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ABSTRACT 

Engineering product design is an information intensive decision-making process that 

consists of several phases including design specification definition, design concepts 

generation, detailed design and analysis, and manufacturing. Usually, generating geometry 

models for visualization is a big challenge for early stage conceptual design. Complexity of 

existing computer aided design packages constrains participation of people with various 

backgrounds in the design process. In addition, many design processes do not take advantage 

of the rich amount of legacy information available for new concepts creation. 

The research presented here explores the use of advanced graphical techniques to quickly 

and efficiently merge legacy information with new design concepts to rapidly create new 

conceptual product designs.  3D mesh metamorphosis framework ―3DMeshMorpher‖ was 

created to construct new models by navigating in a shape-space of registered design models. 

This efficient software framework enables designers to create numerous geometric concepts 

in real time with a simple graphical user interface. 

The framework is composed of: 1) a fast spherical parameterization method to map a 

geometric model (genus-0) onto a unit sphere; 2) a geometric feature identification and 

picking technique based on 3D skeleton extraction; and 3) a LOD controllable 3D remeshing 

scheme with spherical mesh subdivision based on our spherical parameterization. 

 Our spherical parameterization is focused on closed genus-zero meshes. The method is 

based upon barycentric coordinates with convex boundary. Unlike most existing similar 
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approaches which deal with each vertex in the mesh equally, the method developed in this 

research focuses primarily on resolving overlapping areas, which helps speed the 

parameterization process. The algorithm starts by normalizing the source mesh onto a unit 

sphere and followed by some initial relaxation via Gauss-Seidel iterations. Due to its 

emphasis on solving only challenging overlapping regions, this parameterization process is 

much faster than existing spherical mapping methods. 

To ensure the correspondence of features from different models, we introduce a skeleton 

based feature identification and picking method for features alignment. Unlike traditional 

methods that align single point for each feature, this method can provide alignments for 

complete feature areas. This could help users to create more reasonable intermediate 

morphing results with preserved topological features. This skeleton featuring framework 

could potentially be extended to automatic features alignment for geometries with similar 

topologies. The skeleton extracted could also be applied for other applications such as 

skeleton-based animations. 

The 3D remeshing algorithm with spherical mesh subdivision is developed to generate a 

common connectivity for different mesh models. This method is derived from the concept of 

spherical mesh subdivision. The local recursive subdivision can be set to match the desired 

LOD (level of details) for source spherical mesh. Such LOD is controllable and this allows 

various outputs with different resolutions. Such recursive subdivision then follows by a 

triangular correction process which ensures valid triangulations for the remeshing. And the 
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final mesh merging and reconstruction process produces the remeshing model with desired 

LOD specified from user. Usually the final merged model contains all the geometric details 

from each model with reasonable amount of vertices, unlike other existing methods that 

result in big amount of vertices in the merged model. Such multi-resolution outputs with 

controllable LOD could also be applied in various other computer graphics applications. 
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CHAPTER 1 

INTRODUCTION 

1.1 Engineering Design Process 

Product design is an information intensive engineering process of decision-making. It is 

estimated that as much as 75% of the cost of a product is spent during the product design 

phase including manufacturing and maintenance [1]. Companies are increasingly using 

digital prototypes from CAD [2] rather than manufacturing expensive physical models earlier 

in the product development process. Product design usually starts with the definition of a 

design problem, followed by a sequence of approaches to find an optimal solution and ends 

with a detailed description of the product. A design process can be divided into several 

phases. The first is collecting and defining design specifications about the product such as 

performance, quality, and safety. The second is concept generation where rough design 

concepts are proposed to meet the design specifications. Next is detailed design, where all 

design specifics such as part dimensions, material specification, and assembly arrangement, 

are finalized. These 3D product models form the basis for detailed performance analysis, 

manufacturing planning, and all other product life-cycle activities such as production and 

maintenance. Many computer tools have been developed to assist design and analysis at the 

detailed stage of design [3, 4, 5], whereas concept generation and selection are still mostly 

dependent upon experience of engineers and use of tools not built to handle the requirements 

of concept generation. 
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1.2 Motivation and Contribution 

Usually, new product development is a process which not only is concerned with product 

design, but also includes prototyping, manufacturing, distribution and service. Such 

processes always involves people with different backgrounds (engineer, designer, worker, 

consumer and etc.). This kind of collaborative context enables interactions among different 

criteria from different disciplines. With this kind of collaborative product context, there is a 

need of visualization for product shapes to truly keep stakeholders on the same page. 

A description of a conceptual design can be decomposed into various aspects including 

function, behavior, and structure [10]. To generate and select the feasible solutions, it is 

necessary to determine the correlations and interactions among these aspects. Computers 

have been used extensively in areas of simulation, modeling, and optimization, but there are 

relatively few applications at the conceptual design stage [11] due to the lack of knowledge 

of design specifications and constraints. This lack of knowledge causes two inherent 

difficulties in conceptual design activities: a) modeling interactions between components and 

b) reasoning to generate and select feasible solutions.  

Generating geometry models for visualization is a big challenge for early stage 

conceptual design. Existing tools for this include traditional computer aided design (CAD) 

packages, sketch-based 3D geometry creation tools (e.g. Google SketchUp), and geometry 

manipulation and deformation techniques (e.g. free-form deformation, direct manipulation). 
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These solutions provide designers different ways to generate new design concepts. But they 

all have one common problem: the difficulty to bring people from different backgrounds into 

the design process. These tools mostly aim to those design engineers and unfriendly to other 

people who are also willing to contribute in conceptual design since the learning curve is 

usually too steep. 

Another issue for many conceptual design tools is the inability to integrate legacy 

geometric models. While some designs can be started simply from a sketch or geometric 

primitives larger, more complex designs require more to be created quickly. Legacy 

information can be a critical component to rapidly creating conceptual geometry that meets 

the needs of a diverse group of stakeholders. 

In this work, there are two ways of the usage for the legacy data. The advanced systems 

design suite (ASDS) makes use of the legacy geometries as well as some meta data. The 

legacy geometries and some primitive models work together and are employed for new 

geometry creation. And the meta data will assist some physical evaluations for design in 

early stage. The second way of using legacy models is implemented in our software 

―3DMeshMorpher‖. The idea is by developing a 3D mesh metamorphosis framework, the 

users can navigate in a shape-space of registered design models and construct numerous 

design concepts in real-time. This framework provides a non-traditional user interface that 

can take in inputs (e.g. weight, cost etc.) from non-tech users (e.g. consumer), which enables 

collaborative and interactive design process for people with different disciplines. 



4 

 

 

The main contributions for this  3D mesh metamorphosis framework can be categorized 

and summarized as following: 

(1) A fast spherical parameterization framework. This framework could benefit various 

parameterization related applications by performing in a much faster manner than 

existing spherical parameterization methods. 

(2) An innovative feature alignment method based on geometry skeleton generated by 

applying reported skeleton contraction and extraction algorithm [155]. The method 

allows users to identify and pick features from input models on an extracted model 

―skeleton‖. 

(3) A 3D remeshing scheme with spherical mesh subdivision based on our spherical 

parameterization. This method generates remeshing representations to match the 

level of details (LOD) for the source meshes and delivers various remeshing outputs 

with controllable multi-resolution. 

(4) A 3D mesh metamorphosis software ―3DMeshMorpher‖ to aid new geometry 

generation from existing legacy models. This software integrates the spherical 

parameterization method, skeleton-based feature alignment method and spherical 

subdivision remeshing algorithm. 

 

1.3 Dissertation Organization 

The remainder of this thesis is organized as following: Chapter 2 presents a literature 
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survey of conceptual design methods and tools. Chapter 3 provides an in-depth review of 

surface parameterization applications and classified mapping domains and related methods. 

In Chapter 4, the fast overlapping-solving spherical parameterization approach is introduced. 

Chapter 5 presents the feature alignment method based on 3D mesh skeleton extraction. And 

this is followed by the remeshing scheme with spherical subdivision in Chapter 6. Then, the 

3D mesh metamorphosis framework is described in Chapter 7, which includes the 

implementation of the mesh morphing software ―3DMeshMorpher‖ and its user interface 

design. The results of the spherical parameterization, remeshing with spherical subdivision, 

and mesh morphing are presented in Chapter 8. Finally, the research presented in this 

dissertation is discussed and concluded with some future work proposed in Chapter 9. 
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CHAPTER 2 

ADVANCED SYSTEMS DESIGN SUITE 

2.1 Literature for Engineering Conceptual Design 

 As mechanical systems and products continue to be developed and become increasingly 

more complex, the early stages of a design process become more critical to the success of the 

resulting product. Given well-defined design requirements, it is challenging to generate and 

select a concept that effectively satisfies all of the requirements. Conceptual design can have 

significant impacts on the downstream design and manufacturing process [6]. Early design 

stages typically include engineers identifying the requirements of a particular project and 

producing a concept pool using various creative methods such as brainstorming [7]. 

Engineers produce as many different concepts as possible in order to have a wide variety of 

ideas to evaluate at the next level of design. Depending on the project, concept generation 

could produce anywhere from tens to hundreds of possible concepts. 

 Once the pool of concepts has been established, engineers must reduce the list to a 

manageable number to proceed to detailed design. Currently, there are limited tools to aid in 

this process. The most prevalent method is to model concepts using detailed design tools 

such as CAD software. However, due to the specificity needed to create a solid model, 

considerable time and resources are consumed producing these 3D concepts simply to assess 

the rough measure of feasibility needed for evaluation of a concept. Due to the complexity 

and information needed by detailed design tools, an adequate evaluation of every conceptual 
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configuration cannot be performed. Such evaluations would be too time consuming and 

costly to the company. In order to address this problem, some CAD software companies have 

released ―lightened‖ versions of their products to attempt to release a product less complex 

and easier to use. Two examples of such products are Pro/CONCEPT [8] and CATIA V6 

PLM [9] which can be seen in Figure 1. However, these interfaces are still very complex 

offering many options and features. Thus, without extensive training and a large learning 

curve, these lightened applications still do not meet the real-time creation and analysis 

requirements of digital prototyping at the conceptual design phase. 

 

Figure 1: Screenshot of interface for CATIA V6 PLM 

 To overcome the modeling and reasoning problems, some design related techniques and 
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methodologies have been developed. Sahin et al. [12] developed a graphical modeling tool to 

visualize the modeling method to address the challenges of product design decisions. Chang 

et al. [13] extended this work to support the graphical modeling tool with an ontology-based 

approach to promote the systematic capture of design knowledge. Cao et al. [14] proposed a 

port-based ontology to map the concept connections and interactions to compute semantic 

similarities. Christophe et al. [15] combined the use of Function-Behavior-Structure, System 

Modeling Language, and artificial intelligence to create a dynamic mapping of ontology 

layers. 

 Research has also been done to try to provide more high-fidelity feedback to conceptual 

designers. Taskahashi et al. [16] integrated a detailed flight control systems synthesis tool 

into a vehicle configuration development MDO environment to better simulate aerodynamic 

efficiency, stability, and controllability in air vehicle configurations. Noon and Winer [17] 

used metamodeling techniques to capture high-fidelity analysis trends from legacy geometry 

datasets to provide real-time feedback of conceptual design models for large-vehicle designs. 

 Significant research has also been performed on overall design processes such as 

axiomatic design [18], decision-based design [19], and specific stages of a design process 

such as quality function deployment (QFD) [20]. Based on Keeney‘s Value Focused Thinking 

[21, 22], Jin et al. took a value-based design (VBD) [23, 24] approach to conceptual design 

by specifying designer‘s intent with design variable values. The design value is defined as a 

group of structured design objectives and a design objective driven approach is proposed to 
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assist design concept generation. Hoyle and Chen [25] created a design tool called product 

attribute function deployment (PAFD) which extended the qualitative matrix principles of 

QFD with utilizing the quantitative decision-making processes of decision-based design 

(DBD). 

 Concept selection methods exist to help engineers rank a population of concepts. 

Examples of these methods are estimating technical difficulty, Pugh concept selection charts, 

and numerical concept scoring [10]. These methods have proven effective but are simply a 

ranking system of engineers‘ opinions on each concept‘s ability to meet defined criteria of the 

design proposal. In-depth modeling and analysis (factual hands-on information) does not play 

a role in these elimination sessions. In order to use these methods more effectively, more 

information needs to be provided to the engineers before implementing these methods to 

make concept selections and decisions. 

 All three conceptual design methods - CAD packages, lightened CAD packages, and 

concept selection methods - have their advantages and disadvantages. All methods have 

numerous capabilities but, in today‘s digital age, still do not define a clear set of tools to be 

easily integrated into conceptual design. What is truly needed in conceptual design is a means 

to quickly create and analyze lower fidelity digital models in real-time in order to access 

every conceptual idea in order to make accurate and informed decisions as early as possible 

in the design process. 
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2.2 Development of Advanced Systems Design Suite 

 Currently, new product concepts are often evaluated by developing detailed virtual part 

and assembly models with traditional Computer Aided Design (CAD) tools followed by 

appropriate analyses (e.g., finite element analysis, computational fluid dynamics, etc.). The 

creation of these models and analyses are tremendously time consuming. If a number of 

different conceptual configurations have been determined, it may not be possible to model 

and analyze each of them due to the complexity of these evaluation processes. Thus, 

promising concepts might be eliminated based solely on insufficient time and resources for 

assessment. In addition, the virtual models and analyses performed are usually of much 

higher detail and accuracy than what is needed for such early assessment. By eliminating the 

time-consuming complexity of a CAD environment and incorporating qualitative assessment 

tools, engineers could spend more time evaluating concepts that may have been previously 

abandoned due to time constraints. To address these issues, a software framework, the 

Advanced Systems Design Suite (ASDS), was created. The ASDS incorporates a PC user 

interface with an immersive virtual reality (VR) environment to ease the creation and 

assessment of conceptual design prototypes individually or collaboratively in an immersive 

VR environment. Assessment tools incorporate metamodeling approximations and immersive 

visualization to evaluate the validity of each concept. In this paper, the ASDS framework and 

interface along with specifically designed immersive VR assessment tools such as state 

saving and dynamic viewpoint creation are presented alongside a test case example of 
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redesigning an airplane in the conceptual design phase. 

