
Graduate Theses and Dissertations Graduate College

2011

3D mesh metamorphosis from spherical
parameterization for conceptual design
Ruqin Zhang
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted
for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Zhang, Ruqin, "3D mesh metamorphosis from spherical parameterization for conceptual design" (2011). Graduate Theses and
Dissertations. 12088.
http://lib.dr.iastate.edu/etd/12088

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12088&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12088&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12088&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F12088&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12088&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Fetd%2F12088&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/12088?utm_source=lib.dr.iastate.edu%2Fetd%2F12088&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

3D mesh metamorphosis from spherical parameterization for conceptual design

by

Ruqin Zhang

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Co-majors: Human Computer Interaction; Mechanical Engineering

Program of Study Committee:

James Oliver, Co-major Professor

Eliot Winer, Co-major Professor

Judy Vance

Song Zhang

Chris Harding

Iowa State University

Ames, Iowa

2011

Copyright © Ruqin Zhang, 2011. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF FIGURES v

LIST OF TABLES vii

ABSTRACT viii

CHAPTER 1. INTRODUCTION 1

1.1 Engineering Design Process 1

1.2 Motivation and Contribution 2

1.3 Dissertation Organization 4

CHAPTER 2. ADVANCED SYSTEMS DESIGN SUITE 6

2.1 Literature for Engineering Conceptual Design 6

2.2 Development of Advanced Systems Design Suite 10

2.2.1 Virtual Reality Technology 11

2.2.2 ASDS Methodology and Implementation 13

CHAPTER 3. SURFACE PARAMETERIZATION 19

3.1 Applications for Parameterization 22

3.1.1 Texture and Detail Mapping 22

3.1.2 Mesh Manipulations 26

3.1.3 Other Applications 31

3.2 Parameterization Domains and Methods 35

3.2.1 Planar parameterization 35

3.2.2 Simplicial Parameterization 43

3.2.3 Spherical Parameterization 45

CHAPTER 4. FAST SPHERICAL PARAMETERIZATION 48

4.1 Approach Overview 48

4.2 Initial Mesh Relaxation 50

4.3 Overlapping Solution 51

iii

4.3.1 Overlapping Identification 52

4.3.2 Overlapping Displacement 53

4.3.3 Overlapping Relaxation 55

4.4 Parameterization Distortion Minimization 56

CHAPTER 5. FEATURES ALIGNMENT WITH EXTRACTED SKELETON 58

5.1 Approach Overview 59

5.2 Mesh Skeleton Extraction 60

5.2.1 Geometry Contraction by Laplacian Smoothing 61

5.2.2 Skeleton Extraction from Edge-collapses 64

5.3 Features Alignment 66

5.3.1 Features Picking with Skeleton 67

5.3.2 Initial Alignment with Singular Value Decomposition 68

5.3.3 Features Relocation and Alignment 70

CHAPTER 6. REMESHING WITH MESH SUBDIVISION 72

6.1 Approach Overview 72

6.2 Base Spherical Triangulation 74

6.3 Recursive Spherical Subdivision 75

6.4 Validation for Subdivided Triangulation 76

6.5 3D Mesh Reconstruction 78

CHAPTER 7. 3D MESH METAMORPHOSIS 80

7.1 Previous Work in Mesh Metamorphosis 80

7.2 Methodology and Implementation 85

7.2.1 Morphing Framework 86

7.2.2 User Interface for Navigation 89

7.2.3 Software Development of 3DMeshMorpher 89

CHAPTER 8. RESULTS AND DISCUSSION 91

8.1 Results for Spherical Parameterization 91

iv

8.2 Results for Remeshing with Subdivision 92

8.3 Results for 3D Mesh Morphing 94

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 97

9.1 Conclusions 97

9.2 Future Work 97

REFERENCES 100

ACKNOWLEDGEMENTS 113

v

LIST OF FIGURES

Figure 1 Screenshot of interface for CATIA V6 PLM 7

Figure 2 Schematic of the ASDS system architecture 15

Figure 3 Snapshot of the ASDS desktop user interface 16

Figure 4 Sample model tree structure of the scene graph 17

Figure 5 Flowchart of our spherical parameterization process 49

Figure 6 Remaining overlapping spike after initial relaxation 52

Figure 7 Solution for overlapping: (a) stretched overlapping area; (b) overlapping vertices

 placed on centroid; (c) overlapping and boundary vertices relaxed 55

Figure 8 Vertex relocation without creating new overlapping 57

Figure 9 Flowchart of the feature alignment process 59

Figure 10 Results of 3D mesh contraction from left to right 64

Figure 11 Skeleton extractions (lower) from contracted mesh (upper) 66

Figure 12 Feature selection by picking on the skeleton 68

Figure 13 Features selection and alignment with spherical maps 71

Figure 14 Flowchart of remeshing with spherical subdivision 73

Figure 15 Subdivision by breaking one triangle into four 74

Figure 16 Triangular platonic solids: (a) tetrahedron; (b) octahedron; (c) icosahedrons 75

Figure 17 Spherical subdivision: (a) source mesh; (b) spherical mesh; (c) subdivision 76

Figure 18 Three cases of correction for a triangle with subdivided neighbor(s) 77

vi

Figure 19 Triangulation validation for a spherical subdivision 78

Figure 20 Flowchart of 3D mesh metamorphosis framework 88

Figure 21 Star-shaped polygon for barycentric coordinates 89

Figure 22 Snapshot of 3D mesh morphing software 3DMeshMorpher 90

Figure 23 Remeshing from spherical subdivision: (a) source mesh; (b) remeshing with

 tetrahedron; (c) remeshing with octahedron; (d) remeshing with icosahedrons 93

Figure 24 Multi-resolution remeshing outputs from coarse to fine 93

Figure 25 Morphing outputs from three sample models (horse, triceratops and cow) without

 feature alignment (simply based on their original geometry orientations) 95

Figure 26 Morphing outputs from three sample models (horse, triceratops and cow) with

 feature alignment for four legs and head 96

vii

LIST OF TABLES

Table 1 Statistics of spherical parameterization efficiencies 92

viii

ABSTRACT

Engineering product design is an information intensive decision-making process that

consists of several phases including design specification definition, design concepts

generation, detailed design and analysis, and manufacturing. Usually, generating geometry

models for visualization is a big challenge for early stage conceptual design. Complexity of

existing computer aided design packages constrains participation of people with various

backgrounds in the design process. In addition, many design processes do not take advantage

of the rich amount of legacy information available for new concepts creation.

The research presented here explores the use of advanced graphical techniques to quickly

and efficiently merge legacy information with new design concepts to rapidly create new

conceptual product designs. 3D mesh metamorphosis framework ―3DMeshMorpher‖ was

created to construct new models by navigating in a shape-space of registered design models.

This efficient software framework enables designers to create numerous geometric concepts

in real time with a simple graphical user interface.

The framework is composed of: 1) a fast spherical parameterization method to map a

geometric model (genus-0) onto a unit sphere; 2) a geometric feature identification and

picking technique based on 3D skeleton extraction; and 3) a LOD controllable 3D remeshing

scheme with spherical mesh subdivision based on our spherical parameterization.

 Our spherical parameterization is focused on closed genus-zero meshes. The method is

based upon barycentric coordinates with convex boundary. Unlike most existing similar

ix

approaches which deal with each vertex in the mesh equally, the method developed in this

research focuses primarily on resolving overlapping areas, which helps speed the

parameterization process. The algorithm starts by normalizing the source mesh onto a unit

sphere and followed by some initial relaxation via Gauss-Seidel iterations. Due to its

emphasis on solving only challenging overlapping regions, this parameterization process is

much faster than existing spherical mapping methods.

To ensure the correspondence of features from different models, we introduce a skeleton

based feature identification and picking method for features alignment. Unlike traditional

methods that align single point for each feature, this method can provide alignments for

complete feature areas. This could help users to create more reasonable intermediate

morphing results with preserved topological features. This skeleton featuring framework

could potentially be extended to automatic features alignment for geometries with similar

topologies. The skeleton extracted could also be applied for other applications such as

skeleton-based animations.

The 3D remeshing algorithm with spherical mesh subdivision is developed to generate a

common connectivity for different mesh models. This method is derived from the concept of

spherical mesh subdivision. The local recursive subdivision can be set to match the desired

LOD (level of details) for source spherical mesh. Such LOD is controllable and this allows

various outputs with different resolutions. Such recursive subdivision then follows by a

triangular correction process which ensures valid triangulations for the remeshing. And the

x

final mesh merging and reconstruction process produces the remeshing model with desired

LOD specified from user. Usually the final merged model contains all the geometric details

from each model with reasonable amount of vertices, unlike other existing methods that

result in big amount of vertices in the merged model. Such multi-resolution outputs with

controllable LOD could also be applied in various other computer graphics applications.

1

CHAPTER 1

INTRODUCTION

1.1 Engineering Design Process

Product design is an information intensive engineering process of decision-making. It is

estimated that as much as 75% of the cost of a product is spent during the product design

phase including manufacturing and maintenance [1]. Companies are increasingly using

digital prototypes from CAD [2] rather than manufacturing expensive physical models earlier

in the product development process. Product design usually starts with the definition of a

design problem, followed by a sequence of approaches to find an optimal solution and ends

with a detailed description of the product. A design process can be divided into several

phases. The first is collecting and defining design specifications about the product such as

performance, quality, and safety. The second is concept generation where rough design

concepts are proposed to meet the design specifications. Next is detailed design, where all

design specifics such as part dimensions, material specification, and assembly arrangement,

are finalized. These 3D product models form the basis for detailed performance analysis,

manufacturing planning, and all other product life-cycle activities such as production and

maintenance. Many computer tools have been developed to assist design and analysis at the

detailed stage of design [3, 4, 5], whereas concept generation and selection are still mostly

dependent upon experience of engineers and use of tools not built to handle the requirements

of concept generation.

2

1.2 Motivation and Contribution

Usually, new product development is a process which not only is concerned with product

design, but also includes prototyping, manufacturing, distribution and service. Such

processes always involves people with different backgrounds (engineer, designer, worker,

consumer and etc.). This kind of collaborative context enables interactions among different

criteria from different disciplines. With this kind of collaborative product context, there is a

need of visualization for product shapes to truly keep stakeholders on the same page.

A description of a conceptual design can be decomposed into various aspects including

function, behavior, and structure [10]. To generate and select the feasible solutions, it is

necessary to determine the correlations and interactions among these aspects. Computers

have been used extensively in areas of simulation, modeling, and optimization, but there are

relatively few applications at the conceptual design stage [11] due to the lack of knowledge

of design specifications and constraints. This lack of knowledge causes two inherent

difficulties in conceptual design activities: a) modeling interactions between components and

b) reasoning to generate and select feasible solutions.

Generating geometry models for visualization is a big challenge for early stage

conceptual design. Existing tools for this include traditional computer aided design (CAD)

packages, sketch-based 3D geometry creation tools (e.g. Google SketchUp), and geometry

manipulation and deformation techniques (e.g. free-form deformation, direct manipulation).

3

These solutions provide designers different ways to generate new design concepts. But they

all have one common problem: the difficulty to bring people from different backgrounds into

the design process. These tools mostly aim to those design engineers and unfriendly to other

people who are also willing to contribute in conceptual design since the learning curve is

usually too steep.

Another issue for many conceptual design tools is the inability to integrate legacy

geometric models. While some designs can be started simply from a sketch or geometric

primitives larger, more complex designs require more to be created quickly. Legacy

information can be a critical component to rapidly creating conceptual geometry that meets

the needs of a diverse group of stakeholders.

In this work, there are two ways of the usage for the legacy data. The advanced systems

design suite (ASDS) makes use of the legacy geometries as well as some meta data. The

legacy geometries and some primitive models work together and are employed for new

geometry creation. And the meta data will assist some physical evaluations for design in

early stage. The second way of using legacy models is implemented in our software

―3DMeshMorpher‖. The idea is by developing a 3D mesh metamorphosis framework, the

users can navigate in a shape-space of registered design models and construct numerous

design concepts in real-time. This framework provides a non-traditional user interface that

can take in inputs (e.g. weight, cost etc.) from non-tech users (e.g. consumer), which enables

collaborative and interactive design process for people with different disciplines.

4

The main contributions for this 3D mesh metamorphosis framework can be categorized

and summarized as following:

(1) A fast spherical parameterization framework. This framework could benefit various

parameterization related applications by performing in a much faster manner than

existing spherical parameterization methods.

(2) An innovative feature alignment method based on geometry skeleton generated by

applying reported skeleton contraction and extraction algorithm [155]. The method

allows users to identify and pick features from input models on an extracted model

―skeleton‖.

(3) A 3D remeshing scheme with spherical mesh subdivision based on our spherical

parameterization. This method generates remeshing representations to match the

level of details (LOD) for the source meshes and delivers various remeshing outputs

with controllable multi-resolution.

(4) A 3D mesh metamorphosis software ―3DMeshMorpher‖ to aid new geometry

generation from existing legacy models. This software integrates the spherical

parameterization method, skeleton-based feature alignment method and spherical

subdivision remeshing algorithm.

1.3 Dissertation Organization

The remainder of this thesis is organized as following: Chapter 2 presents a literature

5

survey of conceptual design methods and tools. Chapter 3 provides an in-depth review of

surface parameterization applications and classified mapping domains and related methods.

In Chapter 4, the fast overlapping-solving spherical parameterization approach is introduced.

Chapter 5 presents the feature alignment method based on 3D mesh skeleton extraction. And

this is followed by the remeshing scheme with spherical subdivision in Chapter 6. Then, the

3D mesh metamorphosis framework is described in Chapter 7, which includes the

implementation of the mesh morphing software ―3DMeshMorpher‖ and its user interface

design. The results of the spherical parameterization, remeshing with spherical subdivision,

and mesh morphing are presented in Chapter 8. Finally, the research presented in this

dissertation is discussed and concluded with some future work proposed in Chapter 9.

6

CHAPTER 2

ADVANCED SYSTEMS DESIGN SUITE

2.1 Literature for Engineering Conceptual Design

 As mechanical systems and products continue to be developed and become increasingly

more complex, the early stages of a design process become more critical to the success of the

resulting product. Given well-defined design requirements, it is challenging to generate and

select a concept that effectively satisfies all of the requirements. Conceptual design can have

significant impacts on the downstream design and manufacturing process [6]. Early design

stages typically include engineers identifying the requirements of a particular project and

producing a concept pool using various creative methods such as brainstorming [7].

Engineers produce as many different concepts as possible in order to have a wide variety of

ideas to evaluate at the next level of design. Depending on the project, concept generation

could produce anywhere from tens to hundreds of possible concepts.

 Once the pool of concepts has been established, engineers must reduce the list to a

manageable number to proceed to detailed design. Currently, there are limited tools to aid in

this process. The most prevalent method is to model concepts using detailed design tools

such as CAD software. However, due to the specificity needed to create a solid model,

considerable time and resources are consumed producing these 3D concepts simply to assess

the rough measure of feasibility needed for evaluation of a concept. Due to the complexity

and information needed by detailed design tools, an adequate evaluation of every conceptual

7

configuration cannot be performed. Such evaluations would be too time consuming and

costly to the company. In order to address this problem, some CAD software companies have

released ―lightened‖ versions of their products to attempt to release a product less complex

and easier to use. Two examples of such products are Pro/CONCEPT [8] and CATIA V6

PLM [9] which can be seen in Figure 1. However, these interfaces are still very complex

offering many options and features. Thus, without extensive training and a large learning

curve, these lightened applications still do not meet the real-time creation and analysis

requirements of digital prototyping at the conceptual design phase.

Figure 1: Screenshot of interface for CATIA V6 PLM

 To overcome the modeling and reasoning problems, some design related techniques and

8

methodologies have been developed. Sahin et al. [12] developed a graphical modeling tool to

visualize the modeling method to address the challenges of product design decisions. Chang

et al. [13] extended this work to support the graphical modeling tool with an ontology-based

approach to promote the systematic capture of design knowledge. Cao et al. [14] proposed a

port-based ontology to map the concept connections and interactions to compute semantic

similarities. Christophe et al. [15] combined the use of Function-Behavior-Structure, System

Modeling Language, and artificial intelligence to create a dynamic mapping of ontology

layers.

 Research has also been done to try to provide more high-fidelity feedback to conceptual

designers. Taskahashi et al. [16] integrated a detailed flight control systems synthesis tool

into a vehicle configuration development MDO environment to better simulate aerodynamic

efficiency, stability, and controllability in air vehicle configurations. Noon and Winer [17]

used metamodeling techniques to capture high-fidelity analysis trends from legacy geometry

datasets to provide real-time feedback of conceptual design models for large-vehicle designs.

 Significant research has also been performed on overall design processes such as

axiomatic design [18], decision-based design [19], and specific stages of a design process

such as quality function deployment (QFD) [20]. Based on Keeney‘s Value Focused Thinking

[21, 22], Jin et al. took a value-based design (VBD) [23, 24] approach to conceptual design

by specifying designer‘s intent with design variable values. The design value is defined as a

group of structured design objectives and a design objective driven approach is proposed to

9

assist design concept generation. Hoyle and Chen [25] created a design tool called product

attribute function deployment (PAFD) which extended the qualitative matrix principles of

QFD with utilizing the quantitative decision-making processes of decision-based design

(DBD).

 Concept selection methods exist to help engineers rank a population of concepts.

