have a 

strong effect on MRR.  A directly proportional relationship can be seen between load 

and material removal depth.  The directly proportional relationship adheres to the 

expected trend.  The expectation of a direct proportionality comes from the increase 

in number of actively polishing abrasive particles that occurs when pressure is 

increased.  Though there are exceptions to this if the polishing media is extremely 

stiff, the increase in active particles is caused by the deformation of the wheel.  The 

deformation, rather than pressing harder against the particles already in contact, will 

place more of the wheel fibers into contact with the wafer increasing the actual 

contact area.  Since the actual contact area is the region where the abrasive 

particles are actively polishing the increase translates into a greater removal of 

material. 

An examination of waviness and roughness, as seen in Figure 5-2 Low Pass 

Wav iness:  Load v s Material Remov al Dep th  and Figure 5-3 respectively, indicates 

that niether has a strong relationship with load under the specificed test conditions.  

The test conditions produced a range of waviness and roughness values that varied 

from 143µm-351µm and 57µm-248µm respectively. 

5.2. Dwell Time vs Material Removal Depth 

This section analyzes the results of a test run that varies the dwell time of the 

polishing wheels vs material removal depth.  Dwell time is the amount of time the 
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wheels are in contact with any point in the polishing region.  Assuming the wheels 

are a constant width and translate at a constant speed, the dwell time is determined 

by dividing the width of the wheel by the lateral translation speed.   

A relative velocity of 3.32 m/s and a load of 20-27N are maintained through 

the test run.  The 1µm alumina slurry and low density polishing wheels are used.  

The wafers used are pre-polished 1.5" aluminum wafers.  Nine wafers were polished 

at five different dwell times ranging from 14.1-127.0 seconds.  The results from the 

nine wafers are charted in Figure 5-4.  A linear trend line has been overlayed on the 

chart as a visual guide. 

Though dwell time has been shown to have subtle effects on MRR, its affects 

are primarily implicated in total material removed, not the rate at which it's removed.  

Indeed, it can be intuitively expected that the longer a polishing process takes place 

the greater the volume of material removed becomes.  Figure 5-4 confirms a directly 

proportional relationship, of greater significance however is an apparent linear 

relationship.  If the relationship was not linear it would imply that a drastic change in 

polishing conditions occurs during polishing.  As alluded to previously, the MRR can 

be expected to change slightly during a polish due to aspects of the CMP process 

like particle size distribution or surface topography whose states are in perpetual 

evolution while a polish is in progress.  The effect of evolutionary aspects on the 

MRR is expected to be slight however and would prove troublesome if shown to 

manifest at the conditions used in these tests.  The relationship does maintain the 

appearance of linearity however and further reinforces expected similarities between 

CMPG and standard CMP models.  
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An examination of waviness and roughness, as seen in Figure 5-5 and Figure 

5-6 respectively, indicates that niether has a strong relationship with dwell time 

under the specificed test conditions.  The test conditions produced a range of 

waviness and roughness values that varied from 177µm-366µm and 131µm-325µm 

respectively. 

5.3. 50nm Silica Slurry - Load vs Material Removal Depth 

A low MRR slurry containing 50nm silica particles rather than the highly 

aggressive 1µm alumina slurry is used in a run of tests.  The 50nm silica slurry is 

tested on four wafers with a different load applied to each wafer. 

A relative velocity of 3.32 m/s and a dwell time of 60.5 seconds are 

maintained through the test run.  The 50nm silica slurry and low density polishing 

wheels are used.  The wafers used are pre-polished 1.5" aluminum wafers.  The 

results from the four wafers are charted in Figure 5-7.  A linear trend line has been 

overlayed on the chart as a visual guide, but should not be interpreted as an inferred 

linear relationship. 

The type of slurry used in a CMP process has a greater effect on the MRR 

than any other condition.  In a production enviroment a wafer may be polished first 

with a high MMR slurry to remove the bulk of a film and then followed up with a 

polish that uses a finishing slurry which has a low MRR that can more preciesly 

remove the remainder of the material and produce a smother surface when finished.  