2.3.1 Virtual Reality Technology 

 Virtual reality (VR) development can be traced back as early as the 1960s [26]. Once 

computing and projection power advanced over the next two decades, academic institutions 

and industrial centers began investing in VR research and development. Before projection-

based systems were feasible, head-mounted displays were a common form of a VR display 

system. Then, in the early 1990s, VR systems ranging from single-wall projection screens to 

four-walled CAVE displays [27] were developed across the world and have since become a 

very popular research area from both a hardware and software perspective. VR hardware has 

undergone many technological advances since its debut in the early 1990‘s including 

projectors, tracking systems, interactive devices, and auditory interfaces. 

 The first projectors used for VR were capable of producing 1024 x 768 pixel images on 

10‘ x 10‘ display screens with a pixel resolution of approximately 54 pixels per square inch 

[28]. High-end projectors on the market today can produce up to 4096 x 2160 pixel images 

totaling over eight million pixels [29]. When these projectors push images onto a 10‘ x 5‘ 

screen, a pixel resolution of approximately 1228 pixels per square inch is created. This 

2260% increase in pixel resolution gives a much clearer and more detailed display of the 

virtual environment than with the previous generations of VR systems. 

 More powerful projection systems led to the development of interactive immersive 

environments. To interact with these immersive environments, tracking systems and 
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interaction devices were developed. Early tracking systems used electromagnetic fields to 

perform location tracking [30]. Since these electromagnetic tracking systems could only 

achieve high accuracy in small environments, companies began researching new 

technological possibilities for tracking systems. For example, InterSense [31] developed a 

tracking system combining ultrasound and inertial technology to track multiple devices 

simultaneously in a large-scale environment with high accuracy called the IS-900. 

 Nowadays, VR technology is gaining increasing utility for a variety of applications in 

product development [32]. With real-time interactive graphics, stereoscopic display, and user 

tracking, VR can be particularly useful for applications in which one-to-one scale is 

important or when the assessment of complex geometric relationships is required. Haptic 

interfaces have also been employed for assisting conceptual design [33]. Fischer and Vance 

[34] also used haptic devices inside a six-sided virtual reality environment for installing an 

aircraft rudder pedal assembly. Duncan and Vance [35] later developed an immersive virtual 

reality environment to help engineers better understand complex fluid behaviors in the 

mixing process. Finally, Abdul-Jalil and Bloebaum [36] created a collaborative virtual 

environment (VRoom) that allowed designers from multidisciplinary backgrounds to view 

and manipulate 3D models in an immersive environment simultaneously. With all these 

technologies available, engineering within immersive virtual reality can provide a 

collaborative design environment with additional features which cannot be matched with a 

2D desktop environment. 
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2.3.2 ASDS Methodology and Implementation 

 The software framework is named the Advanced System Design Suite (ASDS) [37, 38]. 

The ASDS was created to enable an engineer to quickly build a 3D model of a proposed 

design, assess a concept with real-time simulation analysis, and visualize the results on both 

desktop and immersive VR systems. The environment enables fast geometry creation by 

simplifying or eliminating the inputs and interfaces that CAD systems typically require, but 

are unnecessary at the conceptual design phase. 

 With the VR-based ASDS system, a group of engineers can create and assess multiple 

concept ideas in real-time. For example, the process could start by selecting from several 

base component geometries (e.g., chassis designs). Then, through a unique, intuitive 3D 

modeling system, features can be added or taken away to produce a new design concept. 

Typical modifications range from relatively small parameter changes, such as increasing the 

length of the frame by 10%, to large-scale changes such as adding a third axle to a two-axle 

vehicle. 

 Following the model creation some basic properties will be computed such as vehicle 

weight and center of gravity. Additional output will provide information on other vehicle 

performance measures including wheel load distribution and static tipping angle. The 

engineers then have information from which to base further decisions. These decisions might 

include whether to proceed with this concept to a more detailed analysis or to investigate 

other conceptual configurations. The 3D model and assessment output will also foster new 
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ideas to the current concept, ideas that would have been previously overlooked. Multiple 

iterations of conceptual designs can help design teams develop a specific list of requirements 

and ultimately a final direction for the team to pursue into the next phase of design. 

 Figure 2 shows the underlying architecture of the system. User interaction is done 

through the desktop interface on a tablet or laptop. The desktop application incorporates its 

own interactive 3D viewing window that controls all of the manipulation—rotation, scaling, 

panning, and translating—of the model. As shown in the figure, all design changes done on 

the desktop are transmitted over a network connection and performed in the immersive 

viewer simultaneously. The immersive viewer uses models from the same data source as the 

desktop. Navigation in the immersive application is controlled by a gamepad controller. This 

allows the desktop user to focus on design instead of also having to worry about the changing 

the immersive application view. By decoupling the immersive navigation from the desktop 

application, the immersive application environment became much more user friendly and 

allowed the development of immersive only tools to be developed. 
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Figure 2: Schematic of the ASDS system architecture 

The desktop application as shown in Figure 3 runs under several Operating Systems 

including Windows XP, Windows Vista, and Windows 7 on both 32 and 64-bit platforms as 

well as Mac OSX, and the immersive application operates on both 32 and 64-bit Linux 

Operating Systems. The desktop interface is built upon two open-source packages called 

OpenSceneGraph (OSG) [39] and wxWidgets [40]. OSG is a scene modeling and 

manipulation software built on-top of OpenGL to aid developers in scene graph rendering. A 

sample scene graph tree structure consisting of one group and four sub-groups is shown in 

Figure 4. The wxWidgets application programming interface (API) is used to develop the 
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desktop user interface. Since both OSG and wxWidgets are cross-platforms APIs, the ASDS 

desktop application is able to run on multiple operating systems without having to build 

separate applications for each Operating System. 

 

Figure 3: Snapshot of the ASDS desktop user interface 

 Network communications between the desktop and immersive applications are 

transported using a Transmission Control Protocol/Internet Protocol (TCP/IP) socket 

program. TCP/IP was chosen over other types of communication protocols such as User 

Datagram Protocol UDP due message verification. The TCP/IP protocol ensures the client 

message is received by the connected server socket before continuing to send additional 
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messages. This data transmission takes longer than other protocols, but ensuring each 

message is received and rendered appropriately on the immersive side is a must for these two 

applications. Message verification also ensures both the desktop and immersive scene graphs 

stay in sync with each other. 

 

Figure 4: Sample model tree structure of the scene graph 

 The ASDS immersive visualization software was developed using OSG to handle all 

the geometric scenegraph rendering while VR Juggler [41] was integrated to abstract display 

and device interface communication as well as stereoscopic viewing from the development 

requirements. In order to facilitate the all the different types of network and device 

communication between all computers on a large-scale cluster, several software 
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improvements have had to be made. First off, all device and network communications are 

running in separate threads from the main rendering thread. By processing all the 

communications in separate threads, the main rendering thread is only required to pick up the 

processed message when it deems necessary instead of having to process all the 

communications before being able to render the next frame. The next improvement involved 

integration VR Juggler cluster synchronization in the main thread once the processed 

communication was picked up by the main thread. The cluster synchronization is now done 

through VR Juggler‘s built in data serialization and synchronization methods. VR Juggler 

receives and processes the input on a single computer, and then is responsible for passing the 

message off to the other render nodes on the cluster once it is picked up by the main 

rendering thread. These cluster-based improvements in the immersive application help ensure 

a much more stable and reliable collaborative environment with steady frame rates when the 

immersive application is in use. 
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CHAPTER 3 

SURFACE PARAMETERIZATION 

 As a tool developed in computational geometry, 3D mesh parameterization is a powerful 

technique assisting geometric modeling and geometry processing in numerous applications of 

computer graphics. Sheffer et al. [42] reviewed and addressed practical considerations for 

various parameterization techniques and their applications. Considering any two surfaces 

with similar topology, usually there exists a one-to-one (bijective) mapping between them. In 

general, if one of the surfaces is a triangle-based mesh (either represented or approximated by 

triangles), the mapping process is referred as mesh parameterization [43; 44]. Typically, the 

destination surface that the mesh is mapped to is called the parameter domain with the other 

one named the source mesh. The objective of mesh parameterization is to generate a map 

between the source mesh and a triangulation of the domain. An essential goal of 

parameterization is to get a bijective map, where for each vertex in the source mesh there is 

only one correspondent vertex in the target parameterization domain. Usually, such 

parameterizations are piecewise linear, associating each triangle of the original source mesh 

with exactly one triangle in the parameterization domain. 

 Mesh parameterization was originally employed in computer graphics as a method for 

texture mapping for 3D surfaces [43; 45], which was the main driving force used in computer 

graphics to enhance the visual quality of 3D surface models. Later, it became a necessity due 

to the development of 3D scanning technologies and the resulting demand for efficient 
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compression techniques for increasingly complex triangulations. It is also influenced by other 

applications like surface approximation, and remeshing. Other fields that benefit from 

parameterization include detail mapping, detail synthesis, detail transfer, mesh fixing, mesh 

editing, object database creation, mesh compression, surface fitting, modeling from material 

sheets, medical visualization, filtering, texture mapping, remeshing, and morphing. 

Aside from the topological similarity, there is typically quite a large geometric difference 

between the source mesh and the parameterization domain, which almost always introduces 

distortions existing in either angles or areas. Very few cases admit isometric parameterization 

(zero distortion). The goal of a good parameterization algorithm is to minimize these 

distortions for the entire mesh. Based on the type of distortion minimization methodology, 

most parameterizations can be classified as two groups of mappings. Maps that attempt to 

minimize the angle distortions are named ―conformal‖ and maps that minimize the area 

distortion are referred as ―authalic‖. Research has been performed to measure the 

conformality of a mesh in several ways [46, 47, 48, 49] by applying different functions to be 

optimized. For example, Hormann and Greiner [46] consider the minimal and maximal 

eigenvalues of the first fundamental form of the mapping. Sheffer and de Sturler [47] directly 

calculate the difference between the corresponding angles in the source mesh and output 

parameterized mesh. Floater and Hormann [44] report that authalic parameterizations are not 

very useful in practice as they allow extreme angular and linear distortion. Due to that, 

researchers that attempt to preserve area [49, 50] also consider angular minimization for 



21 

 

 

balance. 

The traditional surface parameterization problem derived from texture mapping 

considers the case where the target domain is a planar region [44]. The mapping from the 

source mesh to parameterization domain is represented by the parametric locations of 

vertices within the plane. Various optimizations are applied to freely relocate the vertices 

within the domain as long as the mesh is maintained bijectively. However, with increasingly 

different applications of computer graphics and geometric modeling, the 2D planar 

parameterization domain does not meet this requirement in many emerging applications.. 

High dimensional parameterization domains are actively being researched and many different 

algorithms and methodologies have been developed. Based on the type of mapping domain, 

mesh parameterization can be categorized as planar parameterization, spherical 

parameterization, simplicial parameterization and inter-surface mapping. 

In this section, a literature survey will first be presented about the applications that are 

closely related to and benefit from mesh parameterization. Then different parameterization 

methodologies and techniques are discussed, classified by parameter domain used: planar, 

spherical, simplicial and inter-surface parameterization. Lastly, some methods of introducing 

constraints into a parameterization is also reviewed and discussed. 

 

3.1 Applications for Parameterization 

As mentioned above, 3D mesh parameterization was originally investigated and 
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introduced into the field of computer graphics and computational geometry as a technique for 

texture mapping. With the fast growth in the field of mesh and geometry processing, more 

and more related research integrated and benefited from mesh parameterization.  

3.1.1 Texture and Detail Mapping 

Over the last decade, texture mapping has been recognized as one of the most successful 

techniques for high quality image synthesis in computer graphics. Although application 

variety is diverse, the techniques of texture mapping are basically the same for different 

cases. Here we can categorize surface attributes as color, surface normal, specularity, 

transparency, illumination, and surface displacement. Early synthesized raster images of 

surfaces emphasized the smoothness of surfaces, without attempting to represent fine details 

like scratches or dirt, and generally lacked realistic effects and complexity. This, texture 

mapping was developed as a relatively efficient means to create complicated and realistic 

surface renderings. 

The main goal of texture mapping is to realistically represent the complex appearance of 

3D geometry. In the early years, research in texture mapping was more focused on 

parameters like color and surface normal. Some of the parameters that have been texture 

mapped include, surface color (the most common use) [51], specular reflection [52], normal 

vector perturbation (bump mapping) [53], specularity (the glossiness coefficient) [54], 

transparency [55], diffuse reflection [56], shadows, surface displacement, and mixing 

coefficients [57], and local coordinate system (frame mapping) [58]. 
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For computer graphics display, surfaces are represented by a tessellated geometric model 

(typically a triangular mesh, polygonal mesh or subdivision surface) with texture and other 

information stored separately. For rendering 3D digital geometry, textures can enhance visual 

appearance with simple static pictures. However, with a continuous and smooth texture, the 

rendering for pixel neighborhoods is very similar, and under varying lighting conditions the 

object can look flat and unrealistic in animations. Bump mapping [53] addresses this issue by 

storing small deviations of the point-wise surface normal and applies the perturbed version 

during the shading process. Sheffer et al. [59] develops a similar method called normal 

mapping which replaces the normals instead of storing perturbations. The shading variations 

generate small pits and dimples in the surface to simulate the shadows when there is a 

direction change of the light source. Bump mapping and normal mapping address the issue of 

shading variation. But since the geometry of the model is never deformed or edited, the 

appearance of the object always looks either smooth or polygonal. This problem is handled 

by displacement mapping with small local deformations of the surface record stored in the 

texture. Recentl techniques [60, 61, 62] employ so called volumetric textures, instead of 

conventional 2D textures, to model a thick region of space in the neighborhood of the 

surface. These techniques deal with the situations of complicated topology or details which 

are not easy to estimate with a local height field. 