Examples of these methods are estimating technical difficulty, Pugh concept selection charts,

and numerical concept scoring [10]. These methods have proven effective but are simply a

ranking system of engineers‘ opinions on each concept‘s ability to meet defined criteria of the

design proposal. In-depth modeling and analysis (factual hands-on information) does not play

a role in these elimination sessions. In order to use these methods more effectively, more

information needs to be provided to the engineers before implementing these methods to

make concept selections and decisions.

 All three conceptual design methods - CAD packages, lightened CAD packages, and

concept selection methods - have their advantages and disadvantages. All methods have

numerous capabilities but, in today‘s digital age, still do not define a clear set of tools to be

easily integrated into conceptual design. What is truly needed in conceptual design is a means

to quickly create and analyze lower fidelity digital models in real-time in order to access

every conceptual idea in order to make accurate and informed decisions as early as possible

in the design process.

10

2.2 Development of Advanced Systems Design Suite

 Currently, new product concepts are often evaluated by developing detailed virtual part

and assembly models with traditional Computer Aided Design (CAD) tools followed by

appropriate analyses (e.g., finite element analysis, computational fluid dynamics, etc.). The

creation of these models and analyses are tremendously time consuming. If a number of

different conceptual configurations have been determined, it may not be possible to model

and analyze each of them due to the complexity of these evaluation processes. Thus,

promising concepts might be eliminated based solely on insufficient time and resources for

assessment. In addition, the virtual models and analyses performed are usually of much

higher detail and accuracy than what is needed for such early assessment. By eliminating the

time-consuming complexity of a CAD environment and incorporating qualitative assessment

tools, engineers could spend more time evaluating concepts that may have been previously

abandoned due to time constraints. To address these issues, a software framework, the

Advanced Systems Design Suite (ASDS), was created. The ASDS incorporates a PC user

interface with an immersive virtual reality (VR) environment to ease the creation and

assessment of conceptual design prototypes individually or collaboratively in an immersive

VR environment. Assessment tools incorporate metamodeling approximations and immersive

visualization to evaluate the validity of each concept. In this paper, the ASDS framework and

interface along with specifically designed immersive VR assessment tools such as state

saving and dynamic viewpoint creation are presented alongside a test case example of

11

redesigning an airplane in the conceptual design phase.

2.3.1 Virtual Reality Technology

 Virtual reality (VR) development can be traced back as early as the 1960s [26]. Once

computing and projection power advanced over the next two decades, academic institutions

and industrial centers began investing in VR research and development. Before projection-

based systems were feasible, head-mounted displays were a common form of a VR display

system. Then, in the early 1990s, VR systems ranging from single-wall projection screens to

four-walled CAVE displays [27] were developed across the world and have since become a

very popular research area from both a hardware and software perspective. VR hardware has

undergone many technological advances since its debut in the early 1990‘s including

projectors, tracking systems, interactive devices, and auditory interfaces.

 The first projectors used for VR were capable of producing 1024 x 768 pixel images on

10‘ x 10‘ display screens with a pixel resolution of approximately 54 pixels per square inch

[28]. High-end projectors on the market today can produce up to 4096 x 2160 pixel images

totaling over eight million pixels [29]. When these projectors push images onto a 10‘ x 5‘

screen, a pixel resolution of approximately 1228 pixels per square inch is created. This

2260% increase in pixel resolution gives a much clearer and more detailed display of the

virtual environment than with the previous generations of VR systems.

 More powerful projection systems led to the development of interactive immersive

environments. To interact with these immersive environments, tracking systems and

12

interaction devices were developed. Early tracking systems used electromagnetic fields to

perform location tracking [30]. Since these electromagnetic tracking systems could only

achieve high accuracy in small environments, companies began researching new

technological possibilities for tracking systems. For example, InterSense [31] developed a

tracking system combining ultrasound and inertial technology to track multiple devices

simultaneously in a large-scale environment with high accuracy called the IS-900.

 Nowadays, VR technology is gaining increasing utility for a variety of applications in

product development [32]. With real-time interactive graphics, stereoscopic display, and user

tracking, VR can be particularly useful for applications in which one-to-one scale is

important or when the assessment of complex geometric relationships is required. Haptic

interfaces have also been employed for assisting conceptual design [33]. Fischer and Vance

[34] also used haptic devices inside a six-sided virtual reality environment for installing an

aircraft rudder pedal assembly. Duncan and Vance [35] later developed an immersive virtual

reality environment to help engineers better understand complex fluid behaviors in the

mixing process. Finally, Abdul-Jalil and Bloebaum [36] created a collaborative virtual

environment (VRoom) that allowed designers from multidisciplinary backgrounds to view

and manipulate 3D models in an immersive environment simultaneously. With all these

technologies available, engineering within immersive virtual reality can provide a

collaborative design environment with additional features which cannot be matched with a

2D desktop environment.

13

2.3.2 ASDS Methodology and Implementation

 The software framework is named the Advanced System Design Suite (ASDS) [37, 38].

The ASDS was created to enable an engineer to quickly build a 3D model of a proposed

design, assess a concept with real-time simulation analysis, and visualize the results on both

desktop and immersive VR systems. The environment enables fast geometry creation by

simplifying or eliminating the inputs and interfaces that CAD systems typically require, but

are unnecessary at the conceptual design phase.

 With the VR-based ASDS system, a group of engineers can create and assess multiple

concept ideas in real-time. For example, the process could start by selecting from several

base component geometries (e.g., chassis designs). Then, through a unique, intuitive 3D

modeling system, features can be added or taken away to produce a new design concept.

Typical modifications range from relatively small parameter changes, such as increasing the

length of the frame by 10%, to large-scale changes such as adding a third axle to a two-axle

vehicle.

 Following the model creation some basic properties will be computed such as vehicle

weight and center of gravity. Additional output will provide information on other vehicle

performance measures including wheel load distribution and static tipping angle. The

engineers then have information from which to base further decisions. These decisions might

include whether to proceed with this concept to a more detailed analysis or to investigate

other conceptual configurations. The 3D model and assessment output will also foster new

14

ideas to the current concept, ideas that would have been previously overlooked. Multiple

iterations of conceptual designs can help design teams develop a specific list of requirements

and ultimately a final direction for the team to pursue into the next phase of design.

 Figure 2 shows the underlying architecture of the system. User interaction is done

through the desktop interface on a tablet or laptop. The desktop application incorporates its

own interactive 3D viewing window that controls all of the manipulation—rotation, scaling,

panning, and translating—of the model. As shown in the figure, all design changes done on

the desktop are transmitted over a network connection and performed in the immersive

viewer simultaneously. The immersive viewer uses models from the same data source as the

desktop. Navigation in the immersive application is controlled by a gamepad controller. This

allows the desktop user to focus on design instead of also having to worry about the changing

the immersive application view. By decoupling the immersive navigation from the desktop

application, the immersive application environment became much more user friendly and

allowed the development of immersive only tools to be developed.

15

Figure 2: Schematic of the ASDS system architecture

The desktop application as shown in Figure 3 runs under several Operating Systems

including Windows XP, Windows Vista, and Windows 7 on both 32 and 64-bit platforms as

well as Mac OSX, and the immersive application operates on both 32 and 64-bit Linux

Operating Systems. The desktop interface is built upon two open-source packages called

OpenSceneGraph (OSG) [39] and wxWidgets [40]. OSG is a scene modeling and

manipulation software built on-top of OpenGL to aid developers in scene graph rendering. A

sample scene graph tree structure consisting of one group and four sub-groups is shown in

Figure 4. The wxWidgets application programming interface (API) is used to develop the

16

desktop user interface. Since both OSG and wxWidgets are cross-platforms APIs, the ASDS

desktop application is able to run on multiple operating systems without having to build

separate applications for each Operating System.

Figure 3: Snapshot of the ASDS desktop user interface

 Network communications between the desktop and immersive applications are

transported using a Transmission Control Protocol/Internet Protocol (TCP/IP) socket

program. TCP/IP was chosen over other types of communication protocols such as User

Datagram Protocol UDP due message verification. The TCP/IP protocol ensures the client

message is received by the connected server socket before continuing to send additional

17

messages. This data transmission takes longer than other protocols, but ensuring each

message is received and rendered appropriately on the immersive side is a must for these two

applications. Message verification also ensures both the desktop and immersive scene graphs

stay in sync with each other.

Figure 4: Sample model tree structure of the scene graph

 The ASDS immersive visualization software was developed using OSG to handle all

the geometric scenegraph rendering while VR Juggler [41] was integrated to abstract display

and device interface communication as well as stereoscopic viewing from the development

requirements. In order to facilitate the all the different types of network and device

communication between all computers on a large-scale cluster, several software

18

improvements have had to be made. First off, all device and network communications are

running in separate threads from the main rendering thread. By processing all the

communications in separate threads, the main rendering thread is only required to pick up the

processed message when it deems necessary instead of having to process all the

communications before being able to render the next frame. The next improvement involved

integration VR Juggler cluster synchronization in the main thread once the processed

communication was picked up by the main thread. The cluster synchronization is now done

through VR Juggler‘s built in data serialization and synchronization methods. VR Juggler

receives and processes the input on a single computer, and then is responsible for passing the

message off to the other render nodes on the cluster once it is picked up by the main

rendering thread. These cluster-based improvements in the immersive application help ensure

a much more stable and reliable collaborative environment with steady frame rates when the

immersive application is in use.

19

CHAPTER 3

SURFACE PARAMETERIZATION

 As a tool developed in computational geometry, 3D mesh parameterization is a powerful

technique assisting geometric modeling and geometry processing in numerous applications of

computer graphics. Sheffer et al. [42] reviewed and addressed practical considerations for

various parameterization techniques and their applications. Considering any two surfaces

with similar topology, usually there exists a one-to-one (bijective) mapping between them. In

general, if one of the surfaces is a triangle-based mesh (either represented or approximated by

triangles), the mapping process is referred as mesh parameterization [43; 44]. Typically, the

destination surface that the mesh is mapped to is called the parameter domain with the other

one named the source mesh. The objective of mesh parameterization is to generate a map

between the source mesh and a triangulation of the domain. An essential goal of

parameterization is to get a bijective map, where for each vertex in the source mesh there is

only one correspondent vertex in the target parameterization domain. Usually, such

parameterizations are piecewise linear, associating each triangle of the original source mesh

with exactly one triangle in the parameterization domain.

 Mesh parameterization was originally employed in computer graphics as a method for

texture mapping for 3D surfaces [43; 45], which was the main driving force used in computer

graphics to enhance the visual quality of 3D surface models. Later, it became a necessity due

to the development of 3D scanning technologies and the resulting demand for efficient

20

compression techniques for increasingly complex triangulations. It is also influenced by other

applications like surface approximation, and remeshing. Other fields that benefit from

parameterization include detail mapping, detail synthesis, detail transfer, mesh fixing, mesh

editing, object database creation, mesh compression, surface fitting, modeling from material

sheets, medical visualization, filtering, texture mapping, remeshing, and morphing.

Aside from the topological similarity, there is typically quite a large geometric difference

between the source mesh and the parameterization domain, which almost always introduces

distortions existing in either angles or areas. Very few cases admit isometric parameterization

(zero distortion). The goal of a good parameterization algorithm is to minimize these

distortions for the entire mesh. Based on the type of distortion minimization methodology,

most parameterizations can be classified as two groups of mappings. Maps that attempt to

minimize the angle distortions are named ―conformal‖ and maps that minimize the area

distortion are referred as ―authalic‖. Research has been performed to measure the

conformality of a mesh in several ways [46, 47, 48, 49] by applying different functions to be

optimized. For example, Hormann and Greiner [46] consider the minimal and maximal

eigenvalues of the first fundamental form of the mapping. Sheffer and de Sturler [47] directly

calculate the difference between the corresponding angles in the source mesh and output

parameterized mesh. Floater and Hormann [44] report that authalic parameterizations are not

very useful in practice as they allow extreme angular and linear distortion. Due to that,

researchers that attempt to preserve area [49, 50] also consider angular minimization for

21

balance.

The traditional surface parameterization problem derived from texture mapping

considers the case where the target domain is a planar region [44]. The mapping from the

source mesh to parameterization domain is represented by the parametric locations of

vertices within the plane. Various optimizations are applied to freely relocate the vertices

within the domain as long as the mesh is maintained bijectively. However, with increasingly

different applications of computer graphics and geometric modeling, the 2D planar

parameterization domain does not meet this requirement in many emerging applications..

High dimensional parameterization domains are actively being researched and many different

algorithms and methodologies have been developed. Based on the type of mapping domain,

mesh parameterization can be categorized as planar parameterization, spherical

parameterization, simplicial parameterization and inter-surface mapping.

In this section, a literature survey will first be presented about the applications that are

closely related to and benefit from mesh parameterization. Then different parameterization

methodologies and techniques are discussed, classified by parameter domain used: planar,

spherical, simplicial and inter-surface parameterization. Lastly, some methods of introducing

constraints into a parameterization is also reviewed and discussed.

3.1 Applications for Parameterization

As mentioned above, 3D mesh parameterization was originally investigated and

22

introduced into the field of computer graphics and computational geometry as a technique for

texture mapping. With the fast growth in the field of mesh and geometry processing, more

and more related research integrated and benefited from mesh parameterization.

3.1.1 Texture and Detail Mapping

Over the last decade, texture mapping has been recognized as one of the most successful

techniques for high quality image synthesis in computer graphics. Although application

variety is diverse, the techniques of texture mapping are basically the same for different

cases. Here we can categorize surface attributes as color, surface normal, specularity,

transparency, illumination, and surface displacement. Early synthesized raster images of

surfaces emphasized the smoothness of surfaces, without attempting to represent fine details

like scratches or dirt, and generally lacked realistic effects and complexity. This, texture

mapping was developed as a relatively efficient means to create complicated and realistic

surface renderings.

The main goal of texture mapping is to realistically represent the complex appearance of

3D geometry. In the early years, research in texture mapping was more focused on

parameters like color and surface normal. Some of the parameters that have been texture

mapped include, surface color (the most common use) [51], specular reflection [52], normal

vector perturbation (bump mapping) [53], specularity (the glossiness coefficient) [54],

transparency [55], diffuse reflection [56], shadows, surface displacement, and mixing

coefficients [57], and local coordinate system (frame mapping) [58].

23

For computer graphics display, surfaces are represented by a tessellated geometric model

(typically a triangular mesh, polygonal mesh or subdivision surface) with texture and other

information stored separately. For rendering 3D digital geometry, textures can enhance visual

appearance with simple static pictures. However, with a continuous and smooth texture, the

rendering for pixel neighborhoods is very similar, and under varying lighting conditions the

object can look flat and unrealistic in animations. Bump mapping [53] addresses this issue by

storing small deviations of the point-wise surface normal and applies the perturbed version

during the shading process. Sheffer et al. [59] develops a similar method called normal

mapping which replaces the normals instead of storing perturbations. The shading variations

generate small pits and dimples in the surface to simulate the shadows when there is a

direction change of the light source. Bump mapping and normal mapping address the issue of

shading variation. But since the geometry of the model is never deformed or edited, the

appearance of the object always looks either smooth or polygonal. This problem is handled

by displacement mapping with small local deformations of the surface record stored in the

texture. Recentl techniques [60, 61, 62] employ so called volumetric textures, instead of

conventional 2D textures, to model a thick region of space in the neighborhood of the

surface. These techniques deal with the situations of complicated topology or details which

are not easy to estimate with a local height field.

 Unlike texture mapping that attempts to represent the complex appearance of 3D objects,

newly developed detail synthesis techniques are designed to create rich local details by

24

applying surface parameterization. One such procedure implements flat sample patches with

detailed textures. Pederson et al. [63] present a set of interactive tools for subdividing an

implicit surface into convenient patches with an efficient and reliable algorithm for deriving

parameterizations for such patches. Lapped texture [64] is a means for creating texture over

an arbitrary surface mesh using an example 2D texture by identifying interesting regions

(texture patches) in the 2D example and repeatedly pasting them onto the surface until it is

completely covered. Wei and Levoy [65] provide a solution to synthesize a general texture

over arbitrary manifold surfaces by extending their original texture synthesis method with a

generalization of their definition of search neighborhoods. They realize this by establishing a

local parameterization surrounding each mesh vertex and using the parameterization to create

a small rectangular neighborhood with the vertex at its center, and then search a sample

texture for similar neighborhoods. Turk et al. [66] believe that the best way to create a

surface pattern is to synthesize a texture directly on the surface of the model. Using texture

synthesis methods that use image pyramids (and a mesh hierarchy to serve in place of such

pyramids), they create a similar texture over an irregular mesh hierarchy on a give surface

with a texture sample in the form of an image. By considering a very general type of texture

that including color, transparency and displacement, Ying et al. [67] present a novel method

for texture synthesis on a surface that synthesizes the texture directly on the surface rather

than synthesizing a texture image and then mapping it to the surface. Finally, the multi-scale

algorithm [68] maps a texture defined by an input image onto an arbitrary surface. This

25

method progressively covers the surface by texture patches of different sizes and shapes from

a single input image.

 An alternative approach for detail synthesis is to directly process user input and editing

(e.g., painting). Igarashi et al. [69] implement a method to dynamically generate an efficient

texture bitmap and its associated UV-mapping in an interactive texture painting system for

3D models. To eliminate the distortion of brush strokes, they develop an adaptive

unwrapping mechanism where the system dynamically generates a tailored UV-mapping for

newly painted polygons during the interactive painting process. The final texture bitmap

resulting from this process is more compact since texture space is only allocated for the

painted polygons. Carr and Hart [70] present a GPU based texture atlas algorithm which

distributes initial texture samples evenly according to the surface area and texture frequency,

and maintain the distribution as the texture signal changes during the surface painting

process. They make the redistribution of samples transparent to the user which results in a

surface painting system of theoretically unlimited resolution.