The 50nm silica slurry is an example of a low MRR slurry that is used in a finishing 

step and has been tested as a point of comparison.  The chart in Figure 5-7 
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indicates that material removal depth is independent, perhaps even inversely 

proportional, of load in the presence of this low MRR slurry.  The independence of 

the two variables deviates from the expected trend.  It is expected that material 

removal depth is directly proportional to load regardless of slurry used.  The likely 

culprit of the deviation is a lack of precision inherent in the testing methodology 

rather than true departure from standard CMP models.  A large source of noise in 

the testing can be attributed to the waviness of the wafers.  The factory pre-polish 

produces a very smooth surface free of high frequency roughness but fails  to 

globally planarize the wafer leaving a high roughness at longer wavelengths.  The 

waviness is apparent in the Zygo results for wafer tested at 13.6N seen in Figure 

5-8.  The region above and below the polished channel appears to vary in height as 

much or more than the deviation in height between the edge and valley of the 

channel.  The waviness of the wafer would drastically alter readings if the removal 

depth measurements are taken from the global peak or valley of the wafer.  Though 

the noise introduced by the waviness is present in all the tests, the use of high MRR 

slurry in other test runs produced results with amplitudes that rose sufficiently above 

the noise.  The low MRR 50nm silica slurry does not produce a material removal 

depth great enough to make conclusions on the relationship between load and MRR. 

An examination of waviness and roughness, as seen in Figure 5-9 and Figure 

5-10 respectively, indicates that niether has a strong relationship with load under the 

specificed test conditions.  The test conditions produced a range of waviness and 

roughness values that varied from 52µm-106µm and 31µm-51µm respectively.  As 
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expected, the smaller abrasive size produced smoother surface than any of the 

other test condtions. 

5.4. Medium Density Wheel - Load vs Material Removal Depth 

A medium density polishing wheel rather than a low density wheel is used in a 

run of tests.  The medium density wheels are tested on eight wafers with a different 

load applied to each wafer. 

A relative velocity of 3.32 m/s and a dwell time of 60.5 seconds are 

maintained through the test run.  The 1µm alumina slurry is used.  The wafers used 

are pre-polished 1.5" aluminum wafers.  Eight wafers are polished at eight different 

loads ranging from 14.1-127.0N.  The results from the nine wafers are charted in 

Figure 5-11.  A linear trend line has been overlayed on the chart as a visual guide, 

but should not be interpreted as an inferred linear relationship. 

The density of the wheels is used as a corrollary of stiffness.  The stiffness of 

a polishing media has been shown to affect MRR.  The relationship between MRR 

and stiffness comes from the interatction between the polishing media and the 

abrasive particles.  Abrasive particles are actively removing material if they are 

trapped between the polishing media and the wafer.  This only occurs in the real 

contact area.  It is presumed that the polishing wheels, similar to polishing pads 

used in standard cmp, will deform if a higher load is applied to them increasing the 

real contact area.  If a pad is extremely stiff however, applying a greater load may 

not increase the contact area, but instead increase the load applied to the particles 

already in contact with the wafer.  Though the MRR would increase directly with an 
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increase in load in either case, the initial MRR of an extremely stiff pad would be 

lower than a pad with low stiffness due to the drastically reduced contact area.  

Figure 5-11 shows that material removal depth is directly proportional to load with 

the use of a medium density polishing wheel.  Shown on the same graph are the 

results of load variation if polished under the same conditions but with a low density 

wheel.  At the loads the medium density wheels were tested, a consistently greater 

material removal depth was produced than those created at equal loads using a low 

density wheel.  The greater material removal depth produced by the medium density 

wheel suggests that greater stiffness is indicitive of an increase in bulk material 

stiffness.  The increase in bulk stiffness is presumed to create a smaller contact 

area, but produce a greater actual contact area thus increasing the MRR.  Figure 

5-11 also suggests that the rate at which the contact area increases with load, and 

consequently material removal depth, is higher for a medium density polishing wheel 

than a low density polishing wheel. 