 Unlike texture mapping that attempts to represent the complex appearance of 3D objects, 

newly developed detail synthesis techniques are designed to create rich local details by 



24 

 

 

applying surface parameterization. One such procedure implements flat sample patches with 

detailed textures. Pederson et al. [63] present a set of interactive tools for subdividing an 

implicit surface into convenient patches with an efficient and reliable algorithm for deriving 

parameterizations for such patches. Lapped texture [64] is a means for creating texture over 

an arbitrary surface mesh using an example 2D texture by identifying interesting regions 

(texture patches) in the 2D example and repeatedly pasting them onto the surface until it is 

completely covered. Wei and Levoy [65] provide a solution to synthesize a general texture 

over arbitrary manifold surfaces by extending their original texture synthesis method with a 

generalization of their definition of search neighborhoods. They realize this by establishing a 

local parameterization surrounding each mesh vertex and using the parameterization to create 

a small rectangular neighborhood with the vertex at its center, and then search a sample 

texture for similar neighborhoods. Turk et al. [66] believe that the best way to create a 

surface pattern is to synthesize a texture directly on the surface of the model. Using texture 

synthesis methods that use image pyramids (and a mesh hierarchy to serve in place of such 

pyramids), they create a similar texture over an irregular mesh hierarchy on a give surface 

with a texture sample in the form of an image. By considering a very general type of texture 

that including color, transparency and displacement, Ying et al. [67] present a novel method 

for texture synthesis on a surface that synthesizes the texture directly on the surface rather 

than synthesizing a texture image and then mapping it to the surface. Finally, the multi-scale 

algorithm [68] maps a texture defined by an input image onto an arbitrary surface. This 



25 

 

 

method progressively covers the surface by texture patches of different sizes and shapes from 

a single input image. 

 An alternative approach for detail synthesis is to directly process user input and editing 

(e.g., painting). Igarashi et al. [69] implement a method to dynamically generate an efficient 

texture bitmap and its associated UV-mapping in an interactive texture painting system for 

3D models. To eliminate the distortion of brush strokes, they develop an adaptive 

unwrapping mechanism where the system dynamically generates a tailored UV-mapping for 

newly painted polygons during the interactive painting process. The final texture bitmap 

resulting from this process is more compact since texture space is only allocated for the 

painted polygons. Carr and Hart [70] present a GPU based texture atlas algorithm which 

distributes initial texture samples evenly according to the surface area and texture frequency, 

and maintain the distribution as the texture signal changes during the surface painting 

process. They make the redistribution of samples transparent to the user which results in a 

surface painting system of theoretically unlimited resolution. 

3.1.2 Mesh Manipulations 

Mesh manipulation refers to those applications that involve topology or connectivity 

changes of the source mesh, such as moving vertex position, adding more vertices, removing 

vertices, and switching from a triangular to polygonal mesh. Many different mesh 

parameterization and manipulation operations are described in this section including: mesh 

fixing, mesh editing, and remeshing. 
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Many 3D complex geometric models are generated from high quality 3D scanning. 

During such a process, the resulting models are usually not perfect due to holes and multiple 

components. Mesh fixing is the process of repairing such imperfections to produce a 

complete model that contains the original scanned model. Lévy [71] provides an approach to 

compute a natural boundary to triangulate around holes with global planar parameterization. 

This work makes it feasible to extrapolate the geometry beyond the existing boundary rather 

than just smooth an existing geometric model. For some scanned models, there may be prior 

knowledge about their overall appearance and such knowledge can facilitate the mesh fixing 

process. Allen et al. [72] develop a novel technique to fit high-resolution template meshes to 

detailed human body range scans with sparse 3D markers. To achieve this, they formulate an 

optimization problem such that the degrees of freedom are affine transformations for each 

template vertex and solve the problem with a non-linear optimizer running at two resolutions 

to assist convergence. Also with human shape, Anguelov et al. [73] introduce a data-driven 

method (SCAPE, Shape Completion and Animation for PEope) to build a human shape 

model. The method involves variations in both human body shape and pose, which is set up 

with a representation that incorporates articulated and non-rigid deformations.  

Kraevoy et al. [74] present a more generic and robust template-based approach for mesh 

completion for arbitrary 3D scans. This approach employs a mapping between the incomplete 

mesh and a template model, which is calculated with a novel framework for bijective 

parameterization of meshes with gaps and holes. This mapping can correctly glue together 
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the components of the input mesh and to close the holes, as well as fill the topological and 

geometric information missing in the input. 

Local/Global mesh parameterization techniques are also applied to facilitate mesh 

editing related operations in many applications. Based on local parameterization, Biermann 

et al. [75] generate a set of algorithms for multiresolution subdivision surfaces which perform 

at interactive rates and enable intuitive cut-and-paste operations. The local parameterizations 

for areas of interest for two different models are placed overlapping each other and applied to 

transfer local shape properties and details from one model to another. Sorkine et al. [76] treat 

geometric detail as an intrinsic property of a surface and point out that surface editing is best 

performed by operating over an intrinsic surface representation. They provide a Laplacian 

representation for the mesh, which is enhanced to be invariant to locally linearized 

transformation and scaling. From this representation, mesh editing operations are developed, 

including interactive free form deformation (FFD) in a local region, geometric detail transfer 

and mixing between surface meshes and transplantation of a partial mesh onto another mesh. 

Lévy [71] use a similar local parameterization for mesh composition by calculating an 

overlapping planar parameterization of the region near the composition boundary on the 

source models and utilize it to extract and blend shape information from the source models 

smoothly. 

Remeshing is another important mesh operation that is dependent on mesh 

parameterization techniques. Resampling raw surface meshes has become one of the most 
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fundamental operations used by nearly all digital geometry processing systems. With a 

similar level of detail, there are a lot of different triangular representations for a selected 

shape. Usually, the selection of such mesh representation is determined by the requirements 

of their application. The most straightforward method of replacing one triangulation by 

another is to parameterize the source mesh into a domain, map a desired well-defined mesh 

into the same domain, and finally, map the desired mesh back to the source mesh based on 

the overlapping information from the domain. Gu et al. [77] present a novel remeshing 

technique called ―geometry image‖ which captures geometry as a 2D array of quantized 

points and stores normals and colors as surface signals in a similar 2D array by applying the 

same implicit surface parameterization. Cutting the mesh and mapping the resulting chart 

onto a square creates the geometry image. A promising perspective of this work is that the 

geometry image can be encoded with image compression algorithms (e.g. wavelet-based 

encoders). Inspired by differential geometry, Guskov et al. [78] introduce a new fundamental 

surface description called the ―normal mesh‖, which is a mesh with multiresolution 

representation. Each level of resolution is written as a normal offset from a coarser version of 

the mesh and is stored with a single float per vertex. They also provide an algorithm to 

estimate any arbitrary surface closely with a normal semi-regular mesh. Lee et al. [79] 

introduce another surface representation referred to as the ―displaced subdivision surface‖ to 

represent a detailed surface geometry as a scalar-valued displacement over a smooth surface 

domain. Both the domain surface and the displacement function are defined with a unified 
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subdivision framework which provides a way to evaluate the analytic surface properties 

simply and efficiently. Khodakovsky et al. [80] present a parameterization framework which 

takes in surface meshes with arbitrary topology and generates a globally smooth 

parameterization with small distortion. They demonstrate the performance of this algorithm 

with numerical evaluation of distortion measurement and distortion performance of semi-

regular remeshes produced. Desbrun et al. [49] present a new theoretical and practical 

parameterization of triangulated surface patches called ―intrinsic parameterizations,‖ which 

minimize the distortion of different intrinsic measures of the original mesh within a simple, 

sparse linear system. With planar Delaunay triangulation, they are able to generate high 

quality remeshing of the surface and propose it to faciliate the rapid design of 

parameterizations. 

Instead of global parameterization, Surazhky and Gotsman [81] introduce a robust local 

parameterization based remeshing scheme that enhances mesh quality with many local 

modifications of geometry and connectivity. To achieve this, they describe a family of local 

modification techniques with an area-based smoothing method that allows the control of both 

the triangle quality and vertex sampling over the mesh. Dynamic patch-wise parameterization 

is performed to local modifications of meshes with arbitrary genus and a novel algorithm is 

implemented to improve the regularity of the mesh connectivity by creating an unstructured 

mesh with a very small number of irregular vertices. Ray et al. [82] present a globally smooth 

parameterization technique for triangulated surfaces with arbitrary topology. Their method 
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calculates two piecewise linear periodic functions by minimizing an objective function, 

which can construct both quasi-conformal (angle preserving) and quasi-isometric (angle and 

area preserving) parameterization. This work claims to be particularly suitable for surface 

fitting and remeshing due to the alignment of parameterization with the principle curvature 

directions. 

Unlike most work that has focused on triangular remeshing, Dong et al. [83] focus on 

quadrilateral meshes that are more suitable for many surface PDE problems. In their work, 

they describe an innovative algorithm to quadrangulate manifold polygonal meshes by 

applying Laplacian eigenfunctions. With algorithms and heuristics to efficiently and 

effectively choose the harmonic most suitable for the intended application, they are able to 

build a well-shaped quadrilateral mesh with very few extraordinary vertices. 

3.1.3 Other Applications 

Data compression is the process of encoding information by using fewer bits (or other 

information storage units) than an unencoded representation would within specific encoding 

schemes. With the growth of the computational geometry field, researchers have borrowed 

ideas from data compression to develop ―mesh compression‖ which is utilized to compactly 

store information for geometric models [84]. The efficiency of a compression method is 

usually evaluated by compression rate. To facilitate higher compression rate for geometric 

models, the mesh should have either all the vertices of the same degree, or in other words, the 

triangles should be similar to each other in terms of shape and size with vertices around the 
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geometric centroid of their neighbors,.  

Mesh compression algorithms can be classified by two major techniques depending on 

whether the model is decoded during or only after the transmission: single-rate and 

progressive compressions. For single-rate compression, the objective is to delete the 

redundancy present in the original description of the data. And for progressive, the aim is to 

get the best rate-distortion tradeoff, which is the tradeoff between data size and 

approximation accuracy. A regular mesh is generated first to facilitate high-rate compression. 

The source mesh is usually parameterized to a domain and then remeshed with regular 

sampling patterns [77]. Similarly, Hoppe and Praun [85] develop an mesh compression 

scheme with the introduction of their spherical parameterization and remeshing algorithm 

which maps a genus-0 surface mesh onto a 2D grid, a spherical geometry image. Their 

compression and decompression algorithms work on 2D arrays and are claimed to be ideally 

suite for hardware acceleration. Their two approaches for shape compression are wavelet-

based and use spherical geometry images. 

 Within a common domain, parameterizations of a large amount of meshes can facilitate 

the creation of object databases. Analyses based on such parameterizations can be performed 

to determine the common characteristics among objects and their distinguishing traits. Allen 

et al. [72] present a novel technique to fit high-resolution template meshes to detailed human 

body range scans with sparse 3D markers. In their work, they set up a database of human 

shapes with the possible distinguishing traits of gender, height, weight, etc. Blanz and Vetter 



32 

 

 

[86] develop a new technique for modeling textured 3D faces based on a face database with 

facial expressions. With their face database, transforming the shape and texture of the 

examples into a vector space representation is used to derive a morphable face model. Based 

on a linear combination of the prototype models, new faces or expressions can be generated 

with a morphing interface. Marschner et al. [87] build a face model system for modeling, 

animation and rendering the human face using measured information for geometry, as well as 

motion and reflectance that regenerates a particular human‘s facial appearance and facial 

expressions. This system creates structured face model database with correspondences across 

different faces, providing a foundation for various facial animation operations. Blanz et al. 

[88] introduce an image based animation technique for human faces, which necessitates no 

exemplar data of mouth movements and no restricted poses or illumination requirements. 

Their system transforms mouth movements and expressions among examples based upon a 

common representation of various faces and face expressions in a vector space of 3D shapes 

and textures, which is calculated from 3D scans of neutral faces and face expressions. Using 

the same database of human faces, Blanz et al. [89] present a system that can substitute faces 

with big differences in viewpoint and illumination, unlike the traditional photo retouching 

and image processing tools with fixed viewpoint and illumination. To achieve this, they 

implement an algorithm to estimate 3D shape and texture along with all relevant parameters, 

and a user interface for clicking a set of feature points and marking the hairline in the target 

image. This technique is claimed to be helpful for image processing, virtual hairstyle try-on 
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and face recognition. 

 Mesh parameterization methods are also applied in medical visualization (e.g., volume 

rendering). Instead of mapping vertex positions and mesh connectivity, usually features such 

as surface normal-map, color and other properties are parameterized to a simpler, canonical 

domain for visualization and further analysis. In particular, such mapping techniques are 

useful for studying human brain. Hurdal et al. [90] provide a new approach to create 

parameterization for flattening maps of the human brain. Based on Riemann Mapping 

Theorem, their algorithm performs a conformal parameterization for angular preservation. 