3.1.2 Mesh Manipulations

Mesh manipulation refers to those applications that involve topology or connectivity

changes of the source mesh, such as moving vertex position, adding more vertices, removing

vertices, and switching from a triangular to polygonal mesh. Many different mesh

parameterization and manipulation operations are described in this section including: mesh

fixing, mesh editing, and remeshing.

26

Many 3D complex geometric models are generated from high quality 3D scanning.

During such a process, the resulting models are usually not perfect due to holes and multiple

components. Mesh fixing is the process of repairing such imperfections to produce a

complete model that contains the original scanned model. Lévy [71] provides an approach to

compute a natural boundary to triangulate around holes with global planar parameterization.

This work makes it feasible to extrapolate the geometry beyond the existing boundary rather

than just smooth an existing geometric model. For some scanned models, there may be prior

knowledge about their overall appearance and such knowledge can facilitate the mesh fixing

process. Allen et al. [72] develop a novel technique to fit high-resolution template meshes to

detailed human body range scans with sparse 3D markers. To achieve this, they formulate an

optimization problem such that the degrees of freedom are affine transformations for each

template vertex and solve the problem with a non-linear optimizer running at two resolutions

to assist convergence. Also with human shape, Anguelov et al. [73] introduce a data-driven

method (SCAPE, Shape Completion and Animation for PEope) to build a human shape

model. The method involves variations in both human body shape and pose, which is set up

with a representation that incorporates articulated and non-rigid deformations.

Kraevoy et al. [74] present a more generic and robust template-based approach for mesh

completion for arbitrary 3D scans. This approach employs a mapping between the incomplete

mesh and a template model, which is calculated with a novel framework for bijective

parameterization of meshes with gaps and holes. This mapping can correctly glue together

27

the components of the input mesh and to close the holes, as well as fill the topological and

geometric information missing in the input.

Local/Global mesh parameterization techniques are also applied to facilitate mesh

editing related operations in many applications. Based on local parameterization, Biermann

et al. [75] generate a set of algorithms for multiresolution subdivision surfaces which perform

at interactive rates and enable intuitive cut-and-paste operations. The local parameterizations

for areas of interest for two different models are placed overlapping each other and applied to

transfer local shape properties and details from one model to another. Sorkine et al. [76] treat

geometric detail as an intrinsic property of a surface and point out that surface editing is best

performed by operating over an intrinsic surface representation. They provide a Laplacian

representation for the mesh, which is enhanced to be invariant to locally linearized

transformation and scaling. From this representation, mesh editing operations are developed,

including interactive free form deformation (FFD) in a local region, geometric detail transfer

and mixing between surface meshes and transplantation of a partial mesh onto another mesh.

Lévy [71] use a similar local parameterization for mesh composition by calculating an

overlapping planar parameterization of the region near the composition boundary on the

source models and utilize it to extract and blend shape information from the source models

smoothly.

Remeshing is another important mesh operation that is dependent on mesh

parameterization techniques. Resampling raw surface meshes has become one of the most

28

fundamental operations used by nearly all digital geometry processing systems. With a

similar level of detail, there are a lot of different triangular representations for a selected

shape. Usually, the selection of such mesh representation is determined by the requirements

of their application. The most straightforward method of replacing one triangulation by

another is to parameterize the source mesh into a domain, map a desired well-defined mesh

into the same domain, and finally, map the desired mesh back to the source mesh based on

the overlapping information from the domain. Gu et al. [77] present a novel remeshing

technique called ―geometry image‖ which captures geometry as a 2D array of quantized

points and stores normals and colors as surface signals in a similar 2D array by applying the

same implicit surface parameterization. Cutting the mesh and mapping the resulting chart

onto a square creates the geometry image. A promising perspective of this work is that the

geometry image can be encoded with image compression algorithms (e.g. wavelet-based

encoders). Inspired by differential geometry, Guskov et al. [78] introduce a new fundamental

surface description called the ―normal mesh‖, which is a mesh with multiresolution

representation. Each level of resolution is written as a normal offset from a coarser version of

the mesh and is stored with a single float per vertex. They also provide an algorithm to

estimate any arbitrary surface closely with a normal semi-regular mesh. Lee et al. [79]

introduce another surface representation referred to as the ―displaced subdivision surface‖ to

represent a detailed surface geometry as a scalar-valued displacement over a smooth surface

domain. Both the domain surface and the displacement function are defined with a unified

29

subdivision framework which provides a way to evaluate the analytic surface properties

simply and efficiently. Khodakovsky et al. [80] present a parameterization framework which

takes in surface meshes with arbitrary topology and generates a globally smooth

parameterization with small distortion. They demonstrate the performance of this algorithm

with numerical evaluation of distortion measurement and distortion performance of semi-

regular remeshes produced. Desbrun et al. [49] present a new theoretical and practical

parameterization of triangulated surface patches called ―intrinsic parameterizations,‖ which

minimize the distortion of different intrinsic measures of the original mesh within a simple,

sparse linear system. With planar Delaunay triangulation, they are able to generate high

quality remeshing of the surface and propose it to faciliate the rapid design of

parameterizations.

Instead of global parameterization, Surazhky and Gotsman [81] introduce a robust local

parameterization based remeshing scheme that enhances mesh quality with many local

modifications of geometry and connectivity. To achieve this, they describe a family of local

modification techniques with an area-based smoothing method that allows the control of both

the triangle quality and vertex sampling over the mesh. Dynamic patch-wise parameterization

is performed to local modifications of meshes with arbitrary genus and a novel algorithm is

implemented to improve the regularity of the mesh connectivity by creating an unstructured

mesh with a very small number of irregular vertices. Ray et al. [82] present a globally smooth

parameterization technique for triangulated surfaces with arbitrary topology. Their method

30

calculates two piecewise linear periodic functions by minimizing an objective function,

which can construct both quasi-conformal (angle preserving) and quasi-isometric (angle and

area preserving) parameterization. This work claims to be particularly suitable for surface

fitting and remeshing due to the alignment of parameterization with the principle curvature

directions.

Unlike most work that has focused on triangular remeshing, Dong et al. [83] focus on

quadrilateral meshes that are more suitable for many surface PDE problems. In their work,

they describe an innovative algorithm to quadrangulate manifold polygonal meshes by

applying Laplacian eigenfunctions. With algorithms and heuristics to efficiently and

effectively choose the harmonic most suitable for the intended application, they are able to

build a well-shaped quadrilateral mesh with very few extraordinary vertices.

3.1.3 Other Applications

Data compression is the process of encoding information by using fewer bits (or other

information storage units) than an unencoded representation would within specific encoding

schemes. With the growth of the computational geometry field, researchers have borrowed

ideas from data compression to develop ―mesh compression‖ which is utilized to compactly

store information for geometric models [84]. The efficiency of a compression method is

usually evaluated by compression rate. To facilitate higher compression rate for geometric

models, the mesh should have either all the vertices of the same degree, or in other words, the

triangles should be similar to each other in terms of shape and size with vertices around the

31

geometric centroid of their neighbors,.

Mesh compression algorithms can be classified by two major techniques depending on

whether the model is decoded during or only after the transmission: single-rate and

progressive compressions. For single-rate compression, the objective is to delete the

redundancy present in the original description of the data. And for progressive, the aim is to

get the best rate-distortion tradeoff, which is the tradeoff between data size and

approximation accuracy. A regular mesh is generated first to facilitate high-rate compression.

The source mesh is usually parameterized to a domain and then remeshed with regular

sampling patterns [77]. Similarly, Hoppe and Praun [85] develop an mesh compression

scheme with the introduction of their spherical parameterization and remeshing algorithm

which maps a genus-0 surface mesh onto a 2D grid, a spherical geometry image. Their

compression and decompression algorithms work on 2D arrays and are claimed to be ideally

suite for hardware acceleration. Their two approaches for shape compression are wavelet-

based and use spherical geometry images.

 Within a common domain, parameterizations of a large amount of meshes can facilitate

the creation of object databases. Analyses based on such parameterizations can be performed

to determine the common characteristics among objects and their distinguishing traits. Allen

et al. [72] present a novel technique to fit high-resolution template meshes to detailed human

body range scans with sparse 3D markers. In their work, they set up a database of human

shapes with the possible distinguishing traits of gender, height, weight, etc. Blanz and Vetter

32

[86] develop a new technique for modeling textured 3D faces based on a face database with

facial expressions. With their face database, transforming the shape and texture of the

examples into a vector space representation is used to derive a morphable face model. Based

on a linear combination of the prototype models, new faces or expressions can be generated

with a morphing interface. Marschner et al. [87] build a face model system for modeling,

animation and rendering the human face using measured information for geometry, as well as

motion and reflectance that regenerates a particular human‘s facial appearance and facial

expressions. This system creates structured face model database with correspondences across

different faces, providing a foundation for various facial animation operations. Blanz et al.

[88] introduce an image based animation technique for human faces, which necessitates no

exemplar data of mouth movements and no restricted poses or illumination requirements.

Their system transforms mouth movements and expressions among examples based upon a

common representation of various faces and face expressions in a vector space of 3D shapes

and textures, which is calculated from 3D scans of neutral faces and face expressions. Using

the same database of human faces, Blanz et al. [89] present a system that can substitute faces

with big differences in viewpoint and illumination, unlike the traditional photo retouching

and image processing tools with fixed viewpoint and illumination. To achieve this, they

implement an algorithm to estimate 3D shape and texture along with all relevant parameters,

and a user interface for clicking a set of feature points and marking the hairline in the target

image. This technique is claimed to be helpful for image processing, virtual hairstyle try-on

33

and face recognition.

 Mesh parameterization methods are also applied in medical visualization (e.g., volume

rendering). Instead of mapping vertex positions and mesh connectivity, usually features such

as surface normal-map, color and other properties are parameterized to a simpler, canonical

domain for visualization and further analysis. In particular, such mapping techniques are

useful for studying human brain. Hurdal et al. [90] provide a new approach to create

parameterization for flattening maps of the human brain. Based on Riemann Mapping

Theorem, their algorithm performs a conformal parameterization for angular preservation.

This parameterization can deal with a mapping domain of not only traditional Euclidean

plane but also the hyperbolic plane and the sphere, without cuts to be introduced in the

source surface. Haker et al. [91] treat the brain as a genus-zero surface and visualize it

through spherical parameterization with topologically equivalence. To do that, they introduce

an explicit method to map any simply connected surface on a sphere which relies on some

conformal mapping from differential geometry. A finite element method is also merged into

their work for a triangulated surface description. Based on the structure of the co-homology

group of holomorphic one-forms for surfaces, Gu et al. [92] develop a general method of

global conformal mapping for genus-zero meshes. They apply such method in parameterizing

the human brain. By using a mesh structure to represent magnetic resonance imaging (MRI)

data, their algorithm is robust in handling such conformal parameterization stably and has

good extensibility.

34

 Most of the techniques developed for computer graphics and computational geometry are

focused only on digital geometric models and rarely consider real-world engineering

applications. Some work, however, has dealt with such issues by applying 2D planar mesh

parameterization as a tool to model 3D objects from sheets of material. The relevant

applications range from garment modeling to metal forming or forging. Mitani and Suzuki

[93] propose a novel method of making paper craft toys with triangulated meshes by means

of a strip-based approximation. The approach approximates the model mesh with a set of

triangular strips so that the unfold pattern can be generated using only mesh operations and a

simple unfolding algorithm. The crafted model maintains smooth features of the original

model meshes by bending the paper without breaking edges. Julius et al. [94] introduce a

new quasi-developable mesh segmentation framework ―D-Charts‖ based on a new metric of

developability for surface meshes and a technique for automatic pattern design. They

practically apply this method in making fabric and paper copies of some popular computer

graphics models.

3.2 Parameterization Domains and Methods

Traditional surface mesh parameterization techniques for computer graphics applications

are focused primarily on mapping meshes with disk-like topology to a planar region. As such

planar parameterization methods are only applicable to surfaces with disk topology and

cannot be directly applied to closed surfaces. Since most practical 3D surface meshes are

35

closed surfaces or contain closed surface features, more and more research focuses on these

parameterization problems. Technically speaking, the challenge is to solve the topological

inequivalence between source mesh and target domain. Techniques such as cutting and chart

generation aim to change the source mesh to match the topology for the target domain.

Alternatively, spherical or simplicial parameterization aims to switch the planar open domain

to closed 3D surface domain, which is equivalent to the source mesh topologically. In this

section, parameterization techniques based on different target mapping domains are reviewed

and discussed.

3.2.1 Planar parameterization

Early planar parameterization aimed to address the issue of texture mapping for surfaces

with disk-like topology. With the development of computer graphics, recent applications

involve parameterization in other surface properties (e.g., normals) and geometry processing

operations (e.g., remeshing, and mesh fixing). Mostly, parameterization from 3D surface

mesh to 2D planar domain unavoidably produces distortions except some rare cases. Based

on a well-known theorem [95] from differential geometry, an isometric parameterization

which preserves distances does not exist for planar parameterization. Many parameterization

methods work with distortion minimization in either angular, stretch or area. Besides

distortion, there are other important considerations for the planar parameterization (also

applicable to spherical and simplicial cases): i) boundary conditions - either free or fixed

boundary; ii) validity and robustness - bijective mapping globally or locally; iii) efficiency -

36

practical numerical complexity, linear or non-linear system solution.

The uniform parameterization from Tutte‘s [96] graph embedding method is recognized

as one of the earliest methods in mesh parameterization. In this method, vertices on the

boundary of 3D meshes are mapped onto the boundary of a 2D planar domain. The boundary

for this mapping domain needs to be a convex region. Instead of defining a uniform weight

for each edge of the mesh in Tutte‘s method, Floater [97] calculates the weight for each edge

based on the information from their neighborhood. Such non-uniform weight has proven to

be shape-preserving and lead to visually smooth surface approximation. For the validity and

robustness for this planar parameterization method, usually if the weights are positive and

symmetric, and the boundary is convex, the parameterization obtained can be guaranteed to

be bijective.

Angle preserving parameterization is one of the most investigated methods in the field of

mesh parameterization. Angle preservation is required by some graphics applications such as

remeshing and some engineering applications like numerical simulations. In these

applications, angular distortions especially small angles will either affect the numerical

results (i.e., generate numerical singularity) or visual quality (e.g., produce unsmooth

appearance). Eck et al. [98] introduce harmonic, or cotangent weights, parameterization.

These weights are generated from a finite element method based representation for harmonic

energy and lead to minimizing angular distortion. To ensure bijectivity, Kharevych et al. [99]

introduce intrinsic Delaunay triangulation of the surface mesh as an input to harmonic

37

parameterization. This method constructs discrete conformal mappings based on circle

patterns. It supports different boundary conditions ranging from natural boundaries to

controlled boundary shape. The anisotropic mesh parameterization scheme [100] brings in an

anisotropic modification to Floater‘s shape preserving parameterization method [97]. The

implementation introduces an additional stretching term to the original discrete energy

minimization scheme, which allows flattening of parametric mapping along a given

discretionary field. Similar to the harmonic weights, weights can also be generated from

mean-value coordinates [101]. This is a generalization of barycentric coordinates to allow a

vertex to be represented by a convex combination of its neighbor vertices, which is based on

the mean value theorem for harmonic functions. Although the resulting weight matrix is non-

symmetric, it has been proven that mean-value parameterization is guaranteed to be bijective.

 These mapping techniques are weight-based and can be implemented by solving a linear

system. Theoretically, parameterization distortion depends on the difference between the

actual boundary shape of the source mesh and the boundary shape for the 2D domain. Lee et

al. [102] create a fixed virtual boundary to make the real domain boundary free and thus the

real boundary can better reflect the shape of the source 3D boundary. With such freely

moving boundary, the parameterization is able to introduce less distortion than methods with

fixed boundaries. Similarly, Zhang et al. [103] present an automatic planar parameterization

method for mesh segmentation and flattening. This feature-based parameterization method

performs patch creation with genus reduction and feature identification, and applies scaffold

38

triangles in the virtual boundary for minimizing distortion. LSCM (Least Squares Conformal

Maps) [48] and DCP (Discrete Conformal Parameterization) [49] are two explicit

formulations for linear parameterization with free boundary. They both aim to minimize

angular distortions, but are independently proposed with different formulations of harmonic

energy.

 Unlike most planar parameterization methods mathematically defined with vertex

positions, the ABF and ABF++ (Angle-Based Flattening) [104, 59] introduce a novel method

with a definition in term of angles. The algorithm runs iterations to search for angles that are

as close as possible to the angles in the original 3D source mesh. These angles are converted

to coordinates for all vertices after this minimization process. Zayer et al. [105, 106] extend

ABF with additional methods borrowed from traditional parameterization process in terms of

vertex coordinates. In their work, either convex boundary condition is forced to the

parameterization domain to guarantee global bijectivity, or an iterative free-boundary

conformal method is applied to minimize distortions.

 Distance preserving parameterization is another category for 3D mesh parameterization.