Alternatively, the presumed increase in MRR may be an artifact of the testing 

methodology.  It is possible that the overall MRR, or rate of reduction of film 

thickness across an entire, may be approximately equal to a low density wheel.  This 

would be a consequence of the difference in contact area.  In the context of a 

channel, the smaller area is moot since only the depth is examined.  In the context of 

an entire wafer however, the higher MRR in the smaller contact area may remove an 

equal volume across an entire wafer as the low density wheel which has a lower 

MRR but a larger contact area.  There is currently insufficient data to determine if 
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this is the case.  Further research is need to determine the precise effect wheel 

density has on MRR. 

An examination of waviness and roughness, as seen in Figure 5-12 and 

Figure 5-13 respectively, indicates that niether has a strong relationship with load 

under the specificed test conditions.  The test conditions produced a range of 

waviness and roughness values that varied from 269µm-564µm and 81µm-434µm 

respectively.  A rough comparison of the range of values to the test conditions using 

a low density wheel indicate the use of high density wheel produces high values of 

wavieness and roughness.  Further testing is required before a conclusion regarding 

the affect of wheel density on surface topography can be reached. 

5.5. Relative Velocity vs Material Removal Depth 

The run of tests examined in this section varies the relative velocity at which 

each wafer is polished.   

A load nominal load in the range of 19.1-20.1N is used through the test run.  

The 1µm alumina slurry and low density polishing wheels are used.  The wafers 

used are pre-polished 1.5" aluminum wafers.  Five wafers were polished at five 

different relative velocities ranging from 1.33-3.99 m/s..  The results from the five 

wafers are charted in Figure 5-14.  A linear trend line has been overlayed on the 

chart as a visual guide, but should not be interpreted as an inferred linear 

relationship. 

Velocity and pressure are identified as the two main process parameters.  

Presenton's Equation in fact recognizes only pressure and velocity and attributes 
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everything else to a coefficient.  Thus it is unsurprising to see that velocity has been 

shown to have a direct effect on MRR.  Counter intuitively, Figure 5-14 shows that 

material removal depth is independent of relative velocity.  Though the volume of 

material removed by any one particle does not increase with relative velocity, a 

higher relative velocity raises the number of abrasive particles brought into the 

contact area that become active which is expected to raise the MRR.  It is suspected 

that the prototype employs a slurry delivery system that does not deliver and 

adequate amount of slurry to the polishing wheels.  If the contact area is not 

saturated with slurry the increase in relative velocity will not correlate with the 

increase in abrasive particles brought to the contact area.  Further testing with a 

slurry dispensing system that floods the conact area with slurry is required before a 

relationship between relative velocity and material removal depth can be 

established. 

An examination of waviness and roughness, as seen in Figure 5-15 and 

Figure 5-16 respectively, indicates that niether has a strong relationship with velocity 

under the specificed test conditions.  The test conditions produced a range of 

waviness and roughness values that varied from 146µm-259µm and 94µm-138µm 

respectively. 

5.6. Worn Wheel - Load vs Material Removal Depth 

A set of low density polishing wheels that have performed a total of 725 

seconds of polishing are used rather than a fresh wheel.  Following the conclusion of 

a previous test, the wheels were removed from the machine, rinsed gently with DI 
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water, dried for a week at STP, and then soaked per the standard 24 hour minimum 

in DI water  All other test procedures remain identical to those of every other test.   

A relative velocity of 3.32 m/s is maintained through the test run.  The 1µm 

alumina slurry is used.  The wafers used are pre-polished 1.5" aluminum wafers.  

Four wafers were polished at four different loads ranging from 15.5-20.7N.  The 

results from the four wafers are charted in Figure 5-17 Worn Pad - Load v s Material 

Remov al Dep th .  A linear trend line has been overlayed on the chart as a visual 

guide, but should not be interpreted as an inferred linear relationship. 