This parameterization can deal with a mapping domain of not only traditional Euclidean 

plane but also the hyperbolic plane and the sphere, without cuts to be introduced in the 

source surface. Haker et al. [91] treat the brain as a genus-zero surface and visualize it 

through spherical parameterization with topologically equivalence. To do that, they introduce 

an explicit method to map any simply connected surface on a sphere which relies on some 

conformal mapping from differential geometry. A finite element method is also merged into 

their work for a triangulated surface description. Based on the structure of the co-homology 

group of holomorphic one-forms for surfaces, Gu et al. [92] develop a general method of 

global conformal mapping for genus-zero meshes. They apply such method in parameterizing 

the human brain. By using a mesh structure to represent magnetic resonance imaging (MRI) 

data, their algorithm is robust in handling such conformal parameterization stably and has 

good extensibility. 
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 Most of the techniques developed for computer graphics and computational geometry are 

focused only on digital geometric models and rarely consider real-world engineering 

applications. Some work, however, has dealt with such issues by applying 2D planar mesh 

parameterization as a tool to model 3D objects from sheets of material. The relevant 

applications range from garment modeling to metal forming or forging. Mitani and Suzuki 

[93] propose a novel method of making paper craft toys with triangulated meshes by means 

of a strip-based approximation. The approach approximates the model mesh with a set of 

triangular strips so that the unfold pattern can be generated using only mesh operations and a 

simple unfolding algorithm. The crafted model maintains smooth features of the original 

model meshes by bending the paper without breaking edges. Julius et al. [94] introduce a 

new quasi-developable mesh segmentation framework ―D-Charts‖ based on a new metric of 

developability for surface meshes and a technique for automatic pattern design. They 

practically apply this method in making fabric and paper copies of some popular computer 

graphics models. 

 

3.2 Parameterization Domains and Methods 

Traditional surface mesh parameterization techniques for computer graphics applications 

are focused primarily on mapping meshes with disk-like topology to a planar region. As such 

planar parameterization methods are only applicable to surfaces with disk topology and 

cannot be directly applied to closed surfaces. Since most practical 3D surface meshes are 
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closed surfaces or contain closed surface features, more and more research focuses on these 

parameterization problems. Technically speaking, the challenge is to solve the topological 

inequivalence between source mesh and target domain. Techniques such as cutting and chart 

generation aim to change the source mesh to match the topology for the target domain. 

Alternatively, spherical or simplicial parameterization aims to switch the planar open domain 

to closed 3D surface domain, which is equivalent to the source mesh topologically. In this 

section, parameterization techniques based on different target mapping domains are reviewed 

and discussed. 

3.2.1 Planar parameterization 

Early planar parameterization aimed to address the issue of texture mapping for surfaces 

with disk-like topology. With the development of computer graphics, recent applications 

involve parameterization in other surface properties (e.g., normals) and geometry processing 

operations (e.g., remeshing, and mesh fixing). Mostly, parameterization from 3D surface 

mesh to 2D planar domain unavoidably produces distortions except some rare cases. Based 

on a well-known theorem [95] from differential geometry, an isometric parameterization 

which preserves distances does not exist for planar parameterization. Many parameterization 

methods work with distortion minimization in either angular, stretch or area. Besides 

distortion, there are other important considerations for the planar parameterization (also 

applicable to spherical and simplicial cases): i) boundary conditions - either free or fixed 

boundary; ii) validity and robustness - bijective mapping globally or locally; iii) efficiency - 
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practical numerical complexity, linear or non-linear system solution. 

The uniform parameterization from Tutte‘s [96] graph embedding method is recognized 

as one of the earliest methods in mesh parameterization. In this method, vertices on the 

boundary of 3D meshes are mapped onto the boundary of a 2D planar domain. The boundary 

for this mapping domain needs to be a convex region. Instead of defining a uniform weight 

for each edge of the mesh in Tutte‘s method, Floater [97] calculates the weight for each edge 

based on the information from their neighborhood. Such non-uniform weight has proven to 

be shape-preserving and lead to visually smooth surface approximation. For the validity and 

robustness for this planar parameterization method, usually if the weights are positive and 

symmetric, and the boundary is convex, the parameterization obtained can be guaranteed to 

be bijective. 

Angle preserving parameterization is one of the most investigated methods in the field of 

mesh parameterization. Angle preservation is required by some graphics applications such as 

remeshing and some engineering applications like numerical simulations. In these 

applications, angular distortions especially small angles will either affect the numerical 

results (i.e., generate numerical singularity) or visual quality (e.g., produce unsmooth 

appearance). Eck et al. [98] introduce harmonic, or cotangent weights, parameterization. 

These weights are generated from a finite element method based representation for harmonic 

energy and lead to minimizing angular distortion. To ensure bijectivity, Kharevych et al. [99] 

introduce intrinsic Delaunay triangulation of the surface mesh as an input to harmonic 
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parameterization. This method constructs discrete conformal mappings based on circle 

patterns. It supports different boundary conditions ranging from natural boundaries to 

controlled boundary shape. The anisotropic mesh parameterization scheme [100] brings in an 

anisotropic modification to Floater‘s shape preserving parameterization method [97]. The 

implementation introduces an additional stretching term to the original discrete energy 

minimization scheme, which allows flattening of parametric mapping along a given 

discretionary field. Similar to the harmonic weights, weights can also be generated from 

mean-value coordinates [101]. This is a generalization of barycentric coordinates to allow a 

vertex to be represented by a convex combination of its neighbor vertices, which is based on 

the mean value theorem for harmonic functions. Although the resulting weight matrix is non-

symmetric, it has been proven that mean-value parameterization is guaranteed to be bijective. 

 These mapping techniques are weight-based and can be implemented by solving a linear 

system. Theoretically, parameterization distortion depends on the difference between the 

actual boundary shape of the source mesh and the boundary shape for the 2D domain. Lee et 

al. [102] create a fixed virtual boundary to make the real domain boundary free and thus the 

real boundary can better reflect the shape of the source 3D boundary. With such freely 

moving boundary, the parameterization is able to introduce less distortion than methods with 

fixed boundaries. Similarly, Zhang et al. [103] present an automatic planar parameterization 

method for mesh segmentation and flattening. This feature-based parameterization method 

performs patch creation with genus reduction and feature identification, and applies scaffold 
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triangles in the virtual boundary for minimizing distortion. LSCM (Least Squares Conformal 

Maps) [48] and DCP (Discrete Conformal Parameterization) [49] are two explicit 

formulations for linear parameterization with free boundary. They both aim to minimize 

angular distortions, but are independently proposed with different formulations of harmonic 

energy. 

 Unlike most planar parameterization methods mathematically defined with vertex 

positions, the ABF and ABF++ (Angle-Based Flattening) [104, 59] introduce a novel method 

with a definition in term of angles. The algorithm runs iterations to search for angles that are 

as close as possible to the angles in the original 3D source mesh. These angles are converted 

to coordinates for all vertices after this minimization process. Zayer et al. [105, 106] extend 

ABF with additional methods borrowed from traditional parameterization process in terms of 

vertex coordinates. In their work, either convex boundary condition is forced to the 

parameterization domain to guarantee global bijectivity, or an iterative free-boundary 

conformal method is applied to minimize distortions. 

 Distance preserving parameterization is another category for 3D mesh parameterization. 

Since only some developable surfaces can be parameterized with distance preservation, 

existing methods aim to minimize such distortions instead of eliminate them. Lévy and 

Mallet [107] introduce a technique for non-distorted texture mapping on complex triangular 

meshes by using an iterative optimization. Unlike other global optimization techniques, they 

allow local distortions minimization in order of preference from user‘s input. While, it is 
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reported that minimization formulations for the distance are numerically complex and hard to 

solve. Sander et al. [108] present a technique for constructing a progressive mesh to make all 

mesh sequences share a common texture parameterization. They introduce two metrics of 

parameterization stretch, which are widely used for linear distortion comparison between 

different mapping methods. Iso-charts [109] merge two apparently incompatible techniques 

together to create texture atlas for arbitrary meshes. These two techniques include stretch-

minimizing parameterization from the surface integral of the trace of the local metric tensor 

and the multi-dimensional scaling (MDS) parameterization from an eigen-analysis of the 

matrix of squared geodesic distance between two vertices. In a later work, Sander et al. [110] 

extend the method with signal specialized parameterization, which allows the user to affect 

the distribution of distortions along the mesh surface. Tewari et al. [111] report a more 

accurate signal with significant savings in texture area than the signal specialized 

parameterization method by Sander et al. [110]. They make use of a metric for the surface 

parameterization specialized signal to generate a more efficient high-quality texture mapping.  

 Area preserving parameterization, referred as authalic, deals with area preservation for 

mesh triangles by typically introducing additional optimization terms or constraints. Desbrun 

et al. [49] derive a similar method from their discrete conformal map (DCP) algorithm and 

implement a linear formulation for local triangular area preservation. Their formulation 

supports a tradeoff between angular and area distortions. Degener et al. [50] directly target 

global area deformation for mesh parameterization. A non-linear formulation is developed 
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with an energy functional which measures angular and area distortions simultaneously with a 

tradeoff parameter controlled by user. The method does not require a fixed boundary 

condition and the non-linear energy implementation could assist in preventing triangle flips. 

A hierarchical optimization framework based method is employed to minimize the energy 

and guarantee the convergence of the algorithm. 

 2D planar parameterization techniques are only applicable to 3D meshes with the same 

topology. For closed meshes or high genus (greater than 0) meshes, theoretically it is 

impossible to directly map them onto a 2D domain. Thus, techniques have been developed to 

cut the meshes before parameterization. The cuttings will decrease the parameterization 

distortions while increasing cross-cut discontinuities. The tradeoff between these distortions 

and discontinuities must be considered and balanced during parameterization. The first 

category of mesh cutting techniques is to cut the surface to an atlas of charts. Maillot et al. 

[45] introduce an algorithm to automatically produce an atlas from any type of mesh for 

texture mapping. The distortion is lowered by a general optimization function with an energy 

minimization process. Multi-chart geometry images [112] refer to a representation for 

arbitrary geometric surfaces to map the surface piecewise onto charts of arbitrary shape by 

using an atlas construction. They create a watertight surface with the implementation of a 

novel zippering algorithm to eliminate unacceptable surface cracks for shapes with long 

extremities, high genus or disconnected components. Gu and Yau [113] present a global 

parameterization algorithm that preserves conformality everywhere (except for a few points) 
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and introduces no boundary discontinuities by constructing a basis of the underlying linear 

solution space. It is claimed that the mapping result is independent of connectivity and 

insensitive to resolution. Tarini et al. [114] introduce a technique called ―PolyCube-Maps‖ 

which maps 3D meshes on a set of square charts. The texture is stored as a collection of small 

image pieces on these square charts. Vertices from the source mesh are parameterized onto 

the base domain formed by a collection of assembled cubes. Each segment of the 3D surface 

mesh is projected onto a nearby cube face, and pixel information is read and assigned to 

every associated vertex based on the texture for the face. 

 Instead of segmenting the mesh into multiple separate patches, another widely used 

technique of mesh cutting is to cut the mesh to a single chart. Compared to mesh 

segmentation, this typically leads to shorter cutting paths and yet still reduces 

parameterization distortion. Sheffer et al. [115] show that areas of high surface curvature 

yield more distortion during parameterization and cutting the surface in these areas can 

reduce distortion. They introduce a fast technique to lead a texture map seam through such 

high curvature areas and restrict the seam to regions with low visibility. Their results indicate 

less distortion and are less visually distracting. Sorkine et al. [116] provide the first method to 

parameterize and partition the mesh simultaneously and automatically. With strictly bounded 

distortion, their method generates low distortion and guarantees avoiding global and local 

self-intersections by minimizing the total length of the cutting seams. Lazarus et al. [117] 

present two optimal algorithms for the problem related to cutting the surface with high genus 
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and map it into a topological disk from canonical polygonal schema. A handle cutting method 

by Erickson et al. [118] aims to converting a polyhedral manifold surface into a single 

topological disk by minimizing either the total number of cutting edges or total cutting 

length. This method is reported to be complicated to implement. Ni et al. [119] perform small 

number of cuttings for genus reduction by solving a relaxed form of Laplace‘s equation to 

find a fair Morse function [120] with a user-controlled number and configuration of critical 

points. 

3.2.2 Simplicial Parameterization 

Planar parameterization is widely applied to map meshes with disk topology onto a 2D 

planar domain. For surfaces with different topology (e.g., high genus or closed surface), 

mesh segmentation or seam cutting will be performed before or during parameterization. 

Most of these techniques are developed to minimize distortions of either angle or area. With 

mesh segmentation and seam cutting, there will always be inevitable discontinuities 

generated from parameterization. However, some graphic applications are very sensitive to, 

or even cannot tolerate such discontinuities. In these cases, researchers try to employ non-

planar base domains to avoid unwanted segmentation or cutting. In this section, 

parameterization base on the domain of a simplicial complex is reviewed. 

It is reported that a simplicial complex has been the most popular non-planar domain for 

parameterization [123]. Usually, the simplicial parameterization process consists of two 

steps. The first one is to define a coarse simpilicial complex. One method applied for this is 
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to simplify the original source mesh. Once this domain complex is generated, each vertex 

from the original mesh is parameterized to the base complex domain by computing its 

barycentric coordinates. The challenge in parameterization with a simplicial complex domain 

is the difficulty for global parameterization optimization. Due to the sharp edges and vertices 

existing in the simplicial domain, most algorithms employ linear relaxation of local 

neighborhood instead of global parameterization. Such parameterization processes usually 

produce distortions. 