Since only some developable surfaces can be parameterized with distance preservation,

existing methods aim to minimize such distortions instead of eliminate them. Lévy and

Mallet [107] introduce a technique for non-distorted texture mapping on complex triangular

meshes by using an iterative optimization. Unlike other global optimization techniques, they

allow local distortions minimization in order of preference from user‘s input. While, it is

39

reported that minimization formulations for the distance are numerically complex and hard to

solve. Sander et al. [108] present a technique for constructing a progressive mesh to make all

mesh sequences share a common texture parameterization. They introduce two metrics of

parameterization stretch, which are widely used for linear distortion comparison between

different mapping methods. Iso-charts [109] merge two apparently incompatible techniques

together to create texture atlas for arbitrary meshes. These two techniques include stretch-

minimizing parameterization from the surface integral of the trace of the local metric tensor

and the multi-dimensional scaling (MDS) parameterization from an eigen-analysis of the

matrix of squared geodesic distance between two vertices. In a later work, Sander et al. [110]

extend the method with signal specialized parameterization, which allows the user to affect

the distribution of distortions along the mesh surface. Tewari et al. [111] report a more

accurate signal with significant savings in texture area than the signal specialized

parameterization method by Sander et al. [110]. They make use of a metric for the surface

parameterization specialized signal to generate a more efficient high-quality texture mapping.

 Area preserving parameterization, referred as authalic, deals with area preservation for

mesh triangles by typically introducing additional optimization terms or constraints. Desbrun

et al. [49] derive a similar method from their discrete conformal map (DCP) algorithm and

implement a linear formulation for local triangular area preservation. Their formulation

supports a tradeoff between angular and area distortions. Degener et al. [50] directly target

global area deformation for mesh parameterization. A non-linear formulation is developed

40

with an energy functional which measures angular and area distortions simultaneously with a

tradeoff parameter controlled by user. The method does not require a fixed boundary

condition and the non-linear energy implementation could assist in preventing triangle flips.

A hierarchical optimization framework based method is employed to minimize the energy

and guarantee the convergence of the algorithm.

 2D planar parameterization techniques are only applicable to 3D meshes with the same

topology. For closed meshes or high genus (greater than 0) meshes, theoretically it is

impossible to directly map them onto a 2D domain. Thus, techniques have been developed to

cut the meshes before parameterization. The cuttings will decrease the parameterization

distortions while increasing cross-cut discontinuities. The tradeoff between these distortions

and discontinuities must be considered and balanced during parameterization. The first

category of mesh cutting techniques is to cut the surface to an atlas of charts. Maillot et al.

[45] introduce an algorithm to automatically produce an atlas from any type of mesh for

texture mapping. The distortion is lowered by a general optimization function with an energy

minimization process. Multi-chart geometry images [112] refer to a representation for

arbitrary geometric surfaces to map the surface piecewise onto charts of arbitrary shape by

using an atlas construction. They create a watertight surface with the implementation of a

novel zippering algorithm to eliminate unacceptable surface cracks for shapes with long

extremities, high genus or disconnected components. Gu and Yau [113] present a global

parameterization algorithm that preserves conformality everywhere (except for a few points)

41

and introduces no boundary discontinuities by constructing a basis of the underlying linear

solution space. It is claimed that the mapping result is independent of connectivity and

insensitive to resolution. Tarini et al. [114] introduce a technique called ―PolyCube-Maps‖

which maps 3D meshes on a set of square charts. The texture is stored as a collection of small

image pieces on these square charts. Vertices from the source mesh are parameterized onto

the base domain formed by a collection of assembled cubes. Each segment of the 3D surface

mesh is projected onto a nearby cube face, and pixel information is read and assigned to

every associated vertex based on the texture for the face.

 Instead of segmenting the mesh into multiple separate patches, another widely used

technique of mesh cutting is to cut the mesh to a single chart. Compared to mesh

segmentation, this typically leads to shorter cutting paths and yet still reduces

parameterization distortion. Sheffer et al. [115] show that areas of high surface curvature

yield more distortion during parameterization and cutting the surface in these areas can

reduce distortion. They introduce a fast technique to lead a texture map seam through such

high curvature areas and restrict the seam to regions with low visibility. Their results indicate

less distortion and are less visually distracting. Sorkine et al. [116] provide the first method to

parameterize and partition the mesh simultaneously and automatically. With strictly bounded

distortion, their method generates low distortion and guarantees avoiding global and local

self-intersections by minimizing the total length of the cutting seams. Lazarus et al. [117]

present two optimal algorithms for the problem related to cutting the surface with high genus

42

and map it into a topological disk from canonical polygonal schema. A handle cutting method

by Erickson et al. [118] aims to converting a polyhedral manifold surface into a single

topological disk by minimizing either the total number of cutting edges or total cutting

length. This method is reported to be complicated to implement. Ni et al. [119] perform small

number of cuttings for genus reduction by solving a relaxed form of Laplace‘s equation to

find a fair Morse function [120] with a user-controlled number and configuration of critical

points.

3.2.2 Simplicial Parameterization

Planar parameterization is widely applied to map meshes with disk topology onto a 2D

planar domain. For surfaces with different topology (e.g., high genus or closed surface),

mesh segmentation or seam cutting will be performed before or during parameterization.

Most of these techniques are developed to minimize distortions of either angle or area. With

mesh segmentation and seam cutting, there will always be inevitable discontinuities

generated from parameterization. However, some graphic applications are very sensitive to,

or even cannot tolerate such discontinuities. In these cases, researchers try to employ non-

planar base domains to avoid unwanted segmentation or cutting. In this section,

parameterization base on the domain of a simplicial complex is reviewed.

It is reported that a simplicial complex has been the most popular non-planar domain for

parameterization [123]. Usually, the simplicial parameterization process consists of two

steps. The first one is to define a coarse simpilicial complex. One method applied for this is

43

to simplify the original source mesh. Once this domain complex is generated, each vertex

from the original mesh is parameterized to the base complex domain by computing its

barycentric coordinates. The challenge in parameterization with a simplicial complex domain

is the difficulty for global parameterization optimization. Due to the sharp edges and vertices

existing in the simplicial domain, most algorithms employ linear relaxation of local

neighborhood instead of global parameterization. Such parameterization processes usually

produce distortions.

Eck et al. [98] introduce a method to convert completely arbitrary meshes to

multiresolution form by overcoming the subdivision connectivity restriction. They claim that

the essential component of this algorithm is the construction of a parameterization over a

simplicial complex domain. They perform a local iterative relaxation on a pair of adjacent

faces and parameterize the surface neighborhood over the resulting quadrilateral. Hybrid

mesh [121] is another multi-resolution surface representation with both regular and irregular

refinements. The regular operations are enabled by an efficient tree based data structure and

processing algorithms but lack of flexibility in resolving shapes with high genus or features

at many scales. However the irregular operations can adjust mesh topology throughout the

hierarchy and estimate detailed features at multiple scales. Consistent mesh

parameterizations introduced by Praun et al. [122] provide an algorithm that establishes

consistent parameterizations for a group of models by sharing the same base domain and

respective features. They implement remeshing based on the same connectivity, which forms

44

a wide range of application algorithms including principal component analysis (PCA),

wavelet transforms, as well as detail and texture transfer between models.

Rather than iteratively optimizing local neighborhoods as in most simplicial

parameterization methods, Khodakovsky et al. [80] set up a global system in which the

adjacent domain faces are regarded as they are locally opened up into a plane. This global

system converges in a fast manner. Schreiner et al. [123] extend some of their previous work

to construct the simplicial complex domain automatically in parallel to the patch formation.

They make use of a set of correspondences between feature vertices from the input meshes as

the vertices to form the base domain. In a similar way, cross-parameterization [124] also

preserves the feature vertex correspondences from user input and the shape correlation

between the models. It seems this remeshing algorithm can generate an output mesh with

fewer elements but still approximate the input geometry accurately. Boier-Martin et al. [125]

develop a method for parameterizing irregular triangular meshes over polyhedral domains

with quadrilateral faces. They construct a coarse mesh with normal-based clustering of faces

and spatial-based clustering of the initial generated charts. The coarse polygonal mesh is

defined by region boundaries, which is cleaned up and quadrangulated to generate the base

domain over which the input mesh is parameterized.

3.2.3 Spherical Parameterization

As we discussed above, planar parameterization for high genus meshes usually introduce

mesh segmentation or seam cutting, which can generate discontinuities and distortions. For

45

the simplicial complex domain, it is hard to optimize the parameterization globally in most

cases. Topologically, closed manifold, genus-zero meshes, are equivalent to a sphere. So a

spherical base surface is the natural parameterization domain for these meshes. Compared to

the planar and simplicial domains, the advantage of spherical parameterization is that it

allows smooth, seamless and continuous parameterization of genus zero models. Thus, much

research attention has been devoted to the spherical domain in the past few years.

One approach [126] is to reduce the 3D spherical parameterization to the 2D planar case.

First, closed mesh is cut into two pieces with topological equivalence to a disk. Then, each of

these two pieces is parameterized on a 2D planar domain with the same fixed boundary.

Finally, each disk is mapped to a hemisphere and the two are combined into a full sphere.

Instead of cutting the whole mesh to get the boundary, another approach [91] picks one

triangle as a boundary and computes a planar parameterization of the remaining open mesh

over the triangle by applying a planar parameterization method, and finally calculate the

stereographic projection to obtain the spherical parameterization. However, some report that

this method may introduce severe distortion and does not guarantee a valid spherical

triangulation. Zayer et al. [127] cut the mesh along a date line defined by some poles from

user input and apply planar parameterization over a rectangular domain by solving a Laplace

equation in curvilinear coordinates. They reduce the mapping distortions by using a variant

of quasi-harmonic maps and performing tangential Laplacian smoothing.

Directly parameterizing a mesh over a spherical domain is more natural than applying a

46

2D plane as a temporary medium domain between the two. Some researchers have applied

the mesh simplification and multi-resolution methods to facilitate such spherical

parameterization processes. Similar to the work by Das and Goodrich [128], Shapiro and Tal

[129] apply mesh simplification for vertex removal until a tetrahedron remains. They map the

tetrahedron onto the closed domain and then add removed vertices back, one-by-one. The

interpolation of the corresponding vertices is based on the spatial relations among

neighboring vertices. Birkholz [130] provides another parameterization method with mesh

simplification. He utilizes the edge collapse method with a collapse order based on edge

length to obtain the tetrahedron. He also develops an optimization process for shape-

preserving with spherical angles from barycentric maps. However, it is reported from other

work that this method may not be able to guarantee a valid parameterization (i.e., prevent

triangle foldover).

Barycentric based convex boundary methods have been well developed in planar

parameterization and extended to spherical base domain with Gauss-Seidel iterations.

Kobbelt et al. [131] borrow the shrink wrapping process by adapting the deformable surface

technique from image processing and apply it in parameterization. Alexa [132, 133] performs

heuristic iterative procedures with uniform weights to achieve spherical parameterization for

genus-zero polyhedra. Based on the parameterization, he implements feature correspondence

and mesh merging algorithms for 3D mesh morphing. The mapping method is fairly easy to

understand and implement, but the algorithm is slow to converge and is not verified to

47

always yield valid mapping results. From spectral graph theory and its extension, Gotsman et

al. [134] generalize the method of barycentric coordinates for planar parameterization to

solve the spherical mapping problem. They prove its correctness theoretically and provide a

quadratic system of equations which is the spherical equivalent to the barycentric

formulation. They do not provide an effective solution to this quadratic system, which limits

its applications. To efficiently solve this large system of non-linear equations, Saba et al.

[135] show the failure of solving the equations with simple iterative methods and introduce a

successful numerical approach by using optimization methods associated with an algebraic

multi-grid technique. Their method is claimed to guarantee a bijective spherical

parameterization of closed manifold genus-zero meshes in a fast manner (parameterization

for hundreds of thousands of vertices in minutes).

Researchers have also contributed other approaches to spherical parameterization. Praun

and Hoppe [136] develop a scheme for sampling the spherical domain using uniformly

subdivided polyhedral domains. With this scheme, a practical parameterization is

implemented with the minimization of a stretch-based measure to reduce scale-distortion.

Sheffer et al. [137] extend the idea of ABF (Angle-based Flattening) from 2D planar

parameterization to the spherical case. Instead of dealing with positions for vertices, they

formulate and solve an optimization procedure in terms of angles on the sphere. However, the

ABF method applied to spherical parameterization appears to be less stable than the planar

case and is impractical for large meshes.

48

CHAPTER 4

FAST SPHERICAL PARAMETERIZATION

In this work, parameterization is focused on closed genus-zero meshes. The method is

based upon barycentric coordinates with convex boundary. Unlike most existing similar

approaches which deal with each vertex in the mesh equally, the method developed in this

research focuses primarily on resolving ―spikes,‖ or overlapping areas, that occur in the

spherical domain during parameterization, which helps speed the parameterization process.

The algorithm starts by normalizing the source mesh onto a unit sphere and followed by

some initial relaxation via Gauss-Seidel iterations, as suggested by Alexa [132, 133]. Alexa‘s

approach suggests continuing these relaxation steps until all the overlapping regions

disappear. However, this can be very computationally demanding, and it is reported that such

a process is not guaranteed to converge. Here a different approach is introduced. After the

initial relaxation steps, most overlapping vertices are resolved. Then a novel solution for the

remaining overlapping regions (as shown in Figure 6) is applied which are typically very

hard to resolve. Finally, a minimization process is also implemented to reduce distortion. Due

to its emphasis on solving only challenging overlapping regions, this parameterization

process is much faster than existing spherical mapping methods.

4.1 Approach Overview

As reported in [135], there are two main challenges for most of existing spherical

49

parameterization methods. The first is the difficulty of making the procedures stable and

convergent. Sometimes, these processes cause endless iterations or residual overlapping

areas. No triangle overlapping is the most crucial requirement for a valid parameterization

since a bijective one-to-one mapping is a must for many applications based on

parameterization. The second challenge is the time-wise efficiency. Due to the computational

complexity of some algorithms, the processes involve intense calculations so that the time

spent could be up to hours or even more. These inefficient procedures will hinder many

applications that require speed. The algorithm developed in this research is designed to be

robust, yet faster than existing spherical parameterization methods. The flowchart of the fast

spherical parameterization framework is shown in Figure 5.

Figure 5: Flowchart of the fast spherical parameterization process

Yes

No

Spherical Normalization

Initial Relaxation

Overlapping Identification

Overlapping Displacement

Overlapping Relaxation

Distortion Minimization

Overlapping?

50

This algorithm targets the challenge of solving overlapping for most spherical

parameterizations. Like some of the existing methods, barycentric maps are employed with

uniform weight for parametric embedding but the method can be easily extended to other

weight formats if necessary. The method consists of several procedures as shown in the

diagram. These procedures include: i) Normalize and project each vertex from the source

mesh onto a unit sphere; ii) Apply Gauss-Seidel iterations for the initial relaxation to solve

most overlapping; iii) Identify and find remaining overlapping vertices; iv) Stretch each

overlapping area and form a convex boundary for it; v) Fix these convex boundaries and map

the overlapping vertices over related areas until no more overlapping exists; vi) Relax the

whole spherical mesh with displacement constraint to minimize distortions.

4.2 Initial Mesh Relaxation

After a triangular mesh is loaded, it is normalized and projected onto a unit sphere

directly, which keeps the distance between each vertex and the coordinate origin (0,0,0) to be

1. At this point, such spherical mesh contains massive irregular overlapping. To make it

easier for further processing, we perform some initial relaxation from Gauss-Seidel

procedure based on barycentric embedding.

51

 Where, represents the indices for the neighboring vertices of the i-th vertex and

is the number of elements in .

Here a uniform mapping method is used with identical weight for each neighboring

vertex. Alexa‘s [132, 133] parameterization employs such a method throughout the entire

mapping process until all the overlapping regions are eliminated. Tests conducted with

Alexa‘s approach indicate that in some cases, most (over 90%) of the vertices are displaced

without overlapping each other within 100-200 iterations. However, to solve the remaining

(~10%) overlapping vertices typically costs over 10,000 iterations. Considering the number

of vertices involved, these later iteration steps are very expensive and computationally

inefficient. Further, in some cases these iterations can be endless and the overlapping cannot

be removed completely. So, a small number of relaxation iterations can be applied to solve

most of the overlapping regions and the following solution is developed to target the

remaining overlapping areas.

4.3 Overlapping Solution

Instead of treating each vertex equally the method developed in this research focuses on

parameterization of overlapping areas that remain after initial Gauss-Seidel relaxation. As

shown in Figure 6, after the initial relaxation process, most vertices of the mesh are well

located except for some overlapping spikes in areas with high populations of vertices. The

52

relaxation is akin to the process of dragging and expanding these areas vertex-by-vertex.

Figure 6: Remaining overlapping spike after initial relaxation

With the distribution of highly dense vertices in these areas, however, the relaxation can

be extremely slow and unreliable. The basic idea of the method developed here is to stretch

the boundary of these overlapping areas so that more space will be generated to accelerate the

mapping process. The overlapping solution begins with finding overlapping area, followed

by stretching such areas. Finally vertices within these areas will be relaxed with fixed

boundaries.

4.3.1 Overlapping Identification

This step determines the overlapping regions and identifies the vertices involved. A

vertex is identified as overlapping if the line segment between it and the sphere center

(referred to as the cardinal line segment) intersects any other triangle on the sphere. The steps

to check overlapping are: i) intersect the cardinal line with the plane defined by the three

53

vertices from the subject triangle; ii) if so, check whether the intersection point lies within the

cardinal line segment; iii) and if so, check if the intersection point lies within the subject

triangle.