The use of worn pads explores the variation in MRR that occurs between 

wafers when polished on the same machine.  Standard CMP machines use pads 

that become glazed and lose the rough surface topography necessary to achieve the 

high MRR expected in a commercial environment.  Though pad conditioners re-

introduce roughness into the pad after it has been glazed, a gradual increase in 

stiffness also occurs as the pad is compressed over numerous polishing cycles.  The 

increase in stiffness was presumed to cause the medium density polishing wheels to 

increase their actual contact area, but a polishing pad generally decreases its actual 

contact area as stiffness increases since it can no longer conform to the topography 

of the wafer.  Figure 5-17 Worn Pad - Load v s Material Remov al Dep th  shows a 

directly proportional relationship between material removal depth and load in the 

presence of a worn polishing wheel.  An increase in the material removal depth 

similar to that seen with a medium density wheel suggests that the wheel has 

stiffened as a result of previous use.  The apparent increase in MRR as wheel 

stiffness increases may be a consequence of one of the key features of CMPG.  
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However, it is more likely that the difference in effects produced by stiffness is a 

consequence of the polishing media used.  Specifically, the use of a fibrous 

polishing wheel on the CMPG machine rather than the cellular polishing pads found 

on standard CMP machines. 

An examination of waviness and roughness, as seen in Figure 5-18 and 

Figure 5-19 respectively, indicates that niether has a strong relationship with load 

under the specificed test conditions.  The test conditions produced a range of 

waviness and roughness values that varied from 104µm-271µm and 165µm-333µm 

respectively.   

5.7. Profile Comparison 

A comparison of the profile of the channel polished across each wafer under 

different test conditions is analyzed.  The profile of the channel at different loads 

using a low density wheel, the profile of the channel at different loads using a 

medium density wheel, and the profile of the channel at different dwell times are 

analyzed. 

5.7.1 Low Density Wheel Profile Comparison 

The low density wheel created a profile that does not appear to change shape 

considerably at high loads.  The comparison of the profiles can be seen in Figure 

5-20.  The soft pads create an asymmetric profile that has a steeper wall on the left 

side which where the wheel enterse than the right side which is where the wheel 

exits. 
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5.7.2 Medium Density Wheel Profile Comparison 

The medium density wheel created a profile that changes shape at high 

loads.  The comparison of profiles can be seen in Figure 5-21.  The steepness of the 

entering side increases rapidly with an increase in load.  The right side of the 

channel, which is the exiting side, has a ‘hump’ that becomes increasingly 

pronounced as the load increases.  An increase in the density/stiffness would 

presumably make the ‘hump’ more pronounced than is currently seen. 

5.7.3  Dwell Time Profile Comparison 

The profile comparison of tests with different dwell times produced profiles 

that do not change shape drastically between tests.  The profile comparison can be 

seen in Figure 5-22.  The profiles appear relatively symmetric at all dwell times.  The 

symmetry may not hold if the same tests are repeated using medium density wheels 

instead of low density wheels. 

5.8. Full Wafer Test 

All the tests analyzed in sections 5.1 through 5.7 have been based on the 

results of the channel polished into a 1.5” wafer.  During those tests the table was 

locked so it could not rotate.  The final test of the CMPG machine rotates the table 

during polishing so the entire surface of a 6” wafer can be polished. 

The 6” wafer is made of the same pre-polished aluminum as the 1.5” wafers.  

The 1µm alumina slurry and medium density polishing wheels are used for the test.  

Though the relative velocity was not constant since the wafer has a different speed 

depending on its radius from the center of table, an approximate relative velocity of 
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3.32 m/s can be assumed since the polishing wheels provide the majority of the 

relative motion.  A nominal load of 14N was maintained through the entirety of the 

test.  The dwell time varies from approximately 7 seconds at the outer edge to 14 

seconds at the region 1.5” from the center. 

The inner 1.5” radius region of the wafer remains unpolished.  An unpolished 

region at the center of the wafer is a necessary consequence of using paired 

wheels.  Though the radius of the region can smaller than 1.5”, a large unpolished 

region is useful as a point of comparison for measurement purposes. 