Eck et al. [98] introduce a method to convert completely arbitrary meshes to 

multiresolution form by overcoming the subdivision connectivity restriction. They claim that 

the essential component of this algorithm is the construction of a parameterization over a 

simplicial complex domain. They perform a local iterative relaxation on a pair of adjacent 

faces and parameterize the surface neighborhood over the resulting quadrilateral. Hybrid 

mesh [121] is another multi-resolution surface representation with both regular and irregular 

refinements. The regular operations are enabled by an efficient tree based data structure and 

processing algorithms but lack of flexibility in resolving shapes with high genus or features 

at many scales. However the irregular operations can adjust mesh topology throughout the 

hierarchy and estimate detailed features at multiple scales. Consistent mesh 

parameterizations introduced by Praun et al.  [122] provide an algorithm that establishes 

consistent parameterizations for a group of models by sharing the same base domain and 

respective features. They implement remeshing based on the same connectivity, which forms 
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a wide range of application algorithms including principal component analysis (PCA), 

wavelet transforms, as well as detail and texture transfer between models. 

Rather than iteratively optimizing local neighborhoods as in most simplicial 

parameterization methods, Khodakovsky et al. [80] set up a global system in which the 

adjacent domain faces are regarded as they are locally opened up into a plane. This global 

system converges in a fast manner. Schreiner et al. [123] extend some of their previous work 

to construct the simplicial complex domain automatically in parallel to the patch formation. 

They make use of a set of correspondences between feature vertices from the input meshes as 

the vertices to form the base domain. In a similar way, cross-parameterization [124] also 

preserves the feature vertex correspondences from user input and the shape correlation 

between the models. It seems this remeshing algorithm can generate an output mesh with 

fewer elements but still approximate the input geometry accurately. Boier-Martin et al. [125] 

develop a method for parameterizing irregular triangular meshes over polyhedral domains 

with quadrilateral faces. They construct a coarse mesh with normal-based clustering of faces 

and spatial-based clustering of the initial generated charts. The coarse polygonal mesh is 

defined by region boundaries, which is cleaned up and quadrangulated to generate the base 

domain over which the input mesh is parameterized. 

3.2.3 Spherical Parameterization 

As we discussed above, planar parameterization for high genus meshes usually introduce 

mesh segmentation or seam cutting, which can generate discontinuities and distortions. For 
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the simplicial complex domain, it is hard to optimize the parameterization globally in most 

cases. Topologically, closed manifold, genus-zero meshes, are equivalent to a sphere. So a 

spherical base surface is the natural parameterization domain for these meshes. Compared to 

the planar and simplicial domains, the advantage of spherical parameterization is that it 

allows smooth, seamless and continuous parameterization of genus zero models. Thus, much 

research attention has been devoted to the spherical domain in the past few years. 

One approach [126] is to reduce the 3D spherical parameterization to the 2D planar case. 

First, closed mesh is cut into two pieces with topological equivalence to a disk. Then, each of 

these two pieces is parameterized on a 2D planar domain with the same fixed boundary. 

Finally, each disk is mapped to a hemisphere and the two are combined into a full sphere. 

Instead of cutting the whole mesh to get the boundary, another approach [91] picks one 

triangle as a boundary and computes a planar parameterization of the remaining open mesh 

over the triangle by applying a planar parameterization method, and finally calculate the 

stereographic projection to obtain the spherical parameterization. However, some report that 

this method may introduce severe distortion and does not guarantee a valid spherical 

triangulation. Zayer et al. [127] cut the mesh along a date line defined by some poles from 

user input and apply planar parameterization over a rectangular domain by solving a Laplace 

equation in curvilinear coordinates. They reduce the mapping distortions by using a variant 

of quasi-harmonic maps and performing tangential Laplacian smoothing. 

Directly parameterizing a mesh over a spherical domain is more natural than applying a 



46 

 

 

2D plane as a temporary medium domain between the two. Some researchers have applied 

the mesh simplification and multi-resolution methods to facilitate such spherical 

parameterization processes. Similar to the work by Das and Goodrich [128], Shapiro and Tal 

[129] apply mesh simplification for vertex removal until a tetrahedron remains. They map the 

tetrahedron onto the closed domain and then add removed vertices back, one-by-one. The 

interpolation of the corresponding vertices is based on the spatial relations among 

neighboring vertices. Birkholz [130] provides another parameterization method with mesh 

simplification. He utilizes the edge collapse method with a collapse order based on edge 

length to obtain the tetrahedron. He also develops an optimization process for shape-

preserving with spherical angles from barycentric maps. However, it is reported from other 

work that this method may not be able to guarantee a valid parameterization (i.e., prevent 

triangle foldover). 

Barycentric based convex boundary methods have been well developed in planar 

parameterization and extended to spherical base domain with Gauss-Seidel iterations. 

Kobbelt et al. [131] borrow the shrink wrapping process by adapting the deformable surface 

technique from image processing and apply it in parameterization. Alexa [132, 133] performs 

heuristic iterative procedures with uniform weights to achieve spherical parameterization for 

genus-zero polyhedra. Based on the parameterization, he implements feature correspondence 

and mesh merging algorithms for 3D mesh morphing. The mapping method is fairly easy to 

understand and implement, but the algorithm is slow to converge and is not verified to 
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always yield valid mapping results. From spectral graph theory and its extension, Gotsman et 

al. [134] generalize the method of barycentric coordinates for planar parameterization to 

solve the spherical mapping problem. They prove its correctness theoretically and provide a 

quadratic system of equations which is the spherical equivalent to the barycentric 

formulation. They do not provide an effective solution to this quadratic system, which limits 

its applications. To efficiently solve this large system of non-linear equations, Saba et al. 

[135] show the failure of solving the equations with simple iterative methods and introduce a 

successful numerical approach by using optimization methods associated with an algebraic 

multi-grid technique. Their method is claimed to guarantee a bijective spherical 

parameterization of closed manifold genus-zero meshes in a fast manner (parameterization 

for hundreds of thousands of vertices in minutes). 

Researchers have also contributed other approaches to spherical parameterization. Praun 

and Hoppe [136] develop a scheme for sampling the spherical domain using uniformly 

subdivided polyhedral domains. With this scheme, a practical parameterization is 

implemented with the minimization of a stretch-based measure to reduce scale-distortion. 

Sheffer et al. [137] extend the idea of ABF (Angle-based Flattening) from 2D planar 

parameterization to the spherical case. Instead of dealing with positions for vertices, they 

formulate and solve an optimization procedure in terms of angles on the sphere. However, the 

ABF method applied to spherical parameterization appears to be less stable than the planar 

case and is impractical for large meshes. 



48 

 

 

CHAPTER 4 

FAST SPHERICAL PARAMETERIZATION 

In this work, parameterization is focused on closed genus-zero meshes. The method is 

based upon barycentric coordinates with convex boundary. Unlike most existing similar 

approaches which deal with each vertex in the mesh equally, the method developed in this 

research focuses primarily on resolving ―spikes,‖ or overlapping areas, that occur in the 

spherical domain during parameterization, which helps speed the parameterization process. 

The algorithm starts by normalizing the source mesh onto a unit sphere and followed by 

some initial relaxation via Gauss-Seidel iterations, as suggested by Alexa [132, 133]. Alexa‘s 

approach suggests continuing these relaxation steps until all the overlapping regions 

disappear. However, this can be very computationally demanding, and it is reported that such 

a process is not guaranteed to converge. Here a different approach is introduced. After the 

initial relaxation steps, most overlapping vertices are resolved. Then a novel solution for the 

remaining overlapping regions (as shown in Figure 6) is applied which are typically very 

hard to resolve. Finally, a minimization process is also implemented to reduce distortion. Due 

to its emphasis on solving only challenging overlapping regions, this parameterization 

process is much faster than existing spherical mapping methods. 

 

4.1 Approach Overview 

As reported in [135], there are two main challenges for most of existing spherical 
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parameterization methods. The first is the difficulty of making the procedures stable and 

convergent. Sometimes, these processes cause endless iterations or residual overlapping 

areas. No triangle overlapping is the most crucial requirement for a valid parameterization 

since a bijective one-to-one mapping is a must for many applications based on 

parameterization. The second challenge is the time-wise efficiency. Due to the computational 

complexity of some algorithms, the processes involve intense calculations so that the time 

spent could be up to hours or even more. These inefficient procedures will hinder many 

applications that require speed. The algorithm developed in this research is designed to be 

robust, yet faster than existing spherical parameterization methods. The flowchart of the fast 

spherical parameterization framework is shown in Figure 5. 

 

Figure 5: Flowchart of the fast spherical parameterization process 
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This algorithm targets the challenge of solving overlapping for most spherical 

parameterizations. Like some of the existing methods, barycentric maps are employed with 

uniform weight for parametric embedding but the method can be easily extended to other 

weight formats if necessary. The method consists of several procedures as shown in the 

diagram. These procedures include: i) Normalize and project each vertex from the source 

mesh onto a unit sphere; ii) Apply Gauss-Seidel iterations for the initial relaxation to solve 

most overlapping; iii) Identify and find remaining overlapping vertices; iv) Stretch each 

overlapping area and form a convex boundary for it; v) Fix these convex boundaries and map 

the overlapping vertices over related areas until no more overlapping exists; vi) Relax the 

whole spherical mesh with displacement constraint to minimize distortions. 

 

4.2 Initial Mesh Relaxation 

After a triangular mesh is loaded, it is normalized and projected onto a unit sphere 

directly, which keeps the distance between each vertex and the coordinate origin (0,0,0) to be 

1. At this point, such spherical mesh contains massive irregular overlapping. To make it 

easier for further processing, we perform some initial relaxation from Gauss-Seidel 

procedure based on barycentric embedding. 
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 Where,      represents the indices for the neighboring vertices of the i-th vertex and    

is the number of elements in     . 

Here a uniform mapping method is used with identical weight for each neighboring 

vertex. Alexa‘s [132, 133] parameterization employs such a method throughout the entire 

mapping process until all the overlapping regions are eliminated. Tests conducted with 

Alexa‘s approach indicate that in some cases, most (over 90%) of the vertices are displaced 

without overlapping each other within 100-200 iterations. However, to solve the remaining 

(~10%) overlapping vertices typically costs over 10,000 iterations. Considering the number 

of vertices involved, these later iteration steps are very expensive and computationally 

inefficient. Further, in some cases these iterations can be endless and the overlapping cannot 

be removed completely. So, a small number of relaxation iterations can be applied to solve 

most of the overlapping regions and the following solution is developed to target the 

remaining overlapping areas. 

 

4.3 Overlapping Solution 

Instead of treating each vertex equally the method developed in this research focuses on 

parameterization of overlapping areas that remain after initial Gauss-Seidel relaxation. As 

shown in Figure 6, after the initial relaxation process, most vertices of the mesh are well 

located except for some overlapping spikes in areas with high populations of vertices. The 
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relaxation is akin to the process of dragging and expanding these areas vertex-by-vertex. 

 

Figure 6: Remaining overlapping spike after initial relaxation 

With the distribution of highly dense vertices in these areas, however, the relaxation can 

be extremely slow and unreliable. The basic idea of the method developed here is to stretch 

the boundary of these overlapping areas so that more space will be generated to accelerate the 

mapping process. The overlapping solution begins with finding overlapping area, followed 

by stretching such areas. Finally vertices within these areas will be relaxed with fixed 

boundaries. 

4.3.1 Overlapping Identification 

This step determines the overlapping regions and identifies the vertices involved. A 

vertex is identified as overlapping if the line segment between it and the sphere center 

(referred to as the cardinal line segment) intersects any other triangle on the sphere. The steps 

to check overlapping are: i) intersect the cardinal line with the plane defined by the three 
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vertices from the subject triangle; ii) if so, check whether the intersection point lies within the 

cardinal line segment; iii) and if so, check if the intersection point lies within the subject 

triangle. 

Nominally, every vertex must be checked against every triangle in the mesh, which can 

quite time-consuming. For example, a test using this naive approach on a typical spherical 

triangular mesh with about 2,500 vertices takes about 9 seconds to find all the overlapping 

vertices. To address this inefficiency a neighborhood searching algorithm is employed to 

accelerate this task. First, the spherical surface normal of all the triangles is computed, based 

on their connectivity, to identify the ―folded‖ triangles, i.e., those spherical normal direction 

toward the inside of the sphere. Then, based on the vertices of the ―folded‖ triangles, their 

neighboring vertices are determined and checked for overlap with any of the ―folded‖ 

triangles. During this process, if none of the neighbors for a selected vertex overlap with any 

of the ―folded‖ triangles, searching around that vertex stops and the other ones are similarly 

processed until each folded triangle has no overlapping neighbors. This identifies a local 

boundary around the folded triangle. This searching algorithm is very accurate and efficient. 

With the same test mesh mentioned above, with about 2,500 vertices, this searching 

algorithm completes the operation in a time scale of milliseconds. 

4.3.2 Overlapping Displacement 

Overlapping vertices are identified and marked from the previous step. This is followed 

by displacing overlapping vertices. Before any manipulation is applied, the overlapping 
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vertices are sorted into a nested structure to facilitate efficient processing. There will usually 

be multiple overlapping areas as shown, for example, in Figure 6. The sorting will first 

separate the overlapping vertices into groups based on their connectivity with each other, 

which will put all connected overlapping vertices into a group. After that, each group of 

vertices will then be sorted from the shortest distance to the boundary (non-overlapping) 

vertices. This process forms several nested groups of overlapping vertices for each spherical 

triangulation. 