Nominally, every vertex must be checked against every triangle in the mesh, which can

quite time-consuming. For example, a test using this naive approach on a typical spherical

triangular mesh with about 2,500 vertices takes about 9 seconds to find all the overlapping

vertices. To address this inefficiency a neighborhood searching algorithm is employed to

accelerate this task. First, the spherical surface normal of all the triangles is computed, based

on their connectivity, to identify the ―folded‖ triangles, i.e., those spherical normal direction

toward the inside of the sphere. Then, based on the vertices of the ―folded‖ triangles, their

neighboring vertices are determined and checked for overlap with any of the ―folded‖

triangles. During this process, if none of the neighbors for a selected vertex overlap with any

of the ―folded‖ triangles, searching around that vertex stops and the other ones are similarly

processed until each folded triangle has no overlapping neighbors. This identifies a local

boundary around the folded triangle. This searching algorithm is very accurate and efficient.

With the same test mesh mentioned above, with about 2,500 vertices, this searching

algorithm completes the operation in a time scale of milliseconds.

4.3.2 Overlapping Displacement

Overlapping vertices are identified and marked from the previous step. This is followed

by displacing overlapping vertices. Before any manipulation is applied, the overlapping

54

vertices are sorted into a nested structure to facilitate efficient processing. There will usually

be multiple overlapping areas as shown, for example, in Figure 6. The sorting will first

separate the overlapping vertices into groups based on their connectivity with each other,

which will put all connected overlapping vertices into a group. After that, each group of

vertices will then be sorted from the shortest distance to the boundary (non-overlapping)

vertices. This process forms several nested groups of overlapping vertices for each spherical

triangulation.

The idea of mapping only the overlapping areas is essentially an attempt to simplify the

3D parameterization problem into several 2D ones. To assist local parameterization for each

overlapping area, a stretching process is employed to generate locally convex spaces, as

shown in Figure 7(a). This is a modified Gauss-Seidel procedure which sets the weight for

each overlapping vertex to zero when it is involved as a neighbor vertex in calculation. And

the identified vertices in the overlapping area will keeep their current positions during this

step. In this process, the non-overlapping outer vertices essentially pull the boundary of the

overlapping area away from the overlapping center. A convex or close to a convex shaped

boundary will be created after this process. It is followed by relocating overlapping boundary

vertices, which will ensure the boundary to be convex or close to convex. As shown in Figure

7(b), for each overlapping region, the overlapping vertices are all placed together on the

centroid of the convex boundary. Such convex boundaries will ensure the local

parameterization (simplified into a 2D problem) to be converged.

55

Figure 7: Solution for overlapping: (a) stretched overlapping area; (b) overlapping vertices

placed on centroid; (c) overlapping and boundary vertices relaxed

4.3.3 Overlapping Relaxation

For 2D planar parameterization, a regular convex fixed boundary would theoretically

guarantee the existence of a bijective mapping, which is the motivation of overlapping

displacement from previous step. In this relaxation step, all the non-overlapping vertices and

56

all the vertices on the overlapping boundaries are fixed. Vertices in the overlapping areas are

released with Gauss-Seidel iterations until all the overlapping areas disappear, as shown in

Figure 7(c). The positions for boundary vertices are also recalculated and updated after all the

overlapping is eliminated. These operations are repeated until all the overlapping areas are

resolved.

4.4 Parameterization Distortion Minimization

This method focuses on solving overlapping with some imposed stretching, which could

lead to dislocation for vertices that are moved away from their parametric locations. To

minimize distortions created from these dislocations, vertices on the mesh need to be

relocated as close to their parametric positions as possible. Testing indicates that directly

relaxing the entire mesh at this moment will generally re-introduce overlapping regions.

To minimize these distortions, a minimization method is introduced that guarantees

bijectivity and avoids new overlapping region generation during the final global relaxation

process. In this method, all vertices are classified into two categories: regular and sensitive.

The sensitive ones refer to the overlapping vertices recognized from the previous overlapping

identification step. As shown in Figure 8, the current position for vertex P is V and the new

position is calculated from their neighboring vertices (, , and) positions. Clearly

the transition from V to takes vertex P outside the region of , which causes

overlapping. Such movement makes the mapping non-bijective and must be prohibited.

57

However, if the movement of vertex P is skipped at this step, the non-overlapping property

for this local area may be lost, which can slow down or even prevent local distortion

minimization. A solution is to keep the same movement with the same path, but use a smaller

scalar magnitude. As shown in Figure 8, the scale is defined by , where is the updated

new position for vertex P which can be expressed as:

Here, is the overlapping critical position for vertex P which can be calculated from

the intersection between and neighbor edge (, , or).

Figure 8: Vertex relocation without creating new overlapping

58

CHAPTER 5

FEATURES ALIGNMENT WITH EXTRACTED SKELETON

 As mentioned in Chapter 3, mesh morphing involves much more than simply

interpolating among source geometries. The intermediate mesh blends should preserve

featuring information from source geometries. For example, a model generated from

morphing between a horse model and a pig model should probably have four legs rather than

eight resulting from morphing without features alignment. Moreover, the smooth evolution of

featuring components from one model to another can facilitate users‘ decision-making. For

engineering conceptual design, such feature evolution enables designers to generate new

design concepts from a pool of existing designs.

 Many existing mesh morphing methods use a single point (usually geometric centroid or

an approximation of it) to represent a geometric feature component. By aligning

corresponding feature points from different models, some reasonable outputs may be

obtained. However, features are generally comprised of more than one vertex (more typically

they are collections of triangle) so mesh morphing with point-based feature alignment can

lead to parts that are not fully aligned. The solution developed in this research aims to map

not only representative feature points (e.g., toe or finger tip points of an animal human

model) but also correlates feature areas (e.g., an entire front-left leg from an animal model)

completely.

59

5.1 Approach Overview

 Rather than aligning simple feature vertices, this feature alignment method focuses on

aligning the entire feature areas from each model. This feature alignment process follows

after spherical parameterization or each subject model and is performed before spherical

subdivision based remeshing. The process does not directly modify original input geometries

but rather establishes correspondences by adjusting their spherical maps. The algorithm is

summarized in Figure 9.

Figure 9: Flowchart of the feature alignment process

 First extract the skeletons for all the source geometries is generated based on the

algorithm developed by Au et al [155]. Each vertex from the skeleton has a group of vertices

on the original mesh associated with it. Therefore, the skeleton wires can be used to assist

users in features picking. Based on the picked vertices in skeleton, feature areas and feature

Mesh contraction to generate

zero volume for source mesh

Mesh skeleton extraction

Features picking on skeleton

Alignment for both feature

points and feature areas

Remove left overlapping

60

points for each model are be calculated and identified. Then, as described in detail below, the

feature points are used to develop a set of constraints that describe the desired feature

relationships and spatial transforms are generated with least-squares singular value

decomposition. After solving this system, the resulting spatial transforms are applied to the

models to obtain roughly similar orientations. Each feature point is then relocated to the

centroid of all feature points that belong to the same feature group. The surrounding feature

areas for these feature points are moved correspondingly. Following this, overlapping

generated from the process is relaxed and the size of each feature area is adjusted to match

with corresponding feature areas from other models, as much as possible. After all these

steps, a spherical map for each model will be aligned with other ones in terms of feature

points and feature area. In the following sections, this procedure is presented and discussed.

5.2 Mesh Skeleton Extraction

 Before aligning geometric features, a method must be developed to define them from the

input meshes. The most straightforward way would be to directly pick feature

vertices/triangles with a graphical user interface. However, there are several shortcomings of

this method. First, in some scenarios, it is difficult to recognize or pick features for some

geometric models. Given their complexity, the picking process could take a very long time,

and it would require a fairly complex user interface with substantial view manipulation and

selection interaction.

61

 A skeleton can be is a useful abstraction for interacting with complex shapes. For

example, from human skeleton, one can easily identify the different regions for human body

such as arms, legs, etc. In the field of computational geometry, algorithms to compute a

wireframe skeleton from a triangular mesh have been proposed to generate a simplified

natural representation of the geometry and topology of 3D object. In this work, a skeleton

extraction algorithm presented by [155] is employed for skeleton generation. By interacting

with representative skeleton curves, users can clearly identify and select features. The

selected feature areas and points are then used to compute global spatial transforms that are

applied to each model to affect the desired feature alignment. In addition to simplified

interaction, another reason for choosing the skeleton for feature alignment is that this method

has potential to be extended for automatic feature alignment for 3D objects with similar

feature distributions. Feature recognition algorithms could be developed to identify all

features based on the abstracted skeletons and align them automatically. This could be further

explored in the future work.

5.2.1 Geometry Contraction by Laplacian Smoothing

 The method [155] starts with a mesh contraction process which contracts the mesh

geometry into a zero-volume skeleton shape by applying implicit Laplacian smoothing with

global positional constraints. The mesh connectivity among vertices is not be changed and

the key features of original mesh are preserved. Usually, a big challenge of mesh contraction

is to control the contraction process such that it leads to a collapsed shape that can

62

approximate the input model instead of some random shape or perhaps shrinking into point.

Au‘s method presents an iterative contraction process to solve a sequence of constrained

Laplace equations with weaker positional constraints, which removes details and noise from

mesh surface by moving the vertices along their curvature normal directions. An implicit

updating scheme controlled by anchor points provides positional constraints to avoid

converging into a single point that can result from smoothing with an unconstrained normal

flow.

 For Laplacian smoothing, the vertex positions are contracted along their normal

directions. The whole smoothing process is governed by the discrete Laplace equation. The

curvature-flow Laplace operator L is defined as,

 Where, V represents the group of vertex positions and E is the edges for all the connected

vertices. and are the opposite angles corresponding to edge . By solving this

discrete Laplace equation, the normal components would be removed and the mesh would be

contracted under the "force" provided by contraction constraints.

 To eliminate the singularity of the Laplace operator, extra constraints are put into the

system. These constraints, called attraction constraints, are also defined to preserve the

63

original shape of the mesh with soft constraints to keep their current positions. Therefore,

contraction constraints and attraction constraints are included in the system as,

 Where, is the diagonal contraction weighting matrix and is the diagonal

attraction weighting matrix. This system is over determined and needs to solved with least

squares by minimizing the quadratic energy as,

 For each iteration step, the contraction weights and attraction weights are updated based

on the current state. The vertices with smaller contracted one-ring area (area formed by all

directly neighboring triangles for a vertex) are controlled to be attracted more strongly to

their current position and contract less in the next iteration. Each step, the new vertex

positions can be obtained from last step (t is step),

 The contraction weights and attraction weights for each iteration step are defined as,

 with

 with

Figure 10 shows some results from geometry contraction based on the algorithm

described above.

64

Figure 10: Results of 3D mesh contraction from left to right

5.2.2 Skeleton Extraction from Edge-collapses

 After geometry contraction, the mesh shrinks to almost zero volume but still keeps the

same connectivity. To generate a skeleton wire, a skeleton extraction is performed with

connectivity surgery from edge-collapses [155]. The shape of the contracted mesh needs to

be preserved with sufficient skeleton nodes in the extracted skeleton. The orders or edge

collapse are decided by a defined cost function consisting of a shape cost and a sampling

cost. For each iteration step, the edge with minimum cost will be collapsed. After collapse,

all faces surrounding the edge will also be removed. The topology of the original mesh will

be preserved and connected components will not be disconnected.

 According to Au et al [155], the shape cost represents the potential distortion caused by

65

an edge collapse which is calculated with an error metric at each vertex. Since the volume of

the contracted mesh is near zero, the triangles also have near zero area. Instead of computing

the sum of squared distance between a vertex and its neighboring triangles, the error metric is

measured by the sum of squared distances from a vertex to all related adjacent edges. For

each potential edge collapse from vertex i to j, the shape cost can be defined as,

 Where, the initial error metric of vertex i is defined as the sum of all the squared

distances to its neighboring edges,

 The Matrix K is defined as,

 Where, a is the normalized edge vector and b is the cross product defined as,

 This shape cost controls the order of the edge collapse sequence but could leads to over-

collapse which will lose some nodes on the skeleton and make the final skeleton too coarse.

The sampling cost is defined to penalize long edge generation and prevent such a problem. It

calculates the total travel distance of related edges during collapse,

66

 The total cost for edge collapse from vertex i to j is defined with weight parameter as,

 Figure 11 presents some results of skeleton extraction from contracted mesh.

Figure 11: Skeleton extractions (lower) from contracted mesh (upper)

5.3 Features Alignment

For each input mesh model, a skeleton is generated as an abstract representation. After

this, it is used to facilitate the user‘s identification and selection features from different

models. As the user selects a feature with a graphical user interface, both feature points and

corresponding areas are highlighted. The feature points on the spherical map for each model

are grouped and an initial alignment for them is performed based on a least-square singular

value decomposition (SVD) that minimizes the sum of the distances between all

corresponding vertices. Then the feature points and feature areas are scaled and relocated to

match each other. Finally, all overlapping generated from this process is eliminated so that

67

the spherical maps for each mesh remain bijective with respect to the original input

geometries.

5.3.1 Features Picking with Skeleton

During the skeleton extraction process, most skeleton edges are collapsed and the related

pairs of vertices are merged together. Based on the order of the collapses ruled by the shape

and sampling costs, each node on the resulting skeleton actually includes a group of adjacent

vertices from the original mesh. Usually, these groups of vertices are geometrically close to

the merged node. Thus, by picking the nodes on the skeleton, users can actually select the

corresponding vertices on the original model.

In some cases, mesh vertices may not correspond to the closest node on the skeleton.

This is solved by sorting all the mesh vertices again to regenerate the proper spatial

correspondences. To accelerate the sorting process, a kd-tree data structure is applied and

works well. The first picked skeleton node is noted as the starting node and its corresponding

mesh vertices are employed to calculate the feature point from their area centroid. The

second skeleton node picked is noted as ending node and its corresponding mesh vertices

define the boundary of the feature areas. After the ending node is picked, a node traversal is

performed from the starting node to the ending node. All the nodes passed are noted as

feature nodes and the feature areas are derived from the corresponding mesh vertices. This

process is illustrated in Figure 12.

68

Figure 12: Feature selection by picking nodes (in blue) on the skeleton: before first feature

node selection (left); first feature node selected (middle); second feature node selected (right)

5.3.2 Initial Alignment with Singular Value Decomposition

 Each feature is described with a feature point and a feature area. Since the feature point

is computed as the centroid of the corresponding mesh points, is located within the feature

area. Nominally, the original input models will have different orientations in terms of

features, so one model is arbitrarily chosen to represent the base orientation, and spatial

transformations for each of the other mesh models are computed to rotate them so that the

defined features in each are in rough alignment. The feature points are utilized for this

process, and a least-squares singular value decomposition is formulated and solved to find

the desired rotational matrices for each model.

 The first model loaded is considered as the reference and is not be rotated during this

initial alignment. The other models are transformed such that their feature points will match

the ones in the reference model. If there are k input models and each model has n features

defined, the transformation can be expressed as the following optimization problem,

69

 Where, represents the matrix containing coordinates for all feature points on model i

and
 represents the coordinates after transformation,

 The problem is to find the rotational matrix for each of other models such that the sum of

distance between corresponding feature points is minimized. This can be solved by applying

singular value decomposition (SVD). For each set of , we can define matrix as,

 Where, is a diagonal matrix with nonnegative real numbers on the diagonal, The

diagonal entries of are known as the singular values of . The columns of and

the columns of are called the left singular vectors and right singular vectors of ,

respectively. By applying SVD, the corresponding matrices , and
 can be obtained,

 Then, the rotational matrix can be expressed as,

 And the new position for all the feature points in model i are calculated from,

70

5.3.3 Features Relocation and Alignment

 The initial feature alignment process reduces the distances between features without

modifying the local vertex positions on the spherical maps. This eliminates most of the

positional differences. As discussed in previous section, since the constraint matrix is over-

determined, such a global rotation will not accommodate all the relative differences between

corresponding features and align corresponding feature points without changing the relative

locations of feature points within the same spherical map.

 To achieve full alignment, a local transformation must be applied to the feature points

and areas. The steps to compute these local transformations are: i) calculate the centroid of

corresponding feature points on each model‘s spherical map; ii) relocate all the feature points

onto the centroid calculated from last step; iii) compute the rotation matrix (based on origin)

for each feature point's relocation; iv) apply this rotation transformation to all vertices in the

feature area related to the feature point; v) eliminate all the overlapping generated from these

local transformations with a similiar relaxation method as in Chapter 4; vi) and finally, resize

each of the corresponding feature areas to identical size and make sure no overlapping

created.

An example of feature alignment is shown in Figure 13. The selected features (four legs)

are marked with red circles as shown in the figure.

71

Figure 13: Features selection and alignment with spherical maps

72

CHAPTER 6

REMESHING WITH MESH SUBDIVISION

Given multiple feature-aligned meshes with corresponding bijective spherical

parameterizations, a 3D remeshing method is developed to facilitate robust morphing

between the input meshes. This method is derived from the concept of spherical mesh

subdivision and leverages the spherical parameterization techniques described earlier. The

local recursive subdivision can be set to correspond to the level of detail (LOD) of the source

spherical meshes. Alternatively, the LOD can be controlled to allow output with variable

resolutions. This multi-resolution subdivision scheme employs a triangular validation process

that assures a valid triangulation for the resulting morphed mesh. The final mesh merging and

reconstruction process produces the morphed mesh model with the desired LOD specified

from user.