The variation in dwell time from the outer edge to the inner regions was 

expected to create a discernable difference in material removed.  An examination of 

the wafer provided inconclusive results due to the greater waviness of a 6” wafer 

than a 1.5” wafer.  As seen in Figure 4-10 the waviness of the 1.5” is around 2-3µm.  

The 6” wafers are too large to create an edge to edge profile on the ZYGO 

interferometer so a Computerized Measurement Machine (CMM), which have an 

accuracy of ±1µm, is used instead.  Figure 5-23 and Figure 5-24 indicate the 6” 

wafers have a waviness 30µm to 40µm in amplitude.  Additionally, the shape of the 

wafer can be convex, concave, saddle shaped as seen in Figure 5-24 or a number 

of other ineffable shapes.  The variation in shape and amplitude of the wafers render 

a meaningful measurement of material removal beyond the capabilities of the 

available measurement techniques.  The same can be said of a low pass 

measurement of waviness.   

A high pass measurement of roughness can still be taken from the polished 

wafer regardless of waviness.  The ZYGO image seen in Figure 5-25 has an RMS of 
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72nm and is a representative result of the high pass roughness at any polished 

portion of the 6” wafer.  The RMS varied from 60nm-90nm but was primarily 

between 70nm-80nm.  Readings at different radii and orientations relative to the 

grain were taken but no discernable trend emerged.  Ten points randomly selected 

at different points of the wafer gave an average RMS of 69.6nm.  The high pass 

average of 69.6 is still higher than the unpolished RMS of 39nm shown in Figure 

4-13 but is lower than all other roughness data points taken from the 1.5” wafers. 
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Figure 5-1 Load vs Material Removal Depth 

 

Figure 5-2 Low Pass Waviness: Load vs Material Removal Depth 
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Figure 5-3 High Pass Roughness: Load vs Material Removal Depth 

 

Figure 5-4 Dwell Time vs Material Removal Depth 
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Figure 5-5 Low Pass Waviness: Dwell Time vs Material Removal Depth 

 

Figure 5-6 High Pass Roughness: Dwell Time vs Material Removal Depth 
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Figure 5-7 50nm Silica Slurry - Load vs Material Removal Depth 

 

Figure 5-8 Zygo Results for 50nm Silica Slurry @ 13.6N 
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Figure 5-9 Low Pass Waviness: 50nm Silica Slurry - Load vs Material Removal 

Depth 

 

Figure 5-10 High Pass Roughness: 50nm Silica Slurry - Load vs Material 

Removal Depth 
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Figure 5-11 Medium Density Wheel - Load vs Material Removal Depth 

 

Figure 5-12 Low Pass Waviness: Medium Density Wheel - Load vs Material 

Removal Depth 
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Figure 5-13 High Pass Roughness: Medium Density Wheel - Load vs Material 

Removal Depth 

 

Figure 5-14 Relative Velocity vs Material Removal Depth 
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Figure 5-15 Low Pass Waviness: Relative Velocity vs Material Removal Depth 

 

Figure 5-16 High Pass Roughness: Relative Velocity vs Material Removal 
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Figure 5-17 Worn Pad - Load vs Material Removal Depth 

 

Figure 5-18 Low Pass Waviness: Worn Pad - Load vs Material Removal Depth 
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Figure 5-19 High Pass Roughness: Worn Pad - Load vs Material Removal 

Depth 

 

Figure 5-20 Profile Comparison of Load w/ Low Density Wheels 
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Figure 5-21 Profile Comparison of Load w/ Medium Density Wheels 

 

Figure 5-22 Profile Comparison of Dwell Time 
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Figure 5-23 Wafer Waviness: Top Down View 

 

Figure 5-24 Wafer Waviness: Isometric View 
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Figure 5-25 High Pass Roughness: 6” Polished Wafer 
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CHAPTER 6 CONCLUSION 

The process parameters and consumables used in the prototype CMPG 

machine have been parameterized in an experimental study of their effect on MRR.  