The idea of mapping only the overlapping areas is essentially an attempt to simplify the 

3D parameterization problem into several 2D ones. To assist local parameterization for each 

overlapping area, a stretching process is employed to generate locally convex spaces, as 

shown in Figure 7(a). This is a modified Gauss-Seidel procedure which sets the weight for 

each overlapping vertex to zero when it is involved as a neighbor vertex in calculation. And 

the identified vertices in the overlapping area will keeep their current positions during this 

step. In this process, the non-overlapping outer vertices essentially pull the boundary of the 

overlapping area away from the overlapping center. A convex or close to a convex shaped 

boundary will be created after this process. It is followed by relocating overlapping boundary 

vertices, which will ensure the boundary to be convex or close to convex. As shown in Figure 

7(b), for each overlapping region, the overlapping vertices are all placed together on the 

centroid of the convex boundary. Such convex boundaries will ensure the local 

parameterization (simplified into a 2D problem) to be converged. 
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Figure 7: Solution for overlapping: (a) stretched overlapping area; (b) overlapping vertices 

placed on centroid; (c) overlapping and boundary vertices relaxed 

 

4.3.3 Overlapping Relaxation 

For 2D planar parameterization, a regular convex fixed boundary would theoretically 

guarantee the existence of a bijective mapping, which is the motivation of overlapping 

displacement from previous step. In this relaxation step, all the non-overlapping vertices and 
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all the vertices on the overlapping boundaries are fixed. Vertices in the overlapping areas are 

released with Gauss-Seidel iterations until all the overlapping areas disappear, as shown in 

Figure 7(c). The positions for boundary vertices are also recalculated and updated after all the 

overlapping is eliminated. These operations are repeated until all the overlapping areas are 

resolved. 

 

4.4 Parameterization Distortion Minimization 

This method focuses on solving overlapping with some imposed stretching, which could 

lead to dislocation for vertices that are moved away from their parametric locations. To 

minimize distortions created from these dislocations, vertices on the mesh need to be 

relocated as close to their parametric positions as possible. Testing indicates that directly 

relaxing the entire mesh at this moment will generally re-introduce overlapping regions. 

To minimize these distortions, a minimization method is introduced that guarantees 

bijectivity and avoids new overlapping region generation during the final global relaxation 

process. In this method, all vertices are classified into two categories: regular and sensitive. 

The sensitive ones refer to the overlapping vertices recognized from the previous overlapping 

identification step. As shown in Figure 8, the current position for vertex P is V and the new 

position    is calculated from their neighboring vertices (  ,   ,    and   ) positions. Clearly 

the transition from V to    takes vertex P outside the region of         , which causes 

overlapping. Such movement makes the mapping non-bijective and must be prohibited. 
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However, if the movement of vertex P is skipped at this step, the non-overlapping property 

for this local area may be lost, which can slow down or even prevent local distortion 

minimization. A solution is to keep the same movement with the same path, but use a smaller 

scalar magnitude. As shown in Figure 8, the scale is defined by     , where     is the updated 

new position for vertex P which can be expressed as: 

                             

Here,      is the overlapping critical position for vertex P which can be calculated from 

the intersection between     and neighbor edge (    ,     ,      or     ). 

 

Figure 8: Vertex relocation without creating new overlapping 
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CHAPTER 5 

FEATURES ALIGNMENT WITH EXTRACTED SKELETON 

 As mentioned in Chapter 3, mesh morphing involves much more than simply 

interpolating among source geometries. The intermediate mesh blends should preserve 

featuring information from source geometries. For example, a model generated from 

morphing between a horse model and a pig model should probably have four legs rather than 

eight resulting from morphing without features alignment. Moreover, the smooth evolution of 

featuring components from one model to another can facilitate users‘ decision-making. For 

engineering conceptual design, such feature evolution enables designers to generate new 

design concepts from a pool of existing designs. 

 Many existing mesh morphing methods use a single point (usually geometric centroid or 

an approximation of it) to represent a geometric feature component. By aligning 

corresponding feature points from different models, some reasonable outputs may be 

obtained. However, features are generally comprised of more than one vertex (more typically 

they are collections of triangle) so mesh morphing with point-based feature alignment can 

lead to parts that are not fully aligned. The solution developed in this research aims to map 

not only representative feature points (e.g., toe or finger tip points of an animal human 

model) but also correlates feature areas (e.g., an entire front-left leg from an animal model) 

completely. 
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5.1 Approach Overview 

 Rather than aligning simple feature vertices, this feature alignment method focuses on 

aligning the entire feature areas from each model. This feature alignment process follows 

after spherical parameterization or each subject model and is performed before spherical 

subdivision based remeshing. The process does not directly modify original input geometries 

but rather establishes correspondences by adjusting their spherical maps. The algorithm is 

summarized in Figure 9. 

 

Figure 9: Flowchart of the feature alignment process 

 First extract the skeletons for all the source geometries is generated based on the 

algorithm developed by Au et al [155]. Each vertex from the skeleton has a group of vertices 

on the original mesh associated with it. Therefore, the skeleton wires can be used to assist 

users in features picking. Based on the picked vertices in skeleton, feature areas and feature 

Mesh contraction to generate 
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Remove left overlapping 
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points for each model are be calculated and identified. Then, as described in detail below, the 

feature points are used to develop a set of constraints that describe the desired feature 

relationships and spatial transforms are generated with least-squares singular value 

decomposition. After solving this system, the resulting spatial transforms are applied to the 

models to obtain roughly similar orientations. Each feature point is then relocated to the 

centroid of all feature points that belong to the same feature group. The surrounding feature 

areas for these feature points are moved correspondingly. Following this, overlapping 

generated from the process is relaxed and the size of each feature area is adjusted to match 

with corresponding feature areas from other models, as much as possible. After all these 

steps, a spherical map for each model will be aligned with other ones in terms of feature 

points and feature area. In the following sections, this procedure is presented and discussed. 

 

5.2 Mesh Skeleton Extraction 

 Before aligning geometric features, a method must be developed to define them from the 

input meshes. The most straightforward way would be to directly pick feature 

vertices/triangles with a graphical user interface. However, there are several shortcomings of 

this method. First, in some scenarios, it is difficult to recognize or pick features for some 

geometric models. Given their complexity, the picking process could take a very long time, 

and it would require a fairly complex user interface with substantial view manipulation and 

selection interaction. 
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 A skeleton can be is a useful abstraction for interacting with complex shapes. For 

example, from human skeleton, one can easily identify the different regions for human body 

such as arms, legs, etc. In the field of computational geometry, algorithms to compute a 

wireframe skeleton from a triangular mesh have been proposed to generate a simplified 

natural representation of the geometry and topology of 3D object. In this work, a skeleton 

extraction algorithm presented by [155] is employed for skeleton generation. By interacting 

with representative skeleton curves, users can clearly identify and select features. The 

selected feature areas and points are then used to compute global spatial transforms that are 

applied to each model to affect the desired feature alignment. In addition to simplified 

interaction, another reason for choosing the skeleton for feature alignment is that this method 

has potential to be extended for automatic feature alignment for 3D objects with similar 

feature distributions. Feature recognition algorithms could be developed to identify all 

features based on the abstracted skeletons and align them automatically. This could be further 

explored in the future work. 

5.2.1 Geometry Contraction by Laplacian Smoothing 

 The method [155] starts with a mesh contraction process which contracts the mesh 

geometry into a zero-volume skeleton shape by applying implicit Laplacian smoothing with 

global positional constraints. The mesh connectivity among vertices is not be changed and 

the key features of original mesh are preserved. Usually, a big challenge of mesh contraction 

is to control the contraction process such that it leads to a collapsed shape that can 
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approximate the input model instead of some random shape or perhaps shrinking into point. 

Au‘s method presents an iterative contraction process to solve a sequence of constrained 

Laplace equations with weaker positional constraints, which removes details and noise from 

mesh surface by moving the vertices along their curvature normal directions. An implicit 

updating scheme controlled by anchor points provides positional constraints to avoid 

converging into a single point that can result from smoothing with an unconstrained normal 

flow. 

 For Laplacian smoothing, the vertex positions are contracted along their normal 

directions. The whole smoothing process is governed by the discrete Laplace equation. The 

curvature-flow Laplace operator L is defined as, 

      

    

 
 
 

 
                                         

     

 

       
                            

                                                               

  

 Where, V represents the group of vertex positions and E is the edges for all the connected 

vertices.     and     are the opposite angles corresponding to edge      . By solving this 

discrete Laplace equation, the normal components would be removed and the mesh would be 

contracted under the "force" provided by contraction constraints. 

 To eliminate the singularity of the Laplace operator, extra constraints are put into the 

system. These constraints, called attraction constraints, are also defined to preserve the 
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original shape of the mesh with soft constraints to keep their current positions. Therefore, 

contraction constraints and attraction constraints are included in the system as, 

 
    
  

     
 

    
  

 Where,    is the diagonal contraction weighting matrix and    is the diagonal 

attraction weighting matrix. This system is over determined and needs to solved with least 

squares by minimizing the quadratic energy as, 

       
  
 
       

     
     

 
 

 

 

 For each iteration step, the contraction weights and attraction weights are updated based 

on the current state. The vertices with smaller contracted one-ring area (area formed by all 

directly neighboring triangles for a vertex) are controlled to be attracted more strongly to 

their current position and contract less in the next iteration. Each step, the new vertex 

positions can be obtained from last step (t is step), 

 
  

    

  
        

 
  

      

 The contraction weights and attraction weights for each iteration step are defined as, 

  
         

            with    
         

    
        

    
   

            with    
      

Figure 10 shows some results from geometry contraction based on the algorithm 

described above. 
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Figure 10: Results of 3D mesh contraction from left to right 

5.2.2 Skeleton Extraction from Edge-collapses 

 After geometry contraction, the mesh shrinks to almost zero volume but still keeps the 

same connectivity. To generate a skeleton wire, a skeleton extraction is performed with 

connectivity surgery from edge-collapses [155]. The shape of the contracted mesh needs to 

be preserved with sufficient skeleton nodes in the extracted skeleton. The orders or edge 

collapse are decided by a defined cost function consisting of a shape cost and a sampling 

cost. For each iteration step, the edge with minimum cost will be collapsed. After collapse, 

all faces surrounding the edge will also be removed. The topology of the original mesh will 

be preserved and connected components will not be disconnected. 

 According to Au et al [155], the shape cost represents the potential distortion caused by 
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an edge collapse which is calculated with an error metric at each vertex. Since the volume of 

the contracted mesh is near zero, the triangles also have near zero area. Instead of computing 

the sum of squared distance between a vertex and its neighboring triangles, the error metric is 

measured by the sum of squared distances from a vertex to all related adjacent edges. For 

each potential edge collapse from vertex i to j, the shape cost can be defined as, 

                      

 Where, the initial error metric of vertex i is defined as the sum of all the squared 

distances to its neighboring edges, 

             
      

       

       

 The Matrix K is defined as, 

     

 
  
   

   

   
 
  

   
  
   
 
   

   
   
   

  

 Where, a is the normalized edge vector and b is the cross product defined as, 

       

 This shape cost controls the order of the edge collapse sequence but could leads to over-

collapse which will lose some nodes on the skeleton and make the final skeleton too coarse. 

The sampling cost is defined to penalize long edge generation and prevent such a problem. It 

calculates the total travel distance of related edges during collapse, 
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 The total cost for edge collapse from vertex i to j is defined with weight parameter as, 

                             

 Figure 11 presents some results of skeleton extraction from contracted mesh. 

 

Figure 11: Skeleton extractions (lower) from contracted mesh (upper) 

 

5.3 Features Alignment 

For each input mesh model, a skeleton is generated as an abstract representation. After 

this, it is used to facilitate the user‘s identification and selection features from different 

models. As the user selects a feature with a graphical user interface, both feature points and 

corresponding areas are highlighted. The feature points on the spherical map for each model 

are grouped and an initial alignment for them is performed based on a least-square singular 

value decomposition (SVD) that minimizes the sum of the distances between all 

corresponding vertices. Then the feature points and feature areas are scaled and relocated to 

match each other. Finally, all overlapping generated from this process is eliminated so that 
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the spherical maps for each mesh remain bijective with respect to the original input 

geometries. 

5.3.1 Features Picking with Skeleton 

During the skeleton extraction process, most skeleton edges are collapsed and the related 

pairs of vertices are merged together. Based on the order of the collapses ruled by the shape 

and sampling costs, each node on the resulting skeleton actually includes a group of adjacent 

vertices from the original mesh. Usually, these groups of vertices are geometrically close to 

the merged node. Thus, by picking the nodes on the skeleton, users can actually select the 

corresponding vertices on the original model. 

In some cases, mesh vertices may not correspond to the closest node on the skeleton. 

This is solved by sorting all the mesh vertices again to regenerate the proper spatial 

correspondences. To accelerate the sorting process, a kd-tree data structure is applied and 

works well. The first picked skeleton node is noted as the starting node and its corresponding 

mesh vertices are employed to calculate the feature point from their area centroid. The 

second skeleton node picked is noted as ending node and its corresponding mesh vertices 

define the boundary of the feature areas. After the ending node is picked, a node traversal is 

performed from the starting node to the ending node. All the nodes passed are noted as 

feature nodes and the feature areas are derived from the corresponding mesh vertices. This 

process is illustrated in Figure 12. 
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Figure 12: Feature selection by picking nodes (in blue) on the skeleton: before first feature 

node selection (left); first feature node selected (middle); second feature node selected (right) 

 

5.3.2 Initial Alignment with Singular Value Decomposition 

 Each feature is described with a feature point and a feature area. Since the feature point 

is computed as the centroid of the corresponding mesh points, is located within the feature 

area. Nominally, the original input models will have different orientations in terms of 

features, so one model is arbitrarily chosen to represent the base orientation, and spatial 

transformations for each of the other mesh models are computed to rotate them so that the 

defined features in each are in rough alignment. The feature points are utilized for this 

process, and a least-squares singular value decomposition is formulated and solved to find 

the desired rotational matrices for each model. 