6.1 Approach Overview

After parameterizing surface meshes onto the spherical domain, and conducting feature

alignment as described above, a spherical remeshing method is introduced to facilitate

morphing. This method is proposed in order to generate a common connectivity for different

mesh models in our mesh morphing framework. The concept of spherical mesh subdivision is

introduced and extended to develop the remeshing algorithm. Spherical mesh subdivision

refers to adding detail into the spherical triangular mesh by breaking related triangles into

73

smaller ones. Unlike most existing work, this algorithm will subdivide only those areas that

contain detailed geometric information rather than subdividing every triangle evenly. This

process makes use of few vertices while still covering every geometry detail. Usually, to

remesh one single model, the number of vertices for remeshing is approximately the same

number as the input mesh. And for multiple input models, the final merged representation has

fewer vertices than the sum of all input meshes after aligning the feature areas which

typically involve large vertex crowds. For most existing morphing methods, the number of

vertices employed in the merged representation is much more than the total vertices from

source meshes. The flowchart for our remeshing with spherical subdivision is shown in

Figure 14.

Figure 14: Flowchart of remeshing with spherical subdivision

Projection from Base Spherical

Mesh to Source Spherical Mesh

Recursive Spherical Subdivision

Subdivided Mesh Validation

Projection from Source Spherical

Mesh to Subdivided Base Mesh

Mesh Reconstruction

74

6.2 Base Spherical Triangulation

The subdivision process is to break existing triangles in the base spherical mesh into

smaller ones in the region with details. Such base mesh is employed to generate merged

remeshing model with common connectivity for each input model before morphing. As

shown in Figure 15, a triangle is subdivided by removing the existing triangular connectivity

() and adding new connectivities (, , and)

resulting in the generation of four new triangles. Here , and represent the

midpoint for original edges , and respectively.

Figure 15: Subdivision by breaking one triangle into four

 Since bijective spherical parameterization is applied for the closed genus-zero input

meshes, the base mesh is equivalent to a sphere topologically. Thus, platonic solids with

regular polygons for each face and closed surfaces are ideal choices as initial base meshes.

As shown in Figure 16, there are three platonic solids with triangular faces: tetrahedron,

octahedron and icosahedron. All three are made available in the remeshing algorithm

presented here, and further investigation and comparison regarding the remeshing qualities

75

from these different types of initial base meshes will be explored in the future.

Figure 16: Triangular platonic solids: (a) tetrahedron; (b) octahedron; (c) icosahedron

6.3 Recursive Spherical Subdivision

To remesh from a source mesh, the algorithm needs to match the level of detail (LOD) of

the source mesh. This requires that the detailed areas (those that contain dense collections of

vertices) be well represented in the remeshed representation. A simple approach would be to

use a single uniform subdivision (sufficient to capture detailed areas) over the entire mesh,

but this would generate a large number of unnecessary vertices. So a local spherical

subdivision method is developed and implemented which subdivides the triangles in the base

mesh to match the corresponding local LOD in the source mesh. In this way, no excess vertex

distribution will be expended in the areas that contain little geometric detail.

This method employs a recursive subdivision process which can be divided into several

steps. First, all the vertices of the source spherical mesh are projected onto the base spherical

mesh. Then, classify and label each vertex of the source mesh with respect which triangle on

the base mesh contains it. Finally, check the number source member vertices for each triangle

(a) (b) (c)(a) (b) (c)

76

on the base mesh and perform subdivision. If a base mesh triangle contains more than a

preset number (e.g., 1) of source mesh vertices, is is subdivided into four smaller ones as in

the previous section. Each of the resulting four triangles is similarly checked and subdivided

recursively until every triangle in the base mesh has no more than the preset number of

source mesh vertices. Figure 17 shows the results of this recursive subdivision algorithm

from the spherical representation of an input model.

Figure 17: Spherical subdivision: (a) original source mesh; (b) parameterized spherical

mesh; (c) remeshed subdivision (LOD = 1)

6.4 Validation for Subdivided Triangulation

As the figure shows, the resulting subdivided base mesh reflects the geometric

characteristics of the source mesh. However, the resulting spherical base mesh is not a valid

spherical triangulation since not all the faces are 3-connected, as shown in Figure 17(c). To

address this, a triangulation validation process is introduced which restores 3-connected

connectivity without inserting or removing additional vertices.

Invalid triangles occur in the triangles whose neighboring triangles have been

77

subdivided. Middle-vertices for associated edges generated from neighboring subdivision

cause the problem. Fortunately, there are only three conditions for refined tessellation of a

triangle depending on how many of its adjacent neighboring triangles have been subdivided.

Figure 18 shows the three cases and the subsequent tessellation required to restore 3-

connectivity. Note that the tessellation does not introduce additional vertices, only triangles.

Figure 18: Three cases of correction for a triangle with subdivided neighbor(s)

Figure 19 presents a result of a remeshed spherical triangulation from an example mesh.

The representation matches the details from subdivision and maintains a valid spherical

triangulation.

(a) (b) (c)(a) (b) (c)

78

Figure 19: Triangulation validation for a spherical subdivision

6.5 3D Mesh Reconstruction

Give the reconstructed mesh in its parametric spherical representation an equivalent 3D

spatial representation can be generated from it by essentially reversing the subdivision

process. First, the reconstructed spherical parameterization of the mesh generated via

subdivision is projected onto the spherical parametric mesh of the original model.

Intersections between the vertices from the reconstructed mesh and triangles from the

original spherical mesh (number of hits for each triangle could be more than 1) are

calculated. Then the barycentric coordinates of the intersection point are calculated in the

associated triangle from the original spherical mesh. These coordinates represent blending

weights for three vertices in the original triangle that will generate the intersection point (i.e.,

a vertex from the reconstructed mesh).

79

With the barycentric coordinates for each vertex of the reconstructed mesh embedded into

original spherical mesh, a remeshed 3D model can be generated from the original source

model by blending corresponding vertices. To apply this remeshing method into our mesh

morphing framework, a simple platonic base model is subdivided by projection with the first

input model and then the subdivided model will be used as base model for projection with the

next input model, and so on. In this way, a merge geometry representative model is generated

containing all geometry information from all input models. Some results of reconstructed

meshes will be presented in Chapter 8.

80

CHAPTER 7

3D MESH METAMORPHOSIS

7.1 Previous Work in Mesh Metamorphosis

Morphing, or metamorphosis, aims to produce a smooth and continuous sequence that

transforms from a source object into a target object, or perhaps even performs transformation

among more than two objects. The idea of morphing was originally initiated and developed

with 2D image applications. Wolberg [138] describes techniques where pair of 2D images is

used to map features from one image to the other. This is done by having an artist choose a

point in the first image, and decide where on second image would be the most interesting

position for the mapping. After all these pairs are determined, the method processes the

neighbors surrounding the points of interest, and then generates a sequence of metamorphosis

over time for the selected images.

With the increase in 3D applications in computer graphics, these 2D image techniques

have been extended into 3D geometry models. Usually, methods of 3D morphing can be

categorized into two major approaches. The first one is volume-based method [139, 140, 141,

142] which blends volumes where the source and target shapes are embedded. This method is

able to support topological changes throughout the morphing process. However, it is

computationally expensive, and in many cases, geometry boundaries generated from volume-

based method are not smooth. The second general approach is surface-based methods which

blend mesh representations for input objects. As with most recent 3D morphing techniques,

81

the method developed in this research falls into the surface-based category. More related

work is reviewed and discussed in the following section.

Most 3D surface-based mesh metamorphosis techniques involve two steps. The first is to

find the mapping from the source to the target meshes and establish the feature

correspondence between them. This step usually employs mesh parameterization techniques

and related work that has been reviewed in previous chapters. The parameterization process

requires that the mapping for the meshes must be bijective, i.e. generating a one-to-one

correspondence between the source and the parameterized meshes. The second step is to

choose a continuous path for each vertex and produce a smooth sequence of intermediate

geometries by interpolation of corresponding vertices. A linear procedure is performed for

this interpolation in most cases.

Some researchers consider generating a common connectivity for pairs of shapes of

genus-zero by applying topological merging methods. Given two input meshes with convex

and star shapes, Kent [143] apply an algorithm to calculate a merging topology that can

represent the geometric information for both the source and the target meshes. Then, the

morphing process linearly interpolates the vertex positions over time, which transforms the

source mesh into the target. Alexa [132] develop a procedure to embed genus-zero meshes

onto a unit spherical domain. This is followed by aligning corresponding features for the

source and target meshes with a simple iterative scheme inspired by radial basis functions.

The merging process generates a common connectivity for both the source and target meshes

82

by solving a spherical map overlay problem. After reconstructing the source and target

meshes from the spherical representation with the common connectivity, the final morphing

step is accomplished with linear interpolation between corresponding vertices in the

reconstructed meshes. Instead of mapping the meshes onto a spherical parametric domain,

Shapiro and Tal [129] map them into a convex polyhedra by employing a parameterization

process consists of two phases: simplification and reattachment. They also apply a mesh

merging process to create isomorphic representations for the input mesh pairs.

Kanai et al. [144] present a method which employs harmonic mapping to embed the

source and target meshes onto a 2D unit circle and establishes vertex correspondences by the

intermediate objects generated from overlapping the two embeddings. The interpolation is

controlled through an assigned boundary loop and a vertex on that boundary. In extended

work by the same authors [145], an efficient morphing method for two arbitrary meshes with

the same topology is introduced with feature correspondence controlled by user. With the

assistance of a reference mesh specified by the user, the source and target meshes can be

partitioned to establish a common connectivity for vertex-to-vertex correspondences. Lee et

al. [146] also focus on the establishment of a correspondence map between the source and

target meshes. They employ a multi-resolution parameterization algorithm to generate

simplified coarse models, apply the MAPS algorithm to map both meshes over this simple

base domain, and then use an additional harmonic map for vertex correspondences. To attain

a better control of feature correspondences, Lee and Huang [147] develop a two level of

83

correspondence technique where the higher level partitions the models into corresponding

patches with specified scattered features, and the lower level allows better correspondence

control through extra input for features on each patch. They also introduce a technique named

Structures of Minimal Contour Coverage (SMCC) to merge corresponding embeddings from

the source and target meshes.

Bao and Peng [148] propose a general method for setting up vertex correspondence for

polyhedral objects with the same genus. They develop an interactive partitioning algorithm to

generate polygonal patches and their correspondence. A cluster scheme is followed to create

feature polyhedrons for the input polyhedrons. These feature polyhedrons are utilized as the

bridges in the final morphing transformations. Gregory et al. [149] decompose the boundary

of the input meshes based on feature pairs specified by the user. The correspondence between

sub-meshes of two objects is then established using a greedy area-preserving mapping. The

corresponding patch pairs are merged together to create a common topological polyhedron,

which is used to define the final morphing trajectories. Yu and Chuang [150] perform a

geometric-stretch optimization to generate the consistent parameterizations for multiple input

models. Then a foldover-free algorithm is applied to aid in features alignment. Both spatial

and wavelet domains from a simple common dissection and remeshing are integrated in the

morphing applications. They also claim that their parameterization framework can be applied

with other geometric and graphical applications. Another consistent parameterization method

from Praun et al. [122] provides a tracing method to dissect a set of meshes automatically.

84

This method employs the same base domain and respects features of the input shapes. They

remesh these models to set up a common connectivity for all, which also form a basis for a

large class of other applications. Instead of manually dissecting meshes or setting up feature

pairs, Shlafman et al. [151] propose an automatic decomposition with a clustering method.

They also introduce a projection framework to deal with polyhedral surfaces with cylinder-

like topology. However, their approach cannot guarantee suitable and meaningful

corresponding patch creation.

Most morphing related work, as discussed above, has focused on generating vertex

correspondences for the input meshes. This requires an equivalent topology for both the

source and target meshes. To address the problem of morphing between objects with different

topologies, Dinh et al. [157] define the morphing process between two implicit surfaces as a

4D implicit function. They calculate a mapping between two surfaces by solving two PDEs

over a tetrahedralized hypersurface. The first PDE depicts a vector field that governs how

vertices on one mesh flow to the other. And the second PDE indicates the position labels

along this vector field so that the second surface is associated with a position on the first

surface. This method can produce correspondence between surfaces with different topologies.

Bennett et al. [152] present a robust approach by developing an initial alignment scheme to

identify topological holes. From this, they automatically derive a continuous deformation

using a variational implicit method. Lee et al. [153] extend the spherical parameterization to

handle non genus-zero meshes. The parameterization consists of a single positive spherical

85

parameterization and several negative spherical parameterizations depending on genus value

for the mesh. A Boolean difference operation is applied to calculate the source mesh by

subtracting the negative meshes from the positive one. From this approach, they can generate

a mesh morphing sequence for meshes with different topologies. Unlike most other

approaches, Liu and Wang [154] present a method for shape blending based on their intrinsic

definitions, rather than interpolating the vertex locations explicitly. They generalize the

algorithm for shape morphing between triangular meshes with arbitrary topologies, and

between free-form curves or surfaces.

7.2 Methodology and Implementation

In last section, recent advances in 3D mesh metamorphosis were reviewed. Clearly, most

of these methods focus on creating a common connectivity for pairs of shapes with the same

genus, and most focus only on genus-zero meshes. These methods usually employ some

surface parameterization techniques to assist in finding a bijective mapping between meshes.

The generation for correspondence is completed either by user input (in most cases) or some

sort of ―intelligent‖ matching and alignment algorithm. Some of the more recent work has

attempted to address the problem of morphing models with different topology. These

methods attempt to solve the mesh morphing problem in a more general way and are reported

to work well.

 However, for most of these methods, there are still issues that need to be addressed. The

86

challenges associated with existing 3D mesh morphing techniques can be categorized as:

For methods that generate common connectivity, i) most of their mesh parameterization

algorithms are relatively slow; ii) the final merging representation usually contains many

more vertices than the input source meshes. These limitations can lead to expensive

calculation and slow down the entire process, especially, if the applications requires blending

among more than two input models and needs to perform in real time. The geometric

conceptual design application addressed in this research imposes exactly these constraints.

For the methods that address with topological change, the morphing process not only

vertex position calculation, but also continuously computes the connectivity between vertices

in the mesh. The morphing is no longer a simple blending of vertex positions and it is not

feasible for real-time applications.

7.2.1 Morphing Framework

The focus of this research is to enable real time 3D mesh morphing to support

engineering geometric conceptual design that makes use of multiple (more than two) existing

legacy geometries and generates new design concepts with an interactive blending interface.

To achieve real-time metamorphosis, this approach creates a common connectivity among all

of the input mesh models. As discussed above, the spherical parameterization algorithm

develop here works faster than existing spherical methods. The spherical subdivision

remeshing method allows generation of a common connectivity for multiple input models

with fewer vertices than most mesh merging methods, while still representing all the

87

geometric details for each model.

The mesh morphing framework is shown schematically in Figure 20. It includes several

different components: spherical mesh parameterization, feature alignment from extracted

skeletons, mesh reconstruction from remeshing with spherical subdivision and final mesh

morphing. The spherical mesh parameterization, skeleton-based features alignment and mesh

reconstruction from remeshing with spherical subdivision have already been introduced in

previous chapters. In this chapter, the interactive morphing interface with barycentric

coordinates is introduced as well as the software implementation of 3D mesh morphing

framework.

88

Figure 20: Flowchart of 3D mesh metamorphosis framework

89

7.2.2 User Interface for Navigation

The idea of mesh morphing in geometric conceptual design is associated with a simple-

to-use user interface available to non-engineer users, which eliminates steep learning curve

from the complex input with traditional CAD system. To implement such user interface for

morphing, the concept of barycentric coordinates is employed which defines the coordinates

for any point in a polyhedron in terms of a linear combination of its vertices. Here the

formulation from Wachspress‘ [156] is adopted.

Figure 21: Star-shaped polygon for barycentric coordinates

In the special case that the polygon is convex, the coordinates of can be

expressed in terms of rational polynomial, according to Wachspress‘ formulation,

Where is the signed area of triangle , and are the angles as in Figure 21.

7.2.3 Software Development of 3DMeshMorpher

90

The software is developed with open source GUI API wxWidgets (www.wxwidgets.org)

and open source real-time graphics toolkit OpenSceneGraph (www.openscenegraph.org).

OpenSceneGraph is employed to organize the scene hierarchy and its rendering pipeline is

rewritten in this software to enable more flexible rendering modes and better re-rendering

capability for updated geometric information (e.g. new vertex positions). Figure 22 is a

snapshot of the 3D mesh metamorphosis framework implementation referred to as

―3DMeshMorpher‖.

Figure 22: Snapshot of 3D mesh morphing software 3DMeshMorpher

file:///D:/02.21.2011/www.wxwidgets.org
file:///D:/02.21.2011/www.openscenegraph.org

91

CHAPTER 8

RESULTS AND DISCUSSION

A spherical parameterization method and a spherical subdivision remeshing framework

based on it have been described previously. Both algorithms are implemented in C++ and

integrated into the ―3DMeshMorpher‖ software, which is designed to assist engineering

conceptual design by enabling new geometry generation via morphing among existing 3D

models. To test the robustness and effectiveness, several experiments were conducted using

various input 3D models. In these experiments, were conducted on a commodity laptop PC

with a 2.26 GHz CPU and 1 GB memory. Experimental observations for both the spherical

parameterization and subdivision remeshing methods are presented in the following sessions.

Finally, results from the developed mesh metamorphosis framework are presented as well.

8.1 Results for Spherical Parameterization

Several recent investigations [132, 130, 92] have employed the Gauss-Seidel iterations in

their spherical parameterization methods. However, it is reported that their procedures are

shown to be unstable and do not guarantee bijectivity. Alexa [132] applies heuristic iterative

procedures with uniform weights and quotes a parameterization time for a mesh with 4,169

triangles at 45.9 seconds. Praun and Hoppe [136] utilize uniformly subdivided polyhedral

domains in spherical parameterization and their method requires 7-25 minutes‘ processing

time for 25,000-200,000 faces. Gu et al. [92] report time of around 530 seconds for mapping

92

30,000 faces with a successful case, and Birkholz‘s [130] hierarchical method needs about

600 seconds to parameterize roughly 100,000 faces. Saba et al. [135] developed a fast

numerical solution which could efficiently solve the non-linear equations for spherical

mapping from Gotsman et al. [134]. They report a minimum total solution time of 8.15

seconds for a model with 5,660 triangles.