Many of the results of the study conformed to the expectations predicted by standard 

CMP processes.  The relationship between MRR & load, and MRR & dwell time had 

the expected directly proportional relationship.  A few tests yielded inconclusive 

results however, due to insufficiently precise testing methodology.  The tests using a 

low MRR slurry that used a 50nm Silica abrasive had MRR vs load trend that did not 

conform to expectations.  The deviation in this case was suspected to be a result of 

test wafers that are not planarized sufficiently to detect the variation in material 

removal depth created by the low MRR slurry.  Additional tests are required with an 

adequately planarized wafer to determine the relationship between MRR and load in 

the presence of a low MRR slurry.  The tests that demonstrated an independent 

relationship between relative velocity and material removal depth were also 

unexpected.  It is suspected that the relationship is not due to a departure from the 

mechanics of standard CMP.  Rather, a condition of slurry starvation is presumed 

which prevents an increase in velocity from increasing the MRR.  Further tests are 

needed in a slurry saturated environment before a relationship between relative 

velocity and material removal depth can be reached.  The tests that used a medium 

density polishing wheel and a worn low density polishing wheels illustrated the effect 

that stiffness has on MRR.  Contrary to standard CMP which generally has a lower 

MRR the higher the pad stiffness, the tests showed an increase in material removal 

depth when a polishing wheel with a greater bulk stiffness was used.  It is suspected 
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this difference between standard CMP and the results of the prototype CMPG 

machine are a result of the use of fibrous polishing media rather than cellular 

polishing media as is standard in commercial CMP machines. 

The lack of a discernable relationship between waviness or roughness and 

any of the test variables is likely a consequence of unrepeatability.  Though testing 

conditions are held within a certain window, that window is still not small enough to 

reveal the relationship between roughness and waviness and is instead hidden 

behind the intractable variations between tests. 
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APPENDIX 

Table 1 Results Data 

 

 

  

Load Load (N) Relative Velocity (m/s) Dwell Time (s) Material Removal Depth (um) Pad Type Slurry Waviness (um) Roughness (um)

4.60 3.32 60.48 4.00 Low Density 1um Alumina 0.143 0.057

5.60 3.32 60.48 4.75 Low Density 1um Alumina 0.182 0.135

6.30 3.32 60.48 3.70 Low Density 1um Alumina 0.256 0.205

7.10 3.32 60.48 8.20 Low Density 1um Alumina 0.153 0.119

11.50 3.32 60.48 8.80 Low Density 1um Alumina 0.235 0.188

15.80 3.32 60.48 13.00 Low Density 1um Alumina 0.351 0.248

16.50 3.32 60.48 12.25 Low Density 1um Alumina 0.175 0.144

20.10 3.32 60.48 15.00 Low Density 1um Alumina 0.178 0.142

Dwell Time Load (N) Relative Velocity (m/s) Dwell Time (s) Material Removal Depth (um) Pad Type Slurry Waviness (um) Roughness (um)

22.20 3.32 14.11 4.30 Low Density 1um Alumina 0.177 0.14

28.50 3.32 14.11 4.50 Low Density 1um Alumina 0.283 0.279

21.80 3.32 21.17 7.25 Low Density 1um Alumina 0.188 0.152

27.40 3.32 21.17 7.30 Low Density 1um Alumina 0.355 0.325

22.30 3.32 42.33 11.00 Low Density 1um Alumina 0.191 0.145

 18.50 3.32 42.33 15.50 Low Density 1um Alumina 0.366 0.24

20.10 3.32 60.48 15.00 Low Density 1um Alumina 0.178 0.142

22.70 3.32 127.00 32.00 Low Density 1um Alumina 0.221 0.161

21.30 3.32 127.00 42.00 Low Density 1um Alumina 0.328 0.131

05 Grit Load (N) Relative Velocity (m/s) Dwell Time (s) Material Removal Depth (um) Pad Type Slurry Waviness (um) Roughness (um)