 The first model loaded is considered as the reference and is not be rotated during this 

initial alignment. The other models are transformed such that their feature points will match 

the ones in the reference model. If there are k input models and each model has n features 

defined, the transformation can be expressed as the following optimization problem, 
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 Where,    represents the matrix containing coordinates for all feature points on model i 

and   
  represents the coordinates after transformation, 

   

 
 
 
 
 
         
         
         
           
          

 
 
 
 

 

 The problem is to find the rotational matrix for each of other models such that the sum of 

distance between corresponding feature points is minimized. This can be solved by applying 

singular value decomposition (SVD). For each set of   , we can define matrix    as, 

     
     

           
  

 Where,    is a diagonal matrix with nonnegative real numbers on the diagonal, The 

diagonal entries         of    are known as the singular values of   . The columns of    and 

the columns of    are called the left singular vectors and right singular vectors of   , 

respectively. By applying SVD, the corresponding matrices   ,    and   
  can be obtained, 

           
           

 Then, the rotational matrix can be expressed as, 

         
  

 And the new position for all the feature points in model i are calculated from, 
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5.3.3 Features Relocation and Alignment 

 The initial feature alignment process reduces the distances between features without 

modifying the local vertex positions on the spherical maps. This eliminates most of the 

positional differences. As discussed in previous section, since the constraint matrix is over-

determined, such a global rotation will not accommodate all the relative differences between 

corresponding features and align corresponding feature points without changing the relative 

locations of feature points within the same spherical map.  

 To achieve full alignment, a local transformation must be applied to the feature points 

and areas. The steps to compute these local transformations are: i) calculate the centroid of 

corresponding feature points on each model‘s spherical map; ii) relocate all the feature points 

onto the centroid calculated from last step; iii) compute the rotation matrix (based on origin) 

for each feature point's relocation; iv) apply this rotation transformation to all vertices in the 

feature area related to the feature point; v) eliminate all the overlapping generated from these 

local transformations with a similiar relaxation method as in Chapter 4; vi) and finally, resize 

each of the corresponding feature areas to identical size and make sure no overlapping 

created. 

An example of feature alignment is shown in Figure 13. The selected features (four legs) 

are marked with red circles as shown in the figure. 
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Figure 13: Features selection and alignment with spherical maps 
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CHAPTER 6 

REMESHING WITH MESH SUBDIVISION 

Given multiple feature-aligned meshes with corresponding bijective spherical 

parameterizations, a 3D remeshing method is developed to facilitate robust morphing 

between the input meshes. This method is derived from the concept of spherical mesh 

subdivision and leverages the spherical parameterization techniques described earlier. The 

local recursive subdivision can be set to correspond to the level of detail (LOD) of the source 

spherical meshes. Alternatively, the LOD can be controlled to allow output with variable 

resolutions. This multi-resolution subdivision scheme employs a triangular validation process 

that assures a valid triangulation for the resulting morphed mesh. The final mesh merging and 

reconstruction process produces the morphed mesh model with the desired LOD specified 

from user. 

 

6.1 Approach Overview 

After parameterizing surface meshes onto the spherical domain, and conducting feature 

alignment as described above, a spherical remeshing method is introduced to facilitate 

morphing. This method is proposed in order to generate a common connectivity for different 

mesh models in our mesh morphing framework. The concept of spherical mesh subdivision is 

introduced and extended to develop the remeshing algorithm. Spherical mesh subdivision 

refers to adding detail into the spherical triangular mesh by breaking related triangles into 
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smaller ones. Unlike most existing work, this algorithm will subdivide only those areas that 

contain detailed geometric information rather than subdividing every triangle evenly. This 

process makes use of few vertices while still covering every geometry detail. Usually, to 

remesh one single model, the number of vertices for remeshing is approximately the same 

number as the input mesh. And for multiple input models, the final merged representation has 

fewer vertices than the sum of all input meshes after aligning the feature areas which 

typically involve large vertex crowds.  For most existing morphing methods, the number of 

vertices employed in the merged representation is much more than the total vertices from 

source meshes. The flowchart for our remeshing with spherical subdivision is shown in 

Figure 14. 

 

Figure 14: Flowchart of remeshing with spherical subdivision 

 

Projection from Base Spherical 

Mesh to Source Spherical Mesh 

Recursive Spherical Subdivision 

Subdivided Mesh Validation 

Projection from Source Spherical 

Mesh to Subdivided Base Mesh 

Mesh Reconstruction 
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6.2 Base Spherical Triangulation 

The subdivision process is to break existing triangles in the base spherical mesh into 

smaller ones in the region with details. Such base mesh is employed to generate merged 

remeshing model with common connectivity for each input model before morphing. As 

shown in Figure 15, a triangle is subdivided by removing the existing triangular connectivity 

(      ) and adding new connectivities (        ,         ,          and          ) 

resulting in the generation of four new triangles. Here    ,     and     represent the 

midpoint for original edges     ,      and      respectively. 

 

Figure 15: Subdivision by breaking one triangle into four 

 Since bijective spherical parameterization is applied for the closed genus-zero input 

meshes, the base mesh is equivalent to a sphere topologically. Thus, platonic solids with 

regular polygons for each face and closed surfaces are ideal choices as initial base meshes. 

As shown in Figure 16, there are three platonic solids with triangular faces: tetrahedron, 

octahedron and icosahedron. All three are made available in the remeshing algorithm 

presented here, and further investigation and comparison regarding the remeshing qualities 
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from these different types of initial base meshes will be explored in the future. 

 

Figure 16: Triangular platonic solids: (a) tetrahedron; (b) octahedron; (c) icosahedron 

 

6.3 Recursive Spherical Subdivision 

To remesh from a source mesh, the algorithm needs to match the level of detail (LOD) of 

the source mesh. This requires that the detailed areas (those that contain dense collections of 

vertices) be well represented in the remeshed representation. A simple approach would be to 

use a single uniform subdivision (sufficient to capture detailed areas) over the entire mesh, 

but this would generate a large number of unnecessary vertices. So a local spherical 

subdivision method is developed and implemented which subdivides the triangles in the base 

mesh to match the corresponding local LOD in the source mesh. In this way, no excess vertex 

distribution will be expended in the areas that contain little geometric detail. 

This method employs a recursive subdivision process which can be divided into several 

steps. First, all the vertices of the source spherical mesh are projected onto the base spherical 

mesh. Then, classify and label each vertex of the source mesh with respect which triangle on 

the base mesh contains it. Finally, check the number source member vertices for each triangle 

(a) (b) (c)(a) (b) (c)
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on the base mesh and perform subdivision. If a base mesh triangle contains more than a 

preset number (e.g., 1) of source mesh vertices, is is subdivided into four smaller ones as in 

the previous section. Each of the resulting four triangles is similarly checked and subdivided 

recursively until every triangle in the base mesh has no more than the preset number of 

source mesh vertices. Figure 17 shows the results of this recursive subdivision algorithm 

from the spherical representation of an input model. 

 

Figure 17: Spherical subdivision: (a) original source mesh; (b) parameterized spherical 

mesh; (c) remeshed subdivision (LOD = 1) 

 

6.4 Validation for Subdivided Triangulation 

As the figure shows, the resulting subdivided base mesh reflects the geometric 

characteristics of the source mesh. However, the resulting spherical base mesh is not a valid 

spherical triangulation since not all the faces are 3-connected, as shown in Figure 17(c). To 

address this, a triangulation validation process is introduced which restores 3-connected 

connectivity without inserting or removing additional vertices. 

Invalid triangles occur in the triangles whose neighboring triangles have been 
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subdivided. Middle-vertices for associated edges generated from neighboring subdivision 

cause the problem. Fortunately, there are only three conditions for refined tessellation of a 

triangle depending on how many of its adjacent neighboring triangles have been subdivided. 

Figure 18 shows the three cases and the subsequent tessellation required to restore 3-

connectivity. Note that the tessellation does not introduce additional vertices, only triangles. 

 

Figure 18: Three cases of correction for a triangle with subdivided neighbor(s) 

Figure 19 presents a result of a remeshed spherical triangulation from an example mesh. 

The representation matches the details from subdivision and maintains a valid spherical 

triangulation. 

(a) (b) (c)(a) (b) (c)
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Figure 19: Triangulation validation for a spherical subdivision 

 

6.5 3D Mesh Reconstruction 

Give the reconstructed mesh in its parametric spherical representation an equivalent 3D 

spatial representation can be generated from it by essentially reversing the subdivision 

process. First, the reconstructed spherical parameterization of the mesh generated via 

subdivision is projected onto the spherical parametric mesh of the original model. 

Intersections between the vertices from the reconstructed mesh and triangles from the 

original spherical mesh (number of hits for each triangle could be more than 1) are 

calculated. Then the barycentric coordinates of the intersection point are calculated in the 

associated triangle from the original spherical mesh. These coordinates represent blending 

weights for three vertices in the original triangle that will generate the intersection point (i.e., 

a vertex from the reconstructed mesh). 
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With the barycentric coordinates for each vertex of the reconstructed mesh embedded into 

original spherical mesh, a remeshed 3D model can be generated from the original source 

model by blending corresponding vertices. To apply this remeshing method into our mesh 

morphing framework, a simple platonic base model is subdivided by projection with the first 

input model and then the subdivided model will be used as base model for projection with the 

next input model, and so on. In this way, a merge geometry representative model is generated 

containing all geometry information from all input models. Some results of reconstructed 

meshes will be presented in Chapter 8. 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

 

CHAPTER 7 

3D MESH METAMORPHOSIS 

7.1 Previous Work in Mesh Metamorphosis 

Morphing, or metamorphosis, aims to produce a smooth and continuous sequence that 

transforms from a source object into a target object, or perhaps even performs transformation 

among more than two objects. The idea of morphing was originally initiated and developed 

with 2D image applications. Wolberg [138] describes techniques where pair of 2D images is 

used to map features from one image to the other. This is done by having an artist choose a 

point in the first image, and decide where on second image would be the most interesting 

position for the mapping. After all these pairs are determined, the method processes the 

neighbors surrounding the points of interest, and then generates a sequence of metamorphosis 

over time for the selected images. 

With the increase in 3D applications in computer graphics, these 2D image techniques 

have been extended into 3D geometry models. Usually, methods of 3D morphing can be 

categorized into two major approaches. The first one is volume-based method [139, 140, 141, 

142] which blends volumes where the source and target shapes are embedded. This method is 

able to support topological changes throughout the morphing process. However, it is 

computationally expensive, and in many cases, geometry boundaries generated from volume-

based method are not smooth. The second general approach is surface-based methods which 

blend mesh representations for input objects. As with most recent 3D morphing techniques, 
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the method developed in this research falls into the surface-based category. More related 

work is reviewed and discussed in the following section. 

Most 3D surface-based mesh metamorphosis techniques involve two steps. The first is to 

find the mapping from the source to the target meshes and establish the feature 

correspondence between them. This step usually employs mesh parameterization techniques 

and related work that has been reviewed in previous chapters. The parameterization process 

requires that the mapping for the meshes must be bijective, i.e. generating a one-to-one 

correspondence between the source and the parameterized meshes. The second step is to 

choose a continuous path for each vertex and produce a smooth sequence of intermediate 

geometries by interpolation of corresponding vertices. A linear procedure is performed for 

this interpolation in most cases. 

Some researchers consider generating a common connectivity for pairs of shapes of 

genus-zero by applying topological merging methods. Given two input meshes with convex 

and star shapes, Kent [143] apply an algorithm to calculate a merging topology that can 

represent the geometric information for both the source and the target meshes. Then, the 

morphing process linearly interpolates the vertex positions over time, which transforms the 

source mesh into the target. Alexa [132] develop a procedure to embed genus-zero meshes 

onto a unit spherical domain. This is followed by aligning corresponding features for the 

source and target meshes with a simple iterative scheme inspired by radial basis functions. 

The merging process generates a common connectivity for both the source and target meshes 
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by solving a spherical map overlay problem. After reconstructing the source and target 

meshes from the spherical representation with the common connectivity, the final morphing 

step is accomplished with linear interpolation between corresponding vertices in the 

reconstructed meshes. Instead of mapping the meshes onto a spherical parametric domain, 

Shapiro and Tal [129] map them into a convex polyhedra by employing a parameterization 

process consists of two phases: simplification and reattachment. They also apply a mesh 

merging process to create isomorphic representations for the input mesh pairs. 

Kanai et al. [144] present a method which employs harmonic mapping to embed the 

source and target meshes onto a 2D unit circle and establishes vertex correspondences by the 

intermediate objects generated from overlapping the two embeddings. The interpolation is 

controlled through an assigned boundary loop and a vertex on that boundary. In extended 

work by the same authors [145], an efficient morphing method for two arbitrary meshes with 

the same topology is introduced with feature correspondence controlled by user. With the 

assistance of a reference mesh specified by the user, the source and target meshes can be 

partitioned to establish a common connectivity for vertex-to-vertex correspondences. Lee et 

al. [146] also focus on the establishment of a correspondence map between the source and 

target meshes. They employ a multi-resolution parameterization algorithm to generate 

simplified coarse models, apply the MAPS algorithm to map both meshes over this simple 

base domain, and then use an additional harmonic map for vertex correspondences. To attain 

a better control of feature correspondences, Lee and Huang [147] develop a two level of 
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correspondence technique where the higher level partitions the models into corresponding 

patches with specified scattered features, and the lower level allows better correspondence 

control through extra input for features on each patch. They also introduce a technique named 

Structures of Minimal Contour Coverage (SMCC) to merge corresponding embeddings from 

the source and target meshes. 