 Performance results from tests of the spherical parameterization method developed in

this research, applied to several representative models, is presented in Table 1. Clearly, the

algorithm can handle thousands of faces in only a couple of seconds.

Model Vertices Triangles Weights Time (sec)

horse 1929 3854 uniform 1.4

armadillo 2164 4324 uniform 1.7

triceratops 2832 5660 uniform 2.4

cow 2904 5804 uniform 2.9

Table 1: Statistics of spherical parameterization efficiencies

8.2 Results for Remeshing with Subdivision

Given spherical parameterizations for the input meshes from the fast spherical

parameterization method, the following test demonstrates the performance of the remeshing

algorithm with spherical subdivision. Figure 23 shows an original source mesh together with

the remeshing results from 3 different base meshes: tetrahedron, octahedron and icosahedron.

All of the remeshed representations capture the geometric details from the source mesh fairly

well with about same amount of vertices.

93

Figure 23: Remeshing from spherical subdivision in seconds: (a) source mesh; (b) remeshing

with tetrahedron; (c) remeshing with octahedron; (d) remeshing with icosahedron

Figure 24: Multi-resolution remeshing outputs from coarse to fine

94

 With the guaranteed bijectivities of the subdivided spherical map and original spherical

map, the projection from vertices on the subdivided spherical map to the faces on the original

spherical map will be one-on-one. This ensures the validity for this remeshing process. As

discussed at the recursive spherical subdivision section, the base mesh is subdivided until it

matches some defined LOD parameter. By modifying the LOD setting within the algorithm,

a variety of remeshed representations can be computed at different resolutions. This

capability of multi-resolution can be applied to aid mesh decimation and mesh refinement

related applications. Figure 24 shows two examples, with LOD settings from coarse to fine

(the same resolution as the input model), generated with this algorithm.

8.3 Results for 3D Mesh Morphing

In the ―3DMeshMorpher‖ software, the fast spherical parameterization algorithm

described in Chapter 4, is integrated with the skeleton-based feature identification and

alignment method described in Chapter 5, and the remeshing technique from spherical mesh

subdivision described in Chapter 6. An openGL-based navigation interface is introduced to

control the barycentric weights for each of the input models, which is defined by Wachspress‘

formulation for barycentric coordinates. The common connectivity generated for all input

models enables the system to generate a new morphed model with accurate geometric

information (e.g., normals for every face and every vertex). As users press and drag the

mouse button within the blending panel, a continuous sequence of transformed shapes is

95

created and rendered in real time. Figure 25 and Figure 26 present groups of morphing

outputs from 3 input models (horse, triceratops and cow) without and with feature alignment

respectively, generated from ―3DMeshMorpher‖. In Figure 26, since we have aligned related

features, any intermediate shape shares the same topology as the input models (e.g., four legs

instead of eight legs if features had not been aligned or aligned incorrectly as in Figure 25).

Figure 25: Morphing outputs from three sample models (horse, triceratops and cow) without

feature alignment (simply based on their original geometry orientations)

96

Figure 26: Morphing outputs from three sample models (horse, triceratops and cow) with

feature alignment for four legs and head

97

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

Geometry creation and visualization during the conceptual design phase of product

development is a challenging task. This work focuses on the development of tools that can

assist an engineer in the generation of geometric concept models by rapidly and continuously

morphing multiple legacy models.

To quickly construct new geometric model from existing ones, a 3D mesh

metamorphosis framework ―3DMeshMorpher‖ is implemented. To support the software

framework, the following unique algorithms were developed: a fast spherical

parameterization method to map a (genus-zero) geometric model onto a unit sphere; a

geometric feature identification and alignment technique based on 3D skeleton extraction;

and a LOD controllable 3D remeshing scheme with spherical mesh subdivision (based on the

same spherical parameterization algorithm). This software allows designers to continuously

navigate through the shape-space of design models bounded by existing models to produce

numerous design concepts in real-time.

9.2 Future Work

 A 3D mesh metamorphosis software framework has been presented to aid engineering

conceptual design. Several related techniques and methods were developed and integrated in

98

this framework to facilitate real-time mesh morphing. The validity and effectiveness of these

methods have been verified by the testing results obtained from sample models. However, the

following possible investigation and development could be conducted to improve the

efficiency and usability of this framework, as future work,

1) Improve the ‗overlapping relaxation‘ in our spherical parameterization method.

Current iterative relaxation is not effective enough for big geometric models with

dense overlapping area. This could be improve by formulating and solving

discrete Laplace equation systems. There exists some efficient matrix solving

algorithm that could be employed to fulfill this purpose.

2) Investigate feasibility of automatic feature alignment with skeleton extraction.

This could be beneficial when the input models are similar to each other

topologically. A pre-designed template will help, but a more promising solution is

to develop/implement a generic feature recognition algorithm.

3) Implement different user morphing interface. Instead of a barycentric graphical

interface for engineer, navigation through metadata could bring people from non-

engineering background to the design phase. For example, a slider bar of weight,

gas mileage or sportiness for designing a new vehicle from existing automobiles

with this mesh morphing framework.

4) Realize mesh morphing in virtual reality by integrating morphing framework into

ASDS. An immersive virtual reality environment could influence designers'

99

perception and inspire their ideas for new concepts creation. And the collaborative

context of ASDS will also enable group design and the interactions among people

will definitely improve the efficiency and effectiveness of the design process.

100

REFERENCES

[1] Lotter, B., Manufacturing Assembly Handbook, Butterworths, Boston, MA, 1986.

[2] Ulrich, K. T. and Eppinger, S. D., Product design and development, 3
rd

 edition, McGraw

Hill, 2004.

[3] SIMULIA Abaqus, http://www.simulia.com, accessed September 2009.

[4] Solidworks, http://www.solidworks.com, accessed September 2009.

[5] UGS Teamcenter,

http://www.plm.automation.siemens.com/en_us/products/teamcenter/index.shtml, accessed

September 2009.

[6] Ullman, David G., Mechanical Design Process, 3
rd

 edition, McGraw-Hill, New York,

2003.

[7] Otto, Kevin N. and Kristin L. Wood, Product Design:Techniques in Reverse Engineering

and New Product Development, Upper Saddle River, NJ: Prentice Hall, 2001.

[8] PTC: Pro/CONCEPT, http://www.ptc.com/appserver/mkt/products/home.jsp?&k=701,

accessed September 2009.

[9] Dassault Systemes: CATIA V6 PLM, http://www.3ds.com/products/v6/welcome/,

accessed September 2009.

[10] Dieter, G. E. and Schmidt, L. C., Engineering Design, 4
th

 Edition, McGraw-Hill, New

York, 2009.

[11] Wang, L., Shen, W., Xie, H., Neelamkavil, J., and Pardasani, A., Collaborative

Conceptual Design—State of the Art and Future Trends, Journal of Computer-Aided Design,

Vol. 34, No. 13, pp. 981-996, 2002.

[12] Sahin, A., Studd, A., and Terpenny, J. P., A Graphical Modeling Tool for

Conceptualizing and Analyzing Modular Products, International Design Research

Symposium, South Korea, 2006.

[13] Chang, X., Sahin, A., and Terpenny, J. P., An Ontology-Based Support for Product

101

Conceptual Design, Journal of Robotics and Computer-Integrated Manufacturing, Vol. 24,

No. 6, pp. 755-762, Sp. Iss., December 2008.

[14] Cao, D., Ramani, K., Fu, M., and Zhang, R., Port-Based Ontology Semantic Similarities

for Module Concept Creation, ASME International Design Engineering Technical

Conferences 35th Design Automation Conference, paper no. DETC2009-86470, Aug 30-Sept

2, 2009.

[15] Christophe, F., Sell, R., Bernard, A., and Coatenéa, E., OPAS: Ontology Processing for

Assisted Synthesis of Conceptual Design Solutions, ASME International Design Engineering

Technical Conferences 35th Design Automation Conference, paper no. DETC2009-87776,

Aug 30-Sept 2, 2009.

[16] Takahashi, T. T., Fanciullo, T., and Ridgely, D. B., Incorporation of Flight Control

Design Tools into the Multi-Disciplinary Conceptual Design Process, 45th AIAA Aerospace

Sciences Meeting and Exhibit, Reno, NV, Jan 8-11, 2007.

[17] Noon, C. J. and Winer, E. H., A Study of Different Metamodeling Techniques for

Conceptual Design, ASME International Design Engineering Technical Conferences 35th

Design Automation Conference, paper no. DETC2009-86496, Aug 30-Sept 2, 2009.

[18] Suh, N. P., Axiomatic Design—Advances and Applications, Oxford University Press,

New York, 2001.

[19] Hazelrigg, G., Systems engineering: An approach design, Prentice-Hall, Upper Saddle

River, NJ, 1996.

[20] Hauser, J. R. and Clausing, D., The House of Quality, Harvard Business Review, Vol. 5,

1988.

[21] Keeney, R. L. and Raiffa, H., Decisions with Multiple Objectives: Preferences and Value

Tradeoffs, John Wiley & Sons, Inc., New York, 1976.

[22] Keeney, R. L., Value-Focused Thinking— A Path to Creative Decision Making, Harvard

University Press, 1992.

[23] Jin, Y., Kim, D. and Danesh M. R., Value based design: an objective structuring

approach to design concept generation, ASME Proceedings of IDETC/CIE, Philadelphia, PA,

2006.

102

[24] Danesh M. R. and Jin, Y., An Agent-Based Decision Network for Concurrent

Engineering Design, Journal of Concurrent Engineering: Research and Applications, Vol. 9,

No. 1, 2001.

[25] Hoyle, C. J., and Chen, W., Product Attribute Function Deployment (PAFD) for

Decision-Based Conceptual Design, Journal of IEEE Transactions on Engineering

Management, Vol. 56, No. 2, May 2009.

[26] Sutherland, I. E., The Ultimate Display, Proceedings of IFIPS Congress, New York City,

NY, Vol. 2, pp. 506-508, May 1965.

[27] Cruz-Neira, Carolina, Sandin, Daniel J., and DeFanti, Thomas A., Surround-screen

Projection-based Virtual Reality: The Design and Implementation of the CAVE, Proceedings

of the 20th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH, pp. 135-142, September 1993.

[28] Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., Hart, J. C., The CAVE:

Audio Visual Experience Automatic Virtual Environment, Communications of the ACM,

ACM, Vol. 35, No. 6, pp. 64-72, June 1992.

[29] Sony SRXT110 Projector: http://pro.sony.com/bbsc/ssr/product-SRXT110/, accessed

September 2009.

[30] Kindratenko, V., A Comparison of the Accuracy of an Electromagnetic and a Hybrid

Ultrasound-inertia Position Tracking System, Presence: Teleoperators and Virtual

Environments, MIT Press, Cambridge, MA, Vol. 10, Issue 6, pp. 657-663, December 2001.

[31] InterSense: http://www.intersense.com/, accessed September 2009.

[32] Burdea, G. G. and Coiffet, P., Virtual reality technology, Wiley-Interscience, 2003.

[33] Bordegoni, M. and Cugini, U., A conceptual design tool based on innovative haptic

interfaces, ASME Proceedings of IDETC/CIE, Philadelphia, PA, 2006.

[34] Fischer, A. and Vance, J. M., PHANToM Haptic Device Implemented in a Projection

Screen Virtual Environment, Proceedings of the Workshop on Virtual Environments,

EUROGRAPH, Zurich, Switzerland, 2003.

[35] Duncan, T. J. and Vance, J. M., Development of a Virtual Environment for Interactive

Interrogation of Computational Mixing Data, Journal of Mechanical Design, Vol. 129, No.

103

361, 2007.

[36] Abdul-Jalil, M. K. And Bloebaum, C. L., Development of a Distributed Collaborative

Virtual Environment for Engineering Design Application, 8
th

 AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, Sept 6-8,

2000.

[37] Zhang, R., Noon, C., Oliver, J., Winer, E., Gilmore, B., and Duncan, J., Development of

a Software Framework for Conceptual Design of Complex Systems, 3rd Annual AIAA

Multidisciplinary Design Optimization Specialists Conference, paper no. AIAA-2007-1931,

April 23-26, 2007.

[38] Zhang, R., Noon, C., Oliver, J., Winer, E., Gilmore, B., and Duncan, J., Immersive

Product Configurator for Conceptual Design, ASME International Design Engineering

Technical Conferences 33rd Design Automation Conference, paper no. DETC2007-35390,

September 4-7, 2007.

[39] OpenSceneGraph, http://www.openscenegraph.org/projects/osg, accessed September

2009.

[40] wxWidgets, http://www.wxwidgets.org/, accessed September 2009.

[41] VR Juggler, http://www.vrjuggler.org, accessed September 2009.

[42] A. Sheffer, E. Praun, and K. Rose, Mesh parameterization methods and their

applications, Foundations and Trends in Computer Graphics and Vision, 2(2):105-171, 2006.

[43] BENNIS, C., VÉZIEN, J.-M., AND IGLÉSIAS, G., Piecewise surface flattening for

nondistorted texture mapping, ACM SIGGRAPH, pp.237-246, 1991.

[44] FLOATER, M. AND HORMANN, K., Surface Parameterization: a Tutorial and Survey,

Advances in Multiresolution for Geometric Modelling, pp.157-186, 2005.

[45] MAILLOT, J., YAHIA, H., AND VERROUST, A., Interactive texture mapping, ACM

SIGGRAPH, pp. 27-34, 1993.

[46] HORMANN, K., AND GREINER, G., MIPS: An efficient global parameterization

method, Curve and Surface Design, pp.153-162, 2000.

[47] SHEFFER, A., AND DE STURLER, E., Surface Parameterization for Meshing by

104

Triangulation Flattening, Proc. 9th International Meshing Roundtable, pp.161-172, 2000.

[48] LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J., Least squares conformal

maps for automatic texture atlas generation, ACM SIGGRAPH, pp.362-371, 2002.

[49] DESBRUN, M., MEYER, M., AND ALLIEZ, P., Intrinsic parameterizations of surface

meshes, Computer Graphics Forum, 21, pp.209-218, 2002.

[50] DEGENER, P., MESETH, J., AND KLEIN, R., An adaptable surface parameterization

method, Proceedings, 12th International Meshing Roundtable, pp. 201-213, 2003.

[51] Ed Catmull, A Subdivision Algorithm for Computer Display of Curved Surfaces, PhD

thesis, Dept. of CS, U. of Utah, 1974.

[52] James F. Blinn, Martin E. Newell, Texture and Reflection in Computer Generated

Images, CACM, Vol. 19, No. 10, pp. 542-547, 1976.

[53] James F. Blinn, Simulation of Wrinkled Surfaces, Computer Graphics, (SIGGRAPH ‘78

Proceedings), Vol. 12, No. 3, pp. 286-292, 1978.

[54] James F. Blinn, Computer Display of Curved Surfaces, PhD thesis, CS Dept., U. of

Utah, 1978.

[55] Geoffrey Y. Gardner, Visual Simulation of Clouds, Computer Graphics, (SIGGRAPH

‘85 Proceedings), Vol. 19, No. 3, pp. 297-303, 1985.

[56] Gene S. Miller, C. Robert Hoffman, Illumination and Reflection Maps: Simulated

Objects in Simulated and Real Environments, SIGGRAPH Advanced Computer Graphics

Animation seminar notes, 1984.

[57] Robert L. Cook, Shade Trees, Computer Graphics, (SIGGRAPH ‘84 Proceedings), Vol.

18, No. 3, pp. 223-231, 1984.

[58] James T. Kajiya, Anisotropic Reflection Models, Computer Graphics, (SIGGRAPH ‘85

Proceedings), Vol. 19, No. 3, pp.15-21, 1985.

[59] SHEFFER, A., LÉVY, B., MOGILNITSKY, M., AND BOGOMYAKOV, A., ABF++:

fast and robust angle based flattening, ACM Transactions on Graphics 24(2), pp.311-330,

2005.

105

[60] LENGYEL, J., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H., Real-time fur on

arbitrary surfaces, Symposium on Interactive 3D Graphics, pp.227-232, 2001.

[61] PENG, J., KRISTJANSSON, D., AND ZORIN, D., Interactive modeling of

Topologically Complex Geometric Detail, ACM SIGGRAPH, 2004.

[62] PORUMBESCU, S, BUDGE, B., FENG, L., AND JOY, K. I., Shell Maps, ACM

SIGGRAP, 2005.

[63] PEDERSON, H.-K., Decorating Implicit Surfaces, ACM SIGGRAPH, 1995.

[64] PRAUN, E., FINKELSTEIN, A., AND HOPPE, H., Lapped Textures, ACM

SIGGRAPH, pp.465-470., 2000.

[65] WEI, L.-Y., AND LEVOY, M., Texture Synthesis over Arbitrary Manifold Surfaces,

ACM SIGGRAPH, 2001.

[66] TURK, G., Texture synthesis on surfaces, ACM SIGGRAPH, pp. 347-354, 2001.

[67] YING, L., HERTZMANN, A., BIERMANN, H., ZORIN, D., Texture and Shape

Synthesis on Surfaces, Eurographics Workshop on Rendering, 2001.