13.60 3.32 60.48 1.85 Low Density .05 Silica 0.106 0.051

17.70 3.32 60.48 1.90 Low Density .05 Silica 0.052 0.031

17.80 3.32 60.48 1.36 Low Density .05 Silica 0.078 0.031

22.30 3.32 60.48 1.55 Low Density .05 Silica 0.083 0.033

Medium Density Load (N) Relative Velocity (m/s) Dwell Time (s) Material Removal Depth (um) Pad Density Slurry Waviness (um) Roughness (um)

11.70 3.32 60.48 15.30 Medium Density 1um Alumina 0.269 0.192

12.90 3.32 60.48 24.60 Medium Density 1um Alumina 0.564 0.434

14.20 3.32 60.48 13.80 Medium Density 1um Alumina 0.366 0.298

16.60 3.32 60.48 27.90 Medium Density 1um Alumina 0.45 0.22

20.60 3.32 60.48 29.30 Medium Density 1um Alumina 0.349 0.081

22.40 3.32 60.48 39.10 Medium Density 1um Alumina 0.465 0.222

22.60 3.32 60.48 42.20 Medium Density 1um Alumina 0.356 0.093

26.90 3.32 60.48 44.10 Medium Density 1um Alumina 0.499 0.132

Velocity Load (N) Relative Velocity (m/s) Dwell Time (s) Material Removal Depth (um) Pad Type Slurry Waviness (um) Roughness (um)

19.10 1.33 60.48 12.00 Low Density 1um Alumina 0.218 0.138

19.20 1.99 60.48 17.00 Low Density 1um Alumina 0.237 0.111

20.90 2.66 60.48 11.00 Low Density 1um Alumina 0.146 0.094

20.10 3.32 60.48 15.00 Low Density 1um Alumina 0.178 0.142

19.90 3.99 60.48 16.00 Low Density 1um Alumina 0.259 0.119

Worn Pad Load (N) Relative Velocity (m/s) Dwell Time (s) Material Removal Depth (um) Pad Type Slurry Waviness (um) Roughness (um)

725s

15.0 3.32 60.48 14.80 Worn - Low Density 1um Alumina 0.333 0.271

17.6 3.32 60.48 18.70 Worn - Low Density 1um Alumina 0.165 0.104

20.2 3.32 60.48 17.80 Worn - Low Density 1um Alumina 0.303 0.233

21.2 3.32 60.48 22.00 Worn - Low Density 1um Alumina 0.197 0.139

6" Wafer Load (N) Relative Velocity (m/s) Dwell Time (s) Material Removal Depth (um) Pad Type Slurry Waviness (um) Roughness (um)

14.00 3.32 7 to 14 N/A Medium Density 1um Alumina N/A 0.0696
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MATLAB CODE - Load Cell Data Analyzer 

clc; 
clear; 
close all; 
  
data = load('2011_03_30__L17_f021_G1_M-1.txt'); 
  
time = data(:,1); 
dur = time(end)-time(1);    %test duration (s) 
L = length(time);           %number of Cycles 
samptime = dur/L;           %Sampling Cycle Time (s) 
freq = round(1/samptime);   %Sampling Cycle frequency 
fwind = 1;                  %front, back, and size of cycle window to analyze 
bwind = L; 
%fwind = round(freq*(157-time(1))); 
%bwind = round(freq*(182-time(1))); 
swind = bwind-fwind+1; 
tim = time(fwind:bwind);     
lateral = data(fwind:bwind,2); 
vertical = data(fwind:bwind,3); 
volt1 = data(fwind:bwind,4 : 6);       
volt2 = data(fwind:bwind,7 : 9); 
unit = 49;               %use to convert volts to either lbs(1:11) or kg(1:5) 
offs = unit*min(min(min(volt1,volt2)));  %amount force values are offset by 
  
forc1 = unit*volt1(:,2)-offs;                 %a single unfiltered sample from each cycle (lbs) 
forc2 = unit*volt2(:,2)-offs; 
aveforc1 = unit*mean(volt1,2)-offs;    %all samples within a cycle averaged together (lbs) 
aveforc2 = unit*mean(volt2,2)-offs; 
  