Bao and Peng [148] propose a general method for setting up vertex correspondence for 

polyhedral objects with the same genus. They develop an interactive partitioning algorithm to 

generate polygonal patches and their correspondence. A cluster scheme is followed to create 

feature polyhedrons for the input polyhedrons. These feature polyhedrons are utilized as the 

bridges in the final morphing transformations. Gregory et al. [149] decompose the boundary 

of the input meshes based on feature pairs specified by the user. The correspondence between 

sub-meshes of two objects is then established using a greedy area-preserving mapping. The 

corresponding patch pairs are merged together to create a common topological polyhedron, 

which is used to define the final morphing trajectories. Yu and Chuang [150] perform a 

geometric-stretch optimization to generate the consistent parameterizations for multiple input 

models. Then a foldover-free algorithm is applied to aid in features alignment. Both spatial 

and wavelet domains from a simple common dissection and remeshing are integrated in the 

morphing applications. They also claim that their parameterization framework can be applied 

with other geometric and graphical applications. Another consistent parameterization method 

from Praun et al. [122] provides a tracing method to dissect a set of meshes automatically. 
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This method employs the same base domain and respects features of the input shapes. They 

remesh these models to set up a common connectivity for all, which also form a basis for a 

large class of other applications. Instead of manually dissecting meshes or setting up feature 

pairs, Shlafman et al. [151] propose an automatic decomposition with a clustering method. 

They also introduce a projection framework to deal with polyhedral surfaces with cylinder-

like topology. However, their approach cannot guarantee suitable and meaningful 

corresponding patch creation. 

Most morphing related work, as discussed above, has focused on generating vertex 

correspondences for the input meshes. This requires an equivalent topology for both the 

source and target meshes. To address the problem of morphing between objects with different 

topologies, Dinh et al. [157] define the morphing process between two implicit surfaces as a 

4D implicit function. They calculate a mapping between two surfaces by solving two PDEs 

over a tetrahedralized hypersurface. The first PDE depicts a vector field that governs how 

vertices on one mesh flow to the other. And the second PDE indicates the position labels 

along this vector field so that the second surface is associated with a position on the first 

surface. This method can produce correspondence between surfaces with different topologies. 

Bennett et al. [152] present a robust approach by developing an initial alignment scheme to 

identify topological holes. From this, they automatically derive a continuous deformation 

using a variational implicit method. Lee et al. [153] extend the spherical parameterization to 

handle non genus-zero meshes. The parameterization consists of a single positive spherical 
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parameterization and several negative spherical parameterizations depending on genus value 

for the mesh. A Boolean difference operation is applied to calculate the source mesh by 

subtracting the negative meshes from the positive one. From this approach, they can generate 

a mesh morphing sequence for meshes with different topologies. Unlike most other 

approaches, Liu and Wang [154] present a method for shape blending based on their intrinsic 

definitions, rather than interpolating the vertex locations explicitly. They generalize the 

algorithm for shape morphing between triangular meshes with arbitrary topologies, and 

between free-form curves or surfaces. 

 

7.2 Methodology and Implementation 

In last section, recent advances in 3D mesh metamorphosis were reviewed. Clearly, most 

of these methods focus on creating a common connectivity for pairs of shapes with the same 

genus, and most focus only on genus-zero meshes. These methods usually employ some 

surface parameterization techniques to assist in finding a bijective mapping between meshes. 

The generation for correspondence is completed either by user input (in most cases) or some 

sort of ―intelligent‖ matching and alignment algorithm. Some of the more recent work has 

attempted to address the problem of morphing models with different topology. These 

methods attempt to solve the mesh morphing problem in a more general way and are reported 

to work well. 

 However, for most of these methods, there are still issues that need to be addressed. The 
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challenges associated with existing 3D mesh morphing techniques can be categorized as: 

For methods that generate common connectivity, i) most of their mesh parameterization 

algorithms are relatively slow; ii) the final merging representation usually contains many 

more vertices than the input source meshes. These limitations can lead to expensive 

calculation and slow down the entire process, especially, if the applications requires blending 

among more than two input models and needs to perform in real time. The geometric 

conceptual design application addressed in this research imposes exactly these constraints. 

For the methods that address with topological change, the morphing process not only 

vertex position calculation, but also continuously computes the connectivity between vertices 

in the mesh. The morphing is no longer a simple blending of vertex positions and it is not 

feasible for real-time applications. 

7.2.1 Morphing Framework 

The focus of this research is to enable real time 3D mesh morphing to support 

engineering geometric conceptual design that makes use of multiple (more than two) existing 

legacy geometries and generates new design concepts with an interactive blending interface. 

To achieve real-time metamorphosis, this approach creates a common connectivity among all 

of the input mesh models. As discussed above, the spherical parameterization algorithm 

develop here works faster than existing spherical methods. The spherical subdivision 

remeshing method allows generation of a common connectivity for multiple input models 

with fewer vertices than most mesh merging methods, while still representing all the 
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geometric details for each model. 

The mesh morphing framework is shown schematically in Figure 20. It includes several 

different components: spherical mesh parameterization, feature alignment from extracted 

skeletons, mesh reconstruction from remeshing with spherical subdivision and final mesh 

morphing. The spherical mesh parameterization, skeleton-based features alignment and mesh 

reconstruction from remeshing with spherical subdivision have already been introduced in 

previous chapters. In this chapter, the interactive morphing interface with barycentric 

coordinates is introduced as well as the software implementation of 3D mesh morphing 

framework. 
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Figure 20: Flowchart of 3D mesh metamorphosis framework 
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7.2.2 User Interface for Navigation 

The idea of mesh morphing in geometric conceptual design is associated with a simple-

to-use user interface available to non-engineer users, which eliminates steep learning curve 

from the complex input with traditional CAD system. To implement such user interface for 

morphing, the concept of barycentric coordinates is employed which defines the coordinates 

for any point in a polyhedron in terms of a linear combination of its vertices. Here the 

formulation from Wachspress‘ [156] is adopted. 

 

Figure 21: Star-shaped polygon for barycentric coordinates 

In the special case that the polygon           is convex, the coordinates of    can be 

expressed in terms of rational polynomial, according to Wachspress‘ formulation, 

   
  

   
 
   

 

   
               

                           
 
                 

        
 

Where         is the signed area of triangle    ,    and    are the angles as in Figure 21. 

7.2.3 Software Development of 3DMeshMorpher 
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The software is developed with open source GUI API wxWidgets (www.wxwidgets.org) 

and open source real-time graphics toolkit OpenSceneGraph (www.openscenegraph.org). 

OpenSceneGraph is employed to organize the scene hierarchy and its rendering pipeline is 

rewritten in this software to enable more flexible rendering modes and better re-rendering 

capability for updated geometric information (e.g. new vertex positions). Figure 22 is a 

snapshot of the 3D mesh metamorphosis framework implementation referred to as 

―3DMeshMorpher‖. 

 

Figure 22: Snapshot of 3D mesh morphing software 3DMeshMorpher 

 

 

 

file:///D:/02.21.2011/www.wxwidgets.org
file:///D:/02.21.2011/www.openscenegraph.org
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CHAPTER 8 

RESULTS AND DISCUSSION 

A spherical parameterization method and a spherical subdivision remeshing framework 

based on it have been described previously. Both algorithms are implemented in C++ and 

integrated into the ―3DMeshMorpher‖ software, which is designed to assist engineering 

conceptual design by enabling new geometry generation via morphing among existing 3D 

models. To test the robustness and effectiveness, several experiments were conducted using 

various input 3D models. In these experiments, were conducted on a commodity laptop PC 

with a 2.26 GHz CPU and 1 GB memory. Experimental observations for both the spherical 

parameterization and subdivision remeshing methods are presented in the following sessions. 

Finally, results from the developed mesh metamorphosis framework are presented as well. 

 

8.1 Results for Spherical Parameterization 

Several recent investigations [132, 130, 92] have employed the Gauss-Seidel iterations in 

their spherical parameterization methods. However, it is reported that their procedures are 

shown to be unstable and do not guarantee bijectivity. Alexa [132] applies heuristic iterative 

procedures with uniform weights and quotes a parameterization time for a mesh with 4,169 

triangles at 45.9 seconds. Praun and Hoppe [136] utilize uniformly subdivided polyhedral 

domains in spherical parameterization and their method requires 7-25 minutes‘ processing 

time for 25,000-200,000 faces. Gu et al. [92] report time of around 530 seconds for mapping 
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30,000 faces with a successful case, and Birkholz‘s [130] hierarchical method needs about 

600 seconds to parameterize roughly 100,000 faces. Saba et al. [135] developed a fast 

numerical solution which could efficiently solve the non-linear equations for spherical 

mapping from Gotsman et al. [134]. They report a minimum total solution time of 8.15 

seconds for a model with 5,660 triangles. 

 Performance results from tests of the spherical parameterization method developed in 

this research, applied to several representative models, is presented in Table 1. Clearly, the 

algorithm can handle thousands of faces in only a couple of seconds. 

Model Vertices Triangles Weights Time (sec) 

horse 1929 3854 uniform 1.4 

armadillo 2164 4324 uniform 1.7 

triceratops 2832 5660 uniform 2.4 

cow 2904 5804 uniform 2.9 

Table 1: Statistics of spherical parameterization efficiencies 

 

8.2 Results for Remeshing with Subdivision 

Given spherical parameterizations for the input meshes from the fast spherical 

parameterization method, the following test demonstrates the performance of the remeshing 

algorithm with spherical subdivision. Figure 23 shows an original source mesh together with 

the remeshing results from 3 different base meshes: tetrahedron, octahedron and icosahedron. 

All of the remeshed representations capture the geometric details from the source mesh fairly 

well with about same amount of vertices. 
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Figure 23: Remeshing from spherical subdivision in seconds: (a) source mesh; (b) remeshing 

with tetrahedron; (c) remeshing with octahedron; (d) remeshing with icosahedron 

 

 

Figure 24: Multi-resolution remeshing outputs from coarse to fine 
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 With the guaranteed bijectivities of the subdivided spherical map and original spherical 

map, the projection from vertices on the subdivided spherical map to the faces on the original 

spherical map will be one-on-one. This ensures the validity for this remeshing process. As 

discussed at the recursive spherical subdivision section, the base mesh is subdivided until it 

matches some defined LOD parameter. By modifying the LOD setting within the algorithm, 

a variety of remeshed representations can be computed at different resolutions. This 

capability of multi-resolution can be applied to aid mesh decimation and mesh refinement 

related applications. Figure 24 shows two examples, with LOD settings from coarse to fine 

(the same resolution as the input model), generated with this algorithm. 

 

8.3 Results for 3D Mesh Morphing 

In the ―3DMeshMorpher‖ software, the fast spherical parameterization algorithm 

described in Chapter 4, is integrated with the skeleton-based feature identification and 

alignment method described in Chapter 5, and the remeshing technique from spherical mesh 

subdivision described in Chapter 6. An openGL-based navigation interface is introduced to 

control the barycentric weights for each of the input models, which is defined by Wachspress‘ 

formulation for barycentric coordinates. The common connectivity generated for all input 

models enables the system to generate a new morphed model with accurate geometric 

information (e.g., normals for every face and every vertex). As users press and drag the 

mouse button within the blending panel, a continuous sequence of transformed shapes is 
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created and rendered in real time. Figure 25 and Figure 26 present groups of morphing 

outputs from 3 input models (horse, triceratops and cow) without and with feature alignment 

respectively, generated from ―3DMeshMorpher‖. In Figure 26, since we have aligned related 

features, any intermediate shape shares the same topology as the input models (e.g., four legs 

instead of eight legs if features had not been aligned or aligned incorrectly as in Figure 25). 

 

Figure 25: Morphing outputs from three sample models (horse, triceratops and cow) without 

feature alignment (simply based on their original geometry orientations) 
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Figure 26: Morphing outputs from three sample models (horse, triceratops and cow) with 

feature alignment for four legs and head 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

Geometry creation and visualization during the conceptual design phase of product 

development is a challenging task. This work focuses on the development of tools that can 

assist an engineer in the generation of geometric concept models by rapidly and continuously 

morphing multiple legacy models. 

To quickly construct new geometric model from existing ones, a 3D mesh 

metamorphosis framework ―3DMeshMorpher‖ is implemented. To support the software 

framework, the following unique algorithms were developed: a fast spherical 

parameterization method to map a (genus-zero) geometric model onto a unit sphere; a 

geometric feature identification and alignment technique based on 3D skeleton extraction; 

and a LOD controllable 3D remeshing scheme with spherical mesh subdivision (based on the 

same spherical parameterization algorithm). This software allows designers to continuously 

navigate through the shape-space of design models bounded by existing models to produce 

numerous design concepts in real-time. 

 

9.2 Future Work 

 A 3D mesh metamorphosis software framework has been presented to aid engineering 

conceptual design. Several related techniques and methods were developed and integrated in 



98 

 

 

this framework to facilitate real-time mesh morphing. The validity and effectiveness of these 

methods have been verified by the testing results obtained from sample models. However, the 

following possible investigation and development could be conducted to improve the 

efficiency and usability of this framework, as future work, 

1) Improve the ‗overlapping relaxation‘ in our spherical parameterization method. 

Current iterative relaxation is not effective enough for big geometric models with 

dense overlapping area. This could be improve by formulating and solving 

discrete Laplace equation systems. There exists some efficient matrix solving 

algorithm that could be employed to fulfill this purpose. 

2) Investigate feasibility of automatic feature alignment with skeleton extraction. 

This could be beneficial when the input models are similar to each other 

topologically. A pre-designed template will help, but a more promising solution is 

to develop/implement a generic feature recognition algorithm. 

3) Implement different user morphing interface. Instead of a barycentric graphical 

interface for engineer, navigation through metadata could bring people from non-

engineering background to the design phase. For example, a slider bar of weight, 

gas mileage or sportiness for designing a new vehicle from existing automobiles 

with this mesh morphing framework. 

4) Realize mesh morphing in virtual reality by integrating morphing framework into 

ASDS. An immersive virtual reality environment could influence designers' 
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perception and inspire their ideas for new concepts creation. And the collaborative 

context of ASDS will also enable group design and the interactions among people 

will definitely improve the efficiency and effectiveness of the design process. 
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