[68] SOLER, C., CANI, M.-P., ANGELIDIS, A., Hierarchical Pattern Mapping, ACM

SIGGRAPH, pp 673-680, 2002.

[69] IGARASHI, T., AND COSGROVE, D., Adaptive Unwrapping for Interactive Texture

Painting, ACM Symposium on Interactive 3D Graphics, pp. 209-216, 2001.

[70] CARR, N., AND HART, J., Painting Detail, ACM SIGGRAPH, 2004.

[71] LÉVY, B., Dual domain extrapolation, ACM SIGGRAPH, 2003.

[72] ALLEN, B., CURLESS, B., AND POPOVIĆ, Z., The space of human body shapes:

reconstruction and parameterization from range scans, ACM SIGGRAPH, pp.587-594, 2003.

[73] ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S., RODGERS, J. DAVIS,

J., SCAPE: Shape Completion and Animation of People, ACM SIGGRAPH, 2005.

[74] KRAEVOY, V., AND SHEFFER, A., Template Based Mesh Completion, Proc.

Symposium on Geometry Processing (SGP), 2005.

106

[75] BIERMANN, H., MARTIN, I., BERNARDINI, F., AND ZORIN, D., Cut-and-paste

editing of multiresolution surfaces, ACM SIGGRAPH, pp.312-321, 2002.

[76] SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M., RÖSSL, C., AND

SEIDEL, H.-P., Laplacian Surface Editing, Proceedings of Eurographics/ACM Symposium

on Geometry Processing, pp.179-188, 2004.

[77] GU, X., GORTLER, S., AND HOPPE, H., Geometry images, ACM SIGGRAPH,

pp.356-361, 2002.

[78] GUSKOV, I., VIDIMČE, K., SWELDENS, W., AND SCHRÖDER, P., Normal meshes,

ACM SIGGRAPH, pp.95-102, 2000.

[79] LEE, A., HOPPE, H., MORETON, H., Displaced Subdivision Surfaces, ACM

SIGGRAPH, 2000.

[80] KHODAKOVSKY, A., LITKE, N., AND SCHRÖDER, P., Globally smooth

parameterizations with low distortion, ACM SIGGRAPH, pp.350-357, 2003.

[81] SURAZHKY, V. AND GOTSMAN, C., Explicit surface remeshing, ACM/Eurographics

Symposium on Geometry Processing, 2003.

[82] RAY, N., LI, W-C., LÉVY, B., SHEFFER, A., AND ALLIEZ, P., Periodic global

parameterization, ACM Transactions on Graphic, 25(3), 2006.

[83] DONG, S., BREMER, P.-T., GARLAND, M. , PASCUCCI, V., AND HART, J. C.,

Spectral Surface Quadrangulation, ACM SIGGRAPH, 2006.

[84] ALLIEZ, P., AND GOTSMAN, C., Recent advances in compression of 3D meshes,

Advances in Multiresolution for Geometric Modelling, pp.3-26, 2005.

[85] HOPPE, H., AND PRAUN, E., Shape compression using spherical geometry images,

Advances in multiresolution for geometric modeling, pp.3-26, 2005.

[86] BLANZ, V., AND VETTER, T., A morphable model for the synthesis of 3D faces, ACM

SIGGRAPH, 1999.

[87] MARSCHNER, S., GUENTER, B., AND RAGUPATHY, S., Modeling and rendering

for realistic facial animation, Proceedings of the Eurographics Workshop on Rendering

Techniques, pp.231-242, 2000.

107

[88] BLANZ, V., BASSO, C., POGGIO, T. AND VETTER, T., Reanimating Faces in Images

and Video, Computer Graphics Forum 22(3), EUROGRAPHICS, pp.641-650, 2003.

[89] BLANZ, V., SCHERBAUM, K., VETTER, T., AND SEIDEL, H.-P., Exchanging faces

in images, EUROGRAPHICS, 2004.

[90] HURDAL, M. K., BOWERS, P. L., STEPHENSON, K., SUMNERS, D. W. L., REHM,

K., SCHAPER, K., ROTTENBERG, D. A., Quasi-conformally flat mapping the human

cerebellum, Medical Image Computing and Computer-Assisted Intervention 1679, pp.279-

286, 1999.

[91] HAKER, S., ANGENENT, S., TANNENBAUM, S., KIKINIS, R., SAPIRO, G., AND

HALLE, M., Conformal surface parameterization for texture mapping, IEEE TVCG, 6(2),

pp.181-189, 2000.

[92] GU, X., WANG, Y., CHAN, T. F., THOMPSON, P. M., AND YAU, S.-T., Genus Zero

Surface Conformal Mapping and Its Application to Brain Surface Mapping, IEEE

Transaction on Medical Imaging 23(7), 2004.

[93] MITANI J., AND SUZUKI H., Making papercraft toys from meshes using strip-based

approximate unfolding, ACM SIGGRAPH, pp.259-263, 2004.

[94] JULIUS D., KRAEVOY, AND SHEFFER, A., D-charts: Quasi-developable mesh

segmentation, Proceedings of Eurographics, 24(3), pp.981-990, 2005.

[95] DO CARMO, M., Differential geometry of curves and surfaces, Prentice Hall, 1976.

[96] TUTTE, W., T., How to draw a graph, London Mathematical Society 1963, 13, pp.743-

768, 1963.

[97] FLOATER, M., Parameterization and smooth approximation of surface triangulations,

Computer Aided Geometric Design, 14(3), pp. 231-250, 1997.

[98] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND

STUETZLE, W., Multiresolution analysis of arbitrary meshes, ACM SIGGRAPH, pp. 173-

182, 1995.

[99] KHAREVYCH, L., SPRINGBORN, B., AND SCHRÖDER, P., Discrete conformal

mappings via circle patterns, ACM Transactions on Graphics 25(2), 2006.

108

[100] GUSKOV, I., An anisotropic mesh parameterization scheme, Proceedings of the 11th

International Meshing Roundtable, pp.325-332, 2002.

[101] FLOATER, M., Mean value coordinates. Computer Aided Geometric Design, 20(1),

pp.19-27, 2003.

[102] LEE, Y., KIM, H. S., AND LEE, S., Mesh parameterization with a virtual boundary,

Computers and Graphics 26(5), pp.677-686, 2002.

[103] ZHANG, E., MISCHAIKOW, AND TURK, G., Feature-Based Surface

Parameterization and Texture Mapping, ACM Transaction on Graphics 24(1), pp.1-27, 2005.

[104] SHEFFER, A. AND DE STURLER, E., Parameterization of Faceted Surfaces for

Meshing Using Angle Based Flattening, Engineering with Computers 17(3), pp.326-337,

2001.

[105] ZAYER, R., ROSSL, C., AND SEIDEL, H.-P., Variations on angle based flattening,

Proceedings of Multiresolution in Geometric Modelling, pp.285-296, 2003.

[106] ZAYER, R., RÖSSL, C., AND SEIDEL, H.-P., Setting the Boundary Free: A

Composite Approach to Surface Parameterization, Symposium on Geometry Processing,

pp.91-100, 2005.

[107] LÉVY, B. AND MALLET, J.-L., Non-distorted texture mapping for sheared

triangulated meshes, ACM SIGGRAPH, pp.343-352, 1998.

[108] SANDER, P., SNYDER, J., GORTLER, S., AND HOPPE, H., Texture mapping

progressive meshes, ACM SIGGRAPH, pp.409-416, 2001.

[109] ZHOU, K., SNYDER, J., GUO, B., AND SHUM, H.-Y., Iso-charts: Stretch-driven

Mesh Parameterization using Spectral Analysis, Eurographics Symposium on Geometry

Processing, pp.47-56, 2004.

[110] SANDER, P., GORTLER, S., SNYDER, J., AND HOPPE, H., Signal-specialized

parameterization, Eurographics Workshop on Rendering, pp.87-100, 2002.

[111] TEWARI, G., SNYDER, J., SANDER, P., GORTLER, S., AND HOPPE, H., Signal-

Specialized Parameterization for Piecewise Linear Reconstruction, Eurographics Symposium

on Geometry Processing, pp.57-66, 2004.

109

[112] SANDER, P., WOOD, Z., GORTLER, S., SNYDER, J. AND HOPPE, H., Multi-chart

geometry images, ACM Symposium on Geometry Processing, 2003.

[113] GU, X., AND YAU, S.-T., Global conformal surface parameterization, Symposium on

Geometry Processing, pp.127-137, 2003.

[114] TARINI, M., HORMANN, K., CIGNONI, P., AND MONTANI, C., PolyCube-Maps,

ACM SIGGRAPH, pp.853-860, 2004.

[115] SHEFFER, A., AND HART, J., Seamster: Inconspicuous low-distortion texture seam

layout, IEEE Visualization, pp.291-298, 2002.

[116] SORKINE, O., COHEN-OR, D., GOLDENTHAL, R., AND LISCHINSKI, D.,

Bounded-distortion piecewise mesh parameterization, IEEE Visualization, pp.355-362, 2002.

[117] LAZARUS, F., POCCHIOLA, M., VEGTER, G., AND VERROUST, A., Computing a

canonical polygonal schema of an orientable triangulated surface, In Proceedings of the

Seventeenth Annual Symposium on Computational Geometry, 2001.

[118] ERICKSON, J. AND HAR-PELED, S., Optimally Cutting a Surface into a Disk,

Discrete Computational Geometry 31(1), pp.37-59, 2004.

[119] NI, X., GARLAND, M., AND HART, J. C., Fair Morse functions for extracting the

topological structure of a surface mesh, ACM SIGGRAPH, pp.613-622, 2004.

[120] EDELSBRUNNER, H., LETSCHER, D., AND ZOMORODIAN, A., Topological

persistence and simplification, Discrete and Computational Geometry 28, 4, pp.511-533,

2002.

[121] GUSKOV, I., KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W., Hybrid

meshes: multiresolution using regular and irregular refinement, ACM Symposium on

Computational Geometry, pp.264-272, 2002.

[122] PRAUN, E., SWELDENS, W. AND SCHRÖDER, P., Consistent mesh

parameterizations, ACM SIGGRAPH, pp.179-184, 2001.

[123] SCHREINER, J., ASIRVATHAM, A., PRAUN, E, AND HOPPE, H., Inter-Surface

Mapping, ACM SIGGRAPH, 2004.

[124] KRAEVOY, V., AND SHEFFER, A., Cross-parameterization and compatible

110

remeshing of 3D models, ACM SIGGRAPH, 2004.

[125] BOIER-MARTIN, I., RUSHMEIER, H., JIN, J., Parameterization of Triangle Meshes

over Quadrilateral Domains, Eurographics Symposium on Geometry Processing, pp.197-208,

2004.

[126] ISENBURG, M. GUMHOLD, S. AND GOTSMAN, C., Connectivity Shapes,

Proceedings of IEEE Visualization, pp.135-142, 2001.

[127] ZAYER, R., RÖSSL, C., AND SEIDEL, H.-P., Curvilinear Spherical Parameterization,

Proceedings of Shape Modeling and Applications, pp.57-64, 2006.

[128] DAS, G., AND GOODRICH, M. T., On the Complexity of Optimization Problems for

3-Dimensional Convex Polyhedra and Decision Trees, Computational Geometry, 8, pp.123-

137, 1997.

[129] SHAPIRO, A. AND TAL, A., Polyhedron realization for shape transformation, The

Visual Computer14 (8), pp.429-444, 1998.

[130] BIRKHOLZ. H., Shape-preserving parameterization of genus 0 surfaces, Proc. Winter

Conference on Computer Graphics (WSCG), 2004.

[131] KOBBELT, L. P., VORSATZ, J., LABISK, U. AND SEIDEL, H.-P., A shrink-wrapping

approach to remeshing polygonal surfaces, Proceedings of Eurographics, 1999.

[132] ALEXA, M., Merging polyhedral shapes with scattered features, The Visual Computer,

16(1), pp.26-37, 2000.

[133] ALEXA, M., Recent advances in mesh morphing, Computer Graphics Forum 21(2),

pp.173-196, 2002.

[134] GOTSMAN, C., GU, X. AND SHEFFER, A., Fundamentals of spherical

parameterization for 3D meshes, ACM SIGGRAPH, pp.358-364, 2003.

[135] SABA, S., YAVNEH, I., GOTSMAN, C. AND SHEFFER, A., Practical Spherical

Embedding of Manifold Triangle Meshes, Proceedings of Shape Modeling International,

2005.

[136] PRAUN, E. AND HOPPE, H., Spherical parameterization and remeshing, ACM

SIGGRAPH, pp.340-350, 2003.

111

[137] Sheffer, A., Gotsman, C., Dyn, N., Robust spherical parameterization of triangular

meshes. Computing, 72(1–2): 185–193, 2003.

[138] Wolberg, G., Recent Advances in Image Morphing, Proceedings of the Conference on

Computer Graphics International, pp 64, 1996.

[139] Daniel Cohen-Or, Amira Solomovici, and David Levin, Three dimensional distance

field metamorphosis, ACM Transactions on Graphics, 17(2):116–141, 1998.

[140] Apostolos Lerios, Chase D. Garfinkle, and Marc Levoy, Feature based volume

metamorphosis, Computer Graphics, 29:449–456, 1995.

[141] Xiang Fang, Hujun Bao, Pheng-Ann Heng, Tien-Tsin Wong, and Qunsheng Peng,

Continuous field based free-form surface modeling and morphing, Computer and Graphics,

25(2):235–243, 2001.

[142] Greg Turk and James F. O‘Brien, Shape transformation using variational implicit

functions, In Proceedings of ACM SIGGRAPH 1999, pages 335–342, 1999.

[143] J.R. Kent,W.E. Carlson, and R.E. Parent, Shape transformation for polyhedral objects.

Computer Graphics, 26(2):47.54, July 1992.

[144] Kanai, T., Suzuki, H. and Kimura, F., Three-Dimensional Geometric Metamorphosis

Based on Harmonic Maps, The Visual Computer, vol. 14, pp 166-176, 1998.

[145] Kanai, T., Suzuki, H. and Kimura, F., Metamorphosis of Arbitrary Triangular Meshes,

IEEE Computer Graphics and Applications, pp 62-75, 2000.

[146] Lee, A., Dobkin, D., Sweldens, W. and Schroder, P., Multiresolution Mesh Morphing,

Proceedings of SIGGRAPH 99, pp 343-350, 1999.

[147] Lee, T. and Huang, P., Fast and Intuitive Metamorphosis of 3D Polyhedral Models

Using SMCC Mesh Merging Scheme, IEEE Transactions on Visualization and Computer

Graphics, vol. 9, no. 1, 2003.

[148] Hujun Bao and Qunsheng Peng, Interactive 3d morphing, Computer Graphics Forum,

17(3):23–30, 1998.

[149] Arthur Gregory, Andrei State, Ming C. Lin, Dinesh Manocha, and Mark A. Livingston,

Feature-based surface decomposition for correspondence, Computer Animation 98, pages

112

64–71, 1998.

[150] Jin-Bey Yu and Jung-Hong Chuang, Consistent mesh parameterizations and its

application in mesh morphing, Computer Graphics Workshop, 2003.

[151] Shlafman, S., Tal, A. and Katz, S., Metamorphosis of Polyhedral Surfaces Using

Decomposition, EUROGRAPHICS, vol. 21, no. 3, pp 219-228, 2002.

[152] Janine Bennett, Valerio Pascucci, Kenneth Joy, A genus oblivious approach to cross

parameterization, Computer Aided Geometric Design, vol. 25, no. 8, pp 592-606, 2008.

[153] Lee, T.-Y., Yao, C.-Y., Chu, H.-K., Tai, M.-J., Chen, C.-C., Generating genus-n-to-m

mesh morphing using spherical parameterization, Journal of Visualization and Computer

Animation, 17 (3–4), 433–443, 2006.

[154] L.-G. Liu, G.-J. Wang, Three-dimensional shape blending: intrinsic solutions to spatial

interpolation problems, Comput. Graph., 23 (4) 535-545, 1999.

[155] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee, Skeleton extraction

by mesh contraction, ACM Trans. Graphics, vol. 27, no. 3, pp. 44:1–44:10, 2008.

[156] E. Wachspress, A rational finite element basis, Academic Press, 1975.

[157] Huong Quynh Dinh, Anthony Yezzi, Greg Turk, Texture transfer during shape

transformation, ACM Transactions on Graphics (TOG), v.24 n.2, pp 289-310, 2005.

113

ACKNOWLEDGEMENTS

I will keep the diploma but many share the credit for this work.

First of all, I would like to thank my parents, without whom I would not be what I am

today, my wife for her constant encouragement and the one person who has been my

strongest source of strength and inspiration.

I would like to thank my major professors Eliot Winer and James Oliver, who have

always given me all the support and affirmation of confidence that a graduate student could

ask for. I really appreciate their patience and instructions over the past years. From them I

learned the basics of graduate research and how to probe things deeply. And they are always

a constant source of inspiration and wisdom.

Here at Iowa State University, I‘d like thank Professors Judy Vance, Song Zhang and

Chris Harding for being my thesis readers. I must thank my colleagues at Virtual Reality

Applications Center, who have been giving me support and assistance. I want to also thank

my colleagues Dr. Alex Zhou and Dr. Grace Chen at CFDRC for helping in implementation

and debugging. I am greatly thankful for their assistance and suggestion for my research

work.

For their support and sacrifice, I dedicate this work to them.

	2011
	3D mesh metamorphosis from spherical parameterization for conceptual design
	Ruqin Zhang
	Recommended Citation

	A Geometric Concepts Creation Framework with 3D Mesh Metamorphosis from Spherical Parameterization