%N = round(freq/2); 
N = 100; 
a=1; 
b = 1/N*ones(N,1); 
filtforc1 = filter(b,a,aveforc1);       %running average of N cycles 
filtforc2 = filter(b,a,aveforc2); 
filtforc3 = filter(b,a,forc1); 
filtforc4 = filter(b,a,forc2); 
  
%% 
                     
NFFT = 2^nextpow2(swind); % Next power of 2 from length of y 
f = freq/2*linspace(0,1,NFFT/2+1); 
fftforc1 = fft(forc1,NFFT)/swind; 
fftforc2 = fft(forc2,NFFT)/swind; 
  
figure(6); 
% Plot single-sided amplitude spectrum. 
plot(f,2*abs(fftforc2(1:NFFT/2+1)))  
title('Single-Sided Amplitude Spectrum of Force 2 y(t)') 
xlabel('Frequency (Hz)') 
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ylabel('|Y(f)|') 
axis([0 f(end) 0 1]) 
  
figure(5); 
% Plot single-sided amplitude spectrum. 
plot(f,2*abs(fftforc1(1:NFFT/2+1)))  
title('Single-Sided Amplitude Spectrum of Force 1 y(t)') 
xlabel('Frequency (Hz)') 
ylabel('|Y(f)|') 
axis([0 f(end) 0 1]) 
  
%% 
  
figure(4); 
plot(tim,aveforc1-aveforc2,'b'); 
hold on 
plot(tim,filtforc1-filtforc2, 'r'); 
title('Load Cell Force Differential (Data-b & RunAve-r)'); 
xlabel('Time (s)') 
ylabel('Load (N)') 
  
%% 
  
figure(3); 
plotyy(tim,filtforc1,tim,vertical); 
hold on 
plot(tim,filtforc2, 'r'); 
title('Running Average (1b&2r) and Vertical Actuator (g)'); 
axis auto 
%axis([0 tim(end) 0 1.25*max(max(max(filtforc3,filtforc4)))]) 
xlabel('Time (s)') 
ylabel('Load (N)') 
  
figure(2); 
plot(tim,aveforc1,'b'); 
hold on 
plot(tim,aveforc2,'r'); 
hold on 
title('Force Data (1b & 2r)'); 
xlabel('Time (s)') 
ylabel('Load (N)') 
  
figure(1); 
plot(tim,aveforc1,'b'); 
hold on 
plot(tim,aveforc2,'r'); 
hold on 
plot(tim,filtforc1, 'y'); 
hold on 
plot(tim,filtforc2, 'g'); 
title('Force Data (1b & 2r) and Running Average (1y&2g)'); 
xlabel('Time (s)') 
ylabel('Load (N)') 
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%% 
  
a = 0; 
%a = round(25*freq); 
b = 2.2; 
c = 30; 
load1 = mean(aveforc1(round(L/b)-c*freq:round(L/b)+c*freq))-mean(aveforc1(end-c*freq-a:end-a)) 
load2 = mean(aveforc2(round(L/b)-c*freq:round(L/b)+c*freq))-mean(aveforc2(end-c*freq-a:end-a)) 
  
x = 30; 
range1 = max(filtforc1(round(L/b)-x*freq:round(L/b)+x*freq))-min(filtforc1(round(L/b)-
x*freq:round(L/b)+x*freq)) 
range2 = max(filtforc2(round(L/b)-x*freq:round(L/b)+x*freq))-min(filtforc2(round(L/b)-
x*freq:round(L/b)+x*freq)) 
  
y = 30; 
std_filtforc1 = std(filtforc1(round(L/b)-y*freq:round(L/b)+y*freq)) 
std_filtforc2 = std(filtforc2(round(L/b)-y*freq:round(L/b)+y*freq)) 
  
std_aveforc1 = std(aveforc1(round(L/b)-y*freq:round(L/b)+y*freq)) 
std_aveforc2 = std(aveforc2(round(L/b)-y*freq:round(L/b)+y*freq)) 
  
median = L/(b*freq) 
